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List of used symbols

In this thesis, many symbols and notations are used to express some variables in the equations that are
described. Since this can be a bit confusing, an overview of those symbols is given here.

N i
x Depends on the coordinates of vi and its neighbours. Every vertex vi has its own N i

x and
N i
x ∈ R.

N i,s
x Depends on the coordinates of vi and its neighbours. For every neighbour of vi, there is a N i,s

x

and N i,s
x ∈ R.

N i
xx Depends on the coordinates of vi and its neighbours. Every vertex vi has it’s own N i

xx and
N i
xx ∈ R.

N i,s
xx Depends on the coordinates of vi and its neighbours. For every neighbour of vi, there is a N i,s

xx

and N i,s
xx ∈ R.

v̄ The viscosity (unit: pa.s) is a measure for resistance against deformation. It is given by equation
(4.8).

f∗ The exact solution of the linear system Af = b.
fk The approximation of the solution of the linear system Af = b after k iterations.
v Vertically integrated velocity v = (u, v).

δij δij =

{
1 if i = j

0 if i 6= j
.

τ Index for the time step that is used in the model.
fi The function value of f on vertex i.
f ix First partial derivative with respect to x on vertex vi.
f tx,tri Partial derivative with respect to x triangle t.
fsxx,sub Second partial derivative with respect to x on subtriangle s.

f ixx Second partial derivative with respect to x on vertex vi.
k Index for the iteration step.
s Index for the subtriangles and ws surrounding vertex vi in the mesh.
t Index for the triangles and vertices vnt surrounding vertex vi in the mesh.
u The first component of the vertically integrated velocity v = (u, v).
v The second component of the vertically integrated velocity v = (u, v).
||x||∞ Let x be a vector in Rn. The infinity norm or maximal norm is given by max (|x1|, |x2|, ..., |xn|).
mathemat FFF om genoeg ruimte te hebben.
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1 Introduction

Ice sheets are continental glaciers with an area of more than 50.000 km2. Currently, there are only two
ice sheets which can be found on Greenland and Antarctica. Together, they contain more than 99% of the
permanent ice volume [4], so melting of those ice sheets can contribute a lot to sea level rise. For example:
melting of the whole Antarctic ice sheet would lead to a sea level rise of almost 58 metres [4]. A recent study
[12] used satellite data to estimate the mass loss of the Greenland ice sheet between 1992 and 2018. They
showed that the total loss has led to a sea level rise of approximately ten millimetres. In general, the ice loss
was increasing over time.
However, the evolution of an ice sheet is very slow compared to the human timescale. Therefore, these kind
of observations do not represent the long term evolution of ice sheets. In [13], it is stated that the response
of ice sheets to the warming climate is still a large uncertainty in sea level predictions. Therefore, several ice
sheet models have already been made to simulate the evolution of ice sheets.

The Utrecht Finite Volume Ice-Sheet Model (UFEMISM) is one of those models and is made by [2]. The
model is different from other Ice-sheet models because it solves the equations on an unstructured triangular
mesh. Figure 2 shows an example of such a mesh.
With this approach, some parts of the glacier can be modelled with high resolution, while other parts can be
modelled with a low resolution.

Figure 1: An example of an irregular mesh of the Antarctic ice
sheet. At the grounding line, there is a higher resolution.

At the boundary of the ice sheet, the ice
starts to float on the ocean water. This part
of the ice sheet is called an ice shelf. The
location where the ice sheet starts to float is
called the grounding line. According to [2],
a high resolution at the grounding line of a
glacier is needed to solve the physical pro-
cesses accurately. However, if the whole ice
sheet would be modelled with a high reso-
lution, the computation time would be very
long.
On other parts, where there is less movement
in the glacier, there is no need for such a high
resolution. With this unstructured triangu-
lar mesh, the resolution can be high only at
the places where it is needed to get an ac-
curate solution. The triangular mesh that
is used in the model is based on the geom-
etry of the ice sheet. The mesh refinement
algorithm that is used to find the triangles
of the mesh is based on an extended version
of Rupperts algorithm [8, 10]. Several re-
finement conditions are added based on the
geometry of the ice sheet.

The model uses two approximations of
the Navier-Stokes equations to calculate
the depth-averaged ice velocities for each
timestep. For grounded ice, the shallow ice
approximation (SIA) is used [9]. At places
where the traction at the base of the ice sheet
is negligible, the shallow shelf approximation (SSA) is used [2, 3]. At these places, there is almost no friction
at the base of the ice sheet, so the movement of the ice mainly consists of sliding. The SSA can also be used
for floating ice, where the movement of the ice is caused by longitudinal stretching.
In the model, the SSA equations are solved using Succesive Overrelaxation (SOR). This needs to be done
for each timestep. When calculating the velocities on timestep τ + 1, the velocities from timestep τ can be
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used as a first guess in the SOR method. In general, the velocities will not change considerably between two
timesteps, so this first guess already gives a good approximation of the velocities on timestep τ + 1. For this
reason, an iterative solving method is faster than a direct solving method.
Despite this, solving the equations in the SSA with SOR takes a lot of time. In article [2] it is shown that the
iterative method that is used for solving the equations in the SSA requires as much, or even more computation
time than all the other model components combined. If this can be done more efficiently, the whole model
will become faster.

The goal of this study is to investigate if there are ways to increase the convergence rate of the SOR method
on an irregular mesh. When an improved scheme is used for solving the SSA equations, they can be solved
more efficiently and therefore, they will make the whole model faster. Eventually, this can help to make
better predictions of the response of ice sheets to the warming climate and can help to make predictions for
sea level rise.

To get a better understanding of how the SSA equations can be solved on an irregular mesh, a description of
the methods used in UFEMISM is given. The method that is used to discretize derivatives on an irregular
mesh is explained in section 2. After that, some iterative methods that are used for solving the SSA equations
are explained in section 3. In section 4, a short explanation of the SSA equations is given.
To investigate if there are ways to increase the convergence rate of the iteration scheme on an irregular mesh,
a demo model is used. This demo model can solve differential equations on an irregular mesh with the same
methods as in UFEMISM.
In the demo model, the Laplace equation is solved using different iteration schemes on an irregular mesh.
This equation is a bit more easy than the equations in the SSA. Therefore, it is more easy to understand
how different iteration methods work for this equation. The results of different methods that are tested on
the Laplace equation are given in section 5. Eventually, these results can be tested on the SSA equations
in UFEMISM. If they also improve the convergence rate of the SSA equations, they can be implemented in
UFEMISM to reduce the computation time of the whole model.
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2 Discretisation scheme on an irregular mesh.

To solve the equations of the SSA, which are described in section 4, some second partial derivatives of the
velocity are needed. To find the numerical solution, those partial derivatives need to be discretized. On a
square grid, there are several ways for approximating partial derivatives of a function f . Every derivative of
a function f on vertex vi can be approximated as a linear combination of the function-values on vertex vi and
its surrounding vertices. Because UFEMISM is running on a irregular triangular mesh, these approximations
can not be used. In UFEMISM, they use a similar approach and show that the first- and second-order spatial
derivatives of f on vertex vi can also be approximated as linear combinations of the function-values on vertex
vi and its surrounding vertices. Here we are going into detail how this works. The whole method, and some
exceptions, are also described in the original article about UFEMISM [2].

2.1 Approximating partial derivatives on a regular mesh

In figure 2, a regular mesh is shown. In a regular mesh, the horizontal distance ∆x between the vertices is
equal to the vertical distance ∆y. There are several ways to approximate partial derivatives on a regular
mesh. One of these approximations is shown here. Let f be a continuous function defined on every vertex of
the mesh and f(x, y) the value on vertex (x, y).

