
To be incremental or not: PreTra and

RBGParser evaluated on garden path sentences
BACHELOR THESIS BSC ARTIFICIAL INTELLIGENCE

UTRECHT UNIVERSITY

Peter Maatman (5630177)
Supervisor: Meaghan Fowlie

Second reader: Anna Wegmann

November 6, 2020

Abstract

This study investigates the effect of incrementality on the accuracy of parsers
on garden path sentences. We show that the incremental parser evaluated
in this thesis achieves lower accuracies on garden path sentences than a non-
incremental parser. We then explore one explanation for this worse accuracy of
the incremental parser and we find two likely sources for error: either the scoring
function, or the transition system is the culprit. We suggest further research to
investigate which of of the two sources of error contribute the most.

Contents

1 Introduction 2

2 Theoretical background 3
2.1 Garden path sentences . 3
2.2 Dependency parsing . 4
2.3 Non-incremental parser: RBGParser 4
2.4 Incremental parser: PreTra . 6
2.5 Errors due to beam search . 9

3 Experimental setup 11
3.1 Datasets . 11
3.2 Evaluation measures . 11
3.3 Experimental details . 11

4 Results 13
4.1 Beam search errors . 13

5 Discussion 15

6 Conclusion 17

A Garden path dataset 20

1

1 Introduction

As Jurafsky and Martin say in their book Speech and Language processing,
“Ambiguity is perhaps the most serious problem faced by parsers” [1]. There
are a number of different types of ambiguity, in this thesis we will focus on
local ambiguity. This type of ambiguity is very interesting because a reader will
encounter ambiguity while reading the sentence, but by the time they reach the
end of the sentence the ambiguity will be resolved. For example in sentence (1)
the part The old man is parsed as a noun phrase. This makes the part the boat
unexpected, but then we realize that man is actually the verb.

(1) The old man the boat.

It is reasonable to expect most modern parsers to be able to parse such ambiguous
sentences correctly, because they are generally able to use features spanning the
whole sentence. As opposed to people, who read sentences from left to right
without having knowledge of what is to come.

However, recently interest in parsers that incrementally parse natural language
have become more popular. The assumption that many current parsers rely on
is that the whole sentence is known at the start of processing the input. But
this is rarely the case in real world use cases of language processing such as
smart speakers, Google Assistant, Siri[2]. These systems listen for user input
over time and don’t see the whole sentence the users utters at once. If these
systems would only start processing once the whole sentence is known, sentences
would be translated only after it was processed fully instead of on the fly [2].

It is important for the larger field of AI to be able to parse natural language.
And because natural language is full of ambiguity, we need parsers that are
able to handle that. As we have seen these ambiguous sentences likely present
problems for modern parsers.

We aim to answer the question: how does incrementality impact the parsing
accuracy on temporarily ambiguous sentences? To answer this question we
examine two parsers, an incremental and a non-incremental parser. Next to this
we try to determine what factors impact the accuracy of the incremental parser
specifically. We find that, as expected, the non-incremental parser achieves
higher accuracies on the temporarily ambiguous sentences than the incremental
parser. We also identify two sources of error that might influence the accuracy
of the incremental parser.

The remainder of this thesis is structured as follows: we will first introduce
the background theory behind the sentences we use to evaluate the parsers, as
well as the parsers themselves. We then describe two experiments we do to
answer our research question.

2

2 Theoretical background

Several studies involving parsing have suggested that locally ambiguous sentences
are problematic for parsers [1, 2, 3]. However, few have actually produced any
work that shows this.

This section is further divided into four subsections. First we will shortly
discuss what exactly garden path sentences are and why they are problematic
for both human and computational sentence processing. We quickly go over the
problem of dependency parsing and the annotation schema that is used. Then
we will go over a non-incremental sampling based parser, RBGParser [4]. And
lastly we will discuss an incremental, transition based parser, PreTra [2], which
is based on RBGParser but uses a different decoding mechanism.

