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1 Introduction

In epidemiology, ”the study of the distribution and determinants of health-related states or events in spec-
ified populations, and the application of this study to the control of health problems”[2], there are various
mathematical models to describe the spread of infectious diseases. One of the best-known models is the
compartmental-based SIR-model. This model divides the population, of size N , into three groups: suscep-
tible (S), infected (I) and recovered (or removed, based on if an individual recovers from a disease or dies)
(R), which directly means a recovered individual is not susceptible again. In the SIR-model, S(t), I(t) and
R(t), therefore, contain the amount of people that are either susceptible, infected or recovered at time t. The
model describes the transition of individuals between these compartments. Whenever a susceptible individual
is in contact with an infected individual, there is a probability that the susceptible becomes infected: the
transmission probability. The rate of infection is most often described by the number of ”successful” contacts
a susceptible has on average, β, which is defined as

β = pc (1.1)

where c is the number of contacts a susceptible individual has with an infected individual per time-step and
p is the probability that a contact between a susceptible individual and an infected individual leads to a new
infection. Therefore the total transition from state S to state I occurs βSI

N times per time-step. Whenever an
individual is infected, there is a rate of recovery γ, which is defined as the proportion of infected recovering
per time-step, 1/D with D the time that an individual is infected. Therefore the total transition from state
I to state R then occurs γI times per time-step. There is no transition from state S to state R since one can
obviously not recover when not infected. The dynamics can be described in the system of ordinary differential
equations 1.2:

dS(t)

dt
= − β

N
SI

dI(t)

dt
=

β

N
SI − γI

dR(t)

dt
= γI.

(1.2)

This can also be written in another way for a process in discrete time (which will be further explained in
chapter 2) with step size ∆t , which we will use later on. The SIR-model can be given as:

Sk+1 = Sk − (
β

N
SkIk)∆t

Ik+1 = Ik + (
β

N
SkIk − γIt)∆t

Rk+1 = Rk + (γIk)∆t

(1.3)

The transitions can also be plotted in a state transition diagram as in figure 1.

S I R

β
N SI γI

Figure 1: The state transition diagram of the basic SIR-model. The rates given above the arrows are the
total transition rates for to the next compartment.

The dynamics of the SIR-model are fully determined by the state at the beginning, also known as the initial
state. In this thesis we will be especially focusing on the time that an individual is infected. In the SIR-model,
every time step γI individuals recover on average. Therefore for an infected individual the probability that
that individual recovers in each time-step is γ and the distribution on the length of the infectious period is
an exponential distribution with parameter γ > 0. However, diseases mostly do not satisfy the condition
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of having an exponentially distributed recovery function. The assumption of an exponentially distributed
infectious period is thus often violated in reality. For example, Influenza typically has an infectious period
of 5 to 7 days. If we consider a time-step of 1 day, the rate of recovery would be between 1

5 to 1
7 . For an

exponential distribution with such parameter, actually only 12% of the lengths of the infectious periods is
within the 5 to 7 days range. As a possible improvement on this SIR-model, this thesis will discuss phase-type
(PH) distributions. First, the definition and characteristics will be reviewed, then multiple examples of PH
distributions will be given and finally the possibility of application within epidemiology will be discussed.
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2 What are phase-type distributions?

Before introducing phase-type distributions, there are a few topics that need clarification. In this section
we first consider discrete-time stochastic processes, Markov-chains, memorylessness and transition matrices
before looking at the PH distributions itself. For this section it is assumed that probability density functions
(pdf; denoted by f), mass density function (mdf; denoted by F ) and exponential distributions are prior
knowledge. This section uses the articles of Fackrell (2009)[3] and McClean, Garg, Barton, and Fullerton.
(2010)[10].

2.1 Discrete-time stochastic processes

In daily life many processes are a description of quantities changing over time. Some widely known examples
of this are:

• number of incoming calls at a helpdesk;

• the number of people waiting in a queue (for example in line at a shop or restaurant);

• stock prices.