Figure 2: Regular mesh

The second partial derivatives on a vertex with coordi-
nates (x, y) can then be approximated as a linear com-
bination of the values of f on the surrounding vertices.
To see this, the approximation of the second partial
derivative with respect to x is derived here. Let f be
a differentiable function given on every vertex (x, y).
Now, the first partial derivatives with respect to x can
be approximated on the red points in figure 2. The red
points p1 and p2 are added half way between vertices
in such a way that p1 has coordinates (x+ 1

2∆x, y) and
p2 has coordinates (x− 1

2∆x, y). The distance between
p1 and p2 is then also given by ∆x. With this, the first
partial derivatives with respect to x on the points p1

and p2 are given by:

∂

∂x
f

∣∣∣∣
p1

≈ f(x, y)− f(x−∆x, y)

∆x
, (2.1)

∂

∂x
f

∣∣∣∣
p2

≈ f(x+ ∆x, y)− f(x, y)

∆x
. (2.2)

These approximations can be used to approximate the second partial derivative with respect to x on vertex
(x, y). Using the same approximation as above, the second partial derivative can be approximated as a linear
combination of the approximated derivatives on the points p1 and p2:

∂2

∂x2
f

∣∣∣∣
(x,y)

≈
∂
∂xf

∣∣
p1
− ∂

∂xf
∣∣
p2

∆x
. (2.3)

Now, equations (2.2) and (2.1) can be substituted into equation (2.3). This leads to the approximation of
the second partial derivative with respect to x:

∂2

∂x2
f

∣∣∣∣
(x,y)

≈ f(x+ ∆x, y)− 2f(x, y) + f(x−∆x, y)

(∆x)2
. (2.4)

The approximation for the second partial derivative with respect to y can be derived in the same way and is
given by:

∂2

∂y2
f

∣∣∣∣
(x,y)

≈ f(x, y + ∆y)− 2f(x, y) + f(x, y −∆y)

(∆y)2
. (2.5)
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In this way, the partial derivatives in vertex (x, y) can be approximated as a linear combination of the
surrounding vertices.

2.2 Approximations on an irregular mesh.

2.2.1 Notation

To get an approximation of the partial derivative on an irregular mesh, all vertices in the mesh are denoted
with a unique number (the ’vertex-index’). In the mesh, vertex vi is connected with some other vertices. If
vi and vj are connected, they are called neighbours. If a vertex vi has N neighbours, the neighbours of vi are
indicated with vnt with t ∈ [1, N ] (the ’neighbour-index’). The neighbours are numbered counterclockwise.
To illustrate this, a mini-mesh is given in figure 3a. Here, vertex v4 has five neighbours where vn1

= v8,
vn2

= v5, vn3
= v2, vn4

= v1 and vn5
= v7.

(a) A mini-mesh consisting of 14 vertices. (b) Vertex vi with its surrounding vertices and triangles.

Figure 3

Figure 3b gives an illustration of vertex vi with coordinates (xi, yi) and its neighbouring vertices vn1
to vn6

.
When talking about neighbours, an arbitrary neighbour of vi is sometimes denoted with vt in stead of vnt

.
From the context, it should be clear if the neighbour-index or the vertex-index is meant.
For the approximation, it sometimes is necessary to refer to the the next neighbour vt+1. In general, we can
refer to any other neighbour than vt by vt+k for k ∈ N. Because there are only N neighbours, t+k should be
taken mod(N). In this way, a neighbour that is k steps away from neighbour vt is denoted with v(t+k)mod(N).
From now on, the notation t+ k∗ will be used in stead of (t+ k)mod(n).
In figure 3b the triangles surrounding vertex vi are shown in green. They are also numbered counterclockwise.
For every neighbour vt, there is a triangle between vertices vi, vt and vt+1∗ . If vi is not at the boundary, the
amount of neighbours is equal to the amount of triangles.

2.2.2 First partial derivative on an irregular mesh

Let f : R2 → Rn be a function defined on every vertex vi = (xi, yi) of the mesh and let f(vi) = fi. Then, for
every vertex vi, a vector vi is defined:

vi = [xi, yi, fi] ∈ R3.

Now, for every vertex vi with neighbours vt and vt+1∗ , there is a triangle Tt ∈ R3 which is spanned by vi, vt
and vt+1∗ . On every triangle Tt, the partial derivatives can be approximated. The derivative f ix on vertex vi
is then approximated by taking the average of the derivatives on the N surrounding triangles. In the example
below, only the partial derivative fx is derived. The approximation of fy can be derived in the same way.
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An approximation for fx on triangle Tt can be made by looking at the slope of triangle Tt. The slope of this
triangle can be calculated using the upward normal vector nt on that triangle, which can be given by the
cross product of the two edges of the triangle. Since triangle Tt is spanned by vi, vt and vt+1∗ , this cross
product is given by:

nt = (v∗t − vi)× (vt+1∗ − vi) =

 (yt∗ − yi)(ft+1∗ − fi)− (ft∗ − fi)(yt+1∗ − yi)
(ft∗ − fi)(xt+1∗ − xi)− (xt∗ − xi)(ft+1∗ − fi)
(xt∗ − xi)(yt+1∗ − yi)− (yt∗ − yi)(xt+1∗ − xi)

 .
This can be rewritten as:

nt =

 fi(yt+1∗ − yt∗) + ft∗(yi − yt+1∗) + ft+1∗(yt∗ − yi)
fi(xt∗ − xt+1∗) + ft∗(xt+1∗ − xi) + ft+1∗(xi − xt∗)

(xt∗ − xi)(yt+1∗ − yi)− (yt∗ − yi)(xt+1∗ − xi)

 =

ntxnty
ntz

 .
Now, the partial derivative on triangle Tt is given by

−nt
x

nt
z

. To see why this is true, an illustration is made in

figure 4a. Because the partial derivative with respect to x is calculated, a cross section of triangle Tt in the
xz plane is shown. The upper normal vector nt is given in red. Since triangle ViBC and pqr are similar, the

slope can be calculated by
−nt

x

nt
z

. The notation f tx,tri is used for the approximation of the partial derivative

on triangle Tt:

(a) Cross section of triangle Tt in the xz plane. The
normal vector is shown in red.

(b) The location of the cross section of figure 4a is given
in red. Vertex C is also indicated here.

Figure 4

f tx,tri =
−ntx
ntz

=
−(fi(yt+1∗ − yt∗) + ft∗(yi − yt+1∗) + ft+1∗(yt∗ − yi))

(xt∗ − xi)(yt+1∗ − yi)− (yt∗ − yi)(ft∗ − fi)
.

Or, after rewriting the upper part:

f tx,tri =
fi(yt∗ − yt+1∗) + ft∗(yt+1∗ − yi) + ft+1∗(yi − yt∗)

(xt∗ − xi)(yt+1∗ − yi)− (yt∗ − yi)(ft∗ − fi)
. (2.6)

In equation (2.6) the terms with x and y only depend on the properties of the mesh, so when the mesh is
created, they can be calculated in advance. In [2], all those terms are isolated and collected in one function.
This kind of functions are called neighbourfunctions. Neighbourfunctions are linear coefficients that can be
used to express the partial derivative on a triangle or vertex as a linear combination of the function values
on the neighbouring vertices. For every triangle in the mesh, the neighbourfunction N t

x,tri is defined as:

N t
x,tri =

1

ntz

[
(yt∗ − yt+1∗), (yt+1∗ − yi), (yi − yt∗)

]
. (2.7)



2 DISCRETISATION SCHEME ON AN IRREGULAR MESH. 6

Let Ftri = [fi, ft∗ , ft+1∗ ]. Now, equation (2.6) can also be given by taking the dot product of Ftri and N t
x,tri.

So:
f tx,tri = 〈Ftri,N t

x,tri〉. (2.8)

In this way, the partial derivatives can be calculated on every triangle surrounding vertex vi using the
properties of the the vertices of that triangle and the values of f on those vertices. The approximation for
the partial derivative on vertex vi is now given by taking the average of the derivatives on all surrounding
triangles Tt. For this approximation, the notation f ix is used. For N surrounding triangles, this approximation
is given by the equation below:

f ix =
1

N

N∑
t=1

f tx,tri. (2.9)

This can be written in another way with new neighbourfunctions. Let N t
x,tri(j) be the j’th column of N t

x,tri.
Then equation (2.9) becomes:

f ix =
1

N

N∑
t=1

f tx,tri =
1

N

N∑
t=1

[
fiN

t
x,tri(1) + ft∗N

t
x,tri(2) + ft+1∗N t

x,tri(3)
]

=
1

N

N∑
t=1

fiN
t
x,tri(1) +

1

N

N∑
t=1

ft∗N
t
x,tri(2) +

1

N

N∑
t=1

ft+1∗N t
x,tri(3).

Because the sum is taken over all the triangles surrounding vi and t+ 1∗ is taken mod(N), it does not matter
in which order the summation is done. Therefore,

1

N

N∑
t=1

ft+1∗N t
x,tri(3)) =

1

N

N∑
t=1

ft∗N
t−1
x,tri(3).

