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Abstract

Nuclear fusion is a promising candidate for the generation of clean energy in future societies. This
is an exciting research area which shares an intersection with other fields of academia, including
but not limited to engineering, computer science and environmental science. The method to
achieving fusion of primary interest to us is known as magnetic confinement fusion (MCF). In
particular, we will focus on a certain branch of toroidal MCF devices, known as stellarators. These
are lesser known but quickly catching up to the more ubiquitous tokamaks. A problem still
facing all MCF devices is plasma heat loss due to particle and energy transport from the hot core
to the cold edge. This reduces confinement, which inhibits our plasma reaching the necessary
fusion-temperatures. A primary cause of transport is turbulent behaviour due to plasma micro-
instabilities. The instability mode of interest to this project is the trapped-electron mode (TEM).
This mode has a critical threshold for when it first becomes manifest, and it subsequently becomes
problematic. For the TEM, this threshold is known as the critical density gradient. The nature
and behaviour of this instability mode is heavily dependent on the geometry in which it exists,
and thus, it is desirable to create an optimal geometry that extends this threshold. This would in
turn delay the onset of unwanted TEM-driven turbulence. Technically, gyrokinetic simulations
could be run for a myriad of different geometries which vary in configuration space. This would
involve starting with a simple tokamak geometry and gently deforming it until the optimum
configuration was found. However, this approach is easier said than done, and would be far too
costly in terms of time and money to be realistically feasible. Thus, we turn to the theoretical
framework which describes these micro-instabilities, and seek to find an analytical expression
predicting their behaviour. This expression will be dependent on the geometrical characteristics
of the stellarator configuration. In particular, we require a geometry-dependent expression for
the critical density gradient of the mode - which we wish to maximise. This is the end goal of
the project. Beyond this work, our results would be utilised in a stellarator optimisation code
(STELLOPT) to see if an optimal geometry can be found in configuration space which maximises
the critical density gradient. Further investigation would then be required to see if turbulent
transport is indeed reduced by this newly TEM-optimised geometry.
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Chapter 1

Introduction

Nuclear fusion has the potential to revolutionise energy production in our societies worldwide. It
is projected to be a clean, safe and high-yield form of energy generation, if it is successfully put into
operation. The method of operation we will focus on here is called magnetic confinement fusion.
Specifically, the magnetic confinement fusion device of interest to us is the stellarator, which is
the modest toroidal sibling of the better-known tokamak. All toroidal magnetic confinement
fusion devices aim to confine the fusion plasma within a magnetic cage, which follows a (twisted)
toroidal geometry. Sustaining this confinement is the main aim of this field. More specifically, we
are trying to maximise the confinement time of the plasma within this cage. Longer confinement
times should then improve the probability of enabling a self-sustaining fusion reaction in our
devices.

A major challenge to this effort is unwanted energy and particle transport from the hot and
dense plasma core to the cold thin edge. This leads to unwanted mixing and the subsequent
reduction to the core plasma temperature. A major cause of such transport is known as turbulent
transport. The turbulent behaviour that leads to this transport is driven by micro-instabilities
in the plasma. These micro-instabilities take place at orders of magnitude comparable to the
particle gyro-radius (Larmor radius). They feed off of the free energy supplied by the inevitable
temperature and density gradients in the plasma. The instability mode of interest to this project
is the trapped-electron mode (TEM), which exists and grows due to the density gradient. This
mode has a particular starting point at a certain critical density gradient, which is determined
by the geometry under consideration. Beyond this point, the mode grows increasingly unstable,
leading to turbulence and eventually to energy transport.

This project aims to delay the onset of the TEM by increasing the value of this critical density
gradient. The strategy for doing this is to develop an analytical proxy for the critical density gra-
dient, which depends on the wavenumber of the mode, the mode frequency, and the geometrical
characteristics of the toroidal configuration being considered. In the end, we would like to utilise
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5 CHAPTER 1. INTRODUCTION

this proxy in an optimisation code, so as to maximise the value of this critical density gradient by
manipulating the geometry into some optimal configuration.

A necessary step to getting to this end point is to find a suitable analytical expression for the
mode frequency, which depends on the structure of the instability mode. Thus, we implement a
variational principle technique to obtain a proxy for this mode frequency, with the trial function
input being the mode structure. In order to be able to work independently of costly simulation
data, we predict the shape of this mode structure based on the geometry the mode exists in,
and use this prediction as our trial function input for the variational principle. This variational
principle then yields a proxy for the mode frequency, which we then insert into our proxy for the
critical density gradient. This then means that our only remaining inputs are the wavenumber of
the mode and the geometric quantities of the configuration at hand - both of which are known to
us without any need for costly simulations.

With this ultimate goal in mind, we now provide an overview of what this project report contains.
The contents of this thesis have been compartmentalised into three distinct parts. This structure
will be discussed in the next section.

1.1 Thesis Structure

In this section, we provide a guide to the overall structure of this thesis report. The report consists
of three main parts.

Part 1 gives a very basic introduction and some background to the field of nuclear fusion,
including the physical process itself and how it may be put into practice in future. We also discuss
the structure of fusion plasma, and the nature of particle motion in such a system. These are
important concepts to grasp in order to fully appreciate and understand the later work of the
project. This is followed by the introduction of the essential mathematical framework that the
main body of this project will be built upon. This includes the use of gyrokinetic theory and the
derivation of the gyrokinetic equation. The results of this framework form the building blocks for
the original work carried out later in Part 2.

In Part 2, we provide the full methodology of this project, including all of the relevant analytical
derivations needed to obtain the original results of this work. The methodology consists of
two main derivations. Both derivations are carried out to obtain useful proxies for certain key
quantities possessed by the instability mode we are interested in. The first of these proxies, known
as the mode frequency proxy, is a necessary ingredient for evaluating the second proxy, known as
the critical-density-gradient proxy.
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6 CHAPTER 1. INTRODUCTION

Finally, Part 3 of this project comprises the full set of results for the various different components
of the project. Specifically, we provide the numerical results which are based upon the analytical
proxies derived in Part 2. We end each set of results with a discussion of their interpretation,
and means to improvement. Following this, we come to the final conclusion of this report,
accompanied by a brief outlook of what the next steps should be beyond this thesis project.

Additional analytical derivations which were carried out, but not utilised or needed in the main
body of work, have been relegated to the Appendices. All work contained here is purely surplus
material, with the exception of section B.2, which supports the results of section 5.2.

1.2 Research Question

The research question that motivates this project can be broken into two consecutive parts:

1. Is it possible to accurately predict the critical density gradient of trapped-electron modes
(TEMs) by analytical means for stellarators, using only geometric information?

2. If yes, can this analytical prediction be utilised in geometrical optimisation to then delay the
onset of turbulent transport caused by the TEM instability?

Only the first of these two questions will be addressed directly in this project, as answering the
second requires the use of stellarator optimisation software (STELLOPT), and this goes beyond
the scope of this work. However, this latter question has been stated here to give some broader
context in as to how the results of this project could be further developed and investigated, in
order to determine the overall efficacy of this work.
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Chapter 2

Background

In this chapter, we will discuss the motivations, mechanisms, and challenges of nuclear fusion,
as they stand today. The sections covered in this chapter are as follows. We start by briefly
describing the motivation behind researching nuclear fusion in the first place. This motivation is
followed by a look at the physics of fusion, and in particular, magnetic confinement fusion, which
is the method of fusion we are concerned with in this project. We will conclude this chapter
with a description of one of the main obstacles encountered in magnetic confinement fusion, that
being energy loss due to transport in the plasma. To put this into context, the overall aim of
this project is to find a means to reducing the levels of transport in the plasma, by investigating
one of the mechanisms that cause it. It is the goal of this chapter to provide some background
knowledge of nuclear fusion as a whole, and to help contextualise the work of this project in the
wider framework of fusion research.

2.1 Why fusion?

In this section, we will briefly discuss the fundamental motivation behind researching nuclear
fusion as a potential means to providing sustainable and clean energy.

Fusion is projected to be an invaluable source of energy production, once successfully put into
operation. There are numerous significant incentives for researching this field of physics and
technology, some of which will be mentioned here briefly. Four main factors that should be
considered are the energy yield, fuel reserves, environmental impact, and safety.

When considering the energy generated from a nuclear reaction (fission or fusion) compared to
a fossil fuel chemical reaction, the former produces an order of one million times more energy
per elementary particle than the latter [1]. Regarding fuel reserves, and taking into account
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8 CHAPTER 2. BACKGROUND

our current rate of electricity consumption, nuclear fusion would be able to sustain our energy
demands on the earth for over a billion years [1]. When it comes to environmental impact,
fusion reactions do not produce any carbon dioxide or other greenhouse gases, and no harmful
chemicals are emitted into the atmosphere. The main product of a fusion reaction is helium gas,
which is safe and chemically inactive. The fusion process is also very safe. A meltdown, as can
occur in a fission power plant, is physically impossible in a fusion device. At any given time,
a fusion reactor contains only a very small amount of fuel, and is gradually fed to sustain the
reaction. And so, the possibility of a runaway chain-reaction is non-existent [1].

2.2 Physics of Fusion & Magnetic Confinement Fusion

In this section, we first discuss the physical mechanism of fusion in general, as can be found
in nature. Following this, we adapt the process to how it can be made achievable on earth as a
practical form of energy generation. The method to be focused on here is magnetic confinement
fusion.

Thermonuclear fusion is a naturally occurring process, which takes place in environments of
extremely high temperature and pressure, such as at the core of stars like our sun. In simple
terms, light nuclei - such as hydrogen - fuse together due to their very close proximity, which
is a result of these extreme conditions. To do this, they must overcome their intrinsic repulsive
response due to the Coulomb force. The nuclei have to collide with a large kinetic energy, which
must in principle exceed the maximum of the Coulomb barrier, that being at a value of 415 keV
[2]. Fortunately, due to the quantum tunneling effect, the energy required for a collision to take
place is substantially reduced. This means that there is a finite probability of penetrating the
Coulomb wall, even if a particle’s energy is actually smaller than the barrier energy. With this in
mind, necessary collisions can occur, and due to the short-range strong nuclear force, the original
hydrogen nuclei combine to form the larger nuclei of helium. When such a fusion reaction
takes place, a large amount of energy is released as a result. The released energy corresponds to
the difference between the total masses of reactants, and the reaction products. This follows in
accordance with Einstein’s famous relation E = mc2, describing the conversion of mass to energy.
The energy released is in the form of kinetic energy, which is distributed between the reaction
products (∼ 80% goes to the neutron due to conservation of momentum). The newly formed
nuclei can then also fuse to form even larger nuclei, and this process continues along the periodic
table of elements. At the centre of stars, the end point of this fusion-chain tends to be iron - our
most stable element in the periodic table. For elements lighter than iron, these fusion reactions
often involve an energy release, since the binding energy of their products is larger than that of
the initial nuclei, as can be seen in Fig. 2.1. On the other hand, nuclear fission works by splitting
heavy atoms into lighter ones, which also leads to a release in energy. This can be easily seen
from the peaked shape of the binding energy curve.
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9 CHAPTER 2. BACKGROUND

Figure 2.1: Graph depicting energy obtained by fusion and by fission due to different nuclear binding energies.
Source: [3]

The form of fusion we will focus on takes a slightly altered process than how it occurs in stars. As
already mentioned, the fusion reactions in the sun are occurring under conditions of extremely
high temperature, density and gravitational force, and are fuelled by basic hydrogen - or protium.
On earth, however, this extremely large system with enormous gravitational force and plasma
pressure is absent. This means that alterations have to be made to the standard fusion reaction.
And so, the reaction with the highest cross section under the achievable circumstances on earth is
as follows [1]:

D2
1 + T3

1 → He4
2 + n1

0 + 17.59Mev (2.1)

This D–T reaction involves the fusion of a deuterium nucleus with a tritium nucleus. It is the
easiest of all the fusion reactions to initiate (although its initiation is still much more difficult
than that of U235 fission reactions) [1]. For ground-based fusion to work, we will need this
higher rate of reaction to take place to meet our needs of a continuous, sustained form of energy
production.

Although the above D–T reaction gives the highest chances of a fusion reaction occurring, the
average temperature of the plasma is still required to be on the order of 100 million Kelvin [1]. This
is gargantuan when one considers that the temperature of the core of our sun is approximately
15 million Kelvin. This is obviously far too high a temperature for any containment vessel
to withstand. In addition, we want our reactor to work in a self-sustaining manner, so as to
eventually have a greater output energy than input energy. Achieving this can be aided in
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10 CHAPTER 2. BACKGROUND

the following way. Once the plasma has been initially heated to the required thermonuclear
conditions, helium is being produced, which possesses a certain amount of kinetic energy. If the
helium is kept within the plasma, as desired, then this energy can be distributed to the rest of
the plasma particles through collisions. These collisions cause extra heating of the plasma from
within, without external energy input. Thus, when sufficient plasma confinement conditions are
met, it is possible to reach a point where the temperature of the plasma is maintained due to this
internal helium-heating, despite some energy losses [4].

The confinement conditions we need to consider depend on the density of the plasma (n), and the
length of time that the plasma particles can be confined for, also known as the energy confinement
time (τE). To understand exactly what conditions are required, we will introduce an extension of
the Lawson criterion [4]:

nτET > 3× 1021keV·s·m−3

This is a modification of the original criterion given by Lawson in [5]. This above expression
tells us that when the triple product of our plasma density, confinement time and temperature is
above a certain critical threshold, then the energy output is equal to energy losses for the required
plasma temperature of ∼100MK. This defines the minimum bound for a self-sustaining fusion
setup. For a fixed required temperature, this minimum threshold can be achieved by having
low density and high confinement times, or vice versa. The former strategy is used in magnetic
confinement fusion, whereas the latter is applied in inertial confinement fusion [6]. This leads us
to our discussion of magnetic confinement fusion, which aims to maximise confinement times in
order to achieve the Lawson criterion. A limiting factor to long confinement times in a fusion
reactor is the presence of transport. The details of this phenomenon will be described in the
following section.

As the name would suggest, magnetic confinement fusion is a method of thermonuclear fusion
whereby a plasma is confined and controlled by a shaped magnetic field. This method allows
for control of the plasma’s motion without any direct contact between the plasma itself and the
containment vessel walls, which is necessary due to the extremely high temperature of the plasma.
To confine the plasma, two directions of confinement must be considered. This consideration is
what determines the general geometry of our magnetic confinement fusion devices, i.e., their
toroidal shape. When using a magnetic field to control the motion of a plasma, it must be
confined both perpendicular and parallel to that magnetic field. Fortunately, the former is mostly
guaranteed due to the Lorentz force. To see this, let’s consider a single charged particle entering a
magnetic field B, moving with some velocity v. Assuming the particle’s velocity has components
both parallel (v‖) and perpendicular (v⊥) to the magnetic field, then the particle will move along
a magnetic field line with a speed equal to v‖, and it will orbit that field line due to the Lorentz
force:

FL = qv× B = qv⊥B
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11 CHAPTER 2. BACKGROUND

The charged particle then follows a helical path due to this combination of v‖ and the Lorentz
force. The particle is confined to the field line within a distance of its orbiting radius, known as
the Larmor radius ρ. This can be clearly seen in Fig. 2.2.

Figure 2.2: Perpendicular confinement of a charged particle to a field line. Source: saburchill.com

For parallel confinement, we need to ensure that the field lines do not end abruptly by meeting
the walls of the containment vessel. Thus, roughly speaking, the field lines are bent around
such that they form a ring. This enables the plasma particles to follow the field lines indefinitely,
so long as they remain in the magnetic field region. This requirement leads us to designing
toroidally-shaped devices (see Fig. 2.3). Magnetic confinement fusion is the method used for
both the tokamak and stellarator designs of fusion reactor - both of which will be introduced in a
later section. The ultimate goal of magnetic confinement fusion is to maintain the plasma at a
sufficiently high temperature and density to enable particle collisions - and subsequent fusion
reactions - to occur. Thus, it is vital to prevent the particles in the hot plasma core from drifting
outward continuously in the radial direction, as this would lead to unwanted particle loss and
heat loss. Such losses would reduce the density and temperature of the plasma core, leading to a
lower probability of fusion reactions occurring. The level to which the fusion device can minimise
these losses helps to determine the allowed confinement time for the plasma, which we wish to
maximise. The loss of energy or particles from the plasma core is described by different transport
phenomena. This brings us to the topic of the next section.
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12 CHAPTER 2. BACKGROUND

Figure 2.3: Parallel confinement ensured by toroidal shape. Source: wikipedia.org

2.3 Transport

In this section, we will give a very brief description of two important forms of transport in
magnetic confinement fusion. The first of these is neoclassical transport, which will not be
discussed further in this report. The second is known as turbulent transport, which is of primary
interest to this project.

Transport is the term given to energy or particle losses in a fusion plasma. The two types of
transport to be briefly discussed here are neoclassical transport, and turbulent transport. The
former has been optimised for in contemporary fusion devices, lowering its negative effects to a
tolerable level [1]. Thus, with neoclassical effects rendered relatively low, turbulence has become
the main limiting factor to increasing confinement times. It is for this reason that turbulence is
the primary focus of transport optimisation today.

Neoclassical transport theory combines the model of classical diffusion with effects of the toroidal
geometry. Classical diffusion describes how particles orbiting adjacent magnetic field lines can
collide and scatter, leading to a random walk process, and possibly to a loss of particles to regions
outside of the magnetic field. These Coulomb collisions can occur in a simple cylindrical geometry.
However, in our toroidal fusion devices, we have to account for extra effects that alter this classical
process. These effects take the form of particle drifts, which are due to the curvature of the device,
and also, due to an inhomogeneity of the magnetic field [1]. The field inhomogeneity can occur
due to the magnetic coil arrangement. For instance, the coils at the centre of the torus are closer
together than on the outer side of the device, which leads to a gradient in the magnetic field (∇B)
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13 CHAPTER 2. BACKGROUND

pointing toward the central toroidal axis. The radial drifts due to curvature and ∇B lead to an
increase in the step-size after a Coulomb collision. This increases the overall level of transport
when compared to classical diffusion alone.

Turbulent transport is very different in nature to neoclassical transport. Turbulence is caused by
micro-instabilities in the plasma, which are induced by a density or temperature perturbation to
the plasma profile. These perturbations can be caused by ambient vibrations in or near the device,
and so they must be expected. The micro-instabilities can then cause turbulent eddies to form,
which can transport heat from the hot core of the plasma out to the cooler edge, reducing our
levels of confinement. The two main mechanisms of instability are the ion-temperature-gradient
mode (ITGM) and the trapped-electron mode (TEM). Both of these modes will be discussed in
detail later in this report. Several approaches for potential optimisation of these turbulent modes
will also be described.

13



Chapter 3

Fusion in Practice

In this chapter, we will take a look beyond the fundamental physics of fusion, and discuss how
this process is attempted in practice. The sections covered in this chapter are as follows. We
first discuss the main magnetic confinement fusion devices relevant to this project, those being
the toroidally shaped designs known as the tokamak and the stellarator. This is followed by
a discussion of some relevant concepts for understanding the plasma structure and particle
motion within the plasma. With this knowledge of the fusion plasma at hand, we are better
able to understand the challenges occurring within it. This takes us to discussing the problem
of turbulence, and the negative impacts it has on our efforts to confine the plasma. We follow
this with a more detailed explanation of the different mechanisms underlying this turbulent
behaviour, which in turn leads to turbulent transport. We conclude this chapter with an overview
of how this unwanted turbulence could potentially be optimised for, which is of primary interest
to us in this project.

3.1 Toroidal Magnetic Confinement Fusion

In this section, we describe the nature of toroidal magnetic confinement fusion, and the two
different types of devices that aim to utilise this method of nuclear fusion. These devices are
known as the tokamak and the stellarator, and both are of interest to the main body of work in
this project.

In a toroidal magnetic confinement fusion device, a balancing of forces must be maintained to
ensure magneto-hydrodynamic (MHD) equilibrium. The details of MHD is not within the scope
of this project, but we will mention the importance of establishing a stable plasma equilibrium,
and the method to achieving this. We will then see how this requirement significantly influences
the design of our fusion devices in different ways. To produce this desired equilibrium, there are
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15 CHAPTER 3. FUSION IN PRACTICE

two different types of forces to be considered. Firstly, there are radial expansion forces, which
naturally occur due to the tendency of hot gases (and plasma) to expand [1]. These radial forces
can be balanced sufficiently by the toroidal and poloidal magnetic fields of the reactor. Here,
the toroidal and poloidal directions refer to going the long and short way around the torus,
respectively (see Fig. 3.1). Secondly, there are forces arising exclusively due to the toroidal

Figure 3.1: Toroidal direction in blue and poloidal direction in red, with major radius R and minor radius a. Source:
wikipedia.org

geometry, which cause the ring of plasma to expand and have a gradually increasing major radius.
In this case, only the poloidal magnetic fields can counteract this expansion. The magnetic field
must then possess a critical property to account for the toroidal force balance: a poloidal twist.
This twisted property is known as the rotational transform (ι) [1]. It is sometimes better known
by its inverse value, q, which is called the safety factor. This is defined as follows:

q =
m
n

=
Number of toroidal turns
Number of poloidal turns

In words, it is the ratio of the number of times a particular magnetic field line makes a complete
journey the long way around the device (toroidally), to the number of times it completes a journey
the short way around (poloidally). This twisting of the field lines can be achieved by different
means, and we will explore those differences now when discussing our two main fusion devices
of interest.

Stellarators and tokamaks are both toroidal magnetic confinement fusion devices, whose plasmas
are topologically equivalent. However, the tokamak’s plasma possesses axisymmetry about the
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16 CHAPTER 3. FUSION IN PRACTICE

central axis through the centre of the torus, whereas the stellarator loses this axisymmetry. A
stellarator plasma can be visualised externally as a helically-twisted torus in shape, analogous to
a 3D Möbius strip. The stellarator’s twisted shape leads to a more complex magnetic coil - and
magnetic field - configuration than the tokamak. Both the stellarator and tokamak must aim to
confine the plasma sufficiently, and maintain the adequate force balance, as already discussed.
The stellarator relies primarily on external superconducting magnetic coils to confine the plasma,
and it manages to twist the field lines purely by its intrinsic contorted 3D-geometry. In contrast,
the tokamak relies on external magnet coils along with an additional internal toroidal current
within the plasma, to produce a sufficient confinement field. This induced current adds a poloidal
magnetic field to artificially twist the field lines in the plasma, which helps to maintain adequate
force balance [1]. In present tokamaks, this plasma current is driven by a toroidal electric field,
induced by transformer action. This transformer has its primary coil in the centre of the torus, and
the plasma itself acts as the secondary coil. The plasma current is then induced by continuously
increasing the current in the primary coil. This is an inherently pulsed process, as there is an
upper limit to the allowed magnitude of current through the primary coil. Tokamaks must
therefore operate for only brief periods, or rely upon alternative means of current drive [1].

Stellarators have both advantages and disadvantages when compared to the tokamak. For one
thing, due to the aforementioned transformer action and its inherently pulsed nature, tokamaks
cannot run in steady-state which prevents continuous operation. This poses a substantial problem,
as continuous operation is likely to be an inevitable requirement for a practical reactor. The
stellarator, however, is an inherently steady-state device, which has several advantages from an
engineering standpoint. Moreover, the large plasma current induced in tokamaks can disappear
due to disruptive plasma instabilities, which lead to an immediate loss of confinement, and can
sometimes cause severe damage to the plasma-facing components in the device [7]. This issue
is absent in stellarators. For stellarators, the lack of an internal current eliminates some of the
instabilities of the tokamak, meaning the stellarator should be more stable at similar operating
conditions. On the downside, the absence of this internal current means that the stellarator
must compensate by using more powerful external magnets to reach the same confinement
levels achievable by the tokamak. The stellarator has one main disadvantage compared to the
tokamak. The coil system needed to generate a stellarator magnetic field is substantially more
technologically complicated than the tokamak coil system. This leads to an increased cost and
possibly also to stricter limitations on the maximum achievable magnetic field [1].
The axisymmetry which tokamaks possess is lost in stellarators, which have an inherently 3D
geometry. This led to the first stellarator experiments performing poorly compared with tokamaks
when it came to confinement. However, stellarator designs have since been optimised to account
for these initial issues, such that their confinement performance is now comparable with modern
tokamaks. The details of these issues, and the optimisation that was introduced to counteract
them, will be discussed later.
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Figure 3.2: Comparison of plasma/magnetic-coil geometries between the Tokamak and the Stellarator. Source:
Economist.com

3.2 Plasma Structure and Particle Motion

In this section, we describe the overall structure of a fusion plasma, and the motion of par-
ticles within that structure. We also introduce an important coordinate system for toroidal
configurations, which we will depend on in later chapters.

An important feature of the plasma structure to understand is the nature of a flux surface.
Following from [1], if one considers a magnetically-confined plasma at equilibrium, flux surfaces
can be easily visualised as nested contours of constant pressure, as shown in Fig. 3.3. Clearly, for
a contour of constant pressure p, which is nested between other contours of different constant
pressure, ∇p must be perpendicular to that original contour everywhere on its surface. This ∇p
can then be related to a normal vector of the constant pressure surface: ∇p ∼ n. Here, we have
ignored a potential minus sign, which would arise due to the direction of the pressure gradient
(pointing radially inward) being opposite to the normal of the surface (pointing radially outward).
Neglecting this sign detail, a magnetic flux surface can be defined as a surface satisfying the
following property:

B · ∇p ∼ B · n = 0 (3.1)

This expression then implies that the magnetic field lines, which are aligned with the vector B,
must lie within a surface of constant pressure. The field lines then do not traverse from one
surface of constant pressure pi to another distinct surface of constant pressure pj, for i 6= j. Now,
with the concept of a flux surface solidified, let’s describe the different possible types of flux
surface. Specifically, we will make the distinction between rational and irrational flux surfaces.
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Figure 3.3: Nested Flux Surfaces: Defined by contours of constant pressure in toroidal-plasma equilibrium. Source:
[1]

This is most easily understood when considering the safety factor q, which we have already
established to be:

q =
m
n

=
Number of toroidal turns
Number of poloidal turns

Every flux surface has its own value for q. For a flux surface to be rational, the value for q must
be a rational number. In other words, after a finite number of turns toroidally and poloidally
around the torus, the field line will end up where it started and eat its own tail. In contrast, for
an irrational flux surface, q must be an irrational number, and so it cannot be written as a fraction.
This implies that for this case, a magnetic field line will never close back on itself, but rather, it
winds around the torus infinitely many times until the entire flux surface has been covered by its
path.

With these concepts in mind, we can describe different features of the plasma concisely with the
help of a convenient coordinate system, in terms of (ψ, ζ, θ). The conventions shown here are
analogous to those in [8]. ψ denotes the flux surface label (or minor-radial coordinate), ζ is the
toroidal angle (about the central axis through the torus), and θ is the poloidal angle. A particular
point on a chosen flux surface can then be described by the angular coordinates ζ and θ. See Fig.
3.4 for a clear visualisation.

Now, we will discuss the nature of particle motion in our fusion devices of interest, and how
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Figure 3.4: Nested flux surfaces in a stellarator plasma, with coordinate system (ψ, ζ, θ). Source: [9]

the specific design of these configurations influences this motion. Due to the toroidal shape of
tokamaks and stellarators, there exist regions of high and low magnetic field density. The field is
stronger on the inside curve than the outside simply due to the magnets being closer together in
that area. This inhomogeneity of the magnetic field - as well as other field inhomogeneities, to be
described later - leads to the plasma particles being divided into two classes. These classes are
commonly referred to as trapped and passing particles [1, 4]. Trapped particles are those that
are periodically reflected between regions of high magnetic field with a characteristic frequency,
known as the bounce frequency. This occurs when particles enter a region of low magnetic
field strength, and do not have sufficient parallel velocity to escape the region. Such a region
can be thought of as a magnetic-field well, bounded by regions of higher magnetic field. This
reflective motion of trapped particles is also known as the mirror-effect, which will be qualitatively
described in more detail later. Passing particles, on the other hand, are those whose parallel
velocity is large enough that they can overcome these barriers of higher magnetic field, and so,
they mostly follow a magnetic field line around the torus without being reflected - or trapped in
a well [1].

This concept of the mirror-effect can be more precisely described by introducing the first adiabatic
invariant, µ. This quantity can be thought of as the gyro-averaged magnetic moment of a charged
particle moving in a helical path [1]. This can be clearly seen if we think of the standard definition
of the magnetic moment, when describing some current I moving through a wire loop of area A,
such that µ = IA. Now, in our case, for particles undergoing gyro-motion in a magnetic field, the
averaged current over one period of this motion can be expressed as:

I =
q
τc

=
qωc

2π

where τc and ωc are the cyclotron (gyro-motion) period and angular frequency, respectively. Also,
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the area of the motion can be expressed as:

A = πρ2 = π

(
mv⊥
qB

)2

The expression for ρ that we have inserted here can be obtained from equating the Lorentz force
with centripetal force, shown below. With these expressions for I and A, this then leads us to the
following form for µ:

µ = IA =
(qωc

2π

) [
π

(
mv⊥
qB

)2
]
=

(
ωcm
qB

)
︸ ︷︷ ︸

=1

(
mv2
⊥

2B

)
=

mv2
⊥

2B

where we have made use of the fact that the Lorentz force and centripetal force are equivalent,
combined with expressing the Larmor radius in terms of cyclotron angular frequency:

FL = qv⊥B =
mv2
⊥

ρ
and ρ =

v⊥
ωc

=⇒ ωcm = qB

According to [1], when averaging over the gyro-period, µ can be taken as a constant of the motion,
i.e.,

µ =
mv2
⊥(t)

2B(t)
= constant

The invariance of µ can be interpreted as follows. As the B field changes along a particle’s motion,
its perpendicular velocity v⊥ and corresponding gyro-radius ρ must changed accordingly to
maintain a constant µ. More accurately, µ is an approximate constant of the motion, since its
derivation involves averaging over the gyro-period of the particle, under the assumption that the
magnetic field is varying slowly, i.e., adiabatically [1]. This concept of having a conserved quantity
of the motion will now enable us to describe the mirror-effect, which was roughly discussed
earlier.

A magnetic field inhomogeneity, leading to a ∇‖B effect, can be induced by the magnetic coil
arrangement shown in Fig. 3.5. In such an arrangement, and in the limit that the Larmor radius ρ

is small compared to the field variation length, µ is an adiabatic invariant, and a gyro-averaged
force acts parallel to ∇‖B. This force can have a significant impact on the guiding-centre motion in
the direction parallel to the magnetic field, and this force leads to the aforementioned mirror-effect.
The derivation of this force is carried out in full in [1], and only the result will be stated here for
brevity:

F‖ = m
dv‖
dt

= −µ∇‖B

Let’s now discuss how this force can lead to the mirror-effect, which causes a total reversal of
the guiding-centre’s parallel motion. This can also be clearly visualised in Fig. 3.6. In (a) of the

20



21 CHAPTER 3. FUSION IN PRACTICE

Figure 3.5: Toroidal direction follows z-axis. Magnetic coils here are coming out of screen above z-axis, and entering
into the screen below this axis. Field strength is stronger inside coil region, and weaker between separate
coils. Source: [1]

figure, a particle starts in a region of lower B, possessing certain values of v⊥ and v‖. The particle
undergoes its gyro-motion and its guiding-centre travels parallel to B into a region of higher field
strength. Remember,

µ =
mv2
⊥(t)

2B(t)
= constant

which means that v⊥ must also increase as B increases. Note, that in a static magnetic field, a
particle’s kinetic energy is also an exact constant of the motion:

E(Kinetic) =
m(v2

⊥ + v2
‖)

2
= constant

Due to this, as v⊥ goes up, v‖ must go down accordingly. If the magnitude of B increases
sufficiently, then there will come a point when v‖ = 0. This defines the mirror point, as can
be seen in (b) of Fig. 3.6. Once reaching this point, the parallel velocity of the guiding-centre
is reversed, and the particle moves to the left in our graph. The force causing this behaviour
is F‖ = −µ∇‖B. As shown in (c), this forces slows down the particle’s parallel guiding-centre
motion [1]. This concludes our explanation of how mirroring can occur to charged particles in an
inhomogeneous magnetic field.

The plasma particles can also experience a radial drift that is due to the inhomogeneous toroidal
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Figure 3.6: Mirroring effect experienced by charged particles due to inhomogeneous magnetic fields along the toroidal
axis. (a) shows the particle trajectory, (b) shows the guiding-centre motion at the mirror point, and (c)
shows the parallel force acting on the guiding-centre. Source: [1]

magnetic field. As will be seen later during our derivation of the gyrokinetic equation, the drift
velocity arising due to the gradient of the magnetic field strength and the curvature of the field,
can be expressed as follows:

vd =
b̂

Ωa
×
(

v2
⊥
2
∇ ln B + v2

‖κ

)
(3.2)

where κ = b̂ · ∇b̂ indicates the curvature present, and Ωa =
eaB
ma

is the gyro-frequency, where the
subscript a refers to the different particle species. The details of how to arrive to this result will be
seen in Chapter 4. The level of drift a particle experiences depends heavily on its position, and so
the overall net drift depends on the particle’s path around the device. The radial drift for passing
particles is almost negligible, as any drift experienced at a given point in the device is eventually
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averaged out over the full path taken. Trapped particles, on the other hand, can experience a finite
net radial drift [1]. This finite drift is what led to particles being lost in classical stellarators, which
are those that preceded our current geometrically-optimised design. These losses are described
by the aforementioned neoclassical transport theory. Recent optimised stellarator geometries,
however, promise to reduce the neoclassical transport down to the level of tokamaks. This can
be achieved by different geometrical optimisation designs. One such way is by ensuring that
the trapped particles precess around the torus poloidally and do not experience any net radial
drift. These types of magnetic fields whereby the time-averaged radial drift vanishes are known
as omnigeneous fields. More specifically, the example that has been described here is a quasi-
isodynamic field, which is omnigeneous and has poloidally, but not toroidally, closed contours of
the magnetic field strength B. In these optimised stellarators, the neoclassical transport becomes
small enough so that turbulent transport may limit the confinement instead [1]. An example of a
fusion device that as been optimised with such a geometry is the Wendelstein 7-X (W7-X). This is
an experimental stellarator device, located in Greifswald, Germany. It was developed and built
by the Max Planck Institute of Plasma Physics (IPP), and is currently the flagship for stellarator
fusion devices today.

Figure 3.7: Schematic diagram of the superconducting stellarator device Wendelstein 7-X. The 50 non-planar (red)
and the 20 planar (orange) superconducting coils are operated in an evacuated cryostat volume between
the plasma vessel and the outer vessel. Source: [10]
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3.3 Turbulence and its Negative Impacts

In this section, we give a brief overview of the nature of turbulence in fusion plasmas, and the
negative impacts such behaviour has on magnetic confinement fusion devices.

When levels of neoclassical transport are at a low and tolerable level, turbulence is the dominant
mechanism for heat loss in the plasma. Small fluctuations in the plasma lead to turbulence, and
turbulent eddies can very effectively transport heat from the hot core across confining magnetic
field lines out to the cooler plasma edge, degrading the plasma performance. This lowers our
confinement time, which is a quantity we wish to maximise. The turbulence is driven by small-
scale instabilities, also known as micro-instabilities. These micro-instabilities grow by tapping into
the available free energy supplied by the density and temperature gradients in the plasma [11].
Some of these instabilities are driven by the trapped particles and therefore depend strongly on
the magnetic geometry. With this in mind, we then have to consider how the chosen geometrical
optimisation of the system is affecting the over stability of the fusion plasma. While large scale
instabilities should not be a major problem in geometrically optimised stellarators, the small scale
instabilities do threaten successful fusion experiments. These so-called micro-instabilities are
on the scale of the Larmor radius, O(ρ). The transport they tend to cause - known as turbulent
transport - is expected to play a major role in stellarators where the neoclassical transport is
rendered small by the optimisation [12]. With this overview of turbulence in mind, we will now
look closely at the mechanisms of instabilities that cause it.

3.4 Mechanisms of Instabilities

In this section, we introduce two important modes of micro-instabilities relevant to magnetic
confinement fusion plasma. These are the trapped-particle mode (TPM) and the ion-temperature-
gradient mode (ITGM). Specifically, we will describe the underlying mechanisms governing
the manifestation and subsequent behaviour of these modes. Trapped-particle modes and ion-
temperature-gradient modes cause most of the turbulent transport in toroidal fusion devices
[13, 14]. Before describing the causes of these instabilities, however, the concept of the drift
wave must first be understood. Only electrostatic instabilities will be focused on here, meaning
that perturbations to the magnetic field are neglected [13]. The descriptions of the following
mechanisms follow directly from [4, 12]. To end this section, we will give a brief but important
introduction to the mathematical description of these modes, in particular, regarding their
frequency ω. This will aid us in explaining the concept of marginal stability, which is crucial to
understanding the primary goal of this project.
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3.4.1 Drift Waves due to a Density Perturbation:

For drift waves to occur, we require that the plasma has a background density gradient, which we
will call ∇n0. Ambient vibrations or disturbances to the plasma can cause a density perturbation
to be induced. This perturbation to the density, up to first order, can take the following form:
n = n0 + n1. This perturbation can lead to a periodic increase and decrease in the plasma density
along the poloidal direction (when looking at a cross section of the torus). The electrons, which
are significantly lighter than the ions, are then free to move on the time scale of the perturbation.
They move along the field lines in the toroidal direction. They respond adiabatically to this
change in density of the plasma, and they move from a higher density region to fill the lower
density regions. This relocation of the electrons creates an electrostatic potential, as the regions
with more electrons become negative, and the regions where electrons have moved away from are
now more positive. This potential continues to build until the Boltzmann level is reached:

φ =
n1

n0

T
e

where T is the temperature and e is the electron charge. These potentials are in phase with the
initial density perturbation, as seen in Fig. 3.8. Hence, an electric field E is established. This
field E is perpendicular to the magnetic field B, and an E×B effect develops. This then causes
the so-called E×B drift in the plasma. This drift has a maximum which is a π

2 shift away from
the maximum of the initial density perturbation. The periodic wave form - seen in the density
gradient - then shifts to the right (positive y-direction) due to the location of the E×B drift
(which points in the ±x directions, midway between the regions of positive and negative electric
potential). A drift occurs, but the amplitude of the density perturbation remains unchanged.
This means the perturbation does not grow, but oscillates in a steady-state. With the drift wave
mechanism now explained, the main two modes of turbulence can now be understood. Rather
than discussing the TEM specifically, the more general case of the trapped-particle mode (TPM)
is described. Following this is an explanation of the ITGM.

