
Graduate School of Natural Sciences

Computing Science

Reverse Automatic Differentiation
for Accelerate

Author
Tom J. Smeding

Supervisors
Dr. Trevor L. McDonell
Dr. Matthijs I.L.Vákár

January 29, 2021

ICA-6588956

Abstract

Purely functional array programming languages are powerful tools for expressing data-
parallel computation in a way that is easily optimised to have good performance on parallel
hardware like GPUs. Probabilistic inference and optimisation are fields that need this
computational power, but also require reverse-mode automatic differentiation (AD) of code
written in the programming language. Accelerate is a purely functional array programming
language with an optimising compiler for multicore CPU and GPU backends that uses a
strongly-typed abstract syntax tree to ensure that no compiler pass can perform type-incorrect
program transformations. However, due to the second-order nature of the Accelerate language,
existing algorithms for reverse-mode AD do not directly apply to Accelerate.

We define a new, pragmatic source-code transformation algorithm for reverse-mode AD
on a significant subset of Accelerate; the supported subset excludes loops. We present
an implementation of our algorithm in the Accelerate compiler and show that it performs
reasonably competitively with other implementations of reverse-mode AD on benchmarks; as
a compiler pass in the Accelerate compiler, our implementation cannot perform type-incorrect
program transformations. Our reverse-mode AD algorithm can possibly be generalised to
other second-order, purely functional array programming languages.

2

Contents

Acknowledgements 5

1 Introduction 6
1.1 Contributions . 8
1.2 Report structure . 8

2 Background 9
2.1 Automatic differentiation . 9

2.1.1 What does AD compute? . 11
2.1.2 In practice . 12
2.1.3 Implementation methods . 15
2.1.4 Optimisations . 18
2.1.5 Higher-order derivatives . 19

2.2 Functional AD . 20
2.2.1 On untyped lambda calculus . 20
2.2.2 Delimited continuations . 20
2.2.3 Via categorical language . 21
2.2.4 Via compiler optimisations . 21

2.3 Functional programming . 21
2.3.1 Functional array languages . 22
2.3.2 The Accelerate language . 22
2.3.3 Type-safe program representations . 26
2.3.4 The Accelerate compiler . 27
2.3.5 Automatic differentiation . 27
2.3.6 Typed AST . 27

3 The AD algorithm 29
3.1 Idealised Accelerate . 29
3.2 Input/output specification of the algorithm . 32

3.2.1 Limitations . 33
3.3 Example programs . 34

3.3.1 Simple array program . 34
3.3.2 Array program with indexing . 37

3.4 Array transformation . 41
3.4.1 Interface of expression AD . 41
3.4.2 Labeling . 43
3.4.3 Primal . 44
3.4.4 Dual . 50
3.4.5 Combining primal and dual . 59
3.4.6 Example . 59
3.4.7 Conclusions . 62

3.5 Expression transformation . 63
3.5.1 Primal . 64
3.5.2 Dual . 65

4 Implementation 68
4.1 Reified types . 68
4.2 Implementation experiences . 69

4.2.1 Methodology . 69
4.2.2 Overview . 70

3

4.2.3 Difficulties . 70
4.2.4 Patterns . 73

4.3 Testing . 76
4.3.1 Unit tests . 77
4.3.2 Methodology . 78
4.3.3 Results . 79

5 Experimental results 81
5.1 Benchmarking tasks . 81
5.2 Methodology . 83

5.2.1 Experimental setup . 85
5.3 Results . 85

5.3.1 Four versions . 86
5.3.2 Conclusions . 87
5.3.3 Discussion . 89

6 Conclusions 90
6.1 Discussion & Future work . 91
6.2 Related work . 94

Bibliography 96

A Unit test programs 100

B ADBench task definitions 105
B.1 GMM: Gaussian Mixture Model fitting . 105
B.2 BA: Bundle Adjustment . 106

C ADBench task implementations 107
C.1 GMM: Gaussian Mixture Model fitting . 107
C.2 BA: Bundle Adjustment . 109

D Benchmark graphs 112

4

Acknowledgements

It is an honour and a delight to have supervisors as friendly, helpful and critical as dr. Trevor
McDonell, dr. Matthijs Vákár and—unofficially—prof. dr. Gabriele Keller. Thank you for many
useful discussions and for showing me how fun research can be.

5

1 Introduction

High school math teaches us how to differentiate mathematical functions, such as the two-
argument function f = λ(x, y). x2 + 7xy3. This process results in a different function, in this
case f ′ = λ(x, y). (2x+ 7y3, 21xy2), that returns the gradient (the vector of partial derivatives)
of f at a particular input point.

However, high school math does not teach us how to differentiate a computer program that
computes some mathematical function: computer programs can contain variable bindings, non-
linear control flow, function abtractions, and sometimes more. Methods for automatically
differentiating numeric functions written in a programming language are aptly called automatic
differentiation, abbreviated as AD.

The need for AD arises in various contexts: a well-known application is optimisation in machine
learning, where the derivative of a neural network is usually computed with a bespoke backpropa-
gation algorithm. However, applications exist also in statistics: maximum likelihood estimation
for complex probabilistic models (e.g. specified in a probabilistic programming language) can
use gradient-based optimisation, for which derivatives of the probability density function are
required. Furthermore, algorithms for approximate Bayesian inference often also require gradients
of complicated density functions. Examples of such algorithms are ADVI [30], which is a technique
to automate derivation of variational inference algorithms that use AD to compute gradients, and
state-of-the-art Markov integration methods such as Hamiltonian Monte Carlo (HMC [40]) and
its extension, the No-U-Turn Sampler (NUTS [26]), which use gradients of probability density
functions for more effective sampling.1

Automatic differentiation comes in two predominant forms: forward-mode AD and reverse-mode
AD. If the language on which we wish to perform AD supports operator overloading, forward-mode
AD can often be implemented using a relatively simple library written in the language itself;
however, for computing the gradient of a function, reverse-mode AD is usually much more efficient
(see Section 2.1). Unfortunately, implementing reverse-mode AD with good performance is more
difficult than doing the same for forward-mode AD, since it requires a form of running the
to-be-differentiated program in reverse.

There are multiple possible implementation techniques for reverse-mode AD (see Section 2.1.3),
from very dynamic ones (e.g. recording executed operations and interpreting the produced list in
reverse) to more static ones (performing a source-code transformation2 that actively rearranges
control flow). Dynamic approaches have the advantage of being more general in the kinds of
programming languages they support, which can make them more flexible in actual use; examples
of such implementations are Autograd [31] and PyTorch [41]. For compiled languages, on the
other hand, static approaches that perform a source-code transformation have the advantage of
exposing all of the resulting computation and control flow to the compiler. This allows us to
benefit from all optimisations that the compiler implements, and it also avoids any interpretation
overhead at runtime. Examples of implementations that take the more static approach are
Theano [4], Tapenade [24] and the AD functionality in Tensorflow [1]. A downside of static
approaches is that reversing control flow statically requires either a custom compiler plugin or
preprocessor that performs a source-code transformation, or a language that has very expressive
metaprogramming facilities (for example control operators, as used in e.g. [58]).

Applications using automatic differentiation tend to work with functions that take many param-
1This is all the more relevant in 2021: the British government has used the probabilistic programming language

Stan [7] to formulate and simulate their COVID-19 epidemic models [20]. Stan uses AD to compute the gradient
of probability density functions to support its HMC integrator, which uses the NUTS algorithm.

2The term “source-code transformation” is used more generically than the words would suggest: an implementa-
tion that works on the internal program representation in a compiler is also said to be a source-code transformation,
even if it does not actually operate on the textual source.

6

eters or work on large amounts of data. Typically, those programs are also parallel in nature,
meaning that we would like to leverage modern parallel hardware platforms, such as GPUs, to
help run those programs efficiently. An alternative to manually parallising those programs is
to write them in a parallel array language that is built from expressive, yet well-parallelisable
building blocks that allow writing highly parallel programs in a natural way. In particular, purely
functional parallel array languages are very attractive for this purpose: being purely functional
allows easier program analysis by the compiler,3 including automatic parallelisation and advanced
loop fusion optimisations that improve performance on parallel hardware.4 Examples of such
languages are Accelerate [8] and Futhark [25]. Having these optimisation frameworks at our
disposal when writing parallel array-oriented programs is very beneficial, because manually writing
efficient code for GPUs is still quite hard.

From all of the above we conclude that what we want is an implementation of reverse-mode AD,
preferably as a source-code transformation, for a practical functional array language that compiles
to GPU code. While there is ongoing work that aims to make such an implementation,5 we are
not aware of an implementation that is already mature and readily usable. In this thesis report,
we propose an algorithm and provide an implementation for performing efficient reverse-mode
AD on a significant subset of the Accelerate programming language.

Our algorithm is indeed in the form of a source-code transformation: given (a parsed representation
of) the source code of an Accelerate program, it returns a different Accelerate program that
computes the gradient function of the input program. The transformation result uses no mutation
and is expressed in unmodified Accelerate, a purely functional language. We note that our
algorithm can potentially be generalised to other functional array languages that have a similar
structure to the Accelerate language. We implement the transformation in the Accelerate compiler,
which not only allows us to provide a natural interface to the programmer, but also means that
the transformed result program is subject to the same high-level optimisations in the Accelerate
compiler as the original program.

Furthermore, the internal program representation in the Accelerate compiler is a strongly-typed
abstract syntax tree, meaning that no compiler pass can produce type-incorrect code. While this
does not guarantee semantic correctness, it rules out a large class of bugs in the implementation
of the AD transformation.

In this project, we are guided by the following main research question:

• How can a reverse-mode AD system for Accelerate using source-code transformation provide
performance competitive with existing fast AD frameworks?

Important components of this main question are the following subquestions:

1. What additional language primitives, on top of those in the current Accelerate language,
are needed to express the gradient computation code for an Accelerate program?

2. How does one perform non-local full-program transformations (in particular, reverse-mode
AD) on a strongly-typed AST?

3. What optimisations, both generic compiler optimisations and improvements to the AD
algorithm, are necessary for competitive performance on top of a naive implementation of
AD?

3It also allows easier program analysis by the programmer, which is an additional benefit.
4The advantages of purely functional languages for parallel computation are also appearing in industry,

considering the popularity of frameworks like MapReduce [16] and TensorFlow.
5The authors of both the Futhark language and the Dex language [32] are working on a reverse-mode AD

implementation in their respective compilers; in both cases, this is ongoing and yet unpublished work. Both
developments were (partially) in parallel with this thesis project.

7

1.1 Contributions

In this report, we present the following contributions:

• A source-code transformation algorithm for reverse-mode automatic differentiation on an
Accelerate-like language, that covers most of the features present in Accelerate except for
loops.

• A working, usable implementation of this algorithm in the Accelerate compiler.

• Benchmarks showing that the implementation produces reasonably competitive code.

• Experiences and conclusions from building the implementation on a strongly-typed AST.

Unfortunately, due to time constraints, we were unable to do any significant optimisation on the
implementation after building it. Therefore, subquestion 3 will receive only a limited answer in
this report.

1.2 Report structure

First, in Section 2, we give background on the topics of automatic differentiation and functional
array languages, including a survey of relevant literature.

Then, in Section 3, we describe a model language that slightly simplifies the internal representation
of the Accelerate language in the compiler, and we define a reverse-mode AD algorithm on that
language. We give examples to illustrate the workings of the algorithm.

Afterwards, in Section 4, we describe the important observations made while writing the imple-
mentation, focusing on those parts where the implementation requires some extra creativity not
specified by the algorithm. In this section we also show how the implementation was tested in
order to instill some confidence as to its correctness.

In Section 5, we present benchmark programs to show that the implementation (together with
the Accelerate compiler) produces performant code.

Finally, in Section 6, we provide partial answers to the research questions, and provide reflections
and future work. Additionally, we will compare our work with existing, related work.

8

2 Background

The main aim of this thesis project is to implement a reverse-mode automatic differentiation
transformation in the Accelerate compiler. This touches two distinct areas of computer science: the
theory and practice of automatic differentiation (AD), and the study of functional programming,
including compiler theory, type-safe data structures, and functional array languages. These two
areas also have mostly disjoint collections of literature, and hence we will cover them separately
in the following sections.

2.1 Automatic differentiation

Automatic differentiation aims to efficiently differentiate numerical functions written in a pro-
gramming language. Such functions are generally defined on floating-point numbers (in order to
approximate real numbers), may use dynamic control flow (conditionals, loops), and can have
multiple inputs and multiple outputs. It is generally assumed that the function, though it may
invoke side effects, is still a pure function of its inputs, in the sense that given the same inputs,
it should give the same outputs. Under this assumption, we can think of the program as a
mathematical function f : Rm → Rn, for some m,n ∈ Z≥0.

The total derivative of such a function at a particular input point ~x ∈ Rm is the Jacobian matrix at
that point: Df(~x) ∈ Rn×m. Sometimes, what we are interested in is indeed the full Jacobian, but
automatic differentiation usually focuses on the reduced problem of either computing one column
of the Jacobian (forward-mode AD, or forward AD) or one row of the Jacobian (reverse-mode
AD, or reverse AD). Why we look only at these reduced problems and not at generating the full
Jacobian, we will find out after we discuss how AD computes these parts of the Jacobian.

A mathematical function defined by a program computes its result in multiple steps. Each step
modifies the state, or possibly a small part of it. It is useful to see a step as a function that maps
the previous state to the next one, starting with the function input as the initial state and ending
with the function output as the last state. Consider as an example the function g : R2 → R2,
defined by the following (informal) program that computes the sum and the product of its two
inputs:6

g = λ(x, y). let s = x+ y in let p = x · y in (s, p)

We can see g as being the composition of three smaller functions, each having their own respective
Jacobian:
g3 = λ(x, y, s, p). (s, p) g2 = λ(x, y, s). (x, y, s, x · y) g1 = λ(x, y). (x, y, x+ y)

Dg3 = λ(x, y, s, p).

(
0 0 1 0
0 0 0 1

)
Dg2 = λ(x, y, s).

1 0 0
0 1 0
0 0 1
y x 0

 Dg1 = λ(x, y).

1 0
0 1
1 1

Indeed, g3 ◦ g2 ◦ g1 = g. The full Jacobian Dg((x, y)) is the matrix obtained by multiplying the
individual matrices shown above, evaluated at the arguments at which the gi are evaluated in a
normal execution of g. That is to say:

Dg((x, y)) = Dg3(g2(g1((x, y)))) ·Dg2(g1((x, y))) ·Dg1((x, y))

In fact, this is a special case of the chain rule for derivatives, which in general can be formulated7

as D(g ◦ f)(x) = Dg(f(x)) ·Df(x).
6The informal language we use in the example here is meant to be a generic functional programming language

that can work with floating-point numbers and tuples of them.
7High school math may teach the chain rule with notation more similar to (f(x))′ = f ′(x) · x′. Note that we

only have to make this “x” a function of another argument to retrieve the rule ((f ◦h)(y))′ = f ′(h(y)) ·h′(y), which
is suspiciously similar to our notation. Indeed, generalisation from scalar functions to multi-argument multi-result
functions gives the rule used here.

9

However, a matrix M ∈ Rn×m can also be represented as a linear function, in two different ways:
one is λv. Mv, which takes a column vector of size m and left-multiplies M , and the other is
λv. vM , which takes a row vector of size n and right-multiplies M . An important observation is
that if v ∈ Rm contains a single “1” at position i and only zeros elsewhere, then Mv is precisely
the i’th column of M . Likewise, for v ∈ Rn with a single “1” at position i, v>M is precisely the
i’th row of M .

Suppose that we now want to do forward AD on g, i.e. we want to compute column i of the
Jacobian Dg. That column is equal to the following matrix–vector multiplication:

Dg((x, y)) · ei = Dg3(g2(g1((x, y)))) ·Dg2(g1((x, y))) ·Dg1((x, y)) · ei

where ei ∈ R2 is the column vector with a “1” on position i and zeros elsewhere. Because matrix
multiplication is associative, we may execute these multiplications in any order we want and
get the same result. However, in terms of number of arithmetic operations (scalar addition and
multiplication) executed, it is usually beneficial8 to associate this expression to the right, making
sure that we only perform matrix–vector multiplications.

Define, for each gi : Rn1 → Rn2 , an associated derivative function gfwd
i : (Rn1 ,Rn1)→ (Rn2 ,Rn2)

that is semantically equivalent to λ(x, d). (gi(x), Dgi(x) · d). We say “semantically equivalent”
because its exact implementation may not involve the matrix–vector multiplication. These
functions take an input x and the i’th column of the Jacobian of the preceding part of the
program, and return the original output of the corresponding gi on the input x as well as the i’th
column of the Jacobian of the program including this step. We then see that these derivative
functions compose to give the derivative function of a larger program: gfwd = gfwd

3 ◦ gfwd
2 ◦ gfwd

1 ,
where we define gfwd analogously to gfwd

i .

Suppose now that instead, we want to do reverse AD on g. The goal is now to compute row i
(not column i) of the Jacobian Dg, which is equal to the following vector–matrix multiplication:

e>i ·Dg((x, y)) = e>i ·Dg3(g2(g1((x, y)))) ·Dg2(g1((x, y))) ·Dg1((x, y))

where e>i is the 2-dimensional row vector with a “1” on position i and zeros elsewhere. Just
like before, to compute this product efficiently, it is usually beneficial in terms of number of
arithmetic operations executed to associate this expression to the left, making sure to only perform
vector–matrix multiplications.

In this case, however, it is unclear if there are grevi that, like gfwd
i for forward AD, compose to

compute the function value simultaneously with a row of the Jacobian. The reason is that for
forward AD, we chose the multiplication order to be in line with the natural execution order of
the program (g1, g2, g3), whereas here we are traversing the program in reverse! Indeed, while we
can write a function in our informal language that computes the full result g(x) and its Jacobian
row v ·Dg(x) from an input x and a row-vector v, it would look like this:

grev = λ(x, v). let x1 = g1(x)
in let x2 = g2(x)
in let x3 = g3(x)
in let d3 = v ·Dg3(x2)
in let d2 = d3 ·Dg2(x1)
in let d1 = d2 ·Dg1(x)
in (x3, d1)

(1)

8To be more precise, it is always beneficial in case none of the matrices Dgi are vectors, i.e. all have at least 2
cells along each side. However, this is the usual case in AD. In general, finding an optimal order (association) for
the multiplication of a list of matrices is NP-complete [39].

10

Note that for a function f : Rm → Rn, we had f fwd : (Rm,Rm) → (Rn,Rn), while for reverse
AD we have f rev : (Rm, (Rn)∗)→ (Rn, (Rm)∗). Here we write V ∗ for the vector space that is the
same as V , but with row vectors instead of column vectors.9

Contrary to the situation with forward AD, grev is split in a forward pass (called the primal pass)
and a backward pass (called the dual pass) through g. While we could also have written gfwd

in this manner, it was not necessary ; here it is, because the first computations in the dual pass
depend on the last results in the primal pass. It turns out that the necessity of this split is the
hallmark of reverse AD, and is the reason for many of its characteristics, including the relative
implementation difficulty as compared to forward AD.

2.1.1 What does AD compute?

Above, we gave two functions, gfwd = gfwd
3 ◦ gfwd

2 ◦ gfwd
1 and grev in Eq. (1), that respectively

(in addition to the normal function output of g) compute a Jacobian–vector product and a
vector–Jacobian product with the Jacobian of g. The Jacobian of a function f : Rm → Rn looks
as follows:

Df(~x) =

∂f1
∂x1

· · · ∂f1
∂xm

...
. . .

...
∂fn
∂x1

· · · ∂fn
∂xm

We can see that column i of Df is the column vector

(∂f1
∂xi
, . . . , ∂fn∂xi

)>. This contains the derivatives
of all output values with respect to the i’th input value, or in other words, the tangent vector of
f with respect to xi. In a sense, this is the sensitivity of f to changes in the value of the input xi.
The individual derivatives in this vector are called tangents : ∂fj

∂xi
is the tangent of fj with respect

to xi. Therefore, passing the column vector ei, where e1 = (1, 0)> and e2 = (0, 1)>, as the second
argument to gfwd returns the tangent vector

(∂g1
∂xi
, ∂g2∂xi

)>.
On the other hand, row i of Df is the row vector

(∂fi
∂x1

, . . . , ∂fi∂xm

)
, which is the gradient of fi

with respect to the input vector. The individual components of this vector are called adjoints:
∂fj
∂xi

is, in addition to the tangent of fj with respect to xi, also called the adjoint10 of xi in the
context of computing fj . This terminology of adjoints will come back later when we discuss
reverse AD specifically. As an example, passing the row vector e>i to grev computes the gradient
vector

(∂gi
∂x1

, ∂gi∂x2

)
.

By passing a vector to the function resulting from forward (respectively reverse) AD that does
not contain only a single “1” but multiple nonzero entries, the result is the linear combination of
columns (respectively rows) from the Jacobian with coefficients from the supplied vector. Indeed,
the case with a single “1” is a special case of this linear combination.

Why not the full Jacobian? As announced at the beginning of Section 2.1, in AD we often
restrict the problem of computing the full Jacobian to computing only a single column or row;
afterwards we described a way in which we can compute one such column or row. The question
remains, however, why it is useful to restrict the problem in this way.

Both gfwd and grev perform all the steps of the original function g (namely, g1, g2 and g3), as
well as, for each step, one multiplication of the Jacobian matrix of that step with a vector. These

9The V ∗ notation is really the vector space dual; however, the further theoretical implications of that are out
of scope in this work.

10The word adjoint has many meanings in mathematics. The meaning as used here and in the AD literature,
however, is completely unrelated to most other meanings; as far as we know, it is in particular also unrelated to its
meaning in category theory.

11

single-step Jacobian matrices are specific to the arithmetic operations performed in those steps,
and can often be written more concisely using the derivative of the arithmetic operation at hand.

For example, consider gfwd
2 (x, d), which was defined using Dg2(x) but can be rewritten as follows:11

gfwd
2 (x, d) = λ(x, d). (g2(x), Dg2(x) · d)

= λ((x, y, s), (xt, yt, st)).

(
(x, y, s, x · y),

1 0 0
0 1 0
0 0 1
y x 0

 · d)
= λ((x, y, s), (xt, yt, st)). ((x, y, s, x · y), (xt, yt, st, y · xt+ x · yt))

If we disregard the administrative work of packing and unpacking tuples, the only additional work
(compared to just g2) that is being performed here, is two multiplications and an addition. This
amount of additional work is the same for any step function that performs only a multiplication
operation. Similarly, other arithmetic operations will also result in a constant number of arithmetic
operations, meaning that the amount of additional work performed in the whole of gfwd is a
constant multiple of the work performed in g itself.

This holds for forward AD, but the same principle holds for reverse AD: the derivative expressions
may look somewhat different (indeed, they result from vector–Jacobian multiplication, not
Jacobian–vector multiplication), but the observation that the time complexity of grev is the same
(up to constant factors) as for the original g will again hold.

This, then, explains why we focus on computing a single column or row of the full Jacobian: that
is the part that we can compute with the same time complexity as the original function. Should
we really want the full Jacobian, we can either use multiple invocations of forward AD or of
reverse AD; the result (and the time complexity) is the same.

2.1.2 In practice

Essentially, the description of AD in the previous sections was on a programming language where
every primitive operator takes the entire state as input and produces a new program state as
output, thereby forcing any program to be a straight-line sequence of steps. While possibly
instructive, most programming languages do not work like that and instead have each operation
work only on a small, localised part of the program state. Indeed, g1 and g2 in the example above
worked exactly like that.

However, the principles of AD work the same in the real world, with the same distinction between
forward AD and reverse AD. Consider a slightly more complicated function than we used above:12

h = λ(x, y). x · y − y + ln(y) · x

We could write hfwd as follows, writing column vectors and row vectors equivalently as tuples
and using the ti variables for tangents of subexpressions:

hfwd = λ((x, y), (xt, yt)). let (x1, t1) = (x · y , y · xt+ x · yt)
in let (x2, t2) = (x1 − y , t1 − yt)
in let (x3, t3) = (ln(y) , yt/y)
in let (x4, t4) = (x3 · x , x · t3 + x3 · xt)
in let (x5, t5) = (x2 + x4, t2 + t4)
in (x5, t5)

11The names like “xt” here are abbreviations of “x tangent”, etc.
12This h has only a single output value. This will prevent us from illustrating again how reverse AD works with

multiple output values, but since the algorithm we present in this thesis only works for functions that return a
single scalar anyway, this is not a big loss.

12

Intuitively, this expansion can be related to the one we used for gfwd earlier by intelligently eliding
the parts of Jacobians that are essentially the identity matrix. Alternatively, we can explain hfwd

as follows: we divide execution of h up into individual arithmetic operations, and for each of
those operations, we compute not only the result but also its tangent (sensitivity) with respect
to an unknown value, under the assumption that xt and yt are the tangents of x and y with
respect to that same unknown value. For example, writing the unknown value as ξ, knowing that
∂y
∂ξ = yt implies (using the chain rule13) that ∂ ln(y)

∂ξ = ∂ ln(y)
∂y · ∂y∂ξ = 1

y · yt = yt/y, which is the
value assigned to t3 in hfwd.

For reverse AD, we could write hrev as follows: (note that because h : R2 → R, we have that
hrev : (R2,R)→ (R,R2), so the second argument to hrev is in R and thus a single scalar value14)

hrev = λ((x, y), d). let x1 = x · y
in let x2 = x1 − y
in let x3 = ln(y)
in let x4 = x3 · x
in let x5 = x2 + x4

...

...
in let d5 = d
in let (d2, d4) = (d5, d5)
in let (d3, dx

1) = (d4 · x, d4 · x3)
in let dy1 = y/d3
in let (d1, dy

2) = (d2, −d2)
in let (dx2, dy3) = (d1 · y, d1 · x)
in (x5, (dx

1 + dx2, dy1 + dy2 + dy3))

As with grev in Eq. (1), the definition of hrev is split in a primal part and a dual part. In the
primal part we compute the value h((x, y)) = x5, storing all intermediate values in variables. The
indices 1, . . . , 5 are arbitrary, and serve just to identify the subexpressions in h.

In the dual part we use a slightly different numbering to Eq. (1) that allows a more natural
intuition for what di means. In di, we store ∂ξ

∂xi
, i.e. the partial derivative of some unknown

value15 ξ with respect to xi, assuming that d = ∂ξ
∂h((x,y)) . This is what we called earlier the adjoint

of xi in the context of computing ξ; in the following, we will leave ξ implicit and talk simply
about “the adjoint of xi”. Using this terminology, for the input values, the adjoint of x is stored
in dx and the adjoint of y is stored in dy.

The adjoint of x5 (the function result) is d by definition, hence the assignment d5 = d in hrev.
Then knowing the adjoint of x5 = x2 + x4, we can compute the adjoints of x2 and x4: we get
∂ξ
∂x2

= ∂ξ
∂x5
· ∂x5∂x2

= d5 · 1 = d5 by the chain rule, and analogously ∂ξ
∂x4

= d5. Therefore, we assign
d2 = d5 and d4 = d5. In this way we use the adjoint of a particular subexpression xi, and the
partial derivatives of xi with respect to the other subexpressions used in it (its “arguments”, in a
sense), to compute the adjoints of those arguments.

Knowing the adjoint of x4 and x2, we can arbitrarily choose to continue with the arguments of
x4. Since x4 = x3 · x, we want to compute the adjoint of x3 and of x—except that that x is used
multiple times in h! What happens is that the real adjoint of x is the sum of the adjoints of
all its occurrences. This is evident if we look at what happens when we vector–matrix-multiply
the adjoint vector of the outputs of a function f = λ(x, y). (x, y, y) with the Jacobian of that
function:

(d1, d2, d3) ·Df((x, y)) = (d1, d2, d3) ·

1 0
0 1
0 1

 = (d1, d2 + d3)

13This is yet another way of formulating the chain rule for scalar values: ∂(g◦f)(x)
∂x

(a) = ∂g(y)
∂y

(f(a)) · ∂f(x)
∂x

(a).
14Strictly speaking, we should write hrev : (R2,R∗) → (R, (R2)∗), but we again simplify using the canonical

isomorphism here.
15This is a different ξ to the one in forward AD.

13

Indeed, if we have the adjoints of all the occurrences (usages) of a variable y, then the adjoint of
the value of y is the sum of the adjoints of its occurrences. Each of these occurrence adjoints we
call contributions to the adjoint of y, or adjoint contributions in general.

In the definition of hrev above, the contributions to the adjoint of x are written dxi for incrementing
indices i; similar notation is used for y. The final adjoint dx of x is then dx1 + dx2, and the final
adjoint dy of y is dy1 + dy2 + dy3 because y is used three times in h. These sums are written in
the return value of hrev.

After computing d3 (the adjoint of x3) and dx1, we compute the adjoint of the argument of x3
(namely, y) in dy1. Then, using d2 which we computed earlier, we compute d1 and dy2, and
finally, using d1, we compute additional contributions dx2 and dy3. The return value of hrev

contains the normal output value and the adjoints of the arguments of h, as stated above.

Now, based on this example, we make a few observations that will be important in informing the
design of our reverse AD algorithm later:

Fanout. If a subexpression has multiple usages in the function, each of those usages gets a
separate adjoint contribution, which are summed to produce the full adjoint of that subexpression.
We saw this in h where the arguments x and y were used multiple times. In other words, we can
formulate this observation as saying that fanout in the original function translates to addition in
the dual computation. The word “fanout” here refers to multiple outgoing edges on a node in
the data-flow graph of the function. This is a common principle when discussing reverse AD on
functional languages; see e.g. [42, §7]. This principle will come back in the algorithm that we
present in Section 3.

Primal is necessary. Another important observation to be made here is that the dual part of
the reverse AD transformation of a function really needs the intermediate values computed in the
primal part. For example, in hrev, the dual pass uses the value x3 computed in the primal pass.
While not all intermediate values from the primal pass are used in the dual pass, if we had none
of them, we would need to recompute them each time they are used. This would compromise the
important property that the time complexity of a function transformed using reverse AD is the
same (up to a constant factor) as the original function, because we may end up recomputing the
same value many times.

Dynamic control flow. The most important missing part in this introduction into automatic
differentiation is how to handle dynamic control flow : with this we mean conditionals and loops.
In forward AD, handling these language components is relatively straightforward: the dual number
construction explained in Section 2.1.3 (which produces a result similar to the way we wrote hfwd)
extends naturally to dynamic control flow. In reverse AD, the story is more complicated because
we need to reverse the control flow in the dual pass; for one way to handle conditionals, see the
algorithm we present in Section 3. For loops, and other ways to handle dynamic control flow,
refer to, for example, the implementation of reverse AD for the Julia programming language [29],
tape-based approaches (e.g. [24]), or more complicated algorithms that treat the program in
question in a more abstract way (see Sections 2.2.1 to 2.2.3).

Imperative languages. In this thesis we consider automatic differentiation from the perspecive
of functional programming languages. Literature has also been written on the application of AD
for imperative programming languages that allow mutation of variables; this is both an advantage
(allowing dynamic accumulation of adjoints in the dual phase, instead of having to keep track of
which adjoint contributions to add) and a disadvantage (the source program may also contain
mutation). While we consider the presence of mutation in the object language out of scope in

14

this thesis, we will discuss in Section 2.1.3 the idea underlying (possibly in an indirect way) most
implementations of reverse AD for imperative languages, which is taping.

Memory usage in reverse AD. The most important difference between forward AD and
reverse AD is what they compute: forward AD computes a column of the Jacobian, or equivalently
the tangents of the function’s outputs with respect to a single input, while reverse AD computes
a row of the Jacobian, or equivalently the gradient of one of the function’s outputs. However, in
practice, another notable difference is that reverse AD is much more resource-intensive. Even
if the number of primitive operations executed is only a constant factor more than the original
function would have executed, the amount of memory used in the process is much larger: many16

of the intermediate values need to be kept around in memory, where the original function only had
to remember all values that are actually used multiple times in the function. The administration
related to this increased use of memory can play a role in making the constant factor increase
in computation time between reverse AD and the original function quite significant in practice.
One way to reduce the memory usage is by using the checkpointing optimisation as described in
Section 2.1.4.

However, even if such optimisations are not applied and reverse AD is used as-is, in the case that
the function in question has many input parameters and only one output parameter, computing
its Jacobian (i.e. its gradient) is still much more efficient in terms of execution time using reverse
AD than using forward AD. This is because reverse AD needs just one evaluation of the function,
instead of one per input parameter for forward AD.

2.1.3 Implementation methods

In the discussion of AD up until now, we went from multiplication of Jacobian matrices via
composition of derivative functions to a source-code transformation for a simple functional
language. In the traditional AD literature, one does not go to a functional language but instead
to Wengert lists, a representation that may be somewhat more natural when considering AD for
imperative languages. A Wengert list is a sequence of three-address operations: xi = xj ⊗ xk
for some primitive operation ⊗, considering x1, x2, . . . to be the program state in the form of
variables. Just like our exposition above, this representation does not consider dynamic control
flow, and just looks at a sequence of executed operations.

The traditional way of performing AD on Wengert lists is much the same as what we did in
Section 2.1.2, both for forward AD and for reverse AD. A description can be found, for example,
in [35, §2.1–2.2].

If one wants to add dynamic control flow to the object language for AD, there are multiple
approaches that one can take. A priori, dynamic control flow does not map nicely to the functional
representation in Section 2.1.2, nor to Wengert lists: both do not (easily) support conditionally
or repeatedly executing a section of the code. For forward AD, an easy way to avoid this trouble
is to use the dual number construction. For reverse AD, the methods of solving this problem can
be broadly grouped in two categories: define-by-run approaches and define-then-run approaches.
We will discuss these three directions in this section.

Dual numbers. The dual number construction for forward AD can be seen as a generalisation
of the method we used to write hfwd in Section 2.1.2, and works very well with operator overloading

16In hrev above, and in the algorithm in Section 3, the primal pass computes and stores all intermediate values.
However, not all of these are actually needed in the dual pass. Fortunately, because our algorithm is a source-code
transformation, we can benefit from dead-code elimination in an optimising compiler to remove these redundant
primal values for us.

15

if the language in question supports this. Operator overloading is a term from certain object-
oriented languages like C++, and refers to providing alternative implementations for primitive
operators17, like +, −, ≤, etc., when used on particular (usually library-provided) object types.
Haskell has the (for our purposes) equivalent concept of type classes (e.g. Num).

The idea is that we require the to-be-differentiated program to not be written using floating-point
numbers directly, but to instead be generic over the actual number type used. When this number
type is instantiated to the language’s concept of floating-point numbers, the function computes the
normal function result. When doing forward AD, we instead instantiate this number type to a dual
number. A dual number is a pair (x, d) of floating-point numbers, where x is the normal, primal
value at that point in the computation, and d is the derivative (the tangent, see Section 2.1.1)
of x with respect to some unknown value ξ, as in Section 2.1.2. Differentiable arithmetic
operators and functions can be implemented for this pair type using operator overloading:
(x, d) + (y, d′) = (x+y, d+d′) since ∂(x+y)

∂ξ = ∂x
∂ξ + ∂y

∂ξ ; similarly, (x, d) · (y, d′) = (x ·y, x ·d′+y ·d).
Operations that would normally produce an integral result (such as comparison operators) discard
the derivative part of the dual number: if a function f has an integral result and f is differentiable
at x, then ∂f(x)

∂x = 0, so there is no information to be kept in the dual number.

Executing a function that is generic over its number type using dual numbers, where the tangents
of the input values with respect to ξ are passed in the derivative parts of the input dual numbers,
produces a result that is also expressed using dual numbers. These outputs contain the tangents
of the result values with respect to ξ.

In order to really obtain a high-performance forward AD implementation using the dual-numbers
approach, one may need some special, additional optimisations like array-of-struct to struct-of-
array translation. This puts data values of the same kind next to each other, aiding in vectorisation
on CPU and GPU platforms. Some languages, typically array-oriented ones such as Accelerate,
already perform such representation translations automatically, but in others additional work
may be necessary.

Despite the necessity of some additional work for a high-performance implementation, imple-
menting forward AD using dual numbers is nevertheless very natural in languages that support
operator and function overloading, and can result in a very compact implementation of forward
AD. However, dual numbers are not suitable for reverse AD, because they do not have any impact
on the program’s control flow. For reverse AD, we have to look at other methods instead, which
we categorise as define-by-run and define-then-run methods.

Define-by-run. Consider a program in a hypothetical programming language that contains
some dynamic control flow, and suppose we only know how to perform reverse AD on Wengert
lists, which cannot represent dynamic control flow. If we execute our program on a particular
input, it will take a particular path through the control flow structures contained within, executing
operations along the way, and finally returning some output. An execution trace of the program
is this list of operations executed, and this can, one way or another, be written as a Wengert
list of operations. This trace will potentially only be valid for this particular input, but it is a
representation that we can then perform AD on to compute its gradient for this input.

This execution trace is generally called a tape. Using a tape to do AD is a very runtime-centric
approach: how exactly the operations on the tape will look is only determined at runtime of
the program that we are trying to differentiate. In particular, when we start differentiating the
Wengert list given by the operations on the tape, we are essentially writing an interpreter (that
executes its input in reverse, computing the gradient) for the ad-hoc language of three-address
instructions on the tape. If the programming language in question has a compiler (be it an

17For AD, one generally also wants other functions (sin, sqrt, etc.) overloaded for thus purpose. While this is
technically function overloading and not operator overloading, we use the latter term to cover both here.

16

ahead-of-time compiler or a just-in-time runtime compiler), then by writing this interpreter, we
are missing out on all the optimisations that the compiler could perform on the original program.
To give an example: if the original program performed a multiplication that could statically be
determined to be a multiplication with zero, then the compiler will probably have removed that
operation from the optimised program, but our tape will still contain this operation because the
compiler does not understand that this tape-write action is unnecessary too (and what to replace
it with). Only if we re-implement such optimisations ourself in the differentiation transformation
do we re-gain the benefits of compiler optimisations on the code being differentiated.

