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Abstract

PbTe is a narrow band gap semiconductor with a remarkably high Landé g-factor and spin-orbit interaction. This
makes it a very interesting possible candidate for Majorana devices. Therefore the MBE growth of low-defect
single-crystalline PbTe nanowires has been developed. This research aimed to develop a fabrication recipe for
reliable fabrication of nanowire MOSFET devices. And to use these to characterise the electronic transport
properties of these nanowires.
However, Schottky barriers were formed between the nanowire and the Ti/Au source and drain contacts, partially
due both the material choice and the fabrication procedure.

The Schottky barriers have been characterised based by fitting the measured transport data with a thermionic
emission model. This established thermionic emission as the dominant transport mechanism, and allowed for
the determination of the Schottky barrier height (Φeff

B = 0.55 ± 0.25V).
Despite the Schottky barriers, an attempt has been made to extract the carrier mobility and density from the
transport data. Carrier densities in the order of ∼ 1018cm−3 have been obtained. This seems a plausible value
compared to the carrier densities of other narrow band gap semiconductors (InAs, InSb). The obtained mobilities
(µe = 0.02−0.12cm2/Vs) are two orders of magnitude lower than in other semiconductors. However, it was to be
expected that the mobility of the device was heavily impacted by the presence of barriers at the contact interface.

PbTe nanowires grown in Eindhoven have been fabricated into similar devices in the Frolov group at the
University of Pittsburgh. There cryogenic transport measurements were performed on the devices. The barriers
at the metal/semiconductor interface, though much less pronounced, turned the nanowires into nanowire quantum
dots. Some curious signatures were observed in the transport characteristics of these dots. Some of these features
can be explained to be signatures of Wigner localisation of electrons in the dot. Steps have been made in the full
quantum-mechanical modelling of this system, but still a lot of time has to be invested to completely reproduce
the experimental results.
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Quantum computing is a branch of quantum physics that currently enjoys a lot of scientific and commercial interest. Once
physically realised, a quantum computer will be able to harness fundamental properties of quantum mechanics, such as linear
superposition and entanglement of quantum states, that are not available to classical computers.
Algorithms that manage to fully utilise these properties could revolutionise our current way of processing and encrypting data.
These could significantly speed up certain computations. For example, Shor’s prime number factor factorisation algorithm
would be exponentially faster than a classical analogue [1]. This would essentially break our current way of encrypting data.
Another application of quantum mechanics is the simulation of systems that themselves are quantum mechanical in nature.
Think for example of the development of new medicines, or solving high-temperature superconductivity. The calculation
power (or number of bits) that a classical computer would require for the simulation of such a system scales exponentially
with the number of degrees of freedom, due to its probabilistic nature. This makes the simulation of larger quantum
mechanical models fundamentally impossible using a classical computer. However, Feynman already showed in 1982 that
certain many-body quantum Hamiltonians can be simulated exponentially faster on a quantum computer than on a classical
computer [2], because the calculations themselves are probabilistic in nature.
However, quantum computers have some issues of their own. The most important is quantum decoherence: the state of a
system will only remain in a coherent superposition of states for a finite time. Interactions with the environment may collapse
the wave function of a quantum state, thereby destroying the information encrypted in it.
Topological quantum computing proposes to exploit the emergent quasiparticles in many-particle systems to encode and
manipulate quantum information. These emergent states are fundamentally non-local in nature, and are therefore immune to
the usual (localised) sources of quantum decoherence. This makes topological quantum computing intrinsically fault-tolerant.
One theorised realisation of a topological quantum computer is based on Majorana quasiparticles in one-dimensional hybrid
semiconductor superconductor systems, see section I-C.
A recently proposed material system that could host these Majorana quasiparticles consists of a lead telluride (PbTe) nanowire
with lead (Pb) as a superconductor. This thesis focuses on the electronic characterisation of the semiconductor part of this
material system, and explores fundamental challenges in device design and fabrication.

I. EMERGENT MAJORANA QUASIPARTICLES

First a concise, but complete overview of the relevant Majo-
rana physics will be presented. This should also clarify the
requirements for a material system to host Majoranas.

A. Dirac and Majorana: the foundation

In 1928, Paul Dirac’s efforts to unify special relativity and
quantum mechanics resulted in the now well-known Dirac
equation (eq.1), which is the relativistic wave equation for
massive spin- 1

2 fermions:(
i~γµ∂µ −mc)ψ = 0, (1)

with m the particle mass, and ψ the Dirac spinor fields.
Special relativity creeps into this equation through the
requirement that the γµ-matrices1 are 4×4 matrices that
generate the Clifford algebra [3]:

{γµ, γν} = 2ηµν , (2)

with ηµν the Minkowski metric tensor. This equation yielded
a remarkable prediction: the existence of antimatter. The
existence of the antiparticle to the electron, the so-called
positron, was indeed confirmed only a year later [4].

1 Conventional choice for the matrices γµ, with σi Pauli matrices, and
12 the 2×2 identity matrices.

Antiparticles have the same mass and spin as their ”regular”
counterparts, but carry a charge of the opposite sign. This
implies that neutral particles can be identical to their
antiparticles. More formally, this requires that the particle
field is equal to its Hermitian conjugate: ψ = ψ†. This can
only be true if it is a completely real-valued field.

In 1937, Italian physicist Ettore Majorana had the insight
that the solutions to the Dirac equations become real, if the
γµ-matrices were chosen to be completely imaginary [5].
This can be achieved by defining four alternative γ̃µ-matrices
that satisfy the same anticommutation relations (eq.2) as
Kronecker products of the Pauli matrices [3]:

γ̃0 = σ2 ⊗ σ1

γ̃1 = iσ1 ⊗ 12

γ̃2 = iσ3 ⊗ 12

γ̃3 = iσ2 ⊗ σ2

(3)

With these new γ̃µ-matrices the Dirac equation (eq.1) can
be rewritten as the Majorana equation for real fields φ:(

i~γ̃µ∂µ −mc)φ = 0, (4)
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In his honour, particles that satisfy this equation are now
known as Majorana fermions (MFs).

These Majorana fermions turn out to be rather elusive, as
to date no irrefutable evidence for their existence has been
found. In the twentieth century, the concept of Majorana
fermions was mostly related to high-energy physics. For
example, neutrinos have been speculated to be particles
of this kind. However, this has been proven very difficult
to verify: neutrinos are extraordinarily weakly interacting
particles, making them difficult to detect [3][4].

B. The Kitaev chain

More recently it has been recognised that certain condensed
matter systems may also support Majorana fermions as
emergent quasiparticles. A toy model that manifests these
emergent Majorana fermions, is the Kitaev chain [6].

Consider a chain of N fermions with a spin alignment
along the z-axis, and only nearest neighbour interactions.
Assuming a ferromagnetic coupling, the ground state of such
a system will consists of particles with aligned spins (e.g.:
|↑↑↑↑↑ ...〉). An excitation of this system will consist of a
single flipped spin (e.g.: |↑↑↓↑↑ ...〉). In second quantisation
notation this can be expressed in terms of fermionic creation
c†i and annihilation ci operators for an excitation/spin flip at
position i:

Ground state = |↑↑↑↑↑ ...〉 = |0〉
First excitation = |↑↑↓↑↑ ...〉 = c†i |0〉

(5)

In this description the spin degree of freedom is entirely
redundant, as the nature of the excitation created by c†i
is not specified in this notation. Therefore this model is
known as the spinless fermion chain.

Now we recall that the solutions to the Majorana equation are
real fields. In the second quantisation formalism this criterion
translates to real-valued Majorana creation and annihilation
operators: γi = γ†i , with {γi, γj} = 2δij . From these
requirements it can easily be confirmed that the creation and
annihilation operators for (conventional) Dirac fermions can
be defined in terms of the Majorana operators:

ci =
1

2
(γi,1 + iγi,2)

c†i =
1

2
(γi,1 − iγi,2)

(6)

In other words: one conventional fermion can be expressed
as a combination of two Majorana fermions.
Kitaev suggested that in a fermionic chain, new fermions
c̃i can be redefined by combining Majorana operators from
adjacent sites:

c̃i =
1

2
(γi,2 + iγi+1,1)

c̃†i =
1

2
(γi,2 − iγi+1,1)

(7)

This reordering is schematically shown in fig. 1.

Fig. 1: Schematic depiction of the reordering of the fermionic chain as
proposed by Kitaev. The top panel shows a chain of N conventional
fermions ci (blue), and its component Majorana fermions γi,1 and γi,2
(red). The bottom panel shows the reordering of adjacent MFs into a chain
of N − 1 fermions c̃i (dotted ellipses) and the two edge MFs. Reprinted
from Leijnse and Flensberg [7].

Now a Hamiltonian for this fermionic chain that only con-
siders nearest neighbour interactions can be defined:

HKitaev = −µ
N∑
i=1

c†i ci−
N−1∑
i=1

(
tc†i ci+1+∆cici+1+h.c.

)
, (8)

with µ the chemical potential, and t the tight-binding in-
teraction strength between neighbouring sites. Notice that
the coupling constant ∆ between two particles with aligned
spins is identified as the superconducting gap. This implies
that this Hamiltonian requires triplet Cooper pairing, or p-
wave superconductivity.
Consider now the special case µ = 0 and t = ∆. Then
the Kitaev Hamiltonian (eq.8) can be rewritten in terms of
reordered fermionic operators (eq.7): [7]:

HKitaev = 2t

N−1∑
i=1

c̃†i c̃i (9)

This is just a formal way of reordering the Hamiltonian: it
is expressed in a different basis of eigenstates. Notice that
this Hamiltonian only counts N − 1 fermionic states: the
two Majorana operators at the ends of the wire (γ1,1 and
γN,2) are completely missing. Together these form a highly
non-local state: the Majorana zero-mode (MZM):

c̃M =
1

2
(γ1,1 + iγN,2) (10)

Because this Majorana zero-mode is not included in the
Hamiltonian, it does not cost any energy to occupy this state
(hence the name zero-mode). As a result, all the energy states
of the Kitaev chain become two-fold degenerate. As will be
discussed in sectionI-D, this is essential for the application
of MZMs as qubits.
Up until now only the case µ = 0 and t = ∆ was considered,
but it can be show that the Majorana edge states remain as
long as the chemical potential resides within the gap |µ| < 2t
[6].

C. Physical realisation: semiconductor-superconductor het-
erostructures

As noted before, the Kitaev model requires p-wave
superconductivity to host Majorana edge states.
Unfortunately, p-wave superconductors do not exist
in nature. However, if a material system can be
engineered whose Hamiltonian closely resembles a p-
wave superconductor, it may still be able to host a MZM.
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In this context, ”close enough” means in this context
that the Hamiltonian of the material system can be
continuously transformed into the Hamiltonian of a p-wave
superconductor, without ever closing the superconducting
gap [7].
Lutchyn et al.[8] and Oreg et al.[9] proposed that one-
dimensional semiconductor-superconductor heterostructures
could indeed host MZMs.

Let’s start by considering a long and thin nanowire. Electrons
in such a nanowire will be strongly confined in the transverse
direction when the wire cross-section is small compared to
the electron Fermi wavelength. This confinement results in
well-separated subbands. Using (local) gates on the wire,
conductance channels in the wire can be opened or closed
for electronic transport. If only one channel is opened, the
wire can effectively be considered as a 1D system [7].
Generally the Hamiltonian of a semiconductor in terms of
the fermionic fields Ψσr:

H0 =
∑
σ=↑,↓

∫
drΨ†σ(r)H0(r)Ψ†σ(r) , (11)

where the single-particle Hamiltonian H0(r) is given by:

H0(r) =
p2

2m∗
−µ+α(E(r)× p) · σ̄+

1

2
gµBB(r) · σ̄ (12)

Here m∗ is the effective electron mass in the semiconductor,
and σ̄ is a vector of Pauli matrices. The second to last term
describes a generic spin-orbit coupling of strength α. E is
the electric field experienced by the electrons. The last term
includes Zeeman splitting in the model. B is an applied
field and g is the Landé g-factor.

Superconductivity can be proximity-induced in a nanowire,
if a defect-free interface with a superconductor is formed.
In this case electrons can tunnel between the two materials.
Therefore an electron-electron pairing term with coupling
strength ∆(r, r’) can be added to this Hamiltonian. The
strength of this term depends on both materials, as well as
the quality of the interface.
Because of electron-hole symmetry it is conventional to
define the Nambu spinors when describing superconducting
systems2:

Ψ̄(r) =


Ψ↑(r)
Ψ↓(r)

Ψ†↓(r)

−Ψ†↑(r)

 (13)

Now the eigenspinors of the Bogoliubov-de Gennes (BdG)
equation describes quasiparticle excitations in the proximi-
tised system 3:

H̄0(r)Ψ̄i(r) +

∫
dr’∆̄(r, r’)Ψ̄i(r’) = Eiψ̄i(r) (14)

2 Eq.6 (or eq.7) can be rewritten as:

γi,1 = c†i + ci, γi,2 = i(c†i − ci)

From writing the operator expressions in this form, it is apparent that the
Majorana operators can be expressed as a superposition of an electron and a
hole, reminiscent of a Bogoliubov quasiparticle in a superconductor [7][10].

Fig. 2: One-dimensional dispersion relation of a nanowire:
a| with Rashba spin-orbit coupling. This shifts the spin-degenerate subbands
along the momentum axis in opposite directions.
b| with an additional (small) magnetic field. The resulting Zeeman splitting
lifts the spin-degeneracy and opens the gap at kx = 0.
c| with SOI and a larger magnetic field, which increases the gap and the
spin alignment in the subbands.
d| with SOI, an external magnetic field, and proximity-induced supercon-
ductivity: these are the dispersion curves are the solution to the Bogoliubov-
de Gennes equation. Both the electron and hole bands are plotted here.
Reprinted from Leijnse and Flensberg [7]

Because the Majorana quasiparticles are their own
antiparticles

(
Ψ̄†i (r) = Ψ̄i(r)

)
, they can only ever be

eigenstates of the BdG-equation at E = 0. So in
correspondence with the Kitaev model, this physical system
can indeed host Majorana zero modes.

Let’s now examine the dispersion of electrons in a
semiconductor nanowire (fig.2) for a bit more insight of the
role of the different components in this Hamiltonian.
In its simplest form, this dispersion takes on the form of
a one-dimensional parabola, due to the strong confinement
of the electron wavefunctions in the transverse directions.
Spin-orbit interaction (SOI) lifts the spin-degeneracy: the
two spin-subbands shift in opposite directions along the
kx-axis (see fig.2a) [11].
The addition of a magnetic field perpendicular to the
nanowire axis results in Zeeman splitting of the energy
bands (see fig.2b). This opens a gap at kx = 0. If the
chemical potential is tuned inside the gap, only the bottom
band is occupied. This essentially transforms the system
to a continuous version of Kitaev’s spinless fermion chain
[12]. The stronger the applied magnetic field, the wider the
area in momentum space that is effectively spinless.

Proximity-induced superconductivity pairs electrons with
opposite spin in Cooper pairs. This pairing competes with
the Zeeman splitting of the energy bands for the alignment

3 Here H̄0(r) and ∆̄(r, r’) are the 4×4 extensions of the 2×2 single-
particle Hamiltonian and pairing potential matrices, respectively:

H̄0(r) =
(
H0(r) 0̂

0̂ −σyH∗
0 (r)σy

)
, ∆̄(r, r’) =

(
0̂ ∆(r,r’)1̂

∆(r,r’)1̂ 0̂

)
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of the spins in the nanowire [12][13].
For weak magnetic fields the superconducting pairing will
dominate; the nanowire will behave as a trivial s-wave
superconductor. This dispersion will still display a gap, but
this is merely the conventional superconducting gap. If the
Zeeman splitting dominates, a topological phase transition
takes place (the bands invert), and the topological gap opens
up. Electrons are now still paired, but with aligned spins: the
system is in a p-wave superconducting state. So the nanowire
is in the topological state if:

1

2
gµBB >

√
µ2 + ∆2 . (15)

When only a part of the nanowire is proximitised by a
superconductor, also only the covered part can be in the
topological state. Because the bands are inverted in the
topological state, there has to be a point where the bands
cross when moving from the trivial to the superconducting
regions in the wire. Because electron-hole symmetry in
superconductors, this crossing has to occur exactly at zero
energy. This is where the Majorana zero mode can occur:
at the interface between the trivial and superconducting
regions. Therefore it is also known as a Majorana edge mode.

From this discussion a short list with requirements for a
device that can host MZMs can be made:

1) A low-defect 1D (nanowire) semiconductor material
2) Strong Rashba spin-orbit interaction
3) Large Landé g-factor
4) Proximity-induced superconductivity
5) Global and local gates to tune the chemical potential

into the topological gap.
This list will be used for further discussions of suitable
material combinations and device designs.

For a more formal description of discussion above, the
review papers by Leijnse and Flensberg [7], Alicea [14],
and Aguado [15] are highly recommended.

D. Majorana’s for quantum comupting
The fundamental building block of a quantum computer
is the quantum bit (qubit). It has been proposed that so-
called Majorana qubits can be created based on these Ma-
jorana zero-modes. Operations can be performed on such
a qubit based on its exchange statistics. When two bosons
(fermions) exchange positions, the total system acquires a
phase factor of +1 (-1). However, MZMs are non-Abelian
anyons [16]. This means that the phase factor the system
acquires upon the exchange of two MZMs depends on the
path taken. Moreover, if multiple operations are performed
in succession, the accumulated phase factor also depends on
the order of the operations. Therefore information can be
encoded in the phase of the Majorana qubits, by exchanging
the positions of the MZMs [17][18]. This process is called
braiding.
Because the MZMs are highly non-localised emergent quasi-
particles, the Majorana qubits based on them are very
robust to local perturbations: they are topologically protected
[19]. Therefore computation operations are inherently fault
tolerant.