2.1 Garden path sentences

Garden path sentences are said to have three properties that make them hard to
parse according to Jurafsky and Martin [1]:

1. The whole sentence is unambiguous, but an initial section of the sentence
is ambiguous.

2. The ambiguous section has one prefered parse in the human sentence
processing mechanism, while leaving the other possible parses as undesirable
or less prefered.

3. The undesirable or less prefered parse of the initial section is the correct
one.

These properties lead people “down the garden path”: they initially choose
the wrong parse for the sentence and are confused when they realize they chose
the wrong one. These sentences can be so hard to parse, in fact, that people need
to be shown the correct parse for them to be able to understand the sentence.
Take Example (2); when you read this sentence it will seem as though you are
reading a fairly normal, unambiguous sentence, until you reach the word “fell”.
There you realise that you have been misled and the sentence actually has a
completely different structure. The correct structure has raced as part of a
reduced relative clause, modifying The horse. And thus the sentence means
“The horse, which was raced past the bar, fell” [1].

(2) The horse raced past the barn fell.

There are also less obvious garden path sentences, that can really only be noticed
with precise reading time measurements or eye tracking[1]. In (3) the solution is
often seen as the direct object of forgot, but instead it should be parsed as the
subject of an embedded sentence. This misparse is hard to notice when reading
the sentence, but can easily be shown with experiments where the participants
take longer to read the word was than in control sentences[1].

(3) The student forgot the solution was in the back of the book.

3

2.2 Dependency parsing

In this thesis we are concerned with a dependency parsing task. Dependency
parsing involves finding the dependency relation between words and phrases in
a sentence. This dependency relation is a binary, asymmetric relation between
words of a sentence. In computational linguistics these have been gaining popu-
larity for a number of reasons, primarily because models trained on annotated
corpora can easily be ported to a different domain or language [5]. A second
reason is that these dependency relations generally don’t describe a grammar.
This makes them more robust in the face of unseen structures, as opposed to
grammars that might not be able to encode a certain structure and thus be
unable to parse that sentence. Figure 1 shows an example of the dependency
relations between words in the sentence “The old man the boat” using the Uni-
versal Dependencies (UD) annotation schema [6]. Here the relations between
the words are modeled as a dependency graph, where the relation between a
word and its dependents is labeled through a directed arc. Generally speaking
an artificial root node is inserted at the beginning of the sentence. These only
serve to simplify the theoretical definitions and computational implementations,
but can be left out in visual representations.

ROOT0 The old man the boat

det det

obj

nsubj

root

Figure 1: An example of a dependency parse using the UD annotation schema

2.3 Non-incremental parser: RBGParser

The sampling-based parser, RBGParser [4], focuses on using a highly expressive
scoring functions that lead to simpler inference. With this approach it manages
to outperform state-of-the-art parsers at the time it was published. Expressive
scoring functions that go beyond first-order arc preferences lead to simpler
inference. However, finding the structure that maximizes the score is known
to be NP-hard[4]. This parser starts with a random initial candidate structure,
and then stochastically climbs the scoring function to a higher scoring structure.
A small example of how this works can be found in Figure 2. The distribution
used to sample higher scoring structures is derived from the scoring function.
The scoring function is defined to be s(x, y) = θ · f(x, y), x denotes a sentence
and y ∈ Y(x) is the corresponding dependency tree, θ are the learned weights
that are applied to the feature vector f(x, y) associated with the sentence and
respective structure[4].

Sampling is done on a distribution that approximates independent samples

4

from Equation 1.

p(y|x, T, θ) ∝ exp(s(x, y)/T) (1)

The parameter T represents the temperature; this controls how concentrated
the samples are around the maximum of s(x, y). This distribution is used within
a Metropolis-Hastings based sampling algorithm to determine if the moves in the
sample space are allowed[4]. A second distribution determines the steps taken
in the generation of the MCMC sequence. This second distribution follows the
distribution described by Equation 2[4].

p(y′|x, y, T, θ) (2)

In the paper they explore two different proposal distributions, the first samples
a new head for each word in the sentence and modifies one arc each time. The
second uses a sampler for first-order scores, applying the Metropolis-Hastings
algorithm[4].

5

1.

ROOT0 The old man the boat

root

2.

