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Abstract

The brain is a complex network. Recently multiple studies have tried to model
complex networks using graph theory. In this thesis we have developed a multi-
level Random Geometric Graph to model the human brain. We have included
the extra property that the probability of a connection declines proportionally
to the distance. Based on our analysis we conclude that this graph has a similar
level of segregation, but a higher level of integration compared to the real brain.
This graph also predicts the properties of deeper levels in the brain, where data
of these levels is not yet available.
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1 Introduction

We are still far from understanding how the human brain works. We know that
certain connections or damage to these connections can influence or change the
way the brain functions. To learn more about this, researchers investigate le-
sioned patients. With new techniques such as functional magnetic resonance
imaging (fMRI) we are now also able to make models of the human brain [14].
If we can successfully do this we can change parameters or make lesions in the
artificial brain to analyze what happens to the brain under these circumstances.
We can use this to understand for example which damages lead to changes in
the brain’s function. One of the challenges is that the brain consists of many
small parts (e.g. the neurons and synapses) that have specific locations [9]. This
makes the use of computer memory of an algorithm modelling the brain high.
Our goal is to create a model of the brain that uses less computer memory by
using random configurations. We will do this by modelling a Random Geomet-
ric Graph (RGG) and making some adjustments to make the fit with the brain
better. An RGG is a model that generates random points, which we call nodes
and connects them if they are within a certain radius of each other [12]. These
connections are called edges.

Some of the previous studies that compared an RGG to the brain include that
of Smith et al. [16]. In this study they constructed an RGG in a cubic volume.
They concluded that there were similar high levels of segregation between the
RGG and the brain MRI, meaning that in both networks there is a lot of clus-
tering of nodes. In the article of Carlson, Mucha, Klimm, and Bassett [6] the
RGG was created in a rectangular volume. They use a slightly different imple-
mentation in which they connect a node to the M closest nodes according to
the Euclidean distance. Their results were that the RGG was more segregated
than the brain data and that it had a large network diameter and long path
length. They also compared the brain to the Distance Drop-Off (DD) model. In
the DD-model nodes are located at certain predetermined regions in the brain.
Two nodes are then connected with a probability that depends on the distance
d between these nodes [6]. In Ajazi’s PhD thesis he described a model that had
some properties of RGGs and some properties of the DD-model [1]. We also
want to take properties from both these models.

The brain consists of multiple levels. Because of this we want to create a mul-
tilevel network, so that the brain can be analyzed at the specific level we are
interested in. Most of the time the brain is divided in the macroscale, the
mesoscale and the microscale. On the macroscale, large areas of the brain are
connected through white matter tracts [9]. The brain is separated in two highly
connected parts: the left and the right hemisphere. The fiber tract between
these two parts is the Corpus Callosum (CC). Each hemisphere can be divided
in six parts, that differ in functionality and structure: the frontal lobe, the oc-
cipital lobe, the parietal lobe, the temporal lobe, the cerebellum and the limbic
system. The mesoscale lies somewhere between the macroscale and the mi-
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croscale and is still hard to investigate in humans due to the invasive nature of
currently available methods.

On the microscale, the network consists of neurons and synapses [9]. On the
finest scale of a brain network, the nodes represent neurons and the edges rep-
resent synapses. The brain consists of approximately 86.1 ± 8.1 · 109 neurons
[3]. The number of synapses in the brain is a debated subject and ranges
somewhere between 1014–1015 synapses [18, 20]. The human brain consists of
different kinds of synapses, electrical and chemical synapses. Electrical synapses
are faster than chemical synapses. Furthermore electrical synapses are bidirec-
tional, while chemical synapses are directed. These two ways of synaptic trans-
mission often interact with each other [13]. The weights of chemical synapses
change over time. On the microscale weight can be defined as a measure of
the amount of postsynaptic response after an action potential. This can be
excitatory (positive) or inhibitory (negative). It is a function of the number
of neurotransmitters fired and the number of active receptors for these neuro-
transmitters. There exist multiple kinds of neurotransmitters and receptors [22].