II. PBTE VERSUS THE STATUS QUO

Here a short overview of the state-of-the-art experiments
and material systems used for the detection of MZMs will
be given. This will be compared to the PbTe/Pb material
system. From this comparison the motivation for this project
should become clear.

A. Experimental signatures of Majorana fermions

Since the theoretical prediction in 2001 by Kitaev [6],
significant steps have been undertaken to experimentally
verify the existence of MZMs in condensed matter systems.
The first signature, the zero-bias conductance peak, was
reported by Mourik et al. in 2012 [13]. However, to date no
conclusive evidence for their existence has been presented.

The detection scheme used by Mourik et al. and numerous
experiments since then [20][?][21], is based on tunneling
spectroscopy (see fig.3). In these devices a nanowire is
placed on a substrate with back gates. These gates can
be used to tune the Fermi level in the wire into the
topological gap. Two contacts are deposited onto the wire: a
superconducting contact, and a conventional Ohmic contact.
A separate back gate can be found underneath the part of
the wire that is covered by neither of the contacts. If a
negative voltage is applied to that gate, a tunnel barrier for
electrons is formed between the topological region and the
Ohmic comtact.
When a magnetic field is applied, Majorana zero modes
are formed at the edges of the topological region (indicated
in pink in fig.3a). If a bias voltage is applied between the
two contacts, tunneling through the barrier can occur. This
is shown as a waterfall plot in fig.3b for various magnetic
field strengths. Here the emergence of the Majorana zero
mode (MZM) as a function of the applied Zeeman field can
be seen as a zero-bias conductance peak. For low fields the
topological gap is closed, and thus no MZM is permitted.
If the applied field is high enough to open the gap, the
in-gap states clearly emerge at zero bias, giving rise to a
conductance peak.

However, all signatures of Majorana fermions measured
to date are no definitive proof for their existence. For
example, in the case of the experiment by Mourik et al.
the zero-bias peaks do not have the predicted amplitude
of one conductance quantum: G0 = 2e2

h . Several other
phenomena have been proposed that can show similar
signatures: Andreev bound states, weak antilocalisation, and
the Kondo effect [20][21]. Braiding experiments can reveal
the non-Abelian properties of the Majorana fermions, and
thus ultimately proof their existence [17][22].

B. PbTe vs InAs and InSb

Several material systems have been proposed as
physical realisations of the semiconductor-superconductor
heterostructure discussed in sec.I-C. Most notably indium
arsenide (InAs) or indium antimonide (InSb) nanowires
with aluminium as a superconductor. Both semiconductor
materials have a large Landé g-factor, which requires lower
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Fig. 3: (a) Schematic depiction of the device used to detect the Majorana zero modes. A nanowire is contacted with a normal and a
superconducting contact, over which a voltage is applied and the resulting current measured. A global gate underneath the superconducting
region can be used to tune the Fermi level to be in the topological gap. The local tunnel gate can be used to either tune the number of open
conduction channels in the wire, or form a tunnel barrier. Reprinted from Zhang et al. [21].
(b) Waterfall plot of the measured conductance (dI/dV ) as a function of the applied bias voltage and the applied magnetic field. It can clearly
be seen that zero-bias peaks get formed when the applied magnetic (Zeeman) field is high enough to open the topological gap. Reprinted
from Mourik et al. [13].

magnetic fields to open the gap. This is important because
the magnitude of the applied magnetic field is limited
by the critical field of the superconductor. Both materials
also have a large spin-orbit strength, which leads to more
pronounced subband splitting.

However, the previous section ended with a short discussion
on why the existence MZMs of has not yet irrefutably been
proven. Most of the state-of-the-art experiments up until now
have been performed with either InAs or InSb nanowires.
Therefore another material system has been proposed: lead
telluride nanowires with superconducting lead. A compari-
son between the three semiconducting materials is shown in
the table below:

Material InAs InSb PbTe
Bandgap (eV at 300K) 0.35 [23] 0.18 [23] 0.31 [23]
Landé g-factor 20-50 [24] 58-64 [25] 66 [26]
Spin-orbit energy (µeV) 10 [24] 230 [27] 330 [28]
Electron mobility (cm2/V sat 4.2K) 3.3 · 104 [29] 7.7 · 104 [30] -

PbTe is predicted to have an even higher g-factor than
both InAs and InSb. Moreover, experiments on PbTe wires
used for this project have already shown that the spin-orbit
interaction in these wires is stronger than in the InAs or
InSb nanowires used in the leading experiments performed
in the last decade [28].

Another big advantage of PbTe over the other two mate-
rials is the pairing with the superconductor. Diffusion of
aluminium atoms into the InAs or InSb nanowire reduces the
quality of the interface between the superconductor and the
nanowire. Lead can be grown approximately lattice matched
with the PbTe nanowire [26], and diffusion of lead into PbTe
does not pose an issue. Therefore this material system is
more likely to produce a clean interface, and therefore a
hard superconducting gap.

III. STRUCTURE OF THIS THESIS

This work focuses on the characterisation of the (quantum)
transport properties of MBE grown PbTe nanowires, and
works towards their application in Majorana devices. There-
fore three main goals are set:
• Develop devices that allow transport measurements to

be performed on the PbTe nanowires.
• Characterisation material properties (carrier mobility

and density, band gap, g-factor) and compare to InAs
and InSb.

• Achieve reliable tunability of the carrier concentration
by controlling the IV/VI ratio during growth.

Chapter 2 elaborates on the material properties of PbTe, and
on the nanowire growth. This will be followed by a dis-
cussion on transport phenomena in semiconductor materials
and the working principles of MOSFET devices in chapter
3. Next, chapters 4 and 5 explain the practical matters of the
device fabrication and measurement procedures. After which
the results of this project are discussed in chapter 6.
During this project, quantum transport measurements were
done in Sergey Frolov’s group at the University of Pittsburgh
on similar devices with the same PbTe wires from Eindhoven
as were used in this project. There some interesting and
unexpected results were found: a quantum dot was formed in
the wire, and it was found that spin blockade was a stronger
effect than Coulomb blockade in transport measurements.
Chapter 7 explains a (partially finished) fully quantum
mechanical model to explain these results.
Finally, chapter 8 will present some concluding remarks, and
some follow-up experiments will be proposed.
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Lead telluride (PbTe) is a group IV/VI semiconductor material. Even though PbTe/Pb has only recently been proposed as a
suitable material system for Majorana devices, PbTe has been extensively studied for other applications. Due to its small direct
bandgap, a lot effort has been put into the study of its optical properties for photodetectors [31][32][33]. The thermodynamic
properties of PbTe have also been studied elaborately for application in thermoelectric devices [34].
This chapter will go over the relevant material properties for our purposes (section I), and then briefly go over the nanowire
growth (section II).

I. PBTE: MATERIAL PROPERTIES

Like most lead chalcogenides, PbTe crystallises in the
rock salt crystal structure [23]; this is shown schematically
in fig.4a. This crystal structure can also be viewed as
two interpenetrating FCC sublattices: one sublattice for
each element. The bonds between the atoms have a mixed
covalent-ionic character, with an ionicity fi = 0.65 [35][36].

Fig. 4: Sketches of a| the crystal structure (adapted from [37]), and b| the
first Brillouin zone (reprinted from [38]) of PbTe.

The first Brillouin zone is depicted in fig.4b. The most
important symmetry points in reciprocal space have been
indicated. PbTe has a narrow direct bandgap at the L-point,
as can be seen in fig.5. At room temperature (300K) the
bandgap is Eg = 0.32eV , and it decreases with temperature
to Eg = 0.18eV at 10K [23].

Fig. 5: Band structure of PbTe:
a| Close-up of the band structure of PbTe around the direct bandgap at the
L-point. Calculated using DFT by Wang et al.[39].
b| Full band structure and c| density-of-states of PbTe, reprinted from [40].

From experiments it has been reported that PbTe can be
doped to be either p-type or n-type [41][42]. Native point
defects are important doping mechanisms as these have quite
low formation energies in PbTe [43]. Depending on how
far the crystal deviates from stoichiometry, there are three
possible defect states with the lowest formation energy (see
fig.6:
• V 2+

Te : In a Pb-rich crystal, Te vacancy has the lowest
formation energy.

• V 2−
Pb : If the crystal is slightly Te-rich, the Pb vacancy

has the lowest formation energy.
• Te2+

Pb From DFT calculations Wang et al.[43] that the
Te2+

Pb antisite defect has the lowest formation energy for
highly Te-rich crystals. In this defect type a tellurium
atom replaces a lead atom in the crystal lattice.

If the dominant dopant is positively (negatively) charged, the
intrinsic Fermi level is shifted towards the conduction (or
valence) band, respectively. Therefore a PbTe crystal can be
tuned from n-type to p-type and again to n-type by tuning
the stoichiometry from Pb-rich to Te-rich [38][43][44][45].

Fig. 6: Midgap formation energy for the three lowest-energy defect
states as a function of the chemical potential of Te. The lowest energy
defect state determines the doping character of the crystal (blue: n-type,
pink: p-type). As calculated by Wang et al.[43].

A last material property PbTe that is relevant to
mention, is its high (low-frequency) dielectric constant
(ε(0) = 400)[23][46]. This results in strong Debye
shielding of charged impurities in the PbTe nanowire, or at
its interfaces with other material.
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II. NANOWIRE GROWTH

A myriad of chemical methods have been used to synthesise
PbTe nanowires, such as electrodeposition , chemical
vapour deposition and the chemical vapour transport
method [47][48][49][50][51][33]. Especially this last
method has yielded wires with good crystallinity and
transport properties [52].

Molecular beam epitaxy (MBE) has been reported to
yield defect-free PbTe thin-films [53][54]. This can be
achieved by using ultrapure sources for the deposition
of thin films under ultra-high vacuum (UHV) conditions.
Consequently, films grown using MBE have been shown
to yield significantly higher carrier mobilities than the
chemical methods for wire growth [48][51][54]. Moreover,
these reports show control over the intrinsic doping by
changing the IV/VI (Pb/Te) flux ratio during the growth
process. This determines the deviation from stoichiometry
of the grown thin-film and therefore its doping character.
It would be desirable to harness the properties of MBE
growth for nanowires as well. Some work has been
published on MBE growth of PbTe nanowires [55][56],
which shows defect-free, but quite short (several 100 nm)
and tapered nanowires.

The nanowires used in this project were grown at the
NanoLab@TU/e clean room at Eindhoven University of
technology. These wires are single-crystalline, and signif-
icantly longer than the ones reported in other works (on
average 2-3 µm [26]). In the rest of this section, we will
take a closer look at the growth mechanism and quality of
these wires.

Fig. 7: Schematic depiction of a MBE system. Indicated are its most
important component parts. Adapted from Ibach and Lüth [57]

The concept of a MBE system is quite simple. For a
schematic depiction of an MBE system, see fig.7. A
substrate is placed on a sample holder in an ultrahigh
vacuum (UHV). Multiple effusion cells are positioned
opposing the sample. The (precursor) material in these
effusion cells is evaporated, and will propagate in to the
chamber once the shutters are opened. Due to the quality

Fig. 8: VLS growth of PbTe nanowires.
a| Inset: SEM image of PbTe nanowires grown using this growth
mechanism. It can clearly be seen that the growth yields both nanowires
and quite some parasitic growth on the substrate.
b| Schematic representation of the VLS mechanism of nanowire growth:
(1) Catalytic gold droplets are patterned on the GaAs(111)B substrate.
(2) Once the shutters are opened the substrate is bombarded with
precursor material.
(3) This precursor material favours the formation of an alloy with the
gold droplet over lateral film growth. Supersaturation of the gold droplet
with the precursor results in nucleation an growth of the nanowire.
(4) The growth catalysed by the alloy droplet results in wires that are
much taller than the surrounding parasitic lateral growth.

of the UHV and the pressure gradient between the effusion
cell and the UHV chamber, the substrate is bombarded by
a ballistic beam of the precursor material(s) [57]. A film
is deposited on the substrate, if the incoming flux is larger
than the re-evaporation rate. Herein substrate temperature is
an important parameter. The composition of the grown film
can be controlled by the ratio of the incoming fluxes of the
precursor materials.

The vapour-liquid-solid (VLS) mechanism [58] was used to
grow gold-catalysed nanowires on GaAs(111)B substrates
(see fig.8b). The gold droplets are pre-patterned onto the
substrate using EBL en e-beam evaporation. During the
growth process in the MBE system the precursor material
(atomic Pb and Te) favours the formation of an alloy with
the gold droplet over the nucleation of lateral film growth.
Supersaturaton of the alloy droplet with the precursor
material will lead to crystalline PbTe deposition under
the droplet, lifting it up in the process. This process does
not prevent lateral film nucleation and growth, but it does
catalyse the wire growth.

Dependent on the growth conditions the wires grow up to 3
µm long, and have diameters of 80-120 nm [26]. In figure
9a a bright-field TEM image shows part of one of the PbTe
nanowires. From the electron diffraction pattern (fig.9b) and
close-up HAADF-STEM (fig.9c), it can be seen that the
wires are indeed single-crystalline and defect-free. Figure
9d shows a close-up image of the top of a wire with the
gold droplet. The composition of the wire and the catalytic
gold droplet can be seen in the EDX maps shown in figures
9e-h.
From both the EDX maps and the close-up HAADF-STEM
it can be seen that a native oxide with a thickness of a few
nanometers is formed on the wires upon contact with air.
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Fig. 9: (a) Bright field TEM image of a part of a MBE grown PbTe nanowire. (b) Electron diffraction pattern of the same nanowire.
(c) HAADF-STEM image of the side of the nanowire. (d)-(h) EDX mapping Reprinted with permission from A.G. Schellingerhout
[26].

10



Nanowire MOSFET devices

Part

Nanowire MOSFET devices

3

The electrical properties of the PbTe nanowires are determined in field-effect measurements. To be able to perform these
measurements, nanowire metal-oxide-semiconductor field-effect transistors (MOSFETs) are fabricated. In this chapter the
working principles of these MOSFET devices will be explained. Working towards that goal, first the electric properties of
semiconducting materials themselves will be discussed (section I). Then the interfaces between semiconductors and other
materials will be described (section II). This is important to understand the influence of the contacts on the carrier transport
through the device. Finally, the working principles of nanowire MOSFETs (section III will be explained. Some extra attention
will be given to non-ideal behaviour, such as capacitance effects and subthreshold conduction.

I. ELECTRONIC PROPERTIES OF SEMICONDUCTING
MATERIALS

Before the entire device geometry is discussed, we will
first take a look at the electronic properties of a (bulk)
semiconductor material.

A. Carrier densities

In an undoped (intrinsic) semiconductor the chemical poten-
tial µ is lies at the centre of the band gap. This position
is called the intrinsic Fermi level EF,i. In such a material
free charge carriers can only be created by means of thermal
or optical excitation over the band gap. Such an excitation
creates an electron-hole pair: an electron in the conduction
band, and a hole in the valence band. In a similar process, an
electron can relax back to the valence band and recombine
with a hole. In this process energy is conserved through the
emission of phonons and/or photons.
In thermal equilibrium, the excitation rate is equal to the
recombination rate. This implies that the electron density ρn
and hole density ρp are also equal. Therefore the intrinsic
carrier density (ρi = ρn = ρp) can be expressed as:

ρi =
√
NcNvexp

(
−Eg
2kbT

)
, (16)

with Nv and Nc the effective density of states in valence
and conductance bands, respectively. Here Eg is the band
gap energy, and T the temperature.

The carrier density can be modified by introducing dopants
to the material. These dopants are electrically active impu-
rities, that either introduce additional electrons or holes to
the system [57]. Donor states introduce extra electrons to the
system. This results in ρn > ρp, therefore this is called an n-
type semiconductor. The addition of electrons increases the
radius of the Bloch sphere. Therefore the Fermi level shifts
towards the conduction band.
Acceptor states capture an electron from the valence band.
This is equivalent to the introduction of extra holes. In such a
p-type material the Bloch sphere shrinks due to the dopants,
and the Fermi level will shift closer to the valence band.
Fig.10 shows the (inverse) temperature dependence of the
electron density in a n-type semiconductor. A similar curve
can be sketched for holes in a p-type material. The temper-
ature dependence can be divided into 4 different regimes:

• At very low temperatures, the extra electron/holes are
bound to the donor/acceptor states. This is called the
freeze-out regime: doping does not contribute to the
carrier density, and also the intrinsic carrier density is
negligible. The material behaves as an insulator.

• If the thermal energy is larger than the activation energy
EA needed to ionise the donors/acceptors, the carrier
density will increase with temperature. This is called
the ionisation regime: the majority carrier density can
be described using an Arrhenius equation [59]:

ρn/p ∝ exp
(
−EA
kbT

)
(17)

• The saturation regime is a temperature range where all
donors/acceptors are ionised, but the contribution of the
intrinsic carriers is still exceedingly small. The carrier
concentration is approximately constant.

• Finally, at relatively high temperatures thermal excita-
tion of intrinsic carriers starts to contribute significantly
to the total carrier density.

