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Chapter 1

Introduction

X-ray Computed Tomography (CT) is a conventional medical imaging modality which allows
for imaging of internal structures in objects by using measurements of projection data from dif-
ferent angles. Hardware developments of CT systems in recent years, such as photon-counting
detectors and fast kV switching, have made it possible to acquire polychromatic x-ray projection
data. Collection of multi-energy sinogram can not only be used for imaging of attenuation coef-
ficients at different energy bins, but it also enables the reconstruction of material basis images
when mass attenuation coefficients for different elements are given. Sufficient use of the spec-
tral information in the measurements, however, requires the development of new reconstruction
methods.

The aim of this master thesis project is to develop and test fast and accurate algorithms for
spectral CT reconstruction, and the thesis is organized in the following way.

Chapter 2 deals with single-energy reconstruction. To begin with, basic geometry and
existing reconstruction methods are introduced for single-energy CT. Statistical reconstruction
algorithms are then implemented and tested, with a focus on effects of regularization terms
and acceleration techniques. Chapter 3 switches to multi-energy reconstruction, and a two-
step algorithm is developed and experimented, after introduction of multi-energy physics and
problem formulation for multi-energy reconstruction. Chapter 4 compares the algorithms for
spectral CT reconstruction and draws conclusions, and presents an outlook for future research.



Chapter 2

Single-energy reconstruction

In this chapter, several existing reconstruction algorithms are introduced for classic single-energy
CT technology. These algorithms will be basis steps for multi-energy CT reconstructions in later
chapters. To begin with, Section 2.1 defines the geometry for the parallel CT reconstruction
problem and introduces the filtered backprojection (FBP) method. Section 2.2 introduces two
algebraic iterative reconstruction algorithms, ART and SART, and proves the equivalence be-
tween SART and gradient descent algorithm for a weighted least-squares problem. Section
2.3 explains how a maximum likelihood (ML) reconstruction model is developed considering
single-energy photon statistics, and how the ML model can be approximated as a weighted
least-squares problem. In Section 2.4, Tikhonov and TV regularization terms are introduced
and numerical methods for solving Tikhonov- or TV-regularized statistical reconstruction prob-
lems are discussed. Algorithms discussed in Section 2.4 are tested finally by using simulation
data, and results for single-energy reconstruction are summarized in Section 2.5 and provide
inspiration for the algorithm design for multi-energy reconstruction in later chapters.

2.1 Filtered Backprojection(FBP)

Given a two-dimensional image u(x, y) : R2 → R, p(θ, b), the projection of u along a straight
line x cos θ + y sin θ = b, can be expressed as a two dimensional integral equation

p(θ, b) =

∫ ∞
−∞

∫ ∞
−∞

u(x, y)δ(x cos θ + y sin θ − b)dxdy, (2.1)

where θ ∈ [0, 2π), b ∈ R, and δ(·) is the Dirac delta function. The X-ray CT reconstruction
problem in two dimensions is to recover u(x, y) from projections p(θ, b) for all different θ. A
projection p(·, ·) : R2 → R is called a sinogram because p(·, b) has a sine-like wave shape. The
two-dimensional geometry of the parallel CT is illustrated in Figure 2.1.

Consider a rotated ξ–η coordinate system which has the following relationship with the
original x–y coordinates, {

ξ = x cos θ + y sin θ,

η = −x sin θ + y cos θ,
(2.2)

and the projection integral (2.1) can be rewritten as

p(θ, b) =

∫ ∞
−∞

∫ ∞
−∞

u (x(ξ, η, θ), y(ξ, η, θ)) δ(ξ − b)dξdη

=

∫ ∞
−∞

u (x(b, η, θ), y(b, η, θ)) dη =

∫ ∞
−∞

u (b cos θ − η sin θ, b sin θ + η cos θ) dη.

(2.3)

The above equation shows that projection p(θ, b) can be computed by a line integral of the
image u(x, y). Conversely, in order to reconstruct the image from projections, the mostly widely
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Figure 2.1: Geometry of 2D parallel CT. Rotating the x–y coordinate system counterclockwise
by angle θ gives the new ξ–η coordinate system. Blue line: projection line x cos θ + y sin θ = b;
Red curve: sinogram p(θ, ξ).

used algorithm is the classic filtered backprojection(FBP) method. The theorem which lays the
foundation for FBP is called the Central Slice Theorem, which establishes a relationship between
the one-dimensional Fourier transform of p(θ, b) and the two-dimension Fourier transform of
u(x, y). The two-dimension Fourier transform of u(x, y) in θ − q polar coordinate system can
be computed as

U(θ, q) =

∫ ∞
−∞

∫ ∞
−∞

u(x, y) exp {−i2π(xq cos θ + yq sin θ)} dxdy, (2.4)

and the one-dimension Fourier transform of p(θ, b) can be computed as

P (θ, q) =

∫ ∞
−∞

p(θ, ξ) exp {−i2πqξ} dξ

=

∫ ∞
−∞

∫ ∞
−∞

u(x(ξ, η, θ), y(ξ, η, θ)) exp {−i2πqξ} dηdξ

=

∫ ∞
−∞

∫ ∞
−∞

u(x, y) exp {−i2π(xq cos θ + yq sin θ)} dxdy = U(θ, q).

(2.5)

The second equality in (2.5) is obtained by substituting p(θ, ξ) by equation (2.3), and the third
equality is obtained by coordinate transformation.

The Central Slice Theorem suggests that u(x, y) can be reconstructed by computing the
two-dimensional inverse Fourier transform of P (θ, q).To further simplify computation, the two-
dimensional inverse transform can be rewritten as

u(x, y) =

∫ 2π

0

∫ ∞
0

P (θ, q) exp {i2πq(x cos θ + y sin θ)} qdqdθ

=

∫ π

0

∫ ∞
−∞

P (θ, q) exp {i2πqξ} |q| dqdθ.
(2.6)

The second equality in (2.6) uses the symmetry property of P (θ, q), since P (θ+ π, q) = P (θ, q)
can be derived from p(θ + π, ξ) = p(θ, ξ).Equation (2.6) suggests an algorithm to reconstruct
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u(x, y) by computing backprojection of the filtered sinogram without directly computing a two-
dimensional inverse Fourier transform, and this is the filtered backprojection(FBP) algorithm,
which is summarized in Algorithm 1.

Algorithm 1 Filtered Backprojection.

1: Compute the Fourier transform of p(θ, ξ):

p(θ, ξ)→ P (θ, q);

2: Compute the high-pass filtering of P (θ, q):

P (θ, q)→ P (θ, q) |q| ;

3: Compute the inverse Fourier transform of P (θ, q) |q|:

P (θ, q) |q| →
∫ ∞
−∞

P (θ, q) exp {i2πqξ} |q| dq , h(θ, ξ);

4: Compute the backprojection on the line ξ = x cos θ + y sin θ:

u(x, y) =

∫ π

0
h(θ, ξ)dθ

2.2 Algebraic Reconstruction Technique(ART)

It is shown in the previous section that the relationship between u(x, y) and p(θ, ξ) is linear.
For real applications, projection measurements are discretized in θ and ξ directions, and the
reconstructed image is discrete in x and y directions (see Figure 2.1). The relationship between
a discretized image u and a set of discrete measurements p can therefore be written as

p = Wu, (2.7)

where u and p are vectors of length m and n respectively, and W is a matrix of size m×n and
is often called the system matrix. In typical CT scans, image u is the reconstructed image of
attenuation coefficients. Various methods have been developed for computing matrix W , and
accurate methods such as the distance-driven method consider not only the image pixel size but
the X-ray detector size as well [1]. The simplest method for computing W is to compute the
intersection length between every pixel and every projection ray, as illustrated in Figure 2.2.

The earliest iterative method applied to solve u in (2.7) is called the Algebraic Reconstruc-
tion Technique [2]. The ART algorithm is given by Algorithm 2, in which wi, i = 1, ...m are
the row vectors of size 1× n in matrix W . In ART, image updates u(0),u(1), ...,u(i), ... can be
represented by vectors all starting from the origin in an n-dimension space, and by computing
(2.8), an updated u(k) is obtained by projecting u(k−1) on the hyperplane represented by equa-
tion 〈wi,u〉 − pi = 0. Convergence of this method can be shown geometrically in Figure 2.3
when an exact solution exists.

Instead of using projection data sequentially, an improved version of ART was developed by
simultaneously using all projection data in one iteration [3]. This method is called Simultaneous
algebraic reconstruction technique (SART), and the iteration step is given by

u
(k)
j = u

(k−1)
j −

m∑
i′=1

〈wi′ ,u
(k−1)〉 − pi′∑n

j′=1wi′,j′
· wi′,j∑m

i=1wi,j
. (2.9)
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Projection i

Pixel j
wij

Figure 2.2: Illustration of computing wij in system matrix W . wij can be computed as the
intersection length between the ith projection line and the jth image pixel assuming a point
x-ray source.

u(0)

u(1)

u(2)
w21u1 + w22u2 = p2

w11u1 + w12u2 = p1

u1

u2

O

uTrue

Figure 2.3: Geometrical illustration of ART algorithm 2 for solving a 2 × 2 system Wu = p.
Every equation in the linear system is represented by a blue line in the two-dimensional space,
and vectors u(0), u(1), ... are iterative updates for solving the system.

Algorithm 2 Algebraic Reconstruction Technique.

1: Start from an initial guess: u(0);
2: while some stopping criterion is not met do
3: Select projection index i ∈ [1,m] randomly;
4: Update the image:

u(k) = u(k−1) − 〈wi,u
(k−1)〉 − pi
〈wi,wi〉

(wi)
T ; (2.8)

5: end while

6
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The above equation can be rewritten in a compact form as

u(k) = u(k−1) −C−1W TR−1(Wu(k−1) − p), (2.10)

where R and C are diagonal matrices with diagonal elements ri =
∑n

j=1wi,j and cj =
∑m

i=1wi,j
respectively. It can be observed that the SART iteratively solves a weighted least-squares
problem expressed as

u∗ = arg min
u
f(u) = arg min

u

1

2
‖Wu− p‖2R−1 , (2.11)

by a preconditioned gradient descent method with matrix C−1 only used for preconditioning.
The gradient descent update with a step size β for problem (2.11) can be written as

u(k) = u(k−1) − βW TR−1(Wu(k−1) − p), (2.12)

and with sufficiently small step size, the gradient descent method ensures convergence for the
quadratic problem (2.11). Difference between (2.10) and (2.12) is that equation (2.10) has
parameter-dependent step sizes whereas equation (2.12) has a general step size.

The convergence of SART is proved below. Substitute u(k) by equation (2.10), and the
second-order Taylor expansion of f(u(k)) around u(k−1) can be written as

f(u(k)) = f(u(k−1)) + Of(u(k−1))T · (u(k) − u(k−1)) +
1

2
(u(k) − u(k−1))TO2f(u(k−1))(u(k) − u(k−1))

= f(u(k−1))− Of(u(k−1))TC−1Of(u(k−1)) + Of(u(k−1))TC−1W TR−1WC−1Of(u(k−1)).
(2.13)

To ensure f(u(k)) < f(u(k−1)), the following inequality

Of(u(k−1))T
(
C−1 −C−1ATR−1AC−1

)
Of(u(k−1)) ≥ 0 (2.14)

should hold for any u(k−1). Therefore, the preconditioned gradient descent method converges
for arbitrary quadratic function f and preconditioning matrix C−1 as long as matrix C−1 −
C−1ATR−1AC−1 is positive semi-definite. WithW a system matrix with non-negative entries,
C a diagonal matrix of column sums of W and R a diagonal matrix of row sums of W , the
positive semi-definite property can be proved by definitions of matrices R and C [4], therefore
the convergence of SART is ensured. From the above analysis, it can be observed that the
SART has linear convergence rate, and the preconditioning matrix C may be modified to
further accelerate the convergence for this preconditioned gradient descent type method [4].