In addition to optimisations in the original program, an implementation of define-by-run may
also miss out on optimisations that span over the whole gradient program, including both the
primal and dual passes. For example, if the primal pass stores a value to memory that the dual
pass never actually needs, this store can be eliminated. Detecting this in an effective manner
requires insight in the source program, to be able to run a to-be-recorded analysis [23]; however,
in a define-by-run implementation, the original program source is often unavailable, making such
an analysis impossible.18

This method of writing a program execution to a tape and then differentiating that tape is called
define-by-run: the derivative is defined by a run of the program. While the description above is
of a naive implementation of the method, and some optimisations can be applied to improve the
performance, define-by-run approaches are a priori not the most effective way to get a very fast
AD implementation.

On the other hand, the advantage of define-by-run approaches is that very few restrictions need to
be laid on the program to be differentiated: as long as, upon execution, the operations performed
can be serialised to a tape (and they generally can be, since they have to be executed using
sequential processor instructions), we can differentiate the program. This can make for easy-to-use
systems that enjoy automatic compatibility with higher-level ways to write the input program.

Examples of implementations of define-by-run AD are Autograd [31] and PyTorch [41].

Define-then-run. Define-then-run approaches (also called define-and-run) are typically im-
plemented as a source-code transformation (a term which includes AST transformations in a
compiler), meaning that the code that gets compiled into machine code is not the original program,
but one with additional code to compute the gradient. The key property of an implementation
using define-then-run, as compared with define-by-run, is that the performed operations are not
stored on a tape.

This does not mean that there must be no tape-like memory area at all: for example, Tapenade [24]
implements reverse AD using a source-code transformation by storing the intermediate values,
as well as bits indicating which conditional branches are taken, on a stack that is unwound by
a reversed copy of the code that computes the gradient. This stack functions quite like a tape,
but because the operations themselves are written as code in the second half of the transformed
program, the compiler can still optimise the entire transformed program, including the gradient
code.

However, to get an even larger benefit from doing AD using a source-code transformation19,
one has to do away with the tape wholesale and fine a different method of storing the primal
intermediate values that is more introspectable by the compiler. This is possible for many
languages [42, 55, 29], and is also what we do in the algorithm defined in Section 3. Doing this

18This can potentially be partially eliminated using expression templates (Section 2.1.4), but because those
cannot cross dynamic control flow, it is likely they still cannot “connect” the primal and dual passes.

19This additionally makes it easier to express the gradient program in a purely functional language.

17

allows the compiler to inspect all data flow in the program, including from the primal pass to the
dual pass, enabling it to optimise at will.

The difficulty of define-then-run AD is that one has to perform a non-local full-program trans-
formation that actively rearranges control flow in the preprocessed program to run in reverse
in the second pass. This difficulty depends significantly on the features in the source language:
the presence of mutation, as well as complex dynamic control flow like general recursion, virtual
function calls or general higher-order functions, are elements that make designing a define-then-run
reverse AD transformation more difficult. On the other hand, the benefits are better optimisability
of the gradient program by the compiler and lower memory usage (the operations performed need
not be saved, only the necessary intermediate values). Furthermore, even aside from compiler
optimisations, defining the dual pass of the gradient program as native code instead of interpreted
operations on a tape already promises better performance.

A downside of a define-then-run implementation is that the code that runs is not the original
code that the programmer wrote, making debugging harder (except if significant effort is made to
improve this experience).

Examples of implementations of define-then-run AD are Tensorflow [1], Theano [4] and Tape-
nade [24].

2.1.4 Optimisations

The basic implementations of AD described above in Section 2.1.3 can be refined in multiple
ways. Some well-known ways are listed here.

Retaping. If the implementation uses a tape to store the arithmetic operations and its inter-
mediate values, for example for reverse-mode AD, then the same memory allocations, including
the operations (but excluding the intermediate values), may be re-used if the same function is
run again with the same inputs or if the dynamic control flow is the same. This can be used by
an implementation to speculatively use the same tape as the last execution, only copying to a
new tape if control flow is proven to differ [35, §3.2.2].

Checkpointing. One of the most severe downsides of naive reverse-mode AD is the necessity to
record all intermediate values in the primal pass, which can cost a lot of memory. Checkpointing
provides a tradeoff here between memory usage and execution time. By only storing intermediate
values at certain checkpoint positions in the program, and re-running the original computation
between those checkpoints when necessary, peak memory usage can be decreased at the cost of
longer runtime [35, §3.2.3]. By intelligently placing checkpoints, one may also reduce the memory
costs to sublinear in the program runtime, at the cost of superlinearly increasing the runtime of
the Jacobian computation [50].

Expression templates. A define-by-run implementation (using taping) of reverse AD may
define its programmer interface with operator overloading: the overloaded operator would, in
addition to computing and returning the primal value, write the performed operation and the
necessary temporary values to the tape as a side-effect.20 As discussed in Section 2.1.3, this may
result in redundant operations being written to the tape, and also in a lack of optimisations being
applied to those operations.

To recover the ability to perform some compiler-like optimisations when using AD in this manner,
the implementation may decide to make the overloaded operators not directly return the computed
value, but instead a fragment of an abstract syntax tree (AST) corresponding to the computation.

20This is a viable method only in languages where invasive side-effects like these make sense, like C++.

18

In languages that support some compile-time computation, this allows us to perform optimisations
on the collected trees that the compiler may not already be able to do, such as using a special
derivative for a particular composition of functions. In general, this approach works well for
sections of the program that contain no dynamic control flow, but this may depend on the
metaprogramming capabilities of the language.

The AST fragments constructed by such an implementation are called expression templates [35,
§3.3]. This technique is used in the Adept AD library [27], as well as in various libraries outside
of AD, including the C++ linear algebra library Eigen21.

Local custom derivatives. If the programmer performs a complicated computation in a
function processed with AD, in particular an approximation of some transcendental function
like erf or lgamma (ln ◦ Γ), there might be a simpler way to compute its derivative than to
differentiate and compose all its elementary steps. In such cases, an AD implementation may
allow the programmer to supply a custom Jacobian generator for such a function [35].

Supporting local custom derivatives is an important feature of performant AD implementations
in practice. This is not only so that the programmer can manually provide more performant
derivatives for particular pieces of code, but additionally for reasons of flexibility: local custom
derivatives can also be used to add primitives to the source language of the AD implementation.
An example could be a highly-optimised matrix multiplication routine implemented using a call to
an external library, that the AD implementation cannot know how to differentiate. The derivative
of matrix multiplication can probably be implemented using the same library, and with a custom
derivative facility in the AD implementation, the programmer can now use this efficient matrix
multiplication routine in their program to be differentiated.

Mixed-mode AD. Mixed-mode AD is a generalisation of forward/reverse-mode AD, and
means not treating an entire program uniformly using reverse or forward-mode AD. It is relatively
uncommon in practical AD implementations, but can be helpful in certain specialised cases,
in particular when computing a full Jacobian instead of only a Jacobian–vector product. For
example, if a program takes a large number of inputs, summarises those down to a single value,
and then generates many outputs from that single value, the optimal strategy might be to
compute the Jacobian (gradient) of the first half separately using reverse mode, then the Jacobian
(elementwise derivative) of the second half separately with forward mode, and finally multiply
these two (a vector–vector outer product). While computing the optimal strategy in general is
NP-complete [39], heuristics can be applied, possibly with programmer aid.

2.1.5 Higher-order derivatives

Some applications, such as certain probabilistic algorithms as well as Newton’s method in
optimisation [35, §5.3], require second or higher-order derivatives of the function being optimised.
One way to obtain these using AD is to use a sort of Taylor mode, where instead of only the
first-order derivative (which is also the first Taylor series coefficient), a longer prefix of the Taylor
series of the program is computed. This has been implemented in e.g. ADOL-C [22] for forward-
and reverse-mode AD using operator overloading in C++. However, at least for second-order
derivatives, it is usually easier to apply forward-mode AD first, followed by reverse mode over the
transformed program. This computes a Hessian-vector product [35, §5.3].

The last approach can be implemented, and generalised, if the AD implementation supports
nested application of the derivative operator. This is usually quite complex, especially for reverse-
over-reverse, and can have subtle implications on correctness and usability, depending in severity
on the strengh of the type system in the host language [34].

21For example, see http://eigen.tuxfamily.org/index.php?title=Expression_templates.

19

http://eigen.tuxfamily.org/index.php?title=Expression_templates

2.2 Functional AD

The discussion of implementation methods in Section 2.1.3 mostly concerned the traditional context
of AD, which is impure imperative programming languages. For functional languages, especially
pure ones, literature proposes a number of ways to implement reverse-mode AD. Forward mode is
seen as a solved problem in this section, since the operator overloading implementation with dual
numbers is completely satisfactory: it can be implemented as a library, and all computations are
transparent to the compiler, allowing the compiler to optimise the code at will. A good example is
the implementation in [49], which applies further optimisations to forward AD to make it feasible
even for some gradient-computation tasks. The only real difficulty is computing higher-order
derivatives using iterated AD, in which case one must watch for perturbation confusion [34].

2.2.1 On untyped lambda calculus

In a seminal paper [42], an operator on a Scheme-like untyped lambda calculus is described that
can be used to perform reverse AD on any expression in the language. This AD operator,

←−J , also
supports self-application, so that it can be used to support nested reverse AD for higher-order
derivatives or nested optimisation. The operator is fairly complex; this is due to the complexity
of the language that it works on (being both untyped and higher-order), as well as due to the
support for nested AD.

An AD transformation on a language L is allowed to produce output that uses the full language
L. The operator

←−J uses this freedom: even if the input program does not contain any higher-
order structures, the output will contain many inline closures that are treated as first-class
objects. Accelerate is not a higher-order language, so using the operator

←−J to implement an AD
transformation on Accelerate would not be possible without at least some amount of effort to
eliminate the usage of higher-order structures in its output. Furthermore, while the generality of
the input language should allow translation of Accelerate’s array primitives to something that
←−J understands, it is unclear whether the output can always be converted back again to array
primitives. To avoid these translation issues between untyped lambda calculus and the Accelerate
language, and possibly define a simpler AD operator (for our simpler language) along the way, we
choose to not directly apply the methods from [42] on Accelerate in this thesis.

2.2.2 Delimited continuations

If the host language has built-in support for the shift/reset control operators (implementing
delimited continuations [13]), there exists a very natural reverse-mode AD source code transforma-
tion in terms of shift/reset and some mutable cells [58]. While shift and reset can be eliminated
using a continuation-passing style (CPS) transform [45], the resulting code is not in standard
CPS form: calls to continuations are not always tail calls. This prevents the standard un-CPS
transformation [19] from applying here.

An alternative method to reduce the code back to a first-order program is using defunctionali-
sation [46]. This is also more generally applicable on code that uses function calls for control
flow instead of structures like sequencing and loops. The idea is to create a sum type, with
one constructor for each creation of a lambda function in the program. The arguments of those
constructors are the free variables of the corresponding lambda functions. Introductions of lambda
functions are then replaced with invocations of the corresponding sum type constructors, and
calls of function-typed variables are replaced with a call to apply: this is the elimination function
for lambda tags, and takes a sum type arm and an argument, then executes the code in the body
of the original lambda function for that argument. For a survey and more thorough treatment of
defunctionalisation, see [14].

Aside from the usage of control operators, an additional complication using the AD method

20

from [58] is that the produced program contains mutation. This mutation is limited to additive
accumulators, but since our language (Accelerate) is pure, this nevertheless needs to be emulated,
or statically eliminated. This is a possible future research direction.

2.2.3 Via categorical language

The simply-typed lambda calculus (STLC) can be modelled by any Cartesian Closed Category
(CCC); for our purposes, a CCC can be seen as a Haskell data type that is an instance of a
particular type class CCC. The operations defined by CCC are such that it can express STLC
programs in a combinator representation, or point-free style [17]. This combinator representation
has number of properties that make it a natural language to express AD in [18, 55]; this is one of
the possible interpretations of this combinator form, with others including one corresponding to
normal evaluation via β-reductions [17].

The result of the AD interpretation of CCC (at least if one wants explicit control over the AD
mode, e.g. forward or reverse) is point-free code in something resembling continuation-passing
style that computes both the primal and the derivative result. There is no explicit tape, graph or
other such structure, so storage is implicit in closures. It is currently unclear how to compile this
code down to an efficient first-order program that can be run on actual hardware, but progress is
being made [55].

2.2.4 Via compiler optimisations

A different way to approach reverse-mode AD is to start with forward mode and try to optimise
it to something resembling reverse mode. This has been shown [49] to work on a functional array
language based on pull-arrays: the only array-construction operation is build, corresponding to
generate in Accelerate, and the only array-consumption operation is ifold, corresponding to
fold ◦ indexed in Accelerate. Forward-mode AD is defined using the dual numbers approach;
then a number of compiler optimisations can be defined [49, Fig. 8] that use distributivity laws
in various well-chosen places to simplify out the duplicate work in computing a gradient using
forward-mode AD.

If the original program does not contain significant dynamic control flow, this can produce the
efficiency of reverse mode while not actually implementing reverse mode directly. While recent
work [10] has proven that the transformations in [49] are semantically correct, it is yet unclear
for which input language it can be guaranteed that these compiler optimisations really produce a
result with the time complexity of reverse AD.

This approach to reverse mode is attractive because it solely consists of local transformations and
does not involve mutation, nor higher-level structures like closures, continuation-passing style,
program reinterpretations, etc. However, since dynamic control flow cannot be easily handled by
these distributivity-based rewritings, the method would at least need to be extended before it
can be applied effectively on more complex programs.

2.3 Functional programming

Besides automatic differentiation, the topic of this thesis also touches on some areas of functional
programming research, most particularly functional array languages and type-safe program repre-
sentations. Accelerate is a compiler for a functional array language, and during the compilation
process it represents the subject program in a type-safe AST, using generalised algebraic data
types (GADTs) and De Bruijn-indexed environments. We will cover these topics in the following
subsections.

21

2.3.1 Functional array languages

The creation of functional array languages is driven by the wish for a language in which one can
effectively express aggregate, parallelisable computations, with the condition that it must be easy
to reason about its semantics. This latter point pertains both to software reasoning as well as
human reasoning: for software it means opportunities for optimisation, compilation for various
types of backends, and possibly correctness analyses; for humans, on the other hand, it means a
more direct interface to that software, and more insight into correctness of the program. The
focus on aggregate, parallelisable computations is to be able to exploit massively parallel hardware
like GPUs, which are the typical backend for performance-oriented array languages [8, 25, 52, 28].

The trend for functional array languages is to build on a certain set of higher-order primitives
for aggregate computation. The core of this set consists of generate, which takes an array size
specification and a function from array indices to values, and produces an array filled with the
outputs of that function; and fold, which uses an associative binary combination function to
reduce, or summarise, one or more dimensions of an array to a single value. This way of basing
the array construction primitives on generate (also called “build” in other settings) is the core of
pull arrays [53]; there are alternatives.

This basic language can be extended, either by enlarging the set of possible computations
the language can efficiently express, or by implementing special-purpose operators that—while
functionally subsumed by existing operators—can be implemented more efficiently than their more
general counterpart. An example of the first type is scan, which computes the prefix sums of an
array, where the +-operator may be replaced by any associative binary operator. scan has been
shown to have significant applications as a highly-optimised basic operator in imperative code [9],
and can also be efficiently implemented on GPUs [48]. The functionality exposed by scan cannot
be obtained with reasonable time complexity using generate and fold. A different enlarging
example is segmented versions of fold and scan: these perform their respective operation on
subarrays demarcated by a segment array (or bitvector, depending on the implementation). All
these operators are implemented in Accelerate.

Examples of the second kind (specialisation of a more general primitive) include map and zip.
Another example is given by an operator that Accelerate does not currently implement specially,
but that does exist in e.g. Futhark: fold_comm22 is a version of fold that assumes its binary
operator is not only associative, but also commutative. This allows a more efficient parallel
implementation of the fold.

An additional specialisation example is a primitive for stencil operations. Stencil operations are
somewhat like map, except that in the computation of an output element, the computation may
use not only the corresponding element in the input array but all elements in a small window
(e.g. of radius 1 or 2) around that input element. They are used for various kinds of physical
simulations, and have been the focus of research regarding their efficient implementation on
GPUs [47], also in Accelerate [21]. Stencils are special cases of generate, but have more advanced
specialised algorithms available, capitalising on the spatial locality of their memory access pattern.

2.3.2 The Accelerate language

The Accelerate language is an embedded domain-specific language (EDSL) in Haskell. This means
that a program written in Accelerate is a piece of Haskell code that is written using (almost) only
functions and types provided by the accelerate [12] library. Any operations from outside this
library that the program uses are in essence metaprogramming from the perspective of Accelerate:
they determine how the elements of the EDSL are combined to form the program in the real
Accelerate language.

22Called reduce_comm in Futhark: https://futhark-lang.org/docs/prelude/doc/prelude/soacs.html.

22

https://futhark-lang.org/docs/prelude/doc/prelude/soacs.html

As a consequence, the Accelerate language essentially consists of a number of primitives, imple-
mented in, and exported by, the accelerate library. The following is a (small) example of an
Accelerate program:

1 \a -> fold (+) 0 (map (\x -> x * x) a)

When used with the accelerate library (which overrides a number of definitions from the
standard Haskell prelude), fold and map in the above code fragment have the following types:

1 fold :: (Elt a, Shape sh) => (Exp a -> Exp a -> Exp a) -> Exp a -> Acc (Array (sh :. Int) a)
2 -> Acc (Array sh a)
3 map :: (Elt a, Elt b, Shape sh) => (Exp a -> Exp b) -> Acc (Array sh a) -> Acc (Array sh b)

The type of fold implies that the operator (+) in the above fragment gets, for some admissible
Accelerate element type a, the type Exp a -> Exp a -> Exp a, and indeed for the expected
values of a, Exp a is an instance of the standard Haskell Num type class.

An array in Accelerate has type Array sh a, where a is the type of the elements of the array
(e.g. Float), and sh is the shape type of the array. An array’s shape type encodes the rank
(the number of dimensions) of the array on the type level. An example of a shape type in the
Accelerate EDSL is Z :. Int :. Int, which is the shape type for a two-dimensional array. Z
is the shape type for a zero-dimensional array, containing exactly one element. The operator
(:.) associates to the left, so if sh is the shape type of an n-dimensional array, sh :. Int is the
shape type of an (n+ 1)-dimensional array. A two-dimensional array with elements of type Float
has type Array (Z :. Int :. Int) Float; using some type aliases this may alternatively be
written Array DIM2 Float or even Matrix Float. The Shape type class contains exactly the
types Z, Z :. Int, Z :. Int :. Int, etc.

Ignoring for a moment the “Exp” and “Acc” occurring in the types, we can now explain what
these primitives, and thus the program shown above, do. The map primitive constructs a new
array containing as values the results of applying its first argument to each element of the array
in its second argument. The fold primitive takes an associative combination function and an
initial value, and reduces along the inner dimension of the array argument (placing the initial
value on the left). The result of a fold is an array with one dimension less than the argument
array: the inner dimension has been summarised into a single value.

Therefore, the program (\a -> fold (+) 0 (map (\x -> x * x) a)) computes the sum of
squares along the inner dimension of its argument array.23 If a is a single-dimensional array, the
result is a zero-dimensional array containing a single value; if a is a two-dimensional array, the
result is a one-dimensional array containing the sum-of-squares results of the rows24 of a. The
map and fold primitives are rank-polymorphic, and as a result, our example program is too.

Staged compilation. We said that an array in Accelerate has type Array sh a, but the
inferred type of our example program above by the Haskell compiler is the following:25

(Num a, Shape sh) => Acc (Array (sh :. Int) a) -> Acc (Array sh a)

We cannot simply pass an array to this function, because we would need to somehow lift our
array to something within Acc. So what is this Acc?

23Should one wish to reduce over the entire array instead of only the inner dimension, one can replace fold
with foldAll, which returns a value of type Acc (Array Z a), a zero-dimensional array which contains one
element. foldAll is defined in terms of the reshape and fold primitives, by first flattening the argument to a
single-dimensional array and then applying fold.

24That is, if a two-dimensional array is seen as being in row-major order. This is just a question of interpretation;
Accelerate itself is well-defined speaking just about the “inner dimension”.

25The Num type class here is Accelerate’s version, defined as type Num a = (Elt a, Prelude.Num (Exp a)).

23

Accelerate is an embedded language, and the real compilation of the Accelerate program does not
happen until runtime of the Haskell program: the Accelerate compiler runs at runtime of the
Haskell code (see Section 2.3.4).26 Therefore, all the primitives themselves actually do is build up
an abstract syntax tree (AST) of the program in the Accelerate language. A value of type Acc a
is the AST of an Accelerate program that would produce a value of type a when evaluated, for
all a that are (possibly nested) tuples of Array sh t types. For scalar (i.e. non-array) types a,
Accelerate uses Exp a instead.

Evaluation of an Accelerate program is done using the run function provided by an Accelerate
backend, which has type Arrays a => Acc a -> a; the Arrays type class specifies that a must
be a tuple of Array sh t types. This run function compiles and then evaluates the program; in
practice, one should probably instead use the runN function that allows compiling a program once
and running it many times on different inputs. The Accelerate documentation contains more
information on the specifics here.

Conversely, to lift constant values from Haskell into an Accelerate program, the primitives
constant :: Elt a => a -> Exp a and use :: Arrays a => a -> Acc a are provided.

Stratification. In the Accelerate compiler, the Accelerate language is stratified in two separate
languages: the array sublanguage and the expression sublanguage. In the embedded language
in Haskell that Accelerate presents to the user, these correspond respectively to the primitives
returning Acc values and those returning Exp values. The array sublanguage contains operations
on arrays like generate, map, fold, scan, permute; these are the aggregate array operations that
make Accelerate a parallel array language. The arguments to these primitives are either arrays
(which can, of course, be the result of another array primitive), or expressions or expression
functions. An expression function is no more than a Haskell function that takes arguments in Exp
and returns a result in Exp; a program represented by an AST in Exp is called an expression. The
expression sublanguage provides all of the expected arithmetic operations for integers, floating-
point numbers, etc. and is used to write the scalar computations that are performed in parallel in
the aggregate array operations.

In addition to these basic operations, both the array and the expression sublanguage allow for
constructing and projecting tuples of values, as well as for conditionals (if-expressions) and
unbounded loops (while-loops). Furthermore, the expression sublanguage contains primitives for
querying the shape of an array, as well as for indexing into an array.

The shape of an array of type Array sh a is a value of type sh, hence the shape function in
the EDSL has type (Shape sh, Elt a) => Acc (Array sh a) -> Exp sh. Recall that shape
types are of the form Z or sh :. Int for a shape type sh; since these types are defined as follows:

1 data Z = Z
2 data sh :. i = sh :. i

the shape of a two-dimensional array can be e.g. Z :. 2 :. 3 for a 2-by-3 array.

The array indexing operator has the following type:

1 (!) :: (Elt a, Shape sh) => Acc (Array sh a) -> Exp sh -> Exp a

so that, for example, the top-left element in a two-dimensional array a can be obtained using the
code a ! constant (Z :. 0 :. 0).27

26Actually, Accelerate supports running EDSL compilation at compile-time of the Haskell program using
TemplateHaskell. We glance over that in the discussion here.

27The examples here do not use non-constant array indices, but this is not because of any inability in Accelerate:
Accelerate provides a pattern synonym ::. that allows transparently converting between shape-typed values
and lifted versions of those values. For example, if i and j have type Exp Int, then Z ::. i ::. j has type
Exp (Z :. Int :. Int), whereas Z :. i :. j would have type Z :. Exp Int :. Exp Int, which is not a useful

24

A crucial characteristic of the shape and (!) primitives in the expression sublanguage is that
they take an Acc value as argument, but return an Exp value. This has the potential for producing
nested parallelism [8]; consider for example the following three programs, all of which have type
Num a => Acc (Array (Z :. Int) a) -> Acc (Array (Z :. Int) a):

1 \a -> let b = sum (map (+ 3) a) in map (\x -> x + b ! constant Z) a
2 \a -> map (\x -> x + sum (map (+ 3) a) ! constant Z) a
3 \a -> map (\x -> x + sum (map (+ x) a) ! constant Z) a

The first two are exactly equivalent28: first the sum is computed over the values of a with 3
added to each element, and then we return an array that is a with the just-computed sum added
to each element. These are fine Accelerate programs. The third program, however, is different in
that the first parallel computation, sum (map (+ x) a), depends on the value x and thus cannot
be lifted out with a let-binding.

The third program exhibits nested parallelism: the individual computations in the outer parallel
map operation themselves also use parallel operations to compute their result. Accelerate does
not currently allow this, and rejects the third program at runtime, when the staged Accelerate
program is analysed and compiled to native code. Unfortunately, nested parallelism is not yet
detected and forbidden by the type system at compile time of the Haskell code.

The prohibition of nested parallelism ensures that the stratification of Accelerate into an array
sublanguage (which contains parallel operations) and an expression sublanguage (which contains
only non-parallel scalar operations) cannot be cheated. Furthermore, since the elements of an
array can only be scalar types in Accelerate, arrays are necessarily “rectangular”, meaning that
all parallelism in Accelerate is regular parallism [33].

Second-order representation. The stratification into a parallel array sublanguage and a
sequential expression language makes Accelerate not a higher-order language, but a second-order
language. While morally the aggregate array operations described in Section 2.3.1 are higher-order,
in Accelerate they are restricted by the prohibition of nested parallelism, thus creating only a
single “layer” above the first-order expression language.

This separation, of the language of parallel operations and the language of the sequential scalar
operations within those parallel operations, serves to make efficient compilation into GPU kernels
easier. Indeed, a GPU kernel consists of a piece of code running on a single, sequential GPU
thread, and a specification for running that piece of code in parallel over all the cores of the
device. In CUDA29, this sequential piece of code is the __kernel__ function, and the parallel
specification corresponds with the <<<...>>> call syntax.

A thread in a GPU kernel cannot start new GPU kernels; an exception to this restriction is
device memory allocation, but even this is suboptimal from a performance standpoint. Therefore,
compiling for a GPU means that, at least at the end of the compilation pipeline, one cannot have
any nested parallism in the program to be compiled. Therefore, to support nested parallism in
the EDSL, the Accelerate compiler would have to convert the program to one or more separate
programs that are each devoid of nested parallism. Performing this conversion in a general way
that also results in performant code, is not an easy problem.

More recent work on Accelerate has implemented support for a limited amount of irregular nested
parallelism in the form of sequences of array computations: [33] implements regular sequences
for dynamic work distribution, which a later publication [11] extends to irregular sequences.

type in Accelerate (except to lift to the former type). The pattern synonym is bidirectional and can therefore also
be used for binding variables, in which case it unlifts the :. elements of the value and leaves the indices lifted.

28In fact, the Accelerate compiler cannot distinguish between them, because at that time sum (map (+ 3) a)
has already been inlined.

29https://developer.nvidia.com/cuda-zone

25

https://developer.nvidia.com/cuda-zone

However, this functionality is not currently exposed in a released version of Accelerate, and the
differentiation algorithm presented in this thesis supports only the regular subset of Accelerate.

In addition to being useful for compilation to GPU kernels, the second-order form of the language
is helpful for designing an algorithm for reverse automatic differentiation that works on Accelerate.
Performing reverse-mode AD on a full higher-order language is still a hard problem: constructions
like the one discussed in Section 2.2.1 exist, but are very complex and not easily implemented in
a restricted language. However, performing reverse AD on a second-order language is much more
doable, as evidenced by the algorithm presented in this thesis.

2.3.3 Type-safe program representations

Accelerate is an embedded domain-specific language (EDSL) in Haskell, and thus borrows its
metaprogramming capabilities. For such a language, an important choice with regards to its
embedding is whether to denote name-binding constructs, i.e. lambda functions and let-bindings,
using the Haskell-native constructs (corresponding to higher-order abstract syntax (HOAS) [43])
or with custom primitives (corresponding to an inductive term representation) [2]. An inductive
representation is well-suited for common compiler transformations, but using it for the embedded
language interface results in a very inconvenient language for the programmer. The HOAS
representation results in a simpler and more familiar language for the programmer (since they
can use the Haskell-native constructs for name binding as usual), but is less easy to operate on
for a compiler, because portions of the program tree are hidden behind actual closures and there
is sharing in the tree that a compiler can easily unwittingly destroy.

A solution is to use a HOAS-based embedding, then convert to a usual inductive representation
for internal use in the compiler; this is what the Accelerate compiler does in its sharing recovery
pass [37].

A largely orthogonal property of a program representation is whether it is typed: in a Haskell
implementation, this corresponds to whether GADTs are used for the AST, as opposed to regular
sum types. In the typed case, the internal representation of a subterm in the compiler has a
type that contains (a representation of) the type of the subterm in the language being compiled.
This way of using GADTs for representing expressions is in fact one of the standard, and original,
motivating examples for GADTs in functional languages [3]. For a good example of using GADTs
for representing expressions, and a description of their implementation in the GHC Haskell
compiler, see [56].

The advantage of using a typed representation30 is that any program transformation algorithm that
typechecks in the language the compiler is implemented in, performs a type-correct transformation
on the program being compiled. Even though this does not imply that the transformation is also
semantically correct, it does give an extra measure of confidence, especially if program subterms
have (partially) generic types for which parametricity arguments (see e.g. [57]) can be invoked.

In a typed representation, variable references need to be typed as well; however, adding a type
tag to normal named variable references does little to enforce program type-correctness (since the
usage of a variable is not linked with its definition). To link use and definition, the environment
of variables currently in scope needs to be available at the point of a variable reference. While
this can be done with a dependent map from the variable name to its definition31, one can
actually remove all names (and make alpha-equivalence trivial along the way) by switching to
De Bruijn indices [15]. This allows the environment to be a stack of types and variable references

30More specifically, this is sometimes called intrinsically well-typed De Bruijn style [6], to differentiate it from an
extrinsic representation that keeps the evidence of type-correctness of the AST separate from the AST itself.

31For example, using the Haskell https://hackage.haskell.org/package/dependent-map library, or more
naturally in a dependently-typed language.

26

https://hackage.haskell.org/package/dependent-map

to be Peano-natural-based indices into this type-level list, and because the same position in the
environment is linked via types to both the definition and the use site, type-correctness of the
AST implies type-correct variable references [2].

This typed representation using GADTs and typed De Bruijn indices is precisely the AST
representation in the Accelerate compiler.

2.3.4 The Accelerate compiler

The Accelerate compiler is written in Haskell, and compiles an EDSL in Haskell (called the
Accelerate language, or also Accelerate for short) to machine code for a number of target platforms.
The array program is written by the programmer in their Haskell program, which is then compiled
using the GHC Haskell compiler to an executable. At runtime of that executable, the array
program evaluates to a representation of that program using HOAS, which is then passed to the
Accelerate compiler. This is an example of staged compilation (see e.g. [58]).

Now in the Accelerate compiler, the program is first converted to an inductive representation with
typed environments and De Bruijn indexing using the previously mentioned sharing recovery pass.
Aside from eliminating the HOAS structures, this pass also detects sharing (possibly introduced by
GHC’s common subexpression elimination optimisation, or user-written let-bindings) and converts
that to explicit let-bindings in the AST [37]. The type of the resulting inductive representation is
a GADT which models the full Accelerate language, and is also called the main internal AST.
This representation is the one on which other program transformations can be most naturally
applied, such as vectorisation [33].

Afterwards, the array fusion pass matches producers, transducers and consumers together to
(attempt to) fuse multiple aggregate array operations into fewer operations, to reduce execution
overhead and yield a more efficient array program [37]. This results in a variant of the AST that
includes delayed array representations; this delayed representation is really a variant of pull-arrays
(representing all arrays using generate-like expressions) that makes a distinction between certain
classes of generate-expressions to support more specific optimisations.32

After fusion is complete, a backend like accelerate-llvm takes over and handles the rest of the
way towards high-performance machine code on whatever hardware is currently targeted.

2.3.5 Automatic differentiation

The most suitable place to implement a reverse-mode AD transformation in the Accelerate compiler
pipeline is after the sharing recovery pass, when the program is represented in an inductive
representation as the main internal AST. Choosing this location means that the transformation
does not have to preserve implicit sharing in the AST (since that has already been made explicit
in the sharing recovery pass), but can still benefit from the array fusion optimisations. The fact
that these existing optimisations can still run on the generated derivative code is precisely the
reason why implementing reverse-mode AD using a source-code transformation is expected to
give a high-performance result.

2.3.6 Typed AST

As mentioned, the Accelerate compiler uses the GADT with typed De Bruijn environments
approach described above for its program representation (at least, after sharing recovery). This
ensures that when compiling the Accelerate compiler, type-correctness of program transformations
is verified using the types on the AST. However, GHC’s typechecker is not always intelligent

32Essentially, this is another example of language expansion via specialisation as described in Section 2.3.1,
except on the internal language instead of the user-facing language.

27

enough to be able to decide type-correctness of all transformations; in particular, this is the case
for one point in the sharing recovery pass [37, §3]. Here, the Accelerate compiler uses reified types
to perform the type checking at runtime; this then produces a type equality witness that tells
GHC that the transformation is indeed correct [36, §5.1.1]. This particular instance of runtime
type checking has also been independently indicated as being probably necessary in the context
of general HOAS conversion [2, §2.6].

It is to be expected that such runtime type checking is necessary for more kinds of program
transformations that are not strictly local in nature. In particular, since a reverse-mode AD
transformation produces a program that reverses the control flow of the original program, it
would be remarkable if that can be implemented without any runtime type checking. Indeed, as
we will see in Section 4.2.4, some runtime type checking was needed for our implementation of
the algorithm in Section 3 in Accelerate.

28

3 The AD algorithm

In this section, we will explain the algorithm used to perform reverse-mode automatic differentia-
tion on Accelerate programs in our implementation. In order to be able to present the algorithm
more clearly, and to avoid requiring Accelerate-specific knowledge only to understand the AD
algorithm, we will use a model of the language called Idealised Accelerate. We list the important
differences between Idealised Accelerate and the actual Accelerate language in Section 3.2.1.

Since Idealised Accelerate, like the Accelerate itself, is stratified into an array sublanguage and an
expression sublanguage, the AD algorithm presented also consists of two halves. Both halves of
the algorithm look very much alike, but due to the interaction between the array and expression
sublanguages, the two halves of the algorithm are necessarily interlinked.

The object language, Idealised Accelerate, will be described in Section 3.1. We will give a
specification of our algorithm in Section 3.2, and discuss some examples in Section 3.3. Then,
we will separately discuss the two halves of the algorithm: first we will look at the array AD
algorithm in Section 3.4, and then at how the expression AD algorithm differs in Section 3.5.

3.1 Idealised Accelerate

Idealised Accelerate is a pure functional language for array processing: mutation is not observable
in the language. A basic grammar of Idealised Accelerate can be found in Fig. 1. Like Accelerate,
this language is stratified into two sublanguages: the expression sublanguage (exp) and the
array sublanguage (arr). There are also expression functions (fun) and array functions (afun);
here we allow only single-argument functions, because it makes the analysis easier and because
multi-argument functions can be easily uncurried to their single-argument equivalents. Expression
variables (evar) and array variables (avar) are here specified to only take the form xi and ai,
respectively, but in practice we will be more liberal with variable names to aid readability. The
meaning will always be clear in context. Primitive expression operations (op), which are used in
the PrimApp expression constructor, have a few representative examples listed in the figure, but
more could be easily added.

The stratification of the language into two layers (arr and exp) makes the language second-order:
array-level code contains functions with expression-level code, but expression-level code does not
contain any higher-order constructions. Not only does this help in producing efficient GPU code
in the Accelerate compiler (as mentioned before in Section 2.3.2), this also makes designing an
AD algorithm more tractable.

The language has a simple type system. Types are considered to be inferred; if the type of an
expression is unclear or ambiguous, we will use superscript type annotations. The implementation
of a typechecker and the accompanying more ergonomic user-facing language is orthogonal to the
AD algorithm, and thus considered out of scope.

All expressions (produced by exp) have a scalar type (written t in Fig. 1), which is either the empty
tuple (), a single-type, or a pair of scalar types (t1, t2). A single-type is either a floating-point
type (f); an integral type (i), for example int; or the boolean type bool. Exactly which types
are offered is immaterial for the discussion, as long as they can be divided into the category
of “continuous types” and “discrete types” with the property that a differentiable function that
returns a discrete type must be locally constant and thus have derivative 0. Function types are
written in the usual way with →.

The type of an array with element type t and index type s we denote as t[s]. The index
type of an array is () for a zero-dimensional array, ((), int) for a one-dimensional array,
(((), int), int) for a two-dimensional array, etc. For example, to retrieve the element of a
two-dimensional array a indicated in C-style syntax as a[2][3], the following expression can

29

exp ::= Constt (constant literal of type t) constant introduction
| Evart evar t expression variable reference
| Lett

′
evar = expt in expt

′ let-binding
| Nil() empty tuple
| Pair(t1,t2) expt1 expt2 pair
| Fstt1 exp(t1,t2) left pair projection
| Sndt2 exp(t1,t2) right pair projection
| PrimAppt

′
opt→t

′
expt primitive expression operation

| Indext avar t[s] exps array indexing
| Shapes avar t[s] array shape query
| Condt expbool expt expt expression-level conditional

fun ::= Lamt→t
′ evart expt′ expression function abstraction

arr ::= Uset[s] (array literal of type t[s]) constant array introduction
| AvarT avarT array variable reference
| AletT avarT

′
= arrT

′
in arrT let-binding

| Anil() empty tuple
| Apair(T1,T2) arrT1 arrT2 pair
| AfstT1 arr (T1,T2) left pair projection
| AsndT2 arr (T1,T2) right pair projection
| Reshapet[s

′] exps
′
arr t[s] array reshape

| Replicatet[s
′] expSlc[s s

′] arr t[s] dimension replication
| Slicet[s] expSlc[s s

′] arr t[s
′] dimension elimination

| Generatet[s] exps funs→t generic array builder
| Mapt

′[s] funt→t
′
arr t[s] element-wise operation

| ZipWitht[s] fun(t1,t2)→t arr t1[s] arr t2[s] two-input elementwise operation
| Sumt[s] arr t[(s,int)] specialised fold over inner dimension
| Foldlt[s] fun(t,t)→t expt arr t[(s,int)] fold over inner dimension
| Scanlt[s] fun(t,t)→t expt arr t[s] inner-dimension left-scan
| Scanrt[s] fun(t,t)→t expt arr t[s] inner-dimension right-scan
| Permutet[s

′] fun(t,t)→t arr t[s
′] funs→(bool,s′) arr t[s] forward permutation (scatter)

| Backpermutet[s
′] exps

′
funs

′→s arr t[s] backward permutation (gather)
| Acondt[s] expbool arr t[s] arr t[s] array-level conditional

afun ::= Alamt→t
′ avart arr t′ array functions

evar ::= x1 | x2 | . . . expression variables

avar ::= a1 | a2 | . . . array variables

op ::= Add(t,t)→t | Mul(t,t)→t | Lt(t,t)→bool primitive expression operations
| ToFloatingi→f | Roundf→i | . . .