Fig. 10: Electron density as a function of inverse temperature. Indicated
are the intrinsic, saturation, and ionisation regimes. The dotted line
indicates the temperature dependence of the carrier density for an
intrinsic semiconductor.
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Fig. 11: Energy band alignment at a metal-semiconductor interface for a n-type semiconductor.
a| Energy bands of the isolated metal and semiconductor aligned to the vacuum level. Specified are the metal work function
φm and the semiconductor electron affinity χsc and band gap Eg,sc.
b| Band bending at a metal-semiconductor interface. Here also the Schottky barrier height ΦB and built-in potential Vbi are
indicated in red.

B. Electronic transport

Electronic transport is defined as the net flow of carriers
under the influence of an electric field (drift) or a gradient
in the carrier concentration (diffusion) [60]. In the nanowire
MOSFET devices we consider here the field-driven current
dominates [61]. The electronic current density is given by:

Jn = −eρnvd , (18)

with vd the drift velocity. This drift velocity is the average
electron velocity, and is limited by scattering.
If only drift due to an electric field E is considered, the
generalised force on an electron is given by:

m∗e
dv

dt
= −eE , (19)

with m∗ and v the effective mass and velocity of an electron,
respectively. In a steady-state approximation, this reduces to
an equation for the drift velocity:

vd = −eEτ/m∗e , (20)

here τ is the average time between scattering events. This
scattering term limits the drift velocity. Here the electrons
were considered as the majority carriers; a similar equation
can be written down if holes are the majority carriers.

By combining equations 18 and 20, the current density can
be expressed as a function of the applied electric field:

J = σE , (21)

where the conductivity σ is defined as:

σ = −eρnµn + eρpµp . (22)

Here the actual response to the electric field is given by the
carrier mobilities µn/p:

µn/p = eτ/m∗n/p , (23)

The carrier mobility is again limited by scattering. The
dominant scattering processes are impurity and electron-
phonon scattering [59][62][63][64]. The electron-phonon
scattering cross-section decreases with temperature, leading
to a significant increase in carrier mobility [?].

II. METAL-SEMICONDUCTOR INTERFACES

The interfaces between different materials have an important
effect on the transport of charge carriers through electronic
devices. In this section the physics of material interfaces and
the consequences for electronic transport will be discussed.

A. The Schottky-Mott model

The simplest model to describe the potential landscape
for free charge carriers at an interface between two
materials is the Schottky-Mott model. This model describes
the alignment of the valence band maxima (VBM) and
conduction band minima (CBM) between the two materials,
based on a simple assumption: the system is in thermal and
electrostatic equilibrium. In other words: no spontaneous
currents flow through the system.

The energy bands of an isolated metal and an n-type semi-
conductor are shown in fig.11a. Both are aligned to the
vacuum level. If the two materials are brought into contact,
the Fermi level difference will induce the exchange of charge
between the materials. This results in the build-up of a
space-charge region at the interface. The potential drop over
this interface compensates for the Fermi level difference,
resulting in a system that is in electrostatic equilibrium. This
band bending is shown in fig.11b.
The band bending results in an asymmetric potential barrier
for electrons at the interface. The barrier the electrons en-
counter when moving from the metal into the semiconductor
is called the Schottky barrier ΦB . This barrier height is
defined solely by the work function of the metal φm and
the electron affinity of the semiconductor χsc:

ΦB = φm − χsc (24)

The built-in potential Vbi is the (unbiased) potential for
electrons moving out of the semiconductor:

eVbi = eΦB − (EF − Ec(bulk)) . (25)

This potential is a function of the distance between the Fermi
level and the conduction band, and therefore depends on
the doping density. The potential barrier (∆V ) an electron
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Fig. 12: The influence of a bias voltage on a Schottky contact:
a| Vbias < 0: Backward bias. c| Vbias = Vbi: Flat-band bias.
b| Vbias = 0: No bias. d| Vbias >> 0: Large forward bias

encounters when moving out of the semiconductor can be
influenced by applying a bias voltage over the junction. Per
definition, at zero bias this potential is equal to the built-in
potential. A positive (forward) bias decreases the barrier
height, and a negative bias enlarges the barrier height. This
is shown for the hypothetical barrier discussed before in
fig.12. For certain bias voltages (Vbias > Vbi) an electron
current can flow unimpeded from the semiconductor into
the metal, but encounters a barrier the other way around:
the metal-semiconductor interface forms a rectifying contact.

The specific band alignment shown in fig.12 results in the
formation in Schottky contacts. However, for other material
combinations another type of contact can be formed: the
Ohmic contact. An Ohmic contact is defined to have a resis-
tance that is negligibly small for a current in both directions,
compared to the resistances of the materials themselves [65].
In practice a contact shows Ohmic behaviour, if the barrier
height can be overcome by the thermal energy of the charge
carriers ( 0.9 mV at 10K, 25.9 mV at 300K).
Ohmic contacts can be realised in two ways:
• If the semiconductor is heavily n-doped (p-doped), the

Fermi level is positioned very close to the CBM (VBM).
The resulting band bending is shown in fig.13a. This
alignment creates a tunnel barrier at the interface that
is approximately equal for charge carriers moving in
both directions: ΦB ≈ Vbi. The large doping density
also effectively screens the bulk of the semiconductor
from the metal. Therefore the depletion region will be
fairly narrow, resulting in an effective tunnel barrier.

• All sketches shown in fig.11b, fig.12, and fig.13a show
the formation of Schotkky barriers. All have in common
that the work function of the metal is larger than the
work function of the semiconductor. When the effect of
surface states is ignored, this will always result in the
formation of Schottky barriers in the conduction band.
The opposite case will result in the formation of an
Ohmic contact, as is sketched in fig.13b. In general,
Schottky barriers form for n-type and p-type under
conditions summarised in the table below:

n-type p-type
φm > φsc Schottky Ohmic
φm < φsc Ohmic Schottky

The Schottky-Mott model is actually a quite naive de-
scription of an interface, as it only describes how bulk
properties are modified near the interface. But it completely
ignores any effect the surface itself may have. Therefore the
contribution of intrinsic surface states, trapped charges, and
other interface effects will be discussed in sec.II-C.

B. Mechanisms of electronic transport

Let us now consider a typical n-type Schottky barrier
as depicted in fig.12. Two mechanisms contribute to the
transport of electrons across such a barrier: field emission
(tunneling) and thermionic emission.

Field emission: Field emission is the thermally-assisted
tunneling of charge carriers through the (rounded) triangular
barrier created by the band alignment [65][66]. This tunnel-
ing process is also known as Fowler-Nordheim tunneling.
The tunneling current is given:

JFN = eρnvRΘ , (26)

with Θ the tunneling probability, and vR the Richardson
velocity:

vR =

√
kBT

2πm∗
. (27)

This is the average velocity of the electrons that approach
the barrier.

Fig. 13: The two types of band alignment that yield Ohmic contacts
(for a n-type semiconductor):
a| A thin tunnel barrier created by a very high doping concentration.
b| Band alignment at zero bias for φm < φsc.
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The tunneling probability Θ can be easily be derived from
the time-independent Schrödinger equation in the WKB
approximation for a slowly varying potential [67][68]:

ψ(x) = ψ(0)exp

[
−
∫ x

0

√
2m∗[V (x′)− E]

~
dx′

]
, (28)

For a triangular barrier with a width δ:

V (x)− E = eΦ0
B(1− x/δ) , (29)

the tunneling probability can be expressed as:

Θ =
ψ(δ)ψ∗(δ)

ψ(0)ψ∗(0)

= exp

[
−2

∫ δ

0

√
2m∗

~

√
eΦ0

B

(
1− x

δ

)
dx

]

= exp

[
−4

3

√
2m∗eΦ0

Bδ

~

] (30)

The tunneling probability, and thus the tunnel current
increasing for larger negative bias voltages, as this changes
the aspect ratio of the triangular barrier. The tunneling
current also increases with the doping concentration as
this decreases the depletion region/tunnel barrier width.
At doping concentrations than 1018cm−3 field emission
dominates the carrier transport (at small bias voltages). The
tunneling current also increases with temperature. However,
at high temperatures thermionic emission becomes the
dominant transport process.

Thermionic emission: Thermionic emission is the emission
of hot electrons into the vacuum, or in the case of a metal-
semiconductor interface: into the empty conduction band of
the semiconductor [59][65][69]. For low bias voltages the
thermionic emission current is given by:

ITE = A∗∗T 2exp
(
− eΦ

0
B

kBT

)[
exp

(
eVbias
kBT

)
− 1

]
(31)

with A∗∗ the product of the interface area and the effective
Richardson constant A∗R [70]. This model has been shown
to be in good agreement for many material systems at
non-cryogenic temperatures [71][72][73][74].

However, this model can be refined to include some interface
effects. One important barrier lowering mechanism is the
Schottky effect. Free charges in the semiconductor induce
a surface charge at the metal interface to shield the bulk
metal. The resulting electric field can be expressed in terms
of mirror charges. In addition to the potential due to the
mirror charge, the charge distribution in yhe depletion region
contributes to the potential landscape for an electron in the
conduction band of the semiconductor. For now the field due
to the depletion region will be denoted by E0. In sec.III-A
the depletion region will be discussed in more detail. For an
electron at a distance x from the interface, the potential due
to the mirror charge and the depletion region can now be
expressed as:

V (x) =
e

16πεscx
− E0x (32)

Fig. 14: Barrier lowering due to the Schottky effect. Sketched are the
potentials due to the image charge (blue dash-dotted line), and due to
the depletion region (red dotted line), both relative to the unperturbed
barrier height Φ0

B . The resulting barrier is sketched in black. Indicated
are the barrier lowering δφ and the effective barrier height Φeff

B .

This potential will have a maximum at position xmax, close
to the interface:

xmax =

√
e

16πεscE0
. (33)

Substituting this back into eq.32 yields a lowering of the
barrier:

δφ =

√
eE0

4πεsc
(34)

The resulting barrier is sketched in fig.14. The effective
Schottky barrier height can now be expressed as:

Φeff
B = Φ0

B − δφ . (35)

Note that the barrier lowering implicitly depends on the
applied bias voltage through the band bending/depletion
region width. This dependence can be quantified through
the ideality factor n [60][70][75]:

n =

(
1− ∂Φeff

B

∂Vbias

)−1

(36)

Using both the effective barrier height and the ideality factor,
the thermionic emission current can be expressed as:

ITE =A∗∗T 2exp
(
−eΦ

eff
B

kBT

)
exp

(
eVbias
nkBT

)
×
[
1− exp

(
−eVbias
kBT

)] (37)

For Φeff
B = Φ0

B and n = 1, this reduces to eq.31.

A last remark: the Schottky barrier height is not necessarily
constant over the interface. Surface roughness can result in
local field enhancement, and therefore in stronger Schottky
barrier lowering. The ideality factor n is the average barrier
lowering due to a bias voltage, and therefore depends also
implicitly on the surface roughness: the cleaner the interface,
the lower the ideality factor will be [70].
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C. Surface states and Fermi level pinning

Up until this point we have treated the contact formation
between the metal and the semiconductor as a semiclassical
electrostatic problem. This is useful for the description of
macroscopic and mesoscopic phenomena, such as carrier
transport. However, a microscopic description of the actual
interface can illuminate the shortcomings of the Schottky-
Mott model and describe the interface formation a lot more
accurately. Several types of electronic states can form at
the interface. The density of these surface states and their
occupation determine the band alignment, and therefore the
behaviour of the contact formation.

Intrinsic surface states arise from the broken translational
symmetry at the surface. The wave function of an electron
in a semi-infinite perfect crystal is invariant under translation
with the period of of the crystal in both directions parallel
to the interface. Therefore the investigation of the surface
reduces to a one-dimensional problem. The potential in the
direction perpendicular to the interface is given by:

V (x) =

{
Vccos

(
2πx
a

)
x < 0

V0 x > 0
, (38)

which is periodic (with period a in the crystal and constant
outside it, as is shown in fig.15a.
Now the Schrödinger equation can be solved for this poten-
tial. An electron in the crystal will back scatter elastically
when it hits the surface. Therefore the general the wave func-
tion inside the crystal ψc can be expressed as a superposition
of two counterpropagating waves with wave vectors κ±π/a:

ψc = Aei(κ+π/a)x +Bei(κ−π/a)x (39)

Outside the crystal the wave function decays exponentially:

ψ0 = Cexp

(
−
√

2m

~2
(V0 − E)x

)
(40)

Fig. 15: A model for the interface of a crystalline conducting solid
a| Sketch of the semi-infinite Bloch potential that models the edge of
the crystal.
b| The resulting Bloch wave that decays exponentially into the vacuum.
c| Solution to the Schrödinger equation for an imaginary k-vector: this
allows for the formation of a surface resonance.

The general solution to the Schrödinger equation in all
space requires that the values of the wave functions and
their first derivatives to the relevant spatial coordinate
match. This solution is sketched in fig.15b: it is just a Bloch
wave that decays into the vacuum. The electronic energy
levels of these states are slightly modified with respect to
their bulk values

Additional solutions are possible if we allow for imaginary
κ. The resulting wave functions decay in both directions, as
is shown in fig.15c. These surface resonances are therefore
confined within a few Ångstrom from the interface. One
can also look at the termination of a crystal in the Linear
Combination of Atomic Orbitals (LCAO) framework. Then
these surface states correspond to the concept of dangling
bonds. The problem described above, is treated in much
more detail by e.g. Lüth [76].

Similar interface states are formed in the semiconductor
band gap at a metal-semiconductor interface. The tails of
the wavefunctions of the delocalised electrons in the metal
decay into the semiconductor band gap: electronic states
are formed in the band gap at the interface. These surface
states are named Metal-Induced Gap States (MIGS), and
they are an intrinsic consequence of the breaking of the
translational symmetry perpendicular to the surface.
Next to these intrinsic surface states, also extrinsic surface
states exist. These extrinsic states are electronic states that
are charged/trap charges, which are caused by imperfections
or defects on the interface [76][77].

Fig.16a and b show sketch of a part of the band gap of a
narrow band gap semiconductor, and the resulting density
of surface states Nss. Indicated is the branch point energy
En. The surface states below this energy behave as donors:
they are neutral when they are occupied, and positively
charged if this is not the case. The states above the branch
point are acceptor-like.

The position of the Fermi level relative to relative to this
branch point determines the sign and amount of net charge
on the interface. This surface charge is the microscopic
origin the band bending described by the Schottky-Mott rule,
and thus determines the Schottky barrier height [57]. The
barrier height and the surface density of states Nss can be
related through:

Eg − eΨs − eΦB =
1

eNss
√

2eεscNd/a(ΦB − φn)

− εi
eNssδ

(φm − χsc − ΦB)

(41)

with the surface potential Ψs the difference between the
intrinsic Fermi level at the interface and in the bulk (see
sec.III-A). The interface is modelled in this expression as a
very thin dielectric layer which is transparent for electron
transport. This interface layer has a thickness δ (O(Å)),
and an effective dielectric constant εi.
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Fig. 16: Fermi level pinning in narrow band gap semiconductors
a| Sketch of the band gap of an arbitrary narrow band gap semiconductor.
b| Surface state density resulting from the dispersion in a.
c| Band bending caused by the positioning of the Fermi level in the surface DOS. A 2DEG is formed at the interface by
pinning the Fermi level in the conduction band. The charges of the surface states and the 2DEG are equal in magnitude.

Two limiting cases for this model can be examined:
1) Nssδ → 0: the interface layer disappears. In this case

the expression above reduces to the familiar Schottky-
Mott rule:

ΦB = φm − χsc (42)

2) Nss → ∞: The surface charge density dominates the
band bending. In this case the Fermi level gets pinned
at in the band gap at the surface potential Ψs:

ΦB =
1

e
(Eg − eΨs) (43)

This Fermi level pinning is very important in the
determination of the Schottky barrier height [76][78][79].
However, the surface density of states Nss cannot easliy be
determined, either experimentally or analytically.

Generally Fermi level pinning is a dominant effect in
narrow band gap semiconductors, such as InAs and InSb
[80]. Fig.16a and b show a sketch of a the band gap of
such a semiconductor, and the resulting IFIGS density.
Because of the position of the Fermi level in this surface
DOS, the donor states between the Fermi level and the
branching point are unoccupied; a positive surface charge
exists, independent of any metal that ma be used for contact
formation. The conduction band is then dragged below the
Fermi level: a two-dimensional electron gas (2DEG) is
formed at the interface to shield the semiconductor from
the surface charge.
This has for example been verified for InAs: the Fermi level
pinned into the conduction band by about 50meV [81][82].

Several groups have investigated Fermi level pinning
and its influence on contact formation on PbTe, and
report conflicting results. Lai and Cerrina et al. performed
cyclotron photo-electron spectroscopy experiments to
investigte metal-PbTe interfaces [83][84]. After cleaving
PbTe crystals in UHV, several metals were deposited in-situ
on the cleave (100) surface. They found generally no
correlation between Φ0

B from expected from the Schottky-
Mott rule and the experimental values. This indicates that

surface charges play an important role. Interesting to note
is that generally no atomically abrupt surfaces are formed
during the metal deposition: several metals interdiffusion or
even the formation of complexes with Te extracted from the
substrate. This creates an extended interface layer whose
barrier formation is difficult to predict. The exception
was gold as a contacting metal: this formed an abrupt,
nonreacted interface on the PbTe sample.
In contrast to these results: Walpole and Nill found some
unpredictable band bending, but no Fermi level pinning on
PbTe in their C-V and I-V electrical characterisation of
several metal-PbTe interfaces [85].