Such processes are called stochastic processes.

Definition. Stochastic Process
A stochastic process is a collection of random variables (Xt)t∈T . There are two types of stochastic processes,
namely discrete-time stochastic processes or continuous-time stochastic processes:

• Discrete-time: T = N ∪ {0} = {0, 1, 2, . . . };

• Continuous-time: T = R+ = [0,∞].

From now on we will only use discrete-time stochastic processes, therefore it will no longer be stated that a
stochastic process is a discrete-time stochastic process.

2.2 Markov chains

A special and in particular rather useful type of stochastic processes are Markov chains.

Definition. Markov chain
A stochastic process (Xn)n≥0 is called a Markov chain if:

1. it is a chain, i.e. the Xn all take values in a countable set I. We call I the state space of (Xn)n≥0 and
each i ∈ I a state.

2. it satisfies the Markov property, i.e.

P(Xn+1 = in+1|X0 = i0, X1 = i1, . . . , Xn = in) = P(Xn+1 = in + 1|Xn = in)

for all n ≥ 0 and i0, i1, . . . , in+1 ∈ I.

We call a Markov chain (time-)homogeneous if for i, j ∈ I, we have that

P(Xn+1 = j|Xn = i) = P(X1 = j|X0 = i),

i.e. the conditional probability does not depend on n. This transition probability will be denoted by pij . In
this article only homogeneous Markov chains will be considered.
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The Markov property implies memorylessness, i.e. the transition probability to a next state from the current
state does not depend on the path to the current state. Thus the probability for the future state is independent
from the path to the current state. This can also be given as:

P(future | present, past) = P(future | present).

A Markov chain (Xn)n≥0 is defined by three characteristics:

• the state space I;

• the initial distribution λ = (λi)i∈I ; where λi = P(X0 = i);

• the transition matrix P = (pij)i,j∈I ; where pij = P(X1 = j|X0 = i).

We can shortly note this as Markov(λ,P ). We notice that λ is a probability vector and therefore λi ≥ 0 for
all i ∈ I and

∑
i∈I λi = 1. Furthermore, we notice that P is a stochastic matrix and therefore that pij ≥ 0

for all i, j ∈ I and that
∑
j∈I pij = 1 for all i ∈ I, which means that all columns add up to 1.

Multiplication explanation
We denote the distribution at time t as vector vt. Whenever the probability matrix is operated on the vector
vt you get vt+1, thus

vt+1 = P · vt. (2.1)

In particular, we notice that v0 = λ is the initial distribution. Consequently, the first iteration is initialised
by acting the transition matrix P on the given initial distribution λ:

v1 = P · v0 = P · λ. (2.2)

As an illustration, the following example of a compartmental disease model, in which there is a constant rate
at which susceptible individuals become infected, can be interpreted this way; given the initial distribution
where 90% of the population is susceptible and 10% of the population is infected, the initial distribution can
be given as λ = (0.9, 0.1, 0)T (in which T means the vector is transposed). The transition probabilities are
given in figure 2 below. This thus means that a susceptible individual has a 20% chance to get infected and

Sstart I R
0.2S 0.4I

Figure 2: An example of a state transition diagram based on the SIR-model. The transition rates above the
arrows are the total transition rates per time-step.

that an infected individual has a 40% chance to recover. The corresponding transition matrix can be given
as

P =


S I R

S 0.8 0 0
I 0.2 0.6 0
R 0 0.4 1

 .

If we now consider the multiplication P · λ, we see that

v1 = P · λ =

0.8 0 0
0.2 0.6 0
0 0.4 1

 ·
0.9

0.1
0

 =

0.72
0.24
0.04

 . (2.3)

This can thus be interpreted that after 1 timestep, e.g. 1 day, that 72% of the population is susceptible, 24%
of the population is infected and 4% is recovered.
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Figure 3: Dynamics of SIR model without interaction with infection rate 0.2 and recovery rate 0.4 starting
with 90% susceptible individuals and 10% infected individuals.