With new techniques such as fMRI and diffusion-weighted magnetic resonance
imaging (DW-MRI) we can analyse the brain both functionally and anatom-
ically. The brain is functionally segregated, which means that the nodes are
functionally clustered. Thanks to this characteristic the brain is able to per-
form specialized processing. The brain is also functionally integrated, which
means that nodes from different parts in the brain are connected. This char-
acteristic makes sure that the brain can combine the specialized information
from the segregated brain regions. In this thesis we focus on anatomical brain
networks and not on functional brain networks. Anatomical brain networks in-
corporate the physical connections between brain regions [15]. We will build a
network as similar as possible to the human brain based on graph theory, the
basics of which will be discussed in the next chapter.
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2 Graph theory

In this thesis we limit ourselves to graphs embedded in R3. A graph G = (V,E)
consists of a set of vertices V (G) ⊆ R3 (also called nodes) and a set of edges
E(G) ⊆ V × V , lines that represent connections between two nodes. The num-
ber of nodes in a graph is called the order of the graph and is denoted by |V |.
Let I = {1, ..., |V |} be the index set of V and let i, j, k ∈ I. A node is denoted
by xi = (xi1 , xi2 , xi3) ∈ V (G). An edge {xi, xj} ∈ E(G) is often written as
xixj . In figure 1 we have drawn an example of a graph that is not connected
and we have labeled an edge and a vertex/node. A graph can be represented by

Figure 1: Example of a graph that is not connected.

an adjacency matrix A. We say that xi, xj ∈ V are adjacent if xixj ∈ E. The
adjacency matrix A is a |V | × |V |-matrix that stores the weight wij of an edge
between the nodes xi and xj . In the case of a weighted graph this means that:

Aij =

{
wij ∈ R>0 if xixj ∈ E,

0 otherwise.

In an unweighted graph wij = 1. We say that G′ = (V ′, E′) is a subgraph of
G if and only if V ′ ⊆ V and E′ ⊆ E. We denote this by G′ ⊆ G. A graph
can be directed or undirected. A directed graph is a graph that has two maps:
init: E −→ V and term: E −→ V , where the edge is directed from init(e) to
term(e).
A path is a graph P that connects node x0 to node xn. It consists of nodes
{x0, x1, x2..., xn} and edges E = {x0x1, x1x2, ..., xn−1xn} [7]. Two nodes xi, xj ∈
V are connected if there exists a path between xi and xj .
A graph can consist of a single connected component, which means that for
every xi, xj ∈ V there exists a path P such that xi is connected to xj . The
brain consists of such a connected component.
The degree ki of a node xi is defined as the sum of the weights of the edges
connected to xi [15]:

ki =
∑
j∈|V |

wij .

This equation holds for both unweighted graphs, where wij ∈ {0, 1}, and
weighted graphs, where wij ∈ [0, 1]. The (weighted) geometric mean of tri-
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angles ti that include node xi is defined as:

ti =
1

2

∑
j,h∈|V |

(w′ijw
′
ihw
′
jh)

1
3 ,

where w′ = w
maxi,j∈|V | wij

[2]. Note that the factor 1
2 is needed because each pair

of triangles is counted twice. Consider for example node i = 1, that forms a
triangle with node 2 and 3. This triangle is counted when j = 2 and h = 3, but
also when j = 3 and h = 2.

Our goal is to compare the human brain to a random graph. There are several
random graphs, one of which is the Erdös-Rényi random graph. This graph
takes a random configuration of nodes V and connects two nodes with proba-
bility p. Thus for cij ∈ [0, 1] randomly chosen

Aij =

{
1 if cij ≤ p and i 6= j,
0 otherwise.