Figure 1: Idealised Accelerate, an Accelerate-like language that we define the AD algorithm on
in Section 3. t, t′, t1, t2 are arbitrary scalar types; s is an index type; i is an integral type; f is a
floating-point type; t[s] is an array of ts with shape s; T, T ′, T1, T2 are arbitrary array tuple types;

Slc[s s′] is a slice with small shape s and large shape s′.
See Section 3.1.

30

be used: Index a (Pair (Pair Nil (Const 2)) (Const 3)). The Shape constructor of exp
returns the shape of the given array variable, where the components indicate not an index into
the array but the size of the corresponding dimension. For example, if the array a has size 10×20,
the expression Shape a will have value (((), 10), 20).

All array programs (produced by arr) have an array tuple type, written T , which is either
the empty tuple (), an array type t[s], or a pair of array tuple types (T1, T2). Most arr con-
structors, however, return and take individual arrays. The notation Slc[s s′] is used for
Replicate and Slice, and stands for a slice type with small shape s and large shape s′. A
slice type is recursively defined as either (), (slc, int) or (slc, ()) for any slice type slc. The
small and large shapes of a slice type are best explained using an example: the slice type
((((((), int), ()), ()), int), int) has small type (((), int), int) (an “int” for each () in the slice
type) and large type ((((((), int), int), int), int), int) (an “int” for all entries in the slice type).
For concrete examples of slice-typed values, see the informal semantics of Replicate and Slice
in the list below.

We now give an informal (denotational) semantics of the less evident language elements. Note
that while the array operations are phrased using mutable language terminology, the language is
pure; hence, the descriptions should be understood to describe the output in terms of the input.

• Const and Use introduce scalar and array constants, respectively. These are not values
that we will differentiate with respect to. Note that Const can also introduce values like
(1, true) of type (int, bool).

• Index and Shape are as described above.

• Conditionals (Cond and Acond) return their second or third argument, depending on the
first (condition) argument. The branch not taken is not executed; the conditional primitives
are the only ones that are not fully strict.

• ZipWith functions as one would expect, but we want to emphasise its behaviour when the
arguments have different shapes (while the number of dimensions must be the same, the
actual sizes of the two argument arrays may differ). The result of a ZipWith node has as
shape the elementwise minimum of the shapes of its arguments. This is analogous to the
behaviour of the standard Haskell zip function, which produces a list of pairs as long as its
shortest argument. Extraneous elements in a larger argument array are simply ignored.

• Reshape takes an array and a new shape, and it rearranges the array elements according
to the new shape. The new shape must have the same number of elements as the original
shape; this is a dynamic check.

• Replicate inserts new dimensions into the shape of an array. For example, replicating an
array with shape (((), 2), 3) with slice (((((), 6), ()), 7), ()) produces an array with shape
(((((), 6), 2), 7), 3) where element (((((), i), j), k), `) has the value of element (((), j), `) of
the original.

• Slice removes dimensions where Replicate adds them: slicing an array with shape
(((((), 6), 2), 7), 3) with slice (((((), ()), 1), 5), ()) produces an array with shape (((), 6), 3)
where element (((), i), j) has the value of element (((((), i), 1), 5), j) of the original.

• Generate takes a shape and an expression function assigning a value to each index of the
shape. This is the basic “build” constructor of pull-arrays, as described in Section 2.3.1.

• Foldl reduces the inner dimension (right-most element in its shape) using the given binary
function, thereby reducing the rank of the array by one. The inner dimension is considered
extended at index −1 with the initial value. The binary function must be associative to
allow an efficient parallel implementation. Note that this requirement means that the only

31

property that makes Foldl a left fold, as opposed to a right fold that would be named
Foldr, is that the initial element is added on the left side.

Foldl is very much comparable to Haskell’s foldl, except that the fold reduces just the
inner dimension of the array and the combination function must be associative. Idealised
Accelerate does not have a fold primitive without this associativity requirement; such a
primitive would necessarily be implemented sequentially. Accelerate itself implements a
sequential fold using a loop. For a brief discussion about loops, which we unfortunately can
not (yet) differentiate, see Section 3.2.1.

• Sum is a specialisation of Foldl with binary function + and initial value 0, included because
it is common and its derivative is significantly simpler.

• Scanl is a scan along the inner dimension of the array, enlarging the inner dimension with
one element. Element i in one inner slice of the result array is the fold, using the given
binary function, over the vector formed by prepending the initial value (the exp argument)
to elements 0, . . . , i− 1 of that same inner slice. The binary function must be associative to
allow an efficient parallel implementation.

Scanl is very much comparable to Haskell’s scanl, except that the scan traverses just the
inner dimension of the array and the combination function must be associative.

• Scanr is similar to Scanl, except the fold is from the right instead of from the left, and the
initial element goes after the end instead of before the beginning.

• Permute is a scatter operation: procedurally speaking, for Permute comb def f arr, we
start with def and then, for every successive element x at index idx in arr, we replace
the element y at index (snd (f idx)) in def with comb y x if (fst (f idx)) is true. The
combination function comb must be a commutative function to allow an efficient parallel
implementation.33

• Backpermute is a gather operation: Backpermute sz f a is semantically equivalent to
Generate sz (Lam i (Index a (f i))), but it is more restricted and thus easier to ana-
lyse.

3.2 Input/output specification of the algorithm

To be able to define an algorithm, one must first know what the algorithm takes as input and
must produce as output. For the reverse AD algorithm for array programs, the input is an afun
value (see Fig. 1) of type T → f [()], where f is an arbitrary floating-point type and T is an
arbitrary array tuple type. This array function is in AST form: it is important to realise that we
are given the program as written in the language of Section 3.1, not just a black box. We restrict
to a zero-dimensional single-scalar output array because if we do not, the output may contain
multiple scalar values, requiring us to vectorise the AD transformation. While the usefulness of
such functionality is not disputed, our algorithm handles just the basic case where the output
value of the program is a single scalar value.

Let F be the input function (of type T → f [()]). For any reverse AD algorithm34, including
the one presented here, the output is then an afun value of type T → T , say dF , with the
requirement that for all x of type T for which F is differentiable at x, dF (x) is the gradient of F
when evaluated at x. This is to say that for every projection function π of type T → σ, where σ
is a single-type (i.e. a non-tuple scalar type), we have that π(dF (x)) = ∂F (x)

∂(π(x)) .

33In practice, Permute is implemented in parallel using atomic updates.
34Many reverse AD algorithms return the original function value in addition to the gradient. Because this is

easy to add to the complete algorithm, we present it in simplified form where we return only the gradient; our
implementation currently makes the same simplification.

32

The allowance that dF (x) needs to be the gradient function of F (x) only if F is differentiable at
x, is necessary (indeed, at other x the gradient is not even defined) and shared with all reverse
AD implementations. A crucial consequence of this allowance is that a function that produces a
value of discrete type, for example an integer or a tuple of integers, will always have gradient
zero with respect to its arguments: its codomain is discrete, so the function is locally constant
whenever it is differentiable. Additionally, if all of a function’s input arguments are discrete-typed,
its domain is discrete and hence the same conclusion applies: its gradient is also always zero. For
this reason, primitive functions either from or to discrete types “break” the derivative flow in the
program: the expression function Lam x (PrimApp ToFloating (PrimApp Round (Evar x)))
is allowed to be transformed to the gradient function Lam x (Const 0.0).

3.2.1 Limitations

The algorithm as presented in the following sections can differentiate a large part of the input
language, but there are a few elements that are unsupported. These are as follows:

• Scanl and Scanr cannot currently be differentiated, but will be produced in the derivative
of Foldl. Fixing this is expected to be a matter of finding the correct derivative of a scan
to be inserted in Table 2. If this derivative is found, we do not expect further difficulties in
supporting scans for differentiation.

• Permute cannot currently be differentiated, but will be produced in the derivative of
Backpermute and array indexing. While it seems like defining an efficient derivative for
Permute may be difficult, if it exists and is found, integrating it into the algorithm should
not be more difficult than for the scans in the previous point.

• The initial expression and combination function for a Foldl cannot contain array indexing
operations. This ensures that they cannot contribute an adjoint to any other array value,
meaning they can be ignored in the array AD algorithm. Furthermore, we need that the
array argument to a Foldl has a floating-point type as element type.

This is a limitation of the derivative we formulate for Foldl in Section 3.4.4 (see Table 2).
However, we do not expect that it is impossible to give a more general derivative that
removes the requirements given here; we were not able to do this due to time constraints.

Additionally, we do not prove the correctness for the Foldl derivative that we do give.
However, as shown in Section 4, it has been tested to work in a number of situations.

There are also some features of the full Accelerate language that Idealised Accelerate does not
support. These, and other significant differences between the two languages, are listed here.

• Major extension: Accelerate allows unbounded loops on both the array and the expression
level using the awhile and while primitives. Extending the AD algorithm to support loops
is expected to be more invasive than only adding the derivative for a new primitive: in order
to meet the time complexity requirements for reverse AD, all (or most) of the intermediate
values of the computation must be stored for the dual pass. Unbounded iteration means an
unbounded number of intermediate values that are incrementally generated, and storing
these requires a language primitive that allows for incrementally filling an array, which
Accelerate does not yet have. Bounded iteration, where the precise number of iterations
is specified before the loop is entered, is easier because the size of the array to allocate is
known beforehand, but we still lack a way to incrementally fill an array.

• Minor extensions: Accelerate has some specialised stencil operations for which we have not
found a derivative. Since these primitives are not needed to express the other derivatives in
this work, we excluded them from the language. The same holds for a fold without initial
value, called foldl1 in the Accelerate surface language.

33

Accelerate supports foreign function calls that are treated as black-box functionality by the
compiler. To be able to differentiate programs containing such calls, the programmer will
have to supply an explicit derivative for these operations. Our current algorithm does not
support explicit derivatives for subprograms, but adding such support is not expected to be
a major change to the algorithm. Indeed, it should be similar to adding a new primitive
with a new derivative to the language.

• Additions: While the Accelerate surface language has a sum function, its internal represen-
tation expresses a sum simply using a Foldl with addition as the combination function.
Because its derivative is simple and far more efficient than the generic Foldl derivative,
and furthermore sum is common in actual code, we include a specialised Sum primitive.

• Program representation: While the Accelerate surface language has tuple projection func-
tions fst and snd, these are gone in the internal AST. Instead, let-bindings automatically
destructure tuples into individual arrays (or in an expression, individual single-typed scalars),
meaning that variables in the internal AST are never tuple-typed. While this presented some
difficulty when implementing our algorithm in the Accelerate compiler, no real obstacles
occurred: adding virtual tuple projection operators at let-bindings allows applying most of
the algorithm unchanged. For more details on the implementation, see Section 4.

The expression functions in Idealised Accelerate always take exactly one argument, possibly
tuple-valued; in Accelerate, some expression functions take multiple arguments (e.g. in
Permute and ZipWith). Fortunately, (un)currying gives an equivalence between these two
representations.

In Accelerate, the second expression function argument to Permute returns the type Maybe
s instead of (bool, s). To avoid the question of representing sum-types here, we opted for
the plainer alternative. However, we note that because the algorithm can differentiate
conditionals, adding support for sum types with case distinction should not be a very
invasive change.

Note that Idealised Accelerate does not include a fold without an associativity requirement on the
combination function (that is to say, a sequential fold), an operation that is required to implement
e.g. recurrent neural networks (RNNs) such as long-short-term memory (LSTM) networks, as
well as other loop-like operations. Accelerate itself allows implementing a sequential fold using
the looping structures mentioned in the above bulleted list. Supporting loops in the reverse AD
algorithm would allow the differentiation of these recurrent networks.

3.3 Example programs

In this section, we will discuss two examples:

1. The first example (Section 3.3.1) is for a simple array program, serving to illustrate the
overall form of a derivative of an array program.

2. The second example (Section 3.3.2) is for a more complicated array program that includes
array indexing. Having seen how to differentiate such a program in a simple case will be
helpful in understanding the general form in the algorithm.

3.3.1 Simple array program

The first array program is shown in Fig. 2. This program is an array function, taking a vector
(one-dimensional array) of floating-point values and producing a scalar (a zero-dimensional array)
containing one floating-point value. We elide explicit type annotations in the presentation of
Idealised Accelerate programs for brevity. A potentially more readable equivalent program in the
surface syntax of Accelerate is also provided in the same figure.

34

Abstract syntax of Idealised Accelerate
1 Alam a
2 (Sum1 (ZipWith2 (Lam x (PrimApp Mul (Pair (Fst (Evar x)) (Snd (Evar x)))))
3 (Map3 (Lam x (PrimApp Mul (Pair (Evar x) (Evar x)))) (Avar5 a))
4 (Map4 (Lam x (PrimApp Add (Pair (Evar x) (Const 1.0)))) (Avar6 a))))

Concrete Accelerate syntax
1 \a -> sum (zipWith (*) (map (\x -> x * x) a) (map (+1) a))

Figure 2: An example program in Idealised Accelerate, and its equivalent in Accelerate. This is
an array function of type f [((), int)]→ f [()] for some floating-point type f . In Accelerate, that

type would be written as follows: Floating f => Array (Z :. Int) f -> Array Z f.

The input array is used twice, with both of the Map invocations taking it as an argument. One of
the Maps squares every value, and the other adds 1 to each value. The ZipWith then computes
an array with x2 · (x+ 1) for all values x in a; these values are then summed into the final result.

What is the gradient of this function? Let F be the function in question and let a be an input
vector. Write “a indexed at index i” as ai. Because a is a vector of floating-point values, the
gradient of F is the vector of adjoints: at index i should be the value ∂F (a)

∂ai
, which in this case is

equal to:
∂F (a)

∂ai
=

∂

∂x
(x2 · (x+ 1)) = 3x2 + 2x

Hence, we expect the gradient program be semantically equivalent to this expression (though the
way it computes it may look different). One way to write a correct gradient program for F is
thus to directly implement this expression:

1 -- Shorthand: ADD x y = PrimApp Add (Pair x y)
2 -- MUL x y = PrimApp Mul (Pair x y)
3 Alam a (Map (Lam x (ADD (MUL (Const 3.0) (MUL (Evar x) (Evar x)))
4 (MUL (Const 2.0) (Evar x)))))
5 (Avar a))

However, in the same way the original program was equivalent to a similar simplified program
with only a Sum and a Map. How do we construct a correct gradient program in a somewhat more
principled way?

The general theory of reverse AD (see Section 2.1.2) tells us that running the program “backwards”
and computing the adjoint of each subexpression will, in the end, produce the adjoint of the input,
which is the gradient we seek. First note that while the adjoint of a value has a different meaning
than the value itself (it is, indeed, the partial derivative of the end result with respect to that
value), it does have the same type. If x is in R (e.g. represented in practice using a floating-point
value), then ∂E

∂x for some E ∈ R is again a value in R. More generally, if a is an array of values
in Rn, then ∂E

∂a for some E ∈ R is again in Rn: each of the individual elements has a derivative.
If the value is more complex and contains non-differentiable elements, like integral values, then
we give those values adjoint 0 of their own type; doing this allows us to preserve the invariant
that the adjoint of a value has the same type as the value itself. This invariant is useful when
formulating the full differentiation algorithm in Sections 3.4 and 3.5.

So back to the example, let us apply this “backwards” program execution to our function F . The
function body contains 6 array primitives: Sum, ZipWith, two Maps and two Avars; in Fig. 2, these
have been given the labels 1–6 for easy identification. Let Ei denote the subprogram corresponding
to the array primitive labeled i, for example: E2 is ZipWith (Lam x ...) (Map ...) (Map ...).
The return value of F (which is a zero-dimensional array) has, by definition, adjoint 1. Therefore,
∂(E1)()
∂(E1)()

= 1; recall that we use the notation (−)i to index the array “−” at index i. So let us start
building the gradient program:

35

1 Alam a (Alet d1 = Generate Nil (Lam x (Const 1.0))
2 in ...)

Here ... indicates that the rest of the program is still to be written. We will use the variables di
to store ∂(E1)()

∂(Ei)j
for all relevant indices j, thus we start with the 1 in d1.

What we want to know in the end is the adjoint of the input array. Since the input array is used
in two different places, this adjoint is a sum of two terms: ∂(E1)()

∂(E5)((),i)
+

∂(E1)()
∂(E6)((),i)

for all i from 0 up
to the size of a (minus 1). But to compute the adjoints of E5 and E6, we first have to compute
the adjoints higher up in the tree, starting with E2, the argument to the Sum.

Since ∂
∂x(x+ y) = ∂

∂y (x+ y) = 1, and more generally ∂
∂xi

(x1 + · · ·+ xn) = 1, the adjoints of the
elements of the input array to a Sum are the same as those of the corresponding elements of its
own adjoint; in this case: ∂(E1)()

∂(E2)i
=

∂(E1)()
∂(E1)()

= d1(). Hence, the program continues like this:

1 Alam a (Alet d1 = Generate Nil (Lam i (Const 1.0))
2 in Alet d2 = Generate (Shape a) (Lam i (Index d1 (Fst (Evar i))))
3 in ...)

Note that Fst on an index value strips off the last component; in this case, Fst (Evar i) becomes
just Nil.

Having computed the adjoint of the ZipWith, we use ZipWith’s derivative to compute the adjoints
of its arguments. Since (ZipWith f a b)i = f(ai, bi), we get

∂(E1)()
∂(E3)i

=
∂(E1)()
∂(E2)i

·∂(E2)i
∂(E3)i

= d2i· ∂∂xf(x, y),

and analogously ∂(E1)()
∂(E4)i

= d2i · ∂∂yf(x, y). Here we have f(x, y) = x · y, so we get ∂
∂xf(x, y) = y

and ∂
∂yf(x, y) = x. Note that these refer to the original function inputs; this is to be expected

as explained in Section 2.1.2, since we need some of the intermediate values from normally
computing F when computing its gradient. In other words: we need some of the primal results
when computing the dual.

If we prefix the necessary part of the primal computation before our gradient program, we can
then append the adjoint of the arguments of the ZipWith:

1 Alam a (-- First compute (a part of) the primal computation
2 Alet t5 = Avar a
3 in Alet t3 = Map (Lam x (PrimApp Mul (Pair (Evar x) (Evar x)))) (Avar t5)
4 in Alet t6 = Avar a
5 in Alet t4 = Map (Lam x (PrimApp Add (Pair (Evar x) (Const 1.0)))) (Avar t6)
6 -- Then compute the adjoints in the dual computation
7 in Alet d1 = Generate Nil (Lam i (Const 1.0))
8 in Alet d2 = Generate (Shape a) (Lam i (Index d1 (Fst (Evar i))))
9 in Alet d3 = ZipWith (Lam pair (PrimApp Mul (Pair

10 (Fst pair) -- adjoint from d2
11 (Snd pair)))) -- y value from t4
12 (Avar d2) (Avar t4)
13 in Alet d4 = ZipWith (Lam pair (PrimApp Mul (Pair
14 (Fst pair) -- adjoint from d2
15 (Snd pair)))) -- x value from t3
16 (Avar d2) (Avar t3)
17 in ...)

Notice how we pass only the “other” primal argument to the ZipWiths introduced for the adjoints
of the argument to node 2 of F . This works here because the partial derivatives of the expression
function in node 2 only refer to some of its original inputs, but in general both t3 and t4 would
need to be passed (zipped). Furthermore, the lambdas written here in the gradient program
can be simplified to Lam pair (PrimApp Mul pair), but to illustrate the more general case, this
simplification is not made here.

36

Now we have the adjoints of the Maps, nodes 3 and 4, what remains is those of nodes 5 and 6
and the input. The Map expression functions, f1(x) = x2 and f2(x) = x + 1, have derivatives
∂f1(x)
∂x = 2x and ∂f2(x)

∂x = 1, so we get ∂(E1)()
∂(E5)i

= d3i · 2t5i and
∂(E1)()
∂(E6)i

= d4i, where t5 is the primal
value of node 5. This appends the following to our growing program:

1 ...
2 in Alet d5 = ZipWith (Lam pair (PrimApp Mul (Pair
3 (Fst pair) -- adjoint from d3
4 (PrimApp Mul (Pair (Const 2.0) (Snd pair))))))
5 (Avar d3) (Avar t5)
6 in Alet d6 = Avar d4
7 in ...

Now that we know the adjoints of node 5 and node 6, the variable references of the input, the
adjoint of the input is the elementwise sum of d5 and d6, as argued earlier. This means that the
final program is as follows:

1 -- Shorthand: ADD x y = PrimApp Add (Pair x y)
2 -- MUL x y = PrimApp Mul (Pair x y)
3 Alam a (Alet t5 = Avar a
4 in Alet t3 = Map (Lam x (MUL (Evar x) (Evar x))) (Avar t5)
5 in Alet t6 = Avar a
6 in Alet t4 = Map (Lam x (ADD (Evar x) (Const 1.0))) (Avar t6)
7 in Alet d1 = Generate Nil (Lam i (Const 1.0))
8 in Alet d2 = Generate (Shape a) (Lam i (Index d1 (Fst (Evar i))))
9 in Alet d3 = ZipWith (Lam pair (MUL (Fst pair) (Snd pair))) (Avar d2) (Avar t4)

10 in Alet d4 = ZipWith (Lam pair (MUL (Fst pair) (Snd pair))) (Avar d2) (Avar t3)
11 in Alet d5 = ZipWith (Lam pair (MUL (Fst pair) (MUL (Const 2.0) (Snd pair))))
12 (Avar d3) (Avar t5)
13 in Alet d6 = Avar d4
14 in ZipWith (Lam pair (PrimApp Add pair)) (Avar d5) (Avar d6))

This array function computes the gradient of the array function in Fig. 2. The method of labeling
the AST nodes and computing their adjoints in turn is the same as what we will apply in the full
algorithm.

Efficiency. The gradient program produced here contains many array primitives and looks a
lot less efficient than the “naive” gradient program we derived earlier in this section. However,
we are saved by array fusion: for example, the Index d1 (Fst (Evar i)) in d2 simplifies to
Index d1 Nil, which fuses to Const 1.0. This can then be inlined into the rest of the program,
and the same kind of trick can be applied to, for example, a Map argument to a ZipWith. The
Accelerate compiler implements this kind of array fusion optimisation [37], and can fuse this
whole program down to:35

1 \a -> generate (shape a) (\i -> let x = a ! i in 2.0 * x + 3.0 * x * x)

3.3.2 Array program with indexing

In the previous section we studied how to compute a gradient function for a simple array function:
label all the array nodes in the AST with unique labels and compute the primal value of all
(necessary) nodes, and then compute the adjoint for each node. If the array function in question
contains an expression that performs array indexing, the overall method still applies, but the
array node containing that expression will make some extra adjoint contributions beyond those
to its arguments.

35In practice, Accelerate currently does not quite get the program to this form because of an unresolved issue
with the fusion implementation. This is expected to be resolved with the upcoming complete redesign of this
implementation.

37

Abstract syntax of Idealised Accelerate
1 Alam a
2 (Sum1 (Map2 (Lam x (PrimApp Add (Pair
3 (Evar x)
4 (Index a3 (Pair Nil (PrimApp Round (Evar x))))))
5 (Avar4 a)))

Concrete Accelerate syntax
1 \a -> sum (map (\x -> x + a ! I1 (round x)) a)

Figure 3: An example program in Idealised Accelerate, and its equivalent in Accelerate, of type
f [((), int)]→ f [()] for some floating-point type f .

Consider the array program in Fig. 3, which takes a vector a of floating-point values and produces
a single floating-point value.36 For each element x in a, it adds x and the element of a at the
index round(x), and finally returns the sum of all those addition results. The program assumes
that all those indexing operations are in bounds; checking or ensuring this is beyond the scope of
differentiation, but we must ensure that for any input for which the original program does not
perform out-of-bounds array indexes, the gradient program we produce also does not.

Note that in Fig. 3, the reference to the array variable a inside the expression also has a label,
in addition to the actual array nodes in the AST. This is because that variable reference will
actually be collecting an adjoint.

Let us start the gradient program as usual, first computing some of the primal values and then
computing the adjoints of nodes 1, 2 and 4:37

1 Alam a (Alet t3 = Avar a
2 in Alet t4 = Avar a
3 in Alet t2 = Map (Lam x (PrimApp Add (Pair
4 (Evar x)
5 (Index t3 (Pair Nil (PrimApp Round (Evar x)))))))
6 (Avar t4)
7 in Alet d1 = Generate Nil (Lam i (Const 1.0))
8 in Alet d2 = Generate (Shape t2) (Lam i (Index d1 (Fst (Evar i))))
9 in Alet d4 = ZipWith (Lam pair (Fst pair)) -- return input adjoint

10 (Avar d2) (Avar t4)
11 in Alet d3 = ...
12 in ...)

Note that we visit the nodes in the order 1, 2, 4, 3; an alternative valid order would have been
1, 2, 3, 4. Both are valid topological orderings of the dependency graph that is induced by the
program.

The gradient of the expression function in the Map is 1 (or equivalently, its derivative function is
the identity function) because the only subexpression contributing a non-zero adjoint to x is the
left-hand side of the Add operation. The Round primitive returns an integral result and thus does
not contribute anything to its argument x. For this reason, the adjoint contribution to node 4 (i.e.
d4) is the same as d2; for generality, however, we write the usual ZipWith taking the incoming
adjoint and the primal argument.

36The concrete Accelerate syntax in Fig. 3 uses one construct of which the semantics may not be evident, namely
the I1 syntax. This is a bidirectional pattern synonym [44]. In an expression context (which is how it occurs here),
In constructs the index type of an n-dimensional array given n arguments; this means that I1 i corresponds to
Pair Nil i in Idealised Accelerate. For more information on these pattern synonyms and specifics of Accelerate’s
surface language, see the Accelerate documentation [12] or the relevant publication [38].

37Here and in the previous section, some values from the primal computation that happen to not be necessary in
the dual computation are elided from the gradient program. The full algorithm defined later will always compute
all primal nodes, but this can be reduced to the form of these examples using dead-code elimination.

38

What is the Map’s adjoint contribution to node 3? Write t3 and t4 for the primal results of
nodes 3 and 4, respectively. (They happen to be the same here, because they are both a variable
reference to a; however, the following text does not use that information.) For every element x in
t4, the expression function will be executed, which performs an array indexing operation on t3
at index round(x). The result of each runtime invocation of this array indexing node, of which
there is exactly one per invocation of the surrounding expression function,38 has itself an adjoint
that expression AD (analogous to the array AD discussed up until now) wants to propagate to
the value in the array being indexed (namely, t3). We will collect every one of these individual
contributions in an array the size of t3, which will be the adjoint of node 3 (i.e. d3); to do that
we will use the Permute array primitive.

Recall from Section 3.1 that Permute takes four arguments:

1. comb: The (commutative) combination function used to combine a value being added to a
cell with the value already in that cell;

2. def: The destination array, filled with default values;

3. f: An expression function that maps an index in the source array src to an index in
the destination array def, together with a boolean that when false prevents this source
element from being mapped;

4. src: The source array of values to be mapped.

In this case, the combination function is (+) and the array of default values is an array the
size of t3 filled with zeros, since we want every cell of the result to contain the sum of the
contributions produced for that cell. The mapping function f maps an index i in t4 to
Pair Nil (PrimApp Round (Index t4 i)), which is the target index of the array indexing
operation in the expression function invocation at index i (recall the code in Fig. 3). The source
array should contain the adjoints of the indexing operation in the expression function, which here
happen to be equal to those found in d2 because of the simplicity of the expression function.

This means we can compute d3 and complete the program in the following way:

1 Alam a (Alet t3 = Avar a
2 in Alet t4 = Avar a
3 in Alet t2 = Map (...) (Avar t4) -- elided for brevity (same as before)
4 in Alet d1 = Generate Nil (Lam i (Const 1.0))
5 in Alet d2 = Generate (Shape t2) (Lam i (Index d1 (Fst (Evar i))))
6 in Alet d4 = ZipWith (Lam pair (Fst pair)) (Avar d2) (Avar t4)
7 in Alet d3 = Permute (Lam pair (PrimApp Add pair))
8 (Generate (Shape t3) (Lam i (Const 0.0)))
9 (Lam i (Pair (Const true) (Pair Nil (PrimApp Round (Index t4 i)))))

10 (Avar d2)
11 in ZipWith (Lam pair (PrimApp Add pair)) (Avar d3) (Avar d4))

However, we could only write this Permute like this because we could easily recompute the index
into t4 as ((), round(x)) and because we knew that the adjoint of an invocation of the Index
node in the program happens to be the same as that of the surrounding expression function. In
general, however, we want to assume neither of these things. To not make these assumptions,
we want the expression lambda that computes the adjoint of the argument of node 2 (the
Lam pair (Fst pair) on line 6) to also return the target index of the indexing operation, as
well as the contribution that should be added there. Thus we change line 6 of the above program
to the following:

38This can stop being true in the presence of conditionals (Cond), in which case the number of invocations can
be zero as well as one.

39

-- Array of: (adjoint of argument of node 2, (adjoint of index operation, target index))
in Alet res2 = ZipWith (Lam pair

(Pair (Fst pair)
(Pair (Fst pair)

(Pair Nil (PrimApp Round (Snd pair))))))
(Avar d2) (Avar t4)

in Alet d4 = Map (Lam p (Fst p)) (Avar res2)
in Alet idx2 = Map (Lam p (Snd p)) (Avar res2) -- Array of: (adjoint of index op., target index)

Note that in this case the adjoint of the argument (i.e. the adjoint for node 4) and the adjoint of
the index operation are the same (both Fst pair in the code), but this need not be so, and the
rest of the code is oblivious of this coincidence.

Indeed, now all the information that we need to compute the adjoint of node 3 is in the variable
idx2. Thus we can change the Permute in the computation of d3 (lines 7–10 in the previous code
fragment) to use idx2, and arrive at the following complete program:

1 Alam a (Alet t3 = Avar a
2 in Alet t4 = Avar a
3 in Alet t2 = Map (Lam x (PrimApp Add (Pair
4 (Evar x)
5 (Index t3 (Pair Nil (PrimApp Round (Evar x)))))))
6 (Avar t4)
7 in Alet d1 = Generate Nil (Lam i (Const 1.0))
8 in Alet d2 = Generate (Shape t2) (Lam i (Index d1 (Fst (Evar i))))
9 in Alet res2 = ZipWith (Lam pair

10 (Pair (Fst pair)
11 (Pair (Fst pair)
12 (Pair Nil (PrimApp Round (Snd pair))))))
13 (Avar d2) (Avar t4)
14 in Alet d4 = Map (Lam p (Fst p)) (Avar res2)
15 in Alet idx2 = Map (Lam p (Snd p)) (Avar res2)
16 in Alet d3 =
17 Permute (Lam pair (PrimApp Add pair))
18 (Generate (Shape t3) (Lam i (Const 0.0)))
19 (Lam i (Pair (Const true)
20 (Snd (Index idx2 i)))) -- Where to map to? The target index.
21 (Map (Lam p (Fst p)) (Avar idx2)) -- What to map? The index operation's adjoint.
22 in ZipWith (Lam pair (PrimApp Add pair)) (Avar d3) (Avar d4))

This computes the same result as the previous full gradient program, but illustrates how we can
make the transformation more systematic while avoiding recomputation.

Observations and reflections. When constructing the gradient programs in the previous two
examples, the process we applied consisted of three traversals of the array AST: one to label the
nodes, one to build the “let-stack” that computes the primal values, and one to build the let-stack
that computes the adjoints. Within the traversals, we applied only local reasoning :

• A primal value can be computed using just the information in that node and the knowledge
that its array arguments have already been computed and are available using variables that
are in scope.

• For the adjoints: if, throughout the traversal, we keep a map from array node labels to the
list of contributions that have been produced for them, the adjoint of a node N can be
computed just by summing the terms in the list at key N in that contribution map. The
only further task is then to update the map at each node, which just involves looking at
the node’s arguments and computing the correct partial derivative with respect to those
arguments. The result should then be added to the contribution map for use when visiting
the argument nodes, or in the case of a variable reference, the right-hand side that it refers
to.

40

Even though the code that results from the program transformation has control flow that can
be seen as going in the reverse direction of the original program flow, the construction of that
program is very structure-oriented and follows the shape of the original program’s AST.

An earlier version of the algorithm first converted the program to a graph form where node
arguments are incoming edges and node usages are outgoing edges. It then generated the primal
and dual let-stacks using traversals over that graph instead of the original AST. This is a
significantly more invasive pass over the program, changing the representation of “value reuse”
in the program from multiple occurrences of the same variable reference to multiple incoming
edges of a graph node. While this was initially felt to be a more intuitive representation to define
a reverse AD algorithm on, in the end the intermediate graph representation turned out to be
unnecessary and in fact counterproductive for supporting the use of conditionals in the input
program. We hope that the algorithm presented in this document is simpler and more pragmatic.

3.4 Array transformation

The array AD algorithm consists of a number of steps, that have each already been illustrated in
the examples in Sections 3.3.1 and 3.3.2.

• First the array nodes in the program’s AST are labeled in order to be able to refer to them.
These labels were indicated as subscripts in the input programs, for example in Fig. 3. The
labeling specifics will be discussed in Section 3.4.2.

• Then, the primal values are computed in the primal phase, discussed in Section 3.4.3. These
are the tN variables in the code snippets in the examples.

• The dual values are then computed in the dual phase, discussed in Section 3.4.4. These are
the dN variables in the examples, containing the intermediate adjoints.

• Finally, we collect the gradient of the input value at the bottom of the let-stack and put
the whole gradient program together; this we do in Section 3.4.5.

A core component of both the primal and the dual phase is how array AD uses the expression
AD algorithm to handle the differentiation of expression functions that appear in the program.
For this reason we first describe the interface to expression AD that is used in Section 3.4.1, after
which we will continue with the main description of the array AD algorithm.

3.4.1 Interface of expression AD

Because each array AST node is visited twice, once in the primal and once in the dual pass,
the primal and dual transformations of an expression function need to be split from each other,
forming two halves. Furthermore, handling array indexing (and producing the correct Permute
array primitives) requires that the expression AD algorithm tells us about any Index operations
happening in the expression function’s body; this is similar to how we generalised the handling of
array indexing at the end of Section 3.3.2. For these reasons, a simple interface for expression
AD that just returns the gradient-producing function is insufficient.

Instead, array AD will use the interface to expression AD that we define here. This interface uses
two types ttmp and tidxadj that are built up inside the expression AD algorithm; their meaning
will be explained below. Given an expression function F of type t→ t′, expression AD returns
the following things:

• an expression function of type t→ (t′, ttmp): the primal lambda,

• an expression function of type (t′, ttmp) → (t, tidxadj): the dual lambda. We also get
information about the layout of tidxadj; see the description below.

41

Let us discuss this interface piece by piece. The input is an expression function F of type t→ t′;
this means that the expression AD interface only works for expression functions, not individual
expressions. However, this not an insurmountable problem: indeed, one can wrap an expression of
type t′ into an expression function of type ()→ t′ and apply the expression AD algorithm as-is.39

The expression function should be provided, of course, in AST form as defined in Section 3.1,
and not as a black box.

The first part of the output of expression AD is the primal lambda: this is an expression function
of type t→ (t′, ttmp) that given an argument x of type t, returns F (x) as well as a tuple encoding
the intermediate values (“temporaries”) computed while running F . Although this temporaries
tuple did not appear in Section 3.3 to simplify the presentation there, the concept is quite natural:
as we saw in the array AD examples, the dual pass needs some values from the primal pass in order
to compute the gradient. This structure is the same in expression AD, and the temporaries tuple
is the channel via which the primal lambda communicates those values to the dual lambda. While
we could have chosen to let the dual lambda from expression AD recompute the required primal
values, in this exposition we instead opt for preventing as much recomputation as possible.40

The second part of the output is the dual lambda of type (t′, ttmp) → (t, tidxadj). This is an
expression function taking the adjoint of the return value of F for some invocation of F , as well
as the temporaries tuple produced when running the primal lambda on the corresponding input
value. Note that the type of the adjoint of the return value of F is the same as the type of the
return value itself; this is a special case of the general rule that the adjoint of a subexpression has
the same type as that subexpression itself (see Section 3.3.1).

The output of the dual lambda is a pair containing the adjoint of its input value as well as
the index adjoint information tuple (IAI tuple) of type tidxadj. This tuple contains, for every
occurrence of an Index node in F , three values: its target index in the indexed array as computed
in the primal pass, the adjoint of that Index node as computed in the dual pass, and a boolean
indicating whether the Index node was executed at all. (An Index node may remain unexecuted
if it is inside an untaken Cond branch.) The boolean is also computed in the primal pass: the
choice of whether to execute the Index happens in the primal pass, and this information is passed
on to the dual pass via the temporaries tuple, from where it is passed on to array AD via the IAI
tuple.

Since array AD will need to use the values in this IAI tuple to create the correct Permute
operations, the output of expression AD additionally describes which arrays are indexed in F ,
and where in the index adjoint information tuple the entries for that array can be found. The
exact representation of this description is an implementation detail that we will abstract over in
this discussion.

Example. Let us look at an example to illustrate the expression AD interface before we continue.
Consider the following expression function of type (float, int)→ float that multiplies its first
argument with the value in the array a at the index specified by the second argument, where a
has type float[((), int)]:

1 Lam pair (PrimApp1 Mul (Pair (Fst2 (Evar pair)) (Index3 a (Pair4 Nil (Snd (Evar pair))))))

In concrete Accelerate syntax, this expression function can be written as the more readable
\p -> fst p * a ! I1 (snd p). Note that some of the expression nodes have been labeled for

39The gradient result from differentiating an expression is not very useful (the gradient of () is ()), but one may
want to use the index adjoint information in tidxadj.