This way, operating P repeatedly, the progression of the model can be mapped, i.e. the population distribu-
tion after n time steps can be calculated via

vn = Pn · λ. (2.4)

Corresponding to this transition matrix, a numeric simulation has been done (see figure 3) to see that with
these dynamics everyone in the end has recovered.

Definition. Absorbing and Transient states
A state i is called absorbing if:

P(Xt+1 = i|Xt = i) = 1.

All states that are not absorbing are called transient.

Example.
As an example, the transition diagram of figure 1 can also be given in terms of a transition matrix. To make
sure the transition matrix will not be too complicated in terms, we write α as the rate of infection. The
corresponding transition matrix can be given as:

S I R
S 1− αS 0 0
I αS 1− γI 0
R 0 γI 1


with λ = (1, 0, 0). This thus suggests that when in states S and I there is a probability to remain in that
state or move to the next state while in state R, the only possibility is to remain in state R. State R is
therefore called an absorbing state while states S and I are called transient.
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2.3 Phase-type distributions

A phase-type distribution is a distribution on a non-negative random variable. For a phase-type distribution
a Markov chain with all but one transient states and one absorbing state, denoted as state 0, is needed.
This distribution gives the time of going through the transient states to the absorbing state. In epidemiology
this could for example measure the length of stay (LOS) in a hospital. In the example of an SIR-model as
used before it gives a distribution on the time spent in the I-component as this is the transient state when
translated to a PH distribution.

Definition. Phase-type (PH) distributions
PH distributions are defined by 3 characteristics:

• The state space S = {0, 1, 2, . . . , k};

• The initial probability distribution λ = (λ0, λ1, . . . , λk) = (λ0,λ), with
∑k
i=0 λi = 1;

• An infinitesimal generator Q, with

Q =

(
0 ~0
~t T

)
. (2.5)

In this matrix ~0 is a 1 × k-vector of zeros, ~t is a k × 1-vector of absorption rates from the transient
states and T is a k × k-matrix with the transition rates between the transient states. The transition
rate from state i to state j is denoted by tij and thus the absorption rate from state i is given as ti0
with i = 1, 2, . . . , k. Note that it is needed that ti0 ≥ 0 for all i = 1, 2, . . . , k and ti0 > 0 for at least one
i ∈ {1, 2, . . . , k}. For i, j 6= 0 and when i 6= j the transition rate satisfies tij ≥ 0 and when i = j the
transition rate satisfies

tii = −
k∑

j=0,j 6=i

tij . (2.6)

A PH distribution with k non-absorbing states (order k) and 1 absorbing state is represented by its repre-
sentation PH(λ,T) in which λ=(λ1, . . . , λk) such that λ = (λ0, λ). This thus says that there are k states
and the distribution has initial probability λ and transition matrix T.

Distribution functions
Since PH distributions are distributions, PH distributions have their own probability density function and
cumulative density function attached to it. The cumulative density function is given as:

F (t) =

{
λ0 if t = 0

1− λeTte if t > 0
(2.7)

for t = 0, 1, 2, . . . in which e = (1, 1, . . . , 1) is a 1-vector of length k. The probability density function is given
as:

f(t) = −λeTtTe, (2.8)

again for t = 0, 1, 2, . . . with e = (1, 1, . . . , 1) a 1-vector of length k.

Laplace-Stieltjes Transform
To find the mean and variation of a PH distribution, the moment generating function is of use. In order to
find the moment generating function we will use the Laplace-Stieltjes Transform.
For every well-defined function F (t) defined for t ≥ 0, and complex number s, the Laplace-Stieltjes Transform
is given as:

φ(s) =

∫ ∞
0

e−stdF (t). (2.9)
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As mentioned in equations 2.8 and 2.7 PH distributions have probability density function

f(t) = −λeTtTe

and cumulative density function

F (t) =

{
λ0 if t = 0

1− λeTte if t > 0.