Instead of solving problem (2.11) by SART or other optimization methods, the reconstruc-
tion problem can also be formalized directly from model (2.7) as

u∗ = arg min
u
f(u) = arg min

u

1

2
‖Wu− p‖22 , (2.15)

and quasi-Newton method can be used for solving this quadratic problem with a superlinear
convergence rate in theory [5], which is faster than gradient descent based methods.

2.3 Statistical Reconstruction Technique (SRT)

Problems (2.11) and (2.15) formed in previous section have not taken into account the pho-
ton statistics. In order to obtain more accurate reconstruction results, a maximum likelihood
method will be used and the problem will be further simplified as a weighted least-squares
problem. Reconstruction models formalized considering the measurement statistics are called
statistical reconstruction, as will be explained in the following.

7
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Throughout this thesis, only the simplest Poission noise model is used [6]. For monochro-
matic measurement at fixed energy E, the x-ray incident photon number Iin, the measured
photon number detected at the kth projection Ik and the expected photon number Īk follow
the relationship

Ik = Iine
−pk , Īk = Iine

−〈wk,u〉, (2.16)

where pk and wk use the same definition as in previous section. The measured photon number
Ik follows a Poisson distribution with expected value Īk. Therefore, the conditional probability
of obtaining measurement results I1,I2,..., Im given the expected photon number Ī1,Ī2,..., Īm,
can be expressed as

P
(
I1, ..., Im|Ī1, ..., Īm

)
=

m∏
k=1

ĪIkk · e
−Īk

Ik!
. (2.17)

Taking logarithm of both sides in (2.17) and substituting Īk by (2.16) gives a log-likelihood
function for image u after ignoring the constant part independent of u

L (I1, I2, ..., Im|u) =

m∑
k=1

(
−Ik〈wk,u〉 − Iine−〈wk,u〉

)
. (2.18)

Therefore, the maximum likelihood method for reconstructing u can be modeled as

u∗ = arg min
u
{−L (I1, I2, ..., Im|u)} = arg min

u

m∑
k=1

(
Ik〈wk,u〉+ Iine

−〈wk,u〉
)
. (2.19)

Note that the above problem is difficult to solve because of the exponential components
and the large number of measurements m. In order to simplify problem (2.19), the exponential
component e−〈wk,u〉 is approximated by second-order Taylor expansion around 〈wk,u〉 = pk,

e−〈wk,u〉 ≈ e−pk − e−pk(〈wk,u〉 − pk) +
1

2
e−pk(〈wk,u〉 − pk)2. (2.20)

After substituting (2.20) into (2.19), re-ordering the terms and using relationship (2.16), a
weighted least-squares problem is obtained as

u∗ = arg min
u

m∑
k=1

(
Ik〈wk,u〉+ Iine

−pk − Iine−pk(〈wk,u〉 − pk) +
1

2
Iine

−pk(〈wk,u〉 − pk)2

)

= arg min
u

m∑
k=1

(
1

2
Ik(〈wk,u〉 − pk)2

)
= arg min

u

1

2
‖Wu− p‖2Σ,

(2.21)
where Σ is a diagonal matrix with entries I1, I2, ..., Im. It can also be proved that Σ is the
inverse of the covariance matrix for projection vector p.

2.4 Regularization for iterative reconstruction

In the previous two subsections, tomography reconstruction problems are formalized as quadratic
problems (2.15) and (2.21) with or without full consideration of measurement statistics. Regu-
larization terms need to be added in at least the following situations: (1) when the reconstructed
image size n is larger than the measurement size m, so there will be no unique solution for (2.15)
and (2.21); (2) when measure locations are not well designed, e.g. projection angle θ doesn’t
span the full π range (limited-angle problem [7]), and this will result in an ill-conditioned sys-
tem matrix W ; (3) when a clean image with little noise is required by using noisy measurement

8
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data; (4) when detected photon numbers I1, I2, ..., Im typically vary greatly, so the reconstruc-
tion problem (2.21) will be very ill-posed because of the ill-conditioned Σ.

In this section, two different types of regularization terms will be added to problem (2.21),
namely the Tikhonov regularization, and the Total Variation regularization, and numerical
methods for solving the regularized problems will also be introduced.

2.4.1 Tikhonov regularization

A Tikhonov regularization term can be included in the statistical reconstruction problem (2.21),
which can be expressed as

u∗ = arg min
u

(
1

2
‖Wu− p‖2Σ + α‖Lu‖22

)
= arg min

u

(
1

2
‖WΣu− pΣ‖22 + α‖Lu‖22

)
,

with WΣ = Σ1/2W ,pΣ = Σ1/2p,

(2.22)

where L is the regularization operator which will be a matrix for Tikhonov cases, and α is
the regularization parameter. Let the reconstructed image be of size

√
n×
√
n, and the image

vector u be (u1,1, u1,2, ...u1,
√
n, u2,1, u2,2, ..., u√n,1, ..., u

√
n,
√
n)T . A typical smoothing operator L

for image vector u can be defined as

‖Lu‖22 =

√
n∑

i=1

√
n−1∑
j=1

(ui,j − ui,j+1)2 +

√
n−1∑
i=1

√
n∑

j=1

(ui,j − ui+1,j)
2 , (2.23)

which uses the finite difference method to approximate directional derivatives [8]. L defined
by above (2.23) can also be written in a compact matrix form. Tikhonov regularized problem
(2.22) has a closed form solution

u∗ =
(
W TΣW + 2αLTL

)−1
W TΣp, (2.24)

when L is properly designed so that matrix W TΣW + 2αLTL is invertible.
The Tikhonov regularized problem (2.22) can be rewritten in a simple quadratic form

u∗ = arg min
u
‖W̃u− p̃‖22,where W̃ =

(
Σ1/2W√

2αL

)
, p̃ =

(
Σ1/2p

0

)
. (2.25)

Numerical methods

A solution for the above least-squares problem (2.25) satisfies the normal equation W̃
T
W̃u =

W̃
T
p̃, which can be solved by numerical linear algebra methods such as conjugate gradi-

ent (CG). The solution for (2.25) is unique if matrix W̃ has full column rank. More gen-
erally, limited-memory quasi-Newton methods, such as the L-BFGS (limited-memory Broy-
den–Fletcher–Goldfarb–Shanno) method [9, 10], can be used for solving any differentiable con-
vex minimization problem, and therefore is capable of solving the Tikhonov regularized problem
(2.22), and has similar convergence rate comparing to conjugate gradient method [11]. An ex-
plicitly expressed L-BFGS method is summarized in Algorithm 3. Note that equation (2.27)
gives an iterative expression for approximating the Hessian inverse, however in practical algo-
rithms, Hk is never explicitly computed because of the large size of the matrix. By using the
iterative expression (2.27), the matrix-vector multiplicationHkOf(u(k)) can be recursively com-
puted by vector-vector multiplications and vector summations, so there is no need to explicitly
store the large dense matrix Hk.

Besides the selection of an efficient numerical optimization algorithm such as L-BFGS, there
are at least the following three aspects to consider for further convergence acceleration. Firstly,

9
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Algorithm 3 L-BFGS quasi-Newton method for solving u∗ = arg minu∈Rn f(u).

1: Start from an initial guess: u(0);
2: Initial estimate for Hessian inverse matrix: k = 0,H0 = In;
3: while ‖Of(u(k))‖2 > tol do
4: Compute search direction: dk = −HkOf(u(k));
5: Search step size βk such that f(u(k)+βkdk) < f(u(k)); Specifically for quadratic problem

(2.25), βk can be computed by steepest descent:

βk =
Of(u(k))THkOf(u(k))

2dTk W̃
T
W̃dk

; (2.26)

6: Update u: u(k+1) = u(k) + βkdk;
7: Update Hk+1: Start from Hk+1 = In;
8: for j = max(0, k −Nmemory + 1) : k do

Hk+1 ←

(
In −

pjq
T
j

pTj qj

)
Hk+1

(
In −

qjp
T
j

pTj qj

)
+
pjp

T
j

pTj qj
,

where pj = u(j+1) − u(j), qj = Of(u(j+1))− Of(u(j)).

(2.27)

9: end for
10: k ← k + 1;
11: end while

choosing a proper initial guess u(0) near the true solution u∗could greatly reduce the number
of iterations required for Newton-type methods [12]. A smoothed FBP result can be a proper
choice for u(0).

Secondly, restart of the Hessian-inverse matrix approximation sometimes will be required
to ensure a fast convergence for Algorithm 3. For Newton-type optimization algorithms, a fast
convergence requires the inner product of search direction and gradient direction to be negative,
which means Of(uk)

Tdk < 0. For quasi-Newton algorithms, this condition cannot be fulfilled
when the estimated Hessian inverse matrix is very ill-conditioned. In Algorithm 3, matrix Hk

is estimated by pairs of vectors from previous k iterations in the beginning Nmemory iterations,
and will be estimated by vectors from previous Nmemory iterations after Nmemory iterations. A
larger memory size Nmemory doesn’t ensure a more accurate estimate nor a faster convergence.
To ensure an overall fast convergence, a proper memory size Nmemory needs to be selected and
sometimes a restart of the algorithm will be required periodically every Nrestart iterations.

Finally, using a preconditioning technique can further accelerate the convergence for quadratic
problem (2.25). Matrix W̃ typically has a very large conditioning number because of the large
dynamic range of the statistical weights in matrix Σ, and this dramatically slows down the
convergence of (2.22) compared to solving a uniformly weighted problem by choosing Σ as an
identity matrix. When there exists a relationship u = Py, where y is a vector of the same size
as u, and P is a full rank square matrix, problem (2.25) is equivalent to the following

y∗ = arg min
y
‖(W̃P )y − p̃‖22,where u = Py. (2.28)

When a proper preconditioning matrix P is designed such that the conditioning number of
W̃P is smaller than that of the original matrix W̃ , solving problem (2.28) will yield a faster
convergence rate than solving the original problem (2.25). Similar as in [13], preconditioning
matrix P for (2.22) can be designed as

P = diag
{
W T

ΣWΣ1 + 2αLTL1
}−1/2

, (2.29)

10
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where 1 is a vector of ones. The purpose for this preconditioning matrix is to balance the row
sums of the original matrix WΣ.

Choosing regularization parameter

In order to obtain a reconstructed image in good quality for the Tikhonov regularized problem, it
is important to choose a proper regularization parameter α. Regularization parameter balances
the data fidelity term and the regularization term in the objective function. In general, two
different methods can be used for choosing the regularization parameter. The first is called
the L-curve method [14], in which the L-curve is defined as (‖Luα‖2, ‖WΣuα − pΣ‖2)α∈(0,∞).
Here, uα is the solution by using regularization parameter α, and an optimal α can be found
by seeking the point on the L-curve with maximum curvature. In practice, the L-curve can
be obtained by either deriving an analytic function or sampling multiple α and computing the
corresponding uα.

The second method for α selection is called Generalized Cross-Validation (GCV) [15], which
minimizes the GCV function for problem (2.22)

GCV (α) =
‖WΣuα − pΣ‖22(

trace(Im −WΣW
†
Σ,α)

)2 , (2.30)

where W †
Σ,α =

(
W TΣW + 2αLTL

)−1
W TΣ is a ‘regularized inverse’. Note that directly

computing the trace of WΣW
†
Σ,α is computationally expensive for large system matrix W .

Therefore one way for stochastically approximating the trace of a matrix called Hutchinson’s
estimator [16] is used, as illustrated in the following theorem.

Theorem 1 (Stochastic trace estimator [16]) Given any matrix A of size n×n, after generating
a sequence of random vectors v which satisfy E(vvT ) = In, the trace of A can be estimated by
using the equality tr(A) = 1

nE(vTAv).

2.4.2 Total Variation regularization

A discretized anisotropic total variation (TV) [17] based reconstruction can be expressed as

u∗ = arg min
u
{Jerr(u) + αJani(u)}

= arg min
u

1

2
‖Wu− p‖2Σ + α

√n∑
i=1

√
n−1∑
j=1

|ui,j − ui,j+1|+

√
n−1∑
i=1

√
n∑

j=1

|ui,j − ui+1,j |

 ,

(2.31)
where Jerr(u) is the data fidelity term and Jani(u) is the anisotropic TV regularization term. For
such a non-differentiable convex problem, quasi-Newton methods as discussed in the previous
section cannot be directly used. Various methods have been studied to solve these ROF (Rudin,
Osher and Fatemi [18]) model based reconstruction problems, such as the first-order primal-dual
algorithms [19, 20].