3.4.2 Trapped-Particle Mode (TPM):

The TPM can be regarded as a drift wave that is driven unstable, but they are both initiated in a
similar way. Once again, a density perturbation is induced. This time, however, both ions and
electrons react kinetically, not adiabatically. Both particles experience a magnetic curvature drift,
and thus a drift velocity given by Eqn. 3.2. We can restate that expression here:

vd =
b̂

Ωa
×
(

v2
⊥
2
∇ ln B + v2

‖κ

)
(3.3)

where Ωa =
eaB
ma

, and the subscript a refers to the different particle species. This species depen-
dence indicates that the ions and electrons drift in opposite poloidal directions (±y directions)
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Figure 3.8: Drift Waves. Source: [12]

due to their opposite charge. We can see that in our example schematic, Fig. 3.9, the electrons
drift to the right (+y direction) from the higher density region (dark blue), and the ions behave
oppositely. In a tokamak, trapped particles spend most of their time on the outboard side where
the magnetic field is weakest, which leads to the magnetic curvature drift of these particles
having a preferred net direction [4]. Having this preferred net direction leads to these particles
experiencing a finite net drift over the course of their bounce motion. In contrast, passing particles
circulate the full torus and therefore are not constrained to only experiencing the outboard side.
This leads to them having negligible net drift, as any drift they experience averages out over time.
Returning to our schematic, we see that a charge separation occurs due to the congregation of
oppositely charged trapped particles in the ±y directions. As before, this charge separation leads
to the emergence of an electric field, and thus an E×B drift develops. Note, however, that in
this case, there is a phase shift between the potentials (positive and negative) and the density
perturbation. This is seen clearly in Fig. 3.9. The maximum of the E×B drift coincides with the
maximum of the density perturbation, and thus the perturbation is enhanced and the instability
grows. A temperature gradient can also lead to a trapped-particle instability.

For a more detailed review of TPMs, and trapped-electron modes (TEMs) in particular, the
following literature is recommended. On the stability properties of the TEM, see [15, 16]. On the
resilience of quasi-isodynamic stellarators to the TEM, see [17]. For an analytical and numerical
analysis of TPMs in stellarators, see [18, 19]. Finally, for TEM turbulence optimisation and
suppression, see [20, 21]. It should be noted that this selection of literature is by no means
exhaustive.
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Figure 3.9: Trapped-Particle Mode. Source: [12]

3.4.3 Ion-Temperature-Gradient Mode (ITG Mode):

In this case, only the kinetic response of the ions is considered, while the electron response is
neglected. Again a perturbation - this time in the temperature - is induced. If we now assume a
negative y-directed drift velocity proportional to the temperature, it can be observed that this
drift will be larger in regions of high temperatures than in regions of low temperatures. An
electrostatic potential will thus build up, as the ions leave the regions of higher temperature
faster than they can stream out from the lower temperature regions to the other side. See Fig.
3.10 for clarity. Analogous to the TPM, the resulting E×B drift is in phase with the temperature
perturbation, and the instability grows. If the direction of the drift velocity were reversed with
respect to the underlying temperature gradient, for example on the inner side of the torus, the
perturbation would be reduced and there would be no unstable mode. If there is a density
gradient as well as an ion-temperature gradient, which is expected in a fusion device, the drift
wave mechanism will compete with the ITG mechanism. The phase between the perturbation
and the E×B drift will be changed, so that the ITG mode is stabilised if the density gradient is
high enough. The roles of ions and electrons could also be reversed if electrons but not ions are
considered kinetically. This would happen for instabilities with frequencies so high that the ions
are practically non-magnetised. In this case, and if the underlying temperature gradient is in
the electron temperature, an analogous mode arises, which is called the electron-temperature
gradient mode (ETG).
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For a more detailed review of the ITGM, the following literature is recommended. A general
discussion on the ITGM and the turbulence caused by it can be found in [22, 23, 24]. A gyrofluid
description of turbulent transport in tokamaks, including transport caused by the ITGM, can
be found in [25, 26]. The threshold of destabilisation of the ITGM is described in [27]. Finally,
a study of the geometric stabilisation of ITG-driven instabilities in nearly axisymmetric and
non-axisymmetric configurations is discussed in [28] and [29], respectively. It should be noted
that this selection of literature is by no means exhaustive.

Figure 3.10: Ion-Temperature-Gradient Mode. Source: [12]

The Mode Frequency and Marginal Stability

Let’s consider some plasma perturbation which varies in space and time, Q(x, t). We can extract
the time dependence of this perturbation by means of a normal mode expansion [1, 4, 30]. This
means that our perturbed quantity can be written as

Q(x, t) = Q(x)e−iωt (3.4)

where Q(x) is the time-independent amplitude, and ω is the frequency of the perturbation, which
may be complex. In the case that ω is complex, and takes the form

ω = ωr + iγ (3.5)

then the time-dependent exponential term in our perturbation becomes

e−iωt = e−iωrt+γt (3.6)
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Thus, our perturbation can be written fully as

Q(x, t) = Q(x)e−iωrt+γt (3.7)

whereby ωr determines the real frequency of the perturbation in question, and the sign of γ

determines the stability. If γ > 0, the system is rendered unstable since the perturbation grows
exponentially in time. If γ ≤ 0, then the system either remains stable as the perturbation decays
exponentially, or it oscillates in a steady-state with no growth [1]. This imaginary component γ of
the mode frequency is thus known as the growth rate.

It is desirable to know when a perturbation is on the brink of becoming unstable, and so this
threshold of interest where γ→ 0+ is defined as the point of marginal stability. In the case of the
TEM, which is of primary interest in this project, this point occurs for a particular density gradient
value known as the critical density gradient. For density gradients below this critical value, the
growth rate γ is less than or equal to zero, meaning we either have a decaying perturbation or
a steady-state drift-wave. When γ becomes finite and positive, the drift-wave has been driven
unstable, and continues to grow [1].

Thus, if one were to maximise the value of this critical density gradient, then this would delay
the onset of the TEM instability, and with it any subsequent turbulent transport caused by its
behaviour. This method of optimisation is the ultimate goal of this project. In the following
section, we will give a brief overview of turbulence optimisation strategies in stellarators.

3.5 Turbulence Optimisation

In this section, we provide a brief overview of some different approaches to turbulence optimisa-
tion in magnetic confinement fusion devices.

Turbulence optimisation is a pressing issue in magnetic confinement fusion research today. With
the optimisation of neoclassical transport achieved to a tolerable level in contemporary fusion
devices, transport driven by turbulent behaviour is now the main obstacle that limits plasma
confinement times [14]. Evidence of this is clear from experimental measurements of turbulent
transport levels in magnetic confinement fusion devices. Results have shown that these transport
levels surpass those predicted by neoclassical transport theory by approximately a factor of 10
for ions, and up to a factor of 1000 for electrons [11]. As stellarators possess many degrees of
freedom when it comes to their geometrical design, optimisation can potentially be achieved
by manipulating the magnetic field configuration of the device to influence the level of stability
[31, 32]. Being able to manipulate the field means having more control over drift levels in the
plasma, which are due to the ∇B and curvature effects mentioned earlier. If not regulated,
these effects can lead to unwanted plasma instabilities. If successful manipulation of the fields
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is achieved, this could then heighten the stability properties of the plasma, reduce transport
from turbulence, and improve confinement overall [33]. The primary aim is then to analyse the
behaviour of turbulent modes, and extrapolate an optimum geometry from the analysis. There
are certain important characteristics of the instabilities that we can investigate in order to gain
this insight, which we will now discuss here.

As already mentioned in the previous section, the two main modes of instabilities that lead to
turbulence (TPM and ITGM) are dependent on having a gradient in either the plasma density
or plasma temperature. An important characteristic of the TEM and ITGM, in particular, is that
they both possess a critical instability threshold [13]. The existence of such a threshold was
foreshadowed at the end of the previous section, when introducing the concept of marginal
stability. As stated there, this critical threshold is defined as the density/temperature gradient
value beyond which instabilities begin to grow. Growth occurs as the instabilities tap into the
free energy made available by these plasma gradients [11]. This, of course, means that the modes
possess a certain positive growth rate (γ > 0). The higher the growth rate, the more quickly the
instability becomes an issue. This then gives rise to the current research directions of turbulence
optimisation. Two such approaches will be described briefly here. First, is to lower the slope of
the growth rate of the mode past the critical gradient, as was investigated for the TEM in [20].
See Fig. 3.11 for a graph of TEM linear growth rates present in different stellarator devices. The
point of this strategy is to slow down the rate at which energy is lost from the plasma, and thus,
improving its performance by increasing the confinement time. Second, would be to extend the
critical gradient value to a higher density/temperature gradient value, such that transport due
to the turbulent mode is not a significant factor for a larger part of the stellarator’s operational
parameter space. This would delay the overall onset of turbulence, and allow the reactor to run
for a longer time before the effects of turbulent transport become too high. This then would
also improve the plasma’s performance by increasing the confinement time. The latter strategy
described here is precisely the goal of this project, with the TEM being the instability mode of
interest.

For a more detailed review of turbulence and its optimisation, the following literature is rec-
ommended. A general introduction to turbulence can be found in [13]. For a discussion on
improving confinement in stellarators, and a study of the geometric dependence of turbulence in
stellarators, see [33, 34]. The means to controlling such turbulence in stellarators is also discussed
in [31, 32]. Finally, further material on the suppression and optimisation of turbulence can be
found in [35, 14, 36, 21]. It should be noted that this selection of literature is by no means
exhaustive.
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Figure 3.11: Linear growth rates of density-gradient-driven TEMs in different types of simulated flux tubes in
NCSX, HSX and W7-X. At each simulated density gradient a

Ln
, where a is the minor radius of the

device and Ln the density-gradient scale length, the growth rate of the most unstable mode is displayed.
Source: [20]
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Chapter 4

Gyrokinetic Theory

In this chapter, we give an introduction to gyrokinetic theory, and some motivation for why we
need to rely on this framework. The sections covered in this chapter are as follows. We begin
by discussing why kinetic theory is chosen as our starting point to describe turbulent behaviour
in fusion plasma. This leads us to formulate a kinetic description of a plasma. As we will see,
this description will lead to some difficulty, which is partially alleviated by the implementation
of gyrokinetic theory. The benefits of using this gyrokinetic theory are described, before we
tackle the complete derivation of the gyrokinetic equation. We end the chapter by deriving the
quasi-neutrality condition, which completes our set of equations required for the remainder of
this project.

4.1 Kinetic Theory

In this section, we will first motivate our efforts to understand turbulence by explaining why
kinetic theory is used for describing this phenomenon. With this motivation in hand, we will
then formulate a mathematical description of the plasma using kinetic theory, leading to a kinetic
equation. Finally, we will discuss the necessity of introducing gyrokinetic theory, along with the
accompanying benefits of this advancement.

4.1.1 Kinetic Theory to Describe Turbulence

There are several different approaches to take when dealing with the many-particle problem of
magnetic confinement fusion. When considering large scale phenomena, such as plasma waves
with wavelengths on the order of the plasma device dimensions, a fluid approach can be practical.
This works on the basis that the plasma, being composed of charge-carrying particles, behaves
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like an electrically conducting fluid due to its collective behaviour.

The plasma can be described by the following fluid quantities: the particle density na(x, t) at
the position x and time t, the macroscopic fluid velocity Va(x, t), and further tensor expressions
related to the kinetic energy of the plasma and fluxes of energy and momentum. Once again,
a denotes the particle species of interest, which can be e for the electrons, i for the hydrogen
ions, and other subscripts for impurity species. Equations linking these quantities are derived by
employing conservation laws for the total number of particles and the total momentum. However,
the fluid description has its limitations, as some phenomena - in low-collisionality plasmas
especially - are not easily described. A kinetic treatment of the problem is therefore required
[30].

4.1.2 Kinetic Description of a Plasma

The formulation presented here follows from [12, 30]. We begin by noting that each particle
species a can be described by a particle distribution function fa(x, v, t), where x and v are the
3-dimensional position and velocity vectors, respectively. In particular, the zeroth moment, with
respect to which the other moments are normalised, yields the particle density of each species
a:

na(x, t) =
∫

fa(x, v, t)d3v (4.1)

where we have integrated over velocity space here. The quantity fa(x, v, t)d3xd3v can therefore be
interpreted as the number of particles of species a in the volume element d3xd3v surrounding
the position (x, v) in the phase space of position x and velocity v. Other fluid quantities can be
obtained by taking higher orders of the distribution function. For instance, by taking the first
moment, we obtain the macroscopic fluid velocity

Va(x, t) =
∫

v fa(x, v, t)d3v∫
fa(x, v, t)d3v

=
1

na(x, t)

∫
v fa(x, v, t)d3v (4.2)

In the 6-dimensional phase space, particle numbers must be conserved. So we can use the
continuity equation to describe the evolution of the distribution function.
Let’s now focus on a particular element in phase space surrounding the point (x, v) = z. As in
hydrodynamics, the change in the number of particles in z can only occur through fluxes into
and out of z, or because of collisions, which reults in the following 6D continuity equation

∂ fa

∂t
+∇z(ż fa) = Ca( fa) (4.3)

where Ca denotes the collision operator describing small-scale Coulomb interactions between the
particles, and ż = (ẋ, v̇) denotes the flow velocity of particles in phase space. By neglecting other
forces, such as gravity, the acceleration of the charged particles is given by the Lorentz force

v̇ =
ea

ma
(E + v× B) (4.4)
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where ma and ea denote the particle mass and charge, respectively. By inserting this expression
into Eqn. 4.3, and focusing only the second term on the left-hand side, we obtain

∇z(ż fa) = (ż · ∇z fa) + (∇zż · fa)

= (ẋ · ∇x fa + v̇ · ∇v fa) + (∇xẋ · fa +∇vv̇ · fa)

=

(
v · ∇x fa +

ea

ma
(E + v× B) · ∇v fa

)
+

∇xv︸︷︷︸
=0

· fa +
ea

ma
∇v(E + v× B)︸ ︷︷ ︸

=0

 · fa

= v · ∇x fa +
ea

ma
(E + v× B) · ∇v fa

We thus obtain the kinetic equation

∂ fa

∂t
+ v · ∇x fa +

ea

ma
(E + v× B) · ∇v fa = Ca( fa) (4.5)

Depending on which type of collision operator Ca is used here, we obtain different equations.
For describing a gas, the Boltzmann operator is suitable, and we get the Boltzmann equation. In
plasmas, the dominant collision processes are Coulomb interactions, which are described by the
Fokker-Planck operator, and the resulting equation is called the Fokker-Planck equation. In very
hot plasmas, however, the collision frequency is very small. This is due to Spitzer resistivity, which
shows that the electrical resistance in a plasma decreases in proportion to the particle species

temperature as T−
3
2

a [37]. Therefore, neglecting collisions altogether can be a valid approximation.
The equation with Ca = 0 is called the Vlasov equation.

Obtaining a complete and exact solution to Eqn. 4.5 is not practically feasible. The reasoning for
the difficulties behind this will be further explained in the next section. Due to these difficulties,
approximations are needed in order to simplify the problem. The key approach in kinetic theory
is to utilise a suitable ordering scheme, which, if successful, makes it possible to distinguish the
relevant terms for the problem at hand from those small terms that don’t affect the solution in a
significant way, and that we can ultimately neglect. Determining which ordering assumptions to
make depends on the phenomena one wishes to study. In this report, the ordering scheme we
will implement is the gyrokinetic ordering scheme, which is particularly beneficial and frequently
used in magnetised plasma research [7].

4.1.3 Benefits of Gyrokinetic Theory

Turbulence is driven by pressure gradients, which results in a change in the distribution function
of particles. These changes can affect the particle density, temperature, momentum, and flux
within the plasma. In order to predict plasma turbulence, the 6D Fokker-Planck equation (Eqn.
4.5, for Ca representing Coulomb collisions) needs to be solved for each species. This 6D equation,
as it stands, results in a major practical issue when it comes to the simulation of fusion plasmas.
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The spatio-temporal scales in fusion plasmas span an enormous range of orders, and this makes
it impractical to simulate all phenomena in a realistic time-frame [7, 2].

Gyrokinetics aims to solve the this issue by reducing the Fokker-Planck equation to a 5D problem,
which is much more manageable to solve when compared to the previous 6D problem [38]. It
achieves this by eliminating the fast cyclotron time scale, as most interesting turbulent phenomena
occur at much slower time scales [7, 38]. This transform, which is essentially a change of
coordinates, is licit when the frequency of fluctuations is smaller than cyclotron frequencies. This
ordering is well justified in most fusion devices [2, 39]. The remaining 5 dimensions are allocated
as follows: three coordinates to describe the gyro-centre position, one parallel velocity or energy
coordinate, which is aligned with the magnetic field, and one for the magnetic moment µ, an
adiabatic invariant which effectively describes the velocity perpendicular to the magnetic field
[39]. This procedure eventually leads us to the generalised gyrokinetic equation, which will be
derived in the next section.

Figure 4.1: Applying the gyro-centre transform to reduce the problem from 6D to 5D. This transformation reduces
the trajectory of the particle to charged rings centred about the gyro-centre of radius ρ. Source: [39]

4.2 The Gyrokinetic Equation

The content of this section, which includes the full derivation of the gyrokinetic equation, follows
primarily from [12, 2, 7]. Throughout the derivation, assumptions about the magnitude of various
quantities are implemented. These assumptions are motivated by experimental observations,
as well as by some basic properties of plasmas. For instance, our equations will consider small
perturbations of the distribution function about a Maxwellian background, and potential energy
perturbations that are small compared to the background temperature, which we will characterise
by an expansion parameter denoted by δ [2]. With this in mind, we will introduce the assumed
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the gyrokinetic ordering
eaφ

Ta
∼ ρ

L
∼ ω

Ωa
∼ δ� 1

where ω and L denote the typical frequency and length scale of the perturbation, respec-
tively.

In a magnetic field, the charged particles gyrate around the field lines with the gyro-radius, given
by

ρa =

√
2maTa

eaB
(4.6)

where Ta is the temperature. In magnetic confinement fusion, the plasma is usually highly
magnetised, so the gyro-radius is much smaller than any macroscopic scale length L, i.e., ρa

L �
1.

For magnetised plasmas we choose convenient variables. We define the energy E that consists
of kinetic energy and electrostatic potential energy, the magnetic moment µ and the gyro-centre
R

E =
mav2

2
+ eaφ (4.7)

µ =
mav2

⊥
2B

(4.8)

R = r +
b̂× v

Ωa
(4.9)

where Ωa =
eaB
ma

is defined as the gyro-frequency (or cyclotron frequency) and b̂ is the unit vector
pointing in the direction of the magnetic field. Additionally, we use θ to represent the gyro-angle.
Then the gyrokinetic equation (Eqn. 4.5) becomes

∂ fa

∂t
+ Ṙ · ∂ fa

∂R
+ θ̇

∂ fa

∂θ
+ Ė ∂ fa

∂E + µ̇
∂ fa

∂µ
= Ca (4.10)

Now note that the gyro-angle varies as θ̇ ' −Ωa. The change of energy can be derived by noting
that mav̇ = ea(E + v× B), such that

Ė =
d
dt

(
mav2

2

)
+ ea

(
∂φ

∂t r

)
+ ea

∂φ

∂r
· dr

dt

= mav̇ · v + ea

(
∂φ

∂t r

)
+ eav · ∇φ

= −eav · ∇φ + ea

(
∂φ

∂t r

)
+ eav · ∇φ

= ea

(
∂φ

∂t

)
r

where in the third step, we inserted the above expression for mav̇, and we used E = −∇φ.
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We now decompose the distribution function into

fa = fa0 + ga,

where fa0 denotes the equilibrium distribution function including adiabatic responses to small
electric fields

(
∝ − eaφ

Ta

)
, and ga is the small non-adiabatic part of the perturbed distribution

function, ga � fa0

(
ga
fa0
∼ δ

)
. If we assume that the equilibrium distribution function varies

slowly in time compared with the perturbed part

∂ga

∂t
>

∂ fa0

∂t

but allow
∇ρ(ga) ∼ ∇L( fa0)

where ρ and L denote scale lengths that ga and fa0 vary on, respectively - we obtain in lowest
order ∂ fa0

∂θ = 0. That is, the equilibrium part is independent of the gyro-angle.

In next order, we obtain

∂ fa0

∂t
+

∂ga

∂t
+ Ṙ · ∂

∂R
( fa0 + ga)−Ωa

∂ga

∂θ
+ e

∂φ

∂t
∂ fa0

∂E + µ̇
∂ fa

∂µ
= Ca, (4.11)

where we assumed that
∂ga

∂E �
∂ fa0

∂E

∂ga

∂µ
� ∂ fa0

∂µ

As mentioned at the beginning of this section, we choose the equilibrium distribution function to
be represented by a Maxwellian distribution

fa0 = na(ψ)

(
ma

2πTa(ψ)

) 3
2

e−
E

Ta(ψ)

' na(ψ)

(
ma

2πTa(ψ)

) 3
2

e−
mav2

2Ta(ψ)

(
1− eaφ

Ta

)
(4.11)

In the final step, we have inserted Eqn. 4.7 for E . Here, na(ψ) is the density and Ta(ψ) is the
temperature, and both of these quantities are assumed to be constant on a flux surface with the
flux surface label ψ. The approximation in the exponential term is only possible if we assume the
potential to be small, i.e., eaφ

Ta
∼ δ� 1, which will result in the extra term containing the adiabatic

response. Noticing that Eqn. 4.11 is independent of both t and µ, it follows that

∂ fa0

∂t
= 0

∂ fa0

∂µ
= 0
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and also
∂ fa0

∂E = − fa0

Ta
.

Anticipating that the velocity will largely follow the magnetic field lines,

Ṙ = v‖b̂ +O(δvT)

where vT represents the thermal velocity, we obtain

∂ga

∂t
+ Ṙ · ∂

∂R
( fa0 + ga)−Ωa

∂ga

∂θ
− ea

Ta

(
∂φ

∂t

)
r

fa0 = Ca (4.12)

Before continuing, we will need to introduce gyro-averaging.

Aside

We can now perform the gyro-averaging, which allows us to describe the motion of the
gyro-centre R. When carrying out the following integral, µ and E are kept constant. What we
are essentially doing, is taking an average over the charged ring (shown in Fig. 4.1), which is
centred about R

〈 f (v, r,t, ...)〉R =
1

2π

∫ 2π

0
f (v, r,t, ...)dθ

We will now return to Eqn. 4.12. Neglecting the ∂
∂θ term for now, we can estimate the order of the

remaining terms as follows:(
∂ga

∂t
∼ Ωaga

)
;
(
Ṙ ∼ vT ' Ωaρ

)
;
(

∂ fa0

∂R
∼ fa0

L

)
;
(

∂ga

∂R
∼ ga

ρ

)
(

ea

Ta

(
∂φ

∂t

)
r

fa0 ∼
ea

Ta
(Ωaφ) fa0

)

To make things clearer, we can multiply each of these terms by a factor of 1
Ωa fa0

, which leaves the
approximate ordering of the left-hand side of Eqn. 4.12 as follows:

1
Ωa fa0

[
Ωaga + Ωaρ

fa0

L
+ Ωaρ

ga

ρ
−Ωa

∂ga

∂θ
− ea

Ta
(Ωaφ) fa0

]
→
[

ga

fa0
+

ρ

L
+

ga

fa0
+

1
fa0

∂ga

∂θ
− eaφ

Ta

]

Here, all terms are of order O(δ), except for 1
fa0

∂ga
∂θ , which is the largest term. We can thus expand

ga = ga0 + ga1 + ..., yielding in the lowest order

∂ga0

∂θ
= 0
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Keeping this in mind, we return to Eqn. 4.12. In the next order, after gyro-averaging while
keeping the gyro-centre constant (denoted by 〈...〉R)

∂ga0

∂t
+ 〈Ṙ〉R ·

∂

∂R
( fa0 + ga0)−

ea

Ta

〈(
∂φ

∂t

)
r

〉
R

fa0 = 〈Ca〉R. (4.13)

We have therefore eliminated the ∂
∂θ term. The gyro-averaged velocity can be split into different

contributions:
〈Ṙ〉R =

1
2π

∮
Ṙdθ = v‖b̂ + vE + vd

where the E× B drift vE is

vE =
b̂×∇〈φ〉R

B
(4.14)

and the magnetic drift vda is

vda =
b̂

Ωa
×
(

v2
⊥
2
∇ ln B + v2

‖κ

)
(4.15)

where the latter arises due to the gradient of the magnetic field strength, and the curvature is
given by κ = b̂ · ∇b̂.

Using the fact that fa0 is a flux function and thus does not vary along the magnetic field lines,
b̂ · ∇ fa0 = 0, and sorting terms containing ga0 onto the left-hand side, Eqn. 4.13 becomes

∂ga0

∂t
+

v‖b̂ + vE︸︷︷︸
A

+vda

 · ∇ga0−〈Ca〉R = −

vE + vda︸︷︷︸
B

 · ∇ fa0 +
ea

Ta

〈(
∂φ

∂t

)
r

〉
R

fa0. (4.16)

where the term A is nonlinear in the fluctuations, which means it can be neglected when focusing
on a linear stability analysis. The term B gives the neoclassical response in ga0, which simply
adds to the fluctuations driven by the other two terms on the right.

It is common convention, as can be seen in [40, 41, 42, 43, 44], that when fluctuations are slowly
varying parallel to the magnetic field lines, but vary rapidly across them, it is natural to separate
these components and write the perturbation in the following way:

φ(r, t) = φ̂(r)ei(k·x) = φ̂(r)ei
(

S(r)
δ −ωt

)
(4.17)

where φ̂(r) is the slowly varying amplitude of the perturbation, which is assumed to vary on
the long spatial scale (O(L)) parallel with the field, and the fast variation is found in the phase
factor

(
S(r)

δ −ωt
)

, which varies on the short spatial scale (O(ρ)) perpendicular with the field.
This phase factor can be obtained as follows:

(k · x) = (kµxµ) = (− k0︸︷︷︸
ω

t +
−→
k −→x︸︷︷︸

r

) = (−ωt +
−→
k r) =

(
S(r)

δ
−ωt

)
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Here, we can think of the spatial component of the wavevector
−→
k comprising parallel and

perpendicular components, k‖ and k⊥, respectively.

−→
k = k‖ + k⊥

If we take a spatial derivative (∇) of Eqn. 4.17, we can see that

−→
k =

∇S
δ

=
1
δ

(
∇‖S +∇⊥S

)
=⇒

(
k‖ =

∇‖S
δ

)
and

(
k⊥ =

∇⊥S
δ

)
(4.18)

It can be seen from utilising the work of [8, 40, 41, 42, 45, 46, 47, 48, 49], that the ballooning
transform allows us to assume ∇‖S ' 0, i.e.,

(∇‖S� ∇⊥S) ≡ (k‖ � k⊥)

and so,

k⊥ '
∇S
δ

. (4.19)

where k⊥ρ = O(1), as the perturbations perpendicular to the field lines are on the order of the
Larmor radius, ρ. The ballooning transform is a highly non-trivial mathematical tool widely used
in magnetic confinement fusion literature, but it will not be discussed further in this report. A
detailed explanation of this abstract concept can be found in [50].

Then we can write〈(
∂φ

∂t

)
r

〉
R
= −iω〈φ(R + ρ)〉R ' −iωφ̂(R)e−iωt

〈
e

iS(R+ρ)
δ

〉
R

where 〈
e

iS(R+ρ)
δ

〉
R
' e

iS(R)
δ

〈
eik⊥·ρ

〉
R
= J0

(
k⊥v⊥

Ωa

)
e

iS(R)
δ

so that 〈(
∂φ

∂t

)
r

〉
R
= −iω J0

(
k⊥v⊥

Ωa

)
φ(R, t)

Here, we have used the integral defining the Bessel Function of zeroth order∫ 2π

0
eix sin θdθ =

∫ 2π

0
cos (x sin θ)dθ +

∫ 2π

0
sin (x sin θ)dθ︸ ︷︷ ︸

=0

= 2π J0(x).

Now consider the remaining terms on the right-hand side of Eqn. 4.16

−vE · ∇ fa0 = − b̂×∇〈φ〉R
B

· ∇ fa0

=
∇〈φ〉R × b̂

B
· ∇ fa0

=
∇〈φ〉R

B
· b̂×∇ fa0
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Here

∇〈φ〉R = ∇〈φ(R + ρ)〉R

' ∇
[

φ̂(R)

〈
e

iS(R+ρ)
δ

〉
R

e−iωt
]

' ∇
[

φ̂(R)e−iωte
iS(R)

δ J0

(
k⊥v⊥

Ωa

)]
' φ̂(R)e−iωte

iS(R)
δ︸ ︷︷ ︸

φ(R,t)

i
∇S
δ

J0

(
k⊥v⊥

Ωa

)
because

∇S
δ
� ∇φ̂(R)

φ̂(R)

' ik⊥ J0

(
k⊥v⊥

Ωa

)
φ(R, t).

Thus, we obtain

− vE · ∇ fa0 = i J0

(
k⊥v⊥

Ωa

)
φ(R, t)

(
1
B

)
k⊥ · b̂×∇ fa0 (4.20)

Also, we can see that (
k⊥v⊥

Ωa

)
= k⊥ρ = O(1).

Since the equilibrium distribution function fa0 is a flux-function, the spatial derivative can be
expressed as

∇ fa0 =
∂ fa0

∂ψ
∇ψ

where ψ is a radial coordinate within the plasma, which indicates which nested flux surface we
are considering. We can think of ψ as a flux surface label, and so ∇ψ points in the direction of
increasing minor radius.

If the magnetic field has the form

B = B · b̂ = ∇ψ×∇α

where α can be thought of as a field line labelling coordinate (with ∇α pointing tangential to the
flux surface, and perpendicular to the magnetic field lines), the perpendicular wave vector can be
written in terms of the two components perpendicular to B

k⊥ = kψ∇ψ + kα∇α
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Accordingly, Eqn. 4.20 can be simplified further

−vE · ∇ fa0 = i J0φ
b̂ · (∇ψ× k⊥)

B
∂ fa0

∂ψ

= i J0φkα
b̂ · (∇ψ×∇α)

B
∂ fa0

∂ψ

= i J0φkα
b̂ · (B · b̂)

B
∂ fa0

∂ψ

= i J0φkα
∂ fa0

∂ψ

Now, focusing on the partial derivative of the equilibrium distribution function, we can insert the
first line of Eqn. 4.11 for fa0 here

∂ fa0

∂ψ
=

∂

∂ψ

(
na(ψ)

(
ma

2πTa(ψ)

) 3
2
)

e−
E

Ta(ψ) +

(
na(ψ)

(
ma

2πTa(ψ)

) 3
2
)

e−
E

Ta(ψ)︸ ︷︷ ︸
fa0

·

 E ∂Ta
∂ψ

Ta(ψ)2



=


∂na

∂ψ

(
m

2πT(ψ)

) 3
2

+ na(ψ)


3
2

(
m

2πTa(ψ)

) 1
2

·

 −2πm ∂Ta
∂ψ

(2πTa(ψ))2


︸ ︷︷ ︸
=−

(
m

2πTa(ψ)

)
∂ ln Ta

∂ψ




e−

E
Ta(ψ) + fa0

 E ∂Ta
∂ψ

Ta(ψ)2


︸ ︷︷ ︸

E
Ta(ψ)

∂ ln Ta
∂ψ

Now simplifying the term in square brackets, including the exponential outside it, we obtain

1
na(ψ)

∂na

∂ψ︸ ︷︷ ︸
∂ ln na

∂ψ

(
na(ψ)

(
ma

2πTa(ψ)

) 3
2
)

e−
E

Ta(ψ)︸ ︷︷ ︸
fa0

+

(
−3

2
∂ ln Ta

∂ψ

)(
na(ψ)

(
ma

2πTa(ψ)

) 3
2
)

e−
E

Ta(ψ)︸ ︷︷ ︸
fa0

Finally, this gives us our expression for ∂ fa0
∂ψ

∂ fa0

∂ψ
=

[
d ln na

dψ
+

(
E
Ta
− 3

2

)
d ln Ta

dψ

]
fa0

where we have replaced the partial derivatives with full derivatives, as n and T are functions of ψ

only. We can now return to our simplified form of Eqn. 4.20, inserting this result for ∂ fa0
∂ψ ,

−vE · ∇ fa0 = i J0φkα

[
d ln na

dψ
+

(
E
Ta
− 3

2

)
d ln Ta

dψ

]
fa0

= i J0
eaφ

Ta
ωT
∗a fa0
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where we define the velocity dependent diamagnetic drift frequency ωT
∗a as follows

ωT
∗a = ω∗a

[
1 + ηa

(
E
Ta
− 3

2

)]
ω∗a =

Takα

ea

d ln na

dψ

ηa =
d ln Ta

dψ

/
d ln na

dψ

(4.21)

For the remaining terms, we Fourier transform ga0 and separate the slow and fast variation

ga0(R, E , µ, t) = ĝa(R, E , µ)ei
(

S(R)
δ −ωt

)
(4.22)

Hence

∂ga0

∂t
+
(

v‖b̂ + vda

)
· ∇ga0 '

−iωĝa + v‖∇‖ ĝa + vda ·
∇S
δ︸︷︷︸

k⊥

ĝa

 ei
(

S(R)
δ −ωt

)

'
[
v‖∇‖ ĝa − i(ω−ωda)ĝa

]
ei
(

S(R)
δ −ωt

)

where we define the magnetic drift frequency as

ωda = k⊥ · vda

and we also used the fact that

∇‖S = 0 and
∇S
δ
� ∇ĝa(R)

ĝa(R)

With the terms A and B introduced in Eqn. 4.16, the gyrokinetic equation becomes

v‖∇‖ ĝa − i(ω−ωda)ĝa − e−i
(

S(R)
δ

) 〈
Ca

(
ĝae+i

(
S(R)

δ

))〉
R
= − iea

Ta
J0φ̂
(

ω−ωT
∗ a
)

fa0

In fact, collisions can be neglected, since the collision frequency is usually small compared with
the frequencies of the observed instability modes. So we can set Ca ' 0. Also the hats will
be omitted from both the perturbed distribution function and the electrostatic potential. The
dependence on the frequency ω and the slow variation in space will be implied. Therefore, the
gyrokinetic equation can be written in the following form:

v‖∇‖ga − i(ω−ωda)ga = −
iea

Ta
J0φ
(

ω−ωT
∗a

)
fa0 (4.23)
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This concludes the derivation of the gyrokinetic equation. In the next section, we complete our set
of equations by implementing the quasi-neutrality condition. This will conclude the establishment
of our mathematical framework, which will be built upon to perform the main derivations of this
project in Chapters 5 and 6.

4.3 The Quasi-Neutrality Condition

In this section, we formulate the quasi-neutrality (QN) condition, which is based on the principle
that our plasma has a net charge of zero. The derivation carried out here is taken directly
from [12]. This condition will prove very important in later chapters, as it completes our set of
equations required for further derivations.