Applying this, The last two sums can be put together. For the left sum, only the function values on vertex
vi are needed, so the term fi does not have to be inside the summation. This gives:

f ix =
1

N

N∑
t=1

fiN
t
x,tri(1) +

1

N

N∑
t=1

ft∗N
t
x,tri(2) +

1

N

N∑
t=1

ft∗N
t−1
x,tri(3)

= f i
1

N

N∑
t=1

N t
x,tri(1) +

1

N

N∑
t=1

ft∗(N t
x,tri(2) +N t−1

x,tri(3).

(2.10)

To make equation (2.10) clearer, new neighbourfunctions are introduced. The neighbourfunctions that are
introduced below are N i

x and N i,t
x . For every vi, there is a N i

x and for every neighbour of vi there is a
N i,t
x . Therefore, the amount of neighbourfunctions N i,t

x is equal to the amount of surrounding triangles. The
neighbourfunctions are defined below:

N i
x =

1

N

N∑
t=1

N t
x,tri(1) =

1

N

N∑
t=1

1

ntz
(yt∗ − yt+1∗), (2.11)

N i,t
x =

1

N
(N t

x,tri(2) +N t−1
x,tri(3)) =

1

N
(

1

ntz
(yt+1∗ − yi) +

1

ntz
(yi − yt−1∗)). (2.12)

Using the neighbourfuncions, the partial derivative with respect to x is given by:

f ix = fiN
i
x +

N∑
t=1

ft∗N
i,t
x . (2.13)

Because N i
x, N

i,t
x ∈ R, equation (2.13) shows that the partial derivative fi on vi can be approximated as a

linear combination of the function-values on vi and its neighbours. In the same way, it can be derived that:

f iy = fiN
i
y +

N∑
t=1

ft∗N
i,t
y , (2.14)

which is also a linear combination of the function-values on vi and its neighbours.
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2.2.3 Second partial derivative on an irregular mesh

To get the second partial derivatives on every vertex, a similar approach can be used. Now, the values of
the first derivatives on every vertex are needed. But to determine the first derivative on every neighbour-
vertex, also the neighbour-vertices of those are needed. So then the second derivative would become a linear
combination of the values of f of the surrounding vertices and the vertices surrounding the surrounding
vertex. The method described below will give an approximation of the second derivative on vertex vi in such
a way that it is linear combination of the values of f on the vertex vi and its surrounding vertices.
To do this, some temporary vertices are added in the mesh. For every triangle surrounding vertex vi, the
vertex wt is added at the geometric centre of that triangle. Together with vertex vi, these temporary vertices
define the subtriangles T ′s . For example, subtriangle T ′2 is defined by vi, w2 and w3. If vi is not at the
boundary of the mesh and has N neighbours, there are also N triangles and also N subtriangles. Let s be
the index of a vertex or triangle, then the notation (s+ k)∗ is used again for (s+ k)(mod(N)).

Figure 5: This figure shows the temporary vertices wt on every triangle. The temporary vertices define the
subtriangles T ′s , which are given in red.

The partial derivative fx on wt can now be approximated with the slope on triangle Tt. In equation (2.8),
this is given by f tx,tri. As in 2.2, a vector wt is created that uses the x and y coordinates of wt:

wt =

[
xi + xt∗ + xt+1∗

3
,
yi + yt∗ + yt+1∗

3
, f tx,tri

]
. (2.15)

On vertex vi, vector wi is given by wi = [xi, yi, f
i
x]. Together, the vectors wi and wt with t ∈ [1, N ] define

the subtriangles T ′s surrounding vertex vi. The second partial derivative on every subtriangle T ′s is can now
be approximated by taking the normal vector on the plane on from subtriangle T ′s :

nsx = (ws −wi)× (ws+1∗ −wi). (2.16)

This cross product can be calculated and and the values of the first derivatives f ix, fs
∗

x,tri and fs+1∗

x,tri can be
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isolated. Then the normal vector on subtriangle T ′s is given by:

nsx =
1

3

 f ix(ys+2∗ − ys∗) + fs∗x,tri(2yi − ys+1∗ − ys+2∗) + fs+1∗

x,tri (ys∗ + ys+1∗ − 2yi)

f ix(xs∗ − xs+2∗) + fs
∗

x,tri(−2xi + xs+1∗ + xs+2∗) + fs+1∗

x,tri (2xi − xs+1∗ − xs∗)
1
3 ((xs∗ + xs+1∗ − 2xi)(ys+1∗ + ys+2∗ − 2yi)− (ys∗ + ys+1∗ − 2yi)(xs+1∗ + xs+2∗ − 2xi))

 .
With this, the second order derivatives fsxx,sub and fsxy,sub on every subtriangle T ′s can be approximated by:

fsxx,sub =
−nsx,x
nsx,z

,

fsxy,sub =
−nsx,y
nsx,z

.

(2.17)

This gives:

fsxx,sub =
f ix(ys∗ − ys+2∗) + fs

∗

x,tri(ys+1∗ + ys+2∗ − 2yi) + fs+1∗

x,tri (2yi − ys∗ − ys+1∗)
1
3 ((xs∗ + xs+1∗ − 2xi)(ys+1∗ + ys+2∗ − 2yi)− (ys∗ + ys+1∗ − 2yi)(xs+1∗ + xs+2∗ − 2xi))

. (2.18)

In this equation, new neighbourfunctions are defined on the subtriangles T ′s . These only depend on the
subtriangles and can be calculated in advance:

N s
x,sub =

1

nsx,z

[
(ys∗ − ys+2∗), (ys+1∗ + ys+2∗ − 2yi), (2yi − ys∗ − ys+1∗)

]
. (2.19)

Now, the second partial derivative on vertex on subtriangle T ′s is:

fsxx,sub = f ix(Ns
x,sub(1)) + fs

∗

x,tri(N
s
x,sub(2)) + fs+1∗

x,tri (Ns
x,sub(3)).

Here, Ns
x,sub(j) denotes column j of N s

x,sub. Now, the values for f ix, fs∗ and fs+1∗ can be filled in using
equations (2.8) and (2.13) from section 2.2:

fsxx,sub = Ns
x,sub(1)(fiN

i
x +

n∑
t=1

ftN
i,t
x ) +Ns

x,sub(2)(fiN
s
x,tri(1) + fsN

s
x,tri(2) + f(s+1)∗N

s
x,tri(3))

+Ns
x,sub(3)(fiN

(s+1)∗

x,tri (1) + f(s+1)∗N
(s+1)∗

x,tri (2) + f(s+2)∗N
(s+1)∗

x,tri (3)).

After rearranging the terms above, the partial derivative of on subtriangle T ′s is given by:

fsxx,sub = fi

[
Ns
x,sub(1)N i

x +Ns
x,sub(2)Ns

x,tri(1) +Ns
x,sub(3)N

(s+1)∗

x,tri (1)
]

+fs
[
Ns
x,sub(2)Ns

x,tri(2)
]

+f(s+1)∗

[
Ns
x,sub(2)Ns

x,tri(3) +Ns
x,sub(3)N

(s+1)∗

x,tri (2)
]

+f(s+2)∗

[
Ns
x,sub(3)N

(s+1)∗

x,tri (3)
]

+Ns
x,sub(1)

n∑
t=1

ftN
i,t
x .

(2.20)

Now the second partial derivative can be found on every subtriangle. The second partial derivative on
every vertex vi is again approximated by taking the average of all the derivatives on the N neighbouring
subtriangles:

f ixx =
1

N

N∑
s=1

fsxx,sub.
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Using the approximation from equation (2.20), this becomes:

f ixx =
1

N

N∑
s=1

fi

[
Ns
x,sub(1)N i

x +Ns
x,sub(2)Ns

x,tri(1) +Ns
x,sub(3)N

(s+1)∗

x,tri (1)
]

+
1

N

N∑
s=1

fs
[
Ns
x,sub(2)Ns

x,tri(2)
]

+
1

N

N∑
s=1

f(s+1)∗

[
Ns
x,sub(2)Ns

x,tri(3) +Ns
x,sub(3)N

(s+1)∗

x,tri (2)
]

+
1

N

N∑
s=1

f(s+2)∗

[
Ns
x,sub(3)N

(s+1)∗

x,tri (3)
]

+
1

N

N∑
s=1

(
Ns
x,sub(1)

n∑
t=1

ftN
i,t
x

)
.