Problem (2.31) can be reformulated as

u∗, g∗ = arg min
u,g
{Jerr(u) + αJL1(g)} , subject to g = Ldivu, (2.32)

where function JL1(g) computes the absolute entry sum of vector g, which can be expressed as

JL1(g) =
∑Ng

k=1 |gk|, and directional gradient vector g yields a linear relationship with image
vector u, which can be expressed as

g = Ldivu =
(
{ui,j − ui,j+1}i=1,...

√
n,j=1,...

√
n−1 , {ui,j − ui+1,j}i=1,...

√
n−1,j=1,...

√
n

)T
. (2.33)
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For reformulated problem (2.32), ADMM (Alternating Direction Method of Multipliers) algo-
rithm [21] , which is closely related to the above mentioned primal-dual algorithms, can be
applied to split the problem into several easily solved sub-problems. An ADMM algorithm for
solving problem (2.32) is summarized in Algorithm 4. For the uk update in the algorithm,
sub-problem (2.34) is quadratic and almost the same as problem (2.22), therefore it can be
approximately solved by quasi-Newton methods within a few iterations. For the g update, the
non-smooth sub-problem (2.35) can be solved by element-wise soft thresholding. ρ in the algo-
rithm is the augmented Lagrangian parameter, which influences the convergence rate. A similar
ADMM algorithm for single-energy CT reconstruction has been developed in [22]. For splitting-
based algorithms, the main idea is to separate the main problem into a few sub-problems which
are all easy to solve, and especially for TV-regularized problem, the splitted non-smooth L1
sub-problem should be easy to solve by applying soft-thresholding.

Algorithm 4 ADMM algorithm for solving (2.32).

1: Choose initial guesses: u(0), g(0), r(0);
2: for k = 1, 2, 3, ... do

uk+1 := arg min
u

(
Jerr(u) +

ρ

2
‖Ldivu− gk + rk‖22

)
(2.34)

gk+1 := arg min
g

(
JL1(g) +

ρ

2
‖Ldivuk+1 − g + rk‖22

)
(2.35)

rk+1 := rk +Ldivuk+1 − gk+1 (2.36)

3: end for

Another way to solve the TV-based reconstruction is to approximate the non-smooth prob-
lem by the following differentiable convex problem

u∗ = arg min
u

{
Jerr(u) + αJ̃ani(u)

}
= arg min

u

1

2
‖Wu− p‖2Σ + α

√n∑
i=1

√
n−1∑
j=1

√
|ui,j − ui,j+1|2 + ε+

√
n−1∑
i=1

√
n∑

j=1

√
|ui,j − ui+1,j |2 + ε

 ,

(2.37)
where function J̃ani is the approximated TV term, and ε is a smoothing parameter with small
positive value. Such a ‘corner-rounding’ differentiable approximation approach has been used
in solving MRI reconstruction problems [23]. Approximated problem (2.37) can now be solved
by the L-BFGS Algorithm 3 discussed in the previous subsection. Specifically when solving
the non-quadratic problem (2.37), the step size αk can not be computed by equation (2.26)
but can be determined by a backtracking line search. After choosing a proper initial guess, a
well-designed preconditioning matrix and a proper restart scheme, the approximated problem
(2.37) can be solved by L-BFGS algorithm with a similar convergence rate as the Tikhonov
problem, and the result of (2.37) will be very similar to the result of the original problem (2.31)
if the smoothing parameter ε is small enough.

2.5 Numerical experiments

2.5.1 Experimental setups

Modified Shepp–Logan phantom

The Shepp-Logan phantom was firstly designed in 1974 for validating image reconstruction
algorithms [24]. In order to test algorithms for reconstructing attenuation coefficients of a head
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Body tissues
Mass attenuation
coefficients
µ/ρ (m2kg−1)

The density of
tissue (kg m−3)
in 20 ◦C

Attenuation
coefficients
µ(mm−1)

Skeleton-cortical bone 2.23× 10−2 1920 0.0428
Water 1.84× 10−2 1000 0.0184
Brain (grey/white matter 50:50) 1.83× 10−2 1040 0.0190
Blood (whole) 1.83× 10−2 1060 0.0194

Table 2.1: Attenuation coefficients and the related densities for different tissues at 80 keV.

model, a modified Shepp-Logan phantom is required here. Four different body tissues are set
in the phantom, namely cortical bone, water, brain and blood. Table 2.1 lists the attenuation
coefficients for different tissues at 80keV as provided by ICRU 44 report [25], and is used for
designing the modified phantom for simulation studies in this chapter. The dimensions of the
phantom are 300 × 300 mm2, consisting of 256 × 256 pixels, and the true modified phantom
used here is shown in Figure 2.4a.

(a) Modified Shepp–Logan
phantom.

(b) Smoothed FBP (290 projec-
tions).

(c) Smoothed FBP (58 projec-
tions).

Figure 2.4: True Phantom and FBP reconstruction results. All images are displayed with
window [0.018, 0.020]mm−1. Smoothed FBP results are obtained by applying a Hann window
to the frequency domain sinogram, and a frequency scaling parameter is used for modifying the
Hann filter by rescaling the frequency axis. For the 290-projection experiment, the frequency
scaling parameter is set to 0.20, and for the 58-projection experiment it is set to 0.15.

CT geometry and system matrix W

For simplicity, a two-dimensional parallel-beam CT imaging geometry is used for experiments
throughout the thesis. There are 672 equally spaced bins on a 300mm-long one-dimensional
detector, thus the distance between the centers of two neighbouring detector bins will be
300/672 ≈ 0.446 mm. For the number of projections or views measured in the 2π rotating
range, there are two different conditions considered in the experiments in this chapter. 290
views are measured for a sufficient view problem and 58 views are measured for an insufficient
view or compressed sensing problem.

The system matrix or projection matrix W models the relationship between the discrete
image and the noise-free measurements. It will be a large sparse matrix. For example, for
the sufficient view problem the size of W will be (290 ∗ 672) × (256 ∗ 256). In this thesis, the
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Sufficient view Insufficient view

Number of projections 290 58

Incident photon number Iin 2.5 ∗ 105 1.25 ∗ 106

Table 2.2: Two different measurement conditions, sufficient and insufficient view.

ASTRA (All Scale Tomographic Reconstruction Antwerp) toolbox [26, 27] is used for generating
the W . The ASTRA toolbox is an open platform for image reconstruction in tomography, and
it provides flexible functions to set up image and projection geometries and the corresponding
projection matrix. It also provides various existing algorithms to conduct image reconstructions.

Generation of simulated noisy sinogram

The noise-free sinogram pclean represents the projected attenuation coefficient measurements,
and can be computed directly given the projection matrix W and the true image u simulated as
in previous subsections. Algorithm 5 describes the process to generate a noisy sinogram using
the Possion noise model as described in the previous subsection 2.3. Note that the simulated
attenuation coefficients will first be converted to photon numbers in order to apply the Possion
noise model, and the noisy photon number measurements will then be converted back. For
simplicity, in experiments throughout this thesis, x-ray source photon number Iin at a given
energy E will be set to a constant for all detector bins. However in real experiments, a wedge-
shaped x-ray beam filter is usually used to improve image quality and in such cases Iin will be
different for different detectors [28].

For experiments in this chapter, input x-ray photon number Iin will be set to 2.5 ∗ 105 for
290-view experiments, and 1.25 ∗ 106 for 58-view experiments. This design is to ensure that the
total energy exposed remains the same for different experimental setups, and the two different
measurement conditions are summarized in Table 2.2. For comparison with the iterative re-
construction results, smoothed FBP images are shown in Figure 2.4b and 2.4c. The MATLAB
function iradon is used for obtaining the Hann-filtered results. It can be seen that the FBP
few-view reconstruction result becomes much worse compared to the sufficient-view reconstruc-
tion, even though the total incident photon number for the two measurement conditions is the
same.

Algorithm 5 Generate noisy sinogram p.

1: Input: Iin, x-ray source photon number; pclean, simulated clean sinogram;
2: Compute expected photon number:

Īk = Iin · e−pclean,k , for k = 1, 2, ...,m;

3: Compute measured photon number with Poisson noise:

Ik = Poisson(Īk), for k = 1, 2, ...,m;

4: Compute noisy sinogram:

pk = ln Iin − ln Ik, for k = 1, 2, ...,m;

14



CHAPTER 2. SINGLE-ENERGY RECONSTRUCTION

Reconstruction model Algorithm Convergence acceleration

Tikhonov-regularized model
(2.22)/(2.25)

Quasi-Newton
(see Algorithm 3)

Preconditioning

TV-regularized model
(2.31)

ADMM (See Algorithm 4)
for solving splitted
TV model (2.32)

Tuning augmented
Lagrangian parameter

Quasi-Newton
for solving smoothed
TV model (2.37)

periodic algorithm restart(1),
better initial guess(2),
circular ROI(3),
Preconditioning(4)...

Table 2.3: Models and algorithms for single-energy experiments.

Tested models and algorithms

Two reconstruction models with different regularization terms and corresponding algorithms
used for solving them are summarized in Table 2.3. More theoretical details have been given in
the previous Section 2.4. For both experimental models and all the algorithms, three different
aspects are tested and summarized in the following subsection 2.5.2, firstly the regularization
parameter selection, secondly the qualitative and quantitative evaluation of the reconstructed
images, and finally the acceleration techniques that can be used and convergence analysis of the
algorithms.

2.5.2 Results

Regularization parameter selection

For both model (2.22) and (2.31), regularization parameter α plays a significant role in balancing
image resolution and noise. Determining a proper α value would be a first step for all regularized-
model reconstructions. In this chapter, the L-curve method as discussed in Section 2.4.1 is
used for both Tikhonov model (2.22) and TV model (2.31) [29] because of its simplicity in
computation. Since the selection of different algorithms and different acceleration techniques
doesn’t influence the final image solution and the α selection result, the quasi-Newton algorithm
is used for computing all the Tikhonov model and smoothed TV model reconstructions, and no
further convergence acceleration technique is applied here. To ensure convergence to a stable
solution, the algorithm is run up to 200 iteration steps for every Tikhonov model experiment,
and is run up to 500 iteration steps with a periodical restart step size of 20 for every TV model
experiment.

The L-curve for both regularized-models and measurement conditions is plotted in Figure
2.5a, 2.6a, 2.7a and 2.8a, and the corresponding reconstruction images are shown in Figure
2.5b-2.5f, 2.6b-2.6f, 2.7b-2.7f, and 2.8b-2.8f. In all the four discrete L-curve plots, the curvature
change within a small range of α is not obvious. Therefore, it is difficult to find the corner point
and thus decide an accurate regularization parameter only based on the L-curve plot. α values
for all the four experiment settings are estimated from the L-curve results and summarized in
Table 2.4, and choosing different α values in a reasonable range leads to reconstruction images
with different qualities (such as noise level and resolution). A comparison of the reconstruction
results shown in Figure 2.5-2.8 demonstrates that the TV model provides relatively good recon-
struction results in both sufficient and insufficient projection settings, whereas the Tikhonov
model could not suppress the streak artifacts caused by insufficient angular sampling and thus
provides very poor reconstruction results ( Figure 2.6b - 2.6f ) in insufficient projection settings.
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(a) L-Curve (b) α = 10002 (c) α = 15002

(d) α = 20002 (e) α = 30002 (f) α = 40002

Figure 2.5: L-Curve plot and image results for various α. Tikhonov-regularized model, 290
projections. Display window [0.018, 0.020]mm−1.