40In a parallel setting like on a GPU device, it is not clear a priori that it is beneficial to store intermediate
values of small expression functions to prevent a tiny amount of recomputation: by doing so we exchange some
processing time for (potentially quite expensive) additional memory usage and traffic. While we will briefly return
to this topic in Section 5, this is mostly reserved for future work.

42

easy reference; more would be labeled by the actual expression AD algorithm, which will be
explained in Section 3.5.

The primal lambda might then look as follows (the full algorithm produces a somewhat more
verbose program):

1 Lam pair
2 (Let t2 = Fst (Evar pair) -- type: float
3 in Let t4 = Pair Nil (Snd (Evar pair)) -- type: ((), int)
4 in Let t3 = Index a (Evar t4) -- type: float
5 in Let t3exec = Const true -- type: bool
6 in Let t1 = PrimApp Mul (Pair -- type: float
7 (Evar t2) (Evar t3))
8 in Pair t1
9 (Pair (Pair (Pair (Pair (Pair Nil (Evar t1)) (Evar t2)) (Evar t3)) (Evar t3exec)) (Evar t4)))

This function has type (F, I) → (F, ((((((), F), F), F), B), ((), I))), writing F for float, I for int
and B for bool for brevity. Thus, here we have ttmp = ((((((), F), F), F), B), ((), I)). Note that
t3exec is a boolean indicating whether the Index was executed; it is always true in this case.

The primal lambda returns the function result as the first float value, and a tuple containing
the temporaries as the second element of the output pair. The list of temporaries that needs
to be stored in the temporaries tuple is encoded as a nested sequence of pairs, terminated with
an empty tuple. This is not the only possible encoding, but it happens to be the one that the
Accelerate compiler uses internally when translating longer tuples from the user program into
its internal language, which knows only pairs. It also happens to be an encoding that is easy to
generate and consume recursively.

The dual lambda for the example function might look as follows:

1 Lam input
2 (Let t2 = Snd (Fst (Fst (Fst (Snd (Evar input)))))
3 in Let t3 = Snd (Fst (Fst (Snd (Evar input))))
4 in Let t3exec = Snd (Fst (Snd (Evar input)))
5 in Let t4 = Snd (Snd (Evar input))
6 in Let d1 = Fst (Evar input)
7 in Let d2 = PrimApp Mul (Pair (Evar d1) (Evar t3))
8 in Let d3 = PrimApp Mul (Pair (Evar d1) (Evar t2))
9 in Pair (Pair (Evar d2) (Const 0))

10 (Pair Nil (Pair (Pair (Evar d3) (Evar t4)) (Evar t3exec))))

This function has type (F, ((((((), F), F), F), B), ((), I))) → ((F, I), ((), ((F, ((), I)), B))); note the
re-occurrence of ttmp. Recall that (F, I) was the input type of the original function, and thus also
the gradient type. tidxadj here takes the value ((), ((F, ((), I)), B)), one possible tuple encoding of
a one-element list containing a triple ((adjoint, target index), was-executed) of the single Index
in the original function.

3.4.2 Labeling

The first step in the array AD algorithm is to label the array nodes in the AST with unique labels.
The input to the labeling step is an array function, of production afun in Fig. 1. In this array
function, all nodes of the arr production except Alet shall get a unique integer label used to refer
to them in the primal and dual phases of the algorithm. For examples, see Section 3.3 above.

As stated, the only node type that does not get a label is Alet, since it does not compute anything.
However, its right-hand side program as well as the body are labeled as usual.

In the algorithm below, we will regularly assume that any given subprogram has a label assigned;
while this is not true if the subprogram is an Alet, we will then consider the subprogram to have
the label of the Alet’s body program.

43

In Section 3.3.2, the variable reference in an Index operation in an expression also had a label. In
the algorithm we will not do this: only actual arr nodes get labels in the array AD algorithm.41

Instead, the contribution made to the indexed array by the Index node will be collected in the
contribution map, as we will see below.

For an example, see the following program (expression function bodies elided for conciseness):

1 Map1 (Lam x ...) (Alet a = Use2 [1.0, 2.0, 3.0] in Map3 (Lam x ...) (Avar4 a))

If we require the label of the array argument of the Map with label 1, the answer is 3: the label of
the Alet is considered to be the label of its body.

3.4.3 Primal

In the primal phase of the array AD algorithm, we perform a recursive traversal over the AST of
the input array program, which is the body of the leading Alam in the input. For each visited node,
the algorithm will produce a number of incomplete array-let-bindings that will be concatenated in
the end to produce the result of the primal phase. First we will briefly discuss these incomplete
let-bindings, and their generalisation of a builder ; afterwards, we will describe the primal recursive
traversal in detail.

Builders. An incomplete array-let-binding is of the form Alam var = prog in _ for some var
of production avar and some prog of production arr (Fig. 1). An incomplete array-let-binding
can be used to create a valid array program, i.e. a valid AST of production arr, by substituting a
valid program for the _; the intuitive meaning of an incomplete let-binding is thus as a prefix to
another program that brings a particular computation in scope under a given name.

Analogous to incomplete array-let-bindings we can also speak about incomplete expression-let-
bindings, replacing Alam with Lam, etc. Both forms of incomplete let-bindings are a special case of
a builder, which is an AST fragment of any production with exactly one hole. Given two builders
b1 and b2, we can substitute b2 in the hole in b1 to obtain a new builder b1 ◦ b2. This composition
notation is inspired by the likeness of builders to functions taking an AST and returning a new
AST that wraps the input in some larger program: if f1 is the AST function corresponding to a
builder b1 and likewise for f2 and b2, then the function composition f1 ◦ f2 corresponds to the
builder b1 ◦ b2.

Of course, it only makes sense to create the composition b1 ◦ b2 if the production required in the
hole of b1 is the same production as the one that b2 builds. For array AD, we will only see builders
for production arr (in fact, only compositions of incomplete array-let-bindings); for expression
AD in Section 3.5, we will see builders for production exp.

As an example, for incomplete let-bindings, their builder composition results in nested let-
bindings. If the builder b1 is Alet a1 = prog1 in _ and b2 is Alet a2 = prog2 in _, then
their composition b1 ◦ b2 is the builder Alet a1 = prog1 in Alet a2 = prog2 in _. We will
also refer informally to this program shape as a let-stack.

Recursive traversal. The primal transformation is a recursive algorithm that takes as input
an AST of an array program (i.e. of production arr in Fig. 1) and a variable environment (a
mapping from array variables in scope to the label of their bound right-hand side), and produces
two results: a builder for production arr and a set of array variable names, called the to-store set.
The output of the primal phase is the builder; in the dual phase (Section 3.4.4) we will construct
the AST that goes in the hole in this primal builder. The to-store set is only used internally in
the primal phase: we use it to handle conditionals correctly.

41Expression AD, of course, will label exp nodes instead.

44

The initial variable environment at the top level contains only a mapping from the Alam argument
to a special value indicating that this is the global function argument.

For all array node types except Alet and Acond, the primal transformation then follows a recipe
described here. First the transformation is recursively invoked on all array subprograms, meaning
the arr arguments to the current node; the variable environment (the second parameter of the
primal phase) is passed unchanged. Each of these recursive calls produces a builder and a to-store
set. Furthermore, we rename any array variables occurring in exp and fun arguments of the
current node: if such a variable is mapped to a label n in the environment, it is replaced with
an; if it is the global function argument, it is left as-is. We assume this does not create name
collisions; if necessary, the global function argument should be renamed to a non-colliding name
like “argument”.

Then we look in the row for the current node in Table 1 to find the corresponding builder and
to-store set; the current node is listed in the first column titled “arr primitive”. The label of
the current node is indicated with a subscript n. The m variables should contain the labels
of the array arguments.42 For Avar, if the corresponding binding in the variable environment
indicates that this is the global function argument, the Avarn argument row is used; otherwise
the environment yields the label of the referenced right-hand side, which becomes the value of m
in the Avarn var→m row.

The second and third column of the table give the builder and to-store set produced for this node.
In the second column, the notation P(fun) is used to denote the primal lambda for fun, and the
notations λfst and λsnd are shorthand for Lam x (Fst (Evar x)) and Lam x (Snd (Evar x)),
respectively. Composing the builders for the arguments and the builder from the table gives the
output builder for this node. The order of composition of the argument builders does not matter,
but the builder from the table needs to come last (otherwise the am variable references would be
out of scope). Finally, the union of the to-store sets of the arguments together with the one from
the table gives the output to-store set of this node. The sets in this union will always be disjoint.

With this, the full primal traversal is specified if the input program uses none of the following:
Alet, Acond, Scanl, Scanr, Permute. As previously stated in Section 3.2.1, for the scans and
Permute we have not defined a derivative; this means their dual transform is not defined, so we
also omit their primal transform here. The behaviour for the Alet and Acond nodes is described
below.

Let-bindings. When visiting an Alet a = rhsm1 in bodym2 node, rhs and body are recur-
sively traversed producing builders brhs and bbody and to-store sets srhs and sbody. The recursive
call for rhs gets passed the unchanged environment, while the call for body has the mapping
a⇒ m1 added to the environment. The output builder is brhs ◦ bbody, and the output to-store set
is srhs ∪ sbody.

Conditionals. For Acondn exp arr1m1 arr2m2 , we cannot use the recipe from above: the
crucial difference between Acond and the other array node types is that Acond introduces
conditional execution. Therefore, we cannot just flatten execution into a stack of let-bindings,
automatically bringing all subexpressions in scope, as we did in the other cases. Instead, informally,
we will expand arr1 and arr2 inside the branches of an Acond, and use the to-store sets to
determine what to “export” outside the branches to the main sequence of let-bindings.

The to-store sets are constructed in the rest of the primal algorithm to contain all variables
that we might need in the dual phase; hence they also describe what variables we need to retain
after closing a conditional branch. In practice, some of the variables we include in to-store sets

42Recall that the label of an Alet is the label of its body, so all (sub)programs have a well-defined label.

45

arr primitive Builder To store

Usen lit Alet an = Use lit in _ {an}
Avarn argument Alet an = Avar argument in _ {an}
Avarn var→m Alet an = Avar am in _ {an}
Alet a = rhs in body (special, see text)
Aniln Alet an = Anil in _ {an}
Apairn arr1m1 arr2m2 Alet an = Apair (Avar am1) (Avar am2) in _ {an}
Afstn arrm Alet an = Afst (Avar am) in _ {an}
Asndn arrm Alet an = Asnd (Avar am) in _ {an}
Reshapen exp arrm Alet an = Reshape exp (Avar am) in _ {an}
Replicaten exp arrm Alet an = Replicate exp (Avar am) in _ {an}
Slicen exp arrm Alet an = Slice exp (Avar am) in _ {an}

Generaten exp fun

Alet anres = Generate exp P(fun)
in Alet an = Map λfst (Avar anres)
in Alet antmp = Map λsnd (Avar anres)
in _

{an, antmp}

Mapn fun arrm

Alet anres = Map P(fun) (Avar am)
in Alet an = Map λfst (Avar anres)
in Alet antmp = Map λsnd (Avar anres)
in _

{an, antmp}

ZipWithn fun arrm1
arrm2

Alet anres = ZipWith P(fun) (Avar am1)
(Avar am2)

in Alet an = Map λfst (Avar anres)
in Alet antmp = Map λsnd (Avar anres)
in _

{an, antmp}

Sumn arrm Alet an = Sum (Avar am) in _ {an}
Foldln fun exp arrm Alet an = Foldl fun exp (Avar am) in _ {an}
Backpermuten exp fun arrm Alet an = Backpermute exp fun (Avar am) in _ {an}
Acondn exp arr1m1 arr2m2 (very special, see text)
Scanl/Scanr/Permute (not supported, see text)

Table 1: Rules for the primal phase of array AD. A subscript m on an argument in the first
column means that the label of that subprogram is m; var→m means that the variable refers
to a right-hand side with label m. The Avarn argument case is only used if the variable refers
to the global function argument. “λfst” is shorthand for Lam x (Fst (Evar x)), and “λsnd”
analogous for Snd. P(fun) means the primal lambda for fun. The column “To store” lists the

variable names to store for Acond; see the text.

46

might actually be unnecessary in the dual phase; we do not optimise this in this work, but some
potential options are discussed in Section 6.1.

To describe the algorithm for conditionals, we first have to make some definitions. First replace
all array variables in exp that are not the global function argument with a reference to am, where
m is the corresponding label found in the environment; the result is a renamed expression expR.
Then recursively transform arr1 and arr2, producing respectively builders b1 and b2 and to-store
sets s1 and s2. For k ∈ {1, 2}:

• Define vk to be an arbitrary order for sk so that sk = {vk1 , . . . , vk|sk|}. Let T
k
i be the type of

vki , and define the tuple type T k = (. . . ((), T k1) . . . , T k|sk|).

• Then define the array program Ek as Apair (...Apair Anil (Avar vk1)...) (Avar vk|sk|)

of type T k, which collects the values bound by the variables in the to-store set sk into a
(large) tuple.

• We also need a “shadow program” F k that mirrors Ek but contains just empty values; define
F k as Apair (...Apair Anil (GenEmpty(T k

1))...) (GenEmpty(T k
|s1|)), which is also of

type T k. GenEmpty(T) for an array tuple type T is a macro43 producing an array program
of type T , and is defined recursively as follows:

– GenEmpty(()) = Anil

– GenEmpty((T1, T2)) = Apair (GenEmpty(T1)) (GenEmpty(T2))

– GenEmpty(t[s]) = Generate (Const (ZeroValue(s))) (Lam i (Const (ZeroValue(t))))

Here ZeroValue(t) for a scalar type t is the nearest equivalent of “0” for the particular type
t. If t is a floating-point type or int, we require that ZeroValue(t) = 0, and furthermore
we will need44 ZeroValue(bool) = false; if the language has other single-types, we do
not require any particular value. If t is () the result should be (), and if t is (t1, t2) we
should have ZeroValue(t) = (ZeroValue(t1),ZeroValue(t2)). Note that for a shape type s,
ZeroValue(s) is the zero shape of that type; hence, the program given for GenEmpty(t[s])
constructs an empty array of the given type.

Having these definitions, we can write down the output of the primal phase for the given Acond
node. Substitute the array program Apair am1 (Apair (E1) (F 2)) into b1 to obtain the
program Ethen, and substitute Apair am2 (Apair (F 1) (E2)) into b2 to obtain Eelse. Note
that Ethen and Eelse have the same type: (T, (T

1
, T

2
)) where T is the type of the original Acond

program.

The output builder is then the following:

1 Alet anall = Acond expR (Ethen) (Eelse) -- 'expR' is the renamed expression
2 in Alet an = Afst (Avar anall)
3 in Alet anthen = Afst (Asnd (Avar anall))
4 in Alet anelse = Asnd (Asnd (Avar anall))
5 in Alet v1|s1| = Asnd (Avar anthen) -- 0 Afst constructors
6 in Alet v1|s1|−1 = Asnd (Afst (Avar anthen)) -- 1 Afst constructor
7 -- ...
8 in Alet v11 = Asnd (Afst ...(Afst (Avar anthen)...)) -- |s1| − 1 Afst constructors
9 in Alet v2|s2| = Asnd (Avar anelse) -- 0 Afst constructors

10 in Alet v2|s2|−1 = Asnd (Afst (Avar anelse)) -- 1 Afst constructor
11 -- ...
12 in Alet v21 = Asnd (Afst ...(Afst (Avar anelse)...)) -- |s2| − 1 Afst constructors
13 in _

43In other words, a function in the compiler, not in the compiled program.
44We will need this in the expression primal transform in Section 3.5.1.

47

The output to-store set is s1 ∪ s2 ∪ {an}: any Acond higher up the tree will need to restore the
variables from these branches again, and the result of the conditional needs to be stored as well.

This defines the primal transform for Acond. The intent of its builder is to first conditionally
execute the correct subprogram using an Acond, and then to create temporaries for both of
the branches, storing the computed values in the temporaries for the taken branch and storing
empty arrays in the temporaries for the untaken branch. This ensures that only the code
that the original program would execute actually gets executed (this is important to ensure
that the primal-transformed program does not crash45 if the original program does not), while
simultaneously providing the temporaries of whatever branch was executed to the code generated
by the future dual phase. Because we cannot conditionally bind a variable in the environment in
a lexically-scoped language like Idealised Accelerate, we must bind all the temporaries to some
value, including those of the branch not executed. This leads to the construction defined above.

The result contains a potentially large amount of let-bindings and tuple projection operators,
which may raise concerns about efficiency. However, the intended target application of this
algorithm is in Accelerate, where tuples of arrays are transparently converted to code dealing
solely with individual arrays. This means that the let-bindings and tuple projections just result
in extra book-keeping work in the compiler, but no additional runtime cost.

Another source of concern regarding efficiency may be the construction of the large tuples at
the end of generated then- and else-branches of the conditional. While this does generate some
management work at runtime, no full arrays are actually copied, meaning that for large enough
data the overhead should be minimal. The empty arrays created also result in some constant
amount of work per array; in the end, any extra runtime work is on the order of |s1|+ |s2|, which
is independent of the actual size of the arrays being dealt with.

Example. Consider the following example program of type float[((), int)]→ float[()]:

1 Alam arg (Alet b = Map1 (Lam x (PrimApp Mul (Pair (Evar x) (Const 3.0)))) (Avar2 arg)
2 in Sum3 (Map4 (Lam x (PrimApp Mul (Pair (Evar x) (Index b (PrimApp Round (Evar x))))))
3 (Avar5 b)))

Or in concrete Accelerate syntax:

1 \arg -> let b = map (*3) x in sum (map (\x -> x * b ! round x) b)

This array function computes
∑

i bi · bround(bi) =
∑

i 3 · argi · 3 · arground(3·argi), where the sum
ranges from ((), 0) to ((), n− 1) and n is the length of arg.46

The recursive traversal starts at the Alet and, via the Map (node 1), arrives at node 2. This is a
variable reference to the argument, meaning the produced builder is Alet a2 = Avar arg in _.
The Map then adds its builder from Table 1 that defines a1res, a1 and a1tmp.

Going into the body of the Alet we acquire a binding in the variable environment that maps
b to label 1, hence when visiting the Avar5 b via the Sum, we use the second Avar row in
Table 1 to get the builder Alet a5 = Avar a1 in _. The second Map, node 4, then adds its own
builder that defines a4res, a4 and a4tmp. Finally, the Sum adds its own builder from the table:
Alet a3 = Sum (Avar a4) in _. Let λ1 be the expression function in the Map with label 1 in
the example source code above, and similarly let λ4 be the expression function in node 4. Let
P(λ1) and P(λ4) be their primal lambdas from expression AD. The full builder from the primal
phase for this program then looks as follows:

45Crashing here means “performing an out-of-bounds array indexing operation”.
46The example programs in the algorithm description are at times very artificial. This is because they are chosen

to be small while simultaneously exhibiting the features that we want to explain. The algorithm also works on
more useful programs, see Section 5.
We will return to this particular example program in Section 3.4.6.

48

1 Alet a2 = Avar arg
2 in Alet a1res = Map P(λ1) (Avar a2)
3 in Alet a1 = Map (Lam x (Fst (Evar x))) (Avar a1res)
4 in Alet a1tmp = Map (Lam x (Snd (Evar x))) (Avar a1res)
5 in Alet a5 = Avar a1
6 in Alet a4res = Map P(λ4) (Avar a5)
7 in Alet a4 = Map (Lam x (Fst (Evar x))) (Avar a4res)
8 in Alet a4tmp = Map (Lam x (Snd (Evar x))) (Avar a4res)
9 in Alet a3 = Sum (Avar a4)

10 in _

Example with a conditional. To illustrate how the transformation of an Acond node looks
in practice, consider the following example program:

1 Alam arg (Sum1 (Acond2 (PrimApp Lt (Pair (Index arg (Pair Nil (Const 0))) (Const 0.0)))
2 (Backpermute3 (Pair Nil (Const 5))
3 (Lam idx (Evar idx))
4 (Avar4 arg))
5 (Map5 (Lam x (PrimApp Mul (Pair (Const 2.0) (Evar x))))
6 (Avar6 arg))))

This program computes the sum of the first 5 elements of the vector argument if the argument’s
first element is less than zero, or the sum of the entire array with elements multiplied by two
otherwise.

Via the Sum and the Acond we first transform the Backpermute and its Avar argument to produce
the following builder with to-store set {a3, a4}, analogous to the previous example:

1 Alet a4 = Avar arg
2 in Alet a3 = Backpermute (Pair Nil (Const 5)) (Lam idx (Evar idx)) (Avar a4)
3 in _

The else-branch of the conditional is similarly transformed to produce this builder with to-store
set {a5, a5tmp, a6}:

1 Alet a6 = Avar arg
2 in Alet a5res = Map P(Lam x (PrimApp Mul (Pair (Const 2.0) (Evar x)))) (Avar a6)
3 in Alet a5 = Map (Lam pair (Fst (Evar pair))) (Avar a5res)
4 in Alet a5tmp = Map (Lam pair (Snd (Evar pair))) (Avar a5res)
5 in _

Let the type of the argument arg be f [((), int)] for some floating-point type f . For the conditional,
we arbitrarily choose v1 = (a3, a4) and v2 = (a5, a5tmp, a6). For the large tuple types, we
get T 1

= (((), f [((), int)]), f [((), int)]) and T 2
= ((((), f [((), int)]), t5tmp[((), int)]), f [((), int)]),

where t5tmp is the ttmp resulting from expression AD on the lambda in the Map node.

The Ek programs look as follows:

E1 = Apair (Apair Anil (Avar a3)) (Avar a4)
E2 = Apair (Apair (Apair Anil (Avar a5)) (Avar a5tmp)) (Avar a6)

To be able to construct F 2, we need a zero-like value of type t5tmp to instantiate the ZeroValue(t5tmp)

macro used in the definition of F k. In order to abstract over what t5tmp is, we leave the macro
as-is in the concerned field of F 2:

F 1 = Apair (Apair Anil
(Generate (Const ((), 0)) (Lam i (Const 0.0))))

(Generate (Const ((), 0)) (Lam i (Const 0.0)))
F 2 = Apair (Apair (Apair Anil

(Generate (Const ((), 0)) (Lam i (Const 0.0))))
(Generate (Const ((), 0)) (Lam i (Const (ZeroValue(t5tmp))))))

(Generate (Const ((), 0)) (Lam i (Const 0.0)))

49

Using these in the final builder of the Acond, we arrive at the following result builder of the
primal transform of the example program:

1 -- Shorthands:
2 -- EMPTYVF = Generate (Const ((), 0)) (Lam i (Const 0.0)) [empty vector of float]
3 -- EMPTYVTMP = Generate (Const ((), 0)) (Lam i (Const (ZeroValue(t5tmp)))) [empty vector of tmp]
4 Alet a2all =
5 Acond (PrimApp Lt (Pair (Index arg (Pair Nil (Const 0))) (Const 0.0)))
6 (Alet a4 = Avar arg
7 in Alet a3 = Backpermute (Pair Nil (Const 5)) (Lam idx (Evar idx)) (Avar a4)
8 in Apair a3 (Apair (Apair (Apair Anil (Avar a3)) (Avar a4))
9 (Apair (Apair (Apair Anil EMPTYVF) EMPTYVTMP) EMPTYVF)))

10 (Alet a6 = Avar arg
11 in Alet a5res = Map P(Lam x (PrimApp Mul (Pair (Const 2.0) (Evar x)))) (Avar a6)
12 in Alet a5 = Map (Lam pair (Fst (Evar pair))) (Avar a5res)
13 in Alet a5tmp = Map (Lam pair (Snd (Evar pair))) (Avar a5res)
14 in Apair a5 (Apair (Apair (Apair Anil EMPTYVF) EMPTYVF)
15 (Apair (Apair (Apair Anil (Avar a5)) (Avar a5tmp)) (Avar a6))))
16 in Alet a2 = Afst a2all
17 in Alet a2then = Afst (Asnd (Avar a2all))
18 in Alet a2else = Asnd (Asnd (Avar a2all))
19 in Alet a4 = Asnd (Avar a2then)
20 in Alet a3 = Asnd (Afst (Avar a2then))
21 in Alet a6 = Asnd (Avar a2else)
22 in Alet a5tmp = Asnd (Afst (Avar a2else))
23 in Alet a5 = Asnd (Afst (Afst (Avar a2else)))
24 in -- now the Acond is done, and we finish with node 1, the Sum
25 Alet a1 = Sum a2
26 in _

3.4.4 Dual

In the previous section we described the primal transform, which creates a builder that computes
the same result as the original function did while also storing all intermediate values in variables.
If we would substitute the array program Avar an in this primal builder, where n is the label of
a node in the program, we would create an array program that computes only the value of that
node, and throws away the rest. In particular, if we take for n the label of the top-level node of
the program, the resulting program would be semantically equivalent to the original program.

However, what we want to compute is not an intermediate value of the function, but the gradient
of the function. In order to do this, the remainder of the algorithm consists of two components.
In the first, much larger component, we compute the adjoints of all AST nodes using a recursive
traversal; this recursive traversal is similar to that in the primal phase, and produces a builder.
This component is described in this section. In the second component we compute the array
program that, when substituted in the hole of the dual builder, produces the gradient of the
global function argument; this program is the gradient collector. In Section 3.4.5 we describe the
gradient collector and how to combine the primal and dual results into the final gradient program.

This section is organised in the following parts, indicated with paragraph headers:

• First, we define the input and output values of the recursive traversal.

• Then, with this knowledge, we describe the high-level structure and intent of the algorithm.

• As an interlude, we give a definition of the GenZero macro that will be used below.

• With this definition, we can write down the recipe for all but the most special constructors
in the AST. Most of this will be specified by the four-step recipe and Table 2, but the gaps
that are left open, as well as the reasoning behind the values in Table 2, will be explained
individually for each AST constructor.

50

• Afterwards, we discuss how to transform let-bindings, which have not been covered in the
previous point because they work differently.

• Finally, we describe the algorithm for the most complicated constructor, Acond, which
introduces conditional execution.

Recursive traversal. The dual recursive traversal is similar in overall structure to the recursive
traversal of the primal phase described in Section 3.4.3, but some of the details are different.47

The recursive algorithm takes as input three things:

• The AST of an array program of production arr from Fig. 1.

• An array variable environment mapping variable names to labels.

• A mapping from labels to lists of array programs, called the contribution map. This map
collects adjoint contributions to other nodes in the program; these other nodes can be
argument arrays, right-hand sides of let-bindings referred to by a variable, or the global
function argument in case of an argument reference.

The initial environment at the top level contains only a mapping from the Alam argument to
a special value identifying the global function argument. The top-level contribution map is
{n ⇒ [Generate Nil (Lam i (Const 1.0))]}, where n is the label of the root node of the
program; this ensures that when the root node is traversed by the algorithm, it can retrieve its
adjoint (which is 1) from the contribution map in the same way as the rest of the AST nodes can.

The output of the algorithm also consists of three components:

• A builder for production arr.

• A set of array variable names called the to-store set, containing the variables used in the
updated contribution map (see the next bullet point) that must be retained by a possible
containing Acond. Compared to the primal phase, in both cases we use the to-store sets to
be able to handle conditionals correctly; the difference is that in the primal phase, this set
contained the temporaries necessary in the dual phase, while here we only need to ensure
that the entries in the contribution map do not suddenly contain out-of-scope variable
references when we cross out of a conditional branch.

• An updated contribution map.

Compared to the primal phase, the contribution map is a new input and output value. The map
is threaded through the algorithm, and is the channel via which all adjoint contributions are
communicated. This includes the contributions to direct arguments of nodes, as explained below.

High-level structure. The idea of the algorithm is the following: each node in the tree retrieves
its own adjoint from the contribution map, stores it in its builder, and adds the adjoints of its
arguments to the contribution map given to the argument nodes.

As stated above, the contribution map binds the label of a node to a list of array programs. In a
program without let-bindings, every node receives exactly one contribution: the top node gets a
zero-dimensional array with value 1, and every other node gets a contribution from its parent
node. The entry in the contribution map created for the argument of a node will, therefore,
always contain a list with exactly one element.

However, this is not true for the right-hand side of a let-binding, due to the introduced sharing.
Each variable reference that refers to this right-hand side gets an adjoint, and each of these adjoints

47For an example of running the dual algorithm on a simple program, see Section 3.4.6.

51

is on its turn a contribution to the adjoint of the right-hand side. All of these contributions
must be collected and summed (elementwise) to form the adjoint of the right-hand side. This
summing comes from the principle in reverse AD, already mentioned in Section 2.1.2, that fanout
in the computation graph (sharing of a value) corresponds to addition in the gradient program.
Fortunately, all variable references are explicit in the AST, so we can easily see where these
contributions will come from. Since Idealised Accelerate lacks operations for executing array
subprograms multiple times (due to the absence of higher-order operations and looping constructs),
variable references cannot be duplicated, and each Avar node in the program produces exactly
one adjoint contribution to the right-hand side it refers to.

The only exception to this rule is conditional execution: when written in the branch of an Acond,
an Avar node can be skipped entirely depending on the condition’s value at runtime. We address
this problem by making a non-executed Avar node produce an empty contribution in the form of
an empty array. When adding contributions together, we skip empty arrays, thereby ensuring
that at runtime, we only add the contributions from nodes that were actually executed.

The attentive reader notes that indicating non-execution using an empty contribution array is
in-band signalling: an empty array may very well be a valid contribution from an executed node,
if the target node of the contribution happened to produce an empty array in the primal phase.
However, this is not a problem and we need not distinguish between a contribution that is empty
because the primal array was already empty, and one that is empty because the variable reference
was not executed. This is because the elementwise sum of zero or more empty arrays is always an
empty array, regardless of whether any of the summands was to be included or not.

Zero arrays. Before the full description of the algorithm, we first lead with a definition. In
the algorithm we will need to generate zero-filled arrays of particular sizes, for example in the
Permute generated for array indexing or when the contribution list for a particular adjoint is
empty. To do this, we define the macro GenZero(arr) for an array program arr. This macro
returns an array program that is of the same shape and size as arr, but contains zero values
(in the sense of ZeroValue as defined in Section 3.4.3 on page 47). It is defined as follows by
case-analysis on the type of arr:

• For type (), define GenZero(arr) = Anil.

• For type (T1, T2), define GenZero(arr) = Apair (GenZero(Afst arr)) (GenZero(Asnd arr)).

• For type t[s], define GenZero(arr) as the following:
Alet v = arr in Generate (Shape v) (Lam i (Const (ZeroValue(t)))), where v is a
fresh variable with a unique prefix. We store the array program in a variable to be
able to refer to it from a Shape call in an expression.

Note that while GenZero may recompute its argument arr many times, in practice it will only
be called on array programs consisting only of Avar, Afst and Asnd nodes; in an implementation,
these can be optimised to do (almost) no actual runtime work.

Recipe for most nodes. For nodes that are not Alet, Acond, Scanl, Scanr and Permute, the
general recipe for the algorithm is as follows. Let the current node’s label be n, and assume it
has k array arguments (arguments of production arr) of which the labels are m1, . . . ,mk.

1. Look up the entry in the contribution map under key n, which is a list L of array programs. If
there is no such entry (possible if a let-bound variable is not referenced at all), set L = [], the
empty list. The adjoint of the current node is then the array program EltwiseEIsum(L, an).
Here, EltwiseEIsum (“elementwise empty-ignoring sum”) is a macro taking a list L of array
programs, all of some type T , and a reference array program of type T , and is defined by
case distinction on T :

52

• If T is (), then EltwiseEIsum(L, ref) = Anil.

• If T is (T1, T2), then EltwiseEIsum(L, ref) = Apair (EltwiseEIsum(L′
1, Afst ref))

(EltwiseEIsum(L′
2, Asnd ref)), where L′1 is the list L with Afst applied to each element,

and L′2 analogously with Asnd. To prevent recomputation of expensive array programs,
the programs in L can first be bound to variables using Alet nodes.

• If T is t[s], then EltwiseEIsum([], ref) = GenZero(ref), and for non-empty lists L,
we Generate an array with size (Shape ref) and with the element at index i given
by the sum of the elements of the arrays in L at index i, replacing an element by
ZeroValue(t) if the index is out-of-bounds in that particular array. This conditional
can be effected using a Cond node. The sum of two scalar values is elementwise over
tuples; the sum of non-numeric values may be an arbitrary valid value of the relevant
single-type.

Note that we cannot just combine the adjoint contributions using a ZipWith node, as in
ZipWith (Lam p (PrimApp Add p)): firstly, we have to explicitly ignore empty contribu-
tions, but secondly, the result (and thus the adjoint) of ZipWith nodes has as shape the
elementwise minimum of the shapes of its argument (see Section 3.1). Hence, contributions
generated by a ZipWith may not have the full required size for the adjoint of its arguments.
To fix this, we explicitly use the Generate construction described above.

2. Determine the contribution map to be passed to the array program arguments of the current
node. This is the contribution map received by the current node, plus the additions listed
in the row in Table 2 in the “Contribution map additions” column. If both maps contain an
entry for the same key, the corresponding lists are concatenated.

Optionally, one can remove the entry for the current node from the contribution map in
this stage. This is optional, since the entry will not be inspected or used ever again, but for
the same reason leaving it in may be a waste of memory.

Table 2 contains some new notation, and some entries are incomplete. “λfst” stands
for Lam x (Fst (Evar x)) (analogously “λsnd”), and (Lam x e1)◦(Lam y e2) stands for
Lam y (Let x = e1 in e2), as in Table 1. The incomplete entries, as well as the “IA”
notation, will be explained below when we discuss each of the contructors separately.

For example, if the current node is Apair2 arr31 arr44 and the contribution map received
by the current node is {1 ⇒ [arr1], 2 ⇒ [arr2]}, the contribution map to be passed to
the arguments in the next step is {1 ⇒ [arr1, Afst (Avar d2)], 4 ⇒ [Asnd (Avar d2)]}.
(Here we opted to remove the entry for the current node.) The adjoint for the current node
(step 1) is arr2 in this example.

3. Recurse on the k array arguments. All invocations get the same variable environment,
which is the variable environment received by the current node. For the contribution map,
invocation 1 gets the map computed in step 2, and invocation i ∈ {2, . . . , k} gets the
contribution map returned from invocation i− 1.

4. Let bargs be the composition of the builders returned from the recursive invocations (in
any order), and let b be the builder from Table 2 (second column), where “@” denotes the
adjoint computed in step 1. The output builder for the current node is then b ◦ bargs.48

The output contribution map from the current node is the map returned from invocation
k in step 3. The output to-store set is the union of the to-store sets from the recursive

48Recall that in the primal phase, the current node’s builder was to be composed after those of the arguments.
This reversal of composition order is the point where we “execute the program backwards” in the dual pass.

53

invocations, together with the to-store set additions in Table 2 (fourth column); this union
will always be disjoint.

As stated, the above recipe does not fully define the dual transform even for the constructors that
it does cover (i.e. all except Alet and Acond and the unsupported constructors Scanl, Scanr,
Permute), because some of the notation used in their builders and contribution map additions is
yet undefined. Therefore, we will discuss each of the constructors in Table 2 individually below,
filling in these gaps and explaining the reasoning behind the definitions. The Alet and Acond
nodes are discussed separately afterwards.

• Use and Anil nodes receive an adjoint as usual, but since their adjoint on its own is not
interesting, and they also do not have any arguments to contribute to, we need not store it.
Hence their builder is empty and they create no additional contribution map entries.

• Avar nodes have no direct arguments, but do indirectly refer to the right-hand side their
variable is bound to. The adjoint of the node is stored in the dn variable, to be used in
the contribution it places in the contribution map. Since we want dn to persist outside of
the current branch of any Aconds that contain the current node (since the binding Alet or
Alam may be arbitrarily far up the AST), we add dn to the to-store set.

• The adjoints of the arguments to an Apair node are the two components of the adjoint of
the Apair itself. Hence, we add them to the contribution map at the correct keys.

Note that the to-store set for an Apair node is empty, even though we do create contribution
map additions containing variable references. The key point is that these contribution map
entries will be used only in the builders produced by the direct arguments to the Apair
node, which are composed with the builder for the current Apair node: there is no chance
for the dn variable to get lost in-between. This is in contrast to an Avar node as discussed
in the previous point, because there the contribution map entry will only be read at the
point where the variable is bound, which may cross any number of Acond nodes.

The same reasoning about why the to-store set does not contain dn holds for all subsequent
nodes in this list; we will not repeat the reasoning there.

• The argument of an Afst node is of pair type; the adjoint of the left half is evidently the
adjoint of the Afst node itself, but the right half is completely ignored by the Afst. Hence,
the right half gets a zero adjoint, as computed by GenZero, which uses the primal value of
the right half of the argument to get the right shapes. Asnd is analogous to Afst, swapping
all sides.

• Assuming the target shape has the same number of elements as the source shape, Reshape
is just a permutation of the elements in its argument array. Hence, the inverse permutation
(a Reshape to the shape of its original argument) applied on the adjoint of the result is the
adjoint of the argument array.

• Fanout translates to addition in the dual, and this holds the same for Replicate. Its
derivative is best explained using an example; the general form follows by extrapolation.

Consider the array program Replicate exp arr where arr is an array program resulting in
an array of size (((), 2), 3) and exp is an expression resulting in the value (((((), 4), ()), 5), ()).
If r is the result of Replicate exp arr, then the size of r is (((((), 4), 2), 5), 3) and
r(((((),i),j),k),`) = arr(((),j),`).

For the dual, suppose that the label of the Replicate node is 1 and thus its adjoint is
stored in d1, of size (((((), 4), 2), 5), 3). We want to obtain the adjoint da (size (((), 2), 3))
of arr where da(((),j),`) =

∑4
i=1

∑5
k=1 dr(((((),i),j),k),`). We can do this with the following

program:

54

ar
r

p
ri

m
it

iv
e

B
u
il
d
er

C
on

tr
ib

u
ti

on
m

ap
ad

d
it
io

n
s

T
o-

st
or

e
se

t
ad

d
.