The cumulative density function can also be written as:

F (t) =

∫ t

−∞
f(x)dx. (2.10)

For PH distributions this is the same as:

F (t) =

∫ t

0

f(x)dx =

∫ t

0+

f(x)dx+ λ0, (2.11)

in which the integral from 0 to t can also be written as F (t) =
∑t
x=0 f(x). Since the cumulative density

function can be written this way, the Laplace-Stieltjes transform of a PH distribution can be written as:

φ+(s) =

∫ ∞
0+

e−stdF (t) =

∫ ∞
0+

e−stf(t)dt =

∫ ∞
0+

e−st(−λeTte)dt =

∫ ∞
0+

−λe(−s+T )tedt. (2.12)

Thus the transform is:
φ(s) = −λ(sIk − T )−1Te + λ0. (2.13)

From this transform one can now derive the moment generating function for the PH distribution as:

dkφ(s)

dsk
= mk = (−1)kk!λT−ke. (2.14)

Since the expected value of a distribution is equal to the first moment and the variance of a distribution is
equal to the second moment minus the first moment squared, we get:

E[t] = m1 = −λT−1e, V ar(t) = E[t2]− E[t]2 = m2 −m2
1 = 2λT−2e + (λT−1e)2 (2.15)
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3 Different types of phase-type distributions

In this section two types of PH distributions will be discussed and reviewed. The first type is the Coxian PH
distribution and after that the mixture of Coxian PH distributions will be analysed. This section uses the
articles of Fackrell (2009)[3] and McClean et al. (2010)[10].

3.1 Coxian Phase-Type (CPH) distributions

One of the most widely used types of PH distribution is the Coxian phase-type distribution (CPH distribu-
tion). This type of PH distribution is characterised by its composition having all but one transient states
and a single absorbing state. Furthermore, all the transient states are sequential which implies that there is a
single way to move through the transient states while from every transient state there is a positive probability
to go to the absorbing state a. The transient states form a subset of the state space: I ⊂ I. The initial
distribution is λ = (1, 0, 0, 0, . . . , 0).
It can be noted as:

pij =



0 if j > i+ 1

0 if j < i

u if j = i+ 1

v if j = i

1− u− v if j = a

(3.1)

for all states i ∈ T = I \ {a} and

paj =

{
0 if j ∈ I
1 if j = a.

(3.2)

The concept of a CPH distribution can more clearly be illustrated by means of a transition diagram. In
figure 4 below a CPH distribution with n transient states is given.

T1start T2 T3 Tn

a

η1 η2 . . .

µ1 µ2

µ3
µn

Figure 4: The state transition diagram of a Coxian phase-type distribution. Here Ti are transient states with
i = 1, 2, . . . , n and a is the absorbing state.

In figure 4 we can easily see that from every transient state (Ti) there is a direct path to the absorbing state
a and to the next transient state.

The CPH again has state space I, initial distribution λ and infinitesimal generator Q. The probability density
function for Coxian PH distributions is given as:

f(t) = peQtq, (3.3)

in which p = (1, 0, 0, . . . ) is the specified initial distribution for CPH distributions,

Q =


−(ξ1 + µ1) ξ1 0 . . . 0

0 −(ξ2 + µ2) ξ2 . . . 0
...

. . .
. . .

. . .
...

0 . . . 0 −(ξn−1 + µn−1) ξn−1
0 . . . 0 −(ξn + µn)
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is the infinitesimal generator (in which ξi is the probability pi,i+1 (ξn = 0) and µi is the absorption probability
for state i) for a distribution with n transient states and q = −Qe = (µ1, µ2, . . . , µn)T is the vector with
absorption probabilities from each transient state. Since the (-) from 2.8 is a scalar (namely −1), because of
the commutativity property of scalar multiplication this can be moved to q.