Another type of graph is the geometric graph. This is an undirected graph
G(V ; r) where V is the vertex set and where xixj ∈ E(G) when |xj − xi| ≤ r.
In order to determine the distance between two nodes xi, xj ∈ V (G) we use the
Euclidean norm:

|xi − xj | =
√

(xi1 − xj1)2 + (xi2 − xj2)2 + (xi3 − xj3)2.

A geometric graph based on random point configurations is called a Random
Geometric Graph (RGG).

We use three measures to test our network. First the number of connected
components: the brain consists only of one component, so the model should be
connected. The connectivity threshold of an RGG can be determined based on
theorem 1, which is a special case of theorem 6(ii) in [8]. In this theorem we
take p = 2, since we use the Euclidean norm (lp = l2) and d = 3, since we
consider graphs in R3. We then obtain the following theorem:

Theorem 1. Let G be an RGG in R3 using the Euclidean norm. Suppose that

r =
(
c · lnn

n

) 1
3 and c > 4

3 . Then, almost always, G is connected.

The second characteristic of the brain is that it has functional segregation.
A measure for this is the clustering coefficient, defined below, which should be
high (see Figure 2). Another characteristic of the human brain is its functional
integration. This can be measured by the global efficiency, which is the inverse
of the average shortest path length. Those two properties combined make the
anatomical brain network a small-world network [15]. The clustering coefficient
C is calculated based on the geometric mean of triangles ti and the degree of a
node ki. It is defined as:

C =
1

n

∑
i∈|V |

2 · ti
ki(ki − 1)

. (1)
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Figure 2: Clustering coefficient and global efficiency [15].

If dij is the shortest path length between xi and xj then the global efficiency E
is given by:

E =
1

n

∑
i∈|V |

∑
j∈|V | d

−1
ij

n− 1
. (2)

The benefit of an RGG compared to e.g. Erdös-Rényi random graphs is the
triangle property of RGGs. Given three points xi, xj , xk ∈ V with |xi − xj | ≤ r
and |xi − xk| ≤ r, then |xj − xk| = |xj − xi + xi − xk| ≤ |xj − xi|+ |xi − xk| =
|xi − xj | + |xi − xk| ≤ 2r. So if two points are connected to the same point,
there is a higher chance that those two points are connected too. This means
that the fraction of triangles around a node will be high, which implies that the
clustering coefficient will be high too.
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3 Brain Network Generator

The brain network generator we developed depends on seven parameters as de-
scribed in table 1. For the first level, we generate n random nodes in the unit

Parameter Meaning
n the number of nodes
l the number of levels
b the branching factor
t the threshold
r the cutoff radius
p the probability of a connection
Fw the weight distribution

Table 1: The parameters of the model.

sphere, the coordinates of which are stored in the matrix ’RandomNodes’. We
then create the empty n × n-adjacency matrix ’weights’. Next we will change
each value in this matrix to the corresponding weight of this connection.

To find out if two nodes xi and xj are connected we first determine the dis-
tance d between these two nodes with the Euclidean norm. We then compare
this distance to the cutoff radius r.
Suppose d < r, then the value of the matrix ’weights’ at position i, j changes
according to the weight distribution.
Suppose now that d ≥ r. If a random number c0 is smaller than p, the value
of the matrix ’weights’ at position i, j changes according to the weight distri-
bution. If however c0 ≥ p, the value of the matrix ’weights’ at position i, j
becomes 0. In both cases we check whether the value of the matrix ’weights’
at position i, j is smaller than the threshold t. If this is the case, the value is
changed to zero. We do this to reduce noise.

If l > 1, the algorithm creates bn new nodes for each new level, since every
node xi in RandomNodes is replaced by b new nodes whose coordinates lay in
the sphere of radius r around xi. After replacement of the old nodes by the new
ones, the number of nodes n is higher. This causes the cutoff radius r to change

too, since we take r =
(
c · lnn

n

) 1
3 and c > 4

3 . The algorithm now connects the
nodes in the same way as described for the first level. This will be repeated
until there are l levels.

We visualize this network with the python package NetworkX. This reads the
adjacency matrix and the coordinates of the network and prints it in 2D.