ROOT0 The old man the boat

1

2

root

3.

ROOT0 The old man the boat

root

Figure 2: This example shows how RBGParser finds better scoring structures
through random walk sampling. (1) shows the initial structure, and
(2) and (3) modifications made on the arcs based on a random walk.
The random walk generates new heads for K number of nodes. Each
new head is sampled from a proposal distribution based on the learned
weights θ, so these samples are guided in the right direction by how
the distribution is set up. Only the heads for ”man“, ”the“, and ”boat“
are sampled while the sentence prefix remains fixed. In step (2) a loop
forms from man → boat → man, such loops are erased, leaving only
the edge from man to boat.

2.4 Incremental parser: PreTra

A different approach to parsing uses a “guide” to explore transitions that can
be applied to a previous configuration to create a new configuration. A parser
using such a system is a transition-based parser. A generic representation of
the algorithm is described in Figure 3. These transition-based parsers differ
in what configurations they use, and what kind of transitions between those
configurations are allowed. The transition-based, incremental predictive parser
PreTra proposed by Köhn [2] is based on this same principle.

The dependency structure used as configuration in PreTra has the property
that it is always connected. This means that there is a path from every word to
every other word in the structure, and one word is attached to the root node[2].
You can see in Figure 1 that the word old is connected to the word boat, if you
ignore the directionality of the edges, via the path old → man → boat. This

6

def run par s e r (parser , guide , s entence) :
c on f i gu r a t i on = par s e r . g e t I n i t i a lC on f i g u r a t i o n (sentence)
while c on f i gu r a t i on i s not a te rmina l c on f i gu r a t i on do

t r a n s i t i o n = guide . n e x t t r a n s i t i o n (c on f i g u r a t i on)
c on f i gu r a t i on = con f i gu r a t i on

. makeTransit ion (t r a n s i t i o n)

return c on f i gu r a t i on . getGraph ()

Figure 3: The general algorithm describing a transition parser

property is not trivial to maintain on such a structure because the word needed
to attach to the structure might not be part of the sentence prefix[2]. To solve
this issue Köhn introduced prediction nodes in the tree that are stand-ins for
words that are expected to be filled in a later step. A short example of how this
works in practise can be found in Figure 4.

root

man

old

The

root

man

old

The

pred

the

root

man

old

The

boat

the

Figure 4: We assume we have parsed a sentences up to the point as shown in
the left tree. The middle tree shows a structure after attaching the
next word the to the tree. For this to be possible we have to add a
prediction node in the tree that shows that we expect another word to
be the head of the.

In PreTra the configuration is then defined as a tuple ⟨W,P, π, l⟩. W is the
list of tokens, P is an unordered set of prediction nodes, π : W∪P → W∪P∪{0}
the set of directed edges, and l : W ∪P → L the labeling function for the edges
[2].

The PreTra parser uses a beam search from the initial state. It generates new
states repeatedly using a transition function and then obtains a beam from the
generated states by scoring the new states with a scoring function and taking the
top N structures. The initial state is defined as ⟨∅, ([pred]), {(1, 0)}⟩, meaning a
configuration starting with no tokens, that has one prediction node attached to
the root[2].

The concrete transition function is composed of four functions that can
generate new configurations, based on the current configuration and a new word,
given some additional parameter. These four functions are defined as follows [2]:

7

attach(h) Attaches a new word wi+1 to an existing head h ∈ W ∪ P
⟨w1...wi,P, π⟩, wi+1, h → ⟨w1...wiwi+1,P, π ∪ {(wi+1, h)}

predictHead(h) Attaches a new prediction node to an already existing
word or prediction node, and attaches the new word wi+1 to the new prediction
node [2]. What happens in Figure 4 is exactly this operation.

⟨w1...wi,P, π⟩, wi+1, h → ⟨w1...wiwi+1,P ∪ {p}, π ∪ {(wi+1, p), (p, h)}

predictTwoHeads(h) Attaches a new word wi+1 to a new prediction node
p1. Then p1 is attached to another new prediction node p2, which is then finally
attached to h ∈ W ∪ P [2]. An example of the result of this operation can be
seen in the first parse of Example (4). There the word man has been attached
with this operation.