In the last term of this equation, the indices of the inner sum do not depend on the indices of the outer sum,
so they can be written as two sums. To make the equations more compact, indices s and t can be switched.
With this, the last term can be given by:

1

N

N∑
s=1

(
Ns
x,sub(1)

N∑
t=1

f tN i,t
x

)
=

1

N

N∑
s=1

fsN
i,s
x

N∑
t=1

N t
x,sub.

Because the sums are taken over all N triangles, the order of summation does not matter, so the sum terms
with s+1 and s+2 can both start with s. So in the last sum, (s+1)∗ = s and (s+2)∗ = s will be substituted.
This gives:

f ixx =
1

N

N∑
s=1

fi

[
Ns
x,sub(1)N i

x +Ns
x,sub(2)Ns

x,tri(1) +Ns
x,sub(3)N

(s+1)∗

x,tri (1)
]

+
1

N

N∑
s=1

fs
[
Ns
x,sub(2)Ns

x,tri(2)
]

+
1

N

N∑
s=1

+fs

[
N

(s−1)∗

x,sub (2)N
(s−1)∗

x,tri (3) +N
(s−1)∗

x,sub (3)Ns
x,tri(2) +N

(s−2)∗

x,sub (3)N
(s−1)∗

x,tri (3)
]

+
1

N

N∑
s=1

fsN
i,s
x

N∑
t=1

N t
x,sub.

Now, this can be rearranged to get:

f ixx =
1

N

N∑
s=1

fi

[
Ns
x,sub(1)N i

x +Ns
x,sub(2)Ns

x,tri(1) +Ns
x,sub(3)N

(s+1)∗

x,tri (1)
]

+

1

N

N∑
s=1

fs

[
Ns
x,tri(2)

(
Ns
x,sub(2) +N

(s−1)∗

x,sub (3)
)

+N
(s−1)∗

x,tri (3)
(
N

(s−1)∗

x,sub (2) +N
(s−2)∗

x,sub (3)
)

+N i,s
x

n∑
t=1

N t
x,sub(1)

]
.

Again, there are two terms that only depend on properties of the mesh. These terms can be collected in two
new neighbour-functions, which are defined below:

N i
xx =

1

N

N∑
s=1

[
Ns
x,sub(1)N i

x +Ns
x,sub(2)Ns

x,tri(1) +Ns
x,sub(3)N

(s+1)∗

x,tri (1)
]
,

N i,s
xx =

1

N

[
Ns
x,tri(2)

(
Ns
x,sub(2) +N

(s−1)∗

x,sub (3)
)

+N
(s−1)∗

x,tri (3)
(
N

(s−1)∗

x,sub (2) +N
(s−2)∗

x,sub (3)
)

+N i,s
x

n∑
t=1

N t
x,sub(1)

]
.



2 DISCRETISATION SCHEME ON AN IRREGULAR MESH. 10

With this neighbour functions, the second derivative partial derivative with respect to x can be approximated
as a linear combination of the function-values vertex vi and its neighbours vs:

f ixx = f iN i
xx +

n∑
s=1

fsN i,s
xx . (2.21)

In the same way, it can be derived that f iyy can be approximated by:

f iyy = f iN i
yy +

n∑
s=1

fsN i,s
yy . (2.22)

Since N i
xx, N

i
yy, N

i,s
xx , N

i,s
yy ∈ R, the partial derivatives of f on vertex vi can be approximated a linear combi-

nation of the function values fi on vi and fs on its neighbouring vertices.
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3 Iteration methods

In UFEMISM, successive over relaxation (SOR) is used to solve the equations in the SSA on an irregular
mesh.
All methods described in this section can be used to find the solution x of the linear system Ax = b with
A ∈ Rn×n and x, b ∈ Rn. To find the solution, a first guess x0 of the solution has to be made. Then, a better
approximation of the solution can be given as a function of the first guess. In general, the next estimate xk+1

is given as a function of the previous estimate xk. This iterative scheme converges to the solution of the
linear system. The iterative methods that are described in this section are all stationary iterative methods.
Stationary iterative methods can be written as

xk+1 = Gxk + h,

with the iteration matrix G ∈ Rn×n and vector h ∈ Rn. Here, the matrix G and vector h do not depend on
the iteration step k.
In this section, three iterative methods are described.

3.1 Jacobi method

The first method is the Jacobi method. The linear system Ax = b, describes n equations. Every equation of
the system is given by:

n∑
j=1

ai,jxj = bi.

After rewriting each equation, every component of x can be written as a linear combination of the other
components:

xi =
bi −

∑n
j 6=i ai,jxj

ai,i
.

The Jacobi method uses this equation to find the next iteration step. For every component xi of vector x,
xk+1
i can be calculated using the equation:

xk+1
i =

bi −
∑n
j 6=i ai,jx

k
j

ai,i
. (3.1)

When k →∞, this converges to the solution of the linear system.

3.2 Gauss-Seidel method

The second method is the Gauss-Seidel method. This method is based on the Jacobi method. However, the
difference is that the Gauss-Seidel uses the updated values of x as soon as they are available whereas the
Jacobi method only uses the values from the previous iteration step. Therefore, it is important to calculate
the components of x one by one. First, xk+1

1 is calculated using equation 3.1. Then, this value can already
be used in the calculation of xk+1

2 :

xk+1
2 =

b2 −
(
a2,1x

k+1
1 +

∑n
j=3 a2,jx

k
j

)
a2,2

.

Because xk+1
1 is calculated first, this component already has an updated version. The Gauss-seidel method

uses this updated version of x1 to calculate the next iteration step. In general, the Gauss-Seidel method uses
the equation below to determine the next iteration step for x:

xk+1
i =

bi −
∑
j<i

ai,jx
k+1
j −

∑
j>i

ai,jx
k
j

ai,i
. (3.2)

In this step, the components xj with j < i have already been updated, so for these components, the updated
version can be used to determine the next iteration of xi.
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3.3 Successive Overrelaxation (SOR)

The Successive Overrelaxation method is based on the Gauss-Seidel method. First, it calculates the next
iteration step x̄k+1 with the Gauss-Seidel method. Then it checks the difference between xk and x̄k+1. This
value is multiplied with an ω ∈ R and added to the previous iteration step:

xk+1
i = xki + ω

(
x̄k+1
i − xki

)
. (3.3)

When ω = 1, this method is the same as the Gauss-Seidel method. For a larger ω, the difference between
xki and xk+1

i will also be larger. In [1] it is stated that the method can only converge if ω ∈ [0, 2]. However,
convergence is not guaranteed for every ω ∈ [0, 2] since it depends on the linear system that is solved. In
most books, but also in UFEMISM, the SOR method is rewritten as:

xk+1
i = ωx̄k+1

i + (1− ω)xki . (3.4)

This method is used to solve the SSA equation in UFEMISM. The solution of the SSA gives the velocity of
the ice on every vertex, so then x denotes a vector where xi is the velocity on vertex vi. In section 4 this
will be explained in more detail.

3.4 Convergence of iterative methods

The iteration methods described in the sections above give a solution of the linear system Ax = b. Here,
a way to determine the convergence of those iteration methods is shown [5]. Each iterative method can be
written as a matrix equation

xk+1 = Gxk + h,

with the iteration matrix G ∈ Rn×n and vector h ∈ Rn. The solution x∗ of the linear system should
satisfy x∗ = Gx∗ + h. The matrix G depends on the linear system and the iterative method that is used.
In [6], [1] and [5], matrix G is given for the three iteration methods that are described in this section.
The theorem below shows convergence of such a method and is written with the help of [5]. For this
theorem, recall that for a matrix G ∈ Rn×n with eigenvalues λ1, λ2, ..., λn, the spectral radius is defined by:
ρ(G) = max(|λ1|, |λ2|, ..., |λn|).

Theorem 3.4.1. Let xk+1 = Gxk + h be an iterative method for solving the linear system Ax = b with
solution x∗ and let ek = xk − x∗ be the error on iteration step k. Assume G has n different eigenvalues λi
with i ∈ [1, n] with n linearly independent inventors. Then limk→∞ ||ek|| = 0 if and only if ρ(G) < 1.

Proof. The error in iteration step k+ 1 is given by ek+1 = xk+1 −x∗. Filling in the approximation for xk+1

and the true solution x∗ gives:
ek+1 = Gxk + h− (Gx∗ + h) .