Us
e n

li
t
/
An

il
n

_
{}

{}
Av

ar
n

ar
gu

me
nt

Al
et

dn
=

@
in

_
{a

rg
um

en
t
⇒

[A
va

r
dn

]}
{d
n
}

Av
ar

n
va

r →
m

Al
et

dn
=

@
in

_
{m
⇒

[A
va

r
dn

]}
{d
n
}

Al
et

a
=

rh
s

in
bo

dy
_

{}
{}

Ap
ai

r n
ar

r1
m

1
ar

r2
m

2
Al

et
dn

=
@

in
_

{m
1
⇒

[A
fs

t
(A

va
r

dn
)]
,m

2
⇒

[A
sn

d
(A

va
r

dn
)]
}

{}
Af

st
n

ar
r m

Al
et

dn
=

@
in

_
{m
⇒

[A
pa

ir
(A

va
r

dn
)

(G
en

Z
er
o
(A
sn

d
(A

va
r

am
))
)]
}

{}
As

nd
n

ar
r m

Al
et

dn
=

@
in

_
{m
⇒

[A
pa

ir
(G

en
Z
er
o
(A
fs

t
(A

va
r

am
))
)

(A
va

r
dn

)]
}

{}
Re

sh
ap

e n
ex

p
ar

r m
Al

et
dn

=
@

in
_

{m
⇒

[R
es

ha
pe

(S
ha

pe
am

)
(A

va
r

dn
)]
}

{}

Re
pl

ic
at

e n
ex

p
ar

r m
Al

et
dn

=
@

in
_

{m
⇒

[S
um

(R
es

ha
pe

..
.

(B
ac

kp
er

mu
te

..
.

..
.

(A
va

r
dn

))
)]
}

(S
om

e
pa

rt
s
el
id
ed
;
se
e
te
xt
.)

{}

Sl
ic

e n
ex

p
ar

r m
Al

et
dn

=
@

in
_

{m
⇒

[G
en

er
at

e
(S

ha
pe

am
)

..
.]
}

(S
om

e
pa

rt
s
el
id
ed
;
se
e
te
xt
.)

{}

Ge
ne

ra
te

n
ex

p
fu

n

Al
et

dn
=

@
in

Al
et

dn
ia

=
Ma

p
λ
sn

d
(Z

ip
Wi

th
D
(f
un

)
(A

va
r

dn
)

(A
va

r
an

tm
p)

)
in

_

IA
(f
un
,d
n
ia

)
{d
n
ia
}

Ma
p n

fu
n

ar
r m

Al
et

dn
=

@
in

Al
et

dn
re

s
=

Zi
pW

it
h
D
(f
un

)
(A

va
r

dn
)

(A
va

r
an

tm
p)

in
Al

et
dn

ia
=

Ma
p
λ
sn

d
(A

va
r

dn
re

s)
in

_

{m
⇒

[M
ap

λ
fs

t
(A

va
r

dn
re

s)
]}

∪
IA

(f
un
,d
n
ia

)
{d
n
ia
}

Zi
pW

it
h n fu
n

ar
r m

1
ar

r m
2

Al
et

dn
=

@
in

Al
et

dn
re

s
=

Zi
pW

it
h
D
(f
un

)
(A

va
r

dn
)

(A
va

r
an

tm
p)

in
Al

et
dn

ia
=

Ma
p
λ
sn

d
(A

va
r

dn
re

s)
in

_

{m
1
⇒

[M
ap

λ
fs

t◦
λ
fs

t
(A

va
r

dn
re

s)
]

m
2
⇒

[M
ap

λ
sn

d◦
λ
fs

t
(A

va
r

dn
re

s)
]}

∪
IA

(f
un
,d
n
ia

)
{d
n
ia
}

Su
m n

ar
r m

Al
et

dn
=

@
in

_
{m
⇒

[B
ac

kp
er

mu
te

(S
ha

pe
am

)
λ
fs

t
(A

va
r

dn
)]
}

{}

Fo
ld

l n
fu

n
ex

p
ar

r m
(w

he
re

ar
r
ha

s
ty
pe

f
[s
]

fo
r
a
flo

at
in
g-
po

in
t
ty
pe

f
,
an

d
fu

n
an

d
ex

p
co
nt
ai
n
no

In
de

x
no

de
s)

Al
et

dn
=

@
in

Al
et

dn
s

=
IN

IT
(S

ca
nl

fu
n

ex
p

(A
va

r
am

))
in

Al
et

dn
d

=
Zi

pW
it

h
λ
fs

t◦
D
(f
un

)◦
P
(f
un

)
(A

va
r

dn
s)

(A
va

r
am

)
in

Al
et

dn
tm

p
=

Zi
pW

it
h

(L
am

p
(P

ri
mA

pp
Mu

l
p)

)
(M

ap
λ
sn

d
(A

va
r

dn
d)

)
(T

AI
L

(S
ca

nr
(L

am
p

(P
ri

mA
pp

Mu
l

p)
)

(C
on

st
1)

(M
ap

λ
fs

t
(A

va
r

dn
d)

))
)

in
_

(F
or

de
fin

it
io
ns

of
IN

IT
an

d
TA

IL
,
se
e
th
e
te
xt
.)

{m
⇒

[Z
ip

Wi
th

(L
am

p
(P

ri
mA

pp
Mu

l
p)

)
(A

va
r

dn
)

(B
ac

kp
er

mu
te

(S
ha

pe
am

)
(L

am
i

(F
st

(E
va

r
i)

))
(A

va
r

dn
tm

p)
)]
}

{}

Ba
ck

pe
rm

ut
e n

ex
p

(L
am

x
bo

dy
)

ar
r m

Al
et

dn
=

@
in

_
{m
⇒

[P
er

mu
te

(L
am

p
(P

ri
mA

pp
Ad

d
p)

)
(G

en
Z
er
o
(a
m
))

(L
am

x
(P

ai
r

(C
on

st
tr

ue
)

bo
dy

))
(A

va
r

dn
)]
}

{}

Ac
on

d n
ex

p
ar

r1
m

1
ar

r2
m

2
(s
pe

ci
al
,
se
e
te
xt
)

Sc
an

l/
Sc

an
r/

Pe
rm

ut
e

(n
ot

su
pp

or
te
d,

se
e
te
xt
)

Ta
bl
e
2:

R
ul
es

fo
r
th
e
du

al
ph

as
e
of

ar
ra
y
A
D
.“
@”

is
a
pl
ac
eh
ol
de
r
fo
r
th
e
co
m
pu

te
d
ad

jo
in
t
of

th
e
no

de
it
se
lf.
D

(f
un

)
m
ea
ns

th
e
du

al
la
m
bd

a
fo
r
fu

n,
an

d
e.
g.
λ
fs

t◦
λ
sn

d
is

sh
or
th
an

d
fo
r
La

m
x

(F
st

(S
nd

(E
va

r
x)

))
.
Fo

r
th
e
de
fin

it
io
n
of

th
e

IA
m
ac
ro

in
th
e
th
ir
d
co
lu
m
n,

se
e
th
e
te
xt
.

55

1 Sum (Reshape (Const ((((), 2), 3), 20)) -- 4 * 5 = 20
2 (Backpermute (Const (((((), 2), 3), 4), 5))
3 (Lam idx
4 (Let i = Snd (Fst (Fst (Fst (Evar idx))))
5 in Let j = Snd (Fst (Fst (Evar idx)))
6 in Let k = Snd (Fst (Evar idx))
7 in Let l = Snd (Evar idx)
8 in Pair (Pair (Pair (Pair Nil (Evar j)) (Evar l)) (Evar i)) (Evar k)))
9 d1))

In other words, we first use Backpermute to shuffle the “expanded” indices to the end,
Reshape those dimensions into a single dimension with size the product of those dimensions,
and then Sum those. The general form, including the expressions using Shape to obtain
the values 2, 3, 4, 5 in the program above, is elided here for reasons of conciseness. The
contribution map addition in the third column of Table 2 is then {m⇒ [...]}, where this
program goes in place of the “...”.

• Slice exp arrt[s] selects one slice of certain dimensions of the shape of the argument,
thereby eliminating those dimensions. A way to express its derivative is to use Generate
with the shape of arr, that picks the corresponding value from the Slice adjoint if the
sliced dimensions match the values in exp, and ZeroValue(t) otherwise. The conditional is
expressed using a Cond node; for a reasonable translation we assume the availability of a
binary “logical AND” operation in op in Fig. 1. The full contribution program is elided for
conciseness.

• A Generate node contains an expression function that we need to differentiate using
expression AD. Recalling from Section 3.4.1, the dual lambda from expression AD returns
not only the gradient of the function input but also an index adjoint information tuple
(IAI tuple); since in this case the input to the expression function is discrete (namely, the
element index), we are only interested in the IAI tuple, which we store in dnia. A ZipWith
is used to supply the adjoints and the expression temporaries to the dual lambda.

Note that the dual lambda from expression AD, written D(fun) in Table 2, contains
references to program variables that must be renamed to the corresponding aN names in
the builder for Generate. This renaming is elided in the table for conciseness.

A Generate node has no array arguments to compute the adjoint of, but any indexed
variable references need their adjoints registered in the contribution map. To represent these
contributions, we use the macro IA(fun, ia), taking the expression function in question
(fun) and (a variable referring to) the array of IAI tuples (ia); this macro is defined in
natural language as follows.49

Suppose there are k Index nodes in fun, indexing array variables pointing to right-hand
sides with labels `1, . . . , `k; then each IAI tuple in ia contains three values, say di, idx i and
execi for i ∈ {1, . . . , k} (see Section 3.4.1). The meaning of these values is that for each
i, we have an adjoint di to be contributed to the array node with label `i at the target
index idx i if execi is true. This execi is the boolean that indicates whether the Index
node was executed at all. Let the type of node `i be ti[si]; note that we know this is not a
tuple type because a reference to it is the argument to an Index node. For each i, we will
define an array program contribi that has the same shape as a`i and represents precisely
the contributions to the adjoint of node `i resulting from the i’th Index node in fun. These
contributions are put in a map to form the result of IA(fun, ia), where care must be taken
to put contributions to the same node in a list instead of creating multiple colliding bindings
in the map.

49Note that this is the central place where our reverse AD algorithm deals with array indexing.

56

How, then, do we write contribi? Like in Section 3.3.2, we will do this with a Permute
node. Assume ExtractDi(exp), ExtractIdxi(exp) and ExtractExeci(exp) are expressions
that extract respectively di, idx i and execi from an IAI-tuple-typed expression exp. These
three macros, together with the labels `i, are the realisation of the “information about the
layout of tidxadj” that we mentioned in Section 3.4.1. Following the example of Section 3.3.2,
we can then write:

1 Permute (Lam p (PrimApp Add p))
2 (Generate (Shape a`i) (Lam i (ZeroValue(ti))))
3 (Lam i (Let iai = Index ia i
4 in Pair (ExtractExeci(Evar iai)) (ExtractIdxi(Evar iai)))
5 (Map (Lam iai (ExtractDi(Evar iai))) (Avar ia))

This is the program contribi. Note how we use the flag indicating whether the Index node
was executed to determine whether we need to permute the corresponding adjoint. The
ia variable used here, the array of IAI tuples, is named dnia in the row for Generate in
Table 2.

This finishes the definition of the IA macro, which will also be used for Map and ZipWith
below.

• The fun argument to a Map may also contain array indexing, so we include the same logic
using IA() as described above for Generate. The difference is that here the argument to
fun is a value from an array; therefore, the first half of the result pair of the dual lambda
gives the adjoint of that array, instead of being thrown away. The D(fun) in Table 2 should
also have its internal array variable references renamed to aN for the correct values of N .

• ZipWith is analogous to Map, except that there are two input arrays. The produced
contributions pick the right values from the dual lambda result to create the adjoints of
the argument arrays. Again, we use IA() to create the contributions arising from array
indexing, and the internal array variables in the dual lambda are renamed.

• The derivative builder for Sum can equivalently be written using a Replicate, a Backpermute
or a Generate; each of these primitives is a specialisation of the next one (in the sense of
Section 2.3.1). We chose to give the version using Backpermute in Table 2 because it is
most succinctly expressible; however, since the Replicate primitive is most specific in its
functionality, it is the easiest version for the optimiser to fuse with the rest of the program,
and hence that is the version that our implementation uses.

• The most complicated derivative is that for Foldl. The two additional shorthands here are
INIT and TAIL, defined as follows:

INIT arr = Backpermute (Pair (Fst (Shape arr)) (PrimApp Add (Snd (Shape arr)) (Const -1)))
(Lam i (Evar i))
arr

TAIL arr = Backpermute (Pair (Fst (Shape arr)) (PrimApp Add (Snd (Shape arr)) (Const -1)))
(Lam i (Pair (Fst (Evar i)) (PrimApp Add (Snd (Evar i)) (Const 1))))
arr

In other words, INIT and TAIL are like the standard Haskell functions init and tail
applied on the inner dimension of the array.

As stated in Section 3.2.1, the code in Table 2 does not allow for array indexing in fun or
exp, and requires that the element type of the folded array is a floating-point value. This is
not expected to be a fundamental limitation of the algorithm.

As with Generate, Map and ZipWith, internal array variable references in D(fun) must be
renamed to the correct aN names.

57

• Where a Backpermute defines the value of the target array by determining where each index
comes from in the source array, a Permute does it by determining where each element in
the source array maps to in the target array.

This makes the derivative of a Backpermute easily expressible in terms of a Permute. Indeed,
since we want to permute the adjoints of the result of the Backpermute back to its input
array, we can re-use the index mapping function from the Backpermute in the Permute,
and map each adjoint precisely to the cell where the primal value was obtained from.

In other words, for each index i in dn, body gives where the corresponding primal value came
from, and thus where we should permute its adjoint to. We never skip permuting a value
(hence the Const true), and we add any adjoints being mapped to the same destination
cell (because fanout translates to addition in the dual).

Note that the expression function in a Backpermute node has a discrete result, meaning
that the (hypothetical) adjoint of its result, and thus of all its internal intermediate values,
is zero. This means that we can completely ignore any array indexing happening in this
expression function for the purposes of AD.

Finally, the occurrence of body in the contribution map addition from Backpermute should
have its internal array variable references renamed as with Foldl etc. above.

Let-bindings. Suppose we are visiting an Alet a = rhsm1 in bodym2 node. Let C be the
received contribution map and Γ be the received variable environment. First the algorithm is
recursively invoked on body with environment Γ[a := m1] and contribution map C, producing
builder bbody, to-store set sbody and contribution map Cbody. We can pass the unmodified
contribution map since since the “label of” the Alet is the label of its body, and thus the adjoint
contributions to body are already present in the contribution map under the correct key.

Then, we traverse rhs with the original Γ and with contribution map Cbody, producing builder
brhs, to-store set srhs and contribution map Crhs. The output builder is bbody ◦ brhs, the output
to-store set is sbody ∪ srhs (these two sets are always disjoint), and the output contribution map
is Crhs.

Conditionals. Having covered all the other nodes, the remaining question is how the dual
algorithm works on nodes of the form Acondn exp arr1m1 arr2m2 . Firstly, because the condition
expression exp has a discrete result type, it cannot contribute any adjoints and can thus be
ignored for the purposes of the dual pass, except for renaming any array variable references in it
to the correct aN names. Let expR be this renamed expression.

As in the usual recipe for most nodes (page 52), we first collect the adjoint of the Acond using
EltwiseEIsum(). We add {m1 ⇒ dn,m2 ⇒ dn} to the incoming contribution map to produce
C ′; the adjoint of either branch is the same as the adjoint of the Acond. Traversing arr1 with
an unchanged variable environment and contribution map C ′ then produces builder b1, to-store
set s1 and contribution map C1. Traversing arr2 with an unchanged variable environment and
contribution map C1 similarly produces b2, s2 and C2.

Define vk, T k, T k, Ek and F k based on s1 and s2 just like in Section 3.4.3, page 45. Let Ethen

be the array program obtained by substituting the program Apair (E1) (F 2) into b1, and let
Eelse be obtained by substituting Apair (F 1) (E2) into b2. Note that compared to the primal
algorithm, we do not need to produce any particular result just for the Acond; all we need are
the intermediate adjoints necessary for the contributions from variables in the branches, which
are contained in the contribution map C2. Ethen and Eelse again have the same type, namely
(T

1
, T

2
).

58

The output builder of the Acond is then the following, analogous to the primal case but without
the separate an result.

1 Alet dnall = Acond expR (Ethen) (Eelse) -- 'expR' is the renamed expression
2 in Alet dnthen = Afst (Avar dnall)
3 in Alet dnelse = Asnd (Avar dnall)
4 in Alet v1|s1| = Asnd (Avar dnthen) -- 0 Afst constructors
5 in Alet v1|s1|−1 = Asnd (Afst (Avar dnthen)) -- 1 Afst constructor
6 -- ...
7 in Alet v11 = Asnd (Afst ...(Afst (Avar dnthen))...) -- |s1| − 1 Afst constructors
8 in Alet v2|s2| = Asnd (Avar dnelse) -- 0 Afst constructors
9 in Alet v2|s2|−1 = Asnd (Afst (Avar dnelse)) -- 1 Afst constructor

10 -- ...
11 in Alet v21 = Asnd (Afst ...(Afst (Avar dnelse))...) -- |s2| − 1 Afst constructors
12 in _

The output to-store set is s1 ∪ s2; the output contribution map is C2.

3.4.5 Combining primal and dual

In Sections 3.4.3 and 3.4.4 we described the primal and dual phases of the array AD algorithm.
Both produced a builder for production arr (Fig. 1): call these bp and bd. Recall that the
input to the AD algorithm was an array function of production afun, and thus of the form
Alam argument body with body of production arr. The output of the algorithm must be a new
array function taking the original input argument (of type, say, T) and returning the gradient of
that argument (again of type T). This output array function is Alam argument (...), where the
body in place of (...) is the builder composition bp ◦ bd with Egradient substituted in the hole.

Here, Egradient is the gradient collector, and is equal to EltwiseEIsum(L, argument), where L is
the list from the contribution map resulting from the dual phase at the key corresponding to the
global function argument. Just like in step 1 of the recipe in Section 3.4.4 on page 52, if that key
is not present in the map, the empty list is used. The result is an array program that collects the
gradient of the global function argument assuming that it is substituted in the dual builder.

This concludes the description of the array AD algorithm. What we have left abstract until now
is the expression AD algorithm, which we will discuss in Section 3.5.

3.4.6 Example

Before concluding and moving on to expression AD, let us go through the dual phase of one of
the example programs given in Section 3.4.3. We gave the following program:

1 Alam arg (Alet b = Map1 (Lam x (PrimApp Mul (Pair (Evar x) (Const 3.0)))) (Avar2 arg)
2 in Sum3 (Map4 (Lam x (PrimApp Mul (Pair (Evar x) (Index b (PrimApp Round (Evar x))))))
3 (Avar5 b)))

The argument arg is a vector of float values. As the primal builder (bp), we got the following:

1 Alet a2 = Avar arg
2 in Alet a1res = Map P(λ1) (Avar a2)
3 in Alet a1 = Map (Lam x (Fst (Evar x))) (Avar a1res)
4 in Alet a1tmp = Map (Lam x (Snd (Evar x))) (Avar a1res)
5 in Alet a5 = Avar a1
6 in Alet a4res = Map P(λ4) (Avar a5)
7 in Alet a4 = Map (Lam x (Fst (Evar x))) (Avar a4res)
8 in Alet a4tmp = Map (Lam x (Snd (Evar x))) (Avar a4res)
9 in Alet a3 = Sum (Avar a4)

10 in _

where λ1 and λ4 are the expression functions in node 1 and node 4, respectively.

59

Now we will construct the dual builder (bd) using the dual algorithm. Since the program does
not have a conditional, we will ignore the to-store sets.

Starting at the top-level Alet, we immediately continue to traverse its body, node 3, which is
a Sum. The initial contribution map is {3⇒ [Generate Nil (Lam i (Const 1.0))]}, which is
passed on to the Sum, where, following the recipe on page 52, we first collect its adjoint. In this
case, this is precisely the single item in the contribution map, and hence the builder for node 3
(“b” in step 4 of the recipe) is the following:

1 Alet d3 = Generate Nil (Lam i (Const 1.0)) in _

For the contribution map passed to its argument, node 4, we first remove the entry for node 3,
and then add the addition from Table 2 to arrive at the following map:

{4⇒ [Backpermute (Shape a4) (Lam i (Fst (Evar i))) (Avar d3)]} (2)

We recurse to node 4, where the adjoint is precisely the one item in the contribution map again.
Looking in Table 2, the builder for node 4 is:

1 Alet d4 = Backpermute (Shape a4) (Lam i (Fst (Evar i))) (Avar d3)
2 in Alet d4res = ZipWith D(λ4) (Avar d4) (Avar a4tmp)
3 in Alet d4ia = Map λsnd (Avar d4res)
4 in _

For the contribution map to its argument, node 5, we notice that λ4 has an array indexing
operation. This means that IA(λ4, d4ia) has one entry: at key 1 (the label of the right-hand side
referred to by the variable b) it has a singleton list containing the requisite Permute. Suppose
that, as in Section 3.4.1, the element type of d4ia (i.e. tidxadj for λ4) is organised as ((), ((adjoint,
target index), was-executed)). Then the contribution is the following, where we have already
filled in ExtractExec() and similar.

1 Permute (Lam p (PrimApp Add p))
2 (Generate (Shape a1) (Lam i (Const 0.0)))
3 (Lam i (Let iai = Index d4ia i
4 in Pair (Snd (Snd (Evar iai))) (Snd (Fst (Snd (Evar iai))))))
5 (Map (Lam iai (Fst (Fst (Snd (Evar iai))))) (Avar d4ia))

Note the 0.0 from ZeroValue(float). To recognise the expansion of ExtractExec() and similar,
compare this program with the template in the description of the dual of Generate in Section 3.4.4
(page 56), where the IA() macro was defined.

Knowing the expansion of IA(λ4, d4ia), we can construct the contribution map for node 5 from
step 2 of the recipe for node 4. This is the received contribution map (Eq. (2)) minus the value
for key 4 (resulting in the empty map), plus the additions from the Map row of Table 2. This
results in the following map, where “Permute ...” is short for the 5-line program listed above:

{5⇒ [Map (Lam i (Fst (Evar i))) (Avar d4res)], 1⇒ [Permute ...]}

In recipe step 3 of node 4, we recurse further to node 5, which adds {1 ⇒ [Avar d5]} to the
received contribution map (producing a list at key 1 with two items), and produces the builder
Alet d5 = Map λfst (Avar d4res) in _ by using the value at key 5 in the received map. This
propagates upward in step 4 of the recipe for nodes 4 and 3 so that the output contribution map
of node 3 (the Sum) is {1 ⇒ [Permute ..., Avar d5]} and the output builder of node 3 is the
following:

1 Alet d3 = Generate Nil (Lam i (Const 1.0)) -- from node 3
2 in Alet d4 = Backpermute (Shape a4) (Lam i (Fst (Evar i))) (Avar d3) -- from node 4
3 in Alet d4res = ZipWith D(λ4) (Avar d4) (Avar a4tmp) -- from node 4
4 in Alet d4ia = Map (Lam i (Snd (Evar i))) (Avar d4res) -- from node 4
5 in Alet d5 = Map (Lam i (Fst (Evar i))) (Avar d4res) -- from node 5
6 in _

60

Note that the Permute only shows up in the contribution map and not yet in the builder.

Having completed the traversal of the body of the Alet, we continue with its right-hand side: node
1. In step 1 of the recipe for node 1, we collect its adjoint from the contribution map; however,
the relevant list now contains two programs. This means that we must take the elementwise sum
of these programs using the EltwiseEIsum() macro as explained in the recipe. Inlining the result
at the “@” in the builder for the Map that is node 1, we get the following builder:

1 Alet d1 =
2 Alet d1a1 = Permute (Lam p (PrimApp Add p))
3 (Generate (Shape a1) (Lam i (Const 0.0)))
4 (Lam i (Let iai = Index d4ia i
5 in Pair (Snd (Snd (Evar iai))) (Snd (Fst (Snd (Evar iai))))))
6 (Map (Lam iai (Fst (Fst (Snd (Evar iai))))) (Avar d4ia))
7 in Alet d1a2 = Avar d5
8 in Generate (Shape a1)
9 (Lam i

10 (Let x1 = Cond (PrimApp Lt (Snd (Evar i)) (Snd (Shape d1a1)))
11 (Index d1a1 i)
12 (Const 0.0)
13 in Let x2 = Cond (PrimApp Lt (Snd (Evar i)) (Snd (Shape d1a2)))
14 (Index d1a2 i)
15 (Const 0.0)
16 in x1 + x2))
17 in Alet d1res = ZipWith D(λ1) (Avar d1) (Avar a1tmp)
18 in Alet d1ia = Map (Lam i (Snd (Evar i))) (Avar d1res)
19 in _

Here d1a1 and d1a2 are the two contributions to the adjoint, and we use a Generate as specified
in the definition of EltwiseEIsum() to add these arrays together. In this case, we know that
the two arrays always have the same size, so we could also just have assigned the program
ZipWith (Lam p (PrimApp Add p)) (Permute ...) (Avar d5) to d1. However, in general, we
get something of the form shown above. Note also the 0.0 in the Generate and the addition
of x1 and x2, which respectively come from ZeroValue(float) and the tuple-elementwise addi-
tion specified in the definition of EltwiseEIsum(). Note furthermore that we assigned the two
contribution arrays to variables beforehand; this is necessary to be able to refer to them from
the expression in the Generate, although in this particular case we could have used d5 directly
instead of going through the separate d1a2 variable.

Because λ1 does not have array indexing, we have IA(λ1, d1ia) = {}, and therefore contribution
map that node 1 passes to its argument (node 2) is simply {2⇒ [Map λfst (Avar d1res)]}. In
node 2 we produce the builder Alet d2 = Map (Lam i (Fst (Evar i))) (Avar d1res) in _
and the contribution map:

{arg⇒ [Avar d2]} (3)

This propagates up through node 1 to become the output contribution map from node 1; the
output builder of node 1 is the 19-line builder above composed with the single-Alet builder from
node 2.

The output contribution map from the Alet at the top level is the output contribution map
from node 1, which is the map from node 2 shown in Eq. (3); this means that the gradient
collector Egradient, as described in Section 3.4.5, is simply Avar d2. This is because the adjoint
contribution list for the global function argument contains precisely one entry.

The builder produced by the Alet at the top level is the composition of the builder of its body
(the output builder of node 3, say b3) and the builder of its right-hand side (the output builder of
node 1, say b1). Putting Egradient in the hole of bp ◦ bd = bp ◦ b3 ◦ b1, and wrapping the resulting
program in the required Alam, we get the following gradient function:

61

1 Alam arg
2 (Alet a2 = Avar arg -- primal...
3 in Alet a1res = Map P(λ1) (Avar a2)
4 in Alet a1 = Map (Lam x (Fst (Evar x))) (Avar a1res)
5 in Alet a1tmp = Map (Lam x (Snd (Evar x))) (Avar a1res)
6 in Alet a5 = Avar a1
7 in Alet a4res = Map P(λ4) (Avar a5)
8 in Alet a4 = Map (Lam x (Fst (Evar x))) (Avar a4res)
9 in Alet a4tmp = Map (Lam x (Snd (Evar x))) (Avar a4res)

10 in Alet a3 = Sum (Avar a4) -- end of primal
11 in Alet d3 = Generate Nil (Lam i (Const 1.0)) -- from node 3
12 in Alet d4 = Backpermute (Shape a4) (Lam i (Fst (Evar i))) (Avar d3) -- from node 4
13 in Alet d4res = ZipWith D(λ4) (Avar d4) (Avar a4tmp) -- from node 4
14 in Alet d4ia = Map (Lam i (Snd (Evar i))) (Avar d4res) -- from node 4
15 in Alet d5 = Map (Lam i (Fst (Evar i))) (Avar d4res) -- from node 5
16 in Alet d1 = -- from node 1
17 Alet d1a1 = Permute (Lam p (PrimApp Add p))
18 (Generate (Shape a1) (Lam i (Const 0.0)))
19 (Lam i (Let iai = Index d4ia i
20 in Pair (Snd (Snd (Evar iai))) (Snd (Fst (Snd (Evar iai))))))
21 (Map (Lam iai (Fst (Fst (Snd (Evar iai))))) (Avar d4ia))
22 in Alet d1a2 = Avar d5
23 in Generate (Shape a1)
24 (Lam i
25 (Let x1 = Cond (PrimApp Lt (Snd (Evar i)) (Snd (Shape d1a1)))
26 (Index d1a1 i)
27 (Const 0.0)
28 in Let x2 = Cond (PrimApp Lt (Snd (Evar i)) (Snd (Shape d1a2)))
29 (Index d1a2 i)
30 (Const 0.0)
31 in x1 + x2))
32 in Alet d1res = ZipWith D(λ1) (Avar d1) (Avar a1tmp) -- from node 1
33 in Alet d1ia = Map (Lam i (Snd (Evar i))) (Avar d1res) -- from node 1
34 in Alet d2 = Map (Lam i (Fst (Evar i))) (Avar d1res) -- from node 2
35 in Avar d2) -- Egradient

Inserting the correct primal and dual lambdas from expression AD for the P and D notations in
the above program gives the result. Notable is that, as expected, the array d1ia (which contains
no useful information, since λ1 contains no array indexing) is unused in the program, and can
hence be optimised away using dead-code elimination.

3.4.7 Conclusions

When applying the array AD algorithm described in the sections above on an array function F ,
there are two places where we create program fragments that use types that did not already occur
in F . Firstly that is in expression AD, from which we get a ttmp and a tidxadj, which are tuples of
pre-existing types, but were not themselves used in F yet (most likely). Secondly that is in the
handling of conditionals: there we use the to-store sets to construct a tuple type containing the
types of intermediate expressions in the branches. Here, too, the constituent types of the tuple
did already exist in F , but the full type most likely did not.

As we will see in Section 3.5, the construction of the large tuple in the handling of Acond really
proceeds in the same way as the creation of ttmp in expression AD. Nevertheless, the observation
remains that the places where the produced gradient program is “not like F ” are when handling
the construct that makes (Idealised) Accelerate second-order (embedding of expressions in array
programs), and when handling dynamic control flow.

It can be expected that these are the harder parts of designing a reverse AD algorithm. Performing
reverse AD on a first-order language, even a complicated one, is fairly well understood, as applied
e.g. in [29, 24]. However, if the object language is higher-order, the algorithm becomes much more

62

complicated [42]; the second-order nature of Idealised Accelerate avoids most of that difficulty,
but it makes designing the AD algorithm already slightly less straightforward.

The second part, dynamic control flow, is also known to add difficulty for a reverse AD algorithm:
in the absence of dynamic control flow, it is sometimes even possible to take a program using
forward AD and fix its time complexity to match reverse AD using loop optimisations and
generalisations of the distributivity law (see Section 2.2.4). The standard data structure for
storing the primal values in reverse AD is a “tape” (see Section 2.1.3); if multiple executions of a
program have the same path through the control flow graph, the tape memory and layout may
be reused50 (retaping, see Section 2.1.4). Without dynamic control flow, such a tape can always
be reused; with dynamic control flow, this becomes more difficult. Where and how to store the
primal values is an important and difficult question to answer when performing reverse AD on a
language with dynamic control flow; our handling of conditionals gives a possible answer for the
non-looping case, but loops are still challenging.

3.5 Expression transformation

Idealised Accelerate is a stratified language containing two sublanguages: the array sublanguage
(called arr in Fig. 1) and the expression sublanguage (exp in Fig. 1). Our reverse AD algorithm
for Idealised Accelerate is split into two parts handling these sublanguages separately, of which
the array part was described in Section 3.4. The expression AD algorithm, which was used as a
black box before, is what we will cover in this section.

We will assume the reader understands the array AD algorithm in Section 3.4. This is because the
two algorithms are very similar in structure, and we wish to prevent a large amount of duplicate
exposition. We will do this by describing only the structure of the expression AD algorithm and
the major differences between the array and expression algorithms; while some details may end
up underspecified, we believe that a motivated reader should be able to nevertheless construct
the correct algorithm by extrapolation from the reasoning behind the array AD algorithm.

Just like the array AD algorithm, the expression AD algorithm is split in a primal phase and a
dual phase that produce builders (this time for production exp); a gradient function could be
produced from those builders in the same way as was described in Section 3.4.5. However, here
our task is not to produce a single gradient function as output, but to conform to the interface as
specified in Section 3.4.1 so that expression AD can be used in array AD. Therefore, we will wrap
the primal builder in an expression function to produce the primal lambda, and the dual builder
in an expression function to produce the dual lambda.

For both the primal phase and the dual phase, this divides the task of describing the algorithm
up into two parts: how to produce the builder, and how to wrap the builder in an expression
function with the right interface. Both Section 3.5.1 (for the primal phase) and Section 3.5.2 (for
the dual phase) are divided in two in this way, first describing the creation of the builder, and
then showing how to wrap the result in the correct expression function.

Labeling. The first step in the array AD algorithm was to label all arr nodes (except Alet) in
the AST of the array function body with a unique label (Section 3.4.2). Here we do the same:
we are given an expression function (of production fun), which is of the form Lam x body; we
assume all exp nodes in the body, except Let, have a unique label, which we will again write with
a subscript. For examples of labeled expressions, see later in this section.

50Unless some of the intermediate values are arrays with a different size each execution. However, even in this
case, if the tape contains just the operations performed and only pointers to larger intermediate values, tape reuse
can still occur and can also still be useful.

63

3.5.1 Primal

The primal phase of expression AD is a recursive traversal over the body of the Lam in the input
expression function. It has the same input and output values as the primal traversal in array AD:
given an expression (of production exp in Fig. 1) and a variable environment mapping variables to
the label of their bound right-hand side, the recursive algorithm returns a builder for production
exp and a to-store set containing expression variable names. For the expression primal, the
purpose of the to-store set is to be able to handle conditionals correctly and to construct the
temporaries tuple (ttmp) when wrapping in the primal lambda.

Again we have a set of “regular”51 expression primitives that follow the simple recipe, and a few
that we will cover individually—for expressions, these are Let, Cond and Index. As a general
note: where we used a-prefixed variables in the array primal, we will use t-prefixed variables in
the expression primal. This choice is of course arbitrary, but a choice has to be made nevertheless.

For the regular primitives, the algorithm is recursively called on any exp arguments producing
builders and to-store sets. In the array case there were expression arguments in which array
variable references needed to be renamed; here there are no such embedded variable references.
The builder for the current node is an incomplete let-binding that binds tn (where n is the label of
the current node) to an expression that is the original primitive with the exp arguments replaced
with Evar references to tm, where m is the label of the respective argument expression.52 The
output builder is then the composition of the argument builders and this incomplete let-binding,
where the argument builders come first. The output to-store set is the union of the argument
to-store sets with tn as an additional element.

For Let, the primal transform is fully analogous to Alet in Section 3.4.3.

For conditionals with Cond, the transformation is very similar to the array case, and is in fact
simpler. Names are chosen to correspond with the description of the handling of Acond in
Section 3.4.3. The first exp argument (the condition) is treated as a usual primitive argument,
and is recursively transformed with its builder prepended to the result we will produce for the
Cond itself. For the branches, we use the to-store sets s1 and s2 to create (expression) tuple
types t1 and t2 that can store those variables, and define expressions ek and fk for k ∈ {1, 2}
analogously to the array case: ek contains Evar references to the variables, and fk is a tuple
expression with the correct invocation of ZeroValue() in each position.53 Analogously creating
ethen and eelse, the output builder is like the one presented for the array case, but with a-prefixed
variables changed to t-prefixed variables. Additionally, Evar is substituted for Avar, etc.

Finally, Index nodes are the only specialty in the expression primal transform. Suppose that the
form of the current node is Indexn avar expm. Then exp is recursively transformed as usual
with its builder prepended to the builder for the Index itself, which is the following:

1 Let tn = Index avar tm
2 in Let tnexec = Const true
3 in _

The output to-store set is the union of the to-store set from exp and the set {tn, tnexec}. This
tnexec variable becomes useful only in the presence of conditionals: since we explicitly defined
ZeroValue(bool) = false on page 47, at the end of the expression, tnexec will be true precisely
if the Index operation was indeed executed. Indeed, if the Index node is within the branch

51We allude to no particular special meaning of the word “regular”, except that these primitives do not get
special attention in this section.

52We do not provide a table like Table 1 for expressions, because its contents would follow directly from the
description here and be analogous to the array algorithm.

53Contrary to the array case, we need no Generate here to create the shadow expression; just a zero value is
sufficient.

64

of a Cond, its primal execution will also be (due to the construction of the builder for Cond),
and importantly the binding for tnexec will be in the same branch. While for a single Cond its
condition expression could also be used for the same purpose, this becomes harder with multiple
layers of conditionals, where one would need to take the conjunction of the boolean conditions.
Writing this additional tnexec variable solves the problem in a simpler way.

Wrapping. With this, we have described the algorithm to produce the primal builder for the
input expression function. However, just producing a builder is not enough: we have to present
the results from the primal phase in the form of the primal lambda as defined in Section 3.4.1. If
the input expression function has type t→ t′, this primal lambda has type t→ (t′, ttmp).

As ttmp we will choose the tuplified form of the to-store set produced from the primal transforma-
tion. The tuplified form of a set of variables is like the tk we built for Cond.

For example, suppose that the label of the body of the Lam is 1 (and hence the function result is
put in t1 by the primal builder), and that the to-store set is {t1, t2, t3}. Then the expression to
be substituted in the primal builder is the following:

1 Pair (Evar t1) (Pair (Pair (Pair Nil (Evar t1)) (Evar t2)) (Evar t3))

This expression is of type (t1, ((((), t1), t2), t3)), where ti is the type of ti.

3.5.2 Dual

The dual phase of expression AD is again a recursive traversal over the body of the Lam in the
input expression function, and as in the primal case, the input and output of the traversal are the
same as for array AD. Given an expression, a variable environment and a contribution map (label
⇒ list of expressions), the recursive algorithm returns a builder for exp, a to-store set (containing
variables) and an updated contribution map. Like in the array dual phase, the to-store set is only
used to ensure that conditionals can preserve validity of variable references in the contribution
map.

The initial variable environment is empty, and the initial contribution map is the single-entry map
{n⇒ [Fst (Evar adjarg)]} where n is the label of the Lam body; the name “adjarg” stands for
an arbitrary unused name that will be the name of the argument variable of the dual lambda.
We take the Fst of the lambda argument because of the type of the dual lambda as specified in
Section 3.4.1.