(a) L-Curve (b) α = 10002 (c) α = 20002

(d) α = 30002 (e) α = 40002 (f) α = 50002

Figure 2.6: L-Curve plot and image results for various α. Tikhonov-regularized model, 58
projections. Display window [0.018, 0.020]mm−1.
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(a) L-Curve (b) α = 2000 (c) α = 3200

(d) α = 4000 (e) α = 5000 (f) α = 10000

Figure 2.7: L-Curve plot and image results for various α. TV-regularized model, 290 projections.
Display window [0.018, 0.020]mm−1.

(a) L-Curve (b) α = 2000 (c) α = 3200

(d) α = 4000 (e) α = 5000 (f) α = 10000

Figure 2.8: L-Curve plot and image results for various α. TV-regularized model, 58 projections.
Display window [0.018, 0.020]mm−1.
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Tikhonov TV
290 views 58 views 290 views 58 views

α 10002 − 30002 10002 − 30002 3200− 10000 3200− 10000

Table 2.4: Regularization parameterα selection for L-curve for both models and measurement
conditions.

Qualitative and quantitative evaluation

In the previous paragraph, it is shown that 3 of all the 4 experiments, 290-projection-Tikhonov,
290-projection-TV, 58-projection-TV, have acceptable reconstruction results. To further eval-
uate and compare the results in the 3 experiments, more detailed visual inspections of the
reconstructed images are conducted, and more quantitative metrics are applied for analysis in
the following paragraphs.

Firstly, enlarged image details need further inspection in order to evaluate image quality.
Figure 2.9 shows ROI (region of interest) results reconstructed by three different experiments.
There are three separable ellipses of low contrast in the small box area, as shown in Figure 2.9a
and 2.9b. In all the three experiments, α values are chosen manually from the indicated range
in Table 2.4 to achieve the best ROI image (with similar overall image quality). Comparing
Figure2.9c, 2.9d and 2.9e, it can be seen that the three elliptic regions become inseparable in
all the three experiments, however in the two TV model experiments, attenuation coefficients
in the low contrast regions are reconstructed more uniformly. It could also be seen that in the
290-projection-TV experiment (Figure2.9d) the outline of the low contrast regions is slightly
better reconstructed compared to the 58-projection-TV experiment (Figure2.9e). Therefore,
Figure 2.9 demonstrates that complicated low contrast details could be better reconstructed by
using the TV-regularized model, and that ROI results could be slightly improved by increasing
the number of projection measurements.

(a) The true full image. Red box indicates
the ROI region.

(b) The true ROI image. (c) Tikhonov model,
290 projections, α = 30002

(d) TV model,
290 projections, α = 5000

(e) TV model,
58 projections, α = 4000

Figure 2.9: ROIs of the images reconstructed by 3 different experiments. Red ellipses indicate
low contrast (blood) regions. Display window [0.0190, 0.0195]mm−1.
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Secondly, one-dimensional profile plots can be used to further visualize the difference between
experiments and especially difference at edge locations. In Figure 2.10, horizontal profiles of the
reconstructed images are plotted across the 133th row, and the profile from the true image is also
given for reference. Three ROIs are selected to further visualize the difference at edge locations
as shown in Figure2.10b, 2.10c and 2.10d. The profile results show that the TV-regularized
model preserves both strong (brain-bone, bone-air as shown in Figure2.10c and 2.10d) and weak
edges (water-brain as shown in Figure2.10b) much better than Tikhonov-regularized model. It
can also be observed in Figure2.10b that increasing the projection number slightly improves the
weak edge preservation for TV-regularized experiments.

(a) Overall profile (b) Local profile of ROI 1

(c) Local profile of ROI 2 (d) Local profile of ROI 3

Figure 2.10: Horizontal profile (row 133) of images reconstructed by different experiments.
Local profiles of the three ROIs indicated in (a) are plotted in (b), (c) and (d).

Finally, a resolution and noise trade-off study is conducted in order to quantitatively evalu-
ate the image quality in different experiments. In quantitative evaluations, the two parameters,
resolution and noise, need to be monitored at the same time, and an image with better quality
should have both higher resolution and lower noise level. In regularized iterative reconstruc-
tions, the regularization parameter α plays a significant role in balancing image resolution and
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noise. Therefore, resolution-noise trade off plots are required for comparing results in different
experiments.

Given a reconstructed image, the image resolution can be calculated by matching the edge
spread function (ESF) to the reconstructed result. This calculation procedure is explained in
[30] and [31]. A local profile passing through a low contrast region is firstly selected, as the green
line shown in Figure 2.11a. An edge broadening kernel is then selected as a Gaussian function
with standard deviation σb, and Gaussian filtered profile can be computed by a convolution
between the true profile and the Gaussian kernel. The edge spread function has the form of
measuring the error between the Gaussian filtered profile (red and purple curve in Figure 2.11c)
and the reconstructed profile (blue and orange curve in Figure 2.11c) parameterized by σb. An
optimal σb is obtained by minimizing ESF, and the full-width at half-maximum (FWHM) of
the Gaussian broarding kernel, which is 2.35σb, is the measured resolution. Furthermore, the
image noise can be obtained by computing the standard deviation of a small uniform ROI, as
the red box shown in Figure 2.11a.

A resolution-noise pair of a reconstructed image can be computed as above, and a resolution-
noise tradeoff curve can be obtained by computing resolution-noise pairs using various regular-
ization parameter α values. Figure 2.11b shows the resolution-noise curves for 3 different ex-
periments. It can be seen that the TV-regularized result outperforms the Tikhonov-regularized
result in terms of resolution and noise. It can also be seen that increasing the projection number
greatly improves the image resolution for TV-regularized experiments by comparing the red and
orange curve.

(a) Illustration of local uni-
form ROI (red) and step
edge profile (green) for
noise and resolution com-
putation.

(b) Resolution - noise tradeoff curves
parameterized by regularization pa-
rameter for 3 different experiments.

(c) Guassian filtered profile plots vs
reconstructed profile plots.

Figure 2.11: Resolution - noise tradeoff plot.

Convergence analysis

In this subsection, acceleration techniques and the convergence analysis are discussed for both
Tikhonov and TV-regularized experiments. For experiments without further specification, a
Hann-filtered FBP result is used for initial guess. Without loss of generality, only results in 290-
projection experiments are used here, and α is set to be 20002 for the Tikhonov experiment and
4000 for the TV experiment. 58-projection experiments shows similar convergence properties
and thus are skipped.

Tikhonov model For the Tikhonov-regularized model (2.22), quasi-newton method with
steepest descent is applied for minimizing the objective function. In order to further accer-

20



CHAPTER 2. SINGLE-ENERGY RECONSTRUCTION

late the convergence, a diagonal preconditioning matrix P defined as (2.29) is applied and
the preconditioned model (2.28) is then solved using the same numerical method. Figure 2.12
summaries the convergence analysis results for Tikhonov experiment. Figure 2.12a shows the
difference between the reconstructed image after 50 iterations u∗ and the true image uTrue,
and it shows that the Tikhonov model is incapable of preserving strong edges. Figure 2.12b
shows the objective function curves with and without preconditioning. It shows that the ob-
jective function converges faster in earlier iterations when applying preconditioning, and that
the objective function converges to the same result with or without precondition. In order to
further ensure convergence towards the true image, the error norm, ‖u∗− uTrue‖2, is computed
after every iteration, and error norm curves are plotted in Figure 2.12c for precondition and
no-precondition experiment. It can be observed that the error norm decreases during iterations
for both precondition and non-precondition experiments, and that the error norm converges
also faster when applying preconditioning.

(a) u∗ − uTrue, dis-
play window [-0.005
0.005] mm−1

(b) Obj vs Iteration (log-log) (c) ‖u∗ − uTrue‖2 vs Iteration

Figure 2.12: Convergence analysis for Tikhonov experiment.

TV model For TV-regularized model (2.31), two numerical methods, ADMM (Algorithm
4) for solving splitted TV model (2.32) and quasi-Newton (Algorithm 3) with backtracking
line search for solving smoothed TV model (2.37), are firstly tested in this subsection. It is
shown that after sufficient iterations, the two methods converge to the same result as long as
the smoothing parameter ε for (2.37) is small enough. For all experiments in this chapter,
ε is chosen to be 10−10. For the ADMM method, the augmented Lagrangian parameter ρ
influences the convergence rate significantly [21]. In the following, convergence of the quasi-
Newton method for smoothed TV model is studied similar as the convergence for Tikhonov
model. Several acceleration techniques are briefly explained and applied here, including:

• Acceleration 1: periodic restart quasi-Newton;

• Acceleration 2: unweighted iterative result as a new initial guess;

• Acceleration 3: circular reconstruction region;

• Acceleration 4: preconditioning.

Firstly, as illustrated in theoretical section 2.4, the convergence of a quasi-Newton algorithm
becomes very slow when the search direction and the gradient descent direction are nearly
perpendicular to each other. Therefore, a restart of the quasi-Newton algorithm (Acceleration
1) is required to maintain a proper search direction during each iteration. The effectiveness
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of Acceleration 1 method is proven by the blue and red curve in Figure 2.13a. It can be
observed that convergence rate starts to accelerate again after periodic restart of the quasi-
Newton algorithm. In this experiment, the algorithm is restarted every Nrestart = 20 iterations.
Unlike the increased convergence of objective function, it can be observed in Figure 2.13c that
the decrease of error norm becomes much slower at early iterations after only applying the
periodic restart. Only when more acceleration techniques are applied, the convergence of the
error norm becomes faster than the original.

(a) Obj vs Iteration. (b) Obj vs Iteration.

(c) Error norm vs Iteration. (d) Error norm vs Iteration.

Figure 2.13: Convergence analysis for TV experiment.

Secondly, a new initial guess other than an FBP result can be applied to further accelerate
the convergence for the approximated-TV problem. One reason causing the slow convergence
of the weighted and regularized least-squares problem (2.31) is the large condition number of
the covariance matrix Σ. Therefore, one way to achieve faster convergence is to firstly solve an
unweighted problem by setting Σ to be an identity matrix (a proper α needs to be re-selected
here), and then use this result as an initial guess to solve the exact weighted problem (2.31).
Images reconstructed by solving the unweighted problem with Σ = I have poorer image quality
compared to images reconstructed from exact weighted problem (2.31), however roughly solving
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the unweighted problem requires much less iterations. In the experiment, 40 iterations of quasi-
Newton with Nrestart = 20 are firstly run to solve the unweighted problem, and the result is
used for an initial guess to solve the exact problem with another 100 iterations of quasi-Newton.
Note that the objective function plot of this method starts from the 41th iteration, because the
first 40 iterations are for obtaining the initial guess by optimizing a different objective function.
The effectiveness of this Acceleration 2 method is proven by the red and orange curve in Figure
2.13a and 2.13c. Both objective function and error norm converge much faster after applying a
new initial guess.

Thirdly, based on the geometry setting in subsection 2.5.1, not all the 256∗256 pixels in the
300×300 mm2 square region can be reconstructed by FBP, because a pixel can be reconstructed
only when it is measured in all different angular projections. Therefore in the current geometric
setting, only pixels inside a circular region with a radius of 150mm can be reconstructed, and
all other unrealistic pixels can be excluded from iterative reconstruction experiments, assuming
they all have values of 0. By removing unnecessary pixels, not only the amount of calculation
per iteration is reduced (system matrix W reduces to 78% of the original), but the convergence
rate versus iteration is sped up as well. The effectiveness of this Acceleration 3 method is proven
by the blue and red curve in Figure 2.13b and 2.13d. Both objective function and error norm
converge faster after removing unnecessary pixels from reconstruction.

Finally, a preconditioning technique can also be used for accelerating the approximated TV-
model (2.37) problem. For the Tikhonov-regularized model (2.22), a preconditioning matrix P
can be defined by equation (2.29), and has been proven very useful for convergence acceleration.
Similarly, a preconditioning matrix P for approximated TV-model (2.37) is defined as

P = diag
{
W T

ΣWΣ1 + 2αO2J̃ani(u
(0))1

}−1/2
. (2.38)

Note that P defined above depends on the initial guess of image, u(0), therefore it can be
updated every time the quasi-Newton algorithm restarts. The effectiveness of Acceleration 4
method is proven by the red and orange curve in Figure 2.13b and 2.13d.