We start with the Poisson equation

∇2φ =
e(ne − ni)

ε0

where ne and ni denote the electron and ion densities, respectively. Assuming a typical plasma
temperature T0, we can define a dimensionless potential

ϕ =
eφ

T0
(4.24)

hence

∇2ϕ =
e2(ne − ni)

ε0T0

We will now assume that the ion and electron densities are approximately equal to the common
value n0, but each having a small deviation of δna

ne = n0 + δne

ni = n0 + δni

The Poisson equation then becomes

∇2ϕ =
n0e2

ε0T0

(δne − δni)

n0
=

(δne − δni)

n0λ2
D

where we have inserted the Debye length, given by

λD =

√
ε0T0

n0e2

which is a shielding parameter that denotes the length after which the electrostatic potential of
a point charge has dropped to 1

e of its Coulomb value. In fusion plasmas, the Debye length is
usually one of the smallest length scales in the system.
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Noting that ϕ ≤ O(1) and that the potential varies on a length scale L, such that ∇ϕ ∼ 1
L , we

find
(δne − δni)

n0
= λ2

D∇2ϕ ∼
(

λD

L

)2

(4.25)

Therefore, we have two options presented to us. Firstly, we can think of the deviations from
QN being large, which means that the two increments in particle density differ by a substantial
amount (i.e., ∆δna is large), which means that the resulting electric potential needs to vary on
length scales comparable to λD, in order for the above equation to be satisfied. On the other hand,
if the length scales of the potential are large compared with λD (i.e., L� λD), then the density
increments must cancel (∆δna

!
= 0). Thus, we obtain the QN condition

∑
a=i,e

eaδna = eiδni + eeδne

= +eδni − eδne

= e (δni − δne)︸ ︷︷ ︸
=0

= 0

which we will state more concisely as

∑
a=i,e

eaδna = 0 (4.26)

The density perturbations can be calculated as follows

δna(r, t) =
∫

r=const
( fa0 + ga0)dv− na(r)

where ∫
fa0dv = na

(
1− eaφ

Ta

)
= na −

naeaφ

Ta

and ∫
ga0dv =

∫
r=const

ĝa(R, E , µ)ei
(

S(R)
δ −ωt

)
dv

'
∫

ĝa(R, E , µ)ei
(

S(r)
δ −k⊥·ρ−ωt

)
v⊥dv⊥dv‖dθ

= ei
(

S(r)
δ −ωt

) ∫
ĝa(R, E , µ)J0

(
k⊥v⊥

Ωa

)
2πv⊥dv⊥dv‖

where in the intermediate step, we applied the following

R = r +
b̂× v

Ωa

= r− v⊥
Ωa

= r− ρ
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and inserted this into

S(R)

δ
=

S(r− ρ)

δ

' S(r)
δ
− S(ρ)

δ

=
S(r)

δ
− k⊥ · ρ

With all of this now expanded, let’s insert everything into the QN condition (Eqn. 4.26)

∑
a=i,e

eaδna = ∑
a=i,e

ea

[∫
r=const

( fa0 + ga0)dv− na(r)
]

= ∑
a=i,e

ea

[∫
r=const

(ga0)dv + na(r)−
naeaφ

Ta
− na(r)

]
= ∑

a=i,e
ea

[
ei
(

S(r)
δ −ωt

) ∫
ĝa(R, E , µ)J0

(
k⊥v⊥

Ωa

)
2πv⊥dv⊥dv‖dv− naeaφ

Ta

] (4.27)

where in the final step, we used the following expression for ga0

ga0(R, E , µ, t) = ĝa(R, E , µ)ei
(

S(R)
δ −ωt

)

Now, as in accordance with Eqn. 4.26, the result of Eqn. 4.27 must equal zero. With this in mind,
and using the fact that φ can be expressed using

φ(r, t) = φ̂(r)ei
(

S(r)
δ −ωt

)

Eqn. 4.27, becomes

∑
a=i,e

nae2
a

Ta
φ̂(r)ei

(
S(r)

δ −ωt
)
= ∑

a=i,e
ea

[
ei
(

S(r)
δ −ωt

) ∫
ĝa(R, E , µ)J0

(
k⊥v⊥

Ωa

)
2πv⊥dv⊥dv‖dv

]

Now, we can see that the fast variation captured by the exponential terms
(

ei
(

S(r)
δ −ωt

))
will

cancel on both sides, and we will subsequently drop the hats for the slowly varying amplitudes
of φ and ga, giving us our final result

∑
a=i,e

nae2
a

Ta
φ = ∑

a=i,e
ea

∫
ga(R, E , µ)J0

(
k⊥v⊥

Ωa

)
dv (4.28)

making our set of equations complete.

This result will be essential for the upcoming analytical derivations in this report, whereby we
use Eqn. 4.28 as the starting point for deriving approximations to the TEM ω proxy (Chapter 5),
as well as for developing a proxy for the critical density gradient (Chapter 6).
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Methodology
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Methodology Overview

We begin this part of the report by first providing a brief overview of our strategy for obtaining
a suitable proxy for the critical density gradient of the TEM. This will concisely describe our
methods for achieving the main goals of this project, and thus will help to motivate the following
chapters. Our methodology from here relies on the results of our gyrokinetic framework, which
was established in Chapter 4. From this starting point, we wish to find an analytical expression
for the dispersion relation ω(k), and calculate this relation at the point of marginal stability. This
point of marginal stability occurs for

ω = ωr + iγ when γ→ 0+ (4.29)

where ω is the mode frequency of the instability, ωr is the real part of this frequency, and γ is
the growth rate of the mode. This is carried out for two separate approaches in sections 6.1 and
6.2. The relevant results from those sections are Eqn. 6.66 and Eqn. 6.71, respectively. It should
be noted that the latter of these results needs to be combined with Eqn. 5.105 in order to be
meaningful. We find that these results are dependent on the geometric quantities (magnetic field
strength B and curvature profile κ), the perpendicular wavenumber (k⊥), and the density gradient(

a
Ln

)
. This implies that for a particular geometric configuration and chosen wavenumber, our

results at marginal stability can only be satisfied by the critical density gradient. If the density
gradient is above or below this value, then we are no longer considering the point of marginal
stability.

We also see that our results, Eqn. 6.66 and Eqn. 6.71, depend on the real part of the mode
frequency ωr, which is not immediately known to us. Therefore, we make use of a variational
principle technique in section 5.2, which allows us to develop an analytical proxy for this quantity.
However, developing this approximation requires knowledge of the mode structure, given by
φ. To first test the validity of our mode frequency proxy, we can utilise φ-data output from
gyrokinetic simulations. Specifically, we utilise data output from the GENE code (Gyrokinetic
Electromagnetic Numerical Experiment). This GENE software carries out 5D gyrokinetic su-
percomputer simulations to obtain data on micro-instabilities [13]. Although turbulence is an
intrinsically non-linear phenomenon, GENE can be run in a linear and non-linear way to simulate
the behaviour of the underlying micro-instabilities [12]. For this project, only a linear investigation
is undertaken. Ideally, we would like to be able to complete this procedure without any depen-
dence on such simulation data. Thus, we can attempt to predict the mode structure profile, based
on our knowledge of the TEM instability and its dependence on the geometry at hand. When this
has been achieved, we insert our proxy for the mode frequency into our aforementioned results,
Eqn. 6.66 and Eqn. 6.71, and subsequently, we extract our proxy for the critical density gradient.
All numerical results produced from our analytical methods are presented in Chapter 7.
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Chapter 5

The Mode Frequency Proxy

In this chapter, we explore how the mode frequency ω of our TEM instability can be estimated
analytically by use of a variational principle technique. This exploration is carried out in
consecutive stages. To begin, we foreshadow the use of the variational principle by looking at
a very general case, which is explained heuristically for now. A more rigorous and detailed
approach is given later in the chapter, when we need to actively put this procedure into practice.
This is followed by our full analytical derivation for the mode frequency ω, whereby it is assumed
that the ions and electrons are behaving as passing and trapped particles, respectively. The
resulting expression for ω is to be used in Chapter 6 as a proxy function for the actual mode
frequency of the TEM instability. The accuracy of this proxy function is measured qualitatively by
comparing the analytical results with gyrokinetic simulation output from the aforementioned
GENE code. The mode frequency proxy procedure has already been shown to work sufficiently
well in the simpler tokamak geometry [18, 19, 12], yet it has not been tested hitherto for the more
complicated stellarator geometries. The results of this investigation will be presented for various
geometrical configurations in Chapter 7. An alternative mode frequency proxy derivation can be
found in Appendix A, whereby both particle species are treated solely as trapped particles. This
alternative derivation is not utilised in the remainder of this body of work, but has been included
in this report for completion’s sake.

5.1 Understanding the Variational Principle

In this section, we will give a brief heuristic argument of why and how the variational principle
is used in our analytical procedure. This argument is taken primarily from [18]. A better
understanding of this principle will be gained in later sections when we implement it directly
during our upcoming derivations - in particular, see section 5.2. However, we will foreshadow its
later use in this section, to help familiarise ourselves with the concept before engaging with it in
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practice.

We start by looking at the following general integral equation

f (ω, l)φ(l) = B
∫ 1

Bmin

1
Bmax

g(ω, λ)φ(λ)
dλ√

1− λB
(5.1)

which will be explored in greater detail later in this report. For now, all we need to know is that
the left-hand side corresponds to the ions in the system, whilst the right-hand side corresponds
to the electrons. It should be noted that in this particular example, the ions are being treated
as passing particles and the electrons are being treated as trapped particles [12]. It seems that
this integral equation is not solvable by analytical means. However, it can be reformulated as a
variational principle, whereby the variational quantity is the mode frequency ω [18].

To reformulate Eqn. 5.1 as a variational principle, we first obtain a real expression by multiplying
across by φ∗

B , and subsequently we integrate along the field line
∫

dl, giving∫ ∞

−∞
f (ω, l)|φ|2 dl

B
=
∫ 1

Bmin

1
Bmax

∫ ∞

−∞

dl√
1− λB

g(ω, λ)|φ|2dλ (5.2)

We can rearrange this slightly and write it as a functional as follows:

S[φ, ω] ≡
∫ ∞

−∞
f (ω, l)|φ|2 dl

B
−
∫ 1

Bmin

1
Bmax

∫ ∞

−∞

dl√
1− λB

g(ω, λ)|φ|2dλ = 0 (5.3)

which is a quadratic equation for the mode frequency ω when the mode structure φ is known.
We can now vary this functional with respect to φ to give

δS[φ, ω] =
∫ ∞

−∞

(
δ f
δω

δω|φ|2 + 2 f φδφ

)
dl
B
−
∫ 1

Bmin

1
Bmax

∫ ∞

−∞

dl√
1− λB

(
δg
δω

δω|φ|2 + 2gφδφ

)
dλ = 0

(5.4)

where some intermediate steps have not been shown, but will be detailed later in section 5.2. This
varied expression can now be rearranged to give

δω

(∫ ∞

−∞

δ f
δω
|φ|2 dl

B
−
∫ 1

Bmin

1
Bmax

∫ ∞

−∞

dl√
1− λB

δg
δω
|φ|2dλ

)

= −2
∫ ∞

−∞
f φδφ

dl
B
+ 2

∫ 1
Bmin

1
Bmax

∫ ∞

−∞

dl√
1− λB

gφδφdλ

(5.5)

and this can be rewritten to obtain an expression for δω:

δω =

−2
∫ ∞
−∞ δφ dl

B

(
f φ− B

∫ 1
Bmin

1
Bmax

gφ√
1−λB

dλ

)
(∫ ∞
−∞

δ f
δω |φ|2

dl
B −

∫ 1
Bmin

1
Bmax

∫ ∞
−∞

dl√
1−λB

δg
δω |φ|2dλ

) (5.6)
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We can now see that the expression in parenthesis in our numerator here is simply the integral
equation we started with, Eqn. 5.1. Thus, we obtain δω = 0 when Eqn. 5.1 is satisfied by the
correct inputs for (φ, ω). Conversely, if δω = 0 for all variations δφ, then Eqn. 5.1 is fulfilled
[18]. This latter case is then somewhat equivalent to a variational principle. And so, instead of
needing to solve Eqn. 5.1 - which cannot be done analytically, as already mentioned - a decent
approximation to the value of ω should be obtainable by inserting an appropriately chosen trial
function for φ into Eqn. 5.3. If one utilises the Rayleigh-Ritz optimisation technique, then the
systematic way of finding a suitable mode structure φ is to create a trial function containing one
or more free parameters pi, such that our trial function becomes φ(l, p1, p2, ...) [51]. This trial
function would then be inserted into our functional expression S[φ, ω], which then becomes a
function of ω and the free parameters pi. The aim would then be to minimise this functional with
respect to these free parameters, such that our system of equations becomes:

S[ω, p1, p2, ...] = 0
∂S
∂pi

= 0
(5.7)

Completing this procedure would then yield an approximate solution for the eigenvalue problem,
Eqn. 5.1, by generating sufficient approximations for φ and ω.

This very useful technique means that we circumvent the need to solve the difficult integral
equation we started with, Eqn. 5.1, and also, we obtain the eigenvalue ω with enhanced precision.
This is due to the fact that if there is an error of order ε made in the trial eigenfunction φ (where
ε < 1), then the resulting error to the eigenvalue ω is of order ε2.

5.2 Developing the Mode Frequency Proxy

In this section, we derive a proxy for the mode frequency ω of the TEM instability in stellarator
geometry, where it is assumed that the ions are behaving as passing particles and the electrons
are behaving as trapped particles. The approach taken here is a rederivation of the work carried
out in [18, 12, 52], with some steps expanded for clarity. In those works, this procedure was
applied to the simpler tokamak geometry only. In this project, however, the results of this section
are applied to the more complex geometry of stellarators.

We begin our derivation by reminding ourselves of the QN condition result:

∑
a=i,e

nae2
a

Ta
φ = ∑

a=i,e
ea

∫
ga(R, E , µ)J0

(
k⊥v⊥

Ωa

)
dv (5.8)
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Expanding the sum over each particle species a gives

nie2
i

Ti
φ +

nee2
e

Te
φ = ei

∫
gi(R, E , µ)J0

(
k⊥v⊥

Ωi

)
dv + ee

∫
ge(R, E , µ)J0

(
k⊥v⊥

Ωe

)
dv (5.9)

Now, using that

ni = ne = n

e2
i = e2

e = e2
(5.10)

changes the equation to

ne2

Ti
φ +

ne2

Te
φ = (+e)

∫
gi(R, E , µ)J0

(
k⊥v⊥

Ωi

)
dv + (−e)

∫
ge(R, E , µ)J0

(
k⊥v⊥

Ωe

)
dv (5.11)

and subsequently multiplying across by Te
ne2 gives

Te

Ti
φ + φ =

Te

ne

∫
gi(R, E , µ)J0

(
k⊥v⊥

Ωi

)
dv− Te

ne

∫
ge(R, E , µ)J0

(
k⊥v⊥

Ωe

)
dv (5.12)

As done in [12], the following distinct expressions for gi and ge are used, which correspond to
the non-adiabatic portion of the distribution function for the ions and electrons, respectively. At
this point, it is important to mention again that the ions are treated solely as passing particles,
and the electrons are treated solely as trapped particles. There are, in reality, both passing and
trapped portions of both particle species, but this assumption is suitable for the purpose of this
derivation. The ga expressions are as follows:

gi(passing) =
eiφ

Ti

(ω−ωT
∗i)

(ω−ωdi)
J0 fi0

ge(trapped) =
ee

Te
J0φ

(ω−ωT
∗e)

(ω−ωde)
fe0

(5.13)

Inserting these expressions into Eqn. 5.12, and using ei = −ee = e, gives(
Te

Ti
+ 1
)

φ =
Te

ne

∫ eφ

Ti

(ω−ωT
∗i)

(ω−ωdi)
J0 fi0 J0

(
k⊥v⊥

Ωi

)
dv +

Te

ne

∫
trapped

e
Te

J0φ
(ω−ωT

∗e)

(ω−ωde)
fe0 J0

(
k⊥v⊥

Ωe

)
dv

=
φTe

nTi

∫ (ω−ωT
∗i)

(ω−ωdi)
J2
0 fi0dv +

1
n

∫
trapped

J0φ
(ω−ωT

∗e)

(ω−ωde)
fe0 J0dv (5.14)

To simplify matters, the Bessel function J0 for the electron part of this equation can be set equal to
one [12]. This approximation is suitable for long perpendicular wavelengths, k⊥ρa � 1. Making
this change to Eqn. 5.14 then gives(

Te

Ti
+ 1
)

φ =
φTe

nTi

∫ (ω−ωT
∗i)

(ω−ωdi)
J2
0 fi0dv +

1
n

∫
trapped

(ω−ωT
∗e)

(ω−ωde)
φ fe0dv (5.15)
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Now, care must be taken in treating the passing ions and trapped electrons differently. In the
main body of our derivation, we will only present how the ion result is obtained. For the electron
part, we will simply state the end result here, as the full derivation for treating trapped particles
can be found in Appendix A. Thus, we can rewrite the electron part of Eqn. 5.15 as follows:

1
n

∫
trapped

(ω−ωT
∗e)

(ω−ωde)
φ fe0dv = B

∫ 1
Bmin

1
Bmax

Ue(ω, λ)φ
dλ√

1− λB
(5.16)

where we have used the method described in Appendix A leading to Eqn. A.50. To be explicit,
we are using the following expression for Ue(ω, λ):

Ue(ω, λ) =
1
2

[
1− ω∗e

ω
+

3
2

FeG(λ)

ω

(
1− ω∗e

ω
[1 + ηe]

)]
(5.17)

For the ion term in Eqn. 5.15, we take the same approach as carried out in [12], which will differ
considerably from the trapped particle derivation seen in Appendix A. As done in [12], we will
be assuming that we have a vanishing plasma pressure gradient, ∇p = 0, which then enables the
curvature vector to be written as the perpendicular derivative of the magnetic field strength:

~κ = b̂ · ∇b̂ =
∇⊥B

B
= ∇⊥ ln B (5.18)

This allows us to transform the ion magnetic drift expression as follows:

ωdi = k⊥ · vdi

= k⊥ ·
[

b̂×
(

v2
⊥
2
∇ ln B + v2

‖~κ

)
1

Ωi

]

= k⊥ ·
[

b̂×
(

v2
⊥
2
∇ ln B + v2

‖~κ

)
1

Ωi

]

= k⊥ ·
[

b̂× ∇⊥B
B

(
v2
⊥
2

+ v2
‖

)
1

Ωi

]

= ω̂di

(
x2
⊥
2

+ x2
‖

)
(5.19)

where we have used for the ions:

v2
‖ = v2

Tix
2
‖

v2
⊥ = v2

Tix
2
⊥

(5.20)

and we have defined

ω̂di ≡
k⊥v2

Ti
Ωi

·
(

b̂× ∇⊥B
B

)
(5.21)
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We can once again make the assumption of having a small magnetic drift frequency, which means
that ωdi � ω, such that we can write

(ω−ωT
∗i)

(ω−ωdi)
=

ω

ω

(
1− ωT

∗i
ω

)
(
1− ωdi

ω

) ' (1−
ωT
∗i

ω

)(
1 +

ωdi
ω

+O
(

ω2
di

ω2

))
(5.22)

which can be expanded to first order in ωdi to give

(ω−ωT
∗i)

(ω−ωdi)
'
(

1−
ωT
∗i

ω
+

ωdi
ω
−

ωT
∗iωdi

ω2

)
(5.23)

This then allows us to rewrite the ion part of Eqn. 5.15 as

φTe

nTi

∫ (ω−ωT
∗i)

(ω−ωdi)
J2
0 fi0dv =

φTe

nTi

∫ (
1−

ωT
∗i

ω
+

ωdi
ω
−

ωT
∗iωdi

ω2

)
J2
0 fi0dv (5.24)

We can insert the following expression for our equilibrium ion Maxwellian distribution

fi0 =

n

(
1

πv2
Ti

) 3
2

e−x2

 (5.25)

and also use the fact that, for the ions:

v = vTix =⇒ dv = vTidx =⇒ dv = d3v = (vTi)
3d3x (5.26)

These changes then transform Eqn. 5.24 as follows:

φTe

nTi

∫ (
1−

ωT
∗i

ω
+

ωdi
ω
−

ωT
∗iωdi

ω2

)
J2
0 fi0dv

=
φTe

nTi

∫ (
1−

ωT
∗i

ω
+

ωdi
ω
−

ωT
∗iωdi

ω2

)
J2
0

n

(
1

πv2
Ti

) 3
2

e−x2

 (vTi)
3d3x

=
φTe

π
3
2 Ti

∫ (
1−

ωT
∗i

ω
+

ωdi
ω
−

ωT
∗iωdi

ω2

)
︸ ︷︷ ︸

‡

J2
0 e−x2

d3x

(5.27)

Now, using of the definition of the temperature-dependent ion diamagnetic drift frequency

ωT
∗i = ω∗i

[
1 + ηi

(
Ei

Ti
− 3

2

)]
(5.28)

and also
Ei

Ti
=

miv2

2Ti
=

v2

v2
Ti

= x2 (5.29)

then Eqn. 5.28 becomes

ωT
∗i = ω∗i

[
1 + ηi

(
x2 − 3

2

)]
=

[
ω∗i + ω∗iηix2 − 3

2
ω∗iηi

]
(5.30)
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For the ions, we will switch to cylindrical velocity coordinates, such that∫
d3x ≡ 2π

∫ ∞

−∞
dx‖

∫ ∞

0
x⊥dx⊥

x2 = x2
‖ + x2

⊥

(5.31)

This changes Eqn. 5.30 to

ωT
∗i =

[
ω∗i + ω∗iηix2

‖ + ω∗iηix2
⊥ −

3
2

ω∗iηi

]
(5.32)

which we can now insert into ‡ from Eqn. 5.27, as follows(
1−

ωT
∗i

ω
+

ωdi
ω
−

ωT
∗iωdi

ω2

)
=1−

[
ω∗i + ω∗iηix2

‖ + ω∗iηix2
⊥ −

3
2 ω∗iηi

]
ω

+
ωdi
ω
−

[
ω∗i + ω∗iηix2

‖ + ω∗iηix2
⊥ −

3
2 ω∗iηi

]
ωdi

ω2

 =

(
1− ω∗i

ω
−

ω∗iηix2
‖

ω
−

ω∗iηix2
⊥

ω
+

3ω∗iηi

2ω
+

ωdi
ω
− ω∗iωdi

ω2 −
ω∗iηix2

‖ωdi

ω2 −
ω∗iηix2

⊥ωdi

ω2 +
3ω∗iηiωdi

2ω2

)
(5.33)

We will now also insert the following expression for the ion magnetic drift frequency

ωdi = ω̂di

(
x2
⊥
2

+ x2
‖

)
= ω̂di

x2
⊥
2

+ ω̂dix2
‖ (5.34)

such that the result of Eqn. 5.33 becomes

1− ω∗i
ω
−

ω∗iηix2
‖

ω
−

ω∗iηix2
⊥

ω
+

3ω∗iηi

2ω
+

ω̂di
ω

x2
⊥
2

+
ω̂di
ω

x2
‖ −

ω∗iω̂di
ω2

x2
⊥
2
− ω∗iω̂di

ω2 x2
‖

−
ω∗iηix2

‖x
2
⊥ω̂di

2ω2 −
ω∗iηix4

‖ω̂di

ω2 −
ω∗iηix4

⊥ω̂di

2ω2 −
ω∗iηix2

⊥x2
‖ω̂di

ω2 +
3ω∗iηiω̂dix2

⊥
4ω2 +

3ω∗iηiω̂dix2
‖

2ω2

(5.35)

Let’s attempt to organise this verbose expression based on the different degrees of x‖ and x⊥ in
each of the terms. When we eventually carry out the integration, we will first calculate those
integrals pertaining to x‖ before working out the x⊥ integrals, so we will prioritise our groupings
here with this in mind.(

1− ω∗i
ω

+
3ω∗iηi

2ω

)
+ x2

⊥

(
−ω∗iηi

ω
+

ω̂di
2ω
− ω∗iω̂di

2ω2 +
3ω∗iηiω̂di

4ω2

)
− x4

⊥

(
ω∗iηiω̂di

2ω2

)
+ x2

‖

(
−ω∗iηi

ω
+

ω̂di
ω
− ω∗iω̂di

ω2 −
3ω∗iηix2

⊥ω̂di

2ω2 +
3ω∗iηiω̂di

2ω2

)

− x4
‖

(
ω∗iηiω̂di

ω2

)
(5.36)
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If we now consider the final line of Eqn. 5.27, and take into account our switch to cylindrical
coordinates as outlined in Eqn. 5.31, we can see that our integration looks roughly as follows:

∫ (
1−

ωT
∗i

ω
+

ωdi
ω
−

ωT
∗iωdi

ω2

)
︸ ︷︷ ︸

‡

J2
0 e−x2

d3x =
∫ ∞

0

∫ ∞

−∞
(‡) J2

0 (ax⊥) e−(x2
‖+x2

⊥)dx‖x⊥dx⊥

=
∫ ∞

0

∫ ∞

−∞
(‡) J2

0 (ax⊥) e−x2
‖e−x2

⊥dx‖x⊥dx⊥ (5.37)

where we have left out the following prefactor for neatness:

φTe

π
3
2 Ti
× 2π︸︷︷︸

Cylindrical

=
2φTe√

πTi
(5.38)

Also, the argument of the Bessel function will be explained quickly in the following aside.

Aside

Our Bessel function usually has an argument as follows:

J0

(
k⊥v⊥

Ωa

)
(5.39)

We can make use of the following relation:

x =
v

vTa
=⇒ v = vTax =⇒ v⊥ = vTax⊥ (5.40)

and reinsert this into the Bessel function to give:

J0

(
k⊥v⊥

Ωa

)
= J0

k⊥vTa

Ωa︸ ︷︷ ︸
a

x⊥

 = J0 (ax⊥) (5.41)

We can now evaluate our x‖ integrals line by line for the terms in Eqn. 5.36, using the follow-
ing: ∫ ∞

−∞
e−x2

‖dx‖ =
√

π∫ ∞

−∞
x2
‖e
−x2
‖dx‖ =

√
π

2∫ ∞

−∞
x4
‖e
−x2
‖dx‖ =

3
√

π

4

(5.42)
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With this done, Eqn. 5.37 becomes∫ ∞

0

∫ ∞

−∞
(‡) J2

0 (ax⊥) e−x2
‖e−x2

⊥dx‖x⊥dx⊥ =

√
π
∫ ∞

0

[(
1− ω∗i

ω
+

3ω∗iηi

2ω

)
+ x2

⊥

(
−ω∗iηi

ω
+

ω̂di
2ω
− ω∗iω̂di

2ω2 +
3ω∗iηiω̂di

4ω2

)
− x4

⊥

(
ω∗iηiω̂di

2ω2

)]
× J2

0 e−x2
⊥x⊥dx⊥

+

√
π

2

∫ ∞

0

(
−ω∗iηi

ω
+

ω̂di
ω
− ω∗iω̂di

ω2 −
3ω∗iηix2

⊥ω̂di

2ω2 +
3ω∗iηiω̂di

2ω2

)
J2
0 e−x2

⊥x⊥dx⊥

+
3
√

π

4

∫ ∞

0

(
−ω∗iηiω̂di

ω2

)
J2
0 e−x2

⊥x⊥dx⊥

(5.43)

Before evaluating the remaining x⊥ integrals, let’s reorganise our result by grouping terms
together with a common degree of x⊥. To start, we will gather together all the terms containing a
x⊥ of degree one:

x⊥

(
1− ω∗i

ω
+

3ω∗iηi

2ω
− ω∗iηi

2ω
+

ω̂di
2ω
− ω∗iω̂di

2ω2 +
3ω∗iηiω̂di

4ω2 − 3ω∗iηiω̂di
4ω2

)
(5.44)

which simplifies to

x⊥

(
1− ω∗i

ω
+

ω∗iηi

ω
+

ω̂di
2ω
− ω∗iω̂di

2ω2

)
(5.45)

Now, we will gather together all the terms containing a x⊥ of degree three:

x3
⊥

(
−ω∗iηi

ω
+

ω̂di
2ω
− ω∗iω̂di

2ω2 +
3ω∗iηiω̂di

4ω2 − 3ω∗iηiω̂di
4ω2

)
(5.46)

which simplifies to

x3
⊥

(
−ω∗iηi

ω
+

ω̂di
2ω
− ω∗iω̂di

2ω2

)
(5.47)

Finally, we have only one term left unaccounted for, which contains a x⊥ of degree five:

x5
⊥

(
−ω∗iηiω̂di

2ω2

)
(5.48)

Let’s now gather everything together, which gives us our simplified version of Eqn. 5.43

√
π
∫ ∞

0

[
x⊥

(
1− ω∗i

ω
+

ω∗iηi

ω
+

ω̂di
2ω
− ω∗iω̂di

2ω2

)
+ x3

⊥

(
−ω∗iηi

ω
+

ω̂di
2ω
− ω∗iω̂di

2ω2

)
+ x5

⊥

(
−ω∗iηiω̂di

2ω2

)]
× J2

0(ax⊥)e−x2
⊥dx⊥

(5.49)
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To evaluate our final integrals here, we will make use of the following:∫ ∞

0
x⊥e−x2

⊥ J2
0(ax⊥)dx⊥ =

1
2

e−
a2
2 I0

(
a2

2

)
∫ ∞

0
x3
⊥e−x2

⊥ J2
0(ax⊥)dx⊥ =

1
2

e−
a2
2

[
−
(

a2

2
− 1
)

I0

(
a2

2

)
+

a2

2
I1

(
a2

2

)]
∫ ∞

0
x5
⊥e−x2

⊥ J2
0(ax⊥)dx⊥ =

1
4

e−
a2
2

[(
a2 − 2

)2
I0

(
a2

2

)
− a2

(
a2 − 3

)
I1

(
a2

2

)] (5.50)

where I0(x) is the modified Bessel function. If we make use of the following convenient redefini-
tion

b ≡ a2

2
(5.51)

then our integral results in Eqn. 5.50 can be more neatly written as∫ ∞

0
x⊥e−x2

⊥ J2
0(x⊥

√
2b)dx⊥ =

1
2

e−b I0 (b)∫ ∞

0
x3
⊥e−x2

⊥ J2
0(x⊥

√
2b)dx⊥ =

1
2

e−b [− (b− 1) I0 (b) + bI1 (b)]∫ ∞

0
x5
⊥e−x2

⊥ J2
0(x⊥

√
2b)dx⊥ =

1
4

e−b
[
(2b− 2)2 I0 (b)− 2b (2b− 3) I1 (b)

] (5.52)

Furthermore, we can tidy up our result even further by making use of the following defini-
tion:

Γn(b) ≡ In(b)e−b (5.53)

which changes our integrals as follows:∫ ∞

0
x⊥e−x2

⊥ J2
0(x⊥

√
2b)dx⊥ =

1
2

Γ0(b)∫ ∞

0
x3
⊥e−x2

⊥ J2
0(x⊥

√
2b)dx⊥ =

1
2
[Γ0(b)− b (Γ0(b)− Γ1(b))]∫ ∞

0
x5
⊥e−x2

⊥ J2
0(x⊥

√
2b)dx⊥ =

1
2

[
2 (b− 1)2 Γ0(b)− 2b

(
b− 3

2

)
Γ1(b)

] (5.54)

Using these results, we can now finally evaluate Eqn. 5.49 to give us the following
√

π

2
Γ0(b)

(
1− ω∗i

ω
+

ω∗iηi

ω
+

ω̂di
2ω
− ω∗iω̂di

2ω2

)
+

√
π

2
[Γ0(b)− b (Γ0(b)− Γ1(b))]

(
−ω∗iηi

ω
+

ω̂di
2ω
− ω∗iω̂di

2ω2

)
+

√
π

2

[
2 (b− 1)2 Γ0(b)− 2b

(
b− 3

2

)
Γ1(b)

] (
−ω∗iηiω̂di

2ω2

) (5.55)

For now, we will leave out the prefactor of
√

π
2 for neatness, so we can more easily tidy up the

remaining result. Let’s group our result based on the different Γn(b) terms. Starting with Γ0(b),
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we have

Γ0(b)

1− ω∗i
ω

+
ω̂di
ω
− ω∗iω̂di

ω2 − b
(
−ω∗iηi

ω
+

ω̂di
2ω
− ω∗iω̂di

2ω2

)
− (b− 1)2︸ ︷︷ ︸
(−b2+2b−1)

ω∗iηiω̂di
ω2


= Γ0(b)

[
1− ω∗i

ω
+

ω̂di
ω
− (1 + ηi)ω∗iω̂di

ω2 + b
(

ω∗iηi

ω
− ω̂di

2ω
+

ω∗iω̂di
2ω2 +

2ω∗iηiω̂di
ω2

)
− b2 ω∗iηiω̂di

ω2

]
= Γ0(b)

[
1− ω∗i

ω
+

ω̂di
ω
− (1 + ηi)ω∗iω̂di

ω2 + b
(

ω∗iηi

ω
− ω̂di

2ω
+

(1 + 4ηi)ω∗iω̂di
2ω2

)
− b2 ω∗iηiω̂di

ω2

]
≡ Y0

(5.56)

For Γ1(b), we have

Γ1(b)
[

b
(
−ω∗iηi

ω
+

ω̂di
2ω
− ω∗iω̂di

2ω2

)
+ 2b

(
b− 3

2

)(
ω∗iηiω̂di

2ω2

)]
= Γ1(b)

[
b
(
−ω∗iηi

ω
+

ω̂di
2ω
− ω∗iω̂di

2ω2 −
3ω∗iηiω̂di

2ω2

)
+ b2 ω∗iηiω̂di

ω2

]
= Γ1(b)

[
b
(
−ω∗iηi

ω
+

ω̂di
2ω
− (1 + 3ηi)ω∗iω̂di

2ω2

)
+ b2 ω∗iηiω̂di

ω2

]
≡ Y1

(5.57)

With all of this complete, we have finally obtained the ion part of Eqn. 5.15,where we will now
reintroduce our prefactor from Eqn. 5.38, and the newly found factor of

√
π

2 :

φTe

nTi

∫ (ω−ωT
∗i)

(ω−ωdi)
J2
0 fi0dv =

2φTe√
πTi

√
π

2
[Y0 + Y1]

=
φTe

Ti
[Y0 + Y1] (5.58)

Looking at the full expression of Eqn. 5.15, we have(
Te

Ti
+ 1
)

φ =
φTe

nTi

∫ (ω−ωT
∗i)

(ω−ωdi)
J2
0 fi0dv +

1
n

∫
trapped

(ω−ωT
∗e)

(ω−ωde)
φ fe0dv

=
φTe

Ti
[Y0 + Y1] + B

∫ 1
Bmin

1
Bmax

Ue(ω, λ)φ
dλ√

1− λB
(5.59)

which can be rearranged slightly and more neatly written by using τ ≡ Te
Ti

:

(τ + 1) φ− φτ [Y0 + Y1] = B
∫ 1

Bmin

1
Bmax

Ue(ω, λ)φ
dλ√

1− λB

=⇒ [1 + τ (1− [Y0 + Y1])] φ = B
∫ 1

Bmin

1
Bmax

Ue(ω, λ)φ
dλ√

1− λB

(5.60)

where the left-hand side describes the ions, and the right-hand side describes the electrons. This
integral equation can now be rewritten in the following more general form:

f (ω, l)φ(l) = B
∫ 1

Bmin

1
Bmax

g(ω, λ)φ(λ)
dλ√

1− λB
(5.61)
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In the next subsection, we will show the variational property of this general integral equation,
before applying it to our specific result in Eqn. 5.60.

Variational Property of General Integral Equation

We now take a brief, but relevant, detour from our main derivation to prove the variational
property of the general integral equation, given by the following expression:

f (ω, l)φ(l) = B
∫ 1

Bmin

1
Bmax

g(ω, λ)φ(λ)
dλ√

1− λB
(5.62)

The variational property of this general equation can be demonstrated if we multiply Eqn. 5.62
by φ∗

B and integrate along the entire field line. The left-hand side is straightforward and looks as
follows: ∫ ∞

−∞

φ∗

B
[ f (ω, l)φ(l)] dl =

∫ ∞

−∞
f (ω, l)|φ|2 dl

B
(5.63)

The right-hand side is slightly more complicated, but can be clearly seen to work as follows:

∫ ∞

−∞

φ∗

B

[
B
∫ 1

Bmin

1
Bmax

g(ω, λ)φ(λ)
dλ√

1− λB

]
dl =

∫ 1
Bmin

1
Bmax

g(ω, λ)φ(λ)
∫ ∞

−∞
φ∗

dl√
1− λB︸ ︷︷ ︸

A

dλ (5.64)

where for trapped particles, it should be noted that
∫ ∞
−∞ ≡ ∑wells

∮
. On the right-hand side of

this expression, we can make use of the following bounce-averaging procedure:

φ∗ =
1∮ dl√
1−λB

∮
φ∗

dl√
1− λB

=⇒ φ∗
∮ dl√

1− λB
=
∮

φ∗
dl√

1− λB
(5.65)

such that
A ≡ ∑

wells

∮
φ∗

dl√
1− λB

= ∑
wells

φ∗
∮ dl√

1− λB
= φ∗

∫ ∞

−∞

dl√
1− λB

(5.66)

Thus, we can rewrite the right-hand side of Eqn. 5.64 as follows:

∫ 1
Bmin

1
Bmax

g(ω, λ)φ(λ)
∫ ∞

−∞
φ∗

dl√
1− λB︸ ︷︷ ︸

A

dλ =
∫ 1

Bmin

1
Bmax

g(ω, λ)φ(λ)φ∗(λ)
∫ ∞

−∞

dl√
1− λB

dλ (5.67)
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Combining Eqn. 5.63 and Eqn. 5.67 then gives

∫ ∞

−∞
f (ω, l)|φ|2 dl

B
=
∫ 1

Bmin

1
Bmax

∫ ∞

−∞

dl√
1− λB

g(ω, λ)|φ|2dλ (5.68)

where on the right-hand side, we have used (φ)(φ∗) = |φ|2.

Now, in order to show how the variational principle can be applied to our general integral
equation, we must vary our new expression with respect to φ. Noting that we have:

ω = ω(φ)

f = f [ω] = f [ω(φ)]
(5.69)

such that
δ f
δφ
≡ δ f

δω

δω

δφ
=⇒ δ f ≡ δ f

δω

δω

δφ
δφ =

δ f
δω

δω (5.70)

we can vary Eqn. 5.68 with respect to φ to obtain

∫ ∞

−∞

(
δ f
δω

δω|φ|2 + 2 f φδφ

)
dl
B

=
∫ 1

Bmin

1
Bmax

∫ ∞

−∞

dl√
1− λB

(
δg
δω

δω|φ|2 + 2gφδφ

)
dλ (5.71)

which can be rearranged to give

δω

(∫ ∞

−∞

δ f
δω
|φ|2 dl

B
−
∫ 1

Bmin

1
Bmax

∫ ∞

−∞

dl√
1− λB

δg
δω
|φ|2dλ

)

= −2
∫ ∞

−∞
f φδφ

dl
B
+ 2

∫ 1
Bmin

1
Bmax

∫ ∞

−∞

dl√
1− λB

gφδφdλ

(5.72)

Let’s look more closely at the second term on the right-hand side. We can rewrite δφ using the
familiar bounce-averaging procedure once again:

δφ =
1∮ dl√
1−λB

∮
δφ

dl√
1− λB

(5.73)

where once again, we will note that
∫ ∞
−∞ ≡ ∑wells

∮
. Using this then changes the relevant term in
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Eqn. 5.72 in the following way

2
∫ 1

Bmin

1
Bmax

∫ ∞

−∞

dl√
1− λB

gφδφdλ = 2
∫ 1

Bmin

1
Bmax

∫ ∞
−∞︷ ︸︸ ︷

∑
wells

∮ dl√
1− λB

gφ
1∮ dl√
1−λB

∮
δφ

dl√
1− λB

dλ

= 2
∫ 1

Bmin

1
Bmax

gφ ∑
wells

∮
δφ

dl√
1− λB

dλ

= 2
∫ 1

Bmin

1
Bmax

gφ
∫ ∞

−∞
δφ

dl√
1− λB

dλ

= 2
∫ ∞

−∞
δφ

dl
B

B
∫ 1

Bmin

1
Bmax

gφ√
1− λB

dλ (5.74)

where in the final step, we pulled the δφ outside of the λ-integral, as it only depends on the field
line l. We also multiplied and divided by B. Returning now to Eqn. 5.72, we can now see we
have

δω

(∫ ∞

−∞

δ f
δω
|φ|2 dl

B
−
∫ 1

Bmin

1
Bmax

∫ ∞

−∞

dl√
1− λB

δg
δω
|φ|2dλ

)

= −2
∫ ∞

−∞
f φδφ

dl
B
+ 2

∫ ∞

−∞
δφ

dl
B

B
∫ 1

Bmin

1
Bmax

gφ√
1− λB

dλ

= −2
∫ ∞

−∞
δφ

dl
B

(
f φ− B

∫ 1
Bmin

1
Bmax

gφ√
1− λB

dλ

)
︸ ︷︷ ︸

†

(5.75)

We can now clearly see here that we obtain δω = 0 when the general integral equation (Eqn. 5.62)
is fulfilled, as this leads to † = 0. This means that the correct mode structure solution φ to the
integral equation minimises the expression obtained for the mode frequency ω, and inserting a
suitable trial function for the mode structure should then give a decent approximation to the true
value of ω.