For the dual, we will describe PrimApp, Let and Cond separately, and group the rest of the
primitives in the general recipe. Where the array dual used d-prefixed variables, the expression
dual will use j-prefixed variables.54

The general recipe is the same as the four-step recipe in Section 3.4.4. First we look up the adjoint
contributions to the current node in the incoming contribution map, which we add elementwise.
Contrary to array AD, we do not have to treat certain summands in a special way; we can simply
take the tuple-elementwise sum.

The contribution map additions for step 2 are mostly evident: Const is analogous to Use in Table 2;
Evar, Nil, Pair, Fst and Snd are analogous to the corresponding A-prefixed version for arrays,
replacing GenZero(x) with ZeroValue(type of x). A Shape node adds no contributions, and an
Index node makes one contribution to its expression argument that is the variable containing its
own adjoint.

54This is for lack of a better name. Array variables, duals and temporaries are natural, but the “a” of “adjoint”
is already taken. Thus we use adjoint. It is not strictly necessary to use something else than “d”—the expression
dual will never refer to array adjoint variables, and besides that, references are namespaced—but for clarity we
separate them anyway.

65

After recursing on the expression arguments, threading the contribution map (including our
additions) through, in step 4 the builder b is simply Let jn = @ in _, where @ is replaced with
the adjoint computed in the first step.

This leaves the dual for PrimApp, Let and Cond.

PrimApp works the same as the primitives covered above, but we want to emphasise some points
nevertheless. The derivative of a PrimApp is the usual derivative function of the contained
operation applied on the adjoint of the PrimApp node. Operations (production op in Fig. 1)
with a fully discrete result, or a fully discrete argument, cannot propagate nonzero adjoints and
therefore need to make no contributions at all.55 As an example of a non-discrete operation, the
contribution map additions for PrimAppn Add expm are {m⇒ [Pair (Evar jn) (Evar jn)]},
because ∂

∂x(x+ y) = ∂
∂y (x+ y) = 1. For Mul, we have the partial derivatives ∂E

∂x = ∂E
∂(x·y)

∂(x·y)
∂x =

∂E
∂(x·y) · y and ∂E

∂y = ∂E
∂(x·y)

∂(x·y)
∂y = ∂E

∂(x·y) · x, so we get the following contribution map additions:

{m⇒ [Pair (PrimApp Mul (Pair (Evar jn) (Snd (Evar tm))))
(PrimApp Mul (Pair (Evar jn) (Fst (Evar tm))))]}

Let-bindings with Let work exactly the same as Alet in the array dual, except that, of course,
expression variables are used where the array dual used array variables.

For conditionals with Cond, the expression dual of Cond is to its expression primal as the array
dual of Acond is to its array primal.

Wrapping. The text above describes how the expression dual algorithm produces the dual
builder, as well as the to-store set and the contribution map for the whole expression. When
constructing the primal lambda, we used the to-store set to determine ttmp and its collecting
expression; in the dual, as mentioned at the beginning of this section, we only used the to-store
set to allow correct treatment of conditionals. For creating the dual lambda, we will use only the
output contribution map from the dual algorithm.

The dual lambda from the interface to expression AD as defined in Section 3.4.1 is of type
(t′, ttmp)→ (t, tidxadj), if the original function was of type t→ t′. The structure of the expression
function that we will create is as follows: restore the temporaries tuple into tN variables; apply
the dual builder to compute all adjoints; return a pair of the final adjoint and the index adjoint
collector. This follows the structure shown in the example in Section 3.4.1.

The final adjoint is the elementwise sum of the contributions to the global function argument in
the contribution map returned by the dual algorithm. Call this expression eargadj, the “argument
adjoint”.

The index adjoint collector should be an expression of a to-be-determined type tidxadj that contains,
for each Index node in the function body, its computed adjoint, the target index, and a boolean
indicating whether it was executed. If the Index node is of the form Indexn avar expm, these
values are available, respectively, in the variables jn, tm, and tnexec. Hence, if the i’th Index
node has result type ti and index shape type si, and there are k Index nodes, a possible choice
for tidxadj (as taken in the example in Section 3.4.1) is the following:(

. . .
((()

, ((t1, s1), bool)
)
, ((t2, s2), bool)

)
. . . , ((tk, sk), bool)

)
The corresponding index adjoint collector expression would be:

55Recall that if the contribution list is empty when collecting the adjoint of a node, ZeroValue() is used.

66

1 Pair (...Pair (Pair Nil
2 (Pair (Pair (Evar jn1) (Evar tm1)) (Evar tn1exec)))
3 (Pair (Pair (Evar jn2) (Evar tm2)) (Evar tn2exec))
4 ...)
5 (Pair (Pair (Evar jnk) (Evar tmk)) (Evar tnkexec))

where the k Index nodes are of the form Indexni avar expmi for i ∈ {1, . . . , k}. Let eidxadj be
this expression.

Now, the dual lambda is an expression function Lam adjarg body, where body is the builder
composition brestore ◦ bd with Pair (eargadj) (eidxadj) substituted in the hole, where:

• brestore is a composition of incomplete let-bindings that define, for all labels n stored in
the temporaries tuple by the primal phase, tn as a Fst/Snd expression picking the correct
value from Snd (Evar adjarg). This follows the example in Section 3.4.1;

• bd is the dual builder.

This defines the dual lambda, and thereby finishes our description of the AD algorithm.

67

4 Implementation

We implemented56 the algorithm described in Section 3 in Haskell as an AST transformation in
the Accelerate compiler. In Section 4.2 we give some implementation experiences and explain
the major ways in which the implementation differs from the algorithm in Section 3, and in
Section 4.3 we describe how the implementation has been tested for correctness. The subject of
performance testing we delay until Section 5.

Because we stay at a relatively high level of abstraction, the only knowledge of the internals of
the Accelerate compiler is the way it reifies types of the embedded language as values; this we
discuss first in Section 4.1. We do assume knowledge about Haskell and GADTs, which are core
topics in the discussion of an implementation of an algorithm in Haskell using type-indexed ASTs.

4.1 Reified types

In the Accelerate compiler, we often need to represent a type of the embedded language as a value
in Haskell. One example place is in the Const constructor of the AST, which is defined as follows:

1 Const :: SingleType t -> t -> OpenExp env aenv t

The precise meaning of the env, aenv and t parameters of the OpenExp datatype encoding an
expression AST, will be discussed later in Section 4.2.3.

This AST node, corresponding to the Idealised Accelerate constructor in Fig. 1 of the same name,
contains the value itself (of type t) and a value-level representation of the type of the value. We
need this information because, while Haskell is a polymorphic language, the Accelerate language
itself is actually not. Therefore, for an expression PrimApp Mul (Pair (Const 1) (Const 2)),
the compiler must know what type this expression has, which it cannot read just from the
operations performed. For this purpose, Const (and PrimApp, and other AST constructors)
contain reified types to represent the type of the expression. Some of the GADTs used for these
reified types are shown below; note that in particular SingleType is very much abridged from
the corresponding type in the compiler, called ScalarType, which supports a more extensive type
hierarchy and spans multiple GADTs.

1 data SingleType t where
2 TypeInt :: SingleType Int
3 TypeFloat :: SingleType Float
4 TypeBool :: SingleType Bool
5

6 data Tup f t where
7 TupUnit :: Tup f ()
8 TupSingle :: f t -> Tup f t
9 TupPair :: Tup f t1 -> Tup f t2 -> Tup f (t1, t2)

10

11 data ArrayR arr where
12 ArrayR :: ShapeR sh -> Tup SingleType t -> ArrayR (Array sh t)
13

14 data ShapeR sh where
15 ShapeRz :: ShapeR ()
16 ShapeRsnoc :: ShapeR sh -> ShapeR ((), Int)

SingleType models what Idealised Accelerate calls single-types (Section 3.1). Tup models tuples
of a single-argument type constructor, for example SingleType. As an example, the embedded
type (int, float) is represented as TupPair (TupSingle TypeInt) (TupSingle TypeFloat).
Finally, an array type is represented using ArrayR, which contains its shape type (the array’s

56In the future, the aim is to merge (a later version of) the AD implementation created here into the Accelerate
compiler proper. In the meantime, the code may be found in the src/Data/Array/Accelerate/Trafo/AD directory
of: https://github.com/tomsmeding/accelerate/tree/e7a558ecf1e9d4baa0aa1fc7f09fc0b93c7fab55.

68

https://github.com/tomsmeding/accelerate/tree/e7a558ecf1e9d4baa0aa1fc7f09fc0b93c7fab55

rank expressed in unary) and its element type. Note that Array (not ArrayR) can be seen just as
a tag type here; in the compiler it has further meaning, but that meaning is not relevant for the
AD pass.

Additionally, to index into a tuple, we define the following type that did not yet exist in the
compiler:

1 data TupleIdx t' t where
2 TIHere :: TupleIdx t t
3 TILeft :: TupleIdx a t -> TupleIdx (a, b) t
4 TIRight :: TupleIdx b t -> TupleIdx (a, b) t

As an example, TILeft (TIRight TIHere) has type TupleIdx ((a, t), b) t; the first argu-
ment is the “large” tuple type, and the second argument is the type selected from that tuple
type.

The types defined in this section will be used below when we discuss some of the implementation
details.

4.2 Implementation experiences

In this section, we describe how we approached writing the implementation (Section 4.2.1); we
give an overview of the structure of the implementation (Section 4.2.2); we indicate some of the
difficulties in translating the theoretical algorithm to something that works with the Accelerate
internals (Section 4.2.3); and we indicate some patterns that empirically occur relatively often in
our new code, as compared to the existing Accelerate code (Section 4.2.4).

4.2.1 Methodology

Work on a prototype implementation was started very early in the research process, immediately
after an initial, high-level design of the algorithm was finished. This prototype implementation
was quickly promoted to one for the Accelerate language itself, and incrementally expanded,
covering larger and larger subsets of the language, until the language subset covered in Section 3
was achieved. Further expansion was desired, but due to time constraints unfortunately not
achieved.

This incremental construction of the implementation is akin to a feature (build and iterate) of
the Agile software development model, as opposed to the traditional waterfall method (design
then build). We found that this approach proved quite advantageous, in that many problems in
details of the algorithm, and underspecified portions, could be found and fixed soon.

Nevertheless, one downside of this approach is that some language features, which in isolation
could be added to the implementation without much work, combine and interact in a way
that demands a significant restructuring of the algorithm. This happened in particular with
conditionals and array indexing.

• Without array indexing, there are no operations that can fail in the language, and hence
implementing not a real conditional but instead a selection operator (evaluating both
branches and choosing one based on the condition value) is a lot easier, and forgoes all the
complexity in the handling of Acond and Cond in the algorithm.

• Without conditionals, all code is executed always, and hence we do not need to concern
ourselves with determining whether an Index node was executed or not when computing
its adjoint contributions.

Together, however, these two language features require the relatively complicated, separate
handling of conditionals in the algorithm, as well as the extra tnexec variable in the dual of

69

Index; both of these play intricately with the exact definition of the ZeroValue() macro, which
must produce false for the boolean type in order for tnexec to get the right value in the dual.

Absent powerful methods to prove, or otherwise attain confidence in, the correctness of an
algorithm on paper within a reasonable amount of time, and since an actual implementation can
be checked with tests, we do still believe that starting implementation of a new algorithm early
on has a positive effect on productivity. This is despite downsides we encountered as described
above in implementing an incomplete algorithm.

4.2.2 Overview

As already stated in Section 2.3.5, the implementation of our AD algorithm in the Accelerate
compiler sits directly after sharing recovery (see Section 2.3.4) and before the actual optimisations
in the compiler. The new compiler pass searches for the (new) gradientE or gradientA nodes,
respectively replacing their contained subtree with the expression gradient57 or array gradient
transformation of the function under that node.

The transformation itself is implemented on a slightly expanded AST as compared to Accelerate’s
existing AST type, and includes labels on all nodes, new nodes for explicitly referencing the global
function argument and free variables in the original function, and some auxiliary information
needed in e.g. the Index node for the location of the tnexec variable. The translation between
Accelerate’s main AST and the special AD AST is straightforward, since the basic structure is
the same.

The implementation of the transformation has the same three-part structure as the algorithm
described in this thesis: labeling, the primal transform producing a builder, and the dual transform
producing a builder.

4.2.3 Difficulties

The internal AST of the Accelerate compiler is not, as is evident from the name, Idealised
Accelerate (Section 3.1). Were it exactly that language, an implementation of the algorithm in
Section 3 would be straightforward, and this section would not exist. Because of the differences
between these two languages, there is some additional creativity required in implementing our
AD algorithm in the Accelerate compiler; in this section, we aim to shed light on some of the
most important points.

Variables. Idealised Accelerate variables could have any type, including tuples (pairs), and
includes projection functions Fst/Snd/Afst/Asnd to extract items from pairs. In the Accelerate
AST, however, this is not the case. While expressions (and array programs) may of course have
tuple types, variables are always single-typed (or, in the case of array programs, array-typed).
Instead of including projection functions in the language, let-bindings always forcibly destructure
their right-hand sides into the constituent single (non-tuple) components, binding each of them
to a new variable.

We focus on the expression sublanguage here, because the array case is fully analogous.

In order to be able to produce code in this altered language, we introduce a second namespace of
variable names in the AD algorithm. The upper namespace of tuple-typed variables contains what
corresponds to the variables in Idealised Accelerate, while the lower namespace of single-typed
variables is used to denote the actual variables in the produced expression (analogously, array

57The expression gradient function is computed using the expression AD algorithm (Section 3.5) and just
combining the builders as in Section 3.4.5.

70

program). To be clear: the output of the AD algorithm will only contain variables names in the
lower namespace, but during the algorithm we keep track of the upper namespace as well.

During the algorithm, then, we thread through a mapping from a name in the upper namespace
to a tuple of names in the lower namespace. This is called the binding map. It is passed down into
recursive calls in the primal and dual phases, and threaded through and returned upward upon
return. Whenever the algorithm as written wants to refer to a variable in the upper namespace,
what really gets produced in the output expression (in the builders and contributions) is a tuple
of variable references for the corresponding names in the lower namespace, found with a lookup
in the binding map.

Furthermore, whenever the algorithm wants to create a new variable in the upper namespace
using a let-binding, new lower-namespace names are generated to fill the tuple type of the bound
value and put on the left-hand side of the let-binding. A new binding is created in the binding
map that maps the desired upper-namespace name to the created lower-namespace names.

To be able to transform code that is already written in this altered language, we have to be able
to cope with automatically destructuring let-bindings in the input expression. For the primal
phase this is straightforward, but the dual phase needs some adjustment. We do this in the dual
phase by remembering, for each bound variable on a left-hand side, the type and label of the
right-hand side that it binds a component of. Whenever we want to put an adjoint contribution
for such a bound variable in the contribution map in the dual phase, we instead put a contribution
to the label of said right-hand side in the contribution map, where we fill the other components
with ZeroValue(). (In the array AD algorithm, these become GenZero() programs.)

With these two changes, we can consume and produce code written in the altered language with
automatically destructuring let-bindings.

Type-indexed AST. While this is not technically a different language to perform AD on, it
is still a difference from the algorithm-on-paper that requires some additional mechanics in the
algorithm. We will build on the changes described above that introduced the binding map.

As already stated in Section 2.3.3, the internal AST in the Accelerate compiler is type-indexed.
This means that the type of an expression58 in the compiler is of the form OpenExp env aenv t,
where:

• env is a type-level list containing the types of the (single-typed) variables that are in scope
at the position where this expression sits in the AST. This list is indexed using De Bruijn
indices. It is represented in practice using nested pairs: an empty list is (), an environment
with one binding of type t is ((), t), etc.

• aenv is another type-level list containing the types of the (single-array-typed) array variables
that are in scope for this expression. This is used for Shape and Index constructors in the
AST.

• t is the type of the expression itself.

As stated in Section 4.2.2, the AD algorithm really operates on an AST separate from the main
internal AST of the Accelerate compiler; this special AST has some additional type arguments,
but for the purpose of this section, these are not important. Hence, we base our discussion on the
main AST’s type, which is OpenExp env aenv t.

Consider an example, using Idealised Accelerate here to illustrate the case because it is (intention-
ally) very close to the actual Accelerate AST. In the following expression, the multiplication at
the core of the let-stack would have the type OpenExp ((env, Float), Float) aenv Float, for

58In this part we will again look only at expressions, since the changes to the array algorithm are analogous.

71

some array environment aenv and where env is the environment of the whole expression shown
(possibly () if it is at the top level):

1 Let x = Constfloat 1.0
2 in Let y = PrimApp Add (Pair (Evar x) (Evar x))
3 in PrimApp Mul (Pair (Evar x) (Evar y))

Note that we indicate the type of the Const node using an explicit annotation, because otherwise
the type of the expression would be ambiguous.

In the AD algorithm in Section 3, we used simple strings as variable names and left it up to the
implementer of the algorithm to ensure that these are always in scope and refer to a right-hand
side of the correct type. Now that we are the implementer, due to this type-indexed AST, the
Haskell compiler forces us to prove that the variable references in our produced program are
indeed always in scope and of the correct type.

In order to do this, we introduce a new data structure, in addition to the binding map introduced
above. This new data structure represents the environment of lower-namespace variable names
currently in scope, and it is passed down in the algorithm, never up. This data structure can be
defined as follows:59

1 data VarEnv env where
2 Empty :: VarEnv ()
3 Push :: VarEnv env -> TypedInt SingleType t -> TupleIdx t' t -> TypedInt (Tup SingleType) t'
4 -> VarEnv (env, t)
5

6 data TypedInt s t = TypedInt Int (s t)

There is a lot to unpack here. Firstly, recall SingleType and Tup from Section 4.1. The TypedInt
type is used in this code snippet as both a lower-namespace variable and an upper-namespace
variable. The actual implementation makes these types distinct on the type level to prevent
namespace confusion, but we elide that here for simplicity.

The VarEnv type, then, contains a number of values for each binding in the environment (of
single-typed variables). Of each such binding we store:

• The type and lower-namespace name of the bound variable in a TypedInt SingleType t.

• The (tuple) type and upper-namespace name of the let-bound right-hand side that the
bound variable is a part of, in a TypedInt (Tup SingleType) t'; recall from above that
let-bindings forcibly destructure their right-hand sides, so we give the original right-hand
side a distinct upper-namespace name (an integer).

• Where the bound variable belongs in the bound tuple, in a TupleIdx t' t.

Consider, in a modification of Idealised Accelerate where let-bindings destructure their right-
hand side, the example expression Let (x1, x2) = expr in body; assume that expr has type
OpenExp env aenv (Float, Int). Note that this means that the environment type of the
whole Let-expression is also env (since Accelerate does not have recursive let-bindings, so a
let-expression and its right-hand side have the same environment). The type of body is then
OpenExp ((env, Float), Int) aenv t for some t. Assume that the upper-namespace name of
expr is 100, and that the lower-namespace names for x1 and x2 are 1 and 2, respectively. The
VarEnv belonging to the context for body would then be:

59The actual definition in the implementation (called LabVal, instantiated on PartLabel) differs slightly, but for
the purposes of this text it is equivalent.

72

1 Push (Push varenv (TypedInt 1 TypeFloat)
2 (TiLeft TiHere)
3 (TypedInt 100 (TupPair (TupSingle TypeFloat) (TupSingle TypeInt))))
4 (TypedInt 2 TypeInt)
5 (TiRight TiHere)
6 (TypedInt 100 (TupPair (TupSingle TypeFloat) (TupSingle TypeInt)))

This pushes two entries onto an existing VarEnv, named varenv, corresponding to the environment
of the whole Let-expression. Note that e.g. TiRight TiHere has type TupleIdx (a, b) b.

In the way we describe here using VarEnv, we can keep track of the variables that are in scope in
the lower namespace, including the upper-namespace name that they are part of and including a
TupleIdx for tracking where in the upper-namespace value the lower-namespace value should be
put for adjoint contributions.

A criticism one can have about the VarEnv data type defined above is that looking up a variable in
this environment has linear complexity in the size of the environment. This is true, and is something
that the entire Accelerate compiler currently suffers from, since these linear environments (in
different forms) occur elsewhere in the compiler, and in particular all typed De Bruijn indices are
in unary representation. A possible fix for this performance problem is to use a data structure
with logarithmic lookup time, for example the one defined in [54]. Worth noting is that while using
linear environments is a possible performance problem in the compiler, the compiled programs
do not suffer from this inefficiency: the actual compiled code that gets run on the GPU, or on
multicore CPU, is optimised via LLVM.

4.2.4 Patterns

The type-indexed AST has consequences for the types of any code in the Accelerate compiler
that deals with AST-related values. Since our algorithm is an AST transformation, there is in
fact little code that is not affected by this.

However, despite this effect, we find that we do not need any significant type-system extensions
over what the Accelerate compiler already uses elsewhere. In particular, we do need support for
GADTs to work with a GADT-based AST, and we also use higher-rank types fairly heavily. In
this section we will discuss in a bit more detail our use of higher-rank types and existentials, as
well as our use of runtime type-checking.

Builders. The concept of a builder was introduced in Section 3.4.3, and refers to an AST
fragment with one hole. In the implementation, we represent a builder (the expression version
here) using a higher-rank type:

1 data EBuilder env aenv =
2 forall env'.
3 EBuilder (EContext env')
4 (forall res. OpenExp env' aenv res -> OpenExp env aenv res)

In addition to the builder function itself, which is the second argument of EBuilder, this data
type also contains the context in the builder hole (containing the variable environment (VarEnv)
and binding map from Section 4.2.3).

This definition contains two occurrences of the keyword forall, with two different meanings.

• The first is enabled using either the GADTs or the ExistentialQuantification language
extension in GHC, and denotes an existentially quantified type variable, or an existential
for short. The producer of an EBuilder may choose the env’ type at will, and it will not
appear in the externally-visible type of the EBuilder. A consumer of an EBuilder has no
information about the env’ type except via the values contained within the EBuilder; in

73

this case, all necessary information is in the variable environment in the EContext, which
contains in essence a reification of the env’ type by means of the VarEnv.

• The second occurrence of forall, in the second argument of EBuilder, is allowed using the
RankNTypes60 extension and denotes a universally quantified type variable. This makes
the second argument of EBuilder a rank-2 type, hence the name of the language extension.
This function guarantees that given an expression with the particular env’ and aenv type
parameters as specified by the EBuilder, but for any result type res, the output will be
an expression with the same result type. The function has no knowledge about this res
type variable except for information contained (in reified types) in the OpenExp value. In
practice, even this information will not be used by a builder.

Higher-rank data types, that is the second usage of forall, are a natural extension to the type
system that bring polymorphic functions to (almost) equal footing with monomorphic functions,
by allowing us to put them in data structures.

Existentials, and GADTs which allow a generalisation of this behaviour, bring a limited amount
of dependently-typed programming to Haskell. In fact, the EBuilder type given above can also
be written in GADT syntax, which may be more familiar for dependently-typed programmers:

1 data EBuilder env aenv where
2 EBuilder :: EContext env'
3 -> (forall res. OpenExp env' aenv res -> OpenExp env aenv res)
4 -> EBuilder env aenv

Data types with existentials have a duality via code in continuation-passing style (CPS). Indeed,
a function that returns a builder:

1 foo :: Something -> EBuilder env aenv

can also be written without existentials by taking a continuation:

1 foo' :: Something
2 -> (forall env'.
3 EContext env'
4 -> (forall res. OpenExp env' aenv res -> OpenExp env aenv res)
5 -> a)
6 -> a

This function foo’ takes as its second argument a function, that in turn takes the fields of
EBuilder as its arguments. Note that the forall in EBuilder that indicated an existential
type has morphed into a normal, universal forall in the CPS version. We have the following
equivalences:

1 foo something = foo' something EBuilder
2 foo' something k = case foo something of EBuilder c f -> k c f

To avoid many explicit continuations in the code, we generally opt for the version using existentials.
This style is in particular less unwieldy when in a long monadic computation, which occur fairly
often in our implementation to be able to generate unique ID’s in various places.

Interface to expression AD. A different use of existentials (as described above) is in the
interface to expression AD, the algorithm version of which was defined in Section 3.4.1. Expression
AD returns two expression functions as well as some information about the Index nodes in the
expression. This data contains two existential types: ttmp and tidxadj, respectively indicating the
type of the tuple containing the temporaries stored in the primal lambda, and the type of the
tuple containing information about the adjoints and target indices of the Index nodes.

60Or, technically, the Rank2Types extension, which is subsumed by the more often used RankNTypes.

74

From the perspective of array AD, these types are new: as we already observed in Section 3.4.7,
these types did not already occur in the program that was given as input to our AD transformation.
Hence it is unsurprising that in the implementation, these types are indeed encapsulated in a data
structure using existentials. However, that data structure does contain reified versions for those
types, so that array AD can work with these types even if it does not inspect them explicitly: the
Accelerate AST contains reified types in many nodes, and in particular array primitives generally
have their result type embedded as a reified type. Since values of type ttmp and tidxadj are put
in arrays, array AD needs access to the reified versions of these types in order to construct the
output AST.

The rest of the compiler. The reason why we highlight our usage of existential types, which
may be natural for the seasoned Haskell or dependently-typed programmer, is that the rest of
the existing Accelerate compiler seldomly uses this construction. GADTs are used extensively,
but explicit abstraction of certain types without further usage of a GADT may be novel in the
compiler. A possible reason for this is that the compiler passes that are already implemented are
generally structure-oriented, preserving (components of) the structure and types of the original
program, whereas our AD pass changes the program structure significantly and introduces new
types.

Runtime type checking. As announced in Section 2.3.6, implementing our reverse AD
algorithm in Accelerate required some runtime type checking. What we mean with this term is in
essence usage of the following function:

1 matchSingleType :: SingleType t -> SingleType t' -> Maybe (t :~: t')
2 matchSingleType TypeInt TypeInt = Just Refl
3 matchSingleType TypeFloat TypeFloat = Just Refl
4 matchSingleType TypeBool TypeBool = Just Refl
5 matchSingleType _ _ = Nothing
6

7 data t :~: t' where -- from the standard module Data.Type.Equality
8 Refl :: t :~: t

Here, the Refl constructor of the :~: type witnesses equality of types. Similar functions to
matchSingleType exist also for Tup, ArrayR, etc. from Section 4.1.

Using these functions is necessary whenever GHC requires a proof that two values have the same
type, but we did not model the problem in the type system in a detailed enough manner for
validity to be evident at compile time. The most important case where this happens is when
looking up a lower-namespace variable in the VarEnv from Section 4.2.3. The variable we are
looking up is represented by what boils down to a TypedInt; looking that up in the variable
environment entails looking for the integer and then checking that the types match. GHC cannot
deduce the equality of types from the code itself, because there is no link between the type in the
TypedInt and the corresponding element in the type-level list that is the env type parameter of
the VarEnv.

In the introduction to this thesis and in Section 2.3.3, we stated that because the internal AST
of the Accelerate compiler is type-indexed, the implementation of our algorithm must, at each
step, be at least type-correct, if not necessarily semantically correct. It must be noted that the
necessity of runtime type checks does not invalidate this guarantee: it merely means that GHC
requires us to connect some of the loose ends of the correctness proof by supplying evidence at
runtime. In essence, either our algorithm implementation performs no type-incorrect program
transformations, or it will lead to an early crash at runtime because a caller of matchSingleType
(or similar functions) receives Nothing instead of an equality proof. At no time can the algorithm

75

finish, without crashing, and produce an AST that is type-incorrect.61

Nevertheless, the situation of requiring runtime type checks is not ideal, if only because it is
essentially redundant computation, assuming that the algorithm is indeed correct. However,
ensuring that these checks are not necessary may require a significant amount of work to prove
type-correctness of our algorithm in the Haskell type system, and we have not attempted to do
this.

4.3 Testing

In Section 5, we will discuss two larger Accelerate programs that use our reverse AD implementa-
tion. These programs are useful not only for performance testing, but also correctness testing,
since we have input data and accompanying correct output data for these programs (see Section 5
for more details). We verified that for the input files for which our implementation succeeds
within the resource constraints defined for the experiments, its outputs do not differ significantly
(relative to the magnitude of the input values) from the control values computed by the reference
C++ implementation of the benchmark tasks. The variation that does occur is mainly due to the
fact that we compute with single-precision floating-point numbers, whereas the control values are
computed using double-precision numbers. In the development of our implementation, we have
found implementation errors by observing that the output of the benchmark programs did differ
significantly from the control values; empirically, we can thus say that the current non-significant
difference has some meaning.

However, besides the benchmark programs, we wish to also test our implementation in a somewhat
more structured way. Because we do this by writing a number of unit test programs, we need to
check whether our reverse AD algorithm produces the correct derivative for these test programs.
Manually writing the correct derivative program and checking that it matches the implementation’s
output is tedious and very error-prone; fortunately, however, the task of computing the gradient
of a function has a very fortunate property: there are multiple algorithms for it.

These algorithms range from slow and simple to fast and complicated. Reverse-mode automatic
differentiation, as we implement in this thesis, is on the right-hand side of that scale: it has low
time complexity, but is quite complicated to design and implement. Aside from reverse AD, there
are two other methods that are significantly simpler to implement, but also significantly slower in
terms of runtime. Assume that the program in question has n input values and 1 output value.

• One such method is forward AD. As we saw in Section 2.1, reverse AD computes a row
of the Jacobian while forward AD computes a column of the Jacobian. If we (somehow)
cannot use reverse AD, then certainly another way to compute the (one-row) Jacobian of
our program is to use forward AD on every individual one-element column, and stitch the
results together. This corresponds to running the program with forward AD once for each
of its input values, each time computing the tangent of the output value with respect to
this input.

This runs the program n times, whereas reverse AD would run the program only once.62

61Any claim of this audacity requires a footnote stating its limitations. Firstly we define “finish” to include
deepseq’ing the resulting AST. We assume that any of the existing uses of unsafeCoerce and unsafePerformIO
in the Accelerate compiler do not introduce type-unsafety, and we assume the same for any of the libraries used in
the compiler. Furthermore, of course, we assume no miscompilation by GHC and a processor that conforms to its
specification, but those two assumptions are unlikely to be false in practice.
Our algorithm implementation does not introduce new uses of unsafeCoerce or unsafePerformIO into the compiler,
apart from those in libraries that we use.

62Both forward and reverse AD add a different constant factor to the runtime that we ignore here, but for larger
inputs, the effect of running the program once for each input element quickly starts to dominate.

76

• Another method is finite differencing. Recall the analytical definition of the derivative of a
function f : R→ R:

∂f

∂x
(a) = lim

h→0

f(a+ h)− f(a)

h

Surely, then, if we just pick a small h, say 10−5, the expression f(a+10−5)−f(a)
10−5 will be an

approximation of ∂f∂x (a)?

This works to an extent: for small enough h, the given fraction will indeed approach the
derivative mathematically (and for many functions it will also do so reasonably quickly).
However, a problem in practice is that computers do not work with infinite-precision
reals; instead, they usually work with floating-point numbers, which exhibit catastrophic
cancellation (loss of precision) when subtracting two numbers that are very close together.
Because f(a+ h) and f(a) are very close together by design, the precision of the derivative
approximation given by finite differencing quickly degrades as h gets smaller.

If h is taken large enough that the number of significant digits remains sufficient after
subtraction but small enough that the difference quotient is already near the actual derivative,
then finite differencing can be used to give an approximation of the gradient of the function
in O(n) function evaluations. We say O(n) here and not n because at least one extra
evaluation is necessary for f(a), and if symmetric differencing (see below) is used, there
will in fact be 2n invocations.

In short, this means that we have two separate alternative algorithms that should compute or
approximate the same result as the one computed by reverse AD, if it is correct. By implementing
both these alternative algorithms, we can test our implementation on arbitrary test programs
without fear of having incorrect validation data for the test programs: if three completely distinct
implementations (reverse AD, forward AD and finite differencing) all give (approximately) the
same result, it is unlikely that all three are wrong.

We want to note that our forward AD and finite differencing implementations are written as
Haskell-level libraries for Accelerate; no modification of the Accelerate compiler was necessary
for these implementations. This is in stark contrast to the reverse AD implementation that we
described in Section 4.2.

4.3.1 Unit tests

The unit test programs are hand-written to (collectively) include all the interesting constructs in
the input language.63 The general approach is that we use each of the unit test programs as a
property test, checking that for all inputs of a particular (refined) type, the program produced
by reverse AD gives the same gradient as forward AD and finite differencing. The programs
themselves are given in the third column of Appendix A; the input names and their refined
types are in the second column. All programs deal only with integers (Int) and single-precision
IEEE-754 floating-point numbers (Float).

The gradient is in all cases computed with respect to the array arguments listed in the second
column of the table. Any non-array input variables are considered constants from the perspective
of differentiation.

For more information about the exact syntax of actual Accelerate programs, we refer to the
Accelerate documentation [12].

63We originally intended to algorithmically generate arbitrary programs to test with our AD transformation,
but this proved harder than anticipated; time constraints then forced us to accept a collection of hand-written
programs instead.

77

The notation in the second column is as follows. After the ∀-sign, there are one or more variable
names, written in typewriter style, with their refined type as a superscript. Each of these
variables is considered in-scope in the program in the third column.

For the refined types, we use the following notation.

• V : a vector (single-dimensional array) of Float values of length 0 to 20, where the values
are in the interval [−10, 10].

• Float: a single Float value in the interval [−10, 10].

• [a..b]: a single Int value from the set {a, a+ 1, . . . , b}.

• T |prop for some refined type T : elements of T that satisfy prop, when substituted for v in
prop.

•
∑
v: the sum of the values in the vector v.

• #v: the length of the vector v.

• even(x): checks that the integer x is even.

• allNonZero(v): checks that all elements x in the vector v satisfy the property |x| > 0.1.

• uniqueMax(v): checks that no more than one element in the vector v satisfies the property
x ≥ m− 0.5, where m is the maximum value of the vector v.

• allNiceRound(v): checks that for all elements x in the vector v, x is at most 0.4 separated
from a whole number. The intent is permuting an element in finite differencing does not
change the result of rounding the element to an integer.

Construction of unit tests. The first part of the list of unit tests consists of programs that are
meant to test one particular language primitive; the last of these is backpermute_2. The programs
whose names start with aindex_ are meant to stress the algorithm handling array indexing.
Following those are a number of tests that either fill an edge case (e.g. a_ignore_argument),
are a regression test from an earlier version (logsumexp) or stress the tuple-handling machinery
(tuple). The neural test is a simplistic implementation of a three-layer dense neural network,
with weights sampled via some arbitrary formulas from the input vectors. acond_cond1 uses both
acond and cond to test that conditionals really execute only the branch that would be taken in
the original program. Finally, on the last page of Appendix A are a few expression-centric tests,
that mainly test condition handling.

Some of the test names have the suffix _friendly. These tests have the same code as the
corresponding test without _friendly, but have additional refinements on the input types in
order to avoid discontinuities; this allows finite differencing to succeed on these tests.

4.3.2 Methodology

As stated above, each of the programs in Appendix A is differentiated with respect to the listed
array-typed inputs using our reverse AD algorithm, a simple forward AD implementation, and
finite differencing. We use the Accelerate interpreter (as opposed to one of the native-code
backends) to run our unit tests, because the interpreter includes bounds checks, allowing us to
check that array indexing operations are always in-bounds. The gradient from reverse AD must
always be approximately equal to the gradient from forward AD; if finite differencing produces a
result approximately equal to forward AD, then that result must also be approximately equal to
the gradient from reverse AD.

78

The parts of this process that are yet underspecified are precisely what algorithm is used for finite
differencing, and what our definition of “approximately equal” is.

Finite differencing. To estimate a gradient using finite differencing, we estimate the partial
derivative of the program with respect to every individual input element that is contained
in an array-typed input. Let f(x) be the output value of the program when one particular
input element is replaced with x. Then we estimate the partial derivative, ∂f(x)

∂x (a), for this
particular input element by computing the symmetric difference formula for every value h in the
set {2−i | 4 ≤ i ≤ 7} = {0.0625, 0.03125, 0.015625, 0.0078125}:

symdiff(f, a, h) :=
f(a+ h)− f(a− h)

2h

Using the symmetric difference instead of the one-sided difference offers a slight defence against
systematic bias in the estimate of the partial derivative.

The four computed values are then used to estimate the value at the hypothetical h = 0 using
ordinary least-squares regression. This means that the (unique) reals u, v are found such that the
following value is minimised:

7∑
i=4

(
u · 2−i + v − symdiff(f, a, 2−i)

)2
The estimate for the concerned partial derivative is then the value v.

The values of h used in the above process may appear to be quite large. However, it must be noted
that the test programs use single-precision floating-point numbers; empirically, using smaller
values for h resulted in significant loss of precision in some cases.

Error tolerance. A gradient is a tuple of arrays, each of which records the gradient with respect
to a particular input array. Two tuples of arrays are approximately equal if all corresponding
constituent arrays are approximately equal. Two arrays are approximately equal if they have the
same size, and for all pairs of a floating-point number x in the first array and y in the second
array, either the absolute difference |x− y| is less than 0.1, or the relative difference |x−y|

max{|x|,|y|} is
less than 0.1. We use this adaptive comparison method to allow for both some additive and some
multiplicative error in the estimates (particularly for finite differencing).

4.3.3 Results

Forward AD agrees with reverse AD for all test programs: their output gradients are always
approximately equal in the sense of Section 4.3.2. However, for finite differencing the story is
unfortunately not so straightforward.

At the beginning of Section 4.3 we explained how finite differencing has precision issues if we take
h to be too small. However, in addition to precision issues, the non-trivial magnitude of h leads
to another property of finite differencing that is not shared by both methods of AD employed in
this section: it is sensitive to discontinuities of the program being differentiated and its derivative.

For example, consider a program that takes only one input (i.e. it models a function R → R)
and is given by the function f(x) = max{0, x}. This is also known as the rectified linear unit, or
ReLU, in machine learning. While f is continuous, its derivative is discontinuous at 0.