This can be rewritten in such a way that:

ek+1 = G
(
xk − x∗

)
,

where xk − x∗ = ek, so the error in iteration step k + 1 can be given as a function of the error on iteration
step k:

ek+1 = Gek, (3.5)

Now, let e0 = x0−x∗ be the initial error. Then equation (3.5) shows that e1 = Ge0. Then e2 = Ge1 = G2e0.
So in general, it can be proven by induction that the error in iteration step k can be given as a function of
the initial error:

ek = Gke0. (3.6)

To get an estimation of the error on iteration step k, Gk needs to be calculated. Therefore, the eigenvectors
and eigenvalues of G are calculated. Because the eigenvectors of G are linearly independent, they form a
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basis of Cn, so every vector in Cn can be written as a linear combination of the eigenvectors of G. This can
also be done with the initial error e0:

e0 = c1v1 + c2v2 + ...+ cnvn.

Applying G on every eigenvector vi is the same as multiplying it by its eigenvalue λi, so applying G to e0

gives:
Ge0 = λ1c1v1 + λ2c2v2 + ...+ λncnvn.

Every iteration, the error is multiplied with matrix G, so after k iterations, the error is given by:

ek = Gke0 = λk1c1v1 + λk2c2v2 + ...+ λkncnvn =

n∑
i=1

λki civi.

Now, the norm of ek can be estimated using the triangle inequality. This gives:

||ek|| ≤ |λ1|k|c1|||v1||+ |λ2|k|c2|||v2||+ ...+ |λn|k|cn|||vn||. (3.7)

The value of λki will approach zero if k goes to infinity in and only if λi has the property that |λi| < 1.
Therefore, in this case, all the terms |λi|k|ci|||vi|| in equation (3.7) will approach zero if iteration step k
approaches infinity. So therefore limk→∞ ||ek|| = 0 which proves the theorem.

This theorem shows that an iterative method converges if the iteration matrix G has n linearly independent
eigenvectors vi with corresponding eigenvalues λi which have the property that |λi| < 1. If this is the case,
convergence will occur for any initial guess x0.
When working with iterative methods, in most cases, the exact solution x∗ of the system is unknown.
Therefore, it makes sense to have a look at the convergence ratio, which is given by:

||ek+1||
||ek||

.

There is another relation between the spectral radius of a iteration matrix G and the convergence rate. This
is given in the next theorem.

Theorem 3.4.2. Let λq = ρ(G) and assume that |λq| > |λi| for all i 6= q. Then, lim
k→∞

||ek+1||
||ek|| = λq.

Proof. In the proof of theorem 3.4.1, the error on iteration k can be estimated by:

ek = Gke0 = λk1c1v1 + λk2c2v2 + ...+ λkncnvn.

Now, the convergence ratio can be given by:

||ek+1||
||ek||

=
||λk+1

1 c1v1 + λk+1
2 c2v2 + ...+ λk+1

n cnvn||
||λk1c1v1 + λk2c2v2 + ...+ λkncnvn||

. (3.8)

Without loss of generality, assume λ1 = λq. The numerator and denominator can be multiplied by |λk1 |−1.
This gives:

||ek+1||
||ek||

=
|λk1 |−1||λk+1

1 c1v1 + λk+1
2 c2v2 + ...+ λk+1

n cnvn||
|λk1 |−1||λk1c1v1 + λk2c2v2 + ...+ λkncnvn||

.

This can be rewritten:

||ek+1||
||ek||

=

∣∣∣∣∣∣∣∣λ1c1v1 + λ2(λ2

λ1
)kc2v2 + ...+ λn(λn

λ1
)kcnvn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣c1v1 + (λ2

λ1
)kc2v2 + ...+ (λn

λ1
)kcnvn

∣∣∣∣∣∣∣∣ . (3.9)
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Because it is assumed that λ1 has the property that |λ1| > |λi| for all i, the ratio |λi|
|λ1| < 1 for all i with i 6= 1.

So then:

lim
k→∞

(
|λi|
|λ1|

)k
= 0.

So then, taking the limit of equation (3.10) gives:

lim
k→∞

||ek+1||
||ek||

=
||λ1c1v1||
||c1v1||

=
|λ1|||c1v1||
||c1v1||

= |λ1|. (3.10)

Since the assumption was that λ1 = λq, this proves the theorem.

So there is another relation between the spectral radius of the iteration matrix G and the convergence rate.
When the spectral radius of an iteration is small, the ratio between ||ek+1|| and ||ek|| is also small. So an
iterative method with a smaller spectral radius will also converge faster. This knowledge about convergence
can be used in the model to check whether, and how fast a method converges. But this can only be done if
the corresponding matrix can be calculated easily.
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4 The Shallow Shelf Approximation (SSA)

The Shallow Shelf Approximation is one of the velocity components in UFEMISM that calculates the velocity
of the ice in every vertex. In this section, a basic description of the physics behind the SSA is given. A more
detailed description can be found in article [3], [7] and [11].
The Shallow Shelf Approximation has two main assumptions. First of all, it is assumed that there is almost
no friction at the base, so the movement of the ice is mainly caused by stretching and not by deformation.
Secondly, the ice thickness is assumed to be really small compared to the horizontal span of the ice sheet.
Because the SSA calculates the sliding velocities, it is reasonable to assume that the velocities do not change
in vertical direction. All the variables that are used in the SSA are vertically integrated. Therefore, only the
horizontal components of the velocity are calculated.
The SSA is the simplest form of a membrane stress balance that can be derived from the Stokes equations
[3]. The full derivation will not be given here, but the equations are explained for a better understanding of
the equations that are used. In this document, the same notation as in article [2] is used as much as possible
because the code UFEMISM also uses this notation.
In article [3], the SSA is given as the following pair of stress balance equations:

∂Ti1
∂x1

+
∂Ti2
∂x2

+ τb,i = ρgH
∂h

∂xi
. (4.1)

The first two terms in this equation are a measure for the membrane stresses held by viscous deformation.
The driving stresses are given by ρgh ∂h

∂xi
and τb,i is the stress held at the base by till strength. Also, ρ is the

density of the ice, g the acceleration of gravity, H the thickness of the ice and h the ice surface elevation. The
vertically integrated stress tensor is given by T . Every component of this tensor is given by Tij . In article
[3], every component of the stress tensor Tij is calculated as a function of the strain rates and the viscosity.
The strain rates can be calculated as a function of the velocity.
Let v=(u, v) be the vertically integrated velocity of the ice and v̄ the viscosity. Because this notation is used,
the first and second component of τb,i are given by τb,u and τb,v. Then, in [2], equation (4.1) is given by:

∂

∂x

[
2v̄H

(
2
∂u

∂x
+
∂v

∂y

)]
+

∂

∂y

[
v̄H

(
∂u

∂y
+
∂v

∂y

)]
+ τb,u = ρgH

∂h

∂x
, (4.2)

∂

∂x

[
v̄H

(
∂u

∂y
+
∂v

∂x

)]
+

∂

∂y

[
2v̄H

(
∂u

∂x
+ 2

∂v

∂y

)]
+ τb,v = ρgH

∂h

∂y
. (4.3)

In the article of Bueler and Brown [3], the basal shear stress is estimated in the same way as in Schoof [11]
and is given by:

τb,u = −τc
u√

δ2 + u2 + v2
, (4.4)

τb,v = −τc
v√

δ2 + u2 + v2
. (4.5)

Here, τc represents the yield stress of the material at the base of the ice sheet and is given by τc = c0 +
tan(φ)(ρgH − pw). The cohesion c0 is assumed to be equal to zero. The till friction angle is given by φ and
(ρgH−pw) is the effective pressure calculated using the pressure of the ice sheet and the pore water pressure
pw. The δ is added by Bueler and Brown [3] to avoid dividing by zero if the velocities are zero. Now, let
||v|| =

√
δ2 + u2 + v2. After substituting τb,u = −τc u

||v|| and τb,v = −τc v
||v|| in equations (4.2) and (4.3),

those equation can be written as:

∂

∂x

[
2v̄H

(
2
∂u

∂x
+
∂v

∂y

)]
+

∂

∂y

[
v̄H

(
∂u

∂y
+
∂v

∂x

)]
− τc

u

|v|
= ρgH

∂h

∂x
, (4.6)

∂

∂x

[
v̄H

(
∂u

∂y
+
∂v

∂x

)]
+

∂

∂y

[
2v̄H

(
∂u

∂x
+ 2

∂v

∂y

)]
− τc

v

|v|
= ρgH

∂h

∂y
. (4.7)

To make this equation and the following equations more readable, the notation ux is used for the partial
derivative ∂u

∂x and uy for the partial derivative ∂u
∂y . In [2], The vertically averaged viscosity for the ice is given
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as a function of the ice velocity:

v̄ =
1

2

∫ h

b

A(T ∗)
−1
n dz

[
u2
x + v2

y + uxvy +
1

4
(uy + vx)2 +

(
ε2

L2
v

)] 1−n
2n

. (4.8)

Here, A(T ∗)
−1
n is the ice hardness in pa/s

1
3 and n is the Glen exponent in ice flow law and is equal to three.