Final Mode Frequency Proxy

Let’s take a moment to remind ourselves of what we have achieved so far, and of what we would
still like to show. Up to now, we have established that our ω proxy derivation result, given by
Eqn. 5.60:

[1 + τ (1− [Y0 + Y1])] φ = B
∫ 1

Bmin

1
Bmax

Ue(ω, λ)φ
dλ√

1− λB
(5.76)

can be written in the form of a more general integral equation, given by Eqn. 5.62:

f (ω, l)φ(l) = B
∫ 1

Bmin

1
Bmax

g(ω, l)φ(λ)
dλ√

1− λB
(5.77)
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such that we have

f (ω, l) ≡ [1 + τ (1− [Y0 + Y1])]

g(ω, l) ≡ Ue(ω, l) =
1
2

[
1− ω∗e

ω
+

3
2

FeG(λ)

ω

(
1− ω∗e

ω
[1 + ηe]

)] (5.78)

As mentioned in the previous section, we can make use of the variational property of Eqn. 5.77
by multiplying by φ∗

B and integrating along the entire field line, to give the following:∫ ∞

−∞
f (ω, l)|φ|2 dl

B
=
∫ 1

Bmin

1
Bmax

∫ ∞

−∞

dl√
1− λB

g(ω, l)|φ|2dλ (5.79)

We would now like to use this property to find our final ω proxy expression for passing ions and
trapped electrons. This can be achieved by inserting our definitions given in Eqn. 5.78 into Eqn.
5.79: ∫ ∞

−∞
[1 + τ (1− [Y0 + Y1])] |φ|2

dl
B

=

∫ 1
Bmin

1
Bmax

∫ ∞

−∞

dl√
1− λB

1
2

[
1− ω∗e

ω
+

3
2

FeG(λ)

ω

(
1− ω∗e

ω
[1 + ηe]

)]
|φ|2dλ

(5.80)

When inserting our expressions for Y0 and Y1, this expression will become very verbose, so we
will consider Eqn. 5.80 line by line. Considering the first line to start with, we can expand this
out to obtain∫ ∞

−∞
[1 + τ (1− [Y0 + Y1])] |φ|2

dl
B

=
∫ ∞

−∞
(1 + τ − τ [Y0 + Y1]) |φ|2

dl
B

=
∫ ∞

−∞
(1 + τ) |φ|2 dl

B
−
∫ ∞

−∞
τ [Y0 + Y1] |φ|2

dl
B

(5.81)

Before continuing, let’s work out the [Y0 + Y1] term separately. Instead of using the fully expanded
individual terms for Y0 and Y1, we will rely on the more compact form written earlier in Eqn.
5.55, but we will ignore the prefactors of

√
π

2 as we know they cancel later. So we have

[Y0 + Y1] =

Γ0(b)
(

1− ω∗i
ω

+
ω∗iηi

ω
+

ω̂di
2ω
− ω∗iω̂di

2ω2

)
+

[Γ0(b)− b (Γ0(b)− Γ1(b))]
(
−ω∗iηi

ω
+

ω̂di
2ω
− ω∗iω̂di

2ω2

)
+

ηi

[
2 (b− 1)2 Γ0(b)− 2b

(
b− 3

2

)
Γ1(b)

] (
−ω∗iω̂di

2ω2

)
(5.82)

Let’s now do some relabelling to aid the process of grouping terms together. We will use the
following redefinitions to keep our calculations tidy:

Z1 ≡ Γ0(b)

Z2 ≡ [Γ0(b)− b (Γ0(b)− Γ1(b))]

Z3 ≡ ηi

[
2 (b− 1)2 Γ0(b)− 2b

(
b− 3

2

)
Γ1(b)

] (5.83)
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So these redefinitions transform Eqn. 5.82 as follows:

[Y0 + Y1] =

Z1

(
1− ω∗i

ω
+

ω∗iηi

ω
+

ω̂di
2ω
− ω∗iω̂di

2ω2

)
+

Z2

(
−ω∗iηi

ω
+

ω̂di
2ω
− ω∗iω̂di

2ω2

)
+

Z3

(
−ω∗iω̂di

2ω2

)
(5.84)

Now grouping based on the degree of ω gives:

[Y0 + Y1] =

Z1 +
1
ω

[
Z1

(
−ω∗i + ω∗iηi +

ω̂di
2

)]
+

1
ω2

[
Z1

(
−ω∗iω̂di

2

)]
+

1
ω

[
Z2

(
−ω∗iηi +

ω̂di
2

)]
+

1
ω2

[
Z2

(
−ω∗iω̂di

2

)]
+

1
ω2

[
Z3

(
−ω∗iω̂di

2

)]
(5.85)

and continuing to group in this way gives

[Y0 + Y1] =

Z1 +
1
ω

[
Z1

(
−ω∗i + ω∗iηi +

ω̂di
2

)
+ Z2

(
−ω∗iηi +

ω̂di
2

)]
+

1
ω2

[
Z1

(
−ω∗iω̂di

2

)
+ Z2

(
−ω∗iω̂di

2

)
+ Z3

(
−ω∗iω̂di

2

)] (5.86)

which can be tidied up further as follows

[Y0 + Y1] =

Z1 +
1
ω

[
Z1

(
−ω∗i + ω∗iηi +

ω̂di
2

)
+ Z2

(
−ω∗iηi +

ω̂di
2

)]
+

1
ω2

[(
−ω∗iω̂di

2

)
× (Z1 + Z2 + Z3)

] (5.87)

Now, we can insert our result into Eqn. 5.81 to give∫ ∞

−∞
(1 + τ) |φ|2 dl

B
−
∫ ∞

−∞
τ [Y0 + Y1] |φ|2

dl
B

=∫ ∞

−∞
(1 + τ) |φ|2 dl

B
−∫ ∞

−∞
τ [Z1] |φ|2

dl
B
−∫ ∞

−∞

τ

ω

[
Z1

(
−ω∗i + ω∗iηi +

ω̂di
2

)
+ Z2

(
−ω∗iηi +

ω̂di
2

)]
|φ|2 dl

B
−∫ ∞

−∞

τ

ω2

[(
−ω∗iω̂di

2

)
× (Z1 + Z2 + Z3)

]
|φ|2 dl

B

(5.88)
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So Eqn. 5.88 is the full expansion of the first line in the following equation:∫ ∞

−∞
[1 + τ (1− [Y0 + Y1])] |φ|2

dl
B

=

∫ 1
Bmin

1
Bmax

∫ ∞

−∞

dl√
1− λB

1
2

[
1− ω∗e

ω
+

3
2

FeG(λ)

ω

(
1− ω∗e

ω
[1 + ηe]

)]
|φ|2dλ

(5.89)

We now need to work out the second line. Let’s focus on expanding and reorganising the terms
in the square brackets:[

1− ω∗e
ω

+
3
2

FeG(λ)

ω

(
1− ω∗e

ω
[1 + ηe]

)]
=[

1 +
1
ω

(
−ω∗e +

3
2

FeG(λ)

)
+

1
ω2

(
−3

2
FeG(λ)ω∗e [1 + ηe]

)] (5.90)

Now, the second line in Eqn5.89 becomes

∫ 1
Bmin

1
Bmax

∫ ∞

−∞

dl√
1− λB

1
2

[
1− ω∗e

ω
+

3
2

FeG(λ)

ω

(
1− ω∗e

ω
[1 + ηe]

)]
|φ|2dλ =

∫ 1
Bmin

1
Bmax

∫ ∞

−∞

dl√
1− λB

1
2
|φ|2dλ+

∫ 1
Bmin

1
Bmax

∫ ∞

−∞

dl√
1− λB

1
2

[
1
ω

(
−ω∗e +

3
2

FeG(λ)

)]
|φ|2dλ+

∫ 1
Bmin

1
Bmax

∫ ∞

−∞

dl√
1− λB

1
2

[
1

ω2

(
−3

2
FeG(λ)ω∗e [1 + ηe]

)]
|φ|2dλ

(5.91)

Thus, putting everything together into Eqn. 5.89 gives∫ ∞

−∞
(1 + τ) |φ|2 dl

B
−
∫ ∞

−∞
τ [Z1] |φ|2

dl
B
−∫ ∞

−∞

τ

ω

[
Z1

(
−ω∗i + ω∗iηi +

ω̂di
2

)
+ Z2

(
−ω∗iηi +

ω̂di
2

)]
|φ|2 dl

B
−∫ ∞

−∞

τ

ω2

[(
−ω∗iω̂di

2

)
× (Z1 + Z2 + Z3)

]
|φ|2 dl

B
=

∫ 1
Bmin

1
Bmax

∫ ∞

−∞

dl√
1− λB

1
2
|φ|2dλ+

∫ 1
Bmin

1
Bmax

∫ ∞

−∞

dl√
1− λB

1
2

[
1
ω

(
−ω∗e +

3
2

FeG(λ)

)]
|φ|2dλ+

∫ 1
Bmin

1
Bmax

∫ ∞

−∞

dl√
1− λB

1
2

[
1

ω2

(
−3

2
FeG(λ)ω∗e [1 + ηe]

)]
|φ|2dλ

(5.92)
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Now, let’s rearrange our result so that the ω-independent terms are all on one side of the equals
sign, and the remaining terms are on the opposite side:∫ ∞

−∞
(1 + τ) |φ|2 dl

B
−
∫ ∞

−∞
τ [Z1] |φ|2

dl
B
−
∫ 1

Bmin

1
Bmax

∫ ∞

−∞

dl√
1− λB

1
2
|φ|2dλ =∫ ∞

−∞

τ

ω

[
Z1

(
−ω∗i + ω∗iηi +

ω̂di
2

)
+ Z2

(
−ω∗iηi +

ω̂di
2

)]
|φ|2 dl

B
+

∫ 1
Bmin

1
Bmax

∫ ∞

−∞

dl√
1− λB

1
2

[
1
ω

(
−ω∗e +

3
2

FeG(λ)

)]
|φ|2dλ+∫ ∞

−∞

τ

ω2

[(
−ω∗iω̂di

2

)
× (Z1 + Z2 + Z3)

]
|φ|2 dl

B
+

∫ 1
Bmin

1
Bmax

∫ ∞

−∞

dl√
1− λB

1
2

[
1

ω2

(
−3

2
FeG(λ)ω∗e [1 + ηe]

)]
|φ|2dλ

(5.93)

We can pull out the ω terms also, to give∫ ∞

−∞
(1 + τ) |φ|2 dl

B
−
∫ ∞

−∞
τ [Z1] |φ|2

dl
B
−
∫ 1

Bmin

1
Bmax

∫ ∞

−∞

dl√
1− λB

1
2
|φ|2dλ =

1
ω

{∫ ∞

−∞
τ

[
Z1

(
−ω∗i + ω∗iηi +

ω̂di
2

)
+ Z2

(
−ω∗iηi +

ω̂di
2

)]
|φ|2 dl

B
+

∫ 1
Bmin

1
Bmax

∫ ∞

−∞

dl√
1− λB

1
2

(
−ω∗e +

3
2

FeG(λ)

)
|φ|2dλ

}
+

1
ω2

{∫ ∞

−∞
τ

[(
−ω∗iω̂di

2

)
× (Z1 + Z2 + Z3)

]
|φ|2 dl

B
+

∫ 1
Bmin

1
Bmax

∫ ∞

−∞

dl√
1− λB

1
2

(
−3

2
FeG(λ)ω∗e [1 + ηe]

)
|φ|2dλ

}

(5.94)

We will now make use of the fact that:

ω∗i = −
ω∗e
τ

τ =
Te

Ti

(5.95)

such that we obtain∫ ∞

−∞
(1 + τ) |φ|2 dl

B
−
∫ ∞

−∞
τ [Z1] |φ|2

dl
B
−
∫ 1

Bmin

1
Bmax

∫ ∞

−∞

dl√
1− λB

1
2
|φ|2dλ =

1
ω

{∫ ∞

−∞
τ

[
Z1

(
ω∗e
τ
− ω∗e

τ
ηi +

ω̂di
2

)
+ Z2

(
ω∗e
τ

ηi +
ω̂di
2

)]
|φ|2 dl

B
+

∫ 1
Bmin

1
Bmax

∫ ∞

−∞

dl√
1− λB

1
2

(
−ω∗e +

3
2

FeG(λ)

)
|φ|2dλ

}
+

1
ω2

{∫ ∞

−∞
τ

[(
ω∗eω̂di

2τ

)
× (Z1 + Z2 + Z3)

]
|φ|2 dl

B
+

∫ 1
Bmin

1
Bmax

∫ ∞

−∞

dl√
1− λB

1
2

(
−3

2
FeG(λ)ω∗e [1 + ηe]

)
|φ|2dλ

}

(5.96)
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and now, if we multiply out the terms involving τ, and pull out the ω∗e terms, we get∫ ∞

−∞
(1 + τ) |φ|2 dl

B
−
∫ ∞

−∞
τ [Z1] |φ|2

dl
B
−
∫ 1

Bmin

1
Bmax

∫ ∞

−∞

dl√
1− λB

1
2
|φ|2dλ =

ω∗e
ω

{∫ ∞

−∞

[
Z1

(
1− ηi +

ω̂diτ

2ω∗e

)
+ Z2

(
ηi +

ω̂diτ

2ω∗e

)]
|φ|2 dl

B
+

∫ 1
Bmin

1
Bmax

∫ ∞

−∞

dl√
1− λB

1
2

(
−1 +

3
2

FeG(λ)

ω∗e

)
|φ|2dλ

}
+

ω2
∗e

ω2

{∫ ∞

−∞

[(
ω̂di

2ω∗e

)
× (Z1 + Z2 + Z3)

]
|φ|2 dl

B
+

∫ 1
Bmin

1
Bmax

∫ ∞

−∞

dl√
1− λB

1
2

(
−3

2
FeG(λ)

ω∗e
[1 + ηe]

)
|φ|2dλ

}

(5.97)

Now, if we multiply everything by ω2

ω2∗e
and tidy up some of our terms, we finally obtain:

ω2

ω2
∗e

{∫ ∞

−∞
(1 + τ [1− Z1]) |φ|2

dl
B
−
∫ 1

Bmin

1
Bmax

∫ ∞

−∞

dl√
1− λB

1
2
|φ|2dλ

}
=

ω

ω∗e

{∫ ∞

−∞

[
Z1

(
1− ηi +

ω̂diτ

2ω∗e

)
+ Z2

(
ηi +

ω̂diτ

2ω∗e

)]
|φ|2 dl

B
+

∫ 1
Bmin

1
Bmax

∫ ∞

−∞

dl√
1− λB

1
2

(
−1 +

3
2

FeG(λ)

ω∗e

)
|φ|2dλ

}
+

∫ ∞

−∞

[(
ω̂di

2ω∗e

)
× (Z1 + Z2 + Z3)

]
|φ|2 dl

B
+

∫ 1
Bmin

1
Bmax

∫ ∞

−∞

dl√
1− λB

1
2

(
−3

2
FeG(λ)

ω∗e
[1 + ηe]

)
|φ|2dλ

(5.98)

We can now complete our derivation by reinserting our Zn expressions. Let’s look at expanding
the following term from the second line of Eqn. 5.98:[

Z1

(
1− ηi +

ω̂diτ

2ω∗e

)
+ Z2

(
ηi +

ω̂diτ

2ω∗e

)]
=[

Γ0

(
1− ηi +

ω̂diτ

2ω∗e

)
+ [Γ0 − b (Γ0 − Γ1)]

(
ηi +

ω̂diτ

2ω∗e

)]
=[

Γ0 − Γ0ηi + Γ0
ω̂diτ

2ω∗e
+ Γ0ηi + Γ0

ω̂diτ

2ω∗e
− ηib (Γ0 − Γ1)− b (Γ0 − Γ1)

ω̂diτ

2ω∗e

]
=[

[Γ0 − ηib (Γ0 − Γ1)] + [2Γ0 − b (Γ0 − Γ1)]
ω̂diτ

2ω∗e

]
(5.99)

Let’s now expand the following term from the fourth line of Eqn. 5.98:

Z1 + Z2 + Z3 =

Γ0 + Γ0 − b (Γ0 − Γ1) + ηi

[
2 (b− 1)2 Γ0(b)− 2b

(
b− 3

2

)
Γ1(b)

]
=

2Γ0 − b (Γ0 − Γ1) + ηi

[
2 (b− 1)2 Γ0 + b (3− 2b) Γ1

] (5.100)
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Let’s insert everything into Eqn. 5.98:

ω2

ω2
∗e

{∫ ∞

−∞
(1 + τ [1− Γ0]) |φ|2

dl
B
− 1

2

∫ 1
Bmin

1
Bmax

∫ ∞

−∞

dl√
1− λB

|φ|2dλ

}
=

ω

ω∗e

{∫ ∞

−∞

[
[Γ0 − ηib (Γ0 − Γ1)] + [2Γ0 − b (Γ0 − Γ1)]

ω̂diτ

2ω∗e

]
|φ|2 dl

B
−

1
2

∫ 1
Bmin

1
Bmax

∫ ∞

−∞

dl√
1− λB

|φ|2dλ +
1
2

∫ 1
Bmin

1
Bmax

∫ ∞

−∞

dl√
1− λB

(
3
2

FeG(λ)

ω∗e

)
|φ|2dλ

}

+
∫ ∞

−∞

[
2Γ0 − b (Γ0 − Γ1) + ηi

[
2 (b− 1)2 Γ0 + b (3− 2b) Γ1

]] ( ω̂di
2ω∗e

)
|φ|2 dl

B

− 1
2

∫ 1
Bmin

1
Bmax

∫ ∞

−∞

dl√
1− λB

(
3
2

FeG(λ)

ω∗e
[1 + ηe]

)
|φ|2dλ

(5.101)

We have now obtained an expression that is quadratic in ω
ω∗e

, which can be solved numerically by
inserting an appropriate trial function φ, or GENE simulation data for φ. We have also already
shown how the variational principle is appropriate for this ω proxy result by looking at the more
general integral equation, Eqn. 5.77. However, in Appendix B.2, it is shown explicitly how Eqn.
5.101 possesses the required variational property for this principle.

Before concluding this section, let’s look at how Eqn. 5.101 can be solved as a quadratic equation.
We will label the distinct terms that make up this equation as follows:

• a1 →
∫ ∞
−∞ (1 + τ [1− Γ0]) |φ|2 dl

B

• a2 → 1
2

∫ 1
Bmin

1
Bmax

∫ ∞
−∞

dl√
1−λB
|φ|2dλ

• b1 + b2 →
∫ ∞
−∞

[
[Γ0 − ηib (Γ0 − Γ1)] + [2Γ0 − b (Γ0 − Γ1)]

ω̂diτ
2ω∗e

]
|φ|2 dl

B

• b3 → 1
2

∫ 1
Bmin

1
Bmax

∫ ∞
−∞

dl√
1−λB

(
3
2

FeG(λ)
ω∗e

)
|φ|2dλ

• c1 →
∫ ∞
−∞

[
2Γ0 − b (Γ0 − Γ1) + ηi

[
2 (b− 1)2 Γ0 + b (3− 2b) Γ1

]] (
ω̂di

2ω∗e

)
|φ|2 dl

B

• c2 ≡ b3 [1 + ηe] → 1
2

∫ 1
Bmin

1
Bmax

∫ ∞
−∞

dl√
1−λB

(
3
2

FeG(λ)
ω∗e

[1 + ηe]

)
|φ|2dλ

This allows us to rewrite Eqn. 5.101 in the following concise form:

ω2

ω2
∗e
{a1 − a2}︸ ︷︷ ︸

A

=
ω

ω∗e
{b1 + b2 − a2 + b3}︸ ︷︷ ︸

B

+ {c1 − c2}︸ ︷︷ ︸
C

(5.102)

We will abbreviate this even further to give:

A
ω2

ω2
∗e
− B

ω

ω∗e
− C = 0 (5.103)
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such that we can use the standard quadratic formula:

→ ax2 + bx + c = 0

→ x =
−b±

√
b2 − 4ac

2a

(5.104)

to obtain
ω

ω∗e
=

B±
√

B2 + 4AC
2A

(5.105)

It is important to note that only the positive and real quadratic solution here corresponds to
the physically relevant results. This solution can be numerically calculated in a straightforward
manner to obtain results for ω

ω∗e
, and thus, for the mode frequency ω. In fact, to be more accurate,

we are only calculating the real part of the mode frequency ωr. We can then use these results
when evaluating our proxy for the critical density gradient.
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Chapter 6

The Critical-Density-Gradient proxy

In this chapter, we analytically derive a proxy for the critical density gradient. We will follow
a procedure similar to that found in [12], but with some modifications due to the fact that we
are considering geometries more general than quasi-isodynamic configurations. This analysis
looks at how resonance can occur in the system, and both ions and electrons will be considered
as co-contributors to this resonance.

6.1 Developing the Critical-Density-Gradient Proxy

In this section, we derive our analytical proxy for the critical density gradient of the TEM.
The procedure carried out here shares a common starting point as our mode frequency proxy
derivation in section 5.2. The primary difference between these two derivations involves the
ordering of the magnetic drift frequency ωda. In order to be able to carry out our variational
principle approach in section 5.2, we needed to assume a small ordering of this drift frequency
compared to the mode frequency (ωda � ω), so as to avoid encountering resonance when
ωda ∼ ω in the denominator of our integral expression. In this section, however, we directly
account for resonances between ωda and ω, with the hope that this will allow us to calculate the
critical density gradient when this resonance becomes manifest.

As with our mode frequency proxy derivation, we begin by inserting the bounce-averaged solution
of the gyrokinetic equation, given by the following expression for ga,

ga(Trapped) =
ea

Ta
J0φ

(ω−ωT
∗a)

(ω−ωda)
fa0 (6.1)
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into the QN equation, given by

∑
a=i,e

nae2
a

Ta
φ = ∑

a=i,e
ea

∫
ga(R, E , µ)J0

(
k⊥v⊥

ωa

)
dv (6.2)

This substitution results in

∑
a=i,e

nae2
a

Ta
φ = ∑

a=i,e
ea

∫ ( ea

Ta
J0φ

(ω−ωT
∗a)

(ω−ωda)
fa0

)
J0dv (6.3)

where once again, the Bessel function J0 for trapped particles can be set equal to one [12]. In
order to obtain a purely real left-hand side, we multiply across by φ∗ and subsequently integrate
along the field line. This gives us

∑
a

nae2
a

Ta

∫ ∞

−∞
|φ|2 dl

B
= ∑

a
∑

wells
ea

∮ dl
B

∫ ea

Ta
φφ∗

(ω−ωT
∗a)

(ω−ωda)
fa0dv

= ∑
a

∑
wells

ea

∮ dl
B

∫
trapped

ea

Ta
φφ∗

(ω−ωT
∗a)

(ω−ωda)
fa0

2πBv3dvdλ

|v‖|

= ∑
a

∑
wells

ea

∫ 1
Bmin

1
Bmax

dλ
∫ ∞

0
2πv3dv

∮ dl
|v‖|

ea

Ta
φφ∗

(ω−ωT
∗a)

(ω−ωda)
fa0

= ∑
a

∑
wells

ea

∫ 1
Bmin

1
Bmax

dλ
∫ ∞

0
2πv3dv

ea

Ta
(φ)(φ∗)τba(λ)

(ω−ωT
∗a)

(ω−ωda)
fa0

= ∑
a

∑
wells

∫ 1
Bmin

1
Bmax

dλ
∫ ∞

0
2πv3dv

e2
a

Ta
|φ|2τba(λ)

(ω−ωT
∗a)

(ω−ωda)
fa0 (6.4)

where we have used ∫ ∞

−∞
≡ ∑

wells

∮
∮ dl
|v‖|

φ∗ = φ∗τba

τba(λ) =
∮ dl
|v‖|

=
∮ dl

xvTa
√

1− λB

(6.5)

as well as

dv = 2πv⊥dv⊥dv‖ = ∑
σ

Bπv3dvdλ

|v‖|
(6.6)

with

λ =
v2
⊥

v2B
=

µ

E
σ =

v‖
|v‖|

(6.7)

The left-hand side of Eqn. 6.4 is purely real and the right-hand side consequently has to be
purely real as well. We now use the normalised velocity coordinate x = v

vTa
and express the
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bounce-averaged magnetic drift in terms of this normalised velocity and a factor that depends on
the pitch angle λ and the particle species a,

ωda = k⊥ ·
[

b̂×
(

v2
⊥
2
∇ ln B + v2

‖~κ

)
1

Ωa

]

= k⊥ ·
[

b̂×
(

λBv2

2
∇ ln B + v2(1− λB)~κ

)
1

Ωa

]
=
(

x2v2
Ta

)
k⊥ ·

[
b̂×

(
λB
2
∇ ln B + (1− λB)~κ

)
1

Ωa

]
= x2Da(λ)

(6.8)

such that Da(λ) is defined as

Da(λ) ≡ v2
Tak⊥ ·

[
b̂×

(
λB
2
∇ ln B + (1− λB)~κ

)
1

Ωa

]
(6.9)

where ~κ = b̂ · ∇b̂. In the following aside, Eqn. 6.9 is parsed further such that its species-
dependent and λ-dependent components can be defined separately.

Aside

Looking more closely at Eqn. 6.9, let’s expand our species-dependent terms as follows

vTa =

√
2Ta

ma

Ωa =

(
eaB
ma

)
=

eaB
ma

(6.10)

Now, going back to our expression for Da(λ)

Da(λ) ≡ v2
Tak⊥ ·

[
b̂×

(
λB
2
∇ ln B + (1− λB)~κ

)
1

Ωa

]
(6.11)

we can insert our expressions from Eqn. 6.10 to obtain

Da(λ) =

(
2Ta

ma

)
k⊥ ·

[
b̂×

(
λB
2
∇ ln B + (1− λB)~κ

)
ma

eaB

]
=

(
2Ta

ma

)(
ma

ea

)
k⊥ ·

[
b̂×

(
λB
2
∇ ln B + (1− λB)~κ

)
1
B

]
=

(
2Ta

ea

)
k⊥ ·

[
b̂×

(
λB
2
∇ ln B + (1− λB)~κ

)
1
B

]
= FaG(λ) (6.12)

where in the final step, we have split Da(λ) into a species-dependent part Fa, and a λ-
dependent part G(λ).
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Let’s take a moment to discuss a crucial point in our derivation. Reminding ourselves of where
we left off:

∑
a

nae2
a

Ta

∫ ∞

−∞
|φ|2 dl

B
= ∑

a
∑

wells

∫ 1
Bmin

1
Bmax

dλ
∫ ∞

0
2πv3dv

e2
a

Ta
|φ|2τba(λ)

(ω−ωT
∗a)

(ω−ωda)
fa0 (6.13)

we can see that when ω = ωda, we are going to run into a divergence in our integral expression
due to the following term:

1
(ω−ωda)

=
1(

ω− x2FaG(λ)
) =

1

FaG(λ)

1(
ω

FaG(λ)
− x2

) (6.14)

Now, if we approach the point of marginal stability, where ω = ωr + iγ with γ → 0+, we can
write

lim
γ

FaG(λ)
→0+

 1
ωr

FaG(λ)
+ iγ

FaG(λ)
− x2

 = −P

 1
x2 − ωr

FaG(λ)

+ iπδ

(
ωr

FaG(λ)
− x2

)
(6.15)

where P denotes the principal value of the integral. Therefore, we will have an imaginary part on
the right-hand side of Eqn. 6.13 only when ωr has the same sign as FaG(λ), i.e., when there is a
resonance between the frequency of the mode and the bounce-averaged magnetic drift. If the
opposite was true, and these signs differed, then the argument of the delta function in Eqn. 6.15
would be negative, which would make the imaginary component of this expression zero.

And so, for resonance to be present, we can concisely state our required criterion as

(sign)ωr
!
= (sign)FaG(λ) (6.16)

or, in terms of the frequencies
(sign)ωr

!
= (sign)ωda (6.17)

Alternatively, if ωda = 0, then resonance cannot occur and so the imaginary component would
once again vanish. Eqn. 6.16 and Eqn. 6.17 will become important later when we need to
determine which λ-values correspond to resonance occurring.

Before continuing, let’s consider what implications this criterion (Eqn. 6.17) has on the particle
species in our system. Firstly, it is important to note that the bounce-averaged magnetic drift
frequencies have opposite signs for ions and electrons. Next, it is for now assumed (but later
confirmed by numerical simulation) that G(λ) can change sign, meaning that it has a role to play
in the overall sign of ωda. This then implies that a fraction of both species can be in resonance
with the mode, as each species has at least some finite number of particles which satisfy 6.16
and Eqn. 6.17. In other words, both species distributions are composed of particles with either
positive or negative bounce-averaged magnetic drift frequencies, ±ωda, meaning that there will
always be some portion of each species which fulfils the resonance criterion, Eqn. 6.17.
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Now, we return to our main derivation. Restating Eqn. 6.13

∑
a

nae2
a

Ta

∫ ∞

−∞
|φ|2 dl

B
= ∑

a
∑

wells

∫ 1
Bmin

1
Bmax

dλ
∫ ∞

0
2πv3dv

e2
a

Ta
|φ|2τba(λ)

(ω−ωT
∗a)

(ω−ωda)
fa0 (6.18)

we will focus on the following part of our main expression for now∫ ∞

0
2πv3dv

e2
a

Ta
|φ|2τba(λ)

(ω−ωT
∗a)

(ω−ωda)
fa0

which can be rewritten as

∫ ∞

0
2π
(

v3
Tax3

)
(vTadx)

e2
a

Ta
|φ|2τba(λ)

(ω−ωT
∗a)

(ω− x2FaG(λ))

na

(
1

πv2
Ta

) 3
2

e−x2


where we have made use of the normalised velocity x = v

vTa
.

Simplifying further gives

navTa√
π

∫ ∞

0

τba(λ)e2
a

Ta
|φ|2 (ω−ωT

∗a)

(ω− x2FaG(λ))

(
2x3dx

)
e−x2

(6.19)

For reasons that will become clear in a moment, let’s briefly relabel x2 = y, such that

d
dy

(x2) =
d

dy
(y) =⇒ 2x

dx
dy

= 1 =⇒ 2xdx = dy (6.20)

and multiplying across by x2 gives

2x3dx = x2dy =⇒ 2x3dx = x2d(x2) (6.21)

Inserting this into Eqn. 6.19 then gives

navTa√
π

∫ ∞

0

τba(λ)e2
a

Ta
|φ|2 (ω−ωT

∗a)

(ω− x2FaG(λ))

(
x2d(x2)

)
e−x2

=

− navTae2
a√

πTaFaG(λ)

∫ ∞

0
|φ|2τba(λ)

(ω−ωT
∗a)(

x2 − ω
FaG(λ)

) e−x2
x2d(x2) (6.22)

If we approach marginal stability, such that ω = ωr + i0+, and use the following approach to
deal with the pole arising in Eqn. 6.22∫ ∞

0

f (x2)(
x2 − ωr

FaG(λ)

)d(x2) =
1
2

∫ ∞

−∞

f (x2)(
x2 − ωr

FaG(λ)

)d(x2)

=
1
2

∮ f (z)(
z− ωr

FaG(λ)

)d(z)

= iπ f

(
ωr

FaG(λ)

)
+ P

∫ ∞

0

f (x2)

x2 − ωr
FaG(λ)

d(x2) (6.23)
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we see that we pick up a residue when resonance is present (ωda = ω), giving us an imaginary
component in our derivation. However, we know from earlier that the left-hand side of Eqn.
6.18 is real, such that the right-hand has to be real also. We therefore require, for the resonating
portion of each species, that the total imaginary part of Eqn. 6.18 vanish

Im ∑
a

∑
wells

∫ 1
Bmin

1
Bmax

dλ
∫ ∞

0
2πv3dv

e2
a

Ta
|φ|2τba(λ)

(ω−ωT
∗a)

(ω−ωda)
fa0

!
= 0 (6.24)

Utilising Eqn. 6.22 and Eqn. 6.23 in Eqn. 6.24 then gives us

∑
a
−navTae2

a
√

π

Ta
∑

wells

∫ 1
Bmin

1
Bmax

dλ|φ|2 τba(λ)

FaG(λ)

(
ω−ωT

∗a

)
e−x2

x2|x2= ω
FaG(λ)

!
= 0 (6.25)

Note, that although we are approaching marginal stability (ω = ωr + i0+), we are using the full
ω in the remainder of our derivation, instead of ωr. This is done to keep our work clean, but it
should be noted that we are only considering the point of marginal stability from here on.

Let’s return to our main derivation. If we now use our definition for the bounce time τba(λ)

τba(λ) =
∮ dl
|v‖|

|v‖| = xvTa
√

1− λB
(6.26)

such that
τba(λ) =

∮ dl
xvTa
√

1− λB
(6.27)

and insert this into Eqn. 6.25, we obtain

∑
a
−navTae2

a
√

π

Ta
∑

wells

∫ 1
Bmin

1
Bmax

dλ|φ|2 1

FaG(λ)

(∮ dl
xvTa
√

1− λB

)(
ω−ωT

∗a

)
e−x2

x2|x2= ω
FaG(λ)

!
= 0

(6.28)
such that the thermal velocities cancel, giving

∑
a
−nae2

a
√

π

Ta
∑

wells

∫ 1
Bmin

1
Bmax

dλ|φ|2 1

FaG(λ)

(∮ dl√
1− λB

)(
ω−ωT

∗a

)
e−x2

x|x2= ω
FaG(λ)

!
= 0 (6.29)

We can now neaten our work by making use of the following expression for the species-
independent bounce time:

τ(λ) =
∮ dl√

1− λB
(6.30)

which makes our expression more concise as follows:

∑
a
−nae2

a
√

π

Ta
∑

wells

∫ 1
Bmin

1
Bmax

dλ|φ|2 1

FaG(λ)
τ(λ)

(
ω−ωT

∗a

)
e−x2

x|x2= ω
FaG(λ)

!
= 0 (6.31)
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Evaluating Eqn. 6.31 using our expression for x2 now gives us

∑
a
−nae2

a
√

π

Ta
∑

wells

∫ 1
Bmin

1
Bmax

dλ|φ|2 1

FaG(λ)
τ(λ)

(
ω−ωT

∗a

)
e
− ω

FaG(λ)

(
ω

FaG(λ)

) 1
2

!
= 0 (6.32)

which is then equivalent to

∑
a
−nae2

a
√

π

Ta
∑

wells

∫ 1
Bmin

1
Bmax

dλ|φ|2 1

FaG(λ)

(
ω

FaG(λ)

) 1
2

τ(λ)
(

ω−ωT
∗a

)
e
− ω

FaG(λ)
!
= 0 (6.33)

We can now expand our sum over the particle species a in Eqn. 6.33, which gives

− nee2
e
√

π

Te
∑

wells

∫ 1
Bmin

1
Bmax

dλ|φ|2 1

FeG(λ)

(
ω

FeG(λ)

) 1
2

τ(λ)
(

ω−ωT
∗e

)
e
− ω

FeG(λ)

−
nie2

i
√

π

Ti
∑

wells

∫ 1
Bmin

1
Bmax

dλ|φ|2 1

FiG(λ)

(
ω

FiG(λ)

) 1
2

τ(λ)
(

ω−ωT
∗i

)
e
− ω

FiG(λ) !
= 0

(6.34)

Let’s now consider how we can analyse what happens when G(λ) approaches zero, but doesn’t
ever equal zero. As we will discuss later, we will not be concerned with what happens when
G(λ) = 0, and this conveniently helps us to avoid a divergence occurring in Eqn. 6.34.