⟨w1...wi,P, π⟩, wi+1, h → ⟨w1...wiwi+1,P∪{p1, p2}, π∪{(wi+1, p1), (p1, p2), (p2, h)}

replacePrediction(p) This last function is used to replace a prediction node
with a concrete new word, where the the new word inherits all the dependency
relations the prediction node had[2]. Note that this function takes a prediction
node as parameter instead of a head node. Figure 4 also shows an example of
this action, the prediction node in the middle tree is replaced with boat in the
right tree, inheriting the dependency the.

⟨w1...wi−1,P, π⟩, wi, p → ⟨w1...wi−1wi,P \ {p},
π ∪ {(wi, h) : (p, h) ∈ π}
∪ {(d,wi) : (d, p) ∈ π}
\ {(p, h) : (p, h) ∈ π}
\ {(d, p) : (d, p) ∈ π}

Now to generate all the possible successors given a configuration and word,
we first define the sets of possible successors that each of these functions can
generate. And then take the union of those sets to get the final transition
function[2].

attach = {attachs
wi
(h) :h ∈ W ∪ P}

predictHead = {predictHeadswi
(h) :h ∈ W ∪ P}

predictTwoHead = {predictTwoHeadswi
(h) :h ∈ W ∪ P}

replacePrediction = {replacePredictions
wi
(h) :p ∈ P}

We can now define the successor function as the union of the sets defined

8

above[2].

succ(s, w) = attachsw ∪predictHeadsw ∪predictTwoHeadssw ∪ replacePredictionsw

At each step in the parsing process this successor function is applied, and all
the resulting dependency structures are scored with a scoring function f . From
the scored dependency structures, the top N best scoring trees are kept for the
next iteration in beam search fashion [2].

Köhn proposes two scoring functions in [2], one based on the same scoring
system used in the restart-incremental parser incTP, introduced earlier in [2].
As well as a scoring function based on an LSTM, however this one did worse
than the incTP based scoring function, so we will not be using that and instead
use the incTP based scoring. The scoring system used for incTP has been used
before in other parsers, including RBGParser [4]. PreTra has been built on top
of RBGParser and reuses the implementation to extract the feature vector. A
feature describes a specific combination of edges, the scorer uses a hash kernel
to map the features to an index with a fixed upper bound [2]. A hash kernel is
a function that hashes individual features and uses that hash to compute the
index in a feature vector. This feature mapping is defined as ϕ(s), this maps a
dependency structure to a fixed-length feature vector in which each feature can
either be 0 if the feature is not present in the dependency structure or 1 if it is
[2].

The final scoring function is then defined as fTP (s) = ϕ(s) ∗ −→w [2]. In which
−→w is a learned weights vector.

2.5 Errors due to beam search

The use of beam search has the potential to introduce errors in the parsing
process. Köhn identifies three reasons that contribute to errors in PreTra [2]:

1. The scoring function rates a different structure in the beam higher than
the correct structure.

2. The transition system can’t produce the required structure.

3. The transition system could have produced the required structure, but in
an earlier step a structure required to generate the correct structure fell of
the beam.

Köhn does an experiment to investigate the third option as a source of errors
in PreTra on a number of treebanks. In this experiment a flag is used to instruct
PreTra to always keep the incremental structure with the least errors compared
to the gold structure in the beam[2]. This makes it possible to investigate
the coverage of the transition system and the quality of the scoring function.
The experiment done by Köhn shows an expected high accuracy on complete
sentences for a number of treebanks examined, however it falls short on the

9

Hamburg Dependency Treebank (HDT)[7]. The accuracy is also worse than his
other incremental parser incTP, and because incTP and PreTra share a very
similar scoring component this indicates that the errors were introduced by the
transition system [2]. We will use a similar method on temporarily ambiguous
sentences, but compare the results to RBGParser. Unfortunately RBGParser
and PreTra only share a similar set of features and not a similar scoring system,
this means that we will only be able to investigate the third source of errors.