III. WORKING PRINCIPLES OF THE NANOWIRE MOSFET

In the most general terms, a transistor is a device where
one terminal (the gate) controls the current that flows be-
tween two other terminals (the source and drain). One of
the most common types of transistor is the Metal-Oxide-
Semiconductor Field-Effect Transistor, or MOSFET.
Conventional MOSFET devices, as sketched in fig.17a,
are fabricated on a doped semiconducting substrate. Using
techniques like ion bombardment the doping density in the
substrate can locally be changed to form metallic regions.
These areas can be used as the source and drain contacts
of the MOSFET. The area between the contacts then forms
the channel. An insulating oxide layer with a third contact,
the gate, are deposited on top of this channel. By applying
a potential to the gate, the charge density can be modulated
in the channel between the source and drain contacts.
The design of nanowire MOSFET flips the MOS stack
upside down (see fig.17b). A degenerately doped (metallic)
silicon substrate with a back contact is used as a gate.
The thermal oxide functions as the insulating layer. Then a
semiconducting nanowire is transferred on top, completing
the MOS stack. Metallic leads are deposited directly on top
of the semiconducting nanowire to form the source and drain
contacts. Despite the inverted design, the working principles
of both designs are identical.
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Fig. 17: Schematic cross-section of two MOSFET designs:
a| Conventional MOSFET: the source and drain contacts are formed
by ion implantation in the semiconducting substrate. The substrate,
an insulating oxide layer, and a metal gate contact form the MOS
stack. The carrier density in the channel (shaded area in the substrate)
can be influenced by applying a potential on the gate. The particular
device sketched here is a n-channel enhancement mode MOSFET [59].
b| Nanowire MOSFET: The oxidised Si−− substrate with the PbTe
nanowire on top together form the MOS stack. The addition of source
and drain contacts on the nanowire, and a gate contact on the heavily
doped substrate, completes the device architecture.

A. MOS stack: gate behaviour

For now let us ignore the source and drain contacts, and
examine just the metal-oxide-semiconductor stack. Fig.18a
shows the energy bands of the different layers of the MOS
stack in isolation. Here, a heavily n-doped (metallic) semi-
conductor acts as the metal, as Si−− substrates are used in
this project.
According to the Schottky-Mott model (see sec.II) the
energy bands will deform close to an interface between
different materials [59]. The Fermi levels in the metal and
semiconductor will line up to satisfy electrostatic equilib-
rium; no spontaneous current will flow. In contrast to the
metal-semiconductor interface discussed before, no charge
exchange between the metal and semiconductor can take
place due to the presence of the insulating oxide layer.
This results in the formation of space-charge regions at the
metal-oxide and oxide-semiconductor interfaces. The charge
accumulation results in the bending of the bands:

• The charge density in the metallic layer is quite large,
and will therefore be effectively screened from external
charges or potentials. No space-charge region will be
formed in the metal: charges will accumulate only at
the metal-oxide interface.

• The absence of free carriers in the oxide will result in
an electrostatic potential Vox over the oxide layer.

• The smaller charge density in the semiconductor will
result in the formation of a space-charge region at the
oxide-semiconductor interface. This will be discussed
in more detail below.

The band alignment for the layers in fig.18a is sketched in
fig.18b.

For a further discussion of the band bending in the MOS
stack, two important potentials need to be defined: the Fermi
potential ΨF and the surface potential Ψs. Both are indicated
in the band diagram in fig.18b.
The Fermi potential is defined as the difference between the
intrinsic Fermi level EF,i and the actual Fermi level EF in
the bulk of the semiconductor, and can thus be regarded as

a measure for the doping of the semiconductor:

eΨF = EF,i − EF (44)

= kBT exp
[
Nd/a

ni

]
(45)

Here Nd/a is the donor/acceptor density, respectively.
The surface potential quantifies the band bending in the
system. It is defined as the difference between the intrinsic
Fermi level in the bulk and at the interface:

eΨs = EF,i(surface)− EF,i(bulk) (46)

Especially this surface potential plays a central role in the
description of (the modification of) the band alignment.

The band bending, and therefore the accumulation of charge
at the oxide-semiconductor interface, can be influenced by
applying a potential over the MOS stack. The effect of this
gate voltage Vg can be described by:

Vg = Vox + Ψs + φms (47)

The work function difference between the metal (Si−−)
and semiconductor φms is completely defined by the semi-
conductor band gap (Eg,sc) and doping, and the electron
affinities of both materials (χSi−− , χsc):

φms = χSi−− −
[
χsc +

Eg,sc
2e

+ ΨF

]
(48)

This expression is independent of the applied voltage. There-
fore the oxide and surface potentials, and thus the band
bending, are directly influenced by the gate.
An important value of the gate voltage is the flat-band
voltage. This is the gate potential needed to counteract the
band bending caused by the Fermi level alignment:

Ψs = Vox = 0 . (49)

In this case no space-charge regions are present in the entire
MOS stack.

Consider now a p-type semiconductor with ideal band align-
ment (VFB = 0). This means that the flat-band condition
is satisfied if no gate potential is applied. This is shown
schematically in fig.18c. Based on this idealised system we
will discuss how the gate can tune the charge density in
the semiconductor. For other material systems (VFB 6= 0)
the exact same reasoning is correct, but with respect to
Vg = VFB instead of Vg = 0.
If a negative voltage is applied on the gate with respect
to the (p-type) semiconductor, holes will accumulate at
the oxide-semiconductor interface. This accumulation layer
of majority carriers shields the bulk of the semiconductor
from the applied voltage. The resulting gradient in carrier
concentration at the interface leads to band bending at the
interface, see fig.18d.
In the opposite case, the positive voltage on the gate will
repel the holes from the oxide-semiconductor interface. This
creates a negative space-charge region due to the fixed
ionised acceptor atoms. Here this so-called depletion region
screens the bulk semiconductor, which results in upward
band bending. This is shown in fig.fig.18e.
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Fig. 18: Energy band alignment of a metal-oxide-semiconductor stack for a p-type semiconductor.
a| The energy bands of degenerately doped (metallic) silicon, an oxide, and a p-type semiconductor in isolation. All energy
bands are aligned to the vacuum level. Indicated are the band gaps (Eg) and electron affinities (χ) of the three materials.
b| Deformation of the energy bands due to alignment of of the Fermi levels. Again the band gaps and electron affinities are
indicates, as well as the Fermi potential and the surface potential.
c-f| The influence of an applied gate voltage on the energy bands. An idealised MOS stack (VFB = 0) is shown to show the
influence of the gate potential independently of the band alignment as discussed above. Fig.c shows the band alignment of
this simplified system without an applied voltage. For other material systems this is equivalent to Vg = VFB . If a negative
gate voltage is applied (compared to VFB), the energy bands bend downwards to lower energies. An accumulation layer is
formed at the interface (fig.d). If a positive voltage is applied to the gate (fig.e), the bands bend upwards; a depletion layer
with with xd is formed. For large negative gate voltages the intrinsic and actual Fermi levels cross (fig.f); an inversion layer
is formed at the interface.
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The width of the depletion region xd can be derived from
Poisson’s equation [86]:

dE

dx
=
ρ(x)

εsc
, (50)

with εsc the permittivity of the semiconductor.
In this region the charge density ρ(x) is determined by
dopant concentration Nd/a, which is assumed to be uniform:

ρ(x) = ±eNd/a , (51)

with the plus (minus) sign for donor (acceptor) dopants,
respectively. Substituting this in eq:50, and integrating with
the boundary condition E(xd) = 0 yields:

E(x) = ∓
eNd/a

εsc
(x− xd) (52)

Using E = −∇ · V and integrating over x again yields:

V (x) = ±
eNd/a

2εsc
(x− xd)2 (53)

Now this can be combined with the surface potential Ψs =
V (x = 0) − V (xd), where x = 0 i defined to be at
the interface. Rewriting then yields an expression for the
depletion region width:

xd =

(
2εscΨs

eNd/a

)1/2

. (54)

For large positive voltages, the intrinsic Fermi level at the
surface moves below the Fermi level: the semiconductor
locally becomes n-type. An inversion layer of electrons is
formed at the interface. At a certain gate voltage, the surface
potential is twice as large as the Fermi potential:

eΨs = 2ΨF (55)

If this condition is satisfied, the inversion charge density is
equal to the bulk carrier concentration: bulk is completely
shielded. This means that the depletion region width is
constant [60]. Equation 55 can the be expressed as:

xd,T =

(
4εscΨF

eNd/a

)1/2

(56)

From this point onward the inversion charge density in-
creases exponentially with the surface potential. The surface
charge region at the interface (which acts as the channel
of the transistor, see sec.III-B), behaves as a n-type semi-
conductor.The point where the doping behaviour inverts is
called the threshold inversion point, and equation 55 is the
threshold inversion condition.
The applied gate voltage to needed to achieve this condition
is called the threshold voltage [59]:

VTh,i =
eNd/axd,T

Cox
+ VFB + 2ΨF (57)

This expression can be found by plugging the flat-band con-
dition (eq.49) and the threshold inversion condition (eq.55)
in the expression for the gate voltage in eq.47. The first term
describes the potential between the gate and the depletion
layer. The oxide capacitance Cox will discussed in sec.C in
detail.

From this expression it becomes clear that the threshold
condition depends on the doping density, oxide capacitance,
and the material choice/band alignment.

The charge density in the semiconductor as a function of
the surface potential Ψs for the different regimes discussed
above, are sketched in fig.19.
For an n-type semiconductor, the behaviour as discussed
before is exactly inverted: the majority and minority carriers
switch roles, and the accumulation, depletion, and inversion
regimes occur for gate potentials of the opposite sign.

So here we have established that the gate potential can tune
the carrier density and type in the semiconductor close to
the oxide-semiconductor interface. In a regular MOSFET,
it is exactly this region that forms the channel between
the source and drain contacts. So the gate can control the
channel conductance.
In a nanowire MOSFET the diameter of the wire limits the
width of the channel. So if the depletion width xd is larger
than the nanowire diameter, the gate can tune the carrier
density and type in the entire wire

B. Ideal nanowire MOSFET operation and extraction of
transport properties

Let us now examine the MOSFET structure in its entirety by
adding Ohmic contacts on both ends of the semiconductor
material (fig.20a). The current through the channel obeys
Ohm’s law:

Id = GVsd , (58)

With Id the drain current,G the channel conductance and
Vsd the source drain voltage.

Fig. 19: Absolute value of the charge density at the oxide-
semiconductor interface plotted as a function of the surface potential.
Indicated are the different regimes. Based on [60]
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To derive an expression for the channel conductance, we will
express the drain current based on eq.18 as:

Id =

∫
eρn/pvd dA (59)

Using equations 20 and 23 and integrating the charge density
over the cross-sectional area A of the nanowire, this can be
rewritten as:

Id =
µe/hQVsd

L2
(60)

with Q the total charge in the nanowire, and L the channel
length. The charge can then be expressed in terms of the
capacitive coupling to the gate:

Q = Cox(Vg − VFB) , (61)

with VFB the flat band gate voltage. In literature this
voltage is also often referred to as the pinch-off voltage the
(accumulation) threshold voltage Vth,a, which should not
be confused with the inversion threshold voltage discussed
before [57][59][65]. The accumulation threshold voltage
is the division between the accumulation and depletion
regimes. Therefore it indicates the presence of majority
carriers in the system, whereas the inversion threshold
signifies the introduction of free minority carriers into the
system.
Eq.61 also introduces the capacitance of the oxide layer
Cox. The capacitances in the system and their influence on
the extraction of transport properties will be discussed later
in sec.III-C.

By substituting eq.61 in eq.60 the drain current can be
rewritten as:

Id =
µn/p Cox

L2
(Vg − Vth,a)Vsd (62)

This way the drain current is expressed just in terms of
material properties (µn/p, Cox, VTh,a) and geometry (Cox,
L) of the particular device, and the applied voltages (Vg ,
Vsd). In the same vein, the channel conductance can be
denoted as:

G(Vg) =
µn/p Cox

L2
(Vg − Vth,a) (63)

In practice, this is rarely what is measured: for increasing
gate voltages the contribution of other resistances in the
system limits the conductance. This can be modelled by
adding a series resistance Rs to eq.63 [87][28]):

G(Vg) =

(
Rs +

L2

µn/pCox(Vg − Vth,a)

)−1

(64)

This series resistance includes all other resistances in the
system, such as the line resistance of the metallic contacts
and the interface resistance. This model is fitted against
the actual measured conductance trace of a InSb nanowire
MOSFET device in fig.20b [87].

The dependence of the drain current on the gate voltage is
called the transconductance:

gm =
dId
dVg

(65)

Fig. 20: Electronic transport measurements on a nanowire MOSFET.
a| Schematic depiction and wiring scheme of a nanowire MOSFET.
b| ExperimentalG(Vg) trace at constant Vsd (black) of a InSb nanowire
MOSFET with a linear fit (blue) for low Vg and a fit including a series
resistance (red). Adapted from O. Gül et al.[87].

According to eq.63 the transconductance can be determined
from a linear fit for low Vg through the measured Id(Vg) or
G(Vg) traces. This is indicated with the blue dotted line in
fig.20b. In this manner the carrier mobility in the device can
be determined using:

µn/p =
gmL

2

CoxVsd
. (66)

From this fit also the pinch-off voltage Vth,a can be deter-
mined, which in turn can be used to determine the carrier
density in the wire[51]:

ρn/p =
CoxVth,a
e d2L

, (67)

where d is the diameter of the nanowire. Here it is assumed
that the wire has a square cross-section.

C. Capacitance

The capacitance is an important property of the MOSFET
device, as it is used in the extraction of both the carrier
mobility (eq.66) and density (eq.67). To calculate the capac-
itance, a back-gated nanowire is commonly modelled as a
metallic cylinder with radius R, whose center is separated
from an infinite metal plate by a distance t (see fig.21a). This
idealised model yields the following analytical expression for
the capacitance Cox[88][89]:

Cox = L
2πε0εr

cosh−1(t/R)
(68)

However, there are some significant differences between
this model and the actual physical system of a back-gated
semiconductor nanowire. This model assumes that the
entire half-space above the infinite metal is filled with one
and the same dielectric material. In reality the wire is not
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completely embedded: it lies on top of a the oxide layer of
the MOS stack, and all other sides are exposed to a vacuum.
The smaller dielectric constant of the vacuum results in
weaker confinement of the electric field. To illustrate this
the equipotential lines are plotted in fig.21b.
Finite element simulations performed by Wunnicke [88]
have shown that this difference can be accounted for by
introducing an effective dieectric constant. The relative
dielectric constant for SiO2 often cited in literature is
εr = 3.9 [90]. Wunnicke shows that an effective dielectric
constant of εr,eff = 2.2 acurately models the actual
geometry within an error margin of 3% for a large range
of geometries [88]. The introduction of such an effective
dielectric constant only works because the difference
between the dielectric constants of SiO2 and the vacuum is
relatively small.

Moreover, PbTe nanowires are not circular, but approxi-
mately square in diameter. Wunnicke also modelled the
effect of the cross-sectional geometry of the nanowire on
the capacitance (see fig.21c). He proposed that this effect
can be accounted for by introducing two modifications to
the metallic cylinder-infinite plate model: a correction to
the effective dielectric constant introduced in the previous
point compensates for the changes to the electrostatics of
the system. The effective dielectric constant for SiO2 the
becomes: εr,eff = 2.45. The difference in cross-sectional
area between a rectangular and a cylindrical wire can be
negated by modelling the square cross-section as a circle
with a larger effective radius R∗ = d/

√
π.

Fig. 21: Capacitive coupling between a metallic nanowire and an infinite
metallic back gate:
a| Cross-sectional geometry of a metallic nanowire of radius R sus-
pended in a dielectric (SiO2) a distance t above an infinite metallic
back gate. Also plotted are the corresponding equipotential lines.
b| Modification to the model sketched in a: the wire is positioned
on a layer of gate dielectric of thickness h. The wire is exposed
on all other sides to the vacuum. Plotted are again the equipotential
lines. The differences between a and b are due to the difference in
dielectric constant between the SiO2 and the vacuum, leadin to stronger
confinement of the electric field in a.
c| The effect of the cross-sectional geometry of the wire on the
capacitance for a large range of device geometries. Plotted is the
model compensated capacitance model (eq.69) against the capacitances
calculated using finite element methods.
Adapted from Wunnicke [88].

The expression for the capacitance according to Wunnicke
then becomes [88]:

Cox = L
2πε0εr,eff

cosh−1(
√
πt/d)

(69)

Also, the wires are not metallic, but semiconducting. The
lower carrier density results in further penetration of the
field lines into the wire [89]. This results in a completely
different gate response. However, semiconducting nanowire
with a charge density higher than 1017cm−3 behaves similar
to a metallic wire [91][89]. Some initial measurements
performed in the Frolov group at the University of Pittsburgh
on PbTe wires grown in Eindhoven have shown carrier
densities of this order of magnitude. Therefore this is
concern is ignored for the rest of this thesis.

Also edge effects, most notably the presence of electrodes
source and drain contacts, can screen the gate coupling.
Generally: the shorter the channel length, and the
wider/thicker the contacts, the stronger the screening
effect [89][92][93]. Due to this electrostatic screening, the
model described above will overestimate the capacitive
coupling and therefore underestimate the mobility.

For future measurements at cryogenic temperatures also the
effects of quantum confinement on the capacitance should
be taken into consideration. Papers from the Kouwenhoven
group in Delft usually assume a 20% reduction in the
capacitance due to confinement effects [25][87]. To confirm
this, the 3D Schrödinger-Poisson equation should be solved
numerically for the material system and specific device
geometry used.