Aside

As we have already stated, we are going to allow G(λ) to change sign in our derivation. This
means that it must equal zero at some critical point. For instance, we can say that

G(λCrit) = 0 (6.35)

for some λCrit, which is an intermediate λ-value between its minimum and maximum values.
More concisely,

1
Bmax

< λCrit <
1

Bmin
(6.36)

so that we can split the λ integral as follows

∫ 1
Bmin

1
Bmax

dλ ' lim
δ→0

[∫ λCrit−δ

1
Bmax

dλ +
∫ 1

Bmin

λCrit+δ
dλ

]
(6.37)

where δ� 1 is an arbitrarily small non-negative quantity.
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This then allows us to split our electron and ion integrals in Eqn. 6.34 as follows

− nee2
e
√

π

Te
lim
δ→0

 ∑
wells

∫ λCrit−δ

1
Bmax

dλ|φ|2 1

FeG(λ)

(
ω

FeG(λ)

) 1
2

τ(λ)
(

ω−ωT
∗e

)
e
− ω

FeG(λ)


− nee2

e
√

π

Te
lim
δ→0

 ∑
wells

∫ 1
Bmin

λCrit+δ
dλ|φ|2 1

FeG(λ)

(
ω

FeG(λ)

) 1
2

τ(λ)
(

ω−ωT
∗e

)
e
− ω

FeG(λ)


−

nie2
i
√

π

Ti
lim
δ→0

 ∑
wells

∫ λCrit−δ

1
Bmax

dλ|φ|2 1

FiG(λ)

(
ω

FiG(λ)

) 1
2

τ(λ)
(

ω−ωT
∗i

)
e
− ω

FiG(λ)


−

nie2
i
√

π

Ti
lim
δ→0

 ∑
wells

∫ 1
Bmin

λCrit+δ
dλ|φ|2 1

FiG(λ)

(
ω

FiG(λ)

) 1
2

τ(λ)
(

ω−ωT
∗i

)
e
− ω

FiG(λ)

 !
= 0

(6.38)

Let’s now make some stronger assumptions to simplify our expression slightly. Firstly, noting the
definition of the temperature-dependent diamagnetic drift frequency

ωT
∗a = ω∗a

[
1 + ηa

(
Ea

Ta
− 3

2

)]
(6.39)

we can see that if we make the assumption that the temperature gradient is flat, such that

ηa =
d ln Ta

dψ

/
d ln na

dψ
= 0 (6.40)

then we can see that
ωT
∗a = ω∗a (6.41)

Making the further assumption that the species temperatures are equal, and also that the species
densities are equal

Te = Ti

ne = ni
(6.42)

and using the definition of the temperature-independent diamagnetic drift frequency

ω∗a =
Takα

ea

d ln na

dψ
(6.43)

then we can also see that
ω∗e = −ω∗i (6.44)

A further consequence of the equal species temperature assumption is that

Fe =
2Te

ee
= −2Te

e

Fi =
2Ti

ei
=

2Te

e

(6.45)
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such that
Fe = −Fi (6.46)

Implementing this into Eqn. 6.38 gives

− nee2√π

Te
lim
δ→0

 ∑
wells

∫ λCrit−δ

1
Bmax

dλ|φ|2
(

1

FeG(λ)

)(
ω

FeG(λ)

) 1
2

τ(λ) (ω−ω∗e) e
− ω

FeG(λ)


− nee2√π

Te
lim
δ→0

 ∑
wells

∫ 1
Bmin

λCrit+δ
dλ|φ|2

(
1

FeG(λ)

)(
ω

FeG(λ)

) 1
2

τ(λ) (ω−ω∗e) e
− ω

FeG(λ)


− nee2√π

Te
lim
δ→0

 ∑
wells

∫ λCrit−δ

1
Bmax

dλ|φ|2
(

1

−FeG(λ)

)(
ω

−FeG(λ)

) 1
2

τ(λ) (ω + ω∗e) e
− ω
−FeG(λ)


− nee2√π

Te
lim
δ→0

 ∑
wells

∫ 1
Bmin

λCrit+δ
dλ|φ|2

(
1

−FeG(λ)

)(
ω

−FeG(λ)

) 1
2

τ(λ) (ω + ω∗e) e
− ω
−FeG(λ)

 !
= 0

(6.47)

Now that the prefactors are all identical, so we can multiply across by − Te
nee2
√

π
, which gives

lim
δ→0

 ∑
wells

∫ λCrit−δ

1
Bmax

dλ|φ|2
(

1

FeG(λ)

)(
ω

FeG(λ)

) 1
2

τ(λ) (ω−ω∗e) e
− ω

FeG(λ)

+

lim
δ→0

 ∑
wells

∫ 1
Bmin

λCrit+δ
dλ|φ|2

(
1

FeG(λ)

)(
ω

FeG(λ)

) 1
2

τ(λ) (ω−ω∗e) e
− ω

FeG(λ)

+

lim
δ→0

 ∑
wells

∫ λCrit−δ

1
Bmax

dλ|φ|2
(

1

−FeG(λ)

)(
ω

−FeG(λ)

) 1
2

τ(λ) (ω + ω∗e) e
− ω
−FeG(λ)

+

lim
δ→0

 ∑
wells

∫ 1
Bmin

λCrit+δ
dλ|φ|2

(
1

−FeG(λ)

)(
ω

−FeG(λ)

) 1
2

τ(λ) (ω + ω∗e) e
− ω
−FeG(λ)

 !
= 0

(6.48)

For now, the only behavioural information we have given about G(λ) is that we have allowed
it to change sign, and so it must equal zero at some point. We have already defined the critical
λ-value corresponding to this point as follows:

G(λCrit) = 0 (6.49)

The λ-range for which G(λ) is positive or negative has been determined from numerical simula-
tion using Mathematica. As it turns out, for all geometries considered, G(λ) is > 0 for λ < λCrit,
and G(λ) is < 0 for λ > λCrit. By considering the FaG(λ) values for different λ-ranges, and for
each particle species, we can display these values of interest in the following table:
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Species λ-Range

λ < λCrit λ = λCrit λ > λCrit

Electrons FeG(λ) < 0 FeG(λ) = 0 FeG(λ) > 0
Ions FiG(λ) > 0 FiG(λ) = 0 FiG(λ) < 0

Table 6.1: FaG(λ) values for different λ-ranges, for each particle species.

Now, let’s consider a specific case relevant to Table 6.1. Let’s assume for now that the sign of ωr

is positive. Then, for resonance to occur, the sign of ωda would need to be positive also. Note that
ωda = x2Da(λ), and so x2 is automatically positive. Thus, we require that Da(λ) = FaG(λ) > 0
for resonance to occur. Thus, for the full range of λ-values, there are always at most two cases
where this is satisfied, one for each particle species. Note, the ions and electrons will resonate
with ωr for different λ-values. For example, if the ions resonate for λ < λCrit, then the electrons
will resonate for λ > λCrit.

When we remind ourselves of our criteria for resonance occurring, given by Eqn. 6.16 and Eqn.
6.17

(sign)ωr
!
= (sign)FaG(λ)

=⇒ (sign)ωr
!
= (sign)ωda

(6.50)

we can see that ωda = 0 violates these conditions, as there would be no finite bounce-averaged
magnetic drift frequency present for the finite mode frequency to resonate with. This reasoning
will help to simplify our λ-integrals, as only parts of our domain are relevant for resonance
occurring. To clarify this, let’s consider the following. By splitting our λ-integrals around the
λCrit value, for a given species, we would ignore the λ-integral domain corresponding to

(sign)FaG(λ) 6= (sign)ωr (6.51)

such that ωda is not resonating with ωr. We would also ignore ωda(λCrit) = 0, for the aforemen-
tioned reasoning. The remaining domains of relevance would differ for electrons and ions, due to
ωde = −ωdi.
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Let’s now return to our derivation. We will restate Eqn. 6.48 here:

lim
δ→0

 ∑
wells

∫ λCrit−δ

1
Bmax

dλ|φ|2
(

1

FeG(λ)

)(
ω

FeG(λ)

) 1
2

τ(λ) (ω−ω∗e) e
− ω

FeG(λ)

+

lim
δ→0

 ∑
wells

∫ 1
Bmin

λCrit+δ
dλ|φ|2

(
1

FeG(λ)

)(
ω

FeG(λ)

) 1
2

τ(λ) (ω−ω∗e) e
− ω

FeG(λ)

+

lim
δ→0

 ∑
wells

∫ λCrit−δ

1
Bmax

dλ|φ|2
(

1

−FeG(λ)

)(
ω

−FeG(λ)

) 1
2

τ(λ) (ω + ω∗e) e
− ω
−FeG(λ)

+

lim
δ→0

 ∑
wells

∫ 1
Bmin

λCrit+δ
dλ|φ|2

(
1

−FeG(λ)

)(
ω

−FeG(λ)

) 1
2

τ(λ) (ω + ω∗e) e
− ω
−FeG(λ)

 !
= 0

(6.52)

We will now modify this result so that it can be used for any given geometry without needing to
know in advance what the sign of ωr will be. We can achieve this by implementing two Heaviside
functions, one for each species, which ensure that the integration is being carried out only when
the sign of FaG(λ) matches the sign of ωr. We will create these functions as follows:

He ≡ H
[

ω

FeG(λ)

]

Hi ≡ H
[

ω

FiG(λ)

]
= H

[
ω

−FeG(λ)

] (6.53)

We will insert these Heaviside functions into Eqn. 6.52, giving

lim
δ→0

 ∑
wells

∫ λCrit−δ

1
Bmax

dλ|φ|2
(

1

FeG(λ)

)(
ω

FeG(λ)

) 1
2

τ(λ) (ω−ω∗e)Hee
− ω

FeG(λ)

+

lim
δ→0

 ∑
wells

∫ 1
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λCrit+δ
dλ|φ|2

(
1

FeG(λ)

)(
ω

FeG(λ)

) 1
2

τ(λ) (ω−ω∗e)Hee
− ω

FeG(λ)

+

lim
δ→0

 ∑
wells

∫ λCrit−δ

1
Bmax

dλ|φ|2
(

1

−FeG(λ)

)(
ω

−FeG(λ)

) 1
2

τ(λ) (ω + ω∗e)Hie
− ω
−FeG(λ)

+

lim
δ→0

 ∑
wells

∫ 1
Bmin

λCrit+δ
dλ|φ|2

(
1

−FeG(λ)

)(
ω

−FeG(λ)

) 1
2

τ(λ) (ω + ω∗e)Hie
− ω
−FeG(λ)

 !
= 0

(6.54)

The presence of these Heaviside functions prevents the exponential terms from blowing up, as
these exponential terms will always decay for He/i = 1, and the given integral vanishes otherwise.
These Heaviside functions also ensure that the quantities in parenthesis to the power of 1

2 are
positive, thus making those terms real.
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Now, let’s expand the (ω±ω∗e) terms in Eqn. 6.54 as follows:

lim
δ→0

 ∑
wells

∫ λCrit−δ

1
Bmax

dλ|φ|2
(

1

FeG(λ)

)(
ω

FeG(λ)

) 1
2

τ(λ) (ω)Hee
− ω

FeG(λ)

−
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δ→0

 ∑
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∫ λCrit−δ

1
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1
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ω

FeG(λ)
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2

τ(λ) (ω∗e)Hee
− ω

FeG(λ)

+
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 ∑
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∫ 1
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λCrit+δ
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1

FeG(λ)
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ω

FeG(λ)
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2

τ(λ) (ω)Hee
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FeG(λ)
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 ∑
wells

∫ 1
Bmin

λCrit+δ
dλ|φ|2

(
1

FeG(λ)
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FeG(λ)

+

lim
δ→0

 ∑
wells

∫ λCrit−δ

1
Bmax

dλ|φ|2
(

1

−FeG(λ)

)(
ω

−FeG(λ)

) 1
2

τ(λ) (ω)Hie
− ω
−FeG(λ)

+

lim
δ→0

 ∑
wells

∫ λCrit−δ

1
Bmax

dλ|φ|2
(

1

−FeG(λ)

)(
ω

−FeG(λ)

) 1
2

τ(λ) (ω∗e)Hie
− ω
−FeG(λ)

+

lim
δ→0

 ∑
wells

∫ 1
Bmin

λCrit+δ
dλ|φ|2

(
1

−FeG(λ)

)(
ω

−FeG(λ)

) 1
2

τ(λ) (ω)Hie
− ω
−FeG(λ)

+

lim
δ→0

 ∑
wells

∫ 1
Bmin

λCrit+δ
dλ|φ|2

(
1

−FeG(λ)

)(
ω

−FeG(λ)

) 1
2

τ(λ) (ω∗e)Hie
− ω
−FeG(λ)

 !
= 0

(6.55)
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We can also pull out the remaining ω and ω∗e terms to reorganise our result as follows:

ω

{
lim
δ→0

 ∑
wells

∫ λCrit−δ

1
Bmax

dλ|φ|2
(

1

FeG(λ)

)(
ω

FeG(λ)

) 1
2

τ(λ)Hee
− ω

FeG(λ)

+

lim
δ→0

 ∑
wells

∫ 1
Bmin

λCrit+δ
dλ|φ|2

(
1

FeG(λ)

)(
ω

FeG(λ)

) 1
2

τ(λ)Hee
− ω

FeG(λ)

+

lim
δ→0

 ∑
wells

∫ λCrit−δ

1
Bmax

dλ|φ|2
(

1

−FeG(λ)

)(
ω

−FeG(λ)

) 1
2

τ(λ)Hie
− ω
−FeG(λ)

+

lim
δ→0

 ∑
wells

∫ 1
Bmin

λCrit+δ
dλ|φ|2

(
1

−FeG(λ)

)(
ω

−FeG(λ)

) 1
2

τ(λ)Hie
− ω
−FeG(λ)

} =

ω∗e

{
lim
δ→0

 ∑
wells

∫ λCrit−δ

1
Bmax

dλ|φ|2
(

1

FeG(λ)

)(
ω

FeG(λ)

) 1
2

τ(λ)Hee
− ω

FeG(λ)

+

lim
δ→0

 ∑
wells

∫ 1
Bmin

λCrit+δ
dλ|φ|2

(
1

FeG(λ)

)(
ω

FeG(λ)

) 1
2

τ(λ)Hee
− ω

FeG(λ)

−
lim
δ→0

 ∑
wells

∫ λCrit−δ

1
Bmax

dλ|φ|2
(

1

−FeG(λ)

)(
ω

−FeG(λ)

) 1
2

τ(λ)Hie
− ω
−FeG(λ)

−
lim
δ→0

 ∑
wells

∫ 1
Bmin

λCrit+δ
dλ|φ|2

(
1

−FeG(λ)

)(
ω

−FeG(λ)

) 1
2

τ(λ)Hie
− ω
−FeG(λ)

}

(6.56)

If we make the following abbreviations:

P ≡ |φ|2
(

1

FeG(λ)

)(
ω

FeG(λ)

) 1
2

τ(λ)Hee
− ω

FeG(λ)

M ≡ |φ|2
(

1

−FeG(λ)

)(
ω

−FeG(λ)

) 1
2

τ(λ)Hie
− ω
−FeG(λ)

(6.57)

then we can write our result more concisely as:

ω

{
lim
δ→0

(
∑

wells

∫ λCrit−δ

1
Bmax

dλP

)
+ lim

δ→0

(
∑

wells

∫ 1
Bmin

λCrit+δ
dλP

)
+

lim
δ→0

(
∑

wells

∫ λCrit−δ

1
Bmax

dλM

)
+ lim

δ→0

(
∑

wells

∫ 1
Bmin

λCrit+δ
dλM

)}

= ω∗e

{
lim
δ→0

(
∑

wells

∫ λCrit−δ

1
Bmax

dλP

)
+ lim

δ→0

(
∑

wells

∫ 1
Bmin

λCrit+δ
dλP

)
−

lim
δ→0

(
∑

wells

∫ λCrit−δ

1
Bmax

dλM

)
− lim

δ→0

(
∑

wells

∫ 1
Bmin

λCrit+δ
dλM

)}
(6.58)
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And rearranging further gives:

ω

ω∗e
=

limδ→0 ∑wells

{(∫ λCrit−δ
1

Bmax
dλP

)
+

(∫ 1
Bmin

λCrit+δ dλP
)
−
(∫ λCrit−δ

1
Bmax

dλM
)
−
(∫ 1

Bmin
λCrit+δ dλM

)}

limδ→0 ∑wells

{(∫ λCrit−δ
1

Bmax
dλP

)
+

(∫ 1
Bmin

λCrit+δ dλM
)
+

(∫ λCrit−δ
1

Bmax
dλM

)
+

(∫ 1
Bmin

λCrit+δ dλP
)}

(6.59)
which can be tidied to give:

ω

ω∗e
=

limδ→0 ∑wells

{(∫ λCrit−δ
1

Bmax
dλ[P−M]

)
+

(∫ 1
Bmin

λCrit+δ dλ[P−M]

)}

limδ→0 ∑wells

{(∫ λCrit−δ
1

Bmax
dλ[P + M]

)
+

(∫ 1
Bmin

λCrit+δ dλ[P + M]

)} (6.60)

Let’s look at how we could further simplify the following terms:

P ≡ |φ|2τ(λ)

(
1

FeG(λ)

)(
ω

FeG(λ)

) 1
2

Hee
− ω

FeG(λ)

M ≡ |φ|2τ(λ)

(
1

−FeG(λ)

)(
ω

−FeG(λ)

) 1
2

Hie
− ω
−FeG(λ)

(6.61)

When looking at the full result

ω

ω∗e
=

limδ→0 ∑wells

{(∫ λCrit−δ
1

Bmax
dλ[P−M]

)
+

(∫ 1
Bmin

λCrit+δ dλ[P−M]

)}

limδ→0 ∑wells

{(∫ λCrit−δ
1

Bmax
dλ[P + M]

)
+

(∫ 1
Bmin

λCrit+δ dλ[P + M]

)} (6.62)

we can see that all four integrals share a common factor of
(

1
Fe

)
, which is unaffected by the

integration. Let’s simplify our expressions in the following way:

P ≡ |φ|2τ(λ)

(
1

FeG(λ)

)(
ω

FeG(λ)

) 1
2

Hee
− ω

FeG(λ) =

(
1
Fe

)
P1

M ≡ |φ|2τ(λ)

(
1

−FeG(λ)

)(
ω

−FeG(λ)

) 1
2

Hie
− ω
−FeG(λ) =

(
1
Fe

)
M1

(6.63)

where

P1 ≡ |φ|2τ(λ)

(
1

G(λ)

)(
ω

FeG(λ)

) 1
2

Hee
− ω

FeG(λ)

M1 ≡ |φ|2τ(λ)

(
1

−G(λ)

)(
ω

−FeG(λ)

) 1
2

Hie
− ω
−FeG(λ)

(6.64)
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Thus, we can rewrite our result as follows

ω

ω∗e
=

limδ→0 ∑wells

{(∫ λCrit−δ
1

Bmax
dλ[P1 −M1]

)
+

(∫ 1
Bmin

λCrit+δ dλ[P1 −M1]

)}

limδ→0 ∑wells

{(∫ λCrit−δ
1

Bmax
dλ[P1 + M1]

)
+

(∫ 1
Bmin

λCrit+δ dλ[P1 + M1]

)} (6.65)

where the
(

1
Fe

)
terms common to the numerator and denominator have been pulled out and

cancel.

We can avoid dealing with a vanishing denominator by simply rewriting Eqn. 6.65 as follows:(
ω

ω∗e

)
lim
δ→0

∑
wells

{(∫ λCrit−δ

1
Bmax

dλ[P1 + M1]

)
+

(∫ 1
Bmin

λCrit+δ
dλ[P1 + M1]

)}

− lim
δ→0

∑
wells

{(∫ λCrit−δ

1
Bmax

dλ[P1 −M1]

)
+

(∫ 1
Bmin

λCrit+δ
dλ[P1 −M1]

)}
= 0

(6.66)

Before we can evaluate this result numerically, we first need to note how our variational principle
result comes into play. For the ω

ω∗e
term in Eqn. 6.66, we insert our analytical expression Eqn.

5.105 directly - which we know is compatible with the variational principle. We also insert a
modified form of this result for when we have ω on its own. From here, we can numerically
evaluate this quantity on the left-hand side of Eqn. 6.66, and gradually adjust the value of a

Ln

(which is found in the ω∗e term, and also within our ω proxy expression) until this equation is
satisfied, i.e., when the left-hand side equals zero. The lowest value of a

Ln
which satisfies this

equation is the critical density gradient. The numerical results of this procedure are presented
in section 7.2.2 for various geometrical configurations. This will include a discussion on some
possible interpretations of the results.

In the next section, we describe an alternative method to deriving an analytical proxy for the
critical density gradient. This alternative approach is significantly simpler and shorter than the
one derived here, and it was investigated to serve as a potential backup in the event that our
results here failed to successfully approximate the critical density gradient.

6.2 Alternative Derivation of the Critical-Density-Gradient Proxy

In this section, we will discuss an alternative approach to obtaining an analytical proxy for the
critical density gradient of the TEM. As stated before, this alternative approach is significantly
simpler, and much shorter, than the derivation carried out in the previous section. This idea was
investigated to serve as a potential backup in the event that our original method failed to produce
satisfying results.
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If the mode frequency is defined as:
ω = ωr + iγ (6.67)

then we can easily find ω2

ω2 = (ωr + iγ)2 = ω2
r − γ2 + 2iωrγ (6.68)

Now, we know from the theory of magneto-hydrodynamic (MHD) instabilities that in the idealised
case, ω2 is always a real expression [1]. However, we are interested in the smaller scale behaviour
of plasma micro-instabilities. Nevertheless, ω2 being real is also ostensibly true for trapped
particle micro-instabilities, as seen in [4]. This then implies that

ω2 !
= ω2

r − γ2

2iωrγ
!
= 0 =⇒ ωrγ = 0

(6.69)

Thus, our expression for ω2 can be positive, zero, or negative in the following scenarios:

ω2 > 0 =⇒ ω2 = ω2
r =⇒ ωr = ±

√
ω2

ω2 = 0 =⇒ ωr = γ = 0

ω2 < 0 =⇒ ω2 = −γ2 =⇒ γ = ±
√
−ω2

(6.70)

From these different cases, we can ascertain the following information about the stability of the
mode:

• When ω2 > 0, the system is stable since γ = 0 and ωr = ±
√

ω2. The modes are oscillatory,
but not growing or decaying.

• When ω2 < 0 the system is unstable since ωr = 0 and γ = ±
√
−ω2. Thus, there always

exists one mode with a positive growth rate.

• The point of marginal stability clearly must then occur for ω2 = 0, i.e., when ωr = γ = 0.

Thus, the point of marginal stability which corresponds to when γ → 0+ should then also
correspond to ωr → 0. In reality for a general physical system, the transition to marginal stability
can occur at a finite value of the real frequency, i.e., ωr 6= 0 as γ→ 0. However, for the ideal MHD
system, the transition occurs precisely when ωr = 0 [1]. Thus, we will make use of this idealised
case for our purposes in investigating trapped-particle micro-instabilities also. This theoretical
case may then guide us toward finding a suitable proxy for the critical density gradient, which is
found at marginal stability.

Given that our variational principle approach is capable of finding a decent approximation for ωr

(which we will refer to as ωr(VP)), we can use our result to investigate what happens when we
set:

ωr(VP)
!
= 0 (6.71)
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According to our theoretical argument above, this should then occur at the point of marginal
stability. Now let’s look at how we obtain an expression for the critical density gradient explic-
itly. Remember that we are only interested in the real part of the plus quadratic solution to(

ω
ω∗e

)
VP

:

Re
[(

ω

ω∗e

)
VP

]
= Re

[
B +
√

B2 + 4AC
2A

]
(6.72)

Where we recall that our full quadratic equation is

ω2

ω2
∗e
{a1 − a2}︸ ︷︷ ︸

A

− ω

ω∗e
{b1 + b2 − a2 + b3}︸ ︷︷ ︸

B

−{c1 − c2}︸ ︷︷ ︸
C

= 0 (6.73)

and

• a1 →
∫ ∞
−∞ (1 + τ [1− Γ0]) |φ|2 dl

B

• a2 → 1
2

∫ 1
Bmin

1
Bmax

∫ ∞
−∞

dl√
1−λB
|φ|2dλ

• b1 + b2 →
∫ ∞
−∞

[
[Γ0 − ηib (Γ0 − Γ1)] + [2Γ0 − b (Γ0 − Γ1)]

ω̂diτ
2ω∗e

]
|φ|2 dl

B

• b3 → 1
2

∫ 1
Bmin

1
Bmax

∫ ∞
−∞

dl√
1−λB

(
3
2

FeG(λ)
ω∗e

)
|φ|2dλ

• c1 →
∫ ∞
−∞

[
2Γ0 − b (Γ0 − Γ1) + ηi

[
2 (b− 1)2 Γ0 + b (3− 2b) Γ1

]] (
ω̂di

2ω∗e

)
|φ|2 dl

B

• c2 ≡ b3 [1 + ηe] → 1
2

∫ 1
Bmin

1
Bmax

∫ ∞
−∞

dl√
1−λB

(
3
2

FeG(λ)
ω∗e

[1 + ηe]

)
|φ|2dλ

To simplify our situation further, we know from our numerical work that the critical density
gradient always occurs before the discriminant in Eqn. 6.72 becomes positive. This implies that
the square root term is not relevant in the region of parameter space we are considering, as it
only contributes an imaginary part. Therefore, since we are only interested in the real part, all we
need is the following:

Re
[(

ω

ω∗e

)
VP

]
=

B
2A

(6.74)

Thus, if we want to know where ωr = 0 we simply set Eqn. 6.74 equal to zero, giving

B
2A

= 0 =⇒ B = 0 (6.75)

To clarify, we are aiming to find the density gradient value corresponding to B = 0, which should
be equal to the critical density gradient. We can now use

B = (b1 + b2 − a2 + b3) (6.76)
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Then B = 0 implies

(b1 + b2 − a2 + b3) = 0

=⇒ b1 + b2 + b3 = a2
(6.77)

which gives us ∫ ∞

−∞

[
[Γ0 − ηib (Γ0 − Γ1)] + [2Γ0 − b (Γ0 − Γ1)]

ω̂diτ

2ω∗e

]
|φ|2 dl

B
+

1
2

∫ 1
Bmin

1
Bmax

∫ ∞

−∞

dl√
1− λB

(
3
2

FeG(λ)

ω∗e

)
|φ|2dλ

=
1
2

∫ 1
Bmin

1
Bmax

∫ ∞

−∞

dl√
1− λB

|φ|2dλ

(6.78)

Using our assumption of equal species temperature then sets τ = Te
Ti

= 1. We can also use our
species-independent bounce time expression:

τ(λ) =
∮ dl√

1− λB
=⇒ ∑

wells
τ(λ) =

∫ ∞

−∞

dl√
1− λB

(6.79)

Rearranging to get the terms containing ω∗e on one side of the equals sign gives

1
ω∗e

{∫ ∞

−∞
[2Γ0 − b (Γ0 − Γ1)]

ω̂di
2
|φ|2 dl

B
+

1
2

∫ 1
Bmin

1
Bmax

∑
wells

τ(λ)

(
3
2

FeG(λ)

)
|φ|2dλ

}

=
1
2

∫ 1
Bmin

1
Bmax

∑
wells

τ(λ)|φ|2dλ−
∫ ∞

−∞
[Γ0 − ηib (Γ0 − Γ1)] |φ|2

dl
B

(6.80)

Then isolating ω∗e gives

ω∗e =

{∫ ∞
−∞ [2Γ0 − b (Γ0 − Γ1)]

ω̂di
2 |φ|2

dl
B + 1

2

∫ 1
Bmin

1
Bmax

∑wells τ(λ)
(

3
2 FeG(λ)

)
|φ|2dλ

}
1
2

∫ 1
Bmin

1
Bmax

∑wells τ(λ)|φ|2dλ−
∫ ∞
−∞ [Γ0 − ηib (Γ0 − Γ1)] |φ|2 dl

B

(6.81)

Now, if we note the definition for ω∗e, we see that it contains the density gradient:

ω∗e ≡ −
Tekα

e
d ln ne

dψ
= − Te

eB
d ln ne

dr
(b̂×∇r) · k⊥︸ ︷︷ ︸

kα

= −kαTe

eB
d ln ne

dr
(6.82)

We can substitute this into Eqn. 6.81 as follows:

− kαTe

eB
d ln ne

dr
=

{∫ ∞
−∞ [2Γ0 − b (Γ0 − Γ1)]

ω̂di
2 |φ|2

dl
B + 1

2

∫ 1
Bmin

1
Bmax

∑wells τ(λ)
(

3
2 FeG(λ)

)
|φ|2dλ

}
1
2

∫ 1
Bmin

1
Bmax

∑wells τ(λ)|φ|2dλ−
∫ ∞
−∞ [Γ0 − ηib (Γ0 − Γ1)] |φ|2 dl

B

(6.83)
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Rearranging to isolate the density gradient leads to

− d ln ne

dr
=

(
eB

kαTe

){∫ ∞
−∞ [2Γ0 − b (Γ0 − Γ1)]

ω̂di
2 |φ|2

dl
B + 1

2

∫ 1
Bmin

1
Bmax

∑wells τ(λ)
(

3
2 FeG(λ)

)
|φ|2dλ

}
1
2

∫ 1
Bmin

1
Bmax

∑wells τ(λ)|φ|2dλ−
∫ ∞
−∞ [Γ0 − ηib (Γ0 − Γ1)] |φ|2 dl

B

(6.84)
If we now multiply across by the minor radius coordinate a, and also make use of the definition
for the density length scale:

Lna ≡ −
(

d ln na

dr

)−1

(6.85)

then our result becomes

a
Lne

=

(
eBa
kαTe

){∫ ∞
−∞ [2Γ0 − b (Γ0 − Γ1)]

ω̂di
2 |φ|2

dl
B + 1

2

∫ 1
Bmin

1
Bmax

∑wells τ(λ)
(

3
2 FeG(λ)

)
|φ|2dλ

}
1
2

∫ 1
Bmin

1
Bmax

∑wells τ(λ)|φ|2dλ−
∫ ∞
−∞ [Γ0 − ηib (Γ0 − Γ1)] |φ|2 dl

B

(6.86)

This is then our analytical prediction for the critical density gradient:

(
a

Lne

)
Crit

=

(
eBa
kαTe

){∫ ∞
−∞ [2Γ0 − b (Γ0 − Γ1)]

ω̂di
2 |φ|2

dl
B + 1

2

∫ 1
Bmin

1
Bmax

∑wells τ(λ)
(

3
2 FeG(λ)

)
|φ|2dλ

}
1
2

∫ 1
Bmin

1
Bmax

∑wells τ(λ)|φ|2dλ−
∫ ∞
−∞ [Γ0 − ηib (Γ0 − Γ1)] |φ|2 dl

B

(6.87)
Note, in the remainder of this report, we simply use a

Ln
instead of a

Lne
.

Beyond the work of this project, the next steps would be to insert Eqn. 6.87 into an optimiser
(STELLOPT), and instruct it to search for a geometry in configuration space such that the left-hand
side of Eqn. 6.87 is maximised. This should then delay the onset of the TEM instability, along
with the subsequent transport caused by it.
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Chapter 7

Results and Findings

In this chapter, we discuss the numerical results and findings of this project. All numerical work
and analysis was carried out using Mathematica and Python.

We begin by looking at the ωr proxy results obtained using the variational principle in Chapter 5,
in comparison with GENE simulation output. As already discussed, the ωr proxy corresponding
to trapped ions and trapped electrons is not modelled in this report, but is left for future
investigation (see Appendix A for the derivation of this alternative proxy). Instead, the ωr proxy
corresponding to passing ions and trapped electrons was modelled here. This choice was made
for the following reason. The latter ωr proxy has already been shown to work when applied to the
simpler case of a tokamak [12, 18]. However, it was not known before this project whether this ωr

proxy would be applicable to the more complicated stellarator geometries. Thus, a contingency
plan was developed in the event that this ωr proxy failed to model the stellarator case to a
sufficient standard. This is what led to the development of the ωr proxy dealing with trapped
particles only (see Appendix A). This particular choice was made because destabilising resonance
from the TEM instability is predicted to be caused solely by trapped-particle behaviour, so only
trapped particles were considered. As it turned out, the ωr proxy developed to model passing
ions and trapped electrons turned out to work sufficiently well in most stellarator geometries
considered, and so, only it was used throughout the remainder of the project when developing
the proxy outlined in Chapter 6.

For the ωr proxy component of the results, two separate methods were undertaken for the
simulations. Each method considered a different level of dependency on preexisting data output
from GENE. Firstly, the ωr proxy obtained using the variational principle was simulated using
geometrical inputs and GENE data inputs. The geometrical inputs included the magnetic field
strength profile and the curvature profile, whilst the GENE inputs consisted of mode structure
data for the φ-profiles. The results of these simulations were then compared with the ωr output
given purely by GENE, which acts as our most accurate control case. This allowed us to see
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whether or not the variational principle approach was indeed suitable for stellarator geometries.
Once this was proven to work, the second level of investigation to be carried out involved relying
only on the geometrical information as an input. In this second case, the magnetic field strength
profile and the curvature profile for a given geometry were used directly as before, but they
were also utilised in predicting the mode structure φ. The motivation behind investigating
whether such an approach works lies in the following fact. If the mode structure can be predicted
successfully based purely on geometrical information, then this would mitigate the need to
procure data from costly and time-consuming 5D gyrokinetic supercomputer simulations. Of
course, use of a predicted mode structure is not ideal and was never expected to be as accurate
as using GENE simulation data. However, if a proof-of-principle can be presented successfully
here, then it would act as a preliminary - but promising - sign that this method could be further
refined and improved in future for more accurate results.

For the critical-density-gradient proxy component of the results, a similar procedure was un-
dertaken as described for modelling the ωr proxy. In this procedure, however, the ωr proxy
results from before were inserted into this critical-density-gradient proxy as an input. Following
this, the predicted mode structure was then inserted into both of these nested proxies where
necessary. No GENE data was used for this part of numerical work, as it did not make sense to
use data pertaining to the mode’s behaviour beyond the point of marginal stability. Our analytical
work underlying this part of the project is predicated on what happens precisely at the point of
marginal stability - not before or beyond this point. Thus, we were heavily reliant on the efficacy
of our analytical prediction of φ.

Before presenting the results, we must first briefly describe what the simulation data - and
therefore, our proxy - is actually modelling. As discussed in section 3.2, the plasma structure
can be understood as comprising concentric layers of constant pressure [1]. These 2D surfaces
of constant plasma pressure are known as flux surfaces. We can think of these flux surfaces
as being composed of magnetic field lines confined to the surface. In this work, we consider a
field line within a flux surface that has a normalised toroidal flux given by s = ψ

ψ0
= 0.5, where

ψ0 is the toroidal flux at full plasma radius. The simulation domain in our results is that of a
flux-tube [25, 34], which corresponds to a small annulus around one given field line - where the
field line is considered as a one-dimensional structure [34]. This annulus moves along the path
taken by the field line and forms a tube. The relevant physical information contained within
this tube is simulated, and the background density and temperature profiles are assumed to
remain constant over the simulation domain. In fact, in our cases here, we simplify matters by
assuming a constant background temperature gradient for all simulations, such that for both
particle species, we have:

ηa =
d ln Ta

dψ

/
d ln na

dψ
= 0 (7.1)

Using flux-tube simulations greatly reduces the computational cost compared with simulating
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the full 2D flux surface [12]. When carrying out such simulations in an axisymmetric geometry,
such as a tokamak, all flux-tubes are equivalent. However, in the non-axisymmetric geometries
of stellarators, this luxury is lost. Thus, we must take care to specify which type of flux-tube
simulation we are utilising. For this report, only one type of simulation will be considered. These
are known as "bean" flux-tube simulations. This type of simulation gave the clearest results for
our proxy output, so only these will be discussed here to exhibit the proof-of-principle of our
technique. These bean flux-tubes are those with their center located in the outboard midplane
of the so-called bean-shaped plane. These bean-shaped planes can be seen from the poloidal
cross-sections displayed for each stellarator geometry (see Figures 7.7, 7.13, 7.19, 7.25 and 7.31).
Although other flux-tube simulations will not be presented here, they can be investigated using
precisely the same methods in this report. These may be of more interest in future after further
improvements have been made to other components of this work, such as our procedure for
predicting the mode structure. For the qualitative approach taken in this project, which aims
to simply prove the principle of our methods, using only the bean flux-tube simulations will
suffice.

We must also note some important conventions used in our results, regarding the perpendicular
wavevector k⊥, and the units of certain GENE outputs. Firstly, we recall the definition of k⊥:

k⊥ = kψ∇ψ + kα∇α (7.2)

For reasons we will not go into here, the nature of our flux-tube simulations allows us to set
kψ = 0 [12]. Therefore, we only end up working with kα. As a reminder, α is known as the
binormal coordinate, or the field line labelling coordinate. The binormal wavenumber can be
expressed as kα = qkya, where q is the safety factor defined in Chapter 3, and a is the minor
radius of the torus being considered [12]. In our numerical results, the simulations are carried out
using the poloidal wavenumber normalised by the ion-sound gyro radius, kyρs [12]. From here
on, this normalised wavenumber is simply denoted by kyρ. Other quantities being plotted here,
such as the real mode frequency ωr and the growth rate γ, are given in terms of the gyro-Bohm
units used by GENE,

[ cs
a
]
, where cs =

√
Te
mi

is the ion sound speed and a is once again the minor
radius.

7.1 Proxy for the Mode Frequency

In this section, we present the numerical results and findings for our proxy of the mode frequency
ω. More accurately, our proxy solely models the real part of the mode frequency ωr. Our proxy
will be calculated using different levels of dependency on GENE data. The analytical work that
led to this proxy can be found in section 5.2.

In the first case - dependent on GENE data - we show how the ωr proxy performs using our
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variational principle result (Eqn. 5.101 and 5.105), and inputting GENE data for our mode
structure φ. We will compare the results of this approach with the direct GENE output of ωr

in section 7.1.1. In the second case - independent of GENE data - we once again utilise our
variational principle result (Eqn. 5.101 and 5.105), however, we no longer rely on GENE data for
φ. Instead, we use a prediction for φ, which is developed using geometrical information only. We
will discuss the development of this φ prediction separately in section 7.1.2, before we present the
results of the ωr proxy which relies on this predicted mode structure.

As is expected, a heavier reliance on GENE data yields a stronger agreement between our ωr

proxy and the GENE output for ωr. This validates the function of our proxy, even though we
would prefer to have less dependency on such GENE data. This is why we have our second
case which relies on a predicted mode structure in place of GENE data. By showing, at least in
principle, that we can approximately predict the mode structure by using geometrical information
only, we are freeing ourselves of the dependency on preexisting GENE data. This GENE data
is not simple or quick to obtain, as it requires the computation of complicated 5D gyrokinetic
supercomputer simulations [13]. Avoiding such a requirement would mean that optimisation of
stellarator geometry could, in principle, be achieved more quickly and conveniently.