In one of our first trials we implemented spatial hashing to make our algorithm
faster, because we still looked at the modelling of the brain as a hard-spheres
problem (see the first panel in figure 3). This means that there can’t be a con-
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Figure 3: Difference soft-spheres problem (bottom) and hard-spheres problem
(top).

nection when the distance between two nodes is larger than the cutoff radius.
Spatial hashing could make such a problem faster, as it would only consider
nodes that are in neighbouring bins, thereby lowering the number of times the
distance between two nodes should be calculated. Later we realised that the
brain is better comparable to a soft-sphere problem, since there also exist long
connections (see the second panel in figure 3). In soft-sphere problems, the
probability of a connection depends on the distance. Therefore spatial hashing
would not benefit our algorithm.
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4 Analysis

Diffusion tensor imaging (DTI) is the preferred method to study white matter
[21]. One could also use voxel-based morphometry, which estimates the amount
of tissue at a specific point. This estimation is given in voxels and appears to be
more specific than DTI. However the sensitivity of morphometry for white mat-
ter is limited, since there only exist small changes in intensity in white matter
regions [11]. For the analysis of our data we use the USC Multimodal Con-
nectivity Database [5]. This database provided by the MGH/UCLA Human
Connectome Project has stored the connectivity matrices of brains using fMRI,
DW-MRI and DTI.

We use the NKI/Rockland data (id 1759), in which they averaged the con-
nectivity matrices of 196 individuals in the age range of 6 − 89. The data is
measured using the Siemens Trio 3T MRI scanner. In the data the diffusion
tensor is estimated with the diffusion toolbox and the fiber assignment by con-
tinuous tracking (FACT) algorithm is used to do the tractography. The brain is
partitioned into 188 regions of interest (ROIs). The data is thresholded to make
sure each voxel was assigned to only one ROI, the one for which the likelihood
of membership is the highest. The number of fibers that have at least one voxel
in both the source and the target ROI are determined and summarized in the
structural connectivity matrix [5].

As mentioned before, our code has multiple parameters (see table 1). We first
base our choice for the values of these parameters on the literature. In the re-
sults section we will vary one of these parameters and keep the rest constant to
explore whether this gives improvements of the properties of the RGG.

We choose

r =
(
c · n

lnn

) 1
3

and vary the value of c > 4
3 , such that G is almost always connected. We choose

n = 188, since the data we use to compare our algorithm to also has 188 nodes.
As mentioned before the brain consists of approximately 86.1±8.1 ·109 neurons.
At this moment it is not (yet) possible to model this number of nodes and the
even higher number of edges that come with these nodes. If this were possible
there would be a dependent relationship between the branching factor b and the
number of levels l, since

8.61 · 1010 = n · bl−1,

for l > 1. If we assume that n = 188 and rewrite this equation we obtain:

b =
l−1

√
8.61 · 1010

n
=

l−1
√

4.58 · 108,

for l > 1. To make this clearer we have calculated the relation between b and l
for some values in table 2. However for now, it is not yet possible to calculate
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Number of levels (l) Branching factor (b)
2 2.14 ·104

3 7.71 ·102

4 1.46 ·102

8 12

Table 2: The relation between b and l.

all the levels with these branching factors, so we consider only the first couple
of levels.
To determine the weight distribution we have written the code weights.py, in
which we use the connectivity matrix of the NKI/Rockland-dataset. Since the
weight wij of an edge in this connectivity matrix represents the number of
voxels in both nodes (ROIs), we know that wij ∈ N. If there exists a connection
we add the weight of this connection to an array, where we take into account
that wij = wji, which we only add once. We then count the number of times
each weight exists in the whole matrix. We plot the weights on the x-axis, the
occurrence of each weight on the y-axis and draw a line through these points
(see the first panel of figure 4). This seems to be a power law. In order to further
analyse this distribution we plotted the same data on a logarithmic scale (see
the second panel of figure 4), which should follow a linear distribution for a
power law. Since this is approximately the case we fitted a power law on our
data and obtained the equation:

f(w) = 67.84 · w−0.81.