The term
(
ε2

L2
v

)
is introduced in Bueler and Brown [3] to avoid that the viscosity equals zero if the velocity

is equal to zero.
In UFEMISM, the two equations from the SSA are simplified a bit more. Here, this is only shown for the first
part. The second part can be derived in the same way. The derivatives in equation (4.6) can be calculated
using the product rule. Also, according to [2], ∂

∂x v̄H << v̄H, so this terms can be ignored. This gives:

2v̄H (2uxx + vyx) + v̄H (uyy + vxy)− τc
u

|u|
= ρgH

∂h

∂x
. (4.9)

Because of continuity, vxy is equal to vyx. Let τb = τc
|u| . After rearranging the terms above the first part of

the SSA becomes:

4uxx + uyy + 3vxy − τb
u

v̄H
=
ρghx
v̄

. (4.10)

Using the same approximation as above, the second part of the SSA becomes:

4vyy + vxx + 3uxy − τb
v

v̄H
=
ρghy
v̄

. (4.11)

Now, the SSA is given by equation (4.10), (4.11) and (4.8). With these equations, the velocities on every
vertex on the mesh can be calculated for each timestep.
With the viscosity equation filled in into the other two, this would be two coupled elliptic differential equations,
which are hard to solve numerically. In UFEMISM, an approach that is also used in Bueler and Brown [3]
is used. Two nested iterative loops are used to solve the equations on every time step. First, an outer loop
calculates the viscosity using equation (4.8). To do this, the velocities of the previous time step are used.
This gives a first approximation of the viscosity. After this, the velocities are calculated using an iteration
scheme in the inner loop. When this iteration scheme is completed, the new velocities are found and can be
used in the outer loop again to calculate a new viscosity. In the model, this process is repeated several times
until the approximation is good enough.
In the inner loop, the velocities are calculated based on the viscosity from the outer loop. To do this, the
two differential equations (4.10) and (4.11) are solved numerically using Successive Overrelaxation. The
derivatives of u and v are replaced by the approximations from section 2, equation (2.21). This gives:

uixx = uiN
i
xx +

n∑
s=1

usN
i,s
xx ,

uiyy = uiN
i
yy +

n∑
s=1

usN
i,s
yy .

In the term with the basal shear stress, v is replaced by ui because the x-component of the velocity on vertex
vi is needed to calculate the basal shear stress in direction x. With this, equation (4.10) becomes:

4

(
uiN

i
xx +

n∑
s=1

usN
i,s
xx

)
+

(
uiN

i
yy +

n∑
s=1

usN
i,s
yy

)
+ 3vxy −

τbui
v̄H

=
ρghx
v̄

. (4.12)

To be able to use the SOR method, the goal is to write the velocity on vertex vi as a linear combination of
the velocities on the other vertices. To do this, ui is isolated. This gives:

ui

(
4N i

xx +N i
yy −

τb
v̄H

)
+

n∑
s=1

us
(
4N i,s

xx +N i,s
yy

)
+ 3vxy =

ρghx
v̄

. (4.13)
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The term
(
4N i

xx +N i
yy − τb

v̄H

)
only consists of variables that can be calculated in the outer loop. The

neighbour functions only depend on properties of the mesh, so can be calculated before iterations start. The
viscosity and τb are calculated in the outer loop based on the velocities of the previous time step. Therefore,
define eiu =

(
4N i

xx +N i
yy − τb

v̄H

)
. This term can be calculated before the iteration process in the inner loop

starts. With this, the first component of the velocity vector in vertex vi becomes:

ui =
1

eiu

(
−

n∑
s=1

us
(
4N i,s

xx +N i,s
yy

)
− 3vxy +

ρghx
v̄

)
. (4.14)

Using the same method, the second component of the velocity vector in vertex vi becomes:

vi =
1

eiv

(
−

n∑
s=1

vs
(
4N i,s

yy +N i,s
xx

)
− 3vxy +

ρghy
v̄

)
. (4.15)

In the inner loop of the code that solves the SSA, equations (4.14) and (4.15) are solved using SOR. In section
3, this method is given by:

uk+1
i = (1− ω)uki + ωuk+1

i,gs .

Here, uk+1
i is the new velocity on iteration step k + 1, ut+1

i,gs is the next iteration step based on Gauss-Seidel

method, uik is the velocity on iteration k and ω is the extrapolation factor of the SOR-method.
The next iteration step on vertex vi based on Gauss-Seidel is given by:

uk+1
i,gs =

1

eiu

(
−

n∑
s=1

us
(
4N i,s

xx +N i,s
yy

)
− 3vxy +

ρghx
v̄

)
.

In the code of UFEMISM, all the vertices and their velocities are stored in a variable. When a velocity at
a neihbour vertex is needed, the model will read it from that variable. When the velocity on a vertex is
updated, it is replaced in that variable. So when calculating the new iteration, the most accurate velocities
on the neighbour vertices are used. Now equation (4.14) and (4.15) can be put into the SOR iteration. This
gives:

uk+1
i = (1− ω)uki + ω

1

eiu

(
−

n∑
s=1

us
(
4N i,s

xx +N i,s
yy

)
− 3vxy +

ρghx
v̄

)
. (4.16)

This can be rearranged to get the equation that is used in the model. Also the equation for vi is given, which
can be derived in the same way:

uk+1
i = uki −

ω

eiu

(
n∑
s=1

us
(
4N i,s

xx +N i,s
yy

)
+ eiuu

k
i + 3vxy −

ρghx
v̄

)
,

vk+1
i = vki −

ω

eiv

(
n∑
s=1

vs
(
4N i,s

xx +N i,s
yy

)
+ eivv

k
i + 3uxy −

ρghy
v̄

)
.

(4.17)

This is the equation that can be found in the inner loop of the model.
So for every timestep, the two nested iterative loops have to be computed. The outer loop is repeated six
times, but the inner loop needs a lot of iterations to be close enough to the solution. Also, the inner loop
needs to be done for every vertex of the mesh. If this process can be made more efficient, it will reduce the
computation time.
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5 Demo model

To get a better understanding of how differential equations can be solved on a irregular triangular mesh, a
demo model is used. This demo model can be used to test different iterative methods on an irregular mesh.
If these tests were done directly in UFEMISM, it would take a lot of time since the SSA equations have a lot
of input values from other parts of the model. Since the goal of this study is to investigate how to increase
the convergence rate of the SOR method on an irregular mesh, there is no need for all those extra input
values.

In the demo model, differential equations can be solved using the same method as in UFEMISM: with
different iterative methods on an irregular mesh. Therefore, the behaviour of different iterative methods can
be examined more easily. Furthermore, an equation that is a bit simpler than the equations in the SSA will
make it easier to understand how iterative methods behave on an irregular mesh.
An important note here is that the equations that are solved in the demo model have nothing to do with the
equations in the ice model. It has no physical meaning to solve an arbitrary equation on a mesh like this.
The only reason for doing this is to get a better understanding of the methods used in UFEMISM in such a
way that not the whole ice model needs to be runned.

Figure 6: The mesh that is used for the demo
model. The red live indicates the place where the
boundary condition fi = 1 holds.

In this section, a description of the demo model is given.
After that, the methods defined in section 2 and 3 are
tested. Hopefully, this will give some insight in how the
process of solving equations on this mesh can become more
efficient. Results from the experiments in this demo model
can eventually be tested with the SSA.