Suppose we require the derivative of f at input value 0.001. Both forward and reverse AD
will return exactly 1 in this case, irrespective of whether f is implemented using a primitive
maximum-value function or using a conditional; even in the second case, 0.001 is firmly on one

79

side of the conditional, and AD will give the right answer. However, using symmetric finite
differencing, we may compute symdiff(f, 0.001, h) for h ∈ {2−i | 4 ≤ i ≤ 7}, and obtain the
following values:

h 2−4 2−5 2−6 2−7

symdiff(f, 0.001, h) 0.508 0.516 0.532 0.564

While these values are certainly moving in the right direction (towards 1), an estimate of the
derivative at 0.001 based on these values will have a significant error. This is of course because
the f(0.001− h) sample lies left of 0 for these values of h, while f(0.001 + h) lies right of 0. The
error from finite differencing can be even stronger if f itself is discontinuous near the point for
which the derivative is required.

How does this work out on our test programs? Because not all our programs are continuous over
their full domain, finite differencing fails to give an accurate result for some test programs. The
ones for which finite differencing does not agree with forward AD are marked with a red star
(*) before the name. On all other programs, finite differencing agrees (meaning that its result is
“approximately equal” in the terminology of Section 4.3.2) with both forward AD and reverse AD.

All programs for which finite differencing does not agree with the other algorithms have dis-
continuities, either in the function they model or its derivative. These discontinuities generally
result from deliberate “weirdness” introduced in the program by way of conditional array indexing
operations; the intention of these programs is to test the reverse AD implementation, after all, and
the interaction between conditionals and array indexing has proven to be the most difficult part
of the algorithm. For many of those discontinuous programs, changing the scalar computations
so that all the piecewise fragments align and form a continuous (and everywhere differentiable)
function would be nontrivial.

For some programs, e.g. cond_2, the scalar expressions are designed so that at points where the
conditional switches branches, the modelled function and its derivative are both continuous. For
other programs, where conditional switching points can easily be removed from the input domain
by refining the input type, we added a _friendly variant of the test program that includes this
refinement (and has no changes in the program itself). For the rest of the programs, we accept
the loss of finite differencing in checking correctness of our reverse AD algorithm.

80

5 Experimental results

In the introduction to this thesis, we promised that our implementation of the reverse AD
algorithm not only works, but also produces efficient code. Correctness testing we have discussed
in Section 4.3, so in this section we continue with performance testing. All testing will be on a
many-core CPU (see Section 5.2.1); tests on a GPU platform are left to future work.64

Šrajer et al. published a suite of benchmark tasks (ADBench) for AD implementations and
compared a number of existing AD implementations in various programming languages and
frameworks [51]. Since the publication of that paper, one additional benchmark task has been
added to the suite to make a total of four tasks. We implemented two of the original tasks using
our reverse AD implementation: Gaussian model mixture fitting (GMM) and bundle adjustment
(BA). The third task (hand tracking, HT) requires that the AD implementation support sparse
Jacobians, and the fourth task65 (diagonal long-short-term memory, D-LSTM) requires (bounded)
looping for an effective implementation. Unfortunately, neither of these features are present in
our reverse AD implementation; hence, we compare just based on the first two tasks.

In the following sections, we define the two tasks that we implemented, namely GMM and BA
(Section 5.1), we describe the benchmarking environment and methodology (Section 5.2), and
finally we show and analyse the benchmark results (Section 5.3).

5.1 Benchmarking tasks

As stated above, we implemented two benchmark tasks from the ADBench suite: GMM and
BA. For semantic context of those tasks, i.e. why these tasks are meaningful, we refer to the
article that originally defined them [51]. Here we assume the tasks given and discuss just their
implementation in our extended version of Accelerate.

Some of the details of what the benchmark tasks should compute, precisely, are left abstract in
the cited article. Therefore, we referred to some of the existing implementations in the ADBench
repository66 to determine the exact task definitions. In Appendix B we give our formulation of the
task definitions, which we discuss here. The Accelerate source code of our task implementations
is given in Appendix C;67 we note that reading the implementations may unfortunately require
knowledge of Haskell as well as familiarity with Accelerate.

GMM. The first task is a simple gradient task: in Appendix B.1 a function L is defined that
computes a single real value based on its four arguments, α,M ,Q,L, and some additional
values: an array X and two scalar inputs γ,m. The parameters N,D,K are size parameters
that characterise the size of the input. The task is to compute the gradient of L, with respect to
α,M ,Q,L, for a particular input data set specifying all mentioned parameters.

Highlighted in the definition of L are scalar values that are independent on the four arguments of
L, and that we can therefore precompute outside of the gradient computation. This is fortunate:
while the log MultiGamma function can be written out using the more commonly available lgamma

64The Accelerate GPU backend currently has an issue preventing effective testing on very large Accelerate
programs, which our AD algorithm produces. Furthermore, the ADBench benchmark suite currently focuses solely
on CPU. These two difficulties combined make us, too, focus only on CPU for this work.

65D-LSTM is a simplification of a real LSTM neural network; one of the important changes is that the weight
matrix is a diagonal matrix. Our assessment of the task is purely based on scanning existing implementations,
because documentation is unfortunately scarce. See the ADBench repository for more information: https:
//github.com/microsoft/ADBench/issues/143.

66https://github.com/microsoft/ADBench
67The actual programs used for benchmarking, including modifications to the ADBench framework to include

our implementations, can be found here:
https://github.com/tomsmeding/ADBench/tree/157260330293a46068593357cebc0f71f203750b

81

https://github.com/microsoft/ADBench/issues/143
https://github.com/microsoft/ADBench/issues/143
https://github.com/microsoft/ADBench
https://github.com/tomsmeding/ADBench/tree/157260330293a46068593357cebc0f71f203750b

function, lgamma is nevertheless currently unavailable in Accelerate. Therefore, we compute the
highlighted portions of L outside Accelerate, and insert their results as constants in the Accelerate
program.

Note that we overload exp to map over a vector argument, both in L and in the definition of
logsumexp.

As for the implementation of the task, this was mostly a straightforward translation of the
specification into an Accelerate function that simply computes the objective, i.e. implements the
function L, and then uses gradientA to obtain its gradient. This is true except for one part: the
computation of the matrix-vector product of the matrix Q and the vector x− µ in the second
term of L. Firstly, we do not actually compute the matrix Q, but instead define ∆Q to be the
diagonal of Q and compute ∆Q · (x−µ) + (Q−∆Q) · (x−µ). The first of these multiplications
is simply an elementwise vector product; for the second we perform a naive cubic matrix product.

For this matrix product we do fully represent Q−∆Q in the program,68 and the construction
of this matrix (the lower-triangular part of Q) can be done in multiple ways. The simplest way
to compute Q − ∆Q is using a generate that checks for each cell whether it is in the lower
triangular part; if so, it picks the right value from L, otherwise it places a zero. This definition
involves array indexing (into L), and while our reverse AD implementation can differentiate this,
we found that it is not the most efficient option. Indeed, for an earlier version of the reverse AD
algorithm that could not yet differentiate array indexing, we wrote a somewhat more elaborate
way to construct Q − ∆Q that worked out in practice to perform better under AD than the
version with array indexing. It is this version that we use in our implementation of the benchmark
program, for use in benchmarking.

This alternative method to compute Q−∆Q uses the following trick: the use of array indexing
in the natural implementation is relatively tame, in that it could be implemented without array
indexing using backpermute if only we could decide to return a certain default value (i.e. zero) for
some cells, instead of being forced to always pick a value from the backing array (L). However,
we can simulate this by first extending L with an additional zero, and then backpermuting from
this extended array. In computing this zero-extension, we make use of the fact that from the
input file, we really have Q and L in a single K × (D + D(D−1)

2) array, and that K,D > 0. First
backpermute the right half of that input array (the L part) plus one element from Q (using the
fact that D > 0), then elementwise-multiply the result with an array containing ones except at
the first element, where it contains a zero.

For the full source code of our GMM implementation as it runs in the benchmarks, see Ap-
pendix C.1. Note the usage of gradientA to compute the final gradient.

BA. The second task is different from the first in that we are now required to produce a
sparse Jacobian of a function with more than one output. However, the objective function being
differentiated has many internal redundancies, due to which we can take a shortcut in computing
the sparse Jacobian to ensure that we only really need an AD implementation that can compute
a gradient. This shortcut is documented in [51] and also used in the other task implementations
in the ADBench suite.

First, however, we discuss the objective function given in Appendix B.2. The values N , M , P are
size parameters. The input data, which contains only one camera, one point, one weight and one
feature pair, is enlarged to produce the arrays C,X,w,F . The obs array contains pairs of an

68We compute the whole matrix, including zeros, in the objective program; this does not necessarily mean that
at runtime, after fusion optimisations, the whole matrix is actually materialised in memory. Whether that happens
depends on how we use the matrix, and what AD does with the program.

82

index into C and an index into X; we will only access C and X through the obs indirection.69

We define the functions ‘reprojerr’ and ‘werr’ using a number of helper functions; the dimensionality
of their arguments is indicated using an overset number 1, 2 or 3. The objective function (which
here computes an array of values, not a single value) is the concatenation of ‘reproj error’ and
‘w error’, where reproj error is first flattened to an array of 2p values, organised in p pairs of 2
values.

This objective function (with 2p+p output values) is to be differentiated with respect to the input
arrays C,X,w, where C and X are first flattened in row-major order, the same way in which
we flattened reproj error. Concatenating the (flattened) inputs gives an array with 11n+ 3m+ p
values, meaning that the to-be-computed Jacobian (called J in Appendix B.2) is a matrix of size
(2p+ p)× (11n+ 3m+ p).

Figure 4 shows the nonzero entries in a possible Jacobian for BA; note that we do not use the
partial redundancy due to x0 at all. The non-zero values in a row in the top two-thirds of
the Jacobian are the gradient of one of the two output values of reprojerr() with respect to a
particular camera, point and weight as determined by obs; the single non-zero value in a row
in the bottom one-third of the Jacobian is the derivative (gradient) of werr() evaluated on one
of the weights. If we compute just these gradients, then placing them in the right positions in
the full Jacobian is easy. This trick, where we compute just the blocks themselves instead of
computing the full Jacobian without regard for sparsity, is the shortcut that we mentioned above;
it is applied in the existing implementations in the ADBench suite, as well as ours.

Nevertheless, BA is a different kind of problem than GMM: we need many gradients with respect
to a bounded number of values (namely, 15 and 1 for the reprojection errors and the weight
errors, respectively) instead of one gradient with respect to a large array of values. Therefore, in
our implementation of the BA task, we use our expression-level reverse AD primitive to compute
the gradient of an expression function with respect to a tuple of input values. The resulting
expression function can then run in parallel on all places in the Jacobian where it is required. This
stands in contrast to the use of gradientA in GMM: since gradientA is an array-level primitive,
the second-order nature of Accelerate prevents us from running many array-level gradients in
parallel.70

For the full source code of our BA implementation as it runs in the benchmarks, see Appendix C.2.
Note the usage of gradientE to compute an expression-level gradient. Note further that our BA
implementation uses some metaprogramming (from the perspective of Accelerate) in Haskell to
define vecadd, vecsub, dot and scale for both Pt2D and Pt3D.

5.2 Methodology

For both the GMM and BA tasks, the ADBench suite contains a number of input files. For GMM
this is one input file for each triple (N,D,K) in the following Cartesian product:71

{103, 104} × {2, 10, 20, 32, 64, 128} × {5, 10, 25, 50, 100, 200}

The values in the input arrays are randomly generated.
69It is tempting to simplify and optimise one’s implementation by using the artificiality of the input formulation,

to the point where the description in [51] is ambiguous how much an implementer may assume, precisely. Looking
at the other implementations, however, makes clear that the function to be differentiated cannot assume any
redundancies in the five input arrays, including obs.

70Actually, some limited parallelism is introduced by Accelerate’s runtime scheduler: on multicore CPU, a small
number of array-level primitives may run in parallel on separate cores if they do not depend on each other and none
of the primitives benefit from using all cores for itself. However, this is not exposed in the user-facing Accelerate
language.

71The ADBench repository also includes files for N = 2.5 · 106, but the framework does not support this size yet.

83

Figure 4: The (potentially) nonzero entries in a Jacobian for BA where N = 6, M = 9, P = 16.
Note the horizontal division into the camera parameters, the points and the weights, and the
vertical division into the reprojection errors and the weight errors. The holes in the “ ∂reproj error

∂camera ”
blocks are there because the elements of x0 only contribute to one of the two outputs of reprojerr().

This figure is inspired by a figure in [51].

(N,M,P) ∈ {(49, 7776, 31843), (21, 11315, 36455), (161, 48126, 182072),
(372, 47423, 204472), (257, 65132, 225911), (539, 65220, 277273),
(93, 61203, 287451), (88, 64298, 383937), (810, 88814, 393775),
(1197, 126327, 563734), (1723, 156502, 678718), (253, 163691, 899155),
(245, 198739, 1091386), (356, 226730, 1255268), (1102, 780462, 4052340),
(1544, 942409, 4750193), (1778, 993923, 5001946), (1936, 649673, 5213733),
(4585, 1324582, 9125125), (13682, 4456117, 2987644)}

Figure 5: Size parameters for the 20 BA input files in the ADBench suite.

For BA, there are 20 input files with increasing sizes, with parameters shown in Fig. 5.

For both GMM and BA, for each input file, we run our implementation 10 times, or until the total
execution time has reached 10 seconds, whichever occurs sooner. This strategy is also taken by a
number of the existing implementations in the ADBench suite. If this results in a total runtime
for a single input file that is longer than 900 seconds, our program is considered to time out on
that input file. This time-out limit of 900 seconds is global, and also applies to the benchmark
implementations in other languages.

In practice, the described testing strategy results in some variance for some of the test cases;
however, this is not too much to be able to use the results. To check this, we ran all tested
benchmark implementations twice on all input files. For each implementation (including the
non-Accelerate ones) and input file, if the implementation did not time out when run on that
input file, we collected the ratio between the second gradient computation time and the first
gradient computation time. Figure 6 shows a histogram of these time ratios. All measurements
differ by at most a factor 1.73; 98% of the measurements differ by less than a factor of 1.2. As we
will see in Section 5.3, a variance of 1.2 is insignificant relative to the difference in performance
between the various implementations of the benchmark tasks.

Programs. In addition to our own implementations of GMM and BA, we also ran a number
of the existing implementations of those tasks in the ADBench suite. The selection was based
purely on which ones were easy to get running on our testing machine. The implementations
in the ADBench suite that did not work for us despite an indication to the contrary in the
documentation, are DiffSharp (.NET) and Julia’s Zygote library. All others are included in our
benchmark.

We build on the ADBench framework as of September 24th, 2020 (commit e30b6c70), and the
other implementations in the benchmark are as included in the repository at that point in time.

84

Figure 6: Histogram of the ratio of the gradient computation time between two runs of the full
benchmark suite for all tested implementations. The histogram counts max{r, 1r} for all ratios r

to uniformise the direction of bias.

5.2.1 Experimental setup

The specifications of the machine on which the performance tests were run, are as follows:

• OS: Ubuntu 20.04.1 LTS (Linux 5.4.0)

• Processor: AMD Ryzen Threadripper 2950X at 3.5GHz (16 physical cores, 32 threads)

• Memory: 64GiB (with 64GiB swap)

• Versions: GHC 8.8.4; code based on Accelerate 1.3.0.0 with Stackage LTS 16.17

• Compilation: ghc -O2 -threaded -rtsopts; runtime flags: +RTS -M64G -qg

Remarks:

• The -M64G runtime flag limits the total Haskell heap size (which includes any Accelerate
array memory allocations) to 64GiB, which is the total amount of RAM on the test system.
Due to GC effects and system tasks taking a small fraction of memory, we cannot limit
memory usage to exactly the available RAM; therefore, we limit memory to approximately
the available RAM. We note that using swap memory is severely detrimental to performance,
which we thus want to avoid.

• The -qg runtime flag forces the Haskell GC to run single-threadedly. We measured the
difference on all test cases between the standard multi-threaded setup and the single-
threaded GC with -qg, and determined that with -qg, gradient computation time rose by
more than 10% on only four test cases, whereas it fell by more than 10% on 41 test cases
(16% of the total of 250 test cases between GMM and BA). Overall, gradient computation
time generally decreased somewhat.

5.3 Results

The methodology in Section 5.2 was applied to compare a number of implementations of the
GMM and BA tasks. As mentioned previously, the GMM implementations were run on the input
files for N ∈ {103, 104} and the BA implementations were run on all 20 input files.

In Appendix D we present three graphs corresponding to these three sets of input files (two for
GMM and one for BA). Our implementations are plotted with a dashed line in order for them to
stand out more; the dashed line style does not have any other meaning.

Both axes of the graph are scaled logarithmically. While this means that different time complexity
translates to merely a different slope of the line, it allows packing the full, diverse set of

85

implementations and input sizes in one graph. In order to be able to judge time complexity more
effectively, the plots include faint gray lines with slope 1, vertically separated by a factor 4

√
10.

A plot line that is parallel to these slope-1 lines indicates linear time complexity on the tested
domain; faster or slower ascent indicates, respectively, super- or sub-linear time complexity on
the tested domain.

Each implementation has a line, and each test case has a point on that line. The horizontal
axis is the number of independent variables in the input: this is the number of variables that
the gradient is taken with respect to. This measure is one way, albeit for some implementations
an imperfect way, to measure the difficulty of the input. The vertical axis is the number of
seconds taken to compute the gradient (or Jacobian, in the case of BA), measured as explained
in Section 5.2. The time taken is measured as wall-clock time, not CPU time. Recall that a
time limit of 900 seconds is imposed on the total execution time of an implementation, and that
additionally an implementation can run out of the available RAM on the system; truncation of
the graph of an implementation means that one of these things happened.

5.3.1 Four versions

Shown in the graphs in Appendix D, there are four Accelerate-based versions of our implementation
for GMM and two for BA. Each of the four versions shares the same Accelerate code; the difference
lies in the compilation and execution settings.

Firstly, the orange graphs use the full 32-wide parallelism of the machine—the default configuration
of Accelerate. The blue graphs instead use only one CPU thread for the computation. This
version distinction is present both for GMM and for BA.

Secondly, the cross-marked graphs faithfully use the reverse AD algorithm as described in
Sections 3 and 4, while the pentagon-marked graphs (marked “recompute” in the legend) apply
a modification to the algorithm that works out in practice to be an optimisation for GMM. As
we already mentioned in passing earlier in this thesis, the algorithm as described tries to avoid
as much recomputation as possible by storing all intermediate values in the primal pass. The
memory usage (and memory traffic) caused by this choice can get out of hand in practice: in
particular, storing the temporaries tuple from expression AD (Section 3.4.1) requires a large
amount of memory to save a bit of computation that is usually very cheap. To prevent this effect,
for the implementation versions marked “recompute” we change the primal builder for Map in
Table 1:

1 Alet anres = Map P(fun) (Avar am)
2 in Alet an = Map λfst (Avar anres)
3 in Alet antmp = Map λsnd (Avar anres)
4 in _

to the following:

1 Alet an = Map λfst (Map P(fun) (Avar am))
2 in Alet antmp = Map λsnd (Map P(fun) (Avar am))
3 in _

and we perform the analogous change to the primal builders of Generate and ZipWith in Table 1.

The reason why this change is equivalent to recomputing the primal expression temporaries in
the dual pass is the array fusion optimisation performed by the Accelerate compiler. Assume
for this discussion that the Map in question is used only once in the original program to be
differentiated. If that is true, an and antmp are used exactly once in the gradient program, both
before and after the builder change described here. The difference imparted by the change is
the following. Before (in the non-“recompute” versions), the value anres is shared and thus will

86

not be fused into its usage points.72 After (with “recompute”), the two Map P(fun) (Avar am)
programs are both used only once73, meaning that they can be fused into the Maps that define
an and antmp and, subsequently, into their respective usage points. The usage point of antmp
is the ZipWith running D(fun) in the dual pass (as can be seen in Table 2); therefore, fusing
antmp (including the computation of P(fun)) into its usage point means recomputing the primal
expression temporaries in the dual pass.

The “recompute” change has no effect on the BA implementation, because BA does not use array
AD but rather only expression AD; therefore, for BA, we show only two implementation versions:
multi-threaded and single-threaded.

5.3.2 Conclusions

Having described what the graphs in Appendix D show, we can now start interpreting those
results. We first discuss overall results, and afterwards we discuss the specific differences between
the four versions of our implementation.

Time complexity. Most plot lines in all three graphs tend towards being parallel to the slope-1
background lines, and some already do so for small input sizes. These implementations have,
at least as the input size gets larger, approximately linear time complexity in the size of their
input. Since the objective function is itself linear in both GMM and BA, this means that those
implementations have the correct time complexity for reverse AD: one of the prime characteristics
of reverse AD is that the gradient function may only add a constant factor to the running time
as compared to the original function.

There are two kinds of (partial) exceptions to this rule: plot lines that appear to indicate
super-linear behaviour, and analogously sub-linear behaviour.

Super-linear behaviour we find only in the Julia and C++ Finite implementations for GMM; all
other plot lines (eventually) become approximately linear. The exception for Julia and C++ Finite
is to be expected: these two programs do not implement reverse AD, but instead compute the
required gradient using finite differencing (see e.g. Section 4.3). Finite differencing adds a factor
linear in the size of the input to the running time of the program, bringing the linear objective
function to quadratic complexity. Notable is that this (approximate) quadratic behaviour does
not occur for BA; this is because in the BA task, the input size merely adds extra parallelism
to the task without increasing the number of independent variables in one particular gradient
computation (which is always 15 or 1 depending on the Jacobian block; see Section 5.1).

Partial sub-linear behaviour we find for implementations that make better use of the parallelism
offered by the machine as the input size gets larger. We first focus on GMM, and afterwards we
look at the effects on the BA task.

Increasing parallelism allows a program to increase the amount of computation performed in
a single unit of time, which makes it possible to deal with larger input sizes without linearly
increasing execution time. The resulting sub-linear behaviour we see most strongly with PyTorch,
TorchScript, TensorFlow Eager and multi-threaded Accelerate on the GMM task. Clearly, most
of the the tested input sizes do not exhaust the capability of these implementations to parallelise
their computations; in particular, even if PyTorch and TorchScript are relatively slow for the
smallest input sizes, they are easily the fastest implementations at the largest input sizes. The

72This is a design decision in the current array fusion algorithm in Accelerate. Should the Accelerate compiler
apply more program intelligence here in the future, the necessity of the described “recompute” change may well
disappear.

73Note that the Accelerate compiler currently does not perform common-subexpression elimination (CSE); for
user programs, CSE is done by GHC before the Accelerate compiler starts processing the program.

87

sub-linear behaviour can be seen to a lesser extent in TensorFlow Graph, which starts out faster
than PyTorch on the GMM task but ends up being somewhat slower on the largest cases.

The multi-threaded versions of our Accelerate implementation also show suboptimal performance
on smaller cases, but significantly more respectable timings for the larger GMM cases. For the
largest tested GMM cases, we approach a factor

√
10 ≈ 3 above TensorFlow Graph and PyTorch.

However, we do use much more resources: our plot lines truncate early on both GMM graphs due
to exhaustion of the available RAM. Furthermore, Accelerate always use all available threads on
the machine, while PyTorch and TensorFlow are much more conservative and appear to use only
what they need.

For BA, we see linear behaviour in all implementations except our Accelerate programs, which—
for the multi-threaded version as well as, to a lesser extent, the single-threaded version—show
sub-linear behaviour again. In general, it is clear that Accelerate has a higher start-up cost
than many other implementations, but in return can sometimes make better use of the available
parallelism for larger inputs.

Absolute performance. Immediately evident upon perusing the graphs is the suboptimal
performance of Autograd on both tasks, and of TensorFlow Graph and PyTorch on BA. This is
consistent with the results reported by the authors of the ADBench suite.74

The manual C++ implementations (which do not use AD, but result from manual differentiation
of the functions involved) have the most consistent good performance, but due to their poor
parallelisation on GMM, they are overtaken by PyTorch on that task for larger inputs. The
finite-differencing-based implementations (Julia and C++ Finite) have low overhead on small
cases, but become very slow on larger cases, as expected.

On GMM, Accelerate is generally slower than the good implementations, but manages to close
most of the gap for inputs where it can use the parallelism of the machine. For BA, the parallelism
is easier to exploit, and Accelerate quickly becomes the fastest implementation in our benchmark,
although it suffers heavily from excessive RAM usage leading to an early cutoff of the plot line.

Our implementation. On GMM, the normal and the “recompute” versions have generally
similar performance profiles, with the version that recomputes expression temporaries having
better absolute performance across the input domain. Recomputing expression temporaries
additionally helps reduce the required RAM for Accelerate: this is to be expected, since less
data is being stored between the primal and dual phases. Besides being somewhat more efficient
overall, the “recompute” versions therefore also continue to succeed for larger input sizes.

From comparison of the multi-threaded and single-threaded versions on GMM, we see that using
multiple threads has significant overhead on smaller cases, due to which the single-threaded
version is significantly more performant there. While the multi-threaded version has an advantage
on large input sizes in our benchmark, we hypothesise that on a machine with less parallelism
than our relatively high-end benchmarking machine, this advantage will be significantly less.

The results on BA are much cleaner than on GMM, with multi-threaded Accelerate being
faster than the single-threaded version on all inputs, and increasing that advantage as more
data-parallelism can be exploited for larger cases.

74See https://adbenchwebviewer.azurewebsites.net/Plots/GetStatic?dir=2020-11-15_15-17-39_4e856a4c467522673c27320d38a7cba19170231c/.
Their graphs additionally include Julia Zygote and DiffSharp in the gap between the faster implementations and
the slowest ones.

88

https://adbenchwebviewer.azurewebsites.net/Plots/GetStatic?dir=2020-11-15_15-17-39_4e856a4c467522673c27320d38a7cba19170231c/

5.3.3 Discussion

Firstly, a limitation of our benchmark is that some of the tested implementations, such as
TensorFlow and PyTorch, may perform even better when run on massively parallel hardware like
a GPU. For the reasons mentioned earlier, we have not tested GPU performance for any of the
implementations for this thesis report.

Running a program transformed using our reverse AD implementation using Accelerate on only
one thread, even if the machine has more available compute parallelism, has an advantage
on smaller input sizes if the problem is complicated enough to not be embarrassingly parallel.
This is probably because the Accelerate runtime scheduler, in addition to having to start the
compute threads in the first place, has a certain amount of overhead that a small workload cannot
overcome. However, even for the case of GMM, where the output program after our reverse AD
transformation and after array fusion still contains 282 primitives,75 Accelerate manages to use
hardware parallelism to speed up execution significantly.

Recomputing expression temporaries saves work and memory on GMM and is an overall effective
optimisation. Notable is that these savings already occur on multicore CPU, where memory
access is relatively cheap compared to a GPU; we hypothesise that when running on a GPU
platform, the savings here will be even larger. Indeed, especially for GPU targets where some
additional parallel computation is generally cheap, we believe that the checkpointing optimisation
for an AD transformation (see Section 2.1.4) may prove to be especially effective, both to reduce
maximum memory usage and to reduce memory traffic.

With the limited benchmarking that we have done, we cannot draw unconditional conclusions
about the performance of our reverse AD transformation. However, even so, we believe to have
shown that our algorithm is capable of producing reasonably performant code when paired with
the existing performance work that has gone into the Accelerate compiler. To be able to compete
with the best-in-class, improvements are still necessary; an important, but not the only, point of
improvement is the memory usage of the output programs of the AD transformation.

75Not counting delayed (non-instantiated) generate expressions. This number 282 is significantly higher than
for typical Accelerate programs due to the blow-up resulting from our reverse AD transformation, which also
inhibits some array fusion that may otherwise have been possible in the original program (see also Section 6.1).
The number 282 may decrease in the future, even without modifications to the reverse AD implementation itself,
by addition of new program optimisations in the Accelerate compiler and improvements to the array fusion engine.

89

6 Conclusions

In the introduction to this thesis, we explained how Bayesian inference algorithms and machine
learning algorithms need a high-performance parallel processing framework in order to easily
express algorithms in an efficient way. We also argued how functional parallel array programming
languages answer this need, assuming that they provide reverse-mode automatic differentiation
functionality. Few such languages provide this functionality at the moment, and to our knowledge,
there is as of yet no mature and high-performance implementation of reverse-mode AD for a
functional parallel array language (Section 6.2).

One such programming language is Accelerate [8], and in this thesis project we present an
implementation of reverse-mode AD for a significant subset of the Accelerate language. We do
this by first defining a source-code transformation for reverse AD on an Accelerate-like language
(Section 3), which covers most of the features present in the full Accelerate language with the
exception of loops and some of the most involved array primitives (Section 3.2.1). Furthermore,
we present an implementation of this algorithm in the Accelerate compiler, which uses a type-
indexed AST in order to statically prevent type-safety issues in the output of the source-code
transformation (Section 4). Benchmarks show that the produced output programs perform
reasonably well when compared with existing implementations for the same benchmark tasks in
other languages (Section 5).

In the introduction, we asked some questions to guide our research project, to which we can now
provide some partial answers.

1. What additional language primitives, on top of those in the current Accelerate language,
are needed to express the gradient computation code for an Accelerate program?

Our reverse AD algorithm does not yet handle the full Accelerate language, so we cannot
give a full answer to this question. However, for the subset of the language that we do
support, the derivative can be expressed within (the entirety of) Accelerate: the extra
components we need in the output language that our input language does not contain,
are left and right scans (for the derivative of Foldl), and Permute (for the derivative of
Backpermute and array indexing).

In order to support loops in the input language, we expect to need an extension to the
Accelerate language to be able to incrementally fill an array with primal values. For the yet
unsupported array primitives like Permute, the existing Accelerate language may well be
sufficient, but this is still unclear.

2. How does one perform non-local full-program transformations (in particular, reverse-mode
AD) on a strongly-typed AST?

Because of the non-local nature of a reverse AD transformation that is organised like ours,
type-correctness of such a transformation is non-trivial to prove, especially in the Haskell
type system. Our implementation shows one method for circumventing this problem: by
using runtime type checking, we defer to runtime certain components of the type-correctness
proof that are hard to give statically. In this way, we complete the proof dynamically for
each input program that the compiler receives, crashing in case the proof should fail at
runtime. While suboptimal from a theoretical standpoint, runtime type checking does allow
for a pragmatic implementation of the algorithm without compromising the type-safety of
the differentiated Accelerate program.

3. What optimisations, both generic compiler optimisations and improvements to the AD
algorithm, are necessary for competitive performance on top of a naive implementation of
AD?

90

While we showed that one improvement to our AD algorithm has a positive effect on our
benchmarks, namely recomputing expression temporaries in the dual pass (Section 5), we
have unfortunately been unable to research this topic more thoroughly. Nevertheless, thanks
to the optimisations already implemented in the current Accelerate compiler and the LLVM
backend that it uses for scalar-level computations, our implementation of reverse AD can
already produce reasonably performant code. This is true in particular when one considers
the difference in the amount of research invested in our algorithm versus established AD
implementations like PyTorch and TensorFlow.

In the main research question formulated in the introduction to this thesis, we asked how a
reverse-mode AD system for Accelerate using source-code transformation can provide performance
competitive with existing fast AD frameworks. While the method we describe in this thesis
cannot yet compete with the state-of-the-art in the field of AD, we believe that our pragmatic
approach to program differentiation has promise for producing an algorithm that can challenge
the existing options.

In the sections below, we will discuss some general remarks about our algorithm, as well as various
potential points of improvement and further research. Afterwards, we will briefly compare our
work with existing algorithms and implementations of reverse AD, some of which have already
come up in the discussion of background in Section 2.

6.1 Discussion & Future work

There are some general remarks that we still wish to make regarding our reverse AD algorithm
and its implementation. Many of these remarks hint at new questions and unknowns; most
research projects produce more questions than they give answers, and this thesis work is no
exception.

Second-order representation. In the design of our reverse AD algorithm, we are helped
significantly by the second-order nature of the language we work on (Idealised Accelerate, modelling
Accelerate). As argued in Section 2.3.2, a second-order language is easier to compile to GPU
code than a more generic, higher-order language; however, the two-part structure of our AD
algorithm (split in the array and expression halves) is also due to this second-order nature. Our
array AD algorithm is essentially (and was constructed as) a generalised version of the algorithm
for expressions, even if our exposition was the other way round.

Functional array languages need not necessarily be second-order for our algorithm to apply,
however. Indeed, when compiling to GPU code, one has to represent the program in something
resembling our second-order structure at some point in the pipeline, due to the GPU programming
model. If a language with a different user-facing structure at some point compiles down to an
internal second-order language, and that internal language is still purely functional, our algorithm
may be adaptable to run at that point in the compilation pipeline.

However, the two-way split of our algorithm also raises questions: can elements of our algorithm
generalise to languages too expressive to easily compile down to a second-order functional array
language? Examples of such languages might be ones that support exotic control flow or low-level
operations that are hard to express in the rather simple (programming-language-theoretically),
pure functional language that this thesis works on.

Fanout. A general principle in reverse AD is that fanout in the computation graph of the input
function translates to addition in the dual. Fanout in Idealised Accelerate occurs in two places:
sharing introduced with let-bindings (both on the array and the expression level), and parallel
usage of values in a parallel array primitive.

91

These two types of fanout we handle in different ways in our algorithm. Let-induced sharing we
detect and reify on the fly using the contribution map passed through the algorithm. Parallel usage
of values in an array primitive we handle differently based on whether the parallel usage is inherent
in the array primitive, or introduced using array indexing in a user-specified expression. For
example, the Replicate primitive dualises to a construction that sums the adjoint contributions
arising from sharing using a Sum primitive, after shuffling those together in the innermost dimension.
For Backpermute as well as sharing introduced by array indexing, the (+) combination function
in the generated Permute primitive adds adjoints and dualises the fanout there.

Being able to concretely pinpoint where sharing occurs seems important in designing an AD
algorithm. Another approach to making sharing explicit is requiring the use of a duplication
combinator in a combinator-based program representation (e.g. [17]). This explicitness is not
always attained or required: for example, in [58], mutation (addition to accumulator cells) is used
to resolve sharing at runtime. Can we still do reverse AD with as codomain a purely functional
language if we cannot statically foresee all possible sharing in a program, for instance in a language
with control flow too dynamic to fully analyse statically?76 The absence of mutation in a program
makes analysing the program (and its generating algorithm) for correctness easier, and often
facilitates more invasive compiler optimisations. However, we do not know whether, for languages
where such a transformation is significantly more difficult than one that introduces mutation, it
is worth the additional effort to try.

Inefficient addition of array adjoints. In our array AD algorithm, our method for adding
adjoint contributions involves generating an array of the required size using Generate, where
each cell is individually computed to be the sum of only those contributions that are actually
in-bounds for the various arrays that we receive. While it may sometimes be possible to guarantee
that the adjoint contribution arrays are full-size, allowing us to elide the conditionals in the
expressions, this will not always be the case. Since conditional execution is often suboptimal on
very wide vector architectures like modern GPUs, it may be worth trying to reduce the number
of times the addition of adjoint contributions really needs conditionals.

It is possible to change our algorithm to not generate empty arrays for intermediate adjoints
in untaken conditional array branches, but instead generate arrays containing zeros; it is also
possible to change the dual of ZipWith to ensure that the adjoint contributions it produces
are always of the correct, full size. With both of these changes, the complicated addition of
contributions using conditionals should not be necessary anymore. However, it is unclear whether
both of these changes are worth the accompanying additional computation cost elsewhere, in
particular generating full-size arrays of zeros for array conditionals. This may also depend on
whether the resulting unnecessary arrays can be inspected and possibly elided by an optimising
compiler; the Accelerate compiler cannot currently “see through” a conditional very well, and
thus would not be able to perform such an optimisation.

Optimisation before AD. Suppose the user wishes to differentiate an Accelerate program
that contains the following piece of code:

1 map (\x -> 2 * x) (map (\x -> x + 3) a)

With our current implementation, the array AD algorithm sees two Map primitives and differentiates
them separately, generating a number of Map and ZipWith primitives and introducing sharing
between these values along the way. If array fusion would have run before our AD algorithm, the
two maps would have been combined, and the output code from AD would have been significantly
simpler.

76Do we even want such languages?

92

In this case, the unnecessary complexity that we produce can still be optimised away using
array fusion, but there may be more complicated cases where redundancy or verbosity in the
original program is mangled too much by the AD pass for the optimiser to be able to understand
afterwards. It could be very promising to perform some preliminary optimisations on the AST
before running the AD algorithm, while still running the full suite of optimisations after AD. This
may (or may not) increase compile times, but may also lead to better code being generated.

Reducing sharing. As already mentioned in the previous point and in Section 5.3.3, our
array AD algorithm increases the program size significantly, in addition to introducing additional
sharing that was not present in the original program. Empirically, this prevents array fusion from
being able to do much on the output from AD, at least as compared to hand-written Accelerate
programs.

One way to improve this situation might be to significantly improve the intelligence of array
fusion, so that it is able to change the program more drastically than it currently does. On the
other hand, it may also be worthwhile to avoid generating so much sharing in the first place.
Some sharing is certainly needed—the core of reverse AD is to remember computed values from
the primal pass in the dual pass, and for this reason those values are by necessity used at least
twice. However, checkpointing (Section 2.1.4) can reduce the amount of values retained from the
primal pass, and furthermore it may well be possible to optimise the generated code in Tables 1
and 2 to help reduce the magnitude of the problem.

Reducing sharing and the accompanying retention of data in memory may also help reducing the
excessive use of memory that we observed about our implementation in Section 5.

Additional optimisations. The code produced by our AD transformation contains patterns
not usually found in hand-written programs, and these patterns may benefit from tailored,
additional optimisation passes in the compiler. In particular, our policy of storing all primal
values for the dual pass sometimes results in redundant stores. Simple unused array stores are
easily removed using dead-code elimination, but on the expression level, removing redundant
primal stores would require detecting that a particular element of the tuple values in an array is
never actually used, and subsequently applying a type-changing transformation on the program
that removes that tuple element. For expression code, we also regularly store the same value
multiple times (since multiple expression nodes, like Evar nodes, may refer to the same value).
Removing that redundancy could be done in a similar way with a program-wide optimisation.

The way we avoided the problem of redundant stores in our experiments (Section 5) was by
recomputing all expression temporaries; this is unlikely to be optimal in all cases, especially if we
start supporting loops in expression code.

An alternative, less drastic way to reduce the problem would be to carefully trim the to-store sets
in our algorithm. However, we predict that this method will not be able to find all opportunities
for store elimination, due to its local-only nature. Literature approaches the problem using a
to-be-recorded analysis [23], which attempts to estimate the set of really required stores using
a data-flow analysis on the original source program. We hypothesise that with a sufficiently
intelligent dead-store analysis as described above, such a data-flow analysis may not be required,
and we get a nice compiler optimisation as a side-benefit.