The resulting graph is shown in the third panel of figure 4. We base our weight
distribution on this power law.
To estimate the probability p of a connection when the distance is larger than
the cutoff radius, we wanted to find a distribution of the fiber lengths. Using
post-mortem histology it was determined that the total length of nerve fibers
is 118000 km and that the length density is 249 m/mm3 [19]. In the preceding
literature study we have not been able to find information about the precise
distribution of the length of nerve fibers. Therefore we assume this distribution
to decline proportionally to the distance d, where the chance of a connection
should be 1, if d = r and should be approaching 0, when d = 2, since we consider
our graph in the unit sphere. We will consider the candidate probabilities p0 =
2−d
2−r , p1 = er−d, p2 =

√
2−d
2−r and p3 = ln(3− d).

The threshold t is used to reduce noise. We should thus choose it in the interval
[0, 1].
The properties we use to analyse our network are the clustering coefficient C
(1), the global efficiency E (2) and the number of connected components. By
analysing the NKI/Rockland data we can find the values that these properties
should approach. The clustering coefficient should be approximately 0.6199, the
global efficiency 0.6415 and there should be one connected component.
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Figure 4: Weight distribution
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5 Results

We test our model based on the difference between the properties of the NKI/
Rockland data and the properties of our data. Specifically we will consider the
difference in clustering coefficient (∆C) and in the global efficiency (∆E). We
combine these results by taking the geometric mean (D =

√
∆C ·∆E), see table

4. An advantage of the geometric mean compared to the arithmetic mean is
that it takes into account different scales. It is used for instance to compare re-
sults of different methods in parallel computing for problem instances of widely
different scales [4].

For now, we consider the case where the number of levels l = 1. The data
we use for comparison only has one level, so we use this data to determine the
best values for pk, t and c. When those values are determined, we can make
predictions about lower levels in the brain, which can be tested when more de-
tailed data becomes available.
We could not predict the optimal values for pk based on the literature. There-
fore we have tried several values for t, c and n, for every value of k. In every
case the value pk = p2 had the lowest D and thus we take pk = p2 as default.
For the threshold t, we could only determine that t ∈ [0, 1]. To determine the
best value of t, we considered t ∈ {0.01, 0.05, 0.1, 0.5, 0.9}. From these values
t = 0.05 had the lowest value of D. We checked if ∃t ∈ (0.01, 0.05)∪ (0.05, 0.1),
such that D is even lower. This turned out to be the case for t = 0.03, which is
why we chose this as default value.
For the cutoff-radius, we know that c > 4

3 . We thus tried c ∈ {2, 5, 6, 7, 9} and
noticed the lowest value of D for c = 6, hence we chose this as the default value
for c. In figure 5 we have plotted our model for the default values.

Figure 5: Model with default values n = 188, t = 0.03, c = 6 and pk = p2.
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In table 3 we have summarized the values of the clustering coefficient (C),
the global efficiency (E) and the number of connected components (m), the
latter as expected equals one, since c > 4

3 for different values of the variables.
Each time we have varied one variable and kept the remaining variables as the
default value.

Variables C E m
Default 0.62 0.81 1
t = 0.01 0.65 0.82 1
t = 0.1 0.57 0.78 1
c = 2 0.59 0.79 1
c = 9 0.63 0.81 1

pk = p0 0.53 0.75 1
pk = p1 0.51 0.75 1
pk = p3 0.60 0.79 1

Table 3: Default: n = 188, t = 0.03, c = 6 and pk = p2. The columns represent
the variables of the model that are not the default value, the clustering coefficient
(C), the global efficiency (E) and the number of connected components (m).