5.1 Demo Laplace-equation

For this demo model, a Matlab code is used that solves the
Laplace equation on an irregular mesh using the Jacobi
method, the Gauss-Seidel method and SOR. The mesh in
this example is made with the mesh refinement algorithm
of UFEMISM and is based on the geometry of Greenland.
In figure 6 all the vertices vi = (xi, yi) of the mesh are
given. The mesh has absolutely nothing to do with the
equation that will be solved, but this mesh is used because
it is the same type of mesh as used in the ice model. Let
f : R2 → R be a function defined on every vertex of the
mesh. Function f is the solution of the Laplace equation,
which is a second order partial differential equation. The
Laplace equation is given by:

∂2f

∂x2
+
∂2f

∂y2
= 0. (5.1)

To define the boundary conditions, let xmin and xmax be
the minimum and maximum value of the x-coordinates
of the vertices vi in the mesh. Then ymin and ymax are
defined in the same way.
If vi is at the most left part of the map (xi = xmin),
y > 1

4 (ymax−ymin) and y < 3
4 (ymax−ymin), the boundary

condition is given by f(vi) = 1. This is indicated with
the red line in figure 6. In all other cases f(vi) = 0 at the
boundary.
To solve this problem iteratively, the equation needs to be
discretized. To do this, the method described in section 2
is used.
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The partial derivatives in equation (5.1) can be approxi-
mated in vertex vi as linear combination of the function
value in vi and its neighbouring vertices. Using equations (2.21) and (2.22), an approximation of the Laplace
equation can be made in every vertex vi . The notation fi is used again for the function f in vertex vi:

fi
(
N i
xx +N i

yy

)
+

n∑
s=1

fs
(
N i,s
xx +N i,s

yy

)
≈ 0. (5.2)

In this equation, this sum is taken over all the vertices vs that are a neighbour of vi. This equation only
gives the discretisation for the Laplace equation on vertex vi.
For all vertices vi, these equations can be put in a linear system of the form Af = b. To do this, recall that
every vertex in the mesh can be denoted with its vertex index i (section 2).

Figure 7: This figure shows the solution f∗of the lin-
ear system Af = b.

If the mesh has n vertices, there are also n equations
like equation (5.2) that need to be solved. Let f =
(f1, f2, ..., fn) denote the values of f on every vertex
vi.
First, assume vertex vi is not at the boundary. Then
for matrix A ∈ Rn×n, row i can be defined:

aii :=
(
N i
xx +N i

yy

)
aij :=

{(
N i,s
xx +N i,s

yy

)
if vi and vj are neighbours,

0 anywhere else.

In this way, component i of vector b, can be calculated
by multiplying row i of matrix A with vector f . It
can be verified that this product is equal to equation
(5.2) so component i of vector b should be equal to
zero.
This way of defining matrix A works for all vertices
vi that are not on the boundary. If vk is a vertex that
is on the boundary, applying matrix A should not
change the value of fk. Therefore, if vk is a boundary
vertex, the row k of matrix A can be defined:

aij := δij

Then, component k of vector b is equal to the bound-
ary condition defined for vk, which can be zero or one
depending on the location of verex k.
Now, let f∗ be the solution of the linear system
Af = b. This solution can be calculated in Matlab
by calculating f∗ = A\b. Figure 7 shows the solution
on every vertex.
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5.1.1 Finding the solution using iterative methods

In UFEMISM, the equations of the SSA are solved using iterative methods. The goal is to test those methods
in the demo model. Therefore, the methods described in section 3 are used to find the solution of the linear
system that is defined in the previous section. Equation (5.2) gives the discretisation of the Laplace equation
on every vertex vi. This can be rewritten in such a way that for every vertex vi, fi can be approximated by:

f(vi) ≈
−
∑n
s=1 f

s
(
N i,s
xx +N i,s

yy

)(
N i
xx + f iN i

yy

) . (5.3)

To solve this in an iterative way, an initial guess f0 is made:

f0
i =

{
bi if vi is at the boundary ,

0 everywhere else.
(5.4)

If vi is at the boundary of the mesh, bi denotes the boundary condition of vertex vi. Using this initial guess,
the Jacobi method can be used get the solution. The next iteration is given by the equation below:

fk+1
i =

−
∑n
s=1 f

k
s

(
N i,s
xx +N i,s

yy

)(
N i
xx +N i

yy

) . (5.5)

In the same way, the next iteration step can be found using the Gauss-Seidel method. This will be done
for every vertex vi, starting with i = 1 in a loop. Without any remark, equation (5.5) gives the Jacobi
method. Assume vi has a neighbour vj and j < i. Then the value of fk+1

j is already computed in the loop,

so in equation (5.5), fk+1
s should be used in stead of fks . When this is applied, it gives the Gauss-Seidel

approximation.
To solve the Laplace equation using SOR, the next iteration step from Gauss-Seidel is used. This can be
substituted in equation (3.4) and the resulting formula gives the next iteration step of the SOR method:

fk+1
i = (1− ω)fki + ω

−
∑n
s=1 f

k
s

(
N i,s
xx +N i,s

yy

)(
N i
xx +N i

yy

) . (5.6)

Again, note that if there is a neighbour vs with ’vertex-index’ j which has the property that j < i, the new
value should be used. After every iteration step, the relative error is calculated by looking at the maximum
value of (fk+1

i − fki ). When this value is below some specific value, the iteration process is stopped.
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5.1.2 Convergence of different iteration methods

In figure 8, the convergence of each of the three iteration methods is shown. This is done by calculating
||fk − f∗||∞ after every iteration k.
Figure 8a shows the convergence of the Jacobi method. From this figure, it can be concluded that the Jacobi
method converges slow compared to the other two methods. After 400 iterations, there is a vertex where
|fki − f∗i | > 0.4. Every component of f∗, has the property that f∗i ∈ [0, 1], so this is still too large. The
convergence of the Gauss-Seidel method is shown in figure 8b and is faster than the Jacobi method, but after
400 iterations, the value of ||fk − f∗||∞ is still too large.
The convergence rate of the SOR method is much faster. In figure 8c, convergence for ω = 1.795 is shown.
This value was determined experimentally to yield the lowest convergence rate. When choosing ω > 1.795,
divergence will occur. This can be seen in figure 8d.

Figure 8: In this figure, the Jacobi, Gauss Seidel and SOR method are compared. For every iteration step k,
the value ||fk − f∗||∞ is shown. The convergence of SOR is shown for two different values of ω.

It is remarkable that divergence starts to occur at one vertex. The vertex where divergence occurs has vertex
index 6464 and is shown in figure 9a. In figure 9b, the values of f on vertex 6464 are shown for every
iteration step. The red line indicates the solution f∗ of the linear system on vertex 6464, so the method
should converge to that red line.
Because of the way the first guess is chosen, fk+1 is equal to fk for the first few iterations in vertex 6464. This
is because the value of f on vertex vi is a linear combination of the values of f on the surrounding vertices. It
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(a) In this figure, vertex 6464 is
shown. The yellow color means that
the solution is way bigger than at all
the other places.

(b) For every iteration step k, the blue line shows the value of fk on vertex
6464.

Figure 9: Divergence on vertex 6464.

takes some iterations before there is a neighbour that changes this vertex. But from this moment, the values
of fk will improve for every k until divergence occurs. The solution starts to diverge after approximately 60
iterations. The divergence on this vertex will eventually influence the values on the other vertices. So, after
a while, divergence will also occur at all the other vertices.

5.1.3 Adjusting ω on some vertices

For a relaxation parameter that is too large, divergence starts to occur at one single vertex. This will
eventually influence all the other vertices and will lead to oscillations that gradually spread out over the
mesh. This leads to the following question: Maybe it helps to adjust ω only on this vertex. When a lower
value of ω is used on this vertex, it will no longer diverge and can not influence all the other vertices anymore.
At the same time, all the other vertices can be given a higher ω. Hopefully, this will lead to faster convergence.
To see if this works, a small experiment is done. The vertex where the divergence occurred is vertex 6464.
When taking another ω for this vertex, the method can be stable again.

Let ω = 1.6 for this vertex and let ω = 1.85 for all the other vertices. In this way, the method will converge.
Again, when choosing a larger value for ω on all the other vertices, there is another vertex where divergence
occurs. In this case vertex 6011 is unstable. After also lowering the value of ω for this vertex, the original
value of ω can be a bit larger and the method will converge with less iterations.
After some trial with the Matlab model, the value for ω is adjusted for some vertices. When choosing
ω = 1.6 for the vertices with index i ∈ {6464, 6011, 6433, 6381, 5044} and ω = 1.875 anywhere else, the
method converges faster. This result is shown in figure 10. Both figures show the norm ||fk−f∗||∞ for every
iteration step k. From this figure, it can be concluded that adjusting ω for only five vertices already leads to
faster convergence.
This small experiment shows that the optimal value for ω is different depending on the location in the mesh.
Because the mesh is irregular, this value can vary substantially between the vertices. If there is one vertex
where the iteration process behaves different than at all the other ones, this can lead to an average ω that is
not optimal for all the other vertices. Therefore, it might be a good idea to make an ω that depends on the
properties of the mesh, which can be calculated in advance to make the iteration process more efficient. If
adjusting the relaxation parameter for only five vertices already helps that much, defining a unique relaxation
parameter for every vertex can help to make the iteration process even faster.
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Figure 10: In this figure, the convergence of two different methods is compared for the first 160 iterations.
The left figure shows convergence for ω = 1.795 on all the vertices. The right figure shows convergence with
an adjusted ω on five vertices and a value of ω = 1.795 on all the other vertices. It can be seen that the
convergence in the right figure is much faster than in the left figure.