To calculate the mean and variance of the CPH distribution, we can use 2.15 since the CPH distribution is
a type of PH distribution. Therefore we find that for CPH distributions

E[t] = m1 = −pQ−1e, V ar(t) = E[t2]− E[t]2 = m2 −m2
1 = 2pQ−2e + (pQ−1e)2. (3.4)

3.2 Mixed Coxian Phase-Type distributions

Since in many situations it is not realistic that there is a single absorbing state (think about an example
of hospital charges, a person can either die, go back home or go to a residential home), a distribution
with multiple different absorbing states is useful. This can be done by combining multiple Coxian phase-type
distributions. A Mixed Coxian Phase-Type (MCPH) distribution is a combination of C ≥ 2 (C of components)
CPH distributions. An MCPH describes the probabilities a random variable T = (T1, T2, . . . , TC) in which
Tc is a random variable which is described by a CPH distribution with infinitesimal generator Qc. The
probability density function of an MCPH distribution is given as:

f(T ) =

C∑
c=1

acfc(Tc) =

C∑
c=1

acpce
QcTcqc, (3.5)

where ac is the mixing proportion of the component with
∑C
c=1 = 1, pc = (ac, 0, 0, . . . ) is the entry probability

vector per compartment and qc is the absorption vector for every compartment.

Theorem 3.2.1. An MCPH distribution has transition probabilities 0 between states from different compart-
ments.

Proof. Let an MCPH distribution be a combination of n compartments. The transition matrix of this
distribution is given as:

Q =



Q1 0 0 . . . 0
0 Q2 0 . . . 0

0 0
. . .

. . .
...

...
...

. . .
. . . 0

0 0 . . . 0 Qn


with

Qc =



−(λ1,c + µ1,c) λ1,c 0 0 . . . 0
0 −(λ2,c + µ2,c) λ2,c 0 . . . 0

0 0
. . .

. . .
. . .

...
...

...
. . .

. . . −(λ(n−1),c + µ(n−1),c) λ(n−1),c
0 0 . . . 0 0 µn,c

 .

We thus see that there is no transition between states in different compartments Qk and Ql with k, l ∈
1, 2, . . . , n and k 6= l.

An MCPH distribution has m ∈ S absorbing states, in which S = I \I. Therefore the absorption vector from
a CPH distribution becomes an absorption matrix q = (q1,q2, . . .qC)T (for an MCPH distribution with C
compartments), in which qc = (µc,1, µc,2, . . . , µc,m). Furthermore we write p = (p1,p2, . . . ,pC)
We can thus write the probability density function of an MCPH distribution as follows:

f(T ) = peQT q. (3.6)



4 WHAT ARE PHASE-TYPE DISTRIBUTIONS USED FOR IN GENERAL? 10

4 What are phase-type distributions used for in general?

Before we look into the use of phase-type distributions in epidemiology, other fields in which phase-type
distributions are used are considered. Since PH distributions give a distribution of the time it takes until
absorption, PH distributions can be widely used in a wide variety of fields. In the first part of this section
we will discuss some of these fields.

4.1 Applications of phase-type distributions

When searching ”phase-type distribution” as a literal in Web of Science, 478 results appear. These results
can be divided into categories (fields). This separation of articles into categories by Web of Science is shown
in figure 5. Noticeable is that there are no articles refining the search on ”epidemiology” (as a topic).
There are categories ”health policy services” (5 articles), ”Health care sciences services” (3 articles), ”public
environmental occupational health” (3 articles) and ”medical informatics” (5 articles). Yet there is only
1 article concerning improving the SIR-model by means of phase-type distributions, found by refining the
search on ”SIR” (as a topic).

Figure 5: Overview of the use of phase-type distributions in different fields (categorised by Web of Science).
The 20 fields with highest usage numbers are shown.