Variables ∆C ∆E Geometric mean D
Default 0.00 0.16 0.015
t = 0.01 0.03 0.18 0.079
t = 0.1 0.05 0.14 0.081
c = 2 0.03 0.15 0.068
c = 9 0.01 0.17 0.050

pk = p0 0.09 0.11 0.099
pk = p1 0.11 0.11 0.11
pk = p3 0.02 0.15 0.048

Table 4: Default: n = 188, t = 0.03, c = 6 and pk = p2. The columns represent
the variables of the model that are not the default value and the difference
between our data and the NKI-dataset. Specifically the difference in clustering
coefficient (∆C), the global efficiency (∆E). These differences are combined in
the geometric mean D.

In table 4 we have summarized the differences in clustering coefficient, global
efficiency and the average difference. These values are based on table 3 and the
NKI/Rockland data (C = 0.6199 and E = 0.6415).

We can use these default values to make an estimation about deeper levels
in the brain. Suppose we divide the brain into 8 levels, then, according to table
2, b = 12. Since we have a multilevel graph, we can analyse multiple levels of
the brain. We analyse the highest two levels for b = 12 and thus n = 12 for level
1 and n = 144 for level 2. According to our model, the clustering coefficient C
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and the global efficiency E of the second level is: C = 0.59 and E = 0.79. The
geometric mean D = 0.091, which is still not that large. At the moment, to the
best of our knowledge, there is no data available to further test this data.
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6 Discussion

From table 4 we can see that the chosen values are in a (local) optimum. Thus
we take n = 188, t = 0.03, pk = p2 and c = 6 to be the optimal values for
our model. This means that the optimal values are C = 0.62 for the clustering
coefficient, which is extremely close to the clustering coefficient of the real brain,
and E = 0.81 for the global efficiency, which is larger than the global efficiency
of the real brain. From this we can conclude that the segregation is the same
and the integration of the model is higher than the integration of the brain.
This analysis is not perfect though. First of all because there is no data available
about the deeper levels of the brain (over 200 nodes), which makes it impossible
to test all the features of our model. Unfortunately it is not yet possible to
run this program for the deepest levels or for a large number of nodes either,
because of the long runtime and large amount of memory needed.
Second because of the data we used, the DT-imaging. This data can contain
noise. Another disadvantage of this data is that the streamlines (paths between
nodes) are not quantitative, which makes it hard to define the weights. This can
result in larger weights, when the number of streamlines is higher. This can also
lead to low weights of long connections, because it is more difficult to recover the
path of a long white matter tract than the path of a short tract [10]. Follow-up
research could reduce this problem reduced by using the SIFT2-technique [17].
Another problem with the lack of a definition for weights in the brain, is that
different datasets consider different definitions and therefore obtain different
connectivity matrices. In our model we chose a dataset where weights are de-
termined by the number of tracts that have voxels in both regions of interest.
Suppose we chose a different dataset to compare our data with, which has a
different definition of weight. Then we would have gotten a different weight dis-
tribution and thus a different model. In future research it could be investigated
if a different definition for weights would give us a better model.
It is also possible to compare our model to data from voxel-based morphometry.
This can give a slightly more detailed representation of the brain, but since
we analyse the white matter of the brain and voxel-based morphometry is less
sensitive to white matter, this choice is not optimal either. In next studies it
could be possible to compare our model to both DT-imaging and voxel-based
morphometry.
Another uncertain factor is that we could not find information about the dis-
tribution of the length of tracts, so we had to make an estimation based on the
outcomes of our model. If this distribution becomes available the model could
be made more accurate.
We based our choice for the variables on the geometric mean of the difference
in the clustering coefficient C and the global efficiency E. We could also have
taken into account whether the difference in clustering coefficient was approx-
imately as large as the difference in global efficiency. We now have a model
where the clustering coefficient is the same, but the global efficiency differs a
lot from the real brain. This would not have been the optimal solution when
taking into account the ratio of both differences.
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7 Conclusion