7.1.1 Using Variational Principle and GENE Data

We now present the results of our mode frequency proxy for various toroidal configurations.
For our trial function φ, we insert preexisting GENE simulation data, whereby distinct profiles
are used for every pair of (kyρ, a

Ln
) values, in each geometric configuration. We start with

the simplest geometry of the DIII-D tokamak, before considering the more complex stellarator
geometries of the NCSX (National Compact Stellarator Experiment), the W7-X (Wendelstein 7
Experiment) and the HSX (Helically Symmetric Experiment). For W7-X, we have three distinct
variants of its geometry. These are known as the standard configuration (SC), the high mirror
(HM) configuration, and the low mirror (LM) configuration. Each variant has its own magnetic
field profile, the form of which dictates the ’high/low mirror’ in its name. For all toroidal
configurations, we show the 3D geometry under consideration, whereby we look at a poloidal cut
in each case (see Figures 7.7, 7.13, 7.19, 7.25 and 7.31). These colour coded images indicate the
strength of the magnetic field in different regions of the geometry. Blue represents the minimum
of the magnetic field strength, whilst red represents the maximum. For the stellarator cases,
we are solely considering results of the bean flux-tube simulations. For all geometries, we also
present a plot of the geometric profiles (see Figures 7.2, 7.8, 7.14, 7.20, 7.26 and 7.32). This consists
of the magnetic field strength and the curvature experienced by the field line for the journey of
the flux-tube simulation. We follow this up with presenting the mode frequency results, where
we compare the output of our proxy in comparison with GENE simulation data. In these plots,
our proxy is denoted by VP(φDATA), which is shorthand for: variational principle result, with
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φ-data as the trial function input.

DIII-D Tokamak

Figure 7.1: Magnetic field strength B of the DIII-D tokamak, where red indicates the maximum of the field, and blue
indicates the minimum. the Source: [12]

Figure 7.2: Magnetic field strength B and curvature κ along the magnetic field line in the DIII-D tokamak. Source:
GIST data from [12]
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Figure 7.3: Real mode frequency versus density gradient in the DIII-D tokamak. GENE simulation data in blue and
variational principle proxy in red. Source: GENE data from [12]
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Figure 7.4: Real mode frequency versus density gradient in the DIII-D tokamak. GENE simulation data in blue and
variational principle proxy in red. Source: GENE data from [12]
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Figure 7.5: Real mode frequency versus density gradient in the DIII-D tokamak. GENE simulation data in blue and
variational principle proxy in red. Source: GENE data from [12]
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Figure 7.6: Real mode frequency versus density gradient in the DIII-D tokamak. GENE simulation data in blue and
variational principle proxy in red. Source: GENE data from [12]
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NCSX

Figure 7.7: Magnetic field strength B of NCSX, where red indicates the maximum of the field, and blue the minimum.
The open slice shows the bean-shaped poloidal cross-section. Source: [12]

Figure 7.8: Magnetic field strength B and curvature κ along the magnetic field line in NCSX. Source: GIST data
from [12]
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Figure 7.9: Real mode frequency versus density gradient in NCSX. GENE simulation data in blue and variational
principle proxy in red. Source: GENE data from [12]
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Figure 7.10: Real mode frequency versus density gradient in NCSX. GENE simulation data in blue and variational
principle proxy in red. Source: GENE data from [12]
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Figure 7.11: Real mode frequency versus density gradient in NCSX. GENE simulation data in blue and variational
principle proxy in red. Source: GENE data from [12]
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Figure 7.12: Real mode frequency versus density gradient in NCSX. GENE simulation data in blue and variational
principle proxy in red. Source: GENE data from [12]
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W7-X (SC)

Figure 7.13: Magnetic field strength B of W7-X (SC), where red indicates the maximum of the field, and blue
indicates the minimum. The open slice shows the bean-shaped poloidal cross-section. Source: [53]

Figure 7.14: Magnetic field strength B and curvature κ along the magnetic field line in W7-X (SC). Source: GIST
data from [12]
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Figure 7.15: Real mode frequency versus density gradient in W7-X (SC). GENE simulation data in blue and
variational principle proxy in red. Source: GENE data from [12]
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Figure 7.16: Real mode frequency versus density gradient in W7-X (SC). GENE simulation data in blue and
variational principle proxy in red. Source: GENE data from [12]
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Figure 7.17: Real mode frequency versus density gradient in W7-X (SC). GENE simulation data in blue and
variational principle proxy in red. Source: GENE data from [12]
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Figure 7.18: Real mode frequency versus density gradient in W7-X (SC). GENE simulation data in blue and
variational principle proxy in red. Source: GENE data from [12]
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W7-X (HM)

Figure 7.19: Magnetic field strength B of W7-X (HM), where red indicates the maximum of the field, and blue
indicates the minimum. The open slice shows the bean-shaped poloidal cross-section. Source: [53]

Figure 7.20: Magnetic field strength B and curvature κ along the magnetic field line in W7-X (HM). Source: GIST
data from [12]
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Figure 7.21: Real mode frequency versus density gradient in W7-X (HM). GENE simulation data in blue and
variational principle proxy in red. Source: GENE data from [12]
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Figure 7.22: Real mode frequency versus density gradient in W7-X (HM). GENE simulation data in blue and
variational principle proxy in red. Source: GENE data from [12]

104



105 CHAPTER 7. RESULTS AND FINDINGS

0 1 2 3 4 5 6
a
Ln

3.0

2.5

2.0

1.5

1.0

0.5

0.0

r[c
s/a

]

r [ky  = 1.0]

GENE
VP( DATA)

Figure 7.23: Real mode frequency versus density gradient in W7-X (HM). GENE simulation data in blue and
variational principle proxy in red. Source: GENE data from [12]
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Figure 7.24: Real mode frequency versus density gradient in W7-X (HM). GENE simulation data in blue and
variational principle proxy in red. Source: GENE data from [12]
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W7-X (LM)

Figure 7.25: Magnetic field strength B of W7-X (LM), where red indicates the maximum of the field, and blue
indicates the minimum. The open slice shows the bean-shaped poloidal cross-section. Source: [53]

Figure 7.26: Magnetic field strength B and curvature κ along the magnetic field line in W7-X (LM). Source: GIST
data from [12]
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Figure 7.27: Real mode frequency versus density gradient in W7-X (LM). GENE simulation data in blue and
variational principle proxy in red. Source: GENE data from [12]
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Figure 7.28: Real mode frequency versus density gradient in W7-X (LM). GENE simulation data in blue and
variational principle proxy in red. Source: GENE data from [12]
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Figure 7.29: Real mode frequency versus density gradient in W7-X (LM). GENE simulation data in blue and
variational principle proxy in red. Source: GENE data from [12]
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Figure 7.30: Real mode frequency versus density gradient in W7-X (LM). GENE simulation data in blue and
variational principle proxy in red. Source: GENE data from [12]
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HSX

Figure 7.31: Magnetic field strength B of HSX, where red indicates the maximum of the field, and blue indicates the
minimum. The open slice shows the bean-shaped poloidal cross-section. Source: [54]

Figure 7.32: Magnetic field strength B and curvature κ along the magnetic field line in HSX. Source: GIST data
from [12]
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Figure 7.33: Real mode frequency versus density gradient in HSX. GENE simulation data in blue and variational
principle proxy in red. Source: GENE data from [12]
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Figure 7.34: Real mode frequency versus density gradient in HSX. GENE simulation data in blue and variational
principle proxy in red. Source: GENE data from [12]
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Figure 7.35: Real mode frequency versus density gradient in HSX. GENE simulation data in blue and variational
principle proxy in red. Source: GENE data from [12]
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Figure 7.36: Real mode frequency versus density gradient in HSX. GENE simulation data in blue and variational
principle proxy in red. Source: GENE data from [12]
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Figure 7.37: Real mode frequency versus density gradient in HSX. GENE simulation data in blue and variational
principle proxy in red. Source: GENE data from [12]
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Discussion

We now discuss these results, which arose from utilising a variational principle technique to
approximate the real mode frequency ωr of the TEM. The trial function input for the variational
principle technique is the mode structure φ. In this case, this input took the form of GENE
simulation data. This is the idealised case, as we are relying heavily on simulation data to
know the nature of the mode structure. Regardless, this idealised case allows us to validate
our approach by showing how we can accurately model the TEM behaviour, given that the trial
function input sufficiently approximates the actual mode structure φ.

As can be seen from the plots of the real mode frequency, there are varying levels of agreement
depending on the geometry under consideration. The strongest agreement between the GENE
simulation data and our proxy is manifest in NCSX, and in each of the W7-X configurations.
In these cases, for most wavenumber values (perhaps excluding kyρ = 0.6 for each W7-X
configuration), sudden drops and jumps in the GENE data are tracked quite accurately by the
proxy.
In DIII-D, the general trend and magnitude of the GENE data is mirrored somewhat well by the
proxy, but is less compelling than the aforementioned stellarator cases. This is quite an interesting
observation, given that the DIII-D tokamak is by far the simplest geometry, with the smoothest
geometric profiles. This may indicate that geometrical complexity does not play a significant role
in the efficacy of our variational principle technique for predicting the mode frequency. Other
underlying factors may be at play which have a greater effect on the outcome of our model’s
predictions.
The weakest agreement between simulation and proxy is found in the HSX case. Here, it looks
as if the proxy amplifies subtle inflections in the GENE data, such that the magnitudes are
over-exaggerated. Examples of this can be seen in the final data points of Figures 7.36 and 7.37.
A potential reason for this weaker agreement in HSX could be due to the presence of more
subdominant modes, which could be interacting with the TEM we are modelling [55].

It is also worth noting that in most of the stellarator cases - in particular, in NCSX, W7-X (SC)
and W7-X (HM) - we notice that the GENE data for ωr has a distinct drop-off after some density
gradient value. In these cases, the magnitude of ωr seems to remain close to zero for lower
density gradients before suddenly dropping to a relatively larger negative value. According to
[56], which investigated the ITGM, such a discontinuity in the mode frequency may indicate a
transition between two different branches of micro-instabilities. Our data may then indicate that
such a transition between two trapped-electron modes is taking place in these stellarators. It is
mentioned in [56] that such behaviour may manifest itself in axisymmetric configurations also,
but only in the long wavelength limit.

As mentioned earlier in this report, previous research has shown that this mode frequency proxy
procedure works quite successfully in the simpler DIII-D tokamak geometry [18, 12]. However,
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the efficacy of this method in stellarator geometries had not been investigated prior to this project.
Thus, the proxy procedure has been replicated here in the tokamak case, and subsequently
expanded to the more complex stellarator geometries. As we have now seen, the proxy procedure
does successfully model the instability behaviour in various stellarator geometries, with varying
degrees of agreement. This indicates that the level of geometric complexity is not a pressing
issue for approximately modelling the TEM behaviour. However, as posited in the HSX case, the
presence of subdominant modes may threaten the validity of our analysis of the TEM.

Another potential explanation for the discrepancies between our proxy prediction and the GENE
output could be due to an ordering assumption made during our analytical derivation. This was
in regard to the magnetic drift frequency ωda and the mode frequency ω. In order to be able to
carry out our variational principle approach in section 5.2, we needed to assume a small ordering
of this drift frequency compared to the mode frequency (ωda � ω), so as to avoid encountering
resonance when ωda ∼ ω in the denominator of our integral expression. This is ultimately
because our variational principle procedure is only known to work in cases where the integral
expression is fully real. Thus, we had to avoid the manifestation of a pole in our calculation in
order to successfully implement this variational principle procedure. Despite this assumption,
our procedure here still managed to yield very promising results in almost all cases.

7.1.2 Using Variational Principle and Predicted Mode Structure

Once again, we present the results of our mode frequency proxy for various toroidal configurations.
For our trial function φ in this case, we insert our prediction of the mode structure, whereby
only one profile is used for each geometric configuration and is held constant for varying
wavenumber (kyρ) and density gradient

(
a

Ln

)
values. The procedure for calculating this predicted

mode structure will be explained before presenting the mode frequency proxy results. As
before, we start with the simplest geometry of the DIII-D tokamak, before considering the more
complex stellarator geometries of the NCSX (National Compact Stellarator Experiment), the W7-X
(Wendelstein 7 Experiment) and the HSX (Helically Symmetric Experiment). For each geometric
configuration, we first show the predicted mode structure profile (see Figures 7.40, 7.46, 7.52, 7.58,
7.64, 7.70), which relies upon the geometric profiles only (see Figures 7.41, 7.47, 7.53, 7.59, 7.65
and 7.71). We follow this up with presenting the mode frequency results, where we compare
the output of our proxy in comparison with GENE simulation data. In these plots, our proxy is
denoted by VP(φPred), which is shorthand for: variational principle result, with φ(Pred) as the trial
function input.
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Predicting the Mode Structure

Here, we show how the mode structure φ can be very roughly predicted using only geometrical
information. The inputs used here are the magnetic field strength profile B, and the curvature
profile κ. As already mentioned, the benefit of being able to successfully predict the mode
structure is that we can circumvent the need to run costly and time-consuming 5D GENE
simulations [13]. The method carried out here is only a first approximation toward achieving the
mode structure, but it serves to prove the principle of this technique. Further investigation and
refinement of this prediction procedure is recommended for future work.

In order to predict the mode structure, we first need to know the relationship between the
mode itself and the geometry it exists in. We are, of course, concerned with the nature of the
trapped-electron mode, so it is helpful to remind ourselves of trapped particle behaviour in
toroidal geometry. This was discussed in some detail in section 3.2, but we will reiterate some
of the relevant details here for convenience. Trapped particles are those that are periodically
reflected between regions of high magnetic field with a characteristic frequency, known as the
bounce frequency. This occurs when particles enter a region of low magnetic field strength, and
do not have sufficient parallel velocity (parallel to the magnetic field line) to escape the region.
Such a region can be thought of as a magnetic-field well, bounded by regions of higher magnetic
field. Due to the intrinsic toroidal nature of our geometrical configurations, the magnetic coils
that create the plasma’s magnetic cage are inevitably closer together at the centre of the torii than
on the outboard side. Thus, this leads to a magnetic field strength gradient ∇B, which points
toward the central toroidal axis. The magnetic field is then weakest at the outboard side, and so
this is where trapped particles primarily reside. This outboard side is also where the curvature
is negative, and this is known as a "bad curvature" region. More specifically, bad or negative
curvature occurs where the equilibrium plasma pressure gradient (∇p0) and the magnetic field
strength gradient (∇B) are aligned. In this region, free energy can be released when a field line is
exchanged between two flux tubes [13]. Micro-instabilities feed from this supply of free energy
and grow as a result.

With this information at hand, we now know that our mode of interest is dependent on the
geometry in a two-fold manner. Firstly, the TEM must occur in regions of low magnetic field,
so the mode ought to peak where the magnetic field has a minimum. We also know that free
energy is supplied to the mode in regions of bad curvature, i.e., negative curvature (κ < 0). Using
this information, we can impose that the mode structure is required to peak where the magnetic
field has a minimum, and where the curvature is negative (bad curvature region). We can then
use these requirements to approximate the mode structure. We will use the simplest case of the
DIII-D tokamak as an example to demonstrate how this can be done. We can start by simply
combining the the magnetic field strength profile with the curvature profile, giving us the second
plot seen in Fig. 7.38. It is worth noting that we are not concerned by the magnitude of the our
result, only the shape.
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Figure 7.38: Magnetic field strength B and curvature κ along the magnetic field line in the DIII-D tokamak, and the
combination of these two profiles, B + κ. Source: GIST data from [12]

After combining the magnetic field strength with the curvature, the next step is to invert this
result. We do this because we know our mode should have its maximum where these geometric
quantities both have their lowest values. We also normalise our result, due to the fact that we are
only interested in the mode shape, not its magnitude. Inverting and normalising the B + κ plot in
Fig. 7.38 then gives us our final result for the predicted mode structure in Fig. 7.39. Clearly, our
approach is extremely simple and straightforward, but by no means rigorous. There is plenty
of room for improvement and refinement, and so some suggestions for how to go about doing
this will be mentioned in the discussion to follow later. With our method for predicting the
mode structure now described, we can present the results of this procedure in our geometric
configurations of interest, as well as the results of the mode frequency proxy which relied on the
accuracy of these predicted φ profiles.
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Figure 7.39: The predicted mode structure profile φ(Pred) along the magnetic field line for the DIII-D tokamak.
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DIII-D Tokamak

Figure 7.40: The predicted mode structure profile φ(Pred) along the magnetic field line for the DIII-D tokamak.

Figure 7.41: Magnetic field strength B and curvature κ along the magnetic field line in the DIII-D tokamak. Source:
GIST data from [12]
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Figure 7.42: Real mode frequency versus density gradient in the DIII-D tokamak. GENE simulation data in blue
and variational principle proxy in red. Source: GENE data from [12]
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Figure 7.43: Real mode frequency versus density gradient in the DIII-D tokamak. GENE simulation data in blue
and variational principle proxy in red. Source: GENE data from [12]
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Figure 7.44: Real mode frequency versus density gradient in the DIII-D tokamak. GENE simulation data in blue
and variational principle proxy in red. Source: GENE data from [12]
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Figure 7.45: Real mode frequency versus density gradient in the DIII-D tokamak. GENE simulation data in blue
and variational principle proxy in red. Source: GENE data from [12]
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NCSX

Figure 7.46: The predicted mode structure profile φ(Pred) along the magnetic field line for NCSX.

Figure 7.47: Magnetic field strength B and curvature κ along the magnetic field line in NCSX. Source: GIST data
from [12]
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Figure 7.48: Real mode frequency versus density gradient in the NCSX. GENE simulation data in blue and
variational principle proxy in red. Source: GENE data from [12]
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Figure 7.49: Real mode frequency versus density gradient in the NCSX. GENE simulation data in blue and
variational principle proxy in red. Source: GENE data from [12]
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Figure 7.50: Real mode frequency versus density gradient in the NCSX. GENE simulation data in blue and
variational principle proxy in red. Source: GENE data from [12]
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Figure 7.51: Real mode frequency versus density gradient in the NCSX. GENE simulation data in blue and
variational principle proxy in red. Source: GENE data from [12]
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W7-X (SC)

Figure 7.52: The predicted mode structure profile φ(Pred) along the magnetic field line for W7-X (SC).

Figure 7.53: Magnetic field strength B and curvature κ along the magnetic field line in W7-X (SC). Source: GIST
data from [12]
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Figure 7.54: Real mode frequency versus density gradient in the W7-X (SC). GENE simulation data in blue and
variational principle proxy in red. Source: GENE data from [12]
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Figure 7.55: Real mode frequency versus density gradient in the W7-X (SC). GENE simulation data in blue and
variational principle proxy in red. Source: GENE data from [12]
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Figure 7.56: Real mode frequency versus density gradient in the W7-X (SC). GENE simulation data in blue and
variational principle proxy in red. Source: GENE data from [12]
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Figure 7.57: Real mode frequency versus density gradient in the W7-X (SC). GENE simulation data in blue and
variational principle proxy in red. Source: GENE data from [12]
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W7-X (HM)

Figure 7.58: The predicted mode structure profile φ(Pred) along the magnetic field line for W7-X (HM).

Figure 7.59: Magnetic field strength B and curvature κ along the magnetic field line in W7-X (HM). Source: GIST
data from [12]
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Figure 7.60: Real mode frequency versus density gradient in the W7-X (HM). GENE simulation data in blue and
variational principle proxy in red. Source: GENE data from [12]
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Figure 7.61: Real mode frequency versus density gradient in the W7-X (HM). GENE simulation data in blue and
variational principle proxy in red. Source: GENE data from [12]
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Figure 7.62: Real mode frequency versus density gradient in the W7-X (HM). GENE simulation data in blue and
variational principle proxy in red. Source: GENE data from [12]
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Figure 7.63: Real mode frequency versus density gradient in the W7-X (HM). GENE simulation data in blue and
variational principle proxy in red. Source: GENE data from [12]
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W7-X (LM)

Figure 7.64: The predicted mode structure profile φ(Pred) along the magnetic field line for W7-X (LM).

Figure 7.65: Magnetic field strength B and curvature κ along the magnetic field line in W7-X (LM). Source: GIST
data from [12]
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Figure 7.66: Real mode frequency versus density gradient in the W7-X (LM). GENE simulation data in blue and
variational principle proxy in red. Source: GENE data from [12]
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Figure 7.67: Real mode frequency versus density gradient in the W7-X (LM). GENE simulation data in blue and
variational principle proxy in red. Source: GENE data from [12]
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Figure 7.68: Real mode frequency versus density gradient in the W7-X (LM). GENE simulation data in blue and
variational principle proxy in red. Source: GENE data from [12]
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Figure 7.69: Real mode frequency versus density gradient in the W7-X (LM). GENE simulation data in blue and
variational principle proxy in red. Source: GENE data from [12]
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HSX

Figure 7.70: The predicted mode structure profile φ(Pred) along the magnetic field line for HSX.

Figure 7.71: Magnetic field strength B and curvature κ along the magnetic field line in HSX. Source: GIST data
from [12]
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Figure 7.72: Real mode frequency versus density gradient in the HSX. GENE simulation data in blue and variational
principle proxy in red. Source: GENE data from [12]
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Figure 7.73: Real mode frequency versus density gradient in the HSX. GENE simulation data in blue and variational
principle proxy in red. Source: GENE data from [12]
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Figure 7.74: Real mode frequency versus density gradient in the HSX. GENE simulation data in blue and variational
principle proxy in red. Source: GENE data from [12]
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Figure 7.75: Real mode frequency versus density gradient in the HSX. GENE simulation data in blue and variational
principle proxy in red. Source: GENE data from [12]
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Figure 7.76: Real mode frequency versus density gradient in the HSX. GENE simulation data in blue and variational
principle proxy in red. Source: GENE data from [12]
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Discussion

We now discuss these results, which once again arose from utilising a variational principle
technique to approximate the real mode frequency ωr of the TEM. As before, the trial function
input for the variational principle technique is the mode structure φ. In this case, however, this
input took the form of a single predicted φ profile, which depended on the geometric information
of the configuration at hand (magnetic field strength B and curvature κ). This approach no longer
relies on any simulation data from GENE, and so one expects a weaker agreement between the
proxy prediction and the GENE output for the real mode frequency. Nonetheless, our method for
predicting the mode structure was extremely simple, and serves only to prove the principle of the
procedure, which has much room for improvement. With this in mind, we first briefly discuss the
results shown in this section, followed by suggesting some means to improving our prediction
procedure, which may be implemented in future work.

Our mode frequency results here, which relied upon the accuracy of our φ prediction, predictably
showed a weaker agreement with GENE output in comparison to our previous set of results
which utilised φ-data from GENE. In most configurations, there appears to be stronger agreement
between our proxy and GENE simulation for lower density gradient values, and increasingly
weaker agreement as the density gradient increases. This can be explained by the φ prediction
used in the proxy. When comparing our φ prediction with the φ-data profiles from GENE
(which are not included in this report), it was found that the best agreement occurred when
considering the lowest density gradient values. The mode structure profiles from GENE change
as a

Ln
increases, and this may be due to the presence of subdominant modes at these higher

gradients. Our φ prediction is solely dependent on the geometry of the configuration, so this
behaviour is not captured when a

Ln
increases. This inevitably degrades the reliability of the mode

frequency proxy in these higher regions of parameter space. Thus, the overall trend of ωr is
captured quite well by the proxy for low a

Ln
values, but sudden drops and jumps in the GENE

data are not tracked by the proxy. As mentioned in the previous section, these sharp drops in the
GENE data may indicate the transition to a new TEM [56]. Sudden changes in the simulation
data such as these are expected to be replicated by the proxy if the φ prediction is improved. We
can be confident of this as we have already seen that this variational procedure has the capability
to mirror such sudden changes when the idealised trial function is used, i.e., inserting GENE data
for φ directly.

We can now propose some potential improvements to be made to our mode structure prediction
technique. Firstly, more care could be taken when combining the magnetic field and curvature
profiles, which are the only inputs used to generate our prediction. This could take the form of
giving each quantity a certain weight corresponding to their level of influence on the mode. In our
approach here, we brutally added these quantities together without giving much consideration
for how significantly each one influences the mode on its own. It might be worth experimenting
with this linear combination by giving each geometric quantity a weighted coefficient, which can
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be varied to find the optimal value. This may look as follows:

c1B + c2κ (7.3)

where c1 and c2 are the adjustable weighted coefficients.
Secondly, we know that the mode structure varies with wavenumber and density gradient, and
not only with the geometric information (B and κ). Thus, realistically, there ought to be a distinct
φ profile for each pairing

(
kyρ, a

Ln

)
, for every geometric configuration considered. However, in

our procedure, we only use a first approximation for the φ profile prediction, and assume it is
not dependent on these plasma quantities. Our current prediction for φ can be thought of as
follows:

φ(Pred) = φ(B, κ) (7.4)

Therefore, an immediate improvement to be made to this procedure in future work would be to
find a prediction for the mode structure that functions as follows:

φ(Pred) = φ

(
B, κ, kyρ,

a
Ln

)
(7.5)

In the end, despite our very rough method here, our results exhibit a clear proof of principle
for this technique. Our work indicates that with sufficient knowledge of the mode structure’s
dependence on geometric and plasma quantities, one can approximately predict the φ profile to a
reliable level.

7.2 Proxy for the Critical Density Gradient

In this section, we first present the values of the critical density gradient for the TEM - as obtained
from GENE data - in the various geometrical configurations considered. This provides our
benchmark, to which we compare the results of our proxy procedures in order to determine
their performance. Following this, we then look at the results of two separate approaches to
developing a proxy for the critical density gradient. We first consider our original approach,
pertaining to the analytical work carried out in section 6.1. We then consider a simpler alternative
approach, pertaining to the analytical work from section 6.2. Each set of results will be followed
by a discussion of their interpretation.

7.2.1 Critical Density Gradient from GENE Growth Rate

Here, we look at how to calculate the critical density gradient values from GENE data for each
geometrical configuration. We achieve this by looking at the growth rate γ for each configuration
and wavenumber, and seeing where it approximately equals zero. Our procedure involves
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analysing GENE output data for γ and fitting a polynomial to this data in order to find the root
(γ = 0). The a

Ln
value found where γ = 0 should then correspond to the critical density gradient.

The results of this section are displayed in Table 7.1.

It is worth noting that these values have been obtained using a limited amount of data, and the
polynomial fitting procedure is done by hand. The degree of this polynomial fit is manually
adjusted until the best possible match is found by eye. Therefore, this method is only able to
approximate the trend of the given data set. It is from this approximate polynomial that a root
was found, which gives us our supposed critical density gradient values. Therefore, we are more
concerned with the approximate neighbourhood of values obtained from GENE, and not the precise
values shown.
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DIII-D Tokamak
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Figure 7.77: Growth rate γ in the DIII-D tokamak.
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Figure 7.78: Growth rate γ in the DIII-D tokamak.
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Figure 7.79: Growth rate γ in the DIII-D tokamak.
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Figure 7.80: Growth rate γ in the DIII-D tokamak.
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NCSX
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Figure 7.81: Growth rate γ in NCSX.
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Figure 7.82: Growth rate γ in NCSX.
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Figure 7.83: Growth rate γ in NCSX.
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Figure 7.84: Growth rate γ in NCSX.
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W7-X (SC)
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Figure 7.85: Growth rate γ in W7-X (SC).
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Figure 7.86: Growth rate γ in W7-X (SC).
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Figure 7.87: Growth rate γ in W7-X (SC).
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Figure 7.88: Growth rate γ in W7-X (SC).
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W7-X (HM)
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Figure 7.89: Growth rate γ in W7-X (HM).
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Figure 7.90: Growth rate γ in W7-X (HM).
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Figure 7.91: Growth rate γ in W7-X (HM).
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Figure 7.92: Growth rate γ in W7-X (HM).
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W7-X (LM)
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Figure 7.93: Growth rate γ in W7-X (LM).
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Figure 7.94: Growth rate γ in W7-X (LM).
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Figure 7.95: Growth rate γ in W7-X (LM).
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Figure 7.96: Growth rate γ in W7-X (LM).
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HSX
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Figure 7.97: Growth rate γ in HSX.
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Figure 7.98: Growth rate γ in HSX.
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Figure 7.99: Growth rate γ in HSX.
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Figure 7.100: Growth rate γ in HSX.
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Figure 7.101: Growth rate γ in HSX.
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7.2.2 Original Approach

Here, we will present the results of our original approach to finding a proxy for the critical
density gradient. The analytical work that produced these results can be found in section 6.1. The
final analytical result from that procedure, Eqn. 6.66 will be restated here:

(
ω

ω∗e

)
lim
δ→0

∑
wells

{(∫ λCrit−δ

1
Bmax

dλ[P1 + M1]

)
+

(∫ 1
Bmin

λCrit+δ
dλ[P1 + M1]

)}

− lim
δ→0

∑
wells

{(∫ λCrit−δ

1
Bmax

dλ[P1 −M1]

)
+

(∫ 1
Bmin

λCrit+δ
dλ[P1 −M1]

)}
= 0

(7.6)

where

P1 ≡ |φ|2τ(λ)

(
1

G(λ)

)(
ω

FeG(λ)

) 1
2

Hee
− ω

FeG(λ)

M1 ≡ |φ|2τ(λ)

(
1

−G(λ)

)(
ω

−FeG(λ)

) 1
2

Hie
− ω
−FeG(λ)

(7.7)

For the ω
ω∗e

term in Eqn. 7.6, we insert our analytical expression Eqn. 5.105 directly - which we
know is compatible with the variational principle. We also insert a modified form of this result
for when we have ω on its own, which is necessary for both expressions in Eqn. 7.7. The input
for φ here is φ(Pred). We only use this predicted mode structure here as it does not make sense to
insert GENE data, which solely corresponds to the characteristics of the mode beyond the point
of marginal stability. This is not the region of parameter space we are concerned with here, as
we only want to find the point at which the mode first exists. This is precisely at the point of
marginal stability, which is where Eqn. 7.6 should be satisfied. Hence, we are not concerned with
the subsequent behaviour of the mode, which is precisely what GENE models.

The plots we are presenting here represent the left-hand side of Eqn. 7.6, such that we are
interested in where this result is approaching zero. The density gradient value corresponding to
where our result is approximately zero should then be our proxy for the critical density gradient.
Note, we are not concerned by the magnitude of our results - we are only interested in finding the
roots of our plotted functions. Note, for each plot, we only show the relevant section of parameter
space where a root was to be found. In some cases, no root was found in a realistic region of
parameter space, but an explanation for these outliers will be provided in our discussion to follow.
Also, our plots use the shorthand CDG for critical density gradient.
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DIII-D Tokamak
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Figure 7.102: Critical-density-gradient proxy in the DIII-D tokamak.
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Figure 7.103: Critical-density-gradient proxy in the DIII-D tokamak.
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Figure 7.104: Critical-density-gradient proxy in the DIII-D tokamak.
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Figure 7.105: Critical-density-gradient proxy in the DIII-D tokamak.
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NCSX

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200
a
Ln

75

50

25

0

25

50

75

100

125

150

CD
G 

Pr
ox

y
CDG Proxy [ky = 0.6]

Figure 7.106: Critical-density-gradient proxy in NCSX.
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Figure 7.107: Critical-density-gradient proxy in NCSX.
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Figure 7.108: Critical-density-gradient proxy in NCSX.
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Figure 7.109: Critical-density-gradient proxy in NCSX.
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W7-X (SC)
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Figure 7.110: Critical-density-gradient proxy in W7-X (SC).
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Figure 7.111: Critical-density-gradient proxy in W7-X (SC).
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Figure 7.112: Critical-density-gradient proxy in W7-X (SC).

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200
a
Ln

0

100

200

300

400

500

600

700

800

CD
G 

Pr
ox

y

CDG Proxy [ky = 1.2]

Figure 7.113: Critical-density-gradient proxy in W7-X (SC).

159



160 CHAPTER 7. RESULTS AND FINDINGS

W7-X (HM)
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Figure 7.114: Critical-density-gradient proxy in W7-X (HM).
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Figure 7.115: Critical-density-gradient proxy in W7-X (HM).
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Figure 7.116: Critical-density-gradient proxy in W7-X (HM).
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Figure 7.117: Critical-density-gradient proxy in W7-X (HM).
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W7-X (LM)
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Figure 7.118: Critical-density-gradient proxy in W7-X (LM).
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Figure 7.119: Critical-density-gradient proxy in W7-X (LM).
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Figure 7.120: Critical-density-gradient proxy in W7-X (LM).
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Figure 7.121: Critical-density-gradient proxy in W7-X (LM).
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HSX
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Figure 7.122: Critical-density-gradient proxy in HSX.
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Figure 7.123: Critical-density-gradient proxy in HSX.
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Figure 7.124: Critical-density-gradient proxy in HSX.
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Figure 7.125: Critical-density-gradient proxy in HSX.
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Figure 7.126: Critical-density-gradient proxy in HSX.
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Discussion of Original Approach

We now discuss the results of this original approach to finding the critical density gradient. The
results show that there is sometimes one clear solitary root found in the region of parameter space
we are concerned with, but there is also sometimes multiple roots, or even no roots found. Some
explanation will be provided here to explain this behaviour, but it ought to be noted that the
discussion here will be somewhat trepidatious, and we will thus not draw any absolute or concrete
conclusions. We will, however, provide our most solid interpretation of these findings.

Starting with the simplest case of the DIII-D tokamak, we see that there is only a single root
to be found in the parameter space considered, for each wavenumber shown. At these points,
there is a sharp turning point in our curves, which may be indicative of a discontinuity. This
point corresponds to where ωr = 0, as our proxy expression given in Eqn. 7.6 has an ωr in all
terms. Thus, the proxy is automatically satisfied when the real mode frequency vanishes. For
higher density gradients, there are no other roots found for this configuration. Therefore, we will
assume that this solitary root, which occurs at the point of discontinuity in each of our curves,
corresponds to the point of marginal stability. If we assume this to be true in all of our remaining
geometries, then we need only focus on the roots corresponding to a discontinuity in our curves.
Following from this, we find that each of these roots are also due to where ωr = 0. Interestingly,
this is precisely the requirement found in our alternative proxy approach described in section 6.2.
Thus, as we will see in the next section when we present the results of this alternative method, we
find that the numerical results of these root values (where a discontinuity occurs) are sometimes
in exact agreement (depending on the wavenumber) with the density gradient values found by
our alternative method, which simply considers where ωr = 0.

We have some outliers in our results, whereby no root is found in the region of parameter space
considered. The two cases where this occurred were both for the W7-X (HM) configuration
(see Figures 7.116 and 7.117). This can be explained by a poor performance on the part of the
predicted mode structure. More specifically, the mode frequency proxy - which depended on this
predicted mode structure - was unable to adequately predict the behaviour of the actual mode
frequency. This is most clearly evident in the next section (see the lower plots in Figures 7.145
and 7.146). In these two instances, the critical density gradient is predicted to be approximately
12.1527 and -0.0159, respectively. The expected value is somewhere between 0 and 1. Thus, we
disregard these results as explainable outliers, which would not have occurred had our mode
structure prediction been more rigorous.

We shall now present and discuss the numerical results of this critical-density-gradient proxy
in Table 7.1. Here, we compare these proxy results with those found using GENE data. These
results are also presented more visually using scatter-correlation plots (see Figures 7.127, 7.128,
7.129 and 7.130). When considering the critical-density-gradient proxy plots presented earlier in
this section, it should be noted that the precise values of the roots are in exact agreement with
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evaluating our analytical expression, Eqn. 6.87. This should make sense, as both our proxy-plots
and Eqn. 6.87 have a solution for ωr = 0, and both procedures rely on our predicted mode
structure φ(Pred) as in input. Thus, this is how our proxy values were calculated in Table 7.1. We
can see from this table of results and the corresponding scatter-correlation plots that we do not
have a strong agreement between our proxy’s prediction and the results obtained from GENE. In
our scatter-correlation plots, perfect agreement between our proxy and GENE would be indicated
by having a one-to-one correlation, such that the line of best fit would have a slope equal to 1
with a y-intercept at the origin, and all data points would fall on this line. This is, of course,
the idealised case, and is never expected realistically. Our scatter-correlation plots all show a
weak-positive correlation, with the strongest result being at wavenumber kyρ = 1.2. Although
this may seem like a disappointing outcome, some potential reasons for these discrepancies in
values (and weak correlations) are important to keep in mind.
Firstly, the values obtained from the GENE growth rate data are by no means infallible or without
error. These values have been obtained using a limited amount of data, which has then been fitted
with a polynomial. The degree of this polynomial fit is manually adjusted until the best possible
match is found by eye. This method is only able to approximate the trend of the given data set. It
is from this approximate polynomial that a root was found, which gives us our supposed critical
density gradient values. Therefore, we are more concerned with the approximate neighbourhood of
values obtained from GENE, and not the precise values shown.
Secondly, it is important to remember that our proxy is reliant on the efficacy of the mode
frequency proxy, and thus, on the accuracy of the predicted mode structure. Therefore, there is
an inevitable propagation of error manifest here due to this heavy dependence on earlier steps.
And so, we may expect a better agreement between the proxy and the GENE output when these
earlier procedures have been further improved. If this is the case, then our analytical work carried
out for the critical-density-gradient proxy is still valid and potentially useful. Thus, we may only
need to improve the accuracy of our inputs for this proxy to yield more accurate results.