Eventually for proper analysis of the transport properties
of the nanowire MOSFET devices, the capacitance of the
entire device has to be determined more precisely. This can
either be done by modelling the entire device, including
the charge distribution in the semiconductor, the effects of
confinement (at low temperature), and edge effects/screening
by the contacts. Or by directly measuring the capacitance.
However, this poses its own challenges, as the capacitances
involved are typically very small.
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Device fabrication

Part

Device fabrication

4

In the previous chapter the working principles of nanowire MOSFET devices have been explained. Here the practical matters
of the architecture and fabrication of (a chip of) such devices will be discussed. The goal here is to briefly explain the
fabrication process step-by-step, as it will be of importance for the discussion of some of the results presented in chapter 6.
A more detailed description can be found in appendix I.

Fig. 22: Overview of the design of a chip with (up to) 36 nanowire MOSFET devices.
a| Top view SEM image of a nanowire MOSFET device. It shows the nanowire with its Ti/Au source and drain contacts.
b| A schematic drawing of a device chip with nanowire MOSFETs. Indicated are the global back gate, contact pads, and a
cell consisting of 12 of these contacts. The magnification shows a nanowire with its source and drain contacts.

I. DEVICE ARCHITECTURE

The nanowire MOSFET devices are fabricated on 1×1 cm
pieces of a diced, heavily n-doped silicon wafer with 100 nm
of thermal oxide on both sides. The standard design used fits
up to 36 devices onto one chip. A schematic depiction of a
device chip is shown in fig.22.
One chip fits the relatively large number 36 similar devices
because a significant fraction of the devices breaks either
already during the fabrication procedure, or during (cooling
down for) the transport measurements. By fabricating a chip
with this many devices, still enough devices will survive to
reliably draw conclusions from the measurement data.

Part of the metal-oxide-semiconductor stack as discussed in
section 3.X can be recognised in the cross-section of the sub-
strate used. The silicon is n-doped so heavily that the Fermi
level is shifted into the conduction band; therefore it shows
metallic behaviour. The metallic silicon and the thermal
oxide (SiO2) form the metal-oxide part of the MOS stack.
Later in the fabrication process semiconductor nanowires
will be deposited on top of the substrate, completing the
stack. However, the bottom SiO2 layer insulates the metallic
silicon, thus preventing it from being used as a gate for the
devices to be fabricated on top of the substrate. Therefore
the bottom oxide layer is removed using reactive ion etching

(RIE); a gold contact is deposited in its place. Thus a global
back gate for all devices on the chip is created.
The devices on top of these substrates have to be designed
with the probe station (measurement setup: see chapter 5)
in mind. This measurement device has two movable arms
that end in six fingers each. These arms can be used to
contact the nanowire MOSFETs on the chip. Therefore
”cells” of two rows of six gold contacts are deposited on
top of the substrate. The spacing between these contacts
pads corresponds to the fingers of the probe arms. The CAD
design of one of these cells is shown in fig.23a. The light
red shaded shapes are the contact pads.
In between these two rows of contact pads in a cell a
field of golden markers can be found (blue in fig.23a).
After the deposition of the contact pads and markers, the
nanowires are transferred onto the marker field using the tis-
sue transfer method with cleanroom tissue paper (also known
as ”swiping”). This method distributes the wires randomly
over swiped area. Using a scanning electron microscope
(SEM) the position of the wires on the marker field can be
determined. Once the positions of the wires are known, an
overlay CAD design can be made the connections between
the ends of the wires and the contact pads: the approach
contacts. These connections can now act as the source and
drain contacts of the nanowire MOSFETS.
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As has been discussed in Chapter 2, a native oxide forms
on the PbTe nanowires as soon as they are exposed to air.
If the (Ti/Au) approach contacts were to be deposited onto
the wires directly, this oxide layer would act as a tunnel
barrier for charge barriers during the transport measurements
(see chapter 6 for experimental results that corroborate this).
Therefore in situ argon ion milling is used to remove the
native oxide before the deposition of the approach contacts.
In principle the chip would now be completed. However, it
was observed that just argon ion milling did not entirely
remove the native oxide, regardless of the milling time
(again see chapter 6). Therefore a short oxygen plasma etch
was added before the argon milling step. Traces of organic
material such as residue of the resist used (PMMA) can
inhibit the argon ion milling. The oxygen plasma etch will
remove these residues, but should not damage the nanowires.

II. FABRICATION RECIPE

Here the fabrication recipe will be discussed step-by-step
in a little more detail. The fabrication steps are numbered
using Roman numerals in the recipe below. These numerals
correspond to the ones indicated in fig.23b.

Back contact
I. The oxide on one of the two sides of the SiO2-Si–−-SiO2

substrate is removed using a CF3H:O2 plasma etch.
II. A 2 nm titanium adhesion layer and a 100 nm gold film

are consecutively deposited on the cleared Si–− side of
the sample by e-beam evaporation.

Contact pads and markers
III. The top side of the sample is spin-coated in PMMA.

Using E-beam lithography (EBL) the design of the
contact pads and marker fields are patterned into this
resist layer. Then the resist is developed for 80s in
MIBK:IPA. This leaves the substrate bare where the
the PMMA was patterned, but leaves the resist intact
everywhere else.

IV. Again a 2 nm Ti adhesion layer and a 100 nm Au layer
are deposited via e-beam evaporation.

V. By leaving the sample in acetone for several hours the
PMMA is dissolved, lifting off the excess metal in the
process. Only the contact pads and the marker fields
will be left behind.

Wire transfer
VI. Nanowires are transferred from the growth substrate to

the marker fields by the tissue transfer method: the tip
of a piece of cleanroom tissue paper is swiped over
the growth substrate. Wires will break off and stick to
the tip of the paper. Then by swiping the tip over the
marker fields, some wires will inevitably detach from
the tip and remain on the sample.
These wires can now be located using a SEM. Based on
these SEM images, a design for the approach contacts
as is depicted in fig.23a (bright red lines) can be created. Fig. 23: Design (a) and fabrication procedure (b) of a nanowire MOSFET

device chip. a| CAD design of one cell of a device chip. Indicated are the
contact pads (shaded red), marker field (blue), and the approach contacts
(bright red lines). b| Schematic overview of the fabrication procedure of the
nanowire MOSFETs. A detailed explanation of each step can be found at
the corresponding Roman numeral in section II.
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Approach contacts
VII. The substrate is again spin-coated in PMMA. In a sec-

ond EBL exposure the design of the approach contacts
will be patterned into the resist. A perfect alignment of
the substrate with the existing features to the design of
the overlay exposure is key here. After the exposure,
the resist is developed in the same way as described at
number III.

VIII. To ensure that all resist is removed from the sample
at the patterned areas, the sample is exposed to a
30s oxygen plasma etch1. Residual PMMA can inhibit
the argon ion milling step. This can be prevented by
performing this etching step.

IX. The native oxide is removed from the nanowires to
ensure the formation of Ohmic contacts. Argon gas is
blow out of a gun, ionised, and accelerated towards the
sample. Upon impact the argon ions mill away material
from the nanowire surface of the target. The rest of the
sample is protected from the ion bombardment by the
PMMA film.

X. The approach contacts are deposited by sputtering 20
nm titanium and 20 nm gold on the sample. The Ti
should ensure good sticking of the contact to the wires
and the substrate, and 20 nm Au should protect the
titanium from oxidation. Afterward a 100 nm Au film
is e-beam evaporated on top. This is done because e-
beam evaporation has a much faster deposition rate and
is more directional than sputtering. Especially the better
directionality limits sidewall deposition and thus yields
better contacts.

XI. In a final lift-off step in acetone, the PMMA film and the
metal on top is removed, leaving the approach contacts
behind.

1 This step is not included in the fabrication procedure of all samples,
see chapter 6. It will be explicitly indicated when it is omitted.
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Part

Electronic transport
measurements

5

Transport measurements have been performed on the nanowire MOSFET devices to characterise the electronic properties of
the nanowires. Here the measurement set up and procedure will briefly be explained.

The transport measurements were performed in a Janis
ST-500 probe station. Fig.24a show a top-view photo of
this set up, once it is opened up. All relevant component
parts are indicated.
The vacuum vessel is pumped down to 10−6mbar using
a turbomolecular pump. The sample chuck can be cooled
down with liquid helium. Inside this sample chuck are
also a thermocouple and a heating element. Using these in
addition to the liquid helium flow allows for control of the
temperature of the sample chuck in the range from 4.2K to
420K with an accuracy of 0.1K.

The device chip is placed on the electrically conducting
sample chuck. Good electrical contact between the sample
chuck and the global back gate is ensured by a droplet of
conductive silver paint. Two movable probe arms protrude
into the vacuum chamber; both end in six conductive tips.
These arms can be placed on top of the contact pads on the
device chip (see fig.24b. An optical microscope is used to
control the placement of these probes.

A Keithley 4200 Semiconductor Characterization System
is connected via three SMUs1to the probe arms and the
sample chuck. A switch board determines to which of the
probe tips it is connected. This Keithley can be used to
apply a source-drain voltage and/or a gate voltage to a
nanowire device, and measures the drain current. For a
schematic depiction of the wiring, see fig.24c.

Using this set up two types of measurements can be per-
formed.
• I-V curves: Current-voltage characteristics are mea-

sured by sweeping the source-drain voltage VSD and
measuring the drain current Id. From the shape of
these curves, the Ohmic or Schottky character of the
contacts can be determined (see chapter 3). If the
contact is Ohmic, the conductance of the device can be
determined from the inverse slope of the I-V curve. A
limitation here is the resistance of the measurement set
up itself: in two-point measurements, the line resistance
and internal impedance of the Keithley are part of the
measured resistance. However, these can be measured a
calibration measurement, and then subtracted from the
total measured resistance to get the device resistance.

1 A source measure unit (SMU) is a device that can both apply and
measure a voltage and/or current.

Fig. 24: Janis ST-500 probe station:
a| Top-view photo of the probe station when it is opened up. All relevant
parts are indicated and numbered:

1 Helium lines (in/out) 5 Probe tips
2 Movable probe arms 6 Device chip
3 Vacuum vessel 7 Sample chuck
4 Line to turbo pump

b| Close-up image of one cell on the device chip. Here the probe tips
are landed on the contact pads, thus making a connection between the
measurement set up and the chip.
c| Schematic depiction of one device. Schematically indicated is the wiring
used for the transport measurements.
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• Gate sweeps: The gate dependence of the channel con-
ductance (the transconductance gm) can be determined
from gate sweep measurement. In these measurements
the drain current Id is measured while sweeping the
gate voltage Vg at a constant source-drain voltage. From
these curves the doping character and density can be
determined.

Unfortunately usually only up to a third of the devices on
a chip provide useful data. Some of the device do not work
due to issues during the fabrication process, for example
due to leftover resist or a misalignment during one of the
processing steps. However devices can also break during
the measurements.

One issue that was observed quite often, was that devices
stopped working after cooling the sample down to 10K.
We suspect that this is due to the difference in thermal
expansion coefficient between the contact metals (Ti/Au) and
the nanowire. Therefore the contact between the metal and
the wire can be broken when cooling down the sample.
Another issue is that the devices can ”blow up” when a high
current flows through the wire. To protect the wire from this
issue, a maximum allowed current (compliance) is set in the
Keithley.
However, breakdown of the oxide can occur at high gate
voltages. Then a sudden high current spike will flow between
the gate and the wire/drain contact. Because the gate voltage
is two to 4 orders of magnitude larger than the bias voltage,
this breakdown current spike will destroy the wire.
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Here the results of electronic transport measurements on the PbTe nanowire MOSFET devices are presented. First the contact
formation will be studied, followed by an examination of the transport properties for nanowires of varying IV/VI ratios.
As the extensive treatise of the nature and behaviour of Schottky barriers in chapter 3 may have foreshadowed: it has been
challenging to form Ohmic contacts on the PbTe nanowires. The contacts have been characterised, and a hypothesis that
could explain the formation of the Schottky barriers is proposed.
These Schottky contacts prevent the accurate extraction of the mobility and carrier density from the I(Vg) characteristics.
However, the I(Vg) curves do still give some qualitative information on the doping character as a function of the IV/VI ratio.

I. TI/AU CONTACTS ON PBTE NANOWIRES

For the analysis of the electronic transport properties of
the PbTe nanowires, nanowire MOSFETs are fabricated (see
chapter 4). The source and drain contacts are formed by
sputter-deposited gold with a thin titanium adhesion layer.
A top-view SEM image of such a device is shown in fig.25.
Several other groups have reported that the native oxide
layer on the PbTe poses one of the biggest challenges for
the formation of Ohmic contacts [51][94]. Lead oxides are
wide band gap semiconductors [23]. A thin oxide layer will
therefore create a tunnel barrier between the PbTe and the
contact metal. This barrier behaves like a high Schottky
barrier.
The formation of this native oxide starts the instant the
MBE grown PbTe nanowires are exposed to air [51]. The
TEM images in chapter 2 show that our PbTe nanowires
end up up with a native oxide layer with a thickness of
several nanometers.
Detailed XPS studies performed by Wang et al. [94], have
shown that the Pb-O:Te-O bond ratio on crystalline films is
approximately 8:1. The lead oxide will thus dominate the
behaviour of the interface. The formed (PbO)2+ complexes
are electron traps, and will thus increase the density of
surface states. The resulting band bending can explain
the p-type conductivity that is often observed in oxidised
undoped PbTe samples [94].

The first step in the fabrication of Ohmic contacts on PbTe
should therefore be the removal of this oxide. The recipe
developed in this project first asks for a short oxygen plasma
etch to remove any residual (PMMA) resist. This is needed
because some residual resist may inhibit the succeeding
argon ion milling step. This argon ion milling is needed to
actually etch away the native oxide.
Both etching processes have been systematically optimised
to improve the the contact formation. The behaviour of
the resulting contacts was investigated through electronic
transport measurements at 10K. The results of the final step
in this optimisation process is shown in fig.26.
Four chips with devices were made using nanowires from
one and the same growth chip. In earlier tests it was found
that an oxygen plasma etch of 30s was more than adequate
to remove any residual PMMA resist from the nanowires.

Fig. 25: Scanning electron microscopy (top-view) image of a PbTe
nanowire MOSFET device with Ti/Au contacts. On the top left an un-
contacted nanowire can be seen. On both the contacted and uncontacted
nanowires the catalytic gold particle is clearly visible.

Fig. 26: I(Vsd) traces at T=10K of the Ar milling optimisation series.
Shown are the curves measured on devices after 60s (black), 70s (red),
and 80s (blue) of Ar milling. The shorter milling times still show
Schottky-like behaviour, indicating that the native oxide is not yet fully
removed. The blue curve, corresponding to 80s of Ar milling, appears
to be just a vertical line when plotted at the same scale as the other
curves. This data is replotted on a more suitable scale in the inset at
the right bottom corner. Here one can clearly see the linear behaviour
corresponding to an Ohmic contact.
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To optimise the consecutive Ar milling step, each sample
was etched for a different duration (60s, 70s, 80s, or 90s).
Directly afterwards the source and drain contacts (5nm
Ti/100nm Au) were in-situ sputter-deposited.
The I(Vsd) traces measured on devices on the chips that
had been milled for 60s or 70s, still showed Schottky-
like behaviour. This indicates that the oxide has not yet
completely been removed. However, the devices that had
been milled for 80s showed the linear I(Vsd) behaviour
indicative of Ohmic contacts. Wires that were etched for
longer than that were completely etched through. Fig.26
shows the data of just one device from each chip, but the
behaviour was consistent for all devices on the same chip.

Now it seems that a working recipe for the formation of
Ohmic contacts on PbTe has been found: 30s O2 plasma
etch and 80s Ar milling. However, this recipe had some
issues.
The standard Ar milling recipe turned out to be quite
aggressive: 10s of milling time made the difference between
Ohmic contacts and wires that were mostly etched through.
This leaves a very small margin of error. Moreover, ion
milling is well-known to lead to amorphisation of the
crystal surface. Several studies have shown that the use
of a lower acceleration for the ion beam, and therefore
a slower etch rate, leads to a reduction of the thickness
of this amorphous layer [95][96][97]. This would be
beneficial for the consistency and quality of contacts that
may be formed on the etched surface, as scattering on the
amorphous interlayer between the metal and the crystalline
semiconductor strongly influences the behaviour of the
contact. Moreover, trapped charges in the amorphous layer
can significantly alter the barrier height at the interface.
In conclusion: both the contact formation, and transport
properties of the would benefit from the development of a
less aggressive ion milling recipe.

Furthermore, the fabrication process using this milling step
has a low yield of operational devices. About three quarters
of the devices on each chip worked at room temperature.
However, after cooling down to 10K this number shrunk to
less than a third of the devices. It was hypothesised that the
contacts may have come loose due the thermal contraction
of the metal contacts while the sample was cooled down.
This seemed plausible because gold sticks notoriously badly
to other materials: the Ti adhesion layer was apparently not
sufficient to prevent this detachment of the contacts.
To test whether the contacts actually came loose, or the
that transport was suppressed at these low temperatures due
to the presence of barriers at the interfaces, the samples
were heated back up to room temperature, exposed to
air, evacuated and measured again at room temperature.
Many contacts were indeed destroyed by cooling down
the sample, in others the contact was restored. However,
in this case Schottky barriers were measures on devices
that previously showed Ohmic behaviour, as can be seen in
fig.27. Apparently the PbTe surface underneath the contact
had oxydised.