In summary, all of the four acceleration methods are capable of speeding up the quasi-
Newton algorithm for solving the approximated TV problem, and images with good quality
could be achieved by applying a combination of them. Figure 2.14 shows reconstruction results
after 140 iterations, and it can be seen that images with better quality can be reconstructed after
more acceleration methods are applied. To better visualize the difference between result 2.14c,
2.14e and 2.14g, difference images between reconstruction results and the true image are plotted
in 2.14d, 2.14f and 2.14h. It can be seen from the difference images that pixels near edges are
better reconstructed when more acceleration methods are applied. Reconstruction results after
80 iterations are also shown in Figure 2.15, when none of the experiments, Acceleration 1+2,
Acceleration 1+2+3 and Acceleration 1+2+3+4, is nearly converged. This suggests if all of the 4
acceleration techniques are applied, an image with reasonable quality can be reconstructed with
an early termination of the algorithm, which reduces the running time dramatically. However,
how to choose a proper stopping criterion remains a problem.

2.5.3 Discussion and conclusion

In Section 2.5, statistical reconstruction models with two different regularization terms, Tikhonov
or anisotropic TV, are tested using simulated noisy data. It is shown that Tikhonov-regularized
model can only be used for sinogram data with sufficient projections, whereas the proposed TV
model works well for both sufficient-projection or few-projection data. To achieve an image
with required quality, regularization parameter should be selected carefully, and L-curve serves
as an efficient method for both Tikhonov and TV model problems. In order to better evaluate
image quality, several commonly used techniques are introduced and applied to experimental
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(a) No acceleration

(b) Acceleration 1

(c) Acceleration 1,2

(d) Acceleration 1,2

(e) Acceleration 1,2,3

(f) Acceleration 1,2,3,4

(g) Acceleration 1,2,3,4

(h) Acceleration 1,2,3,4

Figure 2.14: Results after 140 iterations for approximated TV reconstruction. Display window
of (a), (b), (c), (e) and (g) is [0.0185 0.0195] mm−1. Figure (d), (f) and (h) show the difference
between reconstruction and true image, and display window is [-0.0005 0.0005]mm−1.

(a) Acceleration 1+2 (b) Acceleration 1+2+3 (c) Acceleration 1+2+3+4

Figure 2.15: Results after 80 iterations for approximated TV reconstruction. The algorithm is
terminated early before convergence. Display window [0.0185 0.0195]mm−1.
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results for both models, including ROI plots, one-dimensional profile plots and resolution-noise
tradeoff curve. Qualitative and quantitative evaluation of the reconstruction results shows that
images can be slightly better reconstructed with more projection data using TV model when
the total incident energy remains the same. However, one disadvantage of using more projection
data is the longer running time caused by a larger dataset size, so a balance between image
quality and algorithm speed should be considered when designing CT scanning protocols.

In this chapter, a precondition technique called matrix scaling is used to accelerate recon-
struction for both Tikhonov- and TV- regularized problems, and the efficiency for this precon-
ditioning method has been proved by numerically experiments. For any least-squares problem
(2.25), let the precondition matrix P = diag{W̃1}−1/2. The Hessian matrix for the original

problem is W̃
T
W̃ , and for the preconditioned problem (2.28) will be PW̃

T
W̃P . It can be

easily proved that matrix PW̃
T
W̃P and W̃

T
W̃P 2 have the same spectrum, and that columns

of W̃
T
W̃P 2 all have the same L1-norms. A lower bound for the condition number of a matrix

is given by the following theorem.

Theorem 2 (Poor scaling of a matrix)
Given any full rank matrix A of size n × n, let a1,a2, ...,an be the n column vectors of A,
and the condition number of A, C(A), is given by the ratio of the maximum and minimum
eigenvalue, or equivalently ‖A‖2 ‖A−1‖2. Then the lower bound for C(A) is given by

C(A) ≥ ‖ai‖2
‖aj‖2

, ∀i, j ∈ [1, n]. (2.39)

The above theorem suggests a possibly better preconditioning matrix could be designed to
balance the L2-norms of the column vectors instead of L1-norms. The relationship between

C(W̃
T
W̃P 2) and C(W̃

T
W̃ ) has been discussed and proved in some early literature [32, 33].

Usually the condition number becomes smaller after precondition when W̃ is poorly scaled,
however this is not always true for any matrix W̃ .

Quasi-Newton method has been proved to have superlinear convergence [5]. A recent liter-
ature [34] has shown that different types of quasi-Newton methods all belong to the first-order
methods, suggesting that the worst-case convergence rate for quasi-Newton methods is linear
and that the local superlinear convergence cannot be achieved until the number of iterations
reaches half the size of the problem dimension. Even though the convergence rate for the exact
Newton method will be quadratic and not depend on condition number, the convergence rate
for a quasi-Newton method will still depend on the condition number of the Hessian, and thus
precondition technique which reduces the condition number will be effective for accelerating
quasi-Newton methods.

One other thing observed during experiments is that approximated TV-regularized problem
requires many more iterations to converge when using the quasi-Newton algorithm described
in Algorithm 3, compared to Tikhonov-regularized problem. Even though approximated TV
model has been used for image reconstruction problems in several references[22, 23], research
on how to efficiently solve the smoothed TV problem has been rare as far as I know. Results in
this chapter show that by using quasi-Newton algorithm with a combination of four acceleration
techniques, statistical CT reconstruction problem with TV term can be roughly solved within
100 iterations. This result is novel and very promising comparing to existing results in reference
[22]. However, further experiments are required to compare the performance of this accelerated
quasi-Newton algorithm with primal-dual algorithms for solving exact TV model problems.

Besides the low detector sampling rate and the noisy sinogram data, there may be one other
reason causing the poor resolution in the ROI images Figure 2.9d and 2.9e. According to [35]
(see Fig. 4 on Page 11), anisotropic TV term used in this thesis favours corners and rectangular
structures, which may not be a good choice for reconstructing the small ellipses in the image.
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Image quality may be improved by using isotropic TV regularization which favours rounded
edges, or even further improved by using a linear combination of anisotropic and isotropic TV
terms [17].
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Chapter 3

Multi-energy reconstruction - A
two-step algorithm

This chapter starts to focus on multi-energy reconstruction problems. Unlike the single-energy
problem in which the data is measured at one given energy E, multi-energy CT measures
projection data in multiple energy bins B1, B2,..., BNe . Adding the energy dimension not only
increases the dataset size, but also allows us to discover more quantitative metrics by exploring
the relationship between data at different energies. This chapter will start from introducing
the physical basics for multi-energy CT, including the material decomposition and the photon
detection. A general framework for spectral reconstruction problems is then formulated, and
spectral reconstruction models are categorized into two types: two-step models and one-step
models. Finally an algorithm for solving a two-step model is developed. Numerical experiments
using simulated noisy data show that the material decomposition problem (step one) can be most
accurately solved by combining a maximum likelihood model with an approximated weighted
least-squares model, and experiments also show that the basis image reconstruction problem
(step two) can be solved efficiently by using numerical algorithms developed in Chapter 2.

3.1 Multi-energy X-ray attenuation

3.1.1 Decomposition of attenuation coefficients

Let u(E,~z) be the attenuation coefficient at location ~z and energy E, and it can be expressed
as a linear combination of basis functions fi(E), i = 1, 2, ..., Nb, as given by

u(E,~z) =

Nb∑
i=1

Ai(~z)fi(E). (3.1)

Here fi(E) is the ith element for composing u(E,~z) at energy E, Ai(~z) independent of energy
is the coefficient for fi(E), and Nb is the total number of basis for decomposition. Without the
existence of K-edge elements (see below), u(E,~z) can be expressed as a combination of two
basis functions, f1(E) = fph(E) and f2(E) = fKN(E/Ee), which are given by [36]

fph(E) =
1

E3
, (3.2)

and

fKN(α) =
1 + α

α2

[
2(1 + α)

1 + 2α
− 1

α
ln(1 + α)

]
+

1

2α
ln(1 + 2α)− 1 + 3α

(1 + 2α)2
, α =

E

Ee
=

E

510.975keV
.

(3.3)
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Here, A1(~z)fph(E) is the photoelectric absorption component, and A2(~z)fKN(E/Ee) is the
Compton scattering component for attenuation coefficient. As an example, mass attenuation
coefficient (MAC) of oxygen (O) element can be decomposed into two components, as shown in
Figure 3.1a. The MAC curve for oxygen and all other MAC data used in this chapter are read
from XCOM online database [37].

(a) MAC of Oxygen(O) and decomposition re-
sult.

(b) MAC of Gadolinium (Gd).

Figure 3.1: Mass attenuation coefficient (MAC) for Oxygen and Gadolinium. In (a), oxygen
MAC can be decomposed into two components, photonelectric absorption (red) and Compton
(orange) scattering. In (b), a sharp edge can be observed around 50keV energy.

The K-edge discontinuity is the sharp edge in the absorption spectrum of an element, and
it occurs when the incident photon energy equals to the binding energy of the K-shell electron
of an atom (See more in Section 2.3.2 in [38]). A K-edge element is an element with K-
edge discontinuity within the X-ray energy range of interest. For example, the MAC of the
Gadolinium (Gd) element is plotted in Figure 3.1b, and K-edge energy of Gadolinium is at 50.2
keV. With existence of a K-edge element, the two basis defined above, fph(E) and fKN(α), are
not enough to model the attenuation coefficient u(E,~z) because of the K-edge discontinuity.
Therefore, a third basis f3(E), which is the mass attenuation coefficient of the K-edge element,
is added for the decomposition, and Ai(~z) will be local mass density for the specific element.
More basis will be required if more than one K-edge elements exist.

Similar to (2.1), the projected attenuation at location (θ, ξ) in the polar coordinate system,
pk(E, θ, ξ), is a line integral of u(E, ~x), expressed as p(E, θ, ξ) =

∫
L(θ,ξ) u(E, ~x)ds. Substitute

u(E, ~x) by equation (3.1) and p(E, θ, ξ) can be further expressed as

p(E, θ, ξ) =

∫
L(θ,ξ)

Nb∑
i=1

Ai(~z)fi(E)ds =

Nb∑
i=1

(
fi(E)

∫
L(θ,ξ)

Ai(~z)ds

)
,

Nb∑
i=1

fi(E) · Yi(θ, ξ). (3.4)

Here Yi(θ, ξ) =
∫
L(θ,ξ)Ai(~z)ds denotes the projected decomposed coefficient for the ith basis fi

at polar system location (θ, ξ). The above equation (3.4) indicates a linear relationship between
the projected attenuation and decomposition coefficients, showing that the decomposition can
be conducted in the image domain, as well as the projection domain. Relationship between
attenuation coefficient in space u(E,~z), decomposition coefficient in space Ai(~z), projected
attenuation p(E, θ, ξ) and projected decomposition coefficient Yi(θ, ξ) is summarized in Figure
3.2.
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Projection in (θ, ξ)
polar coordinate system

Image in ~z = (x, y)
Cartesian coordinate system

Attenuation
coefficients

Coefficients for
decomposition

p(E, θ, ξ)

Yi(θ, ξ)

u (E,~z)

Ai (~z)

Radon transform (2.1)

Radon transform (2.1)
(3.1)(3.4)

Figure 3.2: Illustration of attenuation decomposition in projection domain and in image
domain.i = 1, 2, ..., Nb.

3.1.2 Photon detection and energy bins

In previous Chapter 2, equation (2.16) shows an exponential relationship between the expected
photon number and projected attenuation at given energy E. For multi-energy cases, let
Ī(B, θ, ξ) be the expected value of the number of photons in energy bin B at projection lo-
cation (θ, ξ), and it is an integral over energy, expanded as below

Ī(B, θ, ξ) =

∫
E∈B

Ī(E, θ, ξ)D(E)dE =

∫
E∈B

Iin(E)e−p(E,θ,ξ)D(E)dE

≈ e−p(B,θ,ξ)
∫
E∈B

Iin(E)D(E)dE.