10

3 Experimental setup

For this research we will be looking at the dependency parse results of garden
path sentences from two parsers using a similar set of features. We use the
non-incremental sampling-based RBGParser [4] and the incremental transition-
based PreTra [2]. We compare their baseline performance from training to their
performance on garden path sentences.

We also do a second experiment similar to Köhn [2] to account for one source
of errors due to beam search in PreTra. For this experiment we only compare
between two conditions on PreTra and do not compare the results to RBGParser.
We use the same models used for the first experiment. A short description of
the original experiment can be found in section 2.5.

3.1 Datasets

To train the two parsers in question we used the Universal Dependencies English
Web Treebank (EWT) [8]. The baseline performance is evaluated on the test set
of this treebank.

To evaluate the performance of these parsers on garden path sentences we
build a small dataset of annotated garden path sentences. The sentences in this
dataset were gathered from a number of websites and slides used in university
courses that are available online, [1, 9, 10, 11, 12, 13, 14]. Appendix A shows a
couple of examples from the final dataset, the whole dataset can be found on
github1. We used UDPipe [15] to convert the plain sentences into CoNLL-X
format. All dependencies were then manually annotated by both Meaghan
Fowlie, and Peter Maatman.

3.2 Evaluation measures

Following Zhang et. al.[4] and Köhn [2] we will use the Unlabeled Attachment
Score (UAS) as the evaluation metric of the parsers. The UAS reported here
excludes punctuation on the garden path dataset following Martins et. al.[16]
and Zhang et. al. [4].

3.3 Experimental details

Both parsers are trained using a reduced feature set that exclude the great-
grandparent, parent-sibling-child, and global feature templates features to reduce
training time. On PreTra this is known to lead to a 0.5 to 1 percentage points
reduction in accuracy[2]. However, we did train PreTra with loss-augmented
selection of the structure which increases accuracy by 0.5 percentage points [2].
We have done no further hyper parameter optimization on either parser. The

1https://github.com/blackwolf12333/thesis_experiments/blob/master/data/

sentences.conll.no_punct

11

https://github.com/blackwolf12333/thesis_experiments/blob/master/data/sentences.conll.no_punct
https://github.com/blackwolf12333/thesis_experiments/blob/master/data/sentences.conll.no_punct

scripts and other code used to train and evaluate the parsers is available on
github2.

2https://github.com/blackwolf12333/thesis_experiments

12

https://github.com/blackwolf12333/thesis_experiments

4 Results

As a baseline test we have applied both parsers on the test set for EWT, here
RBGParser achieves an unlabeled attachment score of 89.4%, and PreTra achieves
an unlabeled attachment score of 75.8%. We compare these results to the scores
achieved on the garden path dataset, which are 74.7% and 42.9% respectively.
The accuracy difference of the same parser on the two different datasets shows
that RBGParser is at an advantage compared to PreTra. The difference between
the baseline, evaluated on EWT, and the garden path sentences for RBGParser
is only 15%, while the difference for PreTra is 33%. This indicates that PreTra
is at a disadvantage on garden path sentences compared to RBGParser.

0

25

50

75

PreTra rbg

model

U
A
S

variable

EWT

GP

Parser EWT GP
RBGParser 89.386 74.712
PreTra 75.800 42.406

Figure 5: Unlabeled attachment scores of PreTra and RBGParser, evaluated on
EWT and our own garden path dataset

4.1 Beam search errors

When accounting for errors due to the use of beam search in PreTra we find
that PreTra is very capable on the test set but errors are introduced because
structures that are needed later are not kept in the beam. PreTra achieves an
unlabeled attachment score of 95.79% in the “least errors” condition on the
EWT test set, which is a 20% improvement over the baseline condition in this
experiment. On the garden path set the “least errors” condition does not have
such a drastic change in accuracy, going from 40.97% in the baseline condition,
to 45.27% in the “least errors” condition, only a 4% increase.

As expected, the accuracy of PreTra when it can keep the structure with
the least errors in the beam on EWT is very high. This result is very similar
to the results achieved by Köhn [2]. However, the interesting part in this table
is the relatively small improvement on the garden path sentences. Because the
model used is the same this indicates that the transition system cannot generate
the structures required for garden path sentences, or the scoring function rates
different structures as better than the actual correct structure.