In relation to this second point, there is another potential explanation for the discrepancies
between our proxy prediction and the GENE values, which arises from the analytical work
underlying these results. As already mentioned in section 7.1, where we discussed the results of
the mode frequency proxy, an important ordering assumption had to be made in order to be able
to carry out our variational principle approach in section 5.2. Specifically, we needed to assume a
small ordering of the magnetic drift frequency compared to the mode frequency (ωda � ω), so as
to avoid encountering resonance when ωda ∼ ω in the denominator of our integral expression.
This is ultimately because our variational principle procedure is only known to work in cases
where the integral expression is fully real. Thus, we had to avoid the manifestation of a pole in
our calculation in order to successfully implement this variational principle procedure. However,
in our analytical derivation for the critical-density-gradient proxy (see section 6.1), we do not
implement this assumption. Instead, we directly address this presence of a pole by assuming
an ordering of ωda ∼ ω in our derivation. This was necessary because the presence of a pole
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corresponds to the manifestation of our instability mode (the TEM in this case). Once our final
result from this procedure was obtained, we inserted our mode frequency proxy result into
this critical-density-gradient proxy expression. Thus, we end up calculating a single expression
which relied on a particular ordering scheme (ωda ∼ ω), but whose input relied upon a different
ordering scheme (ωda � ω). This was an unfortunate, but ultimately necessary, course of action
for this very particular procedure. For future work, it may be worth investigating whether a
similar procedure can be carried out whereby there is greater consistency of assumption made
throughout the full analytical derivation.

Despite the aforementioned discrepancies and weak correlations in our results, we are still
seeing a positive correlation for all wavenumbers considered. This may indicate that our proxy
is working sufficiently well for optimisation purposes. In other words, our proxy seems to be
correctly indicating the approximate direction of optimisation, i.e., where a new stellarator geometry
should fall in these plots such that it possess a higher critical density gradient. Therefore, a perfect
one-to-one correlation may not be necessary for finding a stellarator geometry with increased
critical density gradient, and our proxy would provide a relatively fast means to achieving this,
which is totally independent of costly GENE simulation data.
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Geometry Critical Density Gradient Values

γ GENE CDG Proxy

DIII-D (kyρ = 0.6) 0.3182 0.4470
DIII-D (kyρ = 0.8) 0.3051 0.1562
DIII-D (kyρ = 1.0) 0.3073 0.9259
DIII-D (kyρ = 1.2) 0.3080 0.6448

NCSX (kyρ = 0.6) 0.2980 0.0157
NCSX (kyρ = 0.8) 0.2961 0.0598
NCSX (kyρ = 1.0) 0.2776 0.1428
NCSX (kyρ = 1.2) 0.2495 0.5688

W7-X (SC) (kyρ = 0.6) 0.1783 0.0159
W7-X (SC) (kyρ = 0.8) 0.2014 0.0230
W7-X (SC) (kyρ = 1.0) 0.2021 0.0367
W7-X (SC) (kyρ = 1.2) 0.1617 0.1958

W7-X (HM) (kyρ = 0.6) 0.1624 0.0382
W7-X (HM) (kyρ = 0.8) 0.1472 0.0564
W7-X (HM) (kyρ = 1.0) 0.1559 12.1527
W7-X (HM) (kyρ = 1.2) 0.2265 -0.0159

W7-X (LM) (kyρ = 0.6) 0.2975 0.0083
W7-X (LM) (kyρ = 0.8) 0.3015 0.0133
W7-X (LM) (kyρ = 1.0) 0.2858 0.0196
W7-X (LM) (kyρ = 1.2) 0.2264 0.0326

HSX (kyρ = 0.4) 0.2106 0.0860
HSX (kyρ = 0.6) 0.1725 0.0917
HSX (kyρ = 0.8) 0.2401 0.0930
HSX (kyρ = 1.0) 0.2146 0.0980
HSX (kyρ = 1.2) 0.2115 0.1919

Table 7.1: Critical density gradient values from GENE data and from our proxy.
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Figure 7.127: Scatter-correlation plot comparing our critical-density-gradient proxy results with GENE.
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Figure 7.128: Scatter-correlation plot comparing our critical-density-gradient proxy results with GENE.
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Figure 7.129: Scatter-correlation plot comparing our critical-density-gradient proxy results with GENE.
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Figure 7.130: Scatter-correlation plot comparing our critical-density-gradient proxy results with GENE.
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7.2.3 Alternative Approach

Here, we will present the results of our alternative approach to finding a proxy for the critical
density gradient. The analytical work that produced these results can be found in section 6.2. Very
simply stated, this procedure indicated that the critical density gradient is that which corresponds
to:

ωr
!
= γ

!
= 0 (7.8)

This implies that we can use our variational principle proxy for ωr to approximate the critical
density gradient as follows:

ωr(VP)
!
= 0 (7.9)

The plots presented in this section are thus the real mode frequency results from various methods.
These methods are as follows: ωr directly from GENE data; ωr from our variational principle
proxy, where φ-data from GENE was used as our input; ωr from our variational principle proxy,
where the predicted mode structure φ(Pred) was used as our input. The critical density gradient is
then found from calculating the first root of these plotted functions, where ωr = 0. The results of
this procedure are displayed in Table 7.2.

For the final case stated here, whereby we use the variational principle and the predicted mode
structure, the critical density gradient can also be calculated directly using the the final analytical
result from section 6.2 - Eqn. 6.87. This will be restated here:

(
a

Lne

)
Crit

=

(
eBa
kαTe

){∫ ∞
−∞ [2Γ0 − b (Γ0 − Γ1)]

ω̂di
2 |φ|2

dl
B + 1

2

∫ 1
Bmin

1
Bmax

∑wells τ(λ)
(

3
2 FeG(λ)

)
|φ|2dλ

}
1
2

∫ 1
Bmin

1
Bmax

∑wells τ(λ)|φ|2dλ−
∫ ∞
−∞ [Γ0 − ηib (Γ0 − Γ1)] |φ|2 dl

B

(7.10)
The input for φ here is φ(Pred), which is the same input used for our original proxy approach.
Once again, we only use this predicted mode structure here as it does not make sense to insert
GENE data, which solely corresponds to the characteristics of the mode beyond the point of
marginal stability. This is not the region of parameter space we are concerned with, as we only
want to find the point at which the mode first exists. This is precisely at the point of marginal
stability. Hence, we are not concerned with the subsequent behaviour of the mode, which is
precisely what GENE models.
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Figure 7.131: Plots of the real mode frequency ωr in the DIII-D tokamak from: (i) GENE, (ii) the variational
principle using φ-data, and (iii) the variational principle using φ(Pred).
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Figure 7.132: Plots of the real mode frequency ωr in the DIII-D tokamak from: (i) GENE, (ii) the variational
principle using φ-data, and (iii) the variational principle using φ(Pred).
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Figure 7.133: Plots of the real mode frequency ωr in the DIII-D tokamak from: (i) GENE, (ii) the variational
principle using φ-data, and (iii) the variational principle using φ(Pred).
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Figure 7.134: Plots of the real mode frequency ωr in the DIII-D tokamak from: (i) GENE, (ii) the variational
principle using φ-data, and (iii) the variational principle using φ(Pred).
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Figure 7.135: Plots of the real mode frequency ωr in NCSX from: (i) GENE, (ii) the variational principle using
φ-data, and (iii) the variational principle using φ(Pred).
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Figure 7.136: Plots of the real mode frequency ωr in NCSX from: (i) GENE, (ii) the variational principle using
φ-data, and (iii) the variational principle using φ(Pred).
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Figure 7.137: Plots of the real mode frequency ωr in NCSX from: (i) GENE, (ii) the variational principle using
φ-data, and (iii) the variational principle using φ(Pred).
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Figure 7.138: Plots of the real mode frequency ωr in NCSX from: (i) GENE, (ii) the variational principle using
φ-data, and (iii) the variational principle using φ(Pred).
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Figure 7.139: Plots of the real mode frequency ωr in W7-X (SC) from: (i) GENE, (ii) the variational principle using
φ-data, and (iii) the variational principle using φ(Pred).
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Figure 7.140: Plots of the real mode frequency ωr in W7-X (SC) from: GENE, the variational principle using φ-data,
and the variational principle using φ(Pred).
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Figure 7.141: Plots of the real mode frequency ωr in W7-X (SC) from: (i) GENE, (ii) the variational principle using
φ-data, and (iii) the variational principle using φ(Pred).
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Figure 7.142: Plots of the real mode frequency ωr in W7-X (SC) from: (i) GENE, (ii) the variational principle using
φ-data, and (iii) the variational principle using φ(Pred).
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Figure 7.143: Plots of the real mode frequency ωr in W7-X (HM) from: (i) GENE, (ii) the variational principle
using φ-data, and (iii) the variational principle using φ(Pred).
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Figure 7.144: Plots of the real mode frequency ωr in W7-X (HM) from: (i) GENE, (ii) the variational principle
using φ-data, and (iii) the variational principle using φ(Pred).
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Figure 7.145: Plots of the real mode frequency ωr in W7-X (HM) from: (i) GENE, (ii) the variational principle
using φ-data, and (iii) the variational principle using φ(Pred).
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Figure 7.146: Plots of the real mode frequency ωr in W7-X (HM) from: (i) GENE, (ii) the variational principle
using φ-data, and (iii) the variational principle using φ(Pred).
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Figure 7.147: Plots of the real mode frequency ωr in W7-X (LM) from: (i) GENE, (ii) the variational principle using
φ-data, and (iii) the variational principle using φ(Pred).
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Figure 7.148: Plots of the real mode frequency ωr in W7-X (LM) from: (i) GENE, (ii) the variational principle using
φ-data, and (iii) the variational principle using φ(Pred).
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Figure 7.149: Plots of the real mode frequency ωr in W7-X (LM) from: (i) GENE, (ii) the variational principle using
φ-data, and (iii) the variational principle using φ(Pred).
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Figure 7.150: Plots of the real mode frequency ωr in W7-X (LM) from: (i) GENE, (ii) the variational principle using
φ-data, and (iii) the variational principle using φ(Pred).
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Figure 7.151: Plots of the real mode frequency ωr in HSX from: (i) GENE, (ii) the variational principle using φ-data,
and (iii) the variational principle using φ(Pred).
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Figure 7.152: Plots of the real mode frequency ωr in HSX from: (i) GENE, (ii) the variational principle using φ-data,
and (iii) the variational principle using φ(Pred).
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Figure 7.153: Plots of the real mode frequency ωr in HSX from: (i) GENE, (ii) the variational principle using φ-data,
and (iii) the variational principle using φ(Pred).
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Figure 7.154: Plots of the real mode frequency ωr in HSX from: (i) GENE, (ii) the variational principle using φ-data,
and (iii) the variational principle using φ(Pred).
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Figure 7.155: Plots of the real mode frequency ωr in HSX from: (i) GENE, (ii) the variational principle using φ-data,
and (iii) the variational principle using φ(Pred).
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Discussion of Alternative Approach

We now discuss the results of this alternative approach to approximating the critical density
gradient. So far, we have presented three separate forms of the real mode frequency ωr for each
wavenumber in all geometric configurations considered. As already stated earlier in this section,
each of these plots of ωr has been derived by different means - the first uses GENE directly,
the second uses our variational principle and GENE data for φ, and finally, the third uses our
variational principle and the predicted mode structure φ(Pred). The next step was to calculate
the lowest positive root for each of these plots. The results of this step are compiled in Table
7.2, where we compare these approximate critical density gradient values with those obtained
using the growth rates γ from GENE directly. Following from this table, scatter-correlation plots
are presented comparing the critical density gradient values as obtained from the GENE growth
rates, γ, and those from setting ωr(GENE) = 0. This is the idealised case for this proxy, as it relies
totally on GENE data for ωr. Regardless, these plots should provide some insight on whether the
underlying basis for this proxy is correct, i.e., ωr

!
= γ

!
= 0 at marginal stability. We do not provide

scatter-correlation plots for the remaining columns in Table 7.2, as they do not shed further light
on the basis of this alternative proxy.

As we can see in the last column of Table 7.2 (VP(φPred)
column), which corresponds to the case

of using a predicted mode structure as the input for our variational principle, we have exact
agreement between some of these results and those obtained by the original proxy (see Table 7.1).
More specifically, there is full agreement for all of the DIII-D tokamak values in both tables, and
partial agreement for the other geometric configurations. This is most likely due to the fact that
both of these procedures relied on the same predicted mode structure profiles, and both yield
their solution when ωr = 0. The discrepancies may be explained by the fact that the original
and alternative methods obtained these proxy results by different means. The former utilised
Eqn. 6.87 to find precise values for the proxy, which agreed with the plotted results in section
7.2.2. The latter method relied on finding the roots using fitted polynomials, which may have
been subject to some error in measurement. Despite these discrepancies, the overall similarity in
results may indicate that our alternative method for approximating the critical density gradient
- although more simplistic and arguably more expedient - may be just as effective as our more
laborious approach taken in our original method.

Looking again to Table 7.2, we see that the results from the growth rate γ are often in the same
neighbourhood as those obtained from the GENE output of ωr. This can be seen more visually in
the scatter-correlation plots (see Figures 7.156, 7.157, 7.158 and 7.159). These plots show that we
have moderate-to-strong positive correlations for all wavenumbers considered, which is a good
indicator that the basis for this proxy may be correct. Perfect agreement was not expected, or even
possible, due to the fact that both of these quantities (γ and ωr from GENE) are subject to error
in measurement from our polynomial-fitting procedure. However, the approximate agreement
here may indicate that our theoretical result in section 6.2 (ωr

!
= γ

!
= 0 at marginal stability) is
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validated. To be clear, we are not claiming this to be true with full certainty, but we are proposing
that it may hold truth. A deeper investigation into this would be needed to see if this claim holds
under further scrutiny. A potential means to following through with this would be to obtain
more high resolution GENE data for lower density gradient values (closer to marginal stability),
in order to remove some of the uncertainty in our measurement procedure.
When looking to our results obtained using the variational principle and φ-data from GENE as
an input (VP(φDATA)

column), we see some moderate agreement between these values and those
from the GENE growth rates. In particular, NCSX, W7-X (SC) and W7-X (LM) perhaps show
the best agreement for this comparison. For most geometries (with perhaps the exceptions of
DIII-D and HSX), the spread of values for different wavenumbers is relatively low within a given
configuration, which is consistent with our benchmark γ column. This may indicate that there is
greater systematic error present, compared to random error. Our procedure in this case relied on
the idealised trial functions of φ-data from GENE, so any discrepancies are most likely due to our
overall procedure as opposed to our mode structure input.
Finally, when looking to our results obtained using the variational principle and φ(Pred) as an
input (VP(φPred)

column), we see less agreement than in our previous two case with the γ column.
This is most likely due to some systematic error in our procedure overall, but also due to our
heavy dependence on the mode frequency proxy, which in turn depended on the mode structure
prediction. Controllable random error could then be reduced if an enhanced prediction for
φ(Pred) was utilised, thus improving our mode frequency proxy. However, some systematic error
would still be present after this, as was found in the previous case where the trial function was
idealised.

If our work here is deemed to be valid and worth further investigation, the next steps to take
beyond these results would be as follows. In order to find an optimal geometry that maximises
the critical density gradient - thus delaying the onset of the problematic TEM instability - we
need an analytical expression for the critical density gradient, which depends on the geometric
quantities that we can manipulate. These are the magnetic field strength B and the curvature
κ. From our alternative method of approximating the critical density gradient (section 6.2), we
found an expression that meets this criterion:

(
a

Lne

)
Crit

=

(
eBa
kαTe

){∫ ∞
−∞ [2Γ0 − b (Γ0 − Γ1)]

ω̂di
2 |φ|2

dl
B + 1

2

∫ 1
Bmin

1
Bmax

∑wells τ(λ)
(

3
2 FeG(λ)

)
|φ|2dλ

}
1
2

∫ 1
Bmin

1
Bmax

∑wells τ(λ)|φ|2dλ−
∫ ∞
−∞ [Γ0 − ηib (Γ0 − Γ1)] |φ|2 dl

B

(7.11)
This expression can now be inserted into a stellarator optimisation code (STELLOPT), which is
instructed to generate a geometry in configuration space (i.e., manipulate B and κ), such that
the right-hand side of Eqn. 7.11 is maximised. The resulting geometry can then be tested with
GENE to investigate whether the energy lost due to transport caused by TEM-driven turbulence
is reduced. If this is achieved, then our research efforts here will be proven successful.
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Geometry Critical Density Gradient Values

γ GENE ωr GENE VP(φDATA)
VP(φPred)

DIII-D (kyρ = 0.6) 0.3182 0.2208 0.4379 0.4470
DIII-D (kyρ = 0.8) 0.3051 0.3002 0.3685 0.1562
DIII-D (kyρ = 1.0) 0.3073 0.2994 0.2052 0.9259
DIII-D (kyρ = 1.2) 0.3080 0.2999 0.0678 0.6448

NCSX (kyρ = 0.6) 0.2980 0.2591 0.2743 0.0340
NCSX (kyρ = 0.8) 0.2961 0.2648 0.2960 0.2064
NCSX (kyρ = 1.0) 0.2776 0.2588 0.3138 0.1428
NCSX (kyρ = 1.2) 0.2495 0.2822 0.3128 0.5688

W7-X (SC) (kyρ = 0.6) 0.1783 0.2758 0.2692 0.1970
W7-X (SC) (kyρ = 0.8) 0.2014 0.2171 0.2076 0.1992
W7-X (SC) (kyρ = 1.0) 0.2021 0.2244 0.2650 0.0367
W7-X (SC) (kyρ = 1.2) 0.1617 0.1459 0.1941 0.1958

W7-X (HM) (kyρ = 0.6) 0.1624 0.1746 0.2590 0.1921
W7-X (HM) (kyρ = 0.8) 0.1472 0.1747 0.2111 0.0564
W7-X (HM) (kyρ = 1.0) 0.1559 0.3003 0.2975 12.1527
W7-X (HM) (kyρ = 1.2) 0.2265 0.2999 0.2737 -0.0159

W7-X (LM) (kyρ = 0.6) 0.2975 0.2070 0.2456 0.1407
W7-X (LM) (kyρ = 0.8) 0.3015 0.2363 0.2731 0.1929
W7-X (LM) (kyρ = 1.0) 0.2858 0.2930 0.2687 0.0814
W7-X (LM) (kyρ = 1.2) 0.2264 0.2140 0.2429 0.0326

HSX (kyρ = 0.4) 0.2106 0.1901 0.0985 0.1532
HSX (kyρ = 0.6) 0.1725 0.2119 0.2489 0.1754
HSX (kyρ = 0.8) 0.2401 0.2305 0.3051 0.0930
HSX (kyρ = 1.0) 0.2146 0.1847 0.3377 0.0980
HSX (kyρ = 1.2) 0.2115 0.2116 0.3448 0.1919

Table 7.2: Critical density gradient values from GENE data and from the real mode frequency ωr using different
methods.
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Figure 7.156: Scatter-correlation plot comparing our critical-density-gradient proxy results with GENE. The proxy
here is based on finding the density gradient value corresponding to ωr(GENE) = 0.
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Figure 7.157: Scatter-correlation plot comparing our critical-density-gradient proxy results with GENE. The proxy
here is based on finding the density gradient value corresponding to ωr(GENE) = 0.
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Figure 7.158: Scatter-correlation plot comparing our critical-density-gradient proxy results with GENE. The proxy
here is based on finding the density gradient value corresponding to ωr(GENE) = 0.
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Figure 7.159: Scatter-correlation plot comparing our critical-density-gradient proxy results with GENE. The proxy
here is based on finding the density gradient value corresponding to ωr(GENE) = 0.
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Chapter 8

Conclusion & Outlook

We now arrive to the conclusion of this thesis report. We can summarise the work carried out
here very concisely into three main stages of results.

1. We showed that a variational principle technique can be utilised to accurately predict the
real mode frequency of the TEM plasma micro-instability in the complex geometries of
stellarators (see section 5.2 for the derivation). Prior to this work, this same technique had
only been known to work in the simpler tokamak geometry. Thus, this is an important
and highly useful finding. Perhaps in future, a similar technique could be applied to the
investigation of other micro-instabilities also, e.g., the trapped-ion mode, the ion-temperature
gradient mode.

2. We showed that the mode structure φ can be very roughly predicted based purely on the
geometrical characteristics of the stellarator or tokamak configuration. This prediction can
then be inserted as a trial function into a variational principle result, in order to calculate
the approximate real mode frequency. The significance of this would be that it alleviates the
dependence on procuring costly and time-consuming supercomputer simulation data. The
version of this technique presented in this thesis is only a first attempt so as to prove the
principle of the method - further modification and refinement is most certainly required
before this technique can be used reliably.

3. Finally, we presented two procedures for how a potential proxy for the critical density
gradient can be developed using the gyrokinetic framework which describes the nature
of plasma micro-instabilities. Our proxies were heavily dependent on the accuracy of the
mode frequency proxy, and thus, dependent on the mode structure prediction. Therefore, a
propagation of error is inevitably present. This is why we must emphasise, once again, the
importance of enhancing the procedure for predicting the mode structure. An improvement
in this effort will lead to a more accurate mode frequency proxy, and in turn, to more
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efficacious critical-density-gradient proxies.

With these results now concisely summarised, it is worth discussing the outlook of their utility
and future implementation. As stated already in this report, the work carried out here depended
heavily on the accuracy of a very early approximation for the mode structure of the TEM. We
should then acknowledge that use of such a prediction inevitably lead to a lower resolution
representation of the actual physical behaviour at play. Regardless, this compromise of losing
predictive power in exchange for gaining cheaper and faster means to geometrical optimisation
may prove to be highly useful once the method has been further developed. Thus, it may be the
case that strong predictive power is not necessarily essential for optimising stellarator geometries
against micro-instabilities, such as the TEM.
The efficacy of this work should then be tested as follows. Our analytical results (Eqn. 7.11,
in particular) should be implemented in a stellarator optimisation routine (STELLOPT), so as
to generate a new stellarator geometry in configuration space which seeks to maximise the
value of the critical density gradient of the TEM. Ideally, this would then delay the onset of this
problematic instability, and the subsequent transport caused by it. This strategy of optimisation
may provide our plasma with prolonged stability and thus, a higher confinement time, so that it
may eventually reach the necessary fusion-temperatures at its core.

It is worth noting that this project focused solely on one of a plethora of challenges facing
magnetic confinement fusion today. The expansive field of nuclear fusion research clearly still
has a long road ahead before it can hope to create efficacious, self-sustaining, and reliable fusion
reactors. However, despite the daunting nature of this task, progress is undeniably being made
and obstacles facing nuclear fusion optimisation are consistently being overcome. It is only with
this persistent and rigorous work ethic that we can ever hope to achieve our goals here in this
lifetime. It is thus my hope that the work carried out in this project will contribute in some small
part, directly or otherwise, to the wider effort being diligently made by the dedicated fusion
community.

Finally, we will conclude this report with one last note of optimistic motivation. With pressing
matters such as climate change and other negative environmental impacts occupying a large part
of our collective consciousness on a daily basis, the need for clean energy production has never
been stronger. Fusion may be the most cogent of means to a cleaner, safer, and more sustainable
future. And with the truly innovative design, combined with the huge potential, of the stellarator,
we may just hold the key to that brighter - and longer lasting - future.

205



Appendix A

Alternative Mode Frequency Proxy

In this appendix, we derive a proxy for the mode frequency ω of the TEM instability in stellarator
geometry, where only the trapped portions of each particle species (ions and electrons) are being
considered. This choice was made due to fact that the TEM instability arises in the system
purely because of resonance induced by trapped particle behaviour [12]. As already mentioned,
the proxy for ω developed here is not utilised elsewhere in this project, and serves only as an
alternative to the proxy developed in section 5.2. Nevertheless, the procedure carried out here is
relevant to that section, and so is worth understanding in conjunction with the ω proxy pertaining
to passing ions and trapped electrons.

To begin, we state the bounce-averaged solution (i.e., trapped particles only) of the gyrokinetic
equation, given by the following expression for ga

ga(Trapped) =
ea

Ta
J0φ

(ω−ωT
∗a)

(ω−ωda)
fa0 (A.1)

and we recall that this expression corresponds to the non-adiabatic portion of the distribution
function. We can insert this into the QN condition, given by

∑
a=i,e

nae2
a

Ta
φ = ∑

a=i,e
ea

∫
ga(R, E , µ)J0

(
k⊥v⊥

ωa

)
dv (A.2)

This substitution yields

∑
a=i,e

nae2
a

Ta
φ = ∑

a=i,e
ea

∫
trapped

(
ea

Ta
J0φ

(ω−ωT
∗a)

(ω−ωda)
fa0

)
J0dv (A.3)

To simplify matters, the Bessel function J0 for trapped particles can be set equal to one [12]. This
approximation is suitable for long perpendicular wavelengths, k⊥ρa � 1. Let’s now look more
carefully at how the bounce-averaging works, which is indicated by the presence of a ’bar’ over
certain terms. We will do this in the following aside.
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Aside

For some quantity Q which will be bounce-averaged, then

Q =
1

τba(λ)

∮
Q

dl
|v‖|

(A.4)

where

τba(λ) =
∮ dl
|v‖|

|v‖| = xvTa
√

1− λB
(A.5)

such that
Q =

1(∮ dl
xvTa
√

1−λB

) ∮ Q
dl

xvTa
√

1− λB
(A.6)

Remember, xvTa = v =
√

2E
ma

, which isn’t dependent on the field line coordinate l, so we can
pull these terms out of our integrals and they cancel:

Q =
1(∮ dl√

1−λB(l)

) ∮ Q
dl√

1− λB(l)
(A.7)

This shows that bounce-averaging doesn’t introduce any hidden or implicit species-dependence
to our quantities. We will end this aside by introducing a neat shorthand for this species-
independent bounce time expression:

τ(λ) =
∮ dl√

1− λB
(A.8)

such that the bounce-average procedure becomes

Q =
1

τ(λ)

∮
Q

dl√
1− λB(l)

(A.9)

For clarity during the derivations of this report, we will primarily use the more explicit
expression given in Eqn. A.7.
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Based on this aside, we can now see that the bounce-averaged term in Eqn. 6.3 can be expressed
as follows

φ =
1

τba(λ)

∮
φ

dl
|v‖|

=
1(∮ dl√

1−λB(l)

) ∮ φ
dl√

1− λB(l)

In order to obtain a purely real left-hand side, Eqn. A.3 is multiplied across by φ∗ and subsequently
integrated along the field line. Note, this step does not necessarily need to be carried out at this
point in the derivation, but we are mirroring the procedure carried in Chapter 6, which has some
overlap with this section. This gives

∑
a

nae2
a

Ta
〈|φ|2〉 = ∑

a
∑

wells
ea

∮ dl
B

∫ ea

Ta
φφ∗

(ω−ωT
∗a)

(ω−ωda)
fa0dv/

∮ dl
B

= ∑
a

∑
wells

ea

∮ dl
B

∫
trapped

ea

Ta
φφ∗

(ω−ωT
∗a)

(ω−ωda)
fa0

2πBv3dvdλ

|v‖|
/
∮ dl

B

= ∑
a

∑
wells

ea

∫ 1
Bmin

1
Bmax

dλ
∫ ∞

0
2πv3dv

∮ dl
|v‖|

ea

Ta
φφ∗

(ω−ωT
∗a)

(ω−ωda)
fa0/

∮ dl
B

= ∑
a

∑
wells

ea

∫ 1
Bmin

1
Bmax

dλ
∫ ∞

0
2πv3dv

ea

Ta
(φ)(φ∗)τba(λ)

(ω−ωT
∗a)

(ω−ωda)
fa0/

∮ dl
B

= ∑
a

∑
wells

∫ 1
Bmin

1
Bmax

dλ
∫ ∞

0
2πv3dv

e2
a

Ta
|φ|2τba(λ)

(ω−ωT
∗a)

(ω−ωda)
fa0/

∮ dl
B

(A.10)

where the following expressions have been used

〈...〉 =
∮

...
dl
B

/
∮ dl

B∮ dl
|v‖|

φ∗ = φ∗τba

τba(λ) =
∮ dl
|v‖|

=
∮ dl

xvTa
√

1− λB

(A.11)

as well as

dv = 2πv⊥dv⊥dv‖ = ∑
σ

Bπv3dvdλ

|v‖|
(A.12)

with

λ =
v2
⊥

v2B
=

µ

E
σ =

v‖
|v‖|

(A.13)

The left-hand side of Eqn. A.10 is purely real, and so the right-hand side consequently has to be
purely real also. By introducing the normalised velocity coordinate x = v

vTa
, the bounce-averaged
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magnetic drift can be expressed in terms of this normalised velocity and a factor that depends on
the pitch angle λ and the particle species a,

ωda = k⊥ ·
[

b̂×
(

v2
⊥
2
∇ ln B + v2

‖~κ

)
1

Ωa

]

= k⊥ ·
[

b̂×
(

λBv2

2
∇ ln B + v2(1− λB)~κ

)
1

Ωa

]
=
(

x2v2
Ta

)
k⊥ ·

[
b̂×

(
λB
2
∇ ln B + (1− λB)~κ

)
1

Ωa

]
= x2Da(λ)

(A.14)

such that Da(λ) is defined as

Da(λ) ≡ v2
Tak⊥ ·

[
b̂×

(
λB
2
∇ ln B + (1− λB)~κ

)
1

Ωa

]
(A.15)

where ~κ = b̂ · ∇b̂ describes the curvature. In the following aside, Eqn. A.15 is parsed further
such that its species-dependent and λ-dependent components can be defined separately.
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Aside

Looking more closely at Eqn. A.15, the species-dependent terms can be expanded as follows:

vTa =

√
2Ta

ma

Ωa =

(
eaB
ma

)
=

eaB
ma

(A.16)

Now, going back to the expression for Da(λ)

Da(λ) ≡ v2
Tak⊥ ·

[
b̂×

(
λB
2
∇ ln B + (1− λB)~κ

)
1

Ωa

]
(A.17)

we can insert our expressions from Eqn. A.16 to obtain

Da(λ) =

(
2Ta

ma

)
k⊥ ·

[
b̂×

(
λB
2
∇ ln B + (1− λB)~κ

)
ma

eaB

]
=

(
2Ta

ma

)(
ma

ea

)
k⊥ ·

[
b̂×

(
λB
2
∇ ln B + (1− λB)~κ

)
1
B

]
=

(
2Ta

ea

)
k⊥ ·

[
b̂×

(
λB
2
∇ ln B + (1− λB)~κ

)
1
B

]
= FaG(λ) (A.18)

where in the final step, Da(λ) has been split into a species-dependent part Fa, and a λ-
dependent part G(λ).
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To prevent resonance from occurring in this derivation, an ordering scheme is assumed involving
the bounced-averaged magnetic drift frequency and the mode frequency, as follows:

ωda � ω =⇒ ωda
ω
� 1 (A.19)

This assumption is not too crude in some stellarator geometries, particularly those approaching
QI (W7-X and QIPC) [12]. This then facilitates carrying out a Taylor expansion of the following
term:

(ω−ωT
∗a)

(ω−ωda)
=

ω

ω

(
1− ωT

∗a
ω

)
(

1− ωda
ω

) ' (1− ωT
∗a

ω

)(
1 +

ωda
ω

+O
(

ω2
da

ω2

))
(A.20)

which can be expanded to first order in ωda to give

(ω−ωT
∗a)

(ω−ωda)
'
(

1− ωT
∗a

ω
+

ωda
ω
− ωT

∗aωda
ω2

)
(A.21)

Using both Eqn. A.14 and Eqn. A.18 then changes this to

(ω−ωT
∗a)

(ω−ωda)
'
(

1− ωT
∗a

ω
+

x2FaG(λ)

ω
− ωT

∗ax2FaG(λ)

ω2

)
(A.22)

Returning to Eqn. A.10

∑
a

nae2
a

Ta
〈|φ|2〉 = ∑

a
∑

wells

∫ 1
Bmin

1
Bmax

dλ
∫ ∞

0
2πv3dv

e2
a

Ta
|φ|2τba(λ)

(ω−ωT
∗a)

(ω−ωda)
fa0/

∮ dl
B

(A.23)

inserting Eqn. A.22 then gives

∑
a

nae2
a

Ta
〈|φ|2〉 = ∑

a
∑

wells

∫ 1
Bmin

1
Bmax

dλ
∫ ∞

0
2πv3dv

e2
a

Ta
|φ|2τba(λ)×

×
(

1− ωT
∗a

ω
+

x2FaG(λ)

ω
− ωT

∗ax2FaG(λ)

ω2

)
fa0/

∮ dl
B

(A.24)

Now, using the expression for the normalised velocity x = v
vTa

, the result can be rewritten as

∑
a

nae2
a

Ta
〈|φ|2〉 = ∑

a
∑

wells

∫ 1
Bmin

1
Bmax

dλ
∫ ∞

0
2π
(

v3
Tax3

)
(vTadx)

e2
a

Ta
|φ|2τba(λ)×

×
(

1− ωT
∗a

ω
+

x2FaG(λ)

ω
− ωT

∗ax2FaG(λ)

ω2

)
fa0/

∮ dl
B

(A.25)

The following expression for the equilibrium Maxwellian distribution

fa0 =

na

(
1

πv2
Ta

) 3
2

e−x2

 (A.26)
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can also be inserted, giving

∑
a

nae2
a

Ta
〈|φ|2〉 = ∑

a
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Bmin

1
Bmax

dλ
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(
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×
(

1− ωT
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(A.27)

Furthermore, the following definition for the bounce time τba(λ)

τba(λ) =
∮ dl
|v‖|

|v‖| = xvTa
√

1− λB
(A.28)

which can be rewritten as
τba(λ) =

∮ dl
xvTa
√

1− λB
(A.29)

can now be inserted into Eqn. A.27 to give
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(A.30)

Here, all of the thermal velocity terms vTa cancel, which results in
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×

×
(

1− ωT
∗a

ω
+

x2FaG(λ)

ω
− ωT

∗ax2FaG(λ)

ω2

)
︸ ︷︷ ︸

†

/
∮ dl

B

(A.31)

Using the following definition of the temperature-dependent diamagnetic drift frequency

ωT
∗a = ω∗a

[
1 + ηa

(
Ea

Ta
− 3

2

)]
(A.32)

and also
Ea

Ta
=

mav2

2Ta
=

v2

v2
Ta

= x2 (A.33)

leads Eqn. A.32 to become

ωT
∗a = ω∗a

[
1 + ηa

(
x2 − 3

2

)]
=

[
ω∗a + ω∗aηax2 − 3

2
ω∗aηa

]
(A.34)
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Implementing this expansion into † from Eqn. A.31 then gives

† =

(
1−

[
ω∗a + ω∗aηax2 − 3

2 ω∗aηa
]

ω
+

x2FaG(λ)

ω
−
[
ω∗a + ω∗aηax2 − 3

2 ω∗aηa
]

x2FaG(λ)

ω2

)

=

(
1− ω∗a

ω
− ω∗aηax2

ω
+

3
2 ω∗aηa

ω
+

x2FaG(λ)

ω
− ω∗ax2FaG(λ)

ω2

− ω∗aηax4FaG(λ)

ω2 +
3
2 ω∗aηax2FaG(λ)

ω2

)
(A.35)

This expansion, when inserted into Eqn. A.31, helps to reveal all of the x-dependent terms in the
derivation:

∑
a

nae2
a

Ta
〈|φ|2〉 = 2√

π
∑

a

nae2
a

Ta
∑

wells

∫ 1
Bmin

1
Bmax

dλ
∫ ∞

0
x2e−x2

dx|φ|2
∮ dl√

1− λB
×(

1− ω∗a
ω
− ω∗aηax2

ω
+

3
2 ω∗aηa

ω
+

x2FaG(λ)

ω
− ω∗ax2FaG(λ)

ω2

− ω∗aηax4FaG(λ)

ω2 +
3
2 ω∗aηax2FaG(λ)

ω2

)
× 1∮ dl

B

(A.36)

Now, noting that all of the x-integrals are even, the integration limits can be modified as
follows:

2
∫ ∞

0
dx ≡

∫ ∞

−∞
dx (A.37)

such that the following integrals can be utilised:∫ ∞

−∞
x2e−x2

dx =

√
π

2∫ ∞

−∞
x4e−x2

dx =
3
4
√

π∫ ∞

−∞
x6e−x2

dx =
15
8
√

π

(A.38)

Now, the x-integration is calculated piece by piece. First, we can group together the relevant parts
of Eqn. A.36 based on the degree of x. For instance, the terms with no x component in the large
parenthesis of Eqn. A.36 are (

1− ω∗a
ω

+
3
2 ω∗aηa

ω

)
(A.39)

such that, applying the x-integration gives

∫ ∞

−∞
x2e−x2

dx

(
1− ω∗a

ω
+

3
2 ω∗aηa

ω

)
=

√
π

2

(
1− ω∗a

ω
+

3
2 ω∗aηa

ω

)
(A.40)
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Similarly, the terms with an x2 component in the large parenthesis of Eqn. A.36 are(
−ω∗aηax2

ω
+

x2FaG(λ)

ω
− ω∗ax2FaG(λ)

ω2 +
3
2 ω∗aηax2FaG(λ)

ω2

)
=

x2

(
−ω∗aηa

ω
+

FaG(λ)

ω
− ω∗aFaG(λ)

ω2 +
3
2 ω∗aηaFaG(λ)

ω2

) (A.41)

such that ∫ ∞

−∞
x4e−x2

dx

(
−ω∗aηa

ω
+

FaG(λ)

ω
− ω∗aFaG(λ)

ω2 +
3
2 ω∗aηaFaG(λ)

ω2

)
=

3
4
√

π

(
−ω∗aηa

ω
+

FaG(λ)

ω
− ω∗aFaG(λ)

ω2 +
3
2 ω∗aηaFaG(λ)

ω2

) (A.42)

Finally, integrating the last remaining term, which has an x4 component in the large parenthesis
of Eqn. A.36, gives

∫ ∞

−∞
x6e−x2

dx

(
−ω∗aηaFaG(λ)

ω2

)
=

15
8
√

π

(
−ω∗aηaFaG(λ)

ω2

)
(A.43)

Notice that the
√

π terms common to these results can be pulled out, so as to cancel with the 1√
π

term in the prefactor of Eqn. A.36. Thus, these terms are now dropped.