(3.5)

Here Iin(E) denotes the x-ray incident photon number at energy E, and D(E) denotes
the detector absorption efficiency. Let p(B, θ, ξ) be the averaged p(E, θ, ξ) over energy bin B,
and the approximate equality holds only when p(E, θ, ξ) varies very little in B. When the
approximation is true, p(B, θ, ξ) can be computed by

p(B, θ, ξ) ≈ ln

(∫
E∈B Iin(E)D(E)dE

Ī(B, θ, ξ)

)
, ln

(
Iin(B)

Īk(B, θ, ξ)

)
. (3.6)

Unlike the nonlinear relationship between photon number and projected attenuation, the
linear decomposition relationship (3.1) and (3.4) still hold after an integration of E in energy
bin B, expressed as

u (B,~z) ,
1

|B|

∫
E∈B

u (E,~z) dE =

Nb∑
i=1

Ai (~z)

(
1

|B|

∫
E∈B

fi(E)dE

)
, (3.7)

p(B, θ, ξ) ,
1

|B|

∫
E∈B

p(E, θ, ξ)dE =

Nb∑
i=1

Yi(θ, ξ)

(
1

|B|

∫
E∈B

fi(E)dE

)
, (3.8)

where |B| denotes the width of energy bin B.
In a real scanning, the detected photon number I(B, θ, ξ) in energy bin B at location (θ, ξ)

also follows a Poisson distribution I(B, θ, ξ) ∼ Poisson(Ī(B, θ, ξ)). Replacing Ī(B, θ, ξ) by
measured data I(B, θ, ξ) in equation (3.6), projected attenuation p(B, θ, ξ) is obtained, which
can be used for image reconstruction as in Chapter 2. For monochromatic CT reconstruction,
equation (3.6) is commonly used to obtain projected attenuation, the same as step 4 in Algo-
rithm 5 in the previous chapter, and the inaccuracy of the approximation may cause the beam
hardening effect when the energy bin is not narrow enough. For polychromatic CT, according
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to their energy, output x-ray photons are collected in one of the Ne energy bins B1, B2, ..., BNe ,
and Ne sets of sinogram data within different energy bins, p(B1, θ, ξ), p(B2, θ, ξ),..., p(BNe , θ, ξ),
are measured and Ne attenuation images can be reconstructed separately from sinogram data
of different energies.

3.2 Multi-energy reconstruction

3.2.1 Why multi-energy reconstruction is needed

Reconstruction algorithms discussed in the previous chapter can be directly used for recon-
structing attenuation images at different energy bins, as briefly discussed at the end of last
section. However, there is still a need to further develop algorithms specifically for multi-energy
CT reconstruction, at least for the following reasons. Firstly, computing projected attenuation
p(B, θ, ξ) from detected photon numbers by equation (3.6) may not be accurate. For single-
energy CT scanning , it is possible to choose one energy bin within which attenuation p(E, θ, ξ)
varies very little for different energy E. However for multi-energy scanning, it is difficult to
select more than one energy bins and ensure that attenuation p(E, θ, ξ) varies very little for
different energy E within every bin, unless all energy bins are narrow enough. Therefore, devel-
oping algorithms to use measured photon numbers I(B, θ, ξ) rather than projections p(B, θ, ξ)
for reconstruction may be more accurate.

Secondly, attenuation sinograms at different energy bins are correlated as they are measure-
ments for the same object, and the reconstructed attenuation images at different energy bins are
also correlated. Such inter-energy correlation can be modeled by the attenuation decomposition
relationship into a multi-energy reconstruction problem in order to improve the image quality
[39]. Furthermore, when total incident photon energy remains fixed and more energy bins are
selected for measuring output x-ray photons, less photons will be collected in one single energy
bin, leading to noisier measurements. Noisier measurements for multi-energy CT also suggests
the necessity of modeling the inter-energy correlation for noise suppression.

Finally, in previous section 3.1.1, it is shown that there exists a linear relationship between
attenuation coefficients u(E,~z) and decomposition coefficients Ai(~z), and Ai(~z) can be local
mass density for a K-edge element given the MAC curve as a decomposition basis. This suggests
that using multi-energy data, not only attenuation coefficient images at different energy can be
reconstructed, but the mass density image of a K-edge element can be reconstructed as well.
Therefore, algorithms need to be developed for reconstructing the mass density images, which
could provide more information about the scanning object.

3.2.2 Problem formulation

In this subsection, frameworks for different types of multi-energy reconstruction algorithms
are formulated in a discrete setting, and several existing algorithms in reference are briefly
introduced as examples for different types of algorithms.

Firstly, variables used in multi-energy reconstruction are p, I, Y , u and A, as explained in
section 3.1 and especially in Figure 3.2. Discretization of the five variables is given as below

P = [pj,k]Np×Ne , pj,k , p(Bk, θj , ξj);

I = [Ij,k]Np×Ne , Ij,k , I(Bk, θj , ξj);

Y = [Yj,i]Np×Nb
, Yj,i , Yi(θj , ξj);

U = [uj,k]Ni×Ne , uj,k , u (Bk, ~zj) ;

A = [Aj,i]Ni×Nb
, Aj,i , Ai (~zj) ;

(3.9)

where Np is the number of pixel in the projection domain, Ni is the number of pixel in the image
domain, Ne is the number of energy bins and Nb is the number of basis used for attenuation
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decomposition. Note that columns of matrix P , I, and U are data at different energies, and
columns of matrix Y and A are data for different decomposition basis.

System matrix W for CT geometry has been introduced in section 2.2, and the size is
Np×Ni here. Therefore, the radon transform relationship between P and U , Y and A can be
expressed as

P = WU ,Y = WA. (3.10)

Let F be the decomposition basis matrix of size Nb ×Ne defined as below

F = [fi,j ]Nb×Ne
, fi,j , fi(Bj) ,

1

|Bj |

∫
E∈Bj

fi(E)dE, (3.11)

and the decomposition relationship (3.7) and (3.8) can be summarized in matrix form as

P = Y F ,U = AF . (3.12)

The multi-energy reconstruction problem now can be described as finding the optimal de-
composition images as columns of matrix A, given system matrix W , decomposition basis
matrix F and data matrix I. It can be generalized as an optimization problem as below

A∗ = arg min
A

J (A;W ,F , I) , (3.13)

where J : RNi×Nb → R is the objective function, and it usually contains a data fidelity term and
a regularization term, similar as problems discussed in Section 2.4. Note that sometimes photon
measurement matrix I is not directly used in problem (3.13), but it will be firstly transformed
to projected attenuation matrix P by element-wise approximation (3.6). The benefit of using P
is the exact linear relationship between P and A, however the accuracy of P should be further
considered.

For multi-energy reconstruction, data in both projection domain and image domain are
organized in matrix form. This is different from single-energy models in Chapter 2, where
image and sinogram are organized in vector form. Therefore, in order to formulate an objective
function, two matrix operations, Kronecker product denoted by ⊗, and vectorization denoted
by vec(·), are used in this thesis and they are defined as below

Cmp×nq = Am×n ⊗Bp×q =


a11B a12B . . . a1nB
a21B a22B . . . a2nB

...
...

. . .
...

am1B am2B . . . amnB

 , (3.14)

vec(Am×n) = [a11, a21, . . . , am1, a12, a22, . . . , am2, . . . , a1n, a2n, . . . , amn]T . (3.15)

Now consider formulating the simplest problem for multi-energy reconstruction when no
regularization term is added and no data statistics is considered. Using P as input data and
the linear relationship (3.10) and (3.12),A can be obtained by solving the following least-squares
problem

A∗ = arg min
A
‖vec(WAF − P )‖22 = arg min

A

∥∥(F T ⊗W
)

vec(A)− vec(P )
∥∥2

2
. (3.16)

When A and P are vectorized, the previous problem has the same form as the single-energy
least-squares problem (2.15). Consider an overdetermined system with Ne > Nb and Np > Ni,
and exact solution for (3.16) is

vec(A∗) =
((
F T ⊗W

)T (
F T ⊗W

))−1 (
F T ⊗W

)T
vec(P )

= vec
((
W TW

)−1
W TPF T

(
FF T

)−1
)
.

(3.17)

Simplification of the solution in (3.17) uses properties (510-512, 514) in [40].
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3.2.3 Two-step algorithms

Problem (3.13) can be split into two steps in two different ways:

U∗ = arg min
U

JIU (U ;W , I),

A∗ = arg min
A

JUA (A;F ,U∗) ;
(3.18)

or
Y ∗ = arg min

Y
JIY (Y ;F , I),

A∗ = arg min
A

JY A (A;W ,Y ∗) .
(3.19)

These two models summarize two different types of algorithms: (3.18) solves inverse radon
transform first, and then conducts decomposition in image domain; whereas (3.19) first conducts
decomposition in projection domain, and solves the inverse radon transform problem afterwards.

In general, two-step models (3.18) and (3.19) are not equivalent to the one-step model (3.13).
However, formulate a two-step least-squares problem in form of (3.18) as

U∗ = arg min
U
‖vec(WU − P )‖22 ,

A∗ = arg min
A
‖vec (AF −U∗)‖22 ,

(3.20)

and the solution for overdetermined system with Ne ≥ Nb and Np ≥ Ni is given by

U∗ =
(
W TW

)−1
W TP ,

A∗ = U∗F T
(
FF T

)−1
=
(
W TW

)−1
W TPF T

(
FF T

)−1
.

(3.21)

It can be seen that (3.16) and (3.20) have the same solution. Similarly, a least-squares problem
formulated in form of (3.19) should also have the same solution.

3.3 Formulation of a two-step algorithm

In this section, a two-step algorithm in form of (3.19) is formulated. The first step of the
algorithm constructs and solves a maximum-likelihood model by considering photon statistics,
and conducts attenuation decomposition in projection domain. The second step formulates and
solves a penalized weighted least-squares (PWLS) problem to obtain images of coefficients. The
first step of the algorithm was originally reported in [41], and the second step in [42, 43].

3.3.1 Maximum-likelihood algorithm for projection data decomposition

Let Irowk = [Ik,1, Ik,2, ..., Ik,Ne ] be the kth row vector of matrix I. Considering Poisson photon
statistics, the conditional probability of obtaining measurement results Irowk given the expected
photon number Ī

row
k can be expressed as

P
(
Irowk |Ī

row
k )

)
=

Ne∏
i=1

Ī
Ik,i
k,i · e

−Īk,i

Ik,i!
. (3.22)

Substituting p(E, θ, ξ) in (3.5) by (3.4) gives Īk,i as a function of Y row
k

Īk,i(Y
row
k ) =

∫
E∈Bi

Iin(E) exp

− Nb∑
j=1

fj(E) · Yk,j

D(E)dE, (3.23)

where Y row
k is the row vector of matrix Y .
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Taking logarithm of both sides in (3.22) and substituting Īk,i by (3.23) gives a log-likelihood
function for Y row

k

L (Ik|Y row
k ) =

Ne∑
i=1

(
Ik,i ln(Īk,i(Y

row
k ))− Īk,i(Y row

k )
)
. (3.24)

Maximizing (3.24) gives the estimated (Y row
k )∗ with maximal probability. Optimal matrix

Y ∗ can be obtained by solving Np parallelizable optimization problems by using the downhill
simplex method [44]. In general L (Ik|Y row

k ) in (3.19) is not a concave function.
Appoximately pulling exponential parts out of the integral in equation (3.23) gives

Īk,i(Y
row
k ) ≈ exp (−〈Y row

k ,f i〉)
∫
E∈Bi

Iin(E)D(E)dE, (3.25)

where f i is the ith column vector in matrix F . Substituting Īk,i now by (3.25) gives an
approximated log-likelihood function

L̃ (Ik|Y row
k ) =

Ne∑
i=1

(
−Ik,i〈Y row

k ,f i〉 − exp (−〈Y row
k ,f i〉)

∫
E∈Bi

Iin(E)D(E)dE

)
. (3.26)

Note that after the approximation, (3.26) is similar to likelihood function (2.18) in Section
2.3, and it is a concave function of Y row

k . Therefore, a similar weighted least-squares problem
can be formulated following the same routine in Section 2.3. Therefore , a weighted least-squares
problem is formulated as

Y row,∗
k = arg min

Y row
k

{
‖Y row

k F − P row
k ‖2Ck

}
, (3.27)

where Ck is a diagonal matrix with entries Ik,1, Ik,2, ..., Ik,Ne , and it is the inverse of covariance
matrix for projection vector P row

k .