13

EWT GP
PreTra (least errors) 95.792 45.272
PreTra (baseline) 75.808 40.974

Table 1: This shows the results of PreTra compared to the results of running
PreTra with the option to keep the structure with the least errors in
the beam.

14

5 Discussion

Unfortunately EWT is a relatively small treebank, so training accuracy is not
on par with the results presented in the papers that introduced RBGParser[4]
and PreTra[2]. But since both parsers were trained on the same data it is still
possible to compare their performance. The garden path dataset is also very
small and thus might not represent all possible garden paths. This means that
there is an unknown amount of wiggle room in the results presented on the
garden path dataset. Future research should compile a larger dataset.

While we have shown that garden path sentences are hard to parse, it seems
particularly hard for the incremental parser PreTra. One possible explanation for
this bad performance has been explored here. But other experiments are required
to conclusively say what the exact cause of the relatively bad performance is.
To investigate which other factors play a part in the performance of PreTra we
suggest an additional experiment.

A comparison can be made with Köhn’s other incremental parser, incTP[2].
Because PreTra uses a scoring system based on the same scoring system in incTP
this could rule out the scoring system as a factor in the performance of PreTra.
A similar experiment is done by Köhn to show that the transition system in
PreTra can’t represent certain structures in the HDT[2].

The parsing output generated by PreTra does not only include the final parse
of the complete sentence, but also the best scoring structure for each incremental
step. We inspected this output of the garden path sentences to get a clearer view
of what the parser was doing while parsing these sentences. In this we observed
that for a number of sentences the parser would score a tree with prediction
nodes, that eventually would become an incomplete parse, higher. Meaning that
a prediction node was left in the tree when the sentence was fully read. This
means that the parser expected a different sentence structure early on and was
not able to correct for this error with the given beam size. Example (4) should
be read like The man is modified by the clause who hunts. The two parses below
it are given by PreTra, the first parse (a) is the incremental parse after The man
has been attached. This has resulted in two prediction nodes to indicate the
expected verb and object. If we expect the parser to take the garden path, it
should attach hunts to the root, replacing the prediction node. On the other
hand, if the parser doesn’t take the garden path we would expect it to attach
ducks to the root. However, as can be seen in the complete parse (b), neither of
those things happens. The prediction node that was attached to the root has
never been replaced.

(4) The man who hunts ducks out on weekends

a.

The man pred pred

root

15

b.

The man who hunts ducks out on weekends pred

root

Because we can’t view the other structures in the beam at that time it is hard
to say exactly what structures are considered. But this does seem to support
our finding that either the transition system does not cover the garden path
sentences, or that the scoring function does not rank the correct structures high
enough to remain in the beam.

16

6 Conclusion

The aim of this study was to investigate the impact of incrementality in parsers
when evaluated on temporarily ambiguous sentences. We find that the incre-
mental parser evaluated in this thesis is less accurate than the non-incremental
parser when evaluated on garden path sentences. We have also found that the
drop in accuracy is likely caused by either the transition system used, or the
scoring function. Further research is necessary to conclude definitively which is
the exact source of error. We suggest one method of investigating this problem.
A second incremental parser with a similar scoring system to the one investigated
in this thesis could be used to rule out the scoring method as a source of errors.

A major limitation of this study is the size of the datasets used. On the
one hand the dataset used to train the parsers was relatively small, and on the
other hand the dataset used to evaluate the parser on temporarily ambiguous
sentences was very small. Future research should invest in building a larger
dataset of temporarily ambiguous sentences. This will in turn also allow parsers
to be trained on these sentences which might improve overall accuracy.

Within the broader AI community extra care needs to be taken when building
incremental parsers to make sure that the parser also evaluates well on temporar-
ily ambiguous sentences. As we have seen we can’t assume that such a parser
will be able to handle such sentences well, if at all.