First we have looked into basic properties of and methods to investigate the
brain. We have analysed the basic definitions of graph theory, that we later
used to create our model and analyse the optimal values of our model. We
have created a weighted multilevel Random Geometric Graph, to which we
have added the extra property that the probability of a connection between two
nodes depends on the distance, when the distance between these nodes is larger
than the cutoff radius. We made the simplification in the multilevel property
that the branching factor is uniform. According to our analysis the optimal

values to compare this graph to the brain are n = 188, pk = p2 =
√

2−d
2−r ,

rc = r6 =
(
6 · n

lnn

) 1
3 , t = 0.03 and b =

l−1
√

4.58 · 108. This gave us the values
C = 0.62 for the clustering coefficient and E = 0.81 for the global efficiency.
Thus the segregation in the brain is modelled accurately, but the integration is
of the model is higher than the integration in the brain.
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A Python Code of our Brain Generator

import numpy
import math
import networkx as nx
import matplotlib.pyplot as plt
import random as rnd
import decimal as dec

def Probability(d, r, k): #candidate probability distributions
if k == 0:

return (2− math.sqrt(d))/(2− r)
if k == 1:

return math.exp(r− math.sqrt(d))
if k == 2:

return math.sqrt((2− math.sqrt(d))/(2− r))
if k == 3:

return math.log(3− math.sqrt(d))

def BrainGenerator(n, l, b, t, c, k): #nodes n, levels l, branching factor b, threshold t,
constant factor cutoff radius c, probability distribution k
RandomNodes = numpy.empty([n, 3])
for level in range(l):

if level == 0:
i = 0
while (i < n): #create n random nodes in the unit sphere at level 1

node = (rnd.uniform(−1, 1), rnd.uniform(−1, 1), rnd.uniform(−1, 1))
if node[0]**2 + node[1]**2 + node[2]**2 <= 1:

RandomNodes[i] = node
i+ = 1

else: #create n random nodes in the unit sphere at the higher levels
size = numpy.size(RandomNodes, 0)
n = b*size
RandomNodes = numpy.empty([n, 3])
for j in range(size):

i = 0
while (i < b):

node = (dec.Decimal(rnd.uniform(RandomNodes[j, 0] −r,
RandomNodes[j, 0] +r)), dec.Decimal(rnd.uniform(
RandomNodes[j, 1] −r, RandomNodes[j, 1] +r)),
dec.Decimal(rnd.uniform(RandomNodes[j, 2] −r,
RandomNodes[j, 2] +r)))

if(node[0]**2) + (node[1]**2) + (node[2]**2) <= 1:
RandomNodes[i + b ∗ j] = node
i+ = 1
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r = (c∗math.log(n)/(n))**(1/3) #cutoff radius
weights = numpy.empty([n, n])
for j in range(n):

i = 0
while (i <= j): #make connections between nodes

dsquared = (float) (RandomNodes[i, 0] - RandomNodes[j, 0]) ** 2+
(RandomNodes[i, 1] - RandomNodes[j, 1]) ** 2+
(RandomNodes[i, 2] − RandomNodes[j, 2]) ** 2

if dsquared < r ** 2 and i ! = j:
weights[i, j] = weights[j, i] = 67∗ numpy.rnd.power(0.19)
if weights[i, j] < t:

weights[i, j] = weights[j, i] = 0
i + = 1

elif dsquared >= r ** 2 and i ! = j:
p = Probability(dsquared, r, k)
c = rnd.uniform(0, 1)
if c < p and i ! = j:

weights[i, j] = weights[j, i] = 67∗numpy.rnd.power(0.19)
if weights[i, j] < t:

weights[i, j] = weights[j, i] = 0
else:

weights[i, j] = weights[j, i] = 0
i + = 1

else:
weights[i, j] = 0
i + = 1

G = nx.from numpy matrix(weights)
nx.draw (G, pos = {i: (RandomNodes[i, 0], RandomNodes[i, 1]) for i in

range(len(RandomNodes))}, node size = 20, alpha = 0.07)
plt.show()
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