3.3.2 Reconstructing material decomposed sinogram

As the second step of the algorithm, a regularized weighted least-squares problem is formulated
as below

A∗ = arg min
A

(
‖vec (WA− Y ∗)‖2Σ +

Nb∑
i=1

αiJRegu(Ai)

)
, (3.28)

where Ai is the ith column vector of matrix A and it is the decomposition coefficient image for
the ith basis. JRegu(Ai) is a regularization term for image vector Ai, and it can use the same
definition as equation (2.23) and (2.31) in Chapter 2, and αi is the corresponding regularization
parameter. Weight matrix for the data fidelity term Σ can be defined as the inverse of the
covariance matrix of vec(Y ∗). Note that matrix Y ∗ is solved row by row from previous step,
and covariance for vec(I) as the input for step-one problem is a diagonal matrix. Therefore,
there will be only column correlation but no row correlation in matrix Y ∗, which means for
the ith column vector of matrix Y ∗, cov(Y ∗i ) is a diagonal matrix but for the jth row vector
Y row,∗
j , cov(Y row,∗

j ) is a full matrix of size Nb ×Nb.
In order to formulate a problem with weight matrix of simpler form, the data fidelity term

is transformed to obtain the following problem

A∗ = arg min
A

(∥∥vec
(
(WA)T

)
− vec

(
(Y ∗)T

)∥∥2

ΣT
+

Nb∑
i=1

αiJRegu(Ai)

)
, (3.29)
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where inverse of ΣT is given by

Σ−1
T = cov(vec

(
(Y ∗)T

)
) = diag

{
cov(Y row,∗

1 ), cov(Y row,∗
2 ), ..., cov(Y row,∗

Np
)
}
. (3.30)

Σ−1
T is a block diagonal matrix, and thus ΣT is also a block diagonal matrix given by

ΣT = diag

{[
cov(Y row,∗

1 )
]−1

,
[
cov(Y row,∗

2 )
]−1

, ...,
[
cov(Y row,∗

Np
)
]−1
}
. (3.31)

Numerical methods discussed in previous Chapter 2, such us quasi-Newton and ADMM,
now can be used to solve optimization problem (3.29).

Derivation of cov(Y row,∗
k )

Now we need to compute cov(Y row,∗
k ) as blocks in Σ−1

T . The following theorem explains how to
compute covariance of maximum-likelihood estimators.

Theorem 3 (Frechet–Darmois–Cramér–Rao inequality, Section 6.6 in [45])
For multivariate maximum-likelihood estimator θ̂ = L(θ), the inverse of the covariance matrix

of their estimators Vi,j = cov
(
θ̂i, θ̂j

)
is given by (assuming efficiency and zero bias)

V −1
i,j = E

[
−∂

2 logL

∂θi∂θj

]
, (3.32)

where E [·] computes the expectation.

To simplify computation, the approximated expression for Īk,i(Y
row
k ) (3.25) and the corre-

sponding approximated maximum likelihood function (3.24) is used for second order derivative
computation,

∂L (Ik|Y row
k )

∂Yk,i
=

Ne∑
m=1

∂L (Ik|Y row
k )

∂Ik,m (Y row
k )

·
∂Ik,m (Y row

k )

∂Yk,i

=

Ne∑
m=1

(
Ik,m

Ik,m (Y row
k )

− 1

)
·
(
−fm,i · Ik,m (Y row

k )
)

=

Ne∑
m=1

(
−Ik,m · fm,i + fm,i · Ik,m (Y row

k )
)
,

(3.33)

∂2L (Ik|Y row
k )

∂Yk,j∂Yk,i
=

Ne∑
m=1

(
fm,i ·

(
−

Ne∑
n=1

fn,i · Ik,n (Y row
k )

))
. (3.34)

Summarizing the above result (3.34) in a matrix form gives the covariance estimation

[
cov(Y row,∗

k )
]−1

=

[
∂2L (Ik|Y row

k )

∂Yk,j∂Yk,i

]
i,j=1,...,Nb

= F T · diag
{
Īk,1, ..., Īk,Ne

}
· F

≈ F T · diag {Ik,1, ..., Ik,Ne} · F .
(3.35)

In the above equation (3.35), measurements Ik,1, ..., Ik,Ne are used for estimating expectation
Īk,1, ..., Īk,Ne .
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Label Material
Density (kg m−3)
in 20 ◦C

1 soft tissue 1020
2 heart (blood filled) 1060
3 yellow marrow 980
4 cortical bone 1920

5 contrast agent + water (m%
Gd = 3%) 1061

6, 7 contrast agent + water (m%
Gd = 1%) 1019

Table 3.1: Material types used in phantom simulations [25, 37].

3.4 Numerical experiments

3.4.1 Experimental setups

In general, experimental setups are similar to that in the single-energy experiment in Section
2.5.1. The uniqueness is how to setup a phantom including K-edge contrast agent, and how to
generate spectral noisy sinograms.

Phantom description

A simulated phantom including 7 different regions is shown in Figure 3.3a, and material type
description is summarized in Table 3.1. Region 1-4 are body tissues, and Figure 3.3b shows that
attenuation coefficient curves of cortical bone and water versus energy differ greatly. Region 5-7
are a mixture of water and a gadolinium (Gd) -based contrast agent. In this thesis, a contrast
agent with chemical formula C16H31GdN5O8 is simulated in different concentrations in water.
For high concentration region 5, the simulated gadolinium concentration in mass percentage,
mGd

% , is 3%; for low concentration regions 6 and 7, mGd
% is 1%. Local density of contrast region

5-7 can be computed following the method given in [41, Appendix equation A.1 and A. 4]. The
dimensions of the phantom are 300× 300 mm2, consisting of 256× 256 pixels.

(a) True phantom labeling 7 different regions. (b) MAC curves for two different body tissues.

Figure 3.3: Phantom description for multi-energy experiments.
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CT geometry and system matrix W

CT geometry for multi-energy experiments is similar as in Chapter 2, and the same method
introduced is used to generate system matrix W . For experiments in this chapter, 336 equally
spacing channels are measured on a 300mm-long detector, and 180 projections are measured in
the 2π rotating range.

Generation of multi-energy sinogram

For multi-energy experiments, nine energy bins are selected, B1 = [15, 25] keV, B2 = [25, 35]
keV, ..., B9 = [95, 105] keV. Algorithm 6 used for generation of noisy spectral data is similar to
Algorithm 5 for single-energy cases, in which noiseless projection data is converted to photon
numbers in order to apply the Poisson noise model. Note that input of Algorithm 6, x-ray tube
spectra Iin(E) and clean projection data pclean(E) are both functions of energy E. Input x-ray
spectra Iin(E) is plotted in Figure 3.4, and the total number of input photons within energy
range [15, 105] keV for each channel is 1.03∗106. Two attenuation images at different keVs and
the corresponding clean projection data is shown in Figure 3.5. It is shown that attenuation at
47keV and 53keV differs greatly in contrast regions.

For multi-energy simulation, the attenuation coefficients are much larger in the lower energy
range, therefore the photon number simulated after step 3 can be 0 for many channels. When
the photon number Ik,j is 0, it is impossible to compute sinogram pk,j in step 4, and such
phenomenon is called photon starvation. If sinogram data is still needed, a minimum threshold
for photon number should be set to ensure Ik,j > 0 for all k and j.

Algorithm 6 Generate noisy data pj and Ij for energy bin Bj = [Elowj , Ehighj ].

1: Input: Iin(E), x-ray source photon number; pclean(E), simulated clean sinogram;
2: Compute expected photon number Īk,j by equation (3.5) for k = 1, 2, ..., Np;
3: Compute measured photon number with Poisson noise:

Ik,j = Poisson(Īk,j), for k = 1, 2, ..., Np;

4: Compute noisy sinogram pk,j by equation (3.6) for k = 1, 2, ..., Np;

Figure 3.4: X-ray tube spectra calculated by SPEKTR 3.0 toolbox [46]. TASMIP spectrum
with 1.6 mm Al inherent filtration and 0% kV ripple.
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(a) True attenuation Image at
47keV.

(b) True attenuation Image at
53keV.

(c) Attenuation at projection
location 1.

Figure 3.5: Clean attenuation images and projections at different keVs.

Tested models and algorithms

The two-step algorithm developed in previous Section 3.3 is experimented here. For the first
step, three basis functions are selected for sinogram decomposition: f1 defined by (3.2) models
the photoelectric absorption effect, f2 defined by (3.3) models the Compton scattering effect,
and f3 is the MAC for Gadolinium element. Therefore, image reconstructed from decomposition
coefficients for the third basis is the local density (unit in g/cm3) of the K-edge element.

For the second step, the weighted least-squares problem (3.29) formulated in Section 3.3.2
is solved by quasi-Newton algorithm discussed in Chapter 2. Specifically, the preconditioning
technique is applied to accelerate the convergence, and the problem is solved without or with
different regularization terms.

3.4.2 Results

Sinogram decomposition

Results of step one algorithm (sinogram decomposition) are summarized in Figure 3.6. Two dif-
ferent models, the approximated least-squares model (3.27) and the exact maximum-likelihood
model (3.24), are experimented. For (3.27) using all spectral data, decomposed sinogram for
the 3rd (contrast agent) basis is shown in Figure 3.6a, and the absolute error comparing to true
sinogram is shown in Figure 3.6b. In the true sinogram for contrast agent basis, there should
be three sine-like curves because of the three contrast agent regions in the image. It can be
observed that decomposition errors are large at many center channels. This is caused by photon
starvation of low energy sinograms.

Instead of using all sinograms measured by 9 energy bins, model (3.27) is solved again using
sinograms measured by 6 energy bins, [45,55], [55,65], ..., [95,105]keV. Because sinograms at
energy bins [15,25], [25,35], [35,45] keV suffer from photon starvation and are thrown away
now, decomposition results are much more accurate comparing to using all spectral sinograms,
as shown in Figure 3.6c and 3.6d. Mean absolute error for the 3rd decomposed sinogram is
3.33 ∗ 10−3.

Different from (3.27), model (3.24) is an exact maximum-likelihood model and uses photon
measurements I as input instead of using sinograms P . Since (3.24) is a non-concave function,
proper initial points should be chosen in order to find the global maximums. (3.24) is firstly
solved by using all 0 initial points, and results are shown in Figure 3.6e and 3.6f. It can be
observed that some pixels in the sinogram are not corrected decomposed.

Since model (3.27) using partial spectral data gives results with no visible errors, these
results will now be used as initial points for solving the exact model (3.24). Results using
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proper initial points are shown in Figure 3.6g and 3.6h. Mean absolute error now is 2.50 ∗ 10−3.
Figure 3.6 and the computed absolute errors demonstrate that solving the exact model (3.24) by
using approximated model (3.27) results as initial points is the best tested method for sinogram
decomposition, and results by this method will be used for the step two experiments.

Reconstructing decomposed sinogram

Results with no regularization To test the step two method in Section 3.3.2 and especially
the estimated inverse covariance matrix ΣT , an iterative reconstruction is conducted using fully
estimated inverse covariance and no regularization term, and the results are presented in Figure
3.7a-3.7c. The three reconstructed images are coefficients for absorption, scattering and contrast
element (Gd) concentration respectively. FBP results are presented in Figure 3.7d-3.7f, and it
is observed that iterative reconstruction (IR) results are similar but noisier comparing to FBP
results.