17

References

[1] D. Jurafsky and J. H. Martin, Speech and language processing : an introduc-
tion to natural language processing, computational linguistics, and speech
recognition. Upper Saddle River, N.J.: Pearson Prentice Hall, 2009, isbn:
9780131873216 0131873210. [Online]. Available: http://www.amazon.com/
Speech-Language-Processing-2nd-Edition/dp/0131873210/ref=pd_

bxgy_b_img_y.

[2] A. Köhn, “Predictive dependency parsing,” 2020.

[3] M. P. Marcus, “A theory of syntactic recognition for natural language.,”
Ph.D. dissertation, Massachusetts Institute of Technology, 1978.

[4] Y. Zhang, T. Lei, R. Barzilay, T. Jaakkola, and A. Globerson, “Steps
to excellence: Simple inference with refined scoring of dependency trees,”
Association for Computational Linguistics, 2014.

[5] J. Nivre, “Algorithms for deterministic incremental dependency parsing,”
Computational Linguistics, vol. 34, no. 4, pp. 513–553, 2008. doi: 10.1162/
coli.07-056-R1-07-027. eprint: https://doi.org/10.1162/coli.07-
056-R1-07-027. [Online]. Available: https://doi.org/10.1162/coli.
07-056-R1-07-027.

[6] J. Nivre, M.-C. De Marneffe, F. Ginter, Y. Goldberg, J. Hajic, C. D.
Manning, R. McDonald, S. Petrov, S. Pyysalo, N. Silveira, et al., “Universal
dependencies v1: A multilingual treebank collection,” in Proceedings of
the Tenth International Conference on Language Resources and Evaluation
(LREC’16), 2016, pp. 1659–1666.

[7] K. Foth, A. Köhn, N. Beuck, and W. Menzel, “Because size does matter:
The hamburg dependency treebank,” eng, in Proceedings of the Language
Resources and Evaluation Conference 2014 / European Language Resources
Association (ELRA), Universität Hamburg, 2014.

[8] N. Silveira, T. Dozat, M.-C. de Marneffe, S. Bowman, M. Connor, J. Bauer,
and C. D. Manning, “A gold standard dependency corpus for English,” in
Proceedings of the Ninth International Conference on Language Resources
and Evaluation (LREC-2014), 2014.

[9] C. Biggs. (2018), [Online]. Available: https://www.apartmenttherapy.
com/garden-sentences-262915 (visited on 10/31/2020).

[10] H. Liu, “Dependency distance as a metric of language comprehension
difficulty,” Journal of Cognitive Science, vol. 9, pp. 159–191, Sep. 2008.
doi: 10.17791/jcs.2008.9.2.159. [Online]. Available: https://www.
researchgate.net/figure/Dependency- structures- and- MDD- of-

garden-path-sentence_fig3_273459859 (visited on 10/31/2020).

[11] VCM Lab. (2015), [Online]. Available: https://www.slideshare.net/
vcmlab/cog5-lecppt-chapter09 (visited on 10/31/2020).

[12] I. Morris. (2014), [Online]. Available: https://slideplayer.com/slide/
5838141/ (visited on 10/31/2020).

18

http://www.amazon.com/Speech-Language-Processing-2nd-Edition/dp/0131873210/ref=pd_bxgy_b_img_y
http://www.amazon.com/Speech-Language-Processing-2nd-Edition/dp/0131873210/ref=pd_bxgy_b_img_y
http://www.amazon.com/Speech-Language-Processing-2nd-Edition/dp/0131873210/ref=pd_bxgy_b_img_y
https://doi.org/10.1162/coli.07-056-R1-07-027
https://doi.org/10.1162/coli.07-056-R1-07-027
https://doi.org/10.1162/coli.07-056-R1-07-027
https://doi.org/10.1162/coli.07-056-R1-07-027
https://doi.org/10.1162/coli.07-056-R1-07-027
https://doi.org/10.1162/coli.07-056-R1-07-027
https://www.apartmenttherapy.com/garden-sentences-262915
https://www.apartmenttherapy.com/garden-sentences-262915
https://doi.org/10.17791/jcs.2008.9.2.159
https://www.researchgate.net/figure/Dependency-structures-and-MDD-of-garden-path-sentence_fig3_273459859
https://www.researchgate.net/figure/Dependency-structures-and-MDD-of-garden-path-sentence_fig3_273459859
https://www.researchgate.net/figure/Dependency-structures-and-MDD-of-garden-path-sentence_fig3_273459859
https://www.slideshare.net/vcmlab/cog5-lecppt-chapter09
https://www.slideshare.net/vcmlab/cog5-lecppt-chapter09
https://slideplayer.com/slide/5838141/
https://slideplayer.com/slide/5838141/