5.2 Comparing the results with some convergence theory

The experiments in the sections above were done with one initial guess (equation (5.4)). However, the first
guess can influence the behaviour of the convergence of an iteration method. Figure 11 shows two examples
of a vertex where convergence behaves differently for two choices of f0. There is no proof that the value
ω = 1.795 from section 5.1.1 works for all f0.

(a) In this figure, convergence for ω = 1.795 is shown
on vertex 6464. Here, the behaviour with two different
values of f0 is compared. They both converge, but when
f0 = 1, it is less stable.

(b) This figure shows a different behaviour for different
f0 an a vertex in the mesh. The orange line is the exact
solution of the linear system. In this case, ω = 1.6 on
vertex 6464 and 1.9 anywhere else. When taking f0 = 0
(blue), the method converges, but when taking f0 = 0.5,
the method is unstable (red).

Figure 11
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As described in section 3, every iterative method that finds the solution of the linear system Ax = b can be
described in such a way that xk+1 = Gxk + h with G ∈ Rn×n the iteration matrix and h ∈ Rn. For the
SOR method, matrix G depends on the value of ω and is given by [6]:

Gω = (D − ωL)−1[(1− ω)D + ωU ]. (5.7)

Here, D is the diagonal of matrix A, L is the lower triangle of A and U the upper triangle. After calculating
this matrix, it can be checked with Matlab that this matrix has indeed n linearly independent eigenvectors,
so theorem 3.4.1 should hold here. For ω = 1.795, the spectral radius of the matrix Gω can be calculated and
is equal to 1.0587. This is a bit surprising because theorem 3.4.1 states that an iterative method converges
for all f0 if and only if the spectral radius of the iteration matrix is less then one. Therefore, the choice of
ω = 1.795 might not work for all f0. Figure 11a shows that for ω = 1.795, the method is still converging, but
is less stable when choosing f0 = 1. When calculating the eigenvalues of Gω, there are only three eigenvalues
which have the property that |λi| > 1. Those eigenvalues are only a bit larger than one in absolute value.
All other eigenvalues are smaller than one in absolute value. Because there are more then 6000 eigenvalues,
it can happen that the influence of those three eigenvalues is negligible for the first iterations. The influence
of those three eigenvalues will only become significant after many iterations. In the experiments where the
value of ω = 1.795 was determined, the solution was close enough after 400 iterations, so maybe the three
eigenvalues only become significant when iteration step k is much larger than that. This can be the reason
why the value of ω = 1.795 works.
To be sure that the method converges for all first guesses, the value of ω can be adjusted a bit. When taking
ω slightly smaller, it can be checked that all eigenvalues of Gω are less then one in absolute value. This is
already true for ω = 1.75, where the spectral radius is 0.99941. In this case the method is guaranteed to
converge for all initial guesses f0.
In UFEMISM, velocity of the previous timestep is used as a first guess, so the initial error can be different
for every timestep. In this case, it is good to have an ω which guarantees convergence for all first guesses.

Figure 12: In this figure, the symmetric pattern of the
iteration matrix is visualized.

In section 3, another relation between the spectral
radius of the iteration matrix and convergence ratio
was shown. For large k, the the convergence rate
can be approximated by the spectral radius of the
iteration matrix. In the demo model, this can be
checked by calculating the spectral radius and the
convergence rate for a given ω. Therefore, a small
spectral radius will lead to faster convergence. So
to find the optimal value of ω, the goal is to find an
iteration matrix Gω which has a minimum spectral
radius. In [14], some research is done on how to find
the value of ω in such a way that the spectral radius
of Gω is minimal. Calculating an optimal ω mathe-
matically takes much time since the convergence rate
depends on the spectral radius. The experiment in
section 5.1.3 shows that choosing an optimal ω for
every vertex vi can make the iteration method faster.
There might also be ways to determine an optimal
relaxation parameter that depends vertex vi mathe-
matically. There are more existing variations on the
SOR method which can be helpful to do this, but
more research has to be done for that.

Another remarkable thing is the symmetry of matrix
A from the linear system in section 5.1.
For row i, the columns j of matrix A which cor-
responds to any neighbouring vertex are nonzero.
When vj is a neighbour of vi, vi is also a neighbour of vj so matrix A is almost structurally symmetric. A
matrix is structurally symmetric if it is symmetric for its nonzero elements. Because the boundary conditions
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are included in matrix A, the rows of the matrix which correspond to the vertices on the boundary disturb
this symmetry. If the boundary vertices are excluded, a new linear system Ãx = b̃ can be made that only
includes the vertices that are not on the boundary. Then, this linear system is structurally symmetric. The
symmetry of the matrix Ã is visualized in figure 12.
The symmetry of the iteration matrix might be useful to estimate a unique ω for every vertex of the mesh.

To examine how to find a relaxation parameter ω that depends on the properties of the mesh, some more
experiments with the demo model can be done. If there is a relation between the convergence on vertex vi
and some properties of the mesh on that vertex, this can help to define different values of ω on every vertex.
Summarized: to find an optimal ω on every vertex, more experiments have to be done.
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6 Conclusion and further research

The goal of this study was to find ways to improve the convergence rate of the SOR method on an irregular
mesh. To investigate this, some experiments were done with a demo model. Here, different iteration methods
were tested on the Laplace equation.

From the results of the demo model, it can be concluded that the SOR method converges much faster than
the Jacobi or Gauss-Seidel method. With a relaxation factor ω = 1.795, the SOR method is showing the
fastest convergence. When taking a higher relaxation factor, divergence will occur on some vertices.
However, this relaxation factor was experimentally found. There is no proof that this method works for all
first guesses. Therefore it might be better to take a value of ω which has the property that the spectral
radius of the iteration matrix is less then one. For example, the value ω = 1.75 already has this property.
With this value of ω, the method might take a few more iterations, but convergence is guaranteed.

The optimal value of ω depends on properties of the linear system, which depends on the boundary conditions,
the equation and the mesh that is used. So, for every equation this can work in another way. Therefore, it is
important to mention that the optimal relaxation factor ω = 1.75 only works for the Laplace equation. The
value of ω can be different for another equation.
In the demo-model, the first guess used for the iteration process was not that accurate. Before the iterations
start, only some values of f0 on the left part of the mesh are equal to one, whereas the values of f0 for the
rest of the mesh are equal to zero. Since vertices only have an influence on their neighbours, it takes a while
for all vertices are reached, so this leads to more iterations.
In the SSA equation of UFEMISM, the velocity has to be calculated for every timestep. The solution of the
previous timestep can be used as a first guess for the solution of the current timestep. Since this guess of the
solution is already close, the problem described above will not occur here.

Another important result from the experiments in the demo model is that the SOR method can become even
faster when choosing an optimal value for ω which depends on vertex vi. A small experiment with the demo
model in section 5.1.3 showed that adjusting the relaxation parameter on only five vertices already helps to
reduce the amount of iterations that are needed. Therefore, defining an optimal relaxation parameter on
every vertex can reduce the amount of iterations even more.

Eventually, the goal is to apply the results from the demo model on the SSA equations in UFEMISM.
Because the SSA consists of other equations with other boundary conditions, this leads to another linear
system. Therefore, conclusions from the demo model can not immediately be implemented in the ice model.
It would be helpful to find a correspondence between the value of ω and the properties of the mesh. If a
relation between ω and the properties of the mesh can be found, this can help to define a relaxation parameter
on every vertex. Eventually, this can be used in the SSA equation of UFEMISM to make it converge faster.
To find any correspondence between ω and properties of an irregular mesh, some more research has to be
done. This can be done by having a look at how the iteration process converges in every vertex. If there is
a relation between the shape of the mesh around vertex vi and the convergence rate, this knowledge might
be useful to adjust the relaxation parameter for every vertex.
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