One can see that phase-type distributions are mainly used in operations research management science (161
times, 33.7% of all articles on PH distributions). Within this category, there is a mix of topics. Main topics
in the operations research management science category are the Length of Stay (LOS) of (non-infectious
disease) patients in hospitals and industrial engineering. In this part we discuss some examples which can
be translated to infectious disease modeling.

Length of Stay
In the article of Fackrell (2009)[3], different phase-type distributions had been modeled to fit data about the
length of stay of patients in the Royal Melbourne Hospital that had been transferred from other hospitals.
These patients were not specifically known for having an infectious disease. In figure 6 below, one can see
that PH distributions are capable of fitting to such a distribution.

Fackrell[3] concludes that a general PH distribution of order 6 is more appropriate for constructing such
distribution than Coxian PH distributions until order 25. Since the distribution functions for the PH distri-
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Figure 6: Probability densities of different PH distributions are plotted to data of the Royal Melbourne
Hospital. This figure originates from Fackrell (2006)[3].

butions are similar to that of the length of the infection or infectious period, this might indicate that the use
of PH distributions might be useful.

4.2 Phase-type distributions in epidemiology

In the article of Zhu and Chen (2020)[12] assumptions were made on the shape of the distribution functions
for the incubation period and the infectivity of COVID-19 as shown in figure 7 below.

Figure 7[12] gives an intuition on the distribution function for infectious diseases. This distribution function
has a somewhat similar shape to that of the LOS of figure 6. Therefore the use of PH distributions in SIR
models to improve the part of the rate of recovery might be beneficial.
Many processes in epidemiology and medical care are processes that happen until arriving in some absorbing
state. An example of such a process is the a bacterial outbreak in a hospital.[1] The outbreak time can
then be modelled by a phase-type distribution. During the outbreak one can also consider looking at the
processes where doctors get infected and recover. Furthermore, interventions taken during the process may
have an impact. In the article of Castro, López-Garćıa, Lythe, and Molina-Paŕıs (2018)[1], they consider the
interventions of screening all the healthcare workers and when testing positive sending them off-duty (which
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Figure 7: Assumption on the incubation period and infectivity of COVID-19 made by Zhu and Chen (2020)[12].

is different state in the PH distribution) as well as giving them a treatment.

Hospital capacity is another issue which may benefit from the use of PH distributions. To describe the LOS
of patients, in many cases Coxian PH distributions are used, while sometimes a mixture of CPH distributions
is used. To describe the LOS of elderly patients in a hospital, a CPH distribution with two absorbing states
(one for death and one for discharge) has been set up.[6] A survival tree has been made with the population
split up using the Akaike information criterion. The CPH distribution has then been used to estimate the
LOS for all groups of the population.[6] This same type of distribution on LOS has been used to estimate
either the patient survival[9] or the mortality rate in hospitals[11], to estimate the cost of geriatric patients in
Northern-Ireland[8] and to cluster patients based on their LOS.[4]

In another study, a mixture of CPH distributions have been used to model the readmission of patients to a
hospital.[5] Since elderly patients require an increasing number of hospital beds, a more thorough understand-
ing of the movement of elderly patients between hospital uptakes and discharge to society is needed to better
monitor the number of available hospital beds (for non-elderly patients) and with that the waiting times and
hospital experience. To match the data about readmissions and discharges of elderly patients, a phase-type
distribution with consecutively three stages of care in the initial hospital uptake, two stages of care in the
community and three stages in the first readmission has been created. In this model, there is no transition
between non-final states of each stage to the next stage. Gordon, Marshall, and Cairns (2016)[5] found that
this mixture of CPH distributions fitted the data of these elderly patients better. As a further improvement
of the model, in addition to the mixture of CPH distributions, a conditional (Bayesian) segment was added.
This segment made it possible to condition the time until an event occurs to be dependent on the time since
leaving the earlier stage.