[13] Y. Tamura. (2015), [Online]. Available: https://www.slideshare.net/
yutamura1 / conceptual - plurality - in - japanese - efl - learners -

online-sentence-processing-a-case-of-gardenpath-sentences-

with-reciprocal-verbs (visited on 10/31/2020).

[14] Effectiviology. (2017), [Online]. Available: https://effectiviology.
com/avoid-garden-path-sentences-in-your-writing/ (visited on
10/31/2020).

[15] M. Straka, “UDPipe 2.0 prototype at CoNLL 2018 UD shared task,” in
Proceedings of the CoNLL 2018 Shared Task: Multilingual Parsing from
Raw Text to Universal Dependencies, Brussels, Belgium: Association for
Computational Linguistics, Oct. 2018, pp. 197–207. doi: 10.18653/v1/
K18-2020. [Online]. Available: https://www.aclweb.org/anthology/
K18-2020.

[16] A. F. Martins, M. B. Almeida, and N. A. Smith, “Turning on the turbo:
Fast third-order non-projective turbo parsers,” in Proceedings of the 51st
Annual Meeting of the Association for Computational Linguistics (Volume
2: Short Papers), 2013, pp. 617–622.

19

https://www.slideshare.net/yutamura1/conceptual-plurality-in-japanese-efl-learners-online-sentence-processing-a-case-of-gardenpath-sentences-with-reciprocal-verbs
https://www.slideshare.net/yutamura1/conceptual-plurality-in-japanese-efl-learners-online-sentence-processing-a-case-of-gardenpath-sentences-with-reciprocal-verbs
https://www.slideshare.net/yutamura1/conceptual-plurality-in-japanese-efl-learners-online-sentence-processing-a-case-of-gardenpath-sentences-with-reciprocal-verbs
https://www.slideshare.net/yutamura1/conceptual-plurality-in-japanese-efl-learners-online-sentence-processing-a-case-of-gardenpath-sentences-with-reciprocal-verbs
https://effectiviology.com/avoid-garden-path-sentences-in-your-writing/
https://effectiviology.com/avoid-garden-path-sentences-in-your-writing/
https://doi.org/10.18653/v1/K18-2020
https://doi.org/10.18653/v1/K18-2020
https://www.aclweb.org/anthology/K18-2020
https://www.aclweb.org/anthology/K18-2020

A Garden path dataset

Below follows a sample of the dependency parses from the garden path dataset.
The full dataset is available online at https://github.com/blackwolf12333/
thesis_experiments/blob/master/data/sentences.conll.no_punct.

The horse raced past the barn fell

root

The cotton clothing is made of grows in Mississippi

root

The sour drink from the ocean

root

The man who hunts ducks out on weekends

root

When Fred eats food gets thrown

root

20

https://github.com/blackwolf12333/thesis_experiments/blob/master/data/sentences.conll.no_punct
https://github.com/blackwolf12333/thesis_experiments/blob/master/data/sentences.conll.no_punct

Mary gave the child the dog bit a Band - Aid

root

The complex houses married and single students and their families

root

After the student moved the chair broke

root

When John called his old mother was happy

root

The government plans to raise taxes were defeated

root

While Tom was washing the dishes fell on the floor

root

21

	Introduction
	Theoretical background
	Garden path sentences
	Dependency parsing
	Non-incremental parser: RBGParser
	Incremental parser: PreTra
	Errors due to beam search

	Experimental setup
	Datasets
	Evaluation measures
	Experimental details

	Results
	Beam search errors

	Discussion
	Conclusion
	Garden path dataset