It seemed that the Ti adhesion layer was not sufficient.
Therefore, in the fabrication of all samples hereafter the
adhesion layer was increased from 5nm to 20nm. Then the
titanium would form the actual contact. The gold on top
now acted as a capping layer to prevent the titanium from
oxidising, and to reduce its line resistance.

Fig. 27: I(Vsd) traces at T=10K of the same device, before and after
thermal cycling and exposing the sample to air. On the first cooldown
the wires showed Ohmic behaviour (black). After exposing to air,
on the second cooldown the few working wires showed Schottky-
like behaviour (red): the interface had reoxydised. Inset: Ohmic data
replotted on a more appropriate scale.

A. Introduction to the samples: a growth series

Now a working fabrication recipe had been established.
The contacts on all devices discussed here on forth were
fabricated using the recipe described in the previous section.
For the detailed recipe see chapter 4 or appendix I.

To investigate the control over doping character of the
PbTe nanowires during the MBE growth, six device chips
were made using nanowires with different IV/VI ratios. The
growth IV/VI ratios (Pb/Te flux ratio) of this series are: The

0.799 0.802 0.880 0.941 1.01 1.14

expectation is that the doping character of the wires will
change from p-type to n-type, with increasing IV/VI ratio
(see chapter 2). The goal here is to verify this and quantify
this doping behaviour.

B. Schottky barrier characterisation

First the I(Vsd) behaviour of these devices was measured at
a temperature of 10K. This is measured near liquid helium
temperatures to reduce the contribution to the current of
thermally excited charge carriers, as these mask both the
doping and contact behaviour of the wires.

Based on the results discussed before, Ohmic contacts were
expected on all of the devices. However, this turned out not
to be the case. As can be seen in the plot in fig.28a, clearly
still Schottky barriers are formed at the metal-semiconductor
interfaces.
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In non-degenerately doped semiconductors, it is usually
assumed that thermionic emission is the dominant transport
phenomenon. Here we aim to analyse the barriers on PbTe
wires with a IV/VI ratio relatively close to 1, so low doping
densities (O(1017cm−3)) are expected. The Schottky barrier
height can be extracted from the I(Vsd) curves by fitting
eq.70 to the data:

ITE =A∗∗T 2exp
(
−eΦ

eff
B

kBT

)
exp

(
eVbias
nkBT

)
×
[
1− exp

(
−eVbias
kBT

)] (70)

This is done using a least squares fitting algorithm, which
is described in more detail in appendix II. The effective
Richardson constant, the electron temperature, the ideality
factor, and the Schottky barrier heights are used as fit
parameters. A typical fit is shown as the black dased line in
fig.28.a
The fits typically match the data fairly well, except at the
onset of conduction. This is because this model does not
exactly match the device geometry we consider here: it
describes just a single (forward-biased) barrier, while the
nanowire has two contacts. However, the forward-biased
injection barrier dominates the transport, as it is significantly
larger than the second (extraction) barrier [59]. The reverse-
biased extraction will therefore mainly contribute to the
suppression of the current at low source-drain voltages. A
fit of the single barrier model (eq.70) will thus overestimate
the current at the onset of conduction, and further match
the measured behaviour quite well.

The effective Schottky barrier heights found for all devices
(at 10K) are plotted in fig.28b. A clear divide can be
observed in this data: most devices have an effective
Schottky barrier in the range of ΦeffB = 0.55 ± 0.25V.

Taking into account the band lowering due to the Schottky
effect (from eq.34: δφ = 35mV), the actual Schottky
barrier height is determined to be: Φ0

B = 0.59± 0.3V.
This is fairly close to the value predicted by the Schottky-
Mott rule for a PbTe:Ti interface. The work function of
titanium is φTi = 4.33eV [98] PbTe and the electron affinity
of PbTe is χPbTe = 4.75 ± 0.3eV [38], so the predicted
barrier height is: Φ0

B = 0.45± 0.3V. Though the calculated
and the measured values are quite close, the discrepancy
and the spread in the measured values implies the existance
of some unpredictable surface effects (see sec.II).

One sample (IV/VI = 0.880) clearly sticks out from the rest
of the data. It is quite striking that all devices on just this
one sample showed such different barrier heights than all the
other samples. Therefore is just as plausible, if not more, that
something went wrong during the device fabrication, instead
of this being a fundamental result.
To investigate SEM images of the devices from this chip
were compared to images of the others. In fig.25a a SEM
image of a device with a nanowire IV/VI ratio of 0.802 is
shown, while the image of fig.25b shows a device with IV/VI
= 0.880. It can clearly be seen that the surface of the first
nanowire is perfectly smooth. This is representative for the
nanowires throughout the range of IV/VI ratios investigated.
However, the surface of the devices with IV/VI = 0.880
show a much rougher surface. It seems like there is some
sort of droplet formation on the wire. The cause of this
is unknown. But it seems likely that this will impact the
interface formation, and thus the Schottky barrier height.
This phenomenon has not been observed on any nanowire
device before, or since. Therefore it is assumed that some
human error has occurred in the fabrication of this device.
And that this device chip should not be included in any
further analysis of the nanowire devices.

Fig. 28: Extraction of the effective Schottky barrier height:
a| Screenshot of the interface for the fitting of a curve describing thermionic emission (black dashed line) to the
measured Schottky barriers (red line). The sliders at the bottom represent the fit parameters (see appendix II).
b| Plot of the extracted effective Schottky barrier height as a function of the IV/VI ratio. Except for the sample with
IV/VI = 0.88, the Schottky barrier height seems to be fairly constant at Φ0

B = 0.59± 0.3V.
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Fig. 29: SEM image of two nanowire MOSFET devices: a| has a smooth surface, and is representative for most of the measured
devices. b| has a rougher surface, and is representative for the devices with IV/VI = 0.880.

Fig. 30: Gate voltage dependence of the Schottky barrier height:
a| I(Vsd) curves for varying gate voltages. The inset shows a close-up of the ”off-regime”: the measured current is in the
order of tens of nano-Ampères. This is in the same order of magnitude as the noise of the measurement setup.
b| Extracted Schottky barrier heights for three devices as a function of Vg , and their average values (dashed lines).

Fig. 31: Temperature dependence of the barrier height:
a| I(Vsd) transfer characteristics of one device for a wide range or temperatures.
b| Extracted barrier height from the curves shown in (a) as a function of the temperature. In red a linear fit through the data
points is shown, while the dashed blue line shows the expected temperature from the modified Varshni model.
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C. Gate voltage dependence
In fig.30a the I(Vsd) dependence a nanowire MOSFET is
plotted for multiple gate voltages Vg . The barrier heights
were determined just like before, and are plotted as a
function of the applied gate voltage in fig.30b. From this
plot it can be seen that the barrier heights remains constant
over the range of bias voltages. This is expected, as the
forward barrier does not change with the applied gate
voltage.
The band bending in the wire near the interfaces (the
built-in potential Vbi) is changed by applying a gate voltage.
This does affects the height of the reverse barrier at the
opposite end of the wire. This barrier only noticeably
affects the conductance at the onset of the conductance
regime. By applying a (positive) gate voltage the built-in
potential gets reduced, thus decreasing the already small
role of the reverse barrier. This explains the steeper onset
of conduction, while the barrier height remains constant
over a wide range of gate voltages.

D. Temperature dependence
Also the temperature dependence of the barrier height is
investigated. The I(Vsd) curves for for several temperatures
between 10K and 300K is shown in fig.31a. From this figure
the barrier height actually seems to get wider with increasing
temperature. This is the expected behaviour: the band gap
of lead chalcogenides actually increases, in contrast to many
other semiconductor materials. An increase in the band gap
means an increase in the distance between the conduction
band and the Fermi level. Therefore it also affects the band
bending, which will lead to higher Schottky barriers.
It has been shown that just a linearised temperature depen-
dence models the change in barrier height quite well for
several semiconductors [99]:

ΦB(T ) = ΦB(T = 0) + αΦT (71)

Here the Tersoff constant αΦ is given by:

αΦ =
1

2

dEg
dT

. (72)

A linear fit through the extracted barrier heights yields a
Tersoff constant of αΦ = 0.41meV/K (see fig.31b). This
corresponds nicely to the value reported by R. Dalven:
αΦ = 0.42meV/K [31].

Up until now only the lattice temperature of the sample
has been discussed. However, eq.70 uses the electron
temperature as a fit parameter to determine the Schottky
barrier heights. The extracted electron temperatures are
plotted in fig.32. Interestingly, the electron temperature does
on average not drop far below room temperature, while
the lattice is cooled to 10K. The spread in the measured
electron temperatures is quite large. Again the sample with
a IV/VI of 0.88 is ignored in this analysis.
At these low temperatures, phonons are mostly frozen
out. Therefore the dominant mechanism for thermalisation
of the electrons (electron-phonon scattering) is mostly
absent. We conclude that relatively high bias voltages (up to
1V) may significantly contribute to the electron temperature.

Fig. 32: Extracted electron temperatures as a function of the IV/VI
ratio.

II. TRANSCONDUCTANCE AND TRANSPORT PROPERTIES

Now we wil investigate the I(Vg) transfer characteristics.
It turns out that it is quite difficult to directly compare any
two devices to each other, because of the fluctuations in
Schottky barrier heights. These barriers directly influence
the conductance. However, some qualitative statements can
be made about the doping character of the devices.
The I(Vg) traces at multiple source-drain voltages of a
device with a IV/VI ratio of 0.802 are shown in fig.33a. To
represent this data in a cleaner manner, it is replotted as
the conductance (dI/dVsd on a logarithmic scale in fig.33b.
From this plot the actual behaviour of the device becomes
a bit clearer. For low source-drain voltages the conductance
decreases approximately linearly with the gate voltage. This
is indicative of (subthreshold) thermionic emission of a
hole current. For higher bias voltages the conduction takes
on an n-type behaviour, and increases a couple of orders of
magnitude.

This conduction behaviour can be explained using the band
diagram of the PbTe:Ti MOSFET device (fig:34a). It is
widely reported that an inversion layer forms at the interface
between PbTe and a wide variety of metals [85][83][84].
This is also the case for the PbTe:Ti interface. As discussed
before, this leads to barriers of Φ0

B = 0.45 ± 0.3eV in the
valence band according to the Schottky-Mott model. This
indeed explains a small subthreshold current for holes at all
source-drain voltages.

The bands bend when a source-drain voltage is applied (see
fig.34b). This also forms a (wide) barrier in the conduction
band. The higher the applied voltage, the thinner and lower
the barrier in the conduction band gets. Therefore both
thermionic emission, and tunneling of electrons is expected
to increase with the applied bias voltage.

This model describes a much wider, but lower barrier in
the conduction band than in the valence band. Therefore
tunneling is expected to be much more prevalent in the
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Fig. 33: Gate dependence at several bias voltages, plotted as: a| I(Vg), b| logG(Vg).

valence band, and thermionic emission should be the
dominant transport mechanism in the conduction band.
From the data fig.33 it can be seen that the electron current
is several orders of magnitude larger than the hole current.
Therefore this device is considered to be n-type. The small
subthreshold hole current (O(10 − 100nA)) is due to
tunneling of thermal holes.

It turns out that this behaviour is universal for all devices:
not the doping character of the wires, but the barrier
formation dominates the carrier transport. There is one
significant discrepancy between this model and previous
results. We just established that the barrier in the conduction
band is the barrier that limits the transport of the majority
carriers. But this barrier is about 6 times lower than the
Φ0
B = 0.59 ± 0.3eV that was determined before. Therefore

there has to be another barrier.

Ti is more reactive with the unoxidised PbTe surface than
other conventional contacting materials such as Cu, Pt
and Au [100]. Photoelecton spectroscopy experiments by
Lai and Cerrina et al. have actually shown that adatom
exchange interactions take place at the nanowire surface
[83][84]. Therefore it is likely that an interlayer is formed
between the metal and the nanowire instead of an abrupt
PbTe:Ti interface. This can act as an additional barrier, or
completely change the character of the surface states, thus
modifying the existing barrier [70][101].

In the same studies by Lai and Cerrina et al. it was shown
that PbTe:Au form nondegenerate interfaces on PbTe; the
Fermi level is pinned in the band gap. This will more
readily lead to the formation of Ohmic contacts.

This would also explain why the developed fabrication
recipe for Ohmic contacts did not work when the Ti
adhesion layer thickness got increased from 5 nm to 20
nm. Ti initially form islands during sputter deposition
(Volmer-Weber growth mechanism). Especially on a rough

surface (PbTe after Ar milling) this may not coalesce into a
single film; the subsequently deposited Au film may locally
directly contact the wire, leading to an Ohmic contact.
Whereas this is definitely not possible for a Ti film of 20 nm.

Fig. 34: Band diagram of the PbTe:Ti nanowire MOSFET:
a| without an applied source-drain voltage,
b| under forward bias. Here the red arrows indicate tunneling
processes, whereas the blue arrows indicate thermionic emis-
sion.
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Fig. 35: I(Vg) curves (top row) and logG(Vg) curves (bottom row) for three devices with different IV/VI ratios.

A. Doping character

Let us now compare the gate dependence curves for different
IV/VI ratios. An overview of representative I(Vsd), I(Vg)
and logG(Vg) plots for devices of all measured IV/VI ratios
is shown in appendix III. An outtake is shown in fig.35.

Because all devices have a different barrier height, again
no direct comparison between the devices can be made.
However, still some useful qualitative remarks can be made
about this growth series.
Most useful information can be extracted from the logG(Vg)
curves. Let us first compare the subthreshold conductance.
In a semilogarithmic plot like these, thermionic emission is
linear in the applied gate voltage, whereas the conductance
due to tunneling should be constant [20].With increasing
IV/VI the subthreshold conductance mechanism goes from
thermionic to tunneling. This, and the increase in magnitude
of the subthreshold current, both indicate that the hole
density increases with the IV/VI ratio.

This is corroborated by major carrier transport above
threshold. The I(Vg) traces for IV/VI = 0.802 and IV/VI =
0.941 are both clearly n-type. But for IV/VI = 1.14 intrinsic
behaviour can be seen. It seems that the conductance
behaviour due to both carrier types is approximately of
the same magnitude for high bias voltages. However, this
comparison cannot readily be made, because both carrier
types face a different barrier. Therefore we cannot say
that a growth IV/VI ratio of exactly 1.14 yields intrinsic
wires. But it should be close to that value. At the very least
here we have shown that the wire doping can be tuned
from n-type to intrinsic by increasing the growth IV/VI ratio.

This result is a bit surprising if one looks back at fig.36. One

would expect that a PbTe crystal is p-type if its composition
is slightly on the Te-rich side of the ideal stoichiometry
(IV/VI<1). Here we see the opposite trend. This suggests
that the intrinsic point around IV/VI = 1.14 (our most Pb-rich
sample) corresponds to the crossover on the Te-rich side, and
all other samples further to the right. This indicates either
one of two things:
• During growth Te is more readily incorporated in the

nanowire. A larger Pb flux is needed to reach an actual
composition of IV/VI = 1.

• The combination of the Schottky barrier and interfacial
layer formation degrades the contact in such a way that
any useful analysis of the nanowire is impossible. It is
first necessary to optimise the contact formation before
the material can be characterised at all. This will be
necessary for the extraction of any relevant quantitative
data as well as for future device applications.

Fig. 36: Midgap formation energy for the three lowest-energy defect
states as a function of the chemical potential of Te. The lowest energy
defect state determines the doping character of the crystal (blue: n-type,
pink: p-type). As calculated by Wang et al.[43].
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Reference Fardy et al. [47] & Jang et al. [48] Jung et al. [51] This work
Growth method Chemical vapour transport method Potentiostatical electrodeposition Molecular beam epitaxy
Doping n-type p-type n-type/intrinsic
Mobility (cm2/Vs) 0.71-0.83 3.32 0.02-0.12
Carrier density (cm−3) 8.8× 1017 1.85± 1.06× 1018 O(1018)

B. Transport properties

Before we have established that the carrier transport is
clearly dominated by the barriers at the metal-semiconductor
interfaces. Therefore the extraction of the transport proper-
ties, as described in chapter 3, will not yield any results that
are representative for the nanowires themselves. Especially
the mobility is heaviliy masked by the presence of a Schottky
barrier [20]. It will however give an absolute lower bound
for the transport properties.
The extracted mobilities and carrier densities are displayed
in the table above. As a benchmark they are compared to
the transport properties reported for single-crystalline PbTe
nanowires grown by other techniques. Note that the reported
transport properties are extracted from a handful of devices,
all with different doping and barrier heights. Therefore no
meaningful standard deviation can be reported.
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The previous chapter discussed the results obtained in Eindhoven by on the PbTe nanowire FETs. These measurements were
performed at a temperature of 10K. Some of the nanowires grown at the TU/e were sent to the Frolov group at the University
of Pittsburgh to be measured at cryogenic temperatures (50 mK) in a dilution fridge. These measurements resulted in some
interesting results that required some theoretical study and modelling to be understood.
This chapter proposes a method to model the quantum dot behaviour seen in these nanowire devices. This model uses the
configuration interaction method to describe the many-particle wave-functions in the dot, and proposed a way to calculate the
eigenenergies of these many-particle eigenstates based on Wigner localised configurations. This work is far from complete,
and mostly presents some qualitative results. It is just a brief foray into the world of second quantised field theories in strongly
confined systems, and could best be considered a road map for further investigations. One could easily write an entire master
thesis about this subject alone.