Combining the results from Eqn. A.40, A.42 and A.43 now gives

1
2

(
1− ω∗a

ω
+

3
2 ω∗aηa

ω

)
+

3
4

(
−ω∗aηa

ω
+

FaG(λ)

ω
− ω∗aFaG(λ)

ω2 +
3
2 ω∗aηaFaG(λ)

ω2

)
+

15
8

(
−ω∗aηaFaG(λ)

ω2

) (A.44)

which can now be expanded fully as follows:

1
2
− 1

2
ω∗a
ω

+
3
4

ω∗aηa

ω
− 3

4
ω∗aηa

ω
+

3
4

FaG(λ)

ω
− 3

4
ω∗aFaG(λ)

ω2 +
9
8

ω∗aηaFaG(λ)

ω2 − 15
8

ω∗aηaFaG(λ)

ω2
(A.45)

which can be simplified somewhat to

1
2
− 1

2
ω∗a
ω

+
3
4

FaG(λ)

ω
− 3

4
ω∗aFaG(λ)

ω2 − 3
4

ω∗aηaFaG(λ)

ω2 (A.46)

and pulling out a factor of 1
2

1
2

[
1− ω∗a

ω
+

3
2

FaG(λ)

ω
− 3

2
ω∗aFaG(λ)

ω2 − 3
2

ω∗aηaFaG(λ)

ω2

]
(A.47)
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and tidying some more

1
2

[
1− ω∗a

ω
+

3
2

FaG(λ)

ω

(
1− ω∗a

ω
− ω∗aηa

ω

)]
(A.48)

which can be written more concisely as

1
2

[
1− ω∗a

ω
+

3
2

FaG(λ)

ω

(
1− ω∗a

ω
[1 + ηa]

)]
(A.49)

Eqn. A.49 will be recalled again later, so it is convenient to define it as Ua(ω, λ):

Ua(ω, λ) ≡ 1
2

[
1− ω∗a

ω
+

3
2

FaG(λ)

ω

(
1− ω∗a

ω
[1 + ηa]

)]
(A.50)

Substituting this into Eqn. A.36 now gives

∑
a

nae2
a

Ta
〈|φ|2〉 = ∑

a

nae2
a

Ta
∑

wells

∫ 1
Bmin

1
Bmax

dλUa(ω, λ)|φ|2
∮ dl√

1− λB
/
∮ dl

B
(A.51)

Recalling that

〈|φ|2〉 =
∮
|φ|2 dl

B
/
∮ dl

B
(A.52)

we see that a common factor of 1∮ dl
B

is present on both sides of Eqn. A.51. This term isn’t

species-dependent, so it can be dropped without affecting our species-summation. This means
that Eqn. A.51 can now be rewritten as

∑
a

nae2
a

Ta

∮
|φ|2 dl

B
= ∑

a

nae2
a

Ta
∑

wells

∫ 1
Bmin

1
Bmax

dλUa(ω, λ)|φ|2
∮ dl√

1− λB
(A.53)

Now, expanding this expression for both particle species:

nie2
i

Ti

∮
|φ|2 dl

B
+

nee2
e

Te

∮
|φ|2 dl

B
=

nie2
i

Ti
∑

wells

∫ 1
Bmin

1
Bmax

dλUi(ω, λ)|φ|2
∮ dl√

1− λB
+

nee2
e

Te
∑

wells

∫ 1
Bmin

1
Bmax

dλUe(ω, λ)|φ|2
∮ dl√

1− λB

(A.54)

We can assume equal species density and note the equivalence of the square of the ion/electron
charge as follows:

ni = ne = n

e2
i = e2

e = e2
(A.55)

Using these then changes Eqn. A.54 to

ne2

Ti

∮
|φ|2 dl

B
+

ne2

Te

∮
|φ|2 dl

B
=

ne2

Ti
∑

wells

∫ 1
Bmin

1
Bmax

dλUi(ω, λ)|φ|2
∮ dl√

1− λB
+

ne2

Te
∑

wells

∫ 1
Bmin

1
Bmax

dλUe(ω, λ)|φ|2
∮ dl√

1− λB

(A.56)
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Multiplying across by Te
ne2 and rearranging slightly gives(

Te

Ti
+ 1
) ∮
|φ|2 dl

B
=

Te

Ti
∑

wells

∫ 1
Bmin

1
Bmax

dλUi(ω, λ)|φ|2
∮ dl√

1− λB
+ ∑

wells

∫ 1
Bmin

1
Bmax

dλUe(ω, λ)|φ|2
∮ dl√

1− λB

(A.57)

Now, we can inspect the Ui and Ue terms more closely. Noting the definition of the temperature-
independent diamagnetic drift frequency

ω∗a =
Takα

ea

d ln na

dψ
(A.58)

we can make use of Eqn. A.55 here to give

ω∗i = −
ω∗e
τ

(A.59)

where τ = Te
Ti . Note, this τ is not to be confused with the species-dependent bounce time

expression τba(λ).

At this point, it is also useful to notice the following relation

Fa =
2Ta

ea

=⇒ Fi = −
Fe

τ

(A.60)

Now, with these relations in mind, and recalling the definition of Ua

Ua(ω, λ) =
1
2

[
1− ω∗a

ω
+

3
2

FaG(λ)

ω

(
1− ω∗a

ω
[1 + ηa]

)]
(A.61)

for the ions, this expression becomes

Ui(ω, λ) =
1
2

[
1− ω∗i

ω
+

3
2

FiG(λ)

ω

(
1− ω∗i

ω
[1 + ηi]

)]
(A.62)

and inserting the relations from Eqn. A.59 and Eqn. A.60 gives

Ui(ω, λ) =
1
2

[
1 +

ω∗e
τω
− 3

2
FeG(λ)

τω

(
1 +

ω∗e
τω

[1 + ηi]
)]

(A.63)

By fully expanding the content in brackets, we get

Ui(ω, λ) =
1
2

[
1 +

ω∗e
τω
− 3

2
FeG(λ)

τω
− 3

2
FeG(λ)

τω

ω∗e
τω
− 3

2
FeG(λ)

τω

ω∗e
τω

ηi

]
(A.64)

Now, looking at Ue

Ue(ω, λ) =
1
2

[
1− ω∗e

ω
+

3
2

FeG(λ)

ω

(
1− ω∗e

ω
[1 + ηe]

)]
(A.65)
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and fully expanding the content in brackets again

Ue(ω, λ) =
1
2

[
1− ω∗e

ω
+

3
2

FeG(λ)

ω
− 3

2
FeG(λ)

ω

ω∗e
ω
− 3

2
FeG(λ)

ω

ω∗e
ω

ηe

]
(A.66)

Putting all of these expanded terms into Eqn. A.57 results in

(τ + 1)
∮
|φ|2 dl

B
=

τ

2 ∑
wells

∫ 1
Bmin

1
Bmax

dλ

[
1 +

ω∗e
τω
− 3

2
FeG(λ)

τω
− 3

2
FeG(λ)

τω

ω∗e
τω
− 3

2
FeG(λ)

τω

ω∗e
τω

ηi

]
|φ|2

∮ dl√
1− λB

+

1
2 ∑

wells

∫ 1
Bmin

1
Bmax

dλ

[
1− ω∗e

ω
+

3
2

FeG(λ)

ω
− 3

2
FeG(λ)

ω

ω∗e
ω
− 3

2
FeG(λ)

ω

ω∗e
ω

ηe

]
|φ|2

∮ dl√
1− λB

(A.67)

Noticing that all terms and integrals outside of the brackets are equivalent in the middle and
bottom lines of Eqn. A.67, the bracketed terms can be combined as follows:

τ

[
1 +

ω∗e
τω
− 3

2
FeG(λ)

τω
− 3

2
FeG(λ)

τω

ω∗e
τω
− 3

2
FeG(λ)

τω

ω∗e
τω

ηi

]
+[

1− ω∗e
ω

+
3
2

FeG(λ)

ω
− 3

2
FeG(λ)

ω

ω∗e
ω
− 3

2
FeG(λ)

ω

ω∗e
ω

ηe

] (A.68)

where the τ can be multiplied by the terms in the bracket of the top line, giving[
τ +

ω∗e
ω
− 3

2
FeG(λ)

ω
− 3

2
FeG(λ)

τω

ω∗e
ω
− 3

2
FeG(λ)

τω

ω∗e
ω

ηi

]
+[

1− ω∗e
ω

+
3
2

FeG(λ)

ω
− 3

2
FeG(λ)

ω

ω∗e
ω
− 3

2
FeG(λ)

ω

ω∗e
ω

ηe

] (A.69)

and merging these brackets then leads to the cancellation of the second and third terms in each
line, and the remainder gives[

τ − 3
2

FeG(λ)

τω

ω∗e
ω
− 3

2
FeG(λ)

τω

ω∗e
ω

ηi + 1− 3
2

FeG(λ)

ω

ω∗e
ω
− 3

2
FeG(λ)

ω

ω∗e
ω

ηe

]
(A.70)

which can be rearranged further to give[
τ + 1− 3

2
FeG(λ)

ω

ω∗e
ω

(
1 + ηe +

1 + ηi

τ

)]
(A.71)

All of this transforms Eqn. A.67 into the following concise form

(τ + 1)
∮
|φ|2 dl

B
=

1
2 ∑

wells

∫ 1
Bmin

1
Bmax

dλ

[
(τ + 1)− 3

2
FeG(λ)

ω∗e
ω2

(
1 + ηe +

1 + ηi

τ

)]
|φ|2

∮ dl√
1− λB

(A.72)
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This result can now be rearranged to find an expression for ω2

ω∗e
in terms of the remaining

quantities. Focusing on the right-hand side of Eqn. A.72, this is expanded as follows:

1
2 ∑

wells

∫ 1
Bmin

1
Bmax

dλ

[
(τ + 1)− 3

2
FeG(λ)

ω∗e
ω2

(
1 + ηe +

1 + ηi

τ

)]
|φ|2

∮ dl√
1− λB

=

τ + 1
2 ∑

wells

∫ 1
Bmin

1
Bmax

dλ|φ|2
∮ dl√

1− λB
−

ω∗e
ω2

3
4

(
1 + ηe +

1 + ηi

τ

)
∑

wells

∫ 1
Bmin

1
Bmax

dλFeG(λ)|φ|2
∮ dl√

1− λB

(A.73)

Now, inserting this expanded expression back into Eqn. A.72 gives

(τ + 1)
∮
|φ|2 dl

B
=

(τ + 1)
2 ∑

wells

∫ 1
Bmin

1
Bmax

dλ|φ|2
∮ dl√

1− λB
−

ω∗e
ω2

3
4

(
1 + ηe +

1 + ηi

τ

)
∑

wells

∫ 1
Bmin

1
Bmax

dλFeG(λ)|φ|2
∮ dl√

1− λB

(A.74)

which can be rearranged to give

ω∗e
ω2

3
4

(
1 + ηe +

1 + ηi

τ

)
∑

wells

∫ 1
Bmin

1
Bmax

dλFeG(λ)|φ|2
∮ dl√

1− λB
=

(τ + 1)
2 ∑

wells

∫ 1
Bmin

1
Bmax

dλ|φ|2
∮ dl√

1− λB
− (τ + 1)

∮
|φ|2 dl

B

(A.75)

and continuing to rearrange gives

ω∗e
ω2 =

(τ+1)
2 ∑wells

∫ 1
Bmin

1
Bmax

dλ|φ|2
∮ dl√

1−λB
− (τ + 1)

∮
|φ|2 dl

B

3
4

(
1 + ηe +

1+ηi
τ

)
∑wells

∫ 1
Bmin

1
Bmax

dλFeG(λ)|φ|2
∮ dl√

1−λB

(A.76)

Finally, inverting this expression gives a form of the ω proxy:

ω2

ω∗e
=

3
4

(
1 + ηe +

1+ηi
τ

)
∑wells

∫ 1
Bmin

1
Bmax

dλFeG(λ)|φ|2
∮ dl√

1−λB

(τ+1)
2 ∑wells

∫ 1
Bmin

1
Bmax

dλ|φ|2
∮ dl√

1−λB
− (τ + 1)

∮
|φ|2 dl

B

(A.77)

With the ω proxy for trapped ions and trapped electrons now fully derived, it is necessary to
verify that this expression is compatible for use with the variational principle before being utilised
further. If Eqn. A.77 does not possess the required variational property that this principle relies
on, then the relation cannot be used to predict the mode frequency. The investigation of this
requirement can be found in Appendix B.1. In that discussion, it is shown that Eqn. A.77 does
indeed satisfy the variational principle requirement.
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Appendix B

Verifying Validity of using the Variational
Principle

In this appendix, we present the explicit compatibility of the variational principle with our
two proxies for the mode frequency ω of the TEM instability. As before, our first ω proxy
considered only the effect of trapped ions and trapped electrons in the system. Our second ω

proxy considered the effect of passing ions and trapped electrons in the system. Both proxies
have proved to be applicable for use with the variational principle, but only the latter proxy was
utilised for the main results of this project.

B.1 Variational Principle for Trapped Particles Only

In this section, we investigate to see if the ω proxy for trapped ions and trapped electrons is
applicable for use with the variational principle approach.

We will restate that ω proxy here:

ω2

ω∗e
=

3
4

(
1 + ηe +

1+ηi
τ

)
∑wells

∫ 1
Bmin

1
Bmax

dλFeG(λ)|J0φ|2
∮ dl√

1−λB

(τ+1)
2 ∑wells

∫ 1
Bmin

1
Bmax

dλ|J0φ|2
∮ dl√

1−λB
− (τ + 1)

∮
|φ|2 dl

B

(B.1)

As will become clear soon, we will use Eqn. A.74 as our starting point, instead of the fully derived
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relation in Eqn. B.1:

(τ + 1)
∮
|φ|2 dl

B
=

(τ + 1)
2 ∑

wells

∫ 1
Bmin

1
Bmax

dλ|φ|2
∮ dl√

1− λB
−

ω∗e
ω2

3
4

(
1 + ηe +

1 + ηi

τ

)
∑

wells

∫ 1
Bmin

1
Bmax

dλFeG(λ)|φ|2
∮ dl√

1− λB

(B.2)

This can be rearranged slightly to give

ω2 (τ + 1)

[∮
|φ|2 dl

B
− 1

2 ∑
wells

∫ 1
Bmin

1
Bmax

dλ|φ|2
∮ dl√

1− λB

]
=

−ω∗e
3
4

(
1 + ηe +

1 + ηi

τ

)
∑

wells

∫ 1
Bmin

1
Bmax

dλFeG(λ)|φ|2
∮ dl√

1− λB

(B.3)

Let’s now vary this expression with respect to φ:

2ωδω (τ + 1)

[∮
|φ|2 dl

B
− 1

2 ∑
wells

∫ 1
Bmin

1
Bmax

dλ|φ|2
∮ dl√

1− λB

]
+

ω2 (τ + 1)

[∮
2φδφ

dl
B
− 1

2 ∑
wells

∫ 1
Bmin

1
Bmax

dλ2φδφ
∮ dl√

1− λB

]
=

−ω∗e
3
4

(
1 + ηe +

1 + ηi

τ

)
∑

wells

∫ 1
Bmin

1
Bmax

dλFeG(λ)2φδφ
∮ dl√

1− λB

(B.4)

We can now make use of the bounce-averaging procedure as follows:

δφ =
1∮ dl√
1−λB

∮
δφ

dl√
1− λB

(B.5)

which can be inserted into our main expression to give

2ωδω (τ + 1)

[∮
|φ|2 dl

B
− 1

2 ∑
wells

∫ 1
Bmin

1
Bmax

dλ|φ|2
∮ dl√

1− λB

]
+

ω2 (τ + 1)

∮ 2φδφ
dl
B
− 1

2 ∑
wells

∫ 1
Bmin

1
Bmax

dλ2φ

 1∮ dl√
1−λB

∮
δφ

dl√
1− λB

 ∮ dl√
1− λB

 =

−ω∗e
3
4

(
1 + ηe +

1 + ηi

τ

)
∑

wells

∫ 1
Bmin

1
Bmax

dλFeG(λ)2φ

 1∮ dl√
1−λB

∮
δφ

dl√
1− λB

 ∮ dl√
1− λB

(B.6)

This can be simplified as follows:

2ωδω (τ + 1)

[∮
|φ|2 dl

B
− 1

2 ∑
wells

∫ 1
Bmin

1
Bmax

dλ|φ|2
∮ dl√

1− λB

]
+

ω2 (τ + 1)

[∮
2φδφ

dl
B
− 1

2 ∑
wells

∫ 1
Bmin

1
Bmax

dλ2φa
∮

δφ
dl√

1− λB

]
=

−ω∗e
3
4

(
1 + ηe +

1 + ηi

τ

)
∑

wells

∫ 1
Bmin

1
Bmax

dλFeG(λ)2φ
∮

δφ
dl√

1− λB

(B.7)
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Rearranging then gives

2ωδω (τ + 1)

[∮
|φ|2 dl

B
− 1

2 ∑
wells

∫ 1
Bmin

1
Bmax

dλ|φ|2
∮ dl√

1− λB

]
=

− 2ω2 (τ + 1)

[∮
φδφ

dl
B
− 1

2 ∑
wells

∫ 1
Bmin

1
Bmax

dλφ
∮

δφ
dl√

1− λB

]

− 2ω∗e
3
4

(
1 + ηe +

1 + ηi

τ

)
∑

wells

∫ 1
Bmin

1
Bmax

dλFeG(λ)φ
∮

δφ
dl√

1− λB

(B.8)

Dividing across by 2 and rearranging further now gives

ωδω (τ + 1)

[∮
|φ|2 dl

B
− 1

2 ∑
wells

∫ 1
Bmin

1
Bmax

dλ|φ|2
∮ dl√

1− λB

]
=

−
∮

δφ
dl
B

{
ω2 (τ + 1)

[
φ− 1

2
B
∫ 1

Bmin

1
Bmax

dλ√
1− λB

φ

]

+ ω∗e
3
4

(
1 + ηe +

1 + ηi

τ

)
B
∫ 1

Bmin

1
Bmax

dλ√
1− λB

FeG(λ)φ

} (B.9)

Before seeing how the variational principle will work here, let’s go back to Eqn. B.2:

(τ + 1)
∮
|φ|2 dl

B
=

(τ + 1)
2 ∑

wells

∫ 1
Bmin

1
Bmax

dλ|φ|2
∮ dl√

1− λB
−

ω∗e
ω2

3
4

(
1 + ηe +

1 + ηi

τ

)
∑

wells

∫ 1
Bmin

1
Bmax

dλFeG(λ)|φ|2
∮ dl√

1− λB

(B.10)

We need to remind ourselves of the following subtlety that arose when calculating the ω proxy
given by Eqn. B.1. Near the beginning of that derivation, we multiplied our QN equation by φ∗

B
and integrated over the entire field line. As stated at this point in that derivation, this was carried
out to mirror a similar procedure which will be encountered in Chapter ??. However, in order to
truly see the variational property of this ω proxy, we need to undo this step of multiplying across
by φ∗

B and integrating over the entire field line. This will provide us with an integral equation
expression which is essential to understanding how the variational principle can be applied.

Thus, we will now undo this step in Eqn. B.10, which can be seen by rewriting the following
relevant terms: ∮

|φ|2 dl
B

=
∮

φ · φ∗ dl
B

=
∮

φ∗
dl
B
(φ) (B.11)

and

∑
wells

∫ 1
Bmin

1
Bmax

dλ |φ|2︸︷︷︸
φ·φ∗

∮ dl√
1− λB

= ∑
wells

∫ 1
Bmin

1
Bmax

dλφ
∮

φ∗
dl√

1− λB

=
∮

φ∗
dl
B

(
B
∫ 1

Bmin

1
Bmax

dλ√
1− λB

φ

) (B.12)
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where in Eqn. B.12, we used

φ∗ =
1∮ dl√
1−λB

∮
φ∗

dl√
1− λB

=⇒ φ∗
∮ dl√

1− λB
=
∮

φ∗
dl√

1− λB
(B.13)

and also, for trapped particles we have ∫ ∞

−∞
≡ ∑

wells

∮
(B.14)

These changes can be implemented to Eqn. B.10, giving∮
φ∗

dl
B
[(τ + 1) φ] =∮

φ∗
dl
B

[
(τ + 1)

2
B
∫ 1

Bmin

1
Bmax

dλ√
1− λB

φ

]
−

∮
φ∗

dl
B

[
ω∗e
ω2

3
4

(
1 + ηe +

1 + ηi

τ

)
B
∫ 1

Bmin

1
Bmax

dλ√
1− λB

FeG(λ)φ

] (B.15)

And so, if we now undo this step of multiplying across by φ∗

B and integrating over the entire field
line, we are left with the following integral equation:

(τ + 1) φ =

(τ + 1)
2

B
∫ 1

Bmin

1
Bmax

dλ√
1− λB

φ−

ω∗e
ω2

3
4

(
1 + ηe +

1 + ηi

τ

)
B
∫ 1

Bmin

1
Bmax

dλ√
1− λB

FeG(λ)φ

(B.16)

Multiplying across by ω2 and rearranging then gives us

ω2 (τ + 1)

[
φ− 1

2
B
∫ 1

Bmin

1
Bmax

dλ√
1− λB

φ

]
=

−ω∗e
3
4

(
1 + ηe +

1 + ηi

τ

)
B
∫ 1

Bmin

1
Bmax

dλ√
1− λB

FeG(λ)φ

(B.17)

which implies

ω2 (τ + 1)

[
φ− 1

2
B
∫ 1

Bmin

1
Bmax

dλ√
1− λB

φ

]
+

ω∗e
3
4

(
1 + ηe +

1 + ηi

τ

)
B
∫ 1

Bmin

1
Bmax

dλ√
1− λB

FeG(λ)φ = 0

(B.18)

Now reminding ourselves of our main derivation here, Eqn. B.9 reads as:

ωδω (τ + 1)

[∮
|φ|2 dl

B
− 1

2 ∑
wells

∫ 1
Bmin

1
Bmax

dλ|φ|2
∮ dl√

1− λB

]

=−
∮

δφ
dl
B

{
ω2 (τ + 1)

[
φ− 1

2
B
∫ 1

Bmin

1
Bmax

dλ√
1− λB

φ

]
+

ω∗e
3
4

(
1 + ηe +

1 + ηi

τ

)
B
∫ 1

Bmin

1
Bmax

dλ√
1− λB

FeG(λ)φ

} (B.19)
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As we can see, the term in curly brackets here is exactly Eqn. B.18. And so, we immediately
obtain δω = 0 when our integral equation is fulfilled. In other words, the mode structure φ that
solves the integral equation (Eqn. B.16 or Eqn. B.17) also minimises the expression for ω.

B.2 Variational Principle for Passing Ions and Trapped Elec-

trons

In this section, we investigate to see if the ω proxy for passing ions and trapped electrons is
applicable for use with the variational principle approach. Instead of using our fully expanded
final result Eqn. 5.101 for this proxy, let’s use the more concise version Eqn. 5.98:

ω2

ω2
∗e

{∫ ∞

−∞
(1 + τ [1− Z1]) |φ|2

dl
B
−
∫ 1

Bmin

1
Bmax

∫ ∞

−∞

dl√
1− λB

1
2
|φ|2dλ

}
=

ω

ω∗e

{∫ ∞

−∞

[
Z1

(
1− ηi +

ω̂diτ

2ω∗e

)
+ Z2

(
ηi +

ω̂diτ

2ω∗e

)]
|φ|2 dl

B
+

∫ 1
Bmin

1
Bmax

∫ ∞

−∞

dl√
1− λB

1
2

(
−1 +

3
2

FeG(λ)

ω∗e

)
|φ|2dλ

}

+
∫ ∞

−∞

[(
ω̂di

2ω∗e

)
× (Z1 + Z2 + Z3)

]
|φ|2 dl

B

+
∫ 1

Bmin

1
Bmax

∫ ∞

−∞

dl√
1− λB

1
2

(
−3

2
FeG(λ)

ω∗e
[1 + ηe]

)
|φ|2dλ

(B.20)
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Varying this expression with respect to φ gives

2ω

ω2
∗e

δω

{∫ ∞

−∞
(1 + τ [1− Z1]) |φ|2

dl
B
−
∫ 1

Bmin

1
Bmax

∫ ∞

−∞

dl√
1− λB

1
2
|φ|2dλ

}
+

ω2

ω2
∗e

{∫ ∞

−∞
(1 + τ [1− Z1]) 2φδφ

dl
B
−
∫ 1

Bmin

1
Bmax

∫ ∞

−∞

dl√
1− λB

1
2

2φδφdλ

}
=

δω

ω∗e

{∫ ∞

−∞

[
Z1

(
1− ηi +

ω̂diτ

2ω∗e

)
+ Z2

(
ηi +

ω̂diτ

2ω∗e

)]
|φ|2 dl

B

+
∫ 1

Bmin

1
Bmax

∫ ∞

−∞

dl√
1− λB

1
2

(
−1 +

3
2

FeG(λ)

ω∗e

)
|φ|2dλ

}
+

ω

ω∗e

{∫ ∞

−∞

[
Z1

(
1− ηi +

ω̂diτ

2ω∗e

)
+ Z2

(
ηi +

ω̂diτ

2ω∗e

)]
2φδφ

dl
B

+
∫ 1

Bmin

1
Bmax

∫ ∞

−∞

dl√
1− λB

1
2

(
−1 +

3
2

FeG(λ)

ω∗e

)
2φδφdλ

}

+
∫ ∞

−∞

[(
ω̂di

2ω∗e

)
× (Z1 + Z2 + Z3)

]
2φδφ

dl
B

+
∫ 1

Bmin

1
Bmax

∫ ∞

−∞

dl√
1− λB

1
2

(
−3

2
FeG(λ)

ω∗e
[1 + ηe]

)
2φδφdλ

(B.21)

which can be quickly tidied up by implementing the following:

δφ =
1∮ dl√
1−λB

∮
δφ

dl√
1− λB

=⇒
∮ dl√

1− λB
δφ =

∮
δφ

dl√
1− λB

(B.22)

giving us

2ω

ω2
∗e

δω

{∫ ∞

−∞
(1 + τ [1− Z1]) |φ|2

dl
B
−
∫ 1

Bmin

1
Bmax

∫ ∞

−∞

dl√
1− λB

1
2
|φ|2dλ

}
+

ω2

ω2
∗e

{∫ ∞

−∞
(1 + τ [1− Z1]) 2φδφ

dl
B
−
∫ 1

Bmin

1
Bmax

∫ ∞

−∞

dl√
1− λB

1
2

2φδφdλ

}
=

δω

ω∗e

{∫ ∞

−∞

[
Z1

(
1− ηi +

ω̂diτ

2ω∗e

)
+ Z2

(
ηi +

ω̂diτ

2ω∗e

)]
|φ|2 dl

B
+

∫ 1
Bmin

1
Bmax

∫ ∞

−∞

dl√
1− λB

1
2

(
−1 +

3
2

FeG(λ)

ω∗e

)
|φ|2dλ

}
+

ω

ω∗e

{∫ ∞

−∞

[
Z1

(
1− ηi +

ω̂diτ

2ω∗e

)
+ Z2

(
ηi +

ω̂diτ

2ω∗e

)]
2φδφ

dl
B
+

∫ 1
Bmin

1
Bmax

∫ ∞

−∞

dl√
1− λB

1
2

(
−1 +

3
2

FeG(λ)

ω∗e

)
2φδφdλ

}
+

∫ ∞

−∞

[(
ω̂di

2ω∗e

)
× (Z1 + Z2 + Z3)

]
2φδφ

dl
B
+

∫ 1
Bmin

1
Bmax

∫ ∞

−∞

dl√
1− λB

1
2

(
−3

2
FeG(λ)

ω∗e
[1 + ηe]

)
2φδφdλ

(B.23)
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where once again, we will note that
∫ ∞
−∞ ≡ ∑wells

∮
for the trapped particles.

Let’s rearrange slightly to give

δω

[
2ω

ω2
∗e

{∫ ∞

−∞
(1 + τ [1− Z1]) |φ|2

dl
B
−
∫ 1

Bmin

1
Bmax

∫ ∞

−∞

dl√
1− λB

1
2
|φ|2dλ

}
−

1
ω∗e

{∫ ∞

−∞

[
Z1

(
1− ηi +

ω̂diτ

2ω∗e

)
+ Z2

(
ηi +

ω̂diτ

2ω∗e

)]
|φ|2 dl

B
+

∫ 1
Bmin

1
Bmax

∫ ∞

−∞

dl√
1− λB

1
2

(
−1 +

3
2

FeG(λ)

ω∗e

)
|φ|2dλ

}]
=

− 2
∫ ∞

−∞
δφ

dl
B

[
ω2

ω2
∗e

{
(1 + τ [1− Z1]) φ− 1

2
B
∫ 1

Bmin

1
Bmax

dλ√
1− λB

φ

}
−

ω

ω∗e

{[
Z1

(
1− ηi +

ω̂diτ

2ω∗e

)
+ Z2

(
ηi +

ω̂diτ

2ω∗e

)]
φ +

1
2

B
∫ 1

Bmin

1
Bmax

dλ√
1− λB

(
−1 +

3
2

FeG(λ)

ω∗e

)
φ

}

−
[(

ω̂di
2ω∗e

)
× (Z1 + Z2 + Z3)

]
φ +

1
2

B
∫ 1

Bmin

1
Bmax

dλ√
1− λB

(
3
2

FeG(λ)

ω∗e
[1 + ηe]

)
φ

]
(B.24)

The significance of this large expression in square brackets will become clear in a moment. Let’s
now take a gentle detour to tie up this argument. Reminding ourselves of our integral equation,
given by Eqn. 5.76, and the expansion of [Y0 + Y1], given by Eqn. 5.87:

=⇒ [1 + τ (1− [Y0 + Y1])] φ = B
∫ 1

Bmin

1
Bmax

Ue(ω, λ)φ
dλ√

1− λB

=⇒ [Y0 + Y1] =

Z1 +
1
ω

[
Z1

(
−ω∗i + ω∗iηi +

ω̂di
2

)
+ Z2

(
−ω∗iηi +

ω̂di
2

)]
+

1
ω2

[(
−ω∗iω̂di

2

)
× (Z1 + Z2 + Z3)

]
(B.25)

where

Ue(ω, l) =
1
2

[
1− ω∗e

ω
+

3
2

FeG(λ)

ω

(
1− ω∗e

ω
[1 + ηe]

)]

=
1
2

[
1− ω∗e

ω
+

3
2

FeG(λ)

ω
− 3

2
FeG(λ)ω∗e

ω2 [1 + ηe]

] (B.26)

We can expand our first expression in Eqn. B.25 here as follows:

(1 + τ)φ− τZ1φ− τ
1
ω

[
Z1

(
−ω∗i + ω∗iηi +

ω̂di
2

)
+ Z2

(
−ω∗iηi +

ω̂di
2

)]
φ−

τ
1

ω2

[(
−ω∗iω̂di

2

)
× (Z1 + Z2 + Z3)

]
φ =

B
∫ 1

Bmin

1
Bmax

1
2

[
1− ω∗e

ω
+

3
2

FeG(λ)

ω
− 3

2
FeG(λ)ω∗e

ω2 [1 + ηe]

]
φ

dλ√
1− λB

(B.27)
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Again, we will now make use of the fact that:

ω∗i = −
ω∗e
τ

τ =
Te

Ti

(B.28)

which gives

(1 + τ)φ− τZ1φ− τ
1
ω

[
Z1

(
ω∗e
τ
− ω∗e

τ
ηi +

ω̂di
2

)
+ Z2

(
ω∗e
τ

ηi +
ω̂di
2

)]
φ−

τ
1

ω2

[(
ω∗eω̂di

2τ

)
× (Z1 + Z2 + Z3)

]
φ =

B
∫ 1

Bmin

1
Bmax

1
2

[
1− ω∗e

ω
+

3
2

FeG(λ)

ω
− 3

2
FeG(λ)ω∗e

ω2 [1 + ηe]

]
φ

dλ√
1− λB

(B.29)

and tidying more gives

(1 + τ[1− Z1])φ−
1
ω

[
Z1

(
ω∗e −ω∗eηi +

ω̂diτ

2

)
+ Z2

(
ω∗eηi +

ω̂diτ

2

)]
φ−

1
ω2

[(
ω∗eω̂di

2

)
× (Z1 + Z2 + Z3)

]
φ =

B
∫ 1

Bmin

1
Bmax

1
2

[
1− ω∗e

ω
+

3
2

FeG(λ)

ω
− 3

2
FeG(λ)ω∗e

ω2 [1 + ηe]

]
φ

dλ√
1− λB

(B.30)

and more

(1 + τ[1− Z1])φ−
ω∗e
ω

[
Z1

(
1− ηi +

ω̂diτ

2ω∗e

)
+ Z2

(
ηi +

ω̂diτ

2ω∗e

)]
φ−

ω2
∗e

ω2

[(
ω̂di

2ω∗e

)
× (Z1 + Z2 + Z3)

]
φ =

B
∫ 1

Bmin

1
Bmax

1
2

[
1− ω∗e

ω
+

3
2

FeG(λ)

ω
− 3

2
FeG(λ)ω∗e

ω2 [1 + ηe]

]
φ

dλ√
1− λB

(B.31)

Now multiplying across by ω2

ω2∗e
gives

ω2

ω2
∗e
(1 + τ[1− Z1]) φ− ω

ω∗e

[
Z1

(
1− ηi +

ω̂diτ

2ω∗e

)
+ Z2

(
ηi +

ω̂diτ

2ω∗e

)]
φ−[(

ω̂di
2ω∗e

)
× (Z1 + Z2 + Z3)

]
φ =

B
∫ 1

Bmin

1
Bmax

1
2

[
ω2

ω2
∗e
− ω

ω∗e
+

ω

ω2
∗e

3
2

FeG(λ)− 3
2

FeG(λ)

ω∗e
[1 + ηe]

]
φ

dλ√
1− λB

(B.32)

Focusing on the right-hand side here, it can be fully expanded out to give

B
∫ 1

Bmin

1
Bmax

1
2

[
ω2

ω2
∗e
− ω

ω∗e
+

ω

ω2
∗e

3
2

FeG(λ)− 3
2

FeG(λ)

ω∗e
[1 + ηe]

]
φ

dλ√
1− λB

=

ω2

ω2
∗e

1
2

B
∫ 1

Bmin

1
Bmax

φ
dλ√

1− λB
+

ω

ω∗e

1
2

B
∫ 1

Bmin

1
Bmax

φ

(
−1 +

3
2

FeG(λ)

ω∗e

)
dλ√

1− λB

− 1
2

B
∫ 1

Bmin

1
Bmax

φ

(
3
2

FeG(λ)

ω∗e
[1 + ηe]

)
dλ√

1− λB

(B.33)
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Reinserting this expanded right-hand side into Eqn. B.32 now gives

ω2

ω2
∗e
(1 + τ[1− Z1]) φ− ω

ω∗e

[
Z1

(
1− ηi +

ω̂diτ

2ω∗e

)
+ Z2

(
ηi +

ω̂diτ

2ω∗e

)]
φ−[(

ω̂di
2ω∗e

)
× (Z1 + Z2 + Z3)

]
φ =

ω2

ω2
∗e

1
2

B
∫ 1

Bmin

1
Bmax

φ
dλ√

1− λB
+

ω

ω∗e

1
2

B
∫ 1

Bmin

1
Bmax

φ

(
−1 +

3
2

FeG(λ)

ω∗e

)
dλ√

1− λB

− 1
2

B
∫ 1

Bmin

1
Bmax

φ

(
3
2

FeG(λ)

ω∗e
[1 + ηe]

)
dλ√

1− λB

(B.34)

Now let’s bring everything over to the left-hand side and group together similar terms

ω2

ω2
∗e

{
(1 + τ[1− Z1]) φ− 1

2
B
∫ 1

Bmin

1
Bmax

φ
dλ√

1− λB

}
−

ω

ω∗e

{[
Z1

(
1− ηi +

ω̂diτ

2ω∗e

)
+ Z2

(
ηi +

ω̂diτ

2ω∗e

)]
φ +

1
2

B
∫ 1

Bmin

1
Bmax

dλ√
1− λB

(
−1 +

3
2

FeG(λ)

ω∗e

)
φ

}

−
[(

ω̂di
2ω∗e

)
× (Z1 + Z2 + Z3)

]
φ +

1
2

B
∫ 1

Bmin

1
Bmax

dλ√
1− λB

(
3
2

FeG(λ)

ω∗e
[1 + ηe]

)
φ = 0

(B.35)

Now let’s remind ourselves of the long expression in square brackets from Eqn. B.24:[
ω2

ω2
∗e

{
(1 + τ [1− Z1]) φ− 1

2
B
∫ 1

Bmin

1
Bmax

dλ√
1− λB

φ

}
−

ω

ω∗e

{[
Z1

(
1− ηi +

ω̂diτ

2ω∗e

)
+ Z2

(
ηi +

ω̂diτ

2ω∗e

)]
φ +

1
2

B
∫ 1

Bmin

1
Bmax

dλ√
1− λB

(
−1 +

3
2

FeG(λ)

ω∗e

)
φ

}

−
[(

ω̂di
2ω∗e

)
× (Z1 + Z2 + Z3)

]
φ +

1
2

B
∫ 1

Bmin

1
Bmax

dλ√
1− λB

(
3
2

FeG(λ)

ω∗e
[1 + ηe]

)
φ

]
(B.36)

We can now clearly see that Eqn. B.35 and Eqn. B.36 match. Thus, to obtain δω = 0 in Eqn. B.24,
our original integral equation given by Eqn. 5.76 (and again in Eqn. B.25) must be fulfilled. In
other words, the solution φ to the integral equation (Eqn. 5.76 and Eqn. B.25) also minimises the
expression for ω. This explicitly shows the variational property possessed by the ω proxy for
passing ions and trapped electrons.
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