For material decomposed images, only the Gd concentration image can be compared to
true image, becuase ‘true’ absorption or ‘true’ scattering image can not be obtained. After
reconstructing the material decomposed images, attenuation images at different energies can
also be synthesized by linear relationship (3.1). Attenuation images at 60keV computed from IR
results are FBP results are presented in Figure 3.8, and a true image is also given for comparison.
It is shown that IR attenuation image 3.8a is more accurate than the FBP attenuation image
3.8b, especially in the bone region.

One noticeable observation during the step two experiment is the extremely slow convergence
after incorporating estimated inverse covariance. The preconditioning technique developed in
Chapter 2 (see Page 10) should also be used here. When no regularization is used, 200 iterations
of BFGS quasi-Newton with steepest descent step size are run, and reconstruction results with or
without preconditioning are shown in Figure 3.9. It shows that both objective function and error
norm converge much faster when applying preconditioning. After 200 iterations, no-precondition
Gd concentration image 3.9c shows severe artifacts near bone regions and outer boundaries,
however only the three contrast regions and random noises show up in the precondition image
3.9d. The inter-sinogram correlations, which are the off-diagonal entries of the inverse covariance
matrix ΣT , make the model even more ill-conditioned. For the current experiment, the condition
number of ΣT is 3.780∗105. If all inter-sinogram correlations are removed, the original problem
(3.28) can be split into three sub-problems for reconstruction A1,A2 and A3 respectively, and
condition number for the splitted inverse covariance matrices are 5266.1, 20.80 and 143.75 , all of
which much smaller than the original one. The numerical experiments demonstrate the necessity
of applying preconditioning technique for reconstructing material-decomposed sinograms with
full inverse covariance estimation.

Removing inter-sinogram correlations Since reconstructing the material basis images
with full inverse correlation matrix yields very slow convergence, a diagonal inverse covariance
matrix diag{ΣT } is used now and the basis images can be reconstructed separately from each
decomposed sinograms. Experiments are conducted to compare reconstructions using only
diagonal inverse covariance matrix as weight matrix with using no weight matrix. Since the
step two problem can be split into three independent problems after removing inter-sinogram
correlations, only the contrast agent basis image is reconstructed, and the results are summarized
in Figure 3.10.

Figure 3.10a shows the resolution-noise tradeoff curves for reconstructions using TV reg-
ularization, and it is seen that TV-regularized reconstruction has lower noise level as well as
higher resolution when using diagonal inverse covariance matrix. Figure 3.10b and 3.10c are
reconstructed images using Tikhonov regularization. Figure 3.10b uses diagonal inverse covari-
ance matrix as weight matrix and regularization parameter α3 is 3. Figure 3.10c uses no weight
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(a) Model (3.27), data in [15,105] keV (b) |(a) - True|

(c) Model (3.27), data in [45,105] keV (d) |(c) - True|

(e) Model (3.24), use all 0 initial points (f) |(e) - True|

(g) Model(3.24), use (c) as initial points (h) |(g) - True|

Figure 3.6: Decomposed sinogram for the contrast agent basis. (a),(c),(e) and (g) are results of
four different experiments; (b),(d),(f) and (h) are the corresponding absolute error figures.
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(a) Iterative, absorption (b) Iterative, scattering (c) Iterative, contrast

(d) FBP, absorption (e) FBP, scattering (f) FBP, contrast

Figure 3.7: Decomposed sinogram reconstructions. Iterative reconstruction (up) with no regu-
larization and fully estimated covariance. FBP (down) reconstruction for comparison.

(a) Iterative (b) FBP (c) True

Figure 3.8: Attenuation coefficient images at 60keV. (a) is computed from Figure 3.7a-3.7c, and
(b) is computed from Figure 3.7d-3.7f. Display window [0.02 0.025]mm−1.
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(a) Obj vs Iteration (log-log) (b) ‖A∗
3 −ATrue‖2 vs Iteration

(c) 200 iterations, no precondition. (d) 200 iterations, precondition.

Figure 3.9: Convergence analysis for no regularization experiment. Comparison between pre-
condition and no-precondition .
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matrix and regularization parameter α3 is 20. The selection of different α3 values is to ensure
the overall error and the resolution of the two images to be similar. It can be observed that the
noise level becomes lower especially in the central region of the image and the streak artifacts
are suppressed after applying diagonal inverse covariance matrix.

In general, it can be concluded that material-specific reconstruction yields better results
when using diagonal inverse covariance matrix diag{ΣT } comparing to using no weight matrix
for data fidelity term. However, how the inter-sinogram correlations will effect the reconstruction
results has not been fully studied yet.

(a) Resolution-noise tradeoff
curves for TV regularization.

(b) Tikhonov regularization,
α = 3, ΣT weight matrix.

(c) Tikhonov regularization,
α = 20, no weight matrix.

Figure 3.10: Comparison between using diag{ΣT } and using identity matrix as weighted matrix.

Choosing regularization parameters when using ΣT When reconstructing material de-
composed sinograms simultaneously using model (3.29), there will be Nb (in the experiment
Nb = 3) regularization parameters α1, ..., αNb

used, each one for regularizing one material basis
image, and no inter-material correlations will be modeled in the regularization terms. When
reconstructing one sinogram as the single-energy case in Chapter 2, L-curve may serves as a
simple way to choose the proper regularization parameter. However when reconstructing mul-
tiple sinograms in one model and the inter-sinogram correlations are modeled by weight matrix
ΣT , how to properly choose regularization parameters for every reconstructed image remains a
problem. When regularization term for the ith image is over-weighted, the difference between
the over-regularized image and the true image will cause artifacts in other images, as shown in
Figure 3.11. It can be observed that over-regularized contrast agent image will cause artifacts
in the high contrast region of the other two images, however when no regularization is used for
all the three images, such artifacts can not be observed, as shown in Figure 3.9a-3.9c.

(a) Absorption image. (b) Scattering image. (c) Contrast agent image.

Figure 3.11: Reconstructing material decompsed sinograms with regularization parameter α =
[0, 0, 0.01]T . TV regularization used for model (3.29).
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3.4.3 Discussion and conclusion

In Section 3.4, a two-step algorithm developed in Section 3.3 for spectral CT reconstruction is
tested using simulated noisy spectral data. For the sinogram decomposition step, two models,
the exact maximum-likelihood ML) model (3.24) and the approximate weighted least-squares
(LS) model (3.27), are both experimented. It use shown that the exact ML model yields more
accurate decomposition result, however it requires proper initial point to achieve the global
maximum. In the original reference [41] there is no detailed discussion about how to properly
solve the non-concave ML problem. In the experiments in this thesis, it is shown that the result
of LS model can be used as a proper initial point for solving the exact ML model by the downhill
simplex method. How to ensure the global optimal solution is found requires further theoretical
analysis of the ML function (3.24).

For the second step of the two-step algorithm, it is shown that the regularized weighted least-
squares model (3.29) can be used to reconstruct the material basis images. Experiments show
that numerical algorithms developed in Chapter 2 can also be used for solving the reconstruction
problem for multi-sinogram cases. Experimental results also show that modeling the variance of
the decomposed sinogram in the weight matrix yields better reconstruction results comparing to
using no weight matrix. However a fully estimated inverse covariance matrix used as the weight
matrix will make the problem even more ill-conditioned and more difficult to solve, and the
effect of modeling inter-sinogram correlation in the weight matrix needs further investigation
as well.
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Chapter 4

Discussion, conclusions and future
work

4.1 Discussion and conclusion

In this thesis, reconstruction algorithms for spectral computed tomography are studied and
tested. A reconstruction algorithm for inverse problem usually consists of: (1) formulating an
optimization problem that includes a data fidelity term and a regularization term; (2) applying
a proper numerical method to solve the optimization problem.

As a starting point of this thesis, CT reconstruction algorithms for single-energy cases
are firstly studied in Chapter 2. It is proved that the weighted least-squares problem can be
approximated from a maximum-likelihood problem modeling photon statistics. It is also shown
by experiments that such a weighted least-squares problem with TV or Tikhonov regularization
can be solved by quasi-Newton method together with proper acceleration techniques. Such a
numerical algorithm can also be applied to multi-energy cases.

When turning to multi-energy reconstruction, not only the attenuation images but also the
material decomposed images can be reconstructed when specifying the material basis. In Chap-
ter 3, the spectral reconstruction problem is formulated by modeling the CT geometry as well as
the material decomposition process. In order to simplify the computation, two-step algorithms
are also formulated which solve the inverse radon transform and the material decomposition sep-
arately. A two-step algorithm which solves the material decomposition in the projection domain
and reconstructs the decomposed sinograms afterwards is developed and tested in Chapter 3.
Simulated numerical experiments show that the material decomposition step can be conducted
by solving Np non-concave optimization problems after applying proper intial points, where Np

denotes the number of pixels in the projection domain for one energy bin. Experiments also
show that material-decomposed sinograms can be reconstructed by applying the reconstruction
algorithms developed in Chapter 2, and that reconstruction results have better image quality
after modeling the estimated sinogram variance. All Matlab code for numerical experiments
are uploaded on Github: https://github.com/HannaLiu18/SpectralRecon.

4.2 Possible future works

Due to time limitation of the project, several interesting problems related to CT reconstruction
and especially spectral CT reconstruction which are not mentioned in previous chapters are
briefly discussed here. These might be possible research topics following after this thesis project.

One-step algorithm for spectral reconstruction In Chapter 3, the simplest one-step
model for spectral reconstruction is formulated in (3.16). When considering photon statistics

https://github.com/HannaLiu18/SpectralRecon
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and regularization terms, the one-step model using projected attenuation P can be given as

A∗ = arg min
A

∥∥(F T ⊗W
)

vec(A)− vec(P )
∥∥2

ΣP
+

Nb∑
i=1

αiJRegu(Ai), (4.1)

where weight matrix ΣP denotes the inverse of the covariance matrix of vec(P ), and all other
variables use same definition as in Chapter 3. Preliminary one-step reconstruction result with
no regularization term is shown in Figure 4.1, and artifacts in the bone region can be observed in
the contrast agent image. Such artifacts don’t exist in the two-step reconstruction results. One
possible reason for the artifacts might be the insufficient convergence even after 600 iterations.
Similar as single-energy case, weight matrix ΣP is a diagonal matrix with entries of detector
photon counts for all projection pixels, and photon counts will be within a even larger range
for multi-energy cases. Therefore the problem (4.1) will be more ill-conditioned comparing to
single-energy problem, and efficient numerical algorithms are required to solve the one-step
reconstruction algorithm.

Instead of using the projected attenuation P , measured photon counts I can be directly
used for modeling a one-step problem. However, such a one-step problem will have a nonconvex
data fidelity term, and requires further numerical algorithm development[47, 48].

(a) Absorption image. (b) Scattering image. (c) Contrast agent image.

Figure 4.1: One-step reconstruction result with no regularization. Run 600 iterations of quasi-
Newton.

Designing better regularization term In this thesis, two simple regularization terms for
reconstruction problem, a Tikhonov regularization and an anisotropic TV regularization, are
introduced in Section 2.4 and applied in later numerical experiments for both single-energy and
multi-energy cases. These two regularization terms have their own limitations. The simple
Tikhonov regularization is incapable of preserving strong edges, whereas the TV regularization
usually gives over-smoothed images with staircase artifacts. Many new regularization techniques
have been developed in recent years, such as total generalized variance (TGV) [49] , non-local
means (NLM) [50], dictionary learning (DL) [51] and etc. These techniques may be further
applied to spectral CT reconstructions in order to provide images in high quality.

Modeling non-ideal detector responses Throughout this thesis, Poisson statistics model
is applied for the photon-counting detectors for both single-energy and multi-energy cases.
However, Poisson statistics model may not be adequate in real experiments especially when the
photon counts are ultra-low [52]. Better statistical model can be obtained by estimating the
noise distribution of photon counts from experimental data and then applied to reconstruction
problems.
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In this thesis, the realistic spectral responses of the photon-counting detectors are also not
modeled. In practice, non-ideal effects include charge sharing, K-escape, and pile-up effects,
and they should also be included in the reconstruction model.
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