I. CRYOGENIC TRANSPORT MEASUREMENTS ON PBTE
NANOWIRES

Several different types of measurements were performed
in the Frolov group at the University of Pittsburgh on the
PbTe nanowires grown in Eindhoven. Here we will briefly
discuss the relevant ones.
Similar nanowires device geometries were fabricated as the
ones used in Eindhoven, with the addition of a HfO2/Ti/Au
top gate. This top gate allows for fine control of the gate
voltage, which is needed for the operation of the device in
the single electron transistor regime. Some small changes in
the fabrication recipe allowed for the formation of Ohmic
contacts on these nanowires. The most notable change is in
the Ar ion milling step: a much lower etching power, and
therefore a much slower etching rate is used. This is likely
to result in smoother etched surfaces, and therefore cleaner
metal-PbTe interfaces will be formed.

In in similar field-effect measurements the electron mobility
was determined to be µ = 190 − 250 cm2/Vs at 50 mK.
Also carrier densities in the order of ∼ 1017 cm−3 were
found. These values, while extremely high, cannot directly
be compared to the numbers at the end of the previous
chapter, because of the different measurement temperature.
Still these are very promising results, and motivate further
research in the growth and contacting of the nanowires at
the TU/e.

Other interesting results is the operation of the device as
a single-electron transistor. Ballistic transport through the
nanowire can be observed if the thermal energy is smaller
than the energy difference between the conduction channels
in the dot. Because the PbTe nanowires are approximately
square in cross section with a diameter of approximately d =
80 − 100 nm, the 1D subbands of the conduction channels
can be calcuated by a simple 2D particle-in-a-box model:

En =
~2

2m∗

(
π2n2

d2
+ k2

z

)
(73)

where the subbands of the conduction channels are labelled
by a vector n = (nx, ny).

So the temperature at which the first two subbands can be
resolved, can be estimated to be:

T = ∆En/kB

=
3~2π2

2m∗d2kB
=∼ 40K

(74)

where the effective mass of PbTe is: m∗ = 0.034m0 [?] This
behaviour is not observed in the measurements discussed
in the previous chapters: while the measurements were
performed at temperatures lower than 40K, the Schottky
barriers prevented the observation of quantised conductance.
The better quality of the contacts, and the much lower mea-
surement temperature did allow for observation of quantised
conductance in Pittsburg. However, no ballistic transport,
but quantum dot behaviour was observed (see fig.37). The
behaviour of the contacts at this temperature is not Ohmic:
the (thin) Schottky barriers at the interfaces here form tunnel
barriers between the metal and the nanowire. This defines
a quantum dot in the nanowire. This phenomenon is well
studied for other narrow band gap semiconductors such as
InAs [102][103].

Fig. 37: Conductance (colour scale) as a function of the bias and top
gate voltages. Image courtesy of E. de Jong [28]
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Fig. 38: Schematic depiction of a coulomb diamond. Indicated are the charging energy ∆E (red), and the gate potential required to add
another electron onto the dot (blue). Around the dots some the alignments of the chemical potentials in the leads (µL(R)), and the energy
levels in the dot are indicated, which correspond to certain positions on the edge of the diamond.

Fig.37 is obtained by tuning the dot to the flat-band regime:
no majority, nor majority carriers are present in the dot.
This is achieved by applying a gate voltage of Vg = 15V to
the back gate. Then the top gate, and source-drain potentials
can be used to open up single conduction channels in
the dot. However, the wire is isolated from the source
and drain leads by tunnel barriers (Schottky barriers).
Therefore electrons are localised on the dot. Therefore it
will cost energy to add multiple electrons onto the dot. Both
the quantum mechanical level spacing, and the coulomb
repulsion between the electrons themselves, will contribute
to the so-called charging energy ∆E to put an additional
electron on the dot.

This charging energy will now dominate the transport
through the dot. This is sketched schematically in fig.38. a|
shows the situation where the chemical potential of both
the source and the drain are perfectly lined up with the
N th level in the dot. In this situation tunneling through
the dot is possible: a current will flow. By changing the
gate potential the ”ladder”of electronic states will move
up or down with respect to the chemical potentials of the
contacts. Applying a bias voltage will shift the chemical
potentials with respect to each other. Conduction through
the dot is only possible if the level in the dot is positioned
in between the two chemical potentials.
The sides of the diamond describe the edge of this
conduction regime: a dot level lines up perfectly with the

chemical potential of one of the leads (see b and c). Inside
the diamond, both chemical potentials line up in the same
gap between two levels in the dot: no conduction is possible
(d).

The behaviour of the dot can be split into two regimes
based on the (dominant) origin of the charging energy: if
quantum mechanical effects dominate the charging energy
the system we speak of a quantum dot. If the Coulomb
repulsion dominates, the charging energy is dominated by
classical effects: the system is an isolated dot, but not a
quantum dot. The (Coulomb) diamonds that results from
such a classical dot are have a constant shape/size: the
charging energy is determined by the capacitive coupling
between the dot and the source, drain and around it. The
energy levels of quantum dots are generally much more
irregularly spaced [104][105].
So the behaviour of the dot depends on the confinement and
the electron-electron interactions on the dot. In our case it
is difficult to say beforehand which effect will be dominant.
The dot is relatively large: ∼ 100nm in diameter and
∼ 270 nm in length. But PbTe also has an extraordinarily
large Bohr radius (46nm [52]), and will therefore show
significant confinement effects in relatively large dots. Due
to the extremely high dielectric constant (εr = 1350 at 4.2K
[106]), also the Coulomb repulsion between the electrons
will be screened quite well.
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Based on the consistent size of the diamonds, one would
say that the device behaves as a (semi-)classical dot.
However, this does not explain all the fine structure seen
in the data, such as the splitting between the second and
third diamonds, or the conduction resonances inside the
third an fourth diamonds at zero bias. A proper quantum
mechanical description will be necessary to fully understand
the transport behaviour of the dot.

II. CONFIGURATION INTERACTION MODEL

Here we will start to develop a fully quantum mechanical
theory of transport through nanowire quantum dots. Because
the electron density is so low in the quantum dot we cannot
describe electron-electron interactions using a mean-field
theory. Especially not because these interactions are of vital
importance for the understanding of the energy spectrum of
the dot.
To properly calculate the electron-electron interactions that
are so important here, a many-body quantum theory is
necessary that explicitly includes the interactions between
the individual particles. The configuration interaction
method is well suited for problems like this, provided
that the number of particles is not too large. This method
builds up the many-body states of the dot from all
possible configurations of single-particle states [107].
Thus the computation power needed blows up with
the number of particles in the system. However, we
are only interested in low occupation numbers: that is
where the interesting signatures in fig.37 are observed.
That is why the configuration interaction method is the
method of choice for problems like this [108][]Kirstinblabla.

Some notable papers that use this method to describe quan-
tum dot systems are written by Destefani and Marques et
al. [108][109], and by Häussler, Kramer and Weinmann and
colleagues [110][111][112][113][114]. One of the papers by
Destefani et al. [108] modelled electronic transport through
a spherical InSb quantum dot. This paper in particular has
been an important guideline and benchmark throughout this
work.

A. The quantum dot Hamiltonian

Let us start by examining the second-quantised Hamiltonian
of the system. The Hamiltonian can be separated in a unper-
turbed term H0, and a tunneling Hamiltonian for both the
left and right leads HT

L(R) = HT
R+HT

L : H = H0 +HT . The
unperturbed Hamiltonian describes the isolated components
of the dot separately: the isolated dot, the left and right
metallic leads (HL/R, and a phononic thermal bath (Hph).
The Hamiltonian of the dot is given by:

HD =
∑
α,σ

(εα − eVg)c+α,σcα,σ

+
1

2

∑
α1,α2,α3,α4;σ1,σ2

〈α1, α2|Vee |α3, α4〉

× c+α1,σ1
c+α2,σ2

cα3,σ1
cα4,σ2

(75)

with εα the eigenenergies of the dot, c+α,σ(cα,σ) the creation
(annihilation) operators of an electron in state α with

Fig. 39: Feynman diagram of the electron-electron interaction. The
interaction is symbolised by Vee, and |αi, σj〉 indicate the single-
particle states in the dot.

spin σ, and Vee the electron-electron interaction. The first
term here describes the energy of the individual particles:
it sums over the occupied energy levels, which can be
shifted by the gate potential Vg . The competing term is the
electron-electron interaction: this term sums over all pairs
of electrons, and calculates their mutual interaction. A first
order Feynman diagram for this interaction is sketched in
fig.39.

The leads are modelled as a Fermi sea, with all states up to
the chemical potential occupied:

HL(R) =
∑
k,σ

ε
L(R)
k c+L(R);k,σcL(R);k,σ (76)

Where εL(R)
k , and c+L(R);k,σ(cL(R);k,σ) are the energy states

and creation (annihilation) operators with wave vector k
and spin σ, in the left (L) and right (R) leads.

The coupling between the leads and the dot is described by
the tunneling Hamiltonians:

HT
L(R) =

∑
k,α,σ

[
T
L(R)
k,α c+L(R);k,σcα,σ + T

L(R)
k,α

∗c+α,σcL(R);k,σ

]
(77)

with TL(R)
k,α the probability for an electron in state |k, σ〉 in

the left (right) lead to tunnel to state |α, σ〉 in the dot.

Destefani et al. or Haussler et al. would now usually intro-
duce a phonon bath with a Fröhlich electron-phonon interac-
tion. However, we will ignore electron-phonon interactions
for the rest of this report. Of course this is not entirely
physical, but we are interested in modelling a system at a
temperature of 50 mK. In such a system the influence of
electron-phonon interactions in negligible.

B. Many particle eigenstates

Here we will discuss the construction of the many-particle
states from which the configuration interaction model derives
its name.
Consider a system with N particles divided over n > N
single-particle states. This can be done in

(
n
N

)
configurations

[107]. Because the fermions are indistinguishable particles,
the N-particle wave function for a specific configuration can
be expressed as a Slater determinant of the single particle
states: [115]

|φN 〉 =
1√
N !

∣∣∣∣∣∣∣∣∣
ϕ1(x1) ϕ2(x1) . . . ϕN (x1)
ϕ1(x2) ϕ2(x2) . . . ϕN (x2)

...
...

. . .
...

ϕ1(xN ) ϕ2(xN ) . . . ϕN (xN )

∣∣∣∣∣∣∣∣∣ (78)
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This state is properly antisymmetric, as any fermionic state
should be. The total wave function of the N-particle state
|ΨN 〉 can now be described as a linear combination of all
these Slater determinants:

|ΨN 〉 =
∑
i

ci |φN,i〉 (79)

Because this many-particle state explicitly contains all possi-
ble configurations of the individual particles, it is extremely
useful for the calculation of correlation effects between the
electrons. The difficulty of the calculation increases rapidly
with the number of particles though.

C. Transition rates: transport equations

In sec.II-A we ignored all electron-phonon interactions. This
means that transport through the dot is entirely due to
tunnelling. The transition probability per unit time for a
particle to tunnel into or out of the dot is given by Fermi’s
golden rule:

γi→f =

(
2π

~

)
| 〈Ψ(0)

f |HT |Ψ(0)
i 〉 |

2δ(E
(0)
f − E

(0)
i ) (80)

Where Ψ
(0)
i (Ψ

(0)
f ) are the initial (final) states of the total

system, with eigenenergies E(0)
i (E

(0)
f ).

The total effective transition rate Γ
L(R)
I,J between two states

of the dot (I and J) can then be expressed as the thermal
average of the sum over all final states of the electrons
in the lead. This basically is a weighted average of the
total transition rate based on the likelihood that a tunneling
electron ends op in a certain state in a lead. This thermal
averaging reduces the Hamiltonian of the leads (eq.76) to
a classical particle distribution: the Fermi-Dirac distribution
fL(R)(E), and the density-of-states of the metal ρL(R)(E)
are introduced.
Therefore all possible transitions can be expressed as a
decrease (ΓL(R)−

I,J ) or increase (GammaL(R)+
J,I ) of the oc-

cupation number n of the dot by one electron:

Γ
L(R)−
I,J =

1

2
tL(R)(1− fL(R)(E))M−I,JδnI ,nJ−1

Γ
L(R)+
J,I =

1

2
tL(R)(fL(R)(E))M+

J,IδnJ ,nI+1

(81)

with tL(R) a renormalised transmission rate:

tL(R) =
2π

~
|TL(R)|2ρL(R)(E) (82)

here for simplicity it is assumed that the tunnel probability
is independent of the quantum numbers of the tunneling
electron: TL(R)

k,α = TL(R).
The Kronecker deltas are introduced to enforce that only
first-order tunneling processes are allowed (only single-
particle tunneling).

Now one term remains in 81 that has not yet been discussed:
the matrix elements M−/+.

M−I,J = |
∑
α,σ

〈ΨI | cα,σ |ΨJ〉 |2

M+
J,I = |

∑
α,σ

〈ΨJ | c+α,σ |ΨI〉 |2
(83)

These describe the actual addition/removal of a particle
from the dot. All interesting physical phenomena such as
the selection rules for the transport processes are determined
by these matrix elements.

The occupation probability PI of an state I is described by
the following master equation [116]:

dPI
dt

=
∑
J,I 6=J

(ΓJ,IPJ − ΓI,JPI) (84)

with ΓI,J the transition rate from a state I to a state J . Of
course here a normalisation condition

∑
I PI = 1 applies.

The steady state occupation of a state P̄I can be found by
setting the master equation to zero.
Now finally the tunnel current through the dot can be
expressed as the change in the steady occupation:

IL(R) = ∓e
∑
I,J 6=I

P̄I(Γ
L(R)−
I,J − Γ

L(R)+
J,I ) (85)

Now the framework of this model is clear, let us recap what
the required ingredients for this model are:
• Energy spectrum of the dots: The eigenstates of the dot

Hamiltonian. In the next section we will elaborate on
this point.

• The many-body eigenstates of the dot for all relevant
occupation numbers of the dot.

• Tunnel probabilities TL(R) can be determined from the
transport data in fig.37 using the Landauer formula
[116].

• For most of the commonly used contacting metals,
plenty of literature can be found on the density of states
of the metal ρL(R)(E).

III. ENERGY SPECTRA OF QUANTUM DOTS

The first step in the modelling of the system above is the
definition of proper many-body eigenstates of the system.
Let us first briefly discuss the model for the spherical InSb
dot investigated by Destefani et al. Due to the spherical
symmetry of the dot and the single-particle eigenstates it
is natural to describe the states within the LS coupling
scheme. The many-particle eigenstates are expressed as
linear combinations of Slater determinants of single-particle
states (|n, l,ml〉 ⊗ |s,ms〉) times the appropriate Clebsch-
Gordan coefficients for angular momenta coupling. The
Coulomb interaction is expressed as a multipole expansion
in spherical coordinates, so it has the same symmetry as
the defined eigenstates [117].
Using these eigenstates and the interaction terms the
eigenenergies of the the dot were calculated for an
occupation number of 1 to 3 particles. A Zeeman term was
included in the dot Hamiltonian.

The first step in the development of our own model for the
PbTe nanowire quantum dot, the model by Destefani et al.
was replicated to develop the basis of the model.
These calculations were performed using the SNEG library
for Mathematica [118][119]. This package allows for
symbolic calculations in the second-quantised framework.
This package comes highly recommended, as working
symbolically helps to keep oversight over your calculations.
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Fig. 40: Energy spectrum of a spherical InSb quantum dot as a function of an applied magnetic field.
(a) Results published by Destfani et al. [108]
(b) Replication of these results using the Mathematica/SNEG model.

And the package is equipped to deal with (anti-)commutation
relations, Grassmann-valued fields, and other headache-
inducing quirks of fermionic quantum field theories.
The quantum dot spectra calculated by Destefani et al.
and the replicated Mathematica/SNEG model are plotted
next to each other in fig.40. They are clearly in quite
good agreement with each other. The energy levels are
indicated in spectroscopic notation 2S+1L. Due to the
parallels between the eigenstates of a spherical quantum
dot and atomic orbitals, the energy is plotted in units of the
effective Hartree energy E∗H = e2/a∗B = 21.4 meV, with
the Bohr radius a∗B = ε~2/(m∗e2) = 67.1 nm.

However, as we have hinted at before, the eigenstates of a
nanowire quantum dot are significantly more complicated
than the eigenstates in a spherical dot. The model of this
system has not progressed enough to show any useful
results. However, we will discuss some of the difficulties
that arise in modelling our device geometry.
There is one big difference between a nanowire quantum dot,
and the spherical dot we have discussed before: electrons
in the nanowire are only confined in two dimensions.
Therefore the nanowire behaves as a quasi-1D electron
island. The main difficulty here is that electrons in this
dot do not necessarily have a fixed position, as would
be the case in a 0D dot, like we discussed before. This
significantly complicates the calculation of interaction terms
between electrons.

One phenomenon is quite important in the description of
spatial distributions of low density and low temperature
electron gasses: Wigner crystallisation [120][121][122].
Wigner crystallisation, or Wigner localisation in 1D, is the
spontaneous formation of a crystal-like electron probability
density distribution dominated by the Coulomb interaction.
It can best be understood in terms of two competing energy
terms: the kinetic energy of the electrons, and the Coulomb
repulsion between them. If the Coulomb repulsion between
the electrons is large enough to suppress their movement

Fig. 41: Electron density probability distributions for three electrons in
a dot for different nanowire lengths, plotted on a normalised x-axis. The
red profile (9.5aB = 437 nm for PbTe) is the closest to our channel
length of 270 nm. Adapted from Jauregui et al.[120].

due to their thermal energy, the electrons will condense in
a lattice.
This is shown schematically fig.41 for three electrons in
wires of different lengths. Longer nanowires allow for
the full separation of the electrons, while the localisation
is suppressed for shorter wires/higher electron densities.
The red curve is closest to our nanowire quantum dot device.