To conclude
In future research the use of Coxian phase-type distributions in epidemiology needs to be examined further
in order to use it to its full potential. Having only one result[7] in a search on PH distributions as an
improvement of the SIR-model in Web of Science when combining the search terms ”phase-type distribution”
and ”infection” and no results when combining ”phase-type distribution” and ”epidemiology”, this is an
application of PH distributions that requires more attention. Currently, being governed by the 2019-2020
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Covid-19 (SARS-CoV-2) pandemic, this especially is a topic which concerns all of society. By using data from
former outbreaks like the SARS outbreak in 2003 or the MERS outbreak in 2012, it might be manageable
to create a PH distribution which describes the length of the outbreak, length of infections, et cetera. This
thesis aimed to provide insight in the possibility of using PH distributions in epidemiology. Therefore this
study provides a starting point for further research on analysing the application of a PH distribution in
infection diseases such as the SARS-CoV-2 pandemic. If this is possible, future research on this topic might
lead to a different and improved insight in and dealing with future pandemics.
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A Appendix

Listing 1: Python code for figure 3

import numpy as np
import matp lo t l i b . pyplot as p l t

# The SIR−model
def ba s e s i r mode l ( i n i t v a l s , params , t ) :

S 0 , I 0 , R 0 = i n i t v a l s
S , I , R = [ S 0 ] , [ I 0 ] , [ R 0 ]
beta , gamma = params
dt = t [ 1 ] − t [ 0 ]
for in t [ 1 : ] :

next S = S[−1] − ( beta ∗S [−1])∗ dt # Dynamics o f s u s c e p t i b l e group
nex t I = I [−1] + ( beta ∗S[−1] − gamma∗ I [−1])∗ dt # Dynamics o f i n f e c t e d group
next R = R[−1] + (gamma∗ I [−1])∗ dt # Dynamics o f recoverd group
S . append ( next S )
I . append ( nex t I )
R. append ( next R )

return [ S , I , R] # Return the l i s t o f va lue s with new time s t ep added

# Define parameters
t max = 100 # The time to model
dt = 1 # Time s t ep
t = np . l i n s p a c e (0 , t max , int ( t max/dt ) + 1)
N = 100 # Number o f i n d i v i d u a l s w i th in the popu la t ion
i n i t v a l s = 0 . 9 , 0 . 1 , 0 # I n i t i a l va lue s

beta = 0 .2 # In f e c t i on ra t e
gamma = 0.4 # Rate o f recovery
params = beta , gamma
# Run s imu la t ion
r e s u l t s = ba s e s i r mode l ( i n i t v a l s , params , t )

max index = f loat ( ”− i n f ” )
max value = f loat ( ”− i n f ” )

# Define x−ax i s as the time
time = [ i for i in range ( len ( r e s u l t s [ 1 ] ) ) ]
time2 = [ i for i in range ( len ( r e s u l t s [ 1 ] ) ) ]

# l i n e S po in t s
y1 = r e s u l t s [ 0 ]
# p l o t t i n g the l i n e S po in t s
p l t . p l o t ( time , y1 , l a b e l = ” Su s c ep t i b l e s ” )
# l i n e I po in t s
y2 = r e s u l t s [ 1 ]
# p l o t t i n g the l i n e I po in t s
p l t . p l o t ( time2 , y2 , l a b e l = ” In f e c t ed ” )
# l i n e R po in t s
y3 = r e s u l t s [ 2 ]
# p l o t t i n g the l i n e R po in t s
p l t . p l o t ( time2 , y3 , l a b e l = ”Recovered/removed” )
# Name x−ax i s as time
p l t . x l ab e l ( ’Time ( days ) ’ )
# Name y−ax i s as the percentage o f popu la t ion
p l t . y l ab e l ( ’ percentage o f populat ion ’ )
# Name the f i g u r e
p l t . t i t l e ( ”The dynamics o f an SIR system without i n t e r a c t i o n ” )
# show a legend on the p l o t
p l t . l egend ( )
# Disp lay the f i g u r e .
p l t . show ( )
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