Let us now consider just two electrons in the nanowire
quantum dot, to further understand this Wigner localisation.
Two limiting cases can be imagined:

• Weakly interacting particles. Two weakly interacting
particles will not repel each other, and therefore not
form a localised state. The first two single-particle states
form a singlet and are therefore degenerate in energy.
The excitation spectrum of the dot is dominated by the
subband splitting due to the confinement. Therefore the
1-particle and 2-particle excitation energies will be the
same [121].
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Fig. 42

• strongly interacting particles Two strongly interacting
particles will localise on opposite ends of the nanowire
(see fig.42a). The two particle ground state will form
a singlet. However, the first excited state will now be
a triplet state see fig.42b), not the next subband. The
energy splitting between the singlet and the triplet states
is quite small because the single-particle states barely
overlap.

This is exactly what we see in the data in fig.42(right). The
second electron that enters the dot can have a spin state
that either forms a singlet or a triplet state with the electron
that is already in the dot. Both will have a slightly different
charging energy, ad thus a slightly differently sized diamond.
This is explains the splitting of the edges of the second
diamond at zero bias. The ”splitting” is actually the overlap
of two sightly differently sized diamonds for the second
electron in the dot, each corresponding to one spin state.
This is a signature of Wigner localisation in the quantum dot.

To properly quantify this claim, the interaction energies and
the phase transition to the Wigner localised phase can best
be modelled using a bosonisation approach: the system can
then be described as a 1D Luttinger liquids of non-interacting
bosons [123][124])[125]. This is an effective field theory that
is commonly used for the description of complex phenomena
in one-dimensional systems. The bosonisation procedure is
quite daunting, and is far from in a finished state right now.
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Concluding remarks

Part

Concluding remarks

8

Here we will conclude this thesis by recapitulating the main results. Lastly some recommendations for follow-up research,
future lines if inquiry and Other general advice is given.

Sinlge-crystalline PbTe nanowires have been grown using
MBE. To characterise the electrical properties of these
nanowires, they were fabricated into nanowire MOSFET
devices. Attempts have been made to optimise the contacts
between these nanowires and metallic source and drain
leads. However, Schottky barriers were formed at the
metal/semiconductor interface, partially due to the choice
of materials, and partially because of the the Ar milling
process used during the fabrication.

These Schottky barriers have been characterised based
by fitting the measured I(VSD) curves with a formula
describing thermionic emission. From the quality of
this fit it is determined that thermionic emission is the
dominant transport mechanism in through the nanowire
MOSFET. The barrier height has been determined to
be Φeff

B = 0.55 ± 0.25V. This value has been obtained
independent of the doping (IV/VI ratio) of the wire, which
indicates some degree of Fermi level pinning.

Despite the Schottky barriers, an attempt has been made
to extract the carrier mobility and density from the
measured I(VG) data. Carrier densities in the order of
∼ 1018cm−3 have been obtained. This seems a plausible
value compared to the carrier densities of other narrow band
gap semiconductors (InAs, InSb). The obtained mobilities
(µe = 0.02 − 0.12cm2/Vs) are two orders of magnitude
lower than in other semiconductors. However, it was to
be expected that the mobility of the device was heavily
impacted by the presence of barriers at the contact interface.
Hopefully the contacting can be optimised soon, so the
actual material properties of the wire as a result of the
MBE growth conditions can be probed.

Cryogenic transport measurements were performed on
similar devices in the Frolov group at the University
of Pittsburgh. The barriers at the metal/semiconductor
interface, though much less pronounced, turned the
nanowires into nanowire quantum dots. Some curious
signatures were observed in the transport characteristics
of these dots. Some of these features can be explained to
be signatures of Wigner localisation of electrons in the
dot. Steps have been made in the full quantum-mechanical
modelling of this system, but still a lot of time has to
be invested to completely reproduce the experimental results.

I. FABRICATION OF PBTE DEVICES

A first recommendation might not be too surprising: develop
a Ar milling recipe that is less intrusive. Our own results

already suggested that this is a major issue in the formation
of proper Ohmic contacts on the PbTe nanowires. And this
is more substantiated by the fact that the Frolov group in
Pittsburgh was actually able to create Ohmic contacts using
a lower Ar etch rate.

In the mean time some further progress was made in the
development of a suitable etching process in our labs. In
fig.43a shows an SEM image of a nanowire etched with the
old recipe. This surface is very rough, and a significant part
of the nanowire is etched away. Compare this to fig.43b,
which shows a trial with a Ar milling recipe with reduced
acceleration voltage and etch rate. This wire was partially
covered with PMMA during the erching process. It is
clearly visible that the uncovered (left) part of the wire is
etched, while the other half is not. However, significantly
less of the wire is etched away and the syrface looks
quite smooth. Whether this will lead to the formation of
Ohmic contacts has to be tested by actually fabricating and
measuring a device.

Still it might be interesting to also investigate other materials
for the contacts. Here was chosen for Ti/Au because it is a
fairly standard contact material combination for nanowire
devices. However, there are plenty of other material options
and fabrication techniques that can yield Ohmic contacts.
For example: Ti/Au contacts are also known to form
Schottky barriers in the valence band on InAs. However,
Ford et al. report that annealing of these contacts can result
in the formation of Ohmic contacts [63]. This seems to
work as well with other metals [126]. However, with an eye
on future research it might not be a great idea to develop a
recipe that relies on annealing for proper contact formation.
For Majorana experiments it will eventually be necessary
to have both normal and superconducting contacts on the
same nanowire. The superconductor of choice for PbTe
is Pb. Unfortunately dewetting of the Pb is expected at
the temperatures needed for annealing of the conventional
contacts.
Another option might be to seed a gold contact using a
galvanic displacement reaction prior to e-beam evaporation
to form Ohmic contacts. A method proposed by Jung et al.
[51] submerges the substrate with oxidised PbTe nanowires
(and an exposed and developed PMMA mask) in a gold-
plating solution. After several hours gold nanoparticles will
have formed directly on the PbTe. Now only gold has to
be deposited using e-beam evaporation for the formation of
Ohmic contacts.
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Fig. 43: Scanning electron microscopy images of PbTe nanowires etched with the ols (a) and adapted (b) Ar milling recipes.
Image courtesy of Vince van de Sande.

It might also be interesting to investigate other materials for
the formation of different contacts. Some may result in the
formation of Schottky barriers in the valence band, others in
the conduction band. The height and character of the barrier
can be determined by a proper choice of contact materials.
However, we have seen before that the Schottky-Mott rule
does not properly predict the formation the barriers formed
by a specific material combination.
A better way to predict might be a model by Baldereschi and
Monch [127][128], as it explicitly includes the occupation
of surface states [70]:

ΦB = Φbp − SX(Xm −Xsc) (86)

Where Φbp is the branch point energy with respect to
the valence band maximum, and Xm and Xsc are the
electronegativities of the emetal and the semiconductor
respectively. SX is the so-called slope parameter (see for
example [70]), which depends on the material choice.
This model looks very simple. However, the best way to
determine the branch point energy is from tight binding
calculations of the band structure of the semiconductor
material. So this is less straight-forward then it seems.

II. IMPROVEMENTS FOR MEASUREMENTS AND DATA
ANLYSIS

When proper contacting of the nanowires is achieved, the
measurement procedure and data analysis of the field-effect
measurements can also improved. One notable improve-
ment could be the use of a micromanipulator to transfer
the nanowires, instead of the tissue transfer method. This
is much more time consuming. But nanowires break in
unpredictable places when transferring wit a tissue. The
hope is that longer nanowires can be transferred by using
a micromanipulator.
If nanowires with a length of ∼ 2µm can be transferred
to the sample, they can be fabricated into 4-point FETs.
This allows for the 4-point probe measurements, which
can be used to determine the contact/line resistance of the

measurement setup. Up until now this was not successfully
done. From SEM images of the growth chips we have seen
that the wires should be long enough to fit four contacts, but
rarely any wires of that length make it onto the device chip.
Nanowires of this length can also be interesting for the
formation of quantum dots: devices with different channel
lengths can be made by varying the distance between the
contacts. The length of the dot determines on the overlap
of the single-particle wavefunctions in the dot, and thus
influences the phase transition from quantum dot to wigner
molecule.
Also the data analysis can still be improved. For example,
the capacitance of the devices is now estimated quite
crudely. Especially the paracitic capacitance/shielding of
the back gate capacitance by the source and drain leads
can result is significantly altered capacitance valued. As the
capacitance is a vital ingredient in the determination of the
transport properties of the device, such as the mobility.
The capacitance value can be determined more precisely in
one of two ways: by modelling or by directly measuring the
capacitance. In the Kouwenhoven group in Delft, is chosen
for the first approach: first a 3D Laplace solver is used to
calculate the electrostatic potential in the nanowire. This
takes all gates into account. Then a 2D Laplace solver and a
2D Schrödinger-Poisson solver are compared to investigate
the contribution of quantum effects to the capacitance.
The capacitance is classically completely determined by
the device geometry: the spatial distribution of electrons
distribute minimises the electrostatic energy of the system.
Quantum effects introduce other energy terms that modify
this lowest energy state, which will yields a different
capacitance value. From the comparison of the 2D models
it is concluded that the Laplace solver overestimates the
capacitance by 20%. Therefore the device capacitance is
determined to be the value found fro the 3D Laplace solver,
with a reduction of 20%.

The capacitance can also directly be measured in CV spec-
troscopy experiments. These are quite difficult to perform,
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due to the small absolute values of the capacitance of the
nanowire FETs (O(10−17F). However, a method has been
developed by Ilani et al. at Cornell University specifically
for the application of nanowire FETs [129][130][131].
Directly measuring the capacitance has the advantage that
it includes all device imperfections that are hard to model,
such as imperfections device geometry due to the fabrica-
tion process, the effect of charged surface states [131], or
fluctuations in the dielectric constant and thickness of the
gate dielectric. This last point can especially be beneficial
if multiple layers of different dielectric materials are used,
such as in top gate devices.

III. CONFIGURATION INTERACTION MODEL

For the analysis of future experiments on ballistic PbTe
nanowire/quantum dot systems, it may be useful to continue
with the theoretical study of quantum dots as set up in
chapter 7. It will be an extensive theoretical investigation
though. However, this chapter is in itself half of an overview
of the theory/an outlook. So there is not much benefit in
repeating that here.
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Appendices

I. DEVICE FABRICATION RECIPE

Here the fabrication recipe for the nanowire MOSFET devices is explained in more detail. The fabrication is
divided up into four parts:

1) The deposition of the global back gate
2) The patterning and deposition of the main architecture of the chip. This includes the contact pads for

contacting the chip to the measurement setup, markers, and chip identifiers.
3) Transfer of the nanowires from the growth chip to the device chip.
4) The patterning and deposition of the approach contacts.

These fabrication steps will separately be discussed below.

A. Back gate contact

• All devices were created on 1 × 1 cm pieces of a 525 µm thick SiO2-n− − Si-SiO2 wafer. Both thermal
silicon oxide layers are 100 nm thick.
Earlier devices have also been created on SiO2-p+ − Si-SiO2 substrates, but none of the measurements
performed on these devices are shown in this thesis. DIFFERENCE IN GATING

• A resist layer is spin-coated on one side of the substrate to protect it during the following processing steps.
The resist used is 950K PMMA A11. It is spin-coated at 2000 rpm for 60 seconds, and then baked at a
hotplate at 180degC for 8 minutes.

• The oxide layer on the uncovered side is removed using a CH3H:O2 reactive ion etch (RIE) for 7 minutes.
• The 100 nm Au contact with a 2 nm Ti adhesion layer is deposited on the bare p+ − Si side of the

substrate using e-beam evaporation.
• The resist layer is removed by putting the sample in acetone for an hour or longer, and in an ultrasonic

bath for a few minutes if necessary. then the sample is cleaned off with IPA and blow-dried with nitrogen.

B. Contact pads and markers

• A new resist layer (950K PMMA A6) is spin-coated on the (not gold covered) top side of the substrate.
The PMMA is spin-coated at 3000 rpm for 60 seconds, and baked at a hotplate at 180degC for 3.5 minutes.

• Then electron beam lithography is used to pattern the contact pads, alignment markers and marker fields,
and other identifiers into the resist. The dose used is 1500µC/cm2.

• The resist is first developed in a MIBK:IPA 1:3 solution and then in IPA, both for 80 seconds. The sample
is then blow-dried with a nitrogen gun to remove any residual IPA. This stops the development.

• Again a 2 nm Ti/100 nm Au film is deposited using e-beam evaporation. on top of the resist.
• The PMMA and residual metal layer is lifted off, by solving the PMMA in acetone. The sample is left in

acetone for several hours, preferably overnight. Ultrasonication can be used to remove the gold layer if it
sticks. Again the sample is cleaned with IPA and then blow-dried with nitrogen.

C. Nanowire transfer

• Nanowires are transferred from the growth substrate to the marker fields by the tissue transfer method:
the tip of a piece of cleanroom tissue paper is swiped over the growth substrate. Wires will break off and
stick to the tip of the paper. Then by swiping the tip over the marker fields, some wires will inevitably
detach from the tissue and remain on the sample.

• The position of the nanowires relative to the marker fields can now be determined using an SEM. Based
on these SEM images, a CAD design for the approach contacts can be created using KLayout.
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D. Approach contacts

• Spin resist on top side. Recipe: 950K PMMA A6 at 3000 rpm 60 seconds, then bake at 180degC for 3,5
minutes.

• EBL of small contacts.
• Develop: 80 seconds in MIBK. 80 seconds in IPA. Blow-dry.
• oxygen etch
• Argon ion milling is employed to physically etch away the native oxide on the nanowire. This oxide

prevents the formation of Ohmic contacts. The sample is placed at a 25 cm distance from the source.
And an argon gas flow of 11 sccm was used. The Argon milling tool has a gridded ion source that uses
DC discharge to generate ions. All relevant electrical parameters are shown in the table below:

Vbeam 600 V Ibeam 45.9 mA
Vaccelerator 119 V Iaccelerator 9.2 mA
Vdischarge 40 V Idischarge 0.43 A
Vcathode 7.3 V Icathode 5.97 A

• In the same system a 20 nm Ti and 20 nm Au layer were sputtered. It is important that this is done in the
same vacuum system as the ion etching step, as breaking the vacuum will result in reoxidisation of the
nanowire.

• An additional 100 nm of gold were deposited using e-beam evaporation. A total thickness of more than
120 nm is needed to ensure that the entire wire is capped by the approach contact. GROWTH RATE

• Resist lift-off. Acetone for 2 hours or longer, ultrasonic bath for few minutes. Clean with IPA. Blow-dry.
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II. DATA FITTING

This appendix is meant to elaborate on the fitting procedures used. For this purpose, python scripts were written
based on the curvefit function from the scipy scientific computing package. Using this function a least-squares
fit of a predefined (non-linear) function can be fitted to the data.

Four fitting parameters are used to fit eq.?? to the data: the prefactor A∗∗ (effective Richardson constant times
the effective interface area), the barrier height Φeff

B , ideality factor n, and the electron temperature Te. Because
the fitting function depends exponentially on three of the four fitting parameters, it is very sensitive to the initial
conditions given to the fit algorithm. If the initial conditions differ too much from the actual data, the fitting
algorithm does not converge.
Therefore an interface was created (fig.1a), which plots the data (red), and the initial fit function (black). Using
sliders the fit parameters can be changed to approximately match the black curve to the data. These fit parameters
are then used by the curvefit function to fit the fit function to the data.
Testing of the fitting script has shown that the electron temperature and ideality factor are insensitive to the initial
conditions. If the fit converges, the algorithm returns the same n and Te up to 3 significant digits, regardless of
the initial conditions. This has been tested by performing 25 fits with different initial conditions on the same
data set. And this has been repeated for three different data sets.
Now the fitting procedure is repeated, but with the electron temperature and ideality factor fixed on the values
obtained by the initial fit. The values for the effective Schottky barrier height obtained by this second fit are
used in the results section of this thesis.

Fig.1b shows the fitting interface for the analysis of the measured I(Vg) curves. The linear part of a curve
like this is of interest (see sec.??). Using the sliders the relevant fit range can be determined. Then again a
least-squares fit algorithm is used to fit a linear function to the data. From this fit the transconductance and
the threshold voltage of the device can be determined. These are in turn required to calculate the mobility and
channel carrier density of the MOSFET device.

Fig. 1: Fitting interfaces. a plots the data (red) and the ansatz for the fit curve (black dashed line) based on the initial fit
parameters chosen using the sliders. b shows a measured I(Vg) curve (blue), and a linear fit (black dashed line) through the
non-saturated part of the data. The sliders can be used to select the range of the plot through which the line is fitted.

III. SUPPLEMENTARY DATA

On the next page the I(Vsd), I(Vg), and logG(Vg) curves for representative devices from all device chips from
the growth series are shown on the next page. There is a clear trend from n-type to intrinsic behaviour with
increasing IV/VI ratio. A full analysis of this data can be found in chapter 6.
Notice also the unexpected behaviour for the devices with (IV/VI = 0.880).
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