Special cases. The Accelerate language already contains some specialisation for special cases,
for example by providing Replicate while the language already has Backpermute and Generate
(see also Section 2.3.1). However, for reverse AD, many more special cases exist that do not
currently have a specialised primitive but would nevertheless benefit from a special-cased derivative
implementation.

93

A prominent example of this effect is for Backpermute operations, or other primitives containing
array indexing, where the formula determining the index into the indexed array is (easily) invertible.
For example, consider the reversal of a single-dimensional array, or taking the transpose of a square
two-dimensional array. These operations can be easily implemented using either Backpermute or
Generate (in the latter case using array indexing); the algorithm in Section 3 implements the
derivative of both constructions using a Permute. However, the derivatives of both array reverse
and array transpose happen to be the operations themselves, which do not need a relatively costly
Permute but can instead simply be a Backpermute: not only does a Permute have a less-efficient
parallel implementation, it also admits less opportunities for array fusion than a Backpermute.

Benchmarks. Less related to the algorithm and more to our methodology, the benchmarking
we did to evaluate the performance of our implementation in Section 5 is very limited. Indeed, we
evaluated only one program using array-level reverse AD. To better understand how our algorithm
performs in different settings than the ones we tested, more extensive benchmarking is needed.
Furthermore, benchmarking on a GPU is missing from our experiments.

6.2 Related work

Some of the work we mention here has already been discussed in Section 2; in those cases, we
refer back to the relevant earlier subsection. This section of related work is placed at the end of
the thesis report in order to be able to compare with the method we presented here.

• Multiple potential methods exist for performing reverse AD on a higher-order functional
language. Pearlmutter and Siskind [42] describe an algorithm for doing reverse AD directly
on an untyped lambda calculus (already discussed in Section 2.2.1), while Elliott [18] and
Vákár [55] instead convert the program to a combinator-based language (Section 2.2.3),
where sharing is made explicit using duplication combinators, before performing reverse
AD there.

While all these methods are very general, they are in a sense too general for our work on
Accelerate: while an Accelerate program could theoretically be converted into the respective
input languages for any of the above approaches, the output from reverse AD would then
need to be converted back from a higher-order language to the second-order Accelerate
language. Doing this conversion in general is relatively hard, and may in some cases not even
be possible to do in a performant way. However, properties of the mentioned reverse AD
algorithms (especially that in [55]) may imply that for a suitably restricted input language,
the output can be converted to a second-order language more easily than it would be in
general; we did not pursue this avenue of research.

• In contrast to the methods mentioned in the previous point, the technique described by
Shaikhha et al. in [49] (discussed in Section 2.2.4) is defined on a functional array language
and would therefore be much more easily applicable to Accelerate. However, due to their
choice of doing a normal forward AD transformation first and subsequently optimising the
program using intelligent compiler optimisations, it is very much unclear for what languages
the result has the correct time complexity to be called reverse AD. While we have presented
no more proof that our method has the correct complexity, we do believe that a hypothetical
proof for our method can use much more local reasoning than a similar proof for the method
in [49] would.

• In [58], Wang et al. describe an algorithm for reverse AD on a functional language augmented
with mutable state, and they use a continuation-passing style (CPS) transform to eliminate
the control operators they introduce. While attractive in its relative simplicity, this method
is hard to apply to Accelerate for the same reasons as the higher-order methods above are:
even for a purely functional input program, the algorithm (including the CPS transform)

94

produces an output program that uses mutation, and mutation is very hard to simulate
in Accelerate. Traditional store-passing, as also described in [58, §3.6], uses an immutable
map to keep track of state, but Accelerate does not support such a data structure in a
reasonable way.

• There is some ongoing work to implement a reverse AD transformation for purely func-
tional array languages outside of the present project; we know of relevant work on the
Futhark language (yet unpublished) and the Dex language [32] (unpublished, but a partial
implementation is available77). At the time of writing, neither of these projects uses a fully
type-indexed AST like Accelerate does.

• Finally, there is a large body of research, and a large number of implementations, focusing
on reverse AD for imperative languages. For these, we refer to more generic surveys of AD,
for example [5, 35].

77https://github.com/google-research/dex-lang

95

https://github.com/google-research/dex-lang

Bibliography

[1] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu
Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, Manjunath Kudlur, Josh Levenberg, Rajat
Monga, Sherry Moore, Derek Gordon Murray, Benoit Steiner, Paul A. Tucker, Vijay Vasudevan,
Pete Warden, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. Tensorflow: A system for large-scale
machine learning. In Kimberly Keeton and Timothy Roscoe, editors, 12th USENIX Symposium on
Operating Systems Design and Implementation, OSDI 2016, Savannah, GA, USA, November 2-4,
2016, pages 265–283. USENIX Association, 2016.

[2] Robert Atkey, Sam Lindley, and Jeremy Yallop. Unembedding domain-specific languages. In
Stephanie Weirich, editor, Proceedings of the 2nd ACM SIGPLAN Symposium on Haskell, Haskell
2009, Edinburgh, Scotland, UK, 3 September 2009, pages 37–48. ACM, 2009.

[3] Lennart Augustsson and Kent Petersson. Silly type families. Available at https://web.cecs.pdx.
edu/~sheard/papers/silly.pdf, 09 1994.

[4] Frédéric Bastien, Pascal Lamblin, Razvan Pascanu, James Bergstra, Ian Goodfellow, Arnaud Bergeron,
Nicolas Bouchard, David Warde-Farley, and Yoshua Bengio. Theano: new features and speed
improvements. In NIPS 2012 Workshop: Deep Learning and Unsupervised Feature Learning, 2012.

[5] Atilim Gunes Baydin, Barak A. Pearlmutter, Alexey Andreyevich Radul, and Jeffrey Mark Siskind.
Automatic differentiation in machine learning: a survey. J. Mach. Learn. Res., 18:153:1–153:43, 2017.

[6] Nick Benton, Chung-Kil Hur, Andrew J Kennedy, and Conor McBride. Strongly typed term
representations in Coq. Journal of automated reasoning, 49(2):141–159, 2012.

[7] Bob Carpenter, Matthew D. Hoffman, Marcus Brubaker, Daniel D. Lee, Peter Li, and Michael
Betancourt. The Stan Math library: Reverse-mode automatic differentiation in C++. CoRR,
abs/1509.07164, 2015.

[8] Manuel M. T. Chakravarty, Gabriele Keller, Sean Lee, Trevor L. McDonell, and Vinod Grover.
Accelerating Haskell array codes with multicore GPUs. In Manuel Carro and John H. Reppy, editors,
Proceedings of the POPL 2011 Workshop on Declarative Aspects of Multicore Programming, DAMP
2011, Austin, TX, USA, January 23, 2011, pages 3–14. ACM, 2011.

[9] Siddhartha Chatterjee, Guy E. Blelloch, and Marco Zagha. Scan primitives for vector computers. In
Joanne L. Martin, Daniel V. Pryor, and Gary Montry, editors, Proceedings Supercomputing ’90, New
York, NY, USA, November 12-16, 1990, pages 666–675. IEEE Computer Society, 1990.

[10] Curtis Chin Jen Sem. Formalized correctness proofs of automatic differentiation in Coq. Master’s
Thesis, Utrecht University, 09 2020. https://dspace.library.uu.nl/handle/1874/400790; Coq
code: https://github.com/crtschin/thesis.

[11] Robert Clifton-Everest, Trevor L. McDonell, Manuel M. T. Chakravarty, and Gabriele Keller.
Streaming irregular arrays. In Iavor S. Diatchki, editor, Proceedings of the 10th ACM SIGPLAN
International Symposium on Haskell, Oxford, United Kingdom, September 7-8, 2017, pages 174–185.
ACM, 2017.

[12] Accelerate contributors. Data.Array.Accelerate (accelerate-1.3.0.0). https://hackage.haskell.
org/package/accelerate-1.3.0.0/docs/Data-Array-Accelerate.html. Accessed: 2020-11-28.

[13] Olivier Danvy and Andrzej Filinski. Abstracting control. In Proceedings of the 1990 ACM Conference
on LISP and Functional Programming, LFP 1990, Nice, France, 27-29 June 1990, pages 151–160.
ACM, 1990.

[14] Olivier Danvy and Lasse R. Nielsen. Defunctionalization at work. In Proceedings of the 3rd ACM
SIGPLAN international conference on Principles and practice of declarative programming, pages
162–174, 2001.

[15] Nicolaas G. de Bruijn. Lambda-calculus notation with nameless dummies: a tool for automatic
formula manipulation with application to the Church–Rosser theorem. Indag. Math, 34(5):381–392,
1972.

96

https://web.cecs.pdx.edu/~sheard/papers/silly.pdf
https://web.cecs.pdx.edu/~sheard/papers/silly.pdf
https://dspace.library.uu.nl/handle/1874/400790
https://github.com/crtschin/thesis
https://hackage.haskell.org/package/accelerate-1.3.0.0/docs/Data-Array-Accelerate.html
https://hackage.haskell.org/package/accelerate-1.3.0.0/docs/Data-Array-Accelerate.html

[16] Jeffrey Dean and Sanjay Ghemawat. MapReduce: Simplified data processing on large clusters.
In Eric A. Brewer and Peter Chen, editors, 6th Symposium on Operating System Design and
Implementation (OSDI 2004), San Francisco, California, USA, December 6-8, 2004, pages 137–150.
USENIX Association, 2004.

[17] Conal Elliott. Compiling to categories. Proc. ACM Program. Lang., 1(ICFP):27:1–27:27, 2017.

[18] Conal Elliott. The simple essence of automatic differentiation. Proc. ACM Program. Lang.,
2(ICFP):70:1–70:29, 2018.

[19] Cormac Flanagan, Amr Sabry, Bruce F. Duba, and Matthias Felleisen. The essence of compiling
with continuations. In Robert Cartwright, editor, Proceedings of the ACM SIGPLAN’93 Conference
on Programming Language Design and Implementation (PLDI), Albuquerque, New Mexico, USA,
June 23-25, 1993, pages 237–247. ACM, 1993.

[20] Seth Flaxman, Swapnil Mishra, Axel Gandy, H. Juliette T. Unwin, Thomas A. Mellan, Helen
Coupland, Charles Whittaker, Harrison Zhu, Tresnia Berah, Jeffrey W. Eaton, Mélodie Monod,
Azra C. Ghani, Christl A. Donnelly, Steven Riley, Michaela A. C. Vollmer, Neil M. Ferguson, Lucy C.
Okell, Samir Bhatt, and Imperial College COVID-19 Response Team. Estimating the effects of
non-pharmaceutical interventions on COVID-19 in Europe. Nature, 584(7820):257–261, 2020.

[21] Martijn Fleuren. Independently computed regions in a data parallel array language. Master’s Thesis,
Utrecht University, 01 2020. https://dspace.library.uu.nl/handle/1874/395368.

[22] Andreas Griewank, David W. Juedes, and Jean Utke. Algorithm 755: ADOL-C: A package for the
automatic differentiation of algorithms written in C/C++. ACM Trans. Math. Softw., 22(2):131–167,
1996.

[23] Laurent Hascoët, Uwe Naumann, and Valérie Pascual. “To be recorded” analysis in reverse-mode
automatic differentiation. Future Generation Computer Systems, 21(8):1401 – 1417, 2005.

[24] Laurent Hascoët and Valérie Pascual. The Tapenade automatic differentiation tool: Principles, model,
and specification. ACM Trans. Math. Softw., 39(3):20:1–20:43, 2013.

[25] Troels Henriksen. Design and Implementation of the Futhark Programming Language. PhD thesis,
University of Copenhagen, Universitetsparken 5, 2100 København, 11 2017.

[26] Matthew D. Hoffman and Andrew Gelman. The No-U-Turn sampler: adaptively setting path lengths
in Hamiltonian Monte Carlo. J. Mach. Learn. Res., 15(1):1593–1623, 2014.

[27] Robin J. Hogan. Fast reverse-mode automatic differentiation using expression templates in C++.
ACM Trans. Math. Softw., 40(4):26:1–26:16, 2014.

[28] Aaron W. Hsu. A data parallel compiler hosted on the GPU. PhD thesis, Indiana University, 11 2019.

[29] Michael Innes. Don’t unroll adjoint: Differentiating SSA-form programs. CoRR, abs/1810.07951,
2018.

[30] Alp Kucukelbir, Dustin Tran, Rajesh Ranganath, Andrew Gelman, and David M. Blei. Automatic
differentiation variational inference. J. Mach. Learn. Res., 18:14:1–14:45, 2017.

[31] Dougal Maclaurin. Modeling, Inference and Optimization with Composable Differentiable Procedures.
PhD thesis, Harvard University, 4 2016.

[32] Dougal Maclaurin, Alexey Radul, Matthew J. Johnson, and Dimitrios Vytiniotis. Dex: array
programming with typed indices. In NeurIPS 2019 Workshop Program Transformations for Machine
Learning, 2019.

[33] Frederik M. Madsen, Robert Clifton-Everest, Manuel M. T. Chakravarty, and Gabriele Keller.
Functional array streams. In Tiark Rompf and Geoffrey Mainland, editors, Proceedings of the
4th ACM SIGPLAN Workshop on Functional High-Performance Computing, FHPC@ICFP 2015,
Vancouver, BC, Canada, September 3, 2015, pages 23–34. ACM, 2015.

[34] Oleksandr Manzyuk, Barak A. Pearlmutter, Alexey Andreyevich Radul, David R. Rush, and Jef-
frey Mark Siskind. Perturbation confusion in forward automatic differentiation of higher-order
functions. J. Funct. Program., 29:e12, 2019.

97

https://dspace.library.uu.nl/handle/1874/395368

[35] Charles C. Margossian. A review of automatic differentiation and its efficient implementation. Wiley
Interdiscip. Rev. Data Min. Knowl. Discov., 9(4), 2019.

[36] Trevor L. McDonell, Manuel M. T. Chakravarty, Vinod Grover, and Ryan R. Newton. Type-safe
runtime code generation: Accelerate to LLVM. In Ben Lippmeier, editor, Proceedings of the 8th
ACM SIGPLAN Symposium on Haskell, Haskell 2015, Vancouver, BC, Canada, September 3-4, 2015,
pages 201–212. ACM, 2015.

[37] Trevor L. McDonell, Manuel M. T. Chakravarty, Gabriele Keller, and Ben Lippmeier. Optimising
purely functional GPU programs. In Greg Morrisett and Tarmo Uustalu, editors, ACM SIGPLAN
International Conference on Functional Programming, ICFP’13, Boston, MA, USA - September 25 -
27, 2013, pages 49–60. ACM, 2013.

[38] Trevor L. McDonell, Joshua D. Meredith, and Gabriele Keller. Embedded pattern matching. To be
published; personal communication, 06 2020.

[39] Uwe Naumann. Optimal Jacobian accumulation is NP-complete. Math. Program., 112(2):427–441,
2008.

[40] Radford M. Neal. MCMC using Hamiltonian dynamics, 2012.

[41] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito,
Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in PyTorch.
In NIPS 2017 Autodiff Workshop: The future of gradient-based machine learning software and
techniques, 2017.

[42] Barak A. Pearlmutter and Jeffrey Mark Siskind. Reverse-mode AD in a functional framework:
Lambda the ultimate backpropagator. ACM Trans. Program. Lang. Syst., 30(2):7:1–7:36, 2008.

[43] Frank Pfenning and Conal Elliott. Higher-order abstract syntax. In Richard L. Wexelblat, editor, Pro-
ceedings of the ACM SIGPLAN’88 Conference on Programming Language Design and Implementation
(PLDI), Atlanta, Georgia, USA, June 22-24, 1988, pages 199–208. ACM, 1988.

[44] Matthew Pickering, Gergő Érdi, Simon Peyton Jones, and Richard A. Eisenberg. Pattern synonyms.
In Geoffrey Mainland, editor, Proceedings of the 9th International Symposium on Haskell, Haskell
2016, Nara, Japan, September 22-23, 2016, pages 80–91. ACM, 2016.

[45] John C. Reynolds. The discoveries of continuations. LISP Symb. Comput., 6(3-4):233–248, 1993.

[46] John C. Reynolds. Definitional interpreters for higher-order programming languages. High. Order
Symb. Comput., 11(4):363–397, 1998.

[47] Andreas Schäfer and Dietmar Fey. High performance stencil code algorithms for GPGPUs. In
Mitsuhisa Sato, Satoshi Matsuoka, Peter M. A. Sloot, G. Dick van Albada, and Jack J. Dongarra,
editors, Proceedings of the International Conference on Computational Science, ICCS 2011, Nanyang
Technological University, Singapore, 1-3 June, 2011, volume 4 of Procedia Computer Science, pages
2027–2036. Elsevier, 2011.

[48] Shubhabrata Sengupta, Mark J. Harris, Yao Zhang, and John D. Owens. Scan primitives
for GPU computing. In Mark Segal and Timo Aila, editors, Proceedings of the ACM SIG-
GRAPH/EUROGRAPHICS Conference on Graphics Hardware 2007, San Diego, California, USA,
August 4-5, 2007, pages 97–106. Eurographics Association, 2007.

[49] Amir Shaikhha, Andrew Fitzgibbon, Dimitrios Vytiniotis, and Simon Peyton Jones. Efficient
differentiable programming in a functional array-processing language. Proc. ACM Program. Lang.,
3(ICFP):97:1–97:30, 2019.

[50] Jeffrey Mark Siskind and Barak A. Pearlmutter. Divide-and-conquer checkpointing for arbitrary
programs with no user annotation. Optimization Methods and Software, 33(4-6):1288–1330, 2018.

[51] Filip Šrajer, Zuzana Kukelova, and Andrew W. Fitzgibbon. A benchmark of selected algorithmic
differentiation tools on some problems in computer vision and machine learning. Optimization
Methods and Software, 33(4-6):889–906, 2018.

[52] Michel Steuwer, Toomas Remmelg, and Christophe Dubach. Lift: a functional data-parallel IR for
high-performance GPU code generation. In Vijay Janapa Reddi, Aaron Smith, and Lingjia Tang,

98

editors, Proceedings of the 2017 International Symposium on Code Generation and Optimization,
CGO 2017, Austin, TX, USA, February 4-8, 2017, pages 74–85. ACM, 2017.

[53] Bo Joel Svensson and Josef Svenningsson. Defunctionalizing push arrays. In Jost Berthold, Mary
Sheeran, and Ryan Newton, editors, Proceedings of the 3rd ACM SIGPLAN workshop on Functional
high-performance computing, FHPC@ICFP 2014, Gothenburg, Sweden, September 4, 2014, pages
43–52. ACM, 2014.

[54] Wouter Swierstra. Heterogeneous binary random-access lists. J. Funct. Program., 30:e10, 2020.

[55] Matthijs Vákár. Reverse AD at higher types: Pure, principled and denotationally correct. In
Proc. ESOP 2021. Springer, 2021. To appear.

[56] Dimitrios Vytiniotis, Stephanie Weirich, and Simon Peyton Jones. Simple unification-based type
inference for GADTs. In International Conference on Functional Programming (ICFP’06). ACM
SIGPLAN, 04 2006. 2016 ACM SIGPLAN Most Influential ICFP Paper Award.

[57] Philip Wadler. Theorems for free! In Joseph E. Stoy, editor, Proceedings of the fourth international
conference on Functional programming languages and computer architecture, FPCA 1989, London,
UK, September 11-13, 1989, pages 347–359. ACM, 1989.

[58] Fei Wang, Daniel Zheng, James M. Decker, Xilun Wu, Grégory M. Essertel, and Tiark Rompf.
Demystifying differentiable programming: shift/reset the penultimate backpropagator. Proc. ACM
Program. Lang., 3(ICFP):96:1–96:31, 2019.

99

A Unit test programs

For the notation used in this (multi-page) table, see Section 4.3.1. (* means finite differencing
yields inaccuracies due to discontinuity of (the derivative of) the test program.)

N
am

e
In

p
u
ts

P
ro

gr
am

ac
on

d_
0

∀a
V

su
m

(a
co

nd
(t

he
(s

um
a)

>
0)

a
(m

ap
(*

2)
a)

)

ac
on

d_
0a

∀a
V

su
m

(a
co

nd
(t

he
(s

um
a)

>
0)

(m
ap

(*
2)

a)
a)

ac
on

d_
1

∀a
V

le
t

b
=

ma
p

(*
2)

a
T2

a1
_

=
ac

on
d

(t
he

(s
um

a)
>

0)
(T

2
a

b)
(T

2
b

a)
in

su
m

(m
ap

(\
x

->
x

*
to

Fl
oa

ti
ng

(i
nd

ex
He

ad
(s

ha
pe

a1
))

)
b)

*a
co

nd
_2

a
∀a

V

le
t

b
=

ma
p

(2
*)

a
y

=
ac

on
d

(t
he

(s
um

a)
<=

2)
(m

ap
(+

1)
b)

(m
ap

(s
ub

tr
ac

t
1)

(m
ap

(2
*)

b)
)

in
su

m
(z

ip
Wi

th
(*

)
b

y)

ac
on

d_
2a

_f
ri

en
dl

y
∀a

V
| |
∑ v
−

2
|>

0
.1

le
t

b
=

ma
p

(2
*)

a
y

=
ac

on
d

(t
he

(s
um

a)
<=

2)
(m

ap
(+

1)
b)

(m
ap

(s
ub

tr
ac

t
1)

(m
ap

(2
*)

b)
)

in
su

m
(z

ip
Wi

th
(*

)
b

y)

*a
co

nd
_2

b
∀a

V

le
t

b
=

ma
p

(2
*)

a
y

=
ac

on
d

(t
he

(s
um

a)
<=

2)
(m

ap
(+

1)
b)

(m
ap

(s
ub

tr
ac

t
1)

(m
ap

(2
*)

b)
)

in
su

m
(z

ip
Wi

th
(*

)
y

b)

ac
on

d_
2b

_f
ri

en
dl

y
∀a

V
| |
∑ v
−

2
|>

0
.1

le
t

b
=

ma
p

(2
*)

a
y

=
ac

on
d

(t
he

(s
um

a)
<=

2)
(m

ap
(+

1)
b)

(m
ap

(s
ub

tr
ac

t
1)

(m
ap

(2
*)

b)
)

in
su

m
(z

ip
Wi

th
(*

)
y

b)
ac

on
d_

3a
∀a

V
su

m
(a

co
nd

(c
on

st
an

t
Tr

ue
)

(g
en

er
at

e
(I

1
1)

(\
_

->
42

))
a)

ac
on

d_
3b

∀a
V

le
t

I1
n

=
sh

ap
e

a
in

ac
on

d
(n

>=
0)

(g
en

er
at

e
I0

(\
_

->
42

))
(z

ip
Wi

th
(+

)
(s

um
(m

ap
(*

2)
a)

)
(s

um
(m

ap
(+

3)
a)

))
ma

p
∀a

V
su

m
(m

ap
(*

3)
a)

zi
pW

it
h

∀a
V bV

su
m

(z
ip

Wi
th

(\
x

y
->

si
n

x
*

co
s

(x
+

y)
)

a
b)

fo
ld

_1
∀a

V
fo

ld
(*

)
1

a

fo
ld

_2
∀a

V
fo

ld
ma

x
3

a

*f
ol

d_
3

∀a
V

fo
ld

(\
x

y
->

le
t

ab
s'

v
=

co
nd

(v
<

0)
(-

v)
v

in
ab

s'
x

+
ab

s'
y)

0
a

fo
ld

_3
_f

ri
en

dl
y

∀a
V
| a

ll
N
o
n
Z
e
r
o
(
v
)

fo
ld

(\
x

y
->

le
t

ab
s'

v
=

co
nd

(v
<

0)
(-

v)
v

in
ab

s'
x

+
ab

s'
y)

0
a

fo
ld

1_
1

∀a
V

fo
ld

1
(*

)
a

*f
ol

d1
_2

∀a
V

fo
ld

1
ma

x
a

fo
ld

1_
2_

fr
ie

nd
ly

∀a
V
| u

n
iq

u
e
M

a
x
(
v
)

fo
ld

1
ma

x
a

re
pl

ic
at

e_
1

∀a
V

pr
od

uc
t

.
su

m
.

ma
p

(*
2)

.
re

pl
ic

at
e

(I
2

(c
on

st
an

t
Al

l)
(5

::
Ex

p
In

t)
)

.
ma

p
(\

x
->

x
*

x
+

x)
$

a

re
pl

ic
at

e_
2

∀a
V

fo
ld

1A
ll

(+
)

.
ma

p
(/

20
)

.
re

pl
ic

at
e

(I
2

(5
::

Ex
p

In
t)

(c
on

st
an

t
Al

l)
)

.
ma

p
(\

x
->

x
*

x
+

x)
$

a

re
pl

ic
at

e_
3

∀a
V

fo
ld

1A
ll

(+
)

.
ma

p
(*

2)
.

re
pl

ic
at

e
(I

4
(c

on
st

an
t

Al
l)

(5
::

Ex
p

In
t)

(c
on

st
an

t
Al

l)
(3

::
Ex

p
In

t)
)

.
ma

p
(\

x
->

x
*

x
+

x)
.

re
pl

ic
at

e
(I

2
(c

on
st

an
t

Al
l)

(2
::

Ex
p

In
t)

)
$

a

100

N
am

e
In

p
u
ts

P
ro

gr
am

re
pl

ic
at

e_
4

∀a
V

fo
ld

1A
ll

(+
)

.
ma

p
(*

2)
.

re
pl

ic
at

e
(I

4
(5

::
Ex

p
In

t)
(c

on
st

an
t

Al
l)

(3
::

Ex
p

In
t)

(c
on

st
an

t
Al

l)
)

.
ma

p
(\

x
->

x
*

x
+

x)
.

re
pl

ic
at

e
(I

2
(c

on
st

an
t

Al
l)

(2
::

Ex
p

In
t)

)
$

a

sl
ic

e_
1

∀a
V

le
t

I1
n

=
sh

ap
e

a
m

=
n

`d
iv

`
4

+
3

a1
=

re
pl

ic
at

e
(I

3
m

m
(c

on
st

an
t

Al
l)

)
a

in
su

m
(s

li
ce

a1
(I

3
(2

::
Ex

p
In

t)
(1

::
Ex

p
In

t)
(c

on
st

an
t

Al
l)

))

sl
ic

e_
2

∀p
1[

0
..
6
1
]

p2
[0
..
6
1
]

aV

le
t

I1
n

=
sh

ap
e

a
a1

=
ba

ck
pe

rm
ut

e
(I

3
n

n
(n

+1
))

(\
(I

3
i

j
k)

->
I1

((
i

+
j

+
k)

`m
od

`
n)

)
a

in
su

m
(s

li
ce

a1
(I

3
(c

on
st

an
t

p1
`m

od
`

n)
(c

on
st

an
t

p2
`m

od
`

n)
(c

on
st

an
t

Al
l)

))

re
sh

ap
e_

1
∀a

V
| e

v
e
n
(
#

v
)

le
t

I1
n

=
sh

ap
e

a
b

=
re

sh
ap

e
(I

2
2

(n
`d

iv
`

2)
)

a
in

pr
od

uc
t

(s
um

b)

re
sh

ap
e_

2
∀a

V
| e

v
e
n
(
#

v
)

le
t

I1
n

=
sh

ap
e

a
b

=
re

sh
ap

e
(I

2
(2

::
Ex

p
In

t)
(n

`d
iv

`
2)

)
a

c
=

re
sh

ap
e

(I
2

n
1)

b
in

su
m

(p
ro

du
ct

c)

ba
ck

pe
rm

ut
e_

1
∀m

[5
..
1
5
]

aV
| #

v
>

0

le
t

I1
n

=
sh

ap
e

a
b

=
ba

ck
pe

rm
ut

e
(I

2
(c

on
st

an
t

m)
(2

*
co

ns
ta

nt
m)

)
(\

(I
2

i
j)

->
I1

((
i

+
j)

`m
od

`
n)

)
a

in
fo

ld
1A

ll
(+

)
b

ba
ck

pe
rm

ut
e_

2
∀m

[5
..
1
5
]

aV
| #

v
>

0

le
t

I1
n

=
sh

ap
e

a
b

=
ba

ck
pe

rm
ut

e
(I

2
(c

on
st

an
t

m)
(2

*
co

ns
ta

nt
m)

)
(\

(I
2

i
j)

->
I1

((
i

+
j)

`m
od

`
n)

)
a

c
=

su
m

b
d

=
ba

ck
pe

rm
ut

e
(I

3
(2

::
Ex

p
In

t)
(3

::
Ex

p
In

t)
(c

on
st

an
t

m)
)

(\
(I

3
_

i
j)

->
I1

(m
in

(c
on

st
an

t
m

-
1)

(i
*

j)
))

c
e

=
ma

p
(/

2)
d

f
=

sl
ic

e
e

(I
3

(c
on

st
an

t
Al

l)
(c

on
st

an
t

Al
l)

(2
::

Ex
p

In
t)

)
in

fo
ld

1A
ll

(+
)

f

ai
nd

ex
_g

en
er

at
e_

1
∀a

V

le
t

I1
n

=
sh

ap
e

a
in

su
m

(g
en

er
at

e
(I

1
(n

`d
iv

`
2)

)
(\

(I
1

i)
->

a
!

I1
(2

*
i)

))

ai
nd

ex
_g

en
er

at
e_

2
∀a

V

le
t

I1
n

=
sh

ap
e

a
in

su
m

(g
en

er
at

e
(I

1
(2

*
n)

)
(\

(I
1

i)
->

a
!

I1
(i

`d
iv

`
2)

+
a

!
I1

(m
in

(i
`m

od
`

2)
(n

-
1)

))
)

ai
nd

ex
_g

en
er

at
e_

3
∀a

V

le
t

I1
n

=
sh

ap
e

a
in

su
m

(g
en

er
at

e
(I

1
(2

*
n)

)
(\

(I
1

i)
->

co
nd

(i
<

5)
(a

!
I1

(i
`d

iv
`

2)
)

42
))

ai
nd

ex
_g

en
er

at
e_

4
∀a

V

le
t

I1
n

=
sh

ap
e

a
in

su
m

(g
en

er
at

e
(I

1
(2

*
n)

)
(\

(I
1

i)
->

co
nd

(i
<

n)
(a

!
I1

i)
(a

!
I1

(i
-

n)
))

)
ai

nd
ex

_m
ap

_1
∀a

V
| #

v
≥

3
su

m
(m

ap
(\

x
->

x
+

a
!

I1
2)

a)

101

N
am

e
In

p
u
ts

P
ro

gr
am

*a
in

de
x_

ma
p_

2
∀a

V
le

t
I1

n
=

sh
ap

e
a

in
su

m
(m

ap
(\

x
->

x
+

a
!

I1
(a

bs
(r

ou
nd

x)
`m

od
`

n)
)

a)
ai

nd
ex

_m
ap

_2
_f

ri
en

dl
y

∀a
V
| a

ll
N
ic

e
R
o
u
n
d
(
v
)

le
t

I1
n

=
sh

ap
e

a
in

su
m

(m
ap

(\
x

->
x

+
a

!
I1

(a
bs

(r
ou

nd
x)

`m
od

`
n)

)
a)

*a
in

de
x_

ma
p_

3
∀a

V

le
t

I1
n

=
sh

ap
e

a
b

=
fo

ld
ma

x
(-

20
)

(b
ac

kp
er

mu
te

(I
2

n
n)

(\
(I

2
i

j)
->

I1
(i

.&
.

j)
)

a)
in

su
m

(m
ap

(\
x

->
x

*
b

!
I1

(a
bs

(r
ou

nd
x)

`m
od

`
n)

)
a)

*a
in

de
x_

ma
p_

4
∀a

V

le
t

I1
n

=
sh

ap
e

a
b

=
su

m
(b

ac
kp

er
mu

te
(I

2
n

n)
(\

(I
2

i
j)

->
I1

(m
in

(i
`x

or
`

j)
(n

-1
))

)
a)

in
su

m
(m

ap
(\

x
->

x
*

a
!

I1
(a

bs
(r

ou
nd

x)
`m

od
`

n)
)

b)

*a
in

de
x_

ac
on

d
∀a

V

le
t

I1
n

=
sh

ap
e

a
s

=
ro

un
d

(t
he

(s
um

a)
)

in
su

m
(a

co
nd

(0
<=

s
&&

s
<

n)
(g

en
er

at
e

(I
1

1)
(\

(I
1

_)
->

a
!

I1
s)

)
(g

en
er

at
e

(I
1

1)
(\

(I
1

_)
->

0)
))

ai
nd

ex
_o

nl
y

∀a
V

le
t

I1
n

=
sh

ap
e

a
in

su
m

(g
en

er
at

e
(I

1
5)

(\
(I

1
i)

->
a

!
I1

(i
`m

od
`

n)
))

a_
ig

no
re

_a
rg

um
en

t
∀a

V
ge

ne
ra

te
I0

(\
_

->
42

.0
)

*n
on

fl
oa

t_
la

m
∀a

V
le

t
b

=
ma

p
(\

x
->

T2
(r

ou
nd

x
::

Ex
p

In
t)

(s
in

x)
)

a
in

su
m

(m
ap

(\
(T

2
i

x)
->

to
Fl

oa
ti

ng
i

*
x)

b)

no
nf

lo
at

_l
am

_f
ri

en
dl

y
∀a

V
| a

ll
N
ic

e
R
o
u
n
d
(
v
)

le
t

b
=

ma
p

(\
x

->
T2

(r
ou

nd
x

::
Ex

p
In

t)
(s

in
x)

)
a

in
su

m
(m

ap
(\

(T
2

i
x)

->
to

Fl
oa

ti
ng

i
*

x)
b)

lo
gs

um
ex

p1
∀a

V

le
t

I1
n

=
sh

ap
e

a
ma

xx
=

ma
xi

mu
m

a
sh

if
te

dx
=

zi
pW

it
h

(-
)

a
(r

ep
li

ca
te

(l
if

t
An

y
::

.
n)

ma
xx

)
in

zi
pW

it
h

(+
)

(m
ap

lo
g

(s
um

(m
ap

ex
p

sh
if

te
dx

))
)

ma
xx

*l
og

su
me

xp
2

∀a
V

le
t

I1
n

=
sh

ap
e

a
ma

xx
=

ma
xi

mu
m

a
sh

if
te

dx
=

zi
pW

it
h

(-
)

a
(r

ep
li

ca
te

(l
if

t
An

y
::

.
n)

ma
xx

)
in

ma
p

lo
g

(s
um

(m
ap

ex
p

sh
if

te
dx

))

*l
og

su
me

xp
3

∀a
V

le
t

ma
xx

=
ma

xi
mu

m
a

in
zi

pW
it

h
(+

)
ma

xx
ma

xx

tu
pl

e1
∀a

V

le
t

T2
b

_
=

T2
(m

ap
(*

2)
a)

(m
ap

(+
3)

a)
T3

a1
a2

a3
=

T3
(z

ip
Wi

th
(\

x
y

->
si

n
x

*
y)

b
a)

a
b

in
ma

p
(+

5)
(s

um
(z

ip
Wi

th
(\

(T
2

x
y)

z
->

x
+

y
*

z)
(z

ip
a1

a2
)

a3
))

*t
up

le
2

∀a
V bV

le
t

T2
a1

a2
=

T2
b

(z
ip

Wi
th

(*
)

a
b)

T2
b1

b2
=

T2
(z

ip
Wi

th
(+

)
a2

b)
a1

T2
c1

c2
=

T2
b2

(z
ip

Wi
th

(+
)

a1
b2

)
T2

d1
d2

=
T2

(s
um

c2
)

(s
um

b1
)

in
zi

pW
it

h
(\

x
(T

2
y

z)
->

lo
g

(y
*

z)
+

x)
d1

(z
ip

d2
(s

um
c1

))

102

N
am

e
In

p
u
ts

P
ro

gr
am

tu
pl

e3
∀a

V
| #

v
>

0

bV
| #

v
>

0

le
t

tu
pa

@(
T2

a1
a2

)
=

ac
on

d
(l

et
I1

n
=

sh
ap

e
a

in
n

`m
od

`
3

==
0)

(T
2

(r
ep

li
ca

te
(I

2
(c

on
st

an
t

Al
l)

(3
::

Ex
p

In
t)

)
b)

a)
(T

2
(g

en
er

at
e

(I
2

1
2)

(\
(I

2
i

j)
->

to
Fl

oa
ti

ng
(i

+
j)

))
b)

T2
b1

b2
=

ac
on

d
(l

et
I2

n
_

=
sh

ap
e

a1
in

co
nd

(n
>

0)
(a

1
!

I2
0

1)
42

>
0)

tu
pa

(T
2

(b
ac

kp
er

mu
te

(I
2

4
4)

(\
(I

2
i

j)
->

le
t

I1
n

=
sh

ap
e

a2
in

I1
(i

*
j

`m
od

`
n)

)
a2

)
(s

li
ce

a1
(I

2
(c

on
st

an
t

Al
l)

(0
::

Ex
p

In
t)

))
)

in
su

m
(z

ip
Wi

th
(+

)
b2

(s
um

b1
))

tu
pl

e4
∀a

V bV

le
t

T2
(T

4
a1

s1
(T

3
s2

a2
_)

s3
)

a3
=

T2
(T

4
b

(s
um

a)
(T

3
(s

um
b)

a
(l

if
t

()
))

(s
um

a)
)

b
in

zi
pW

it
h

(+
)

(z
ip

Wi
th

(*
)

s1
(s

um
a3

))
(z

ip
Wi

th
(*

)
(z

ip
Wi

th
(+

)
(z

ip
Wi

th
(*

)
(s

um
a1

)
(p

ro
du

ct
a2

))
s2

)
s3

)

ne
ur

al

∀l
en

1[
1
..
1
5
]

le
n2

[1
..
1
5
]

in
pu

tV
| #

v
>

0

we
ig

ht
da

ta
V
| #

v
≥

3

le
t

pi
ck

We
ig

ht
s

::
(S

ha
pe

sh
,

El
t

a)
=>

In
t

->
Ex

p
sh

->
(E

xp
sh

->
Ex

p
DI

M2
)

->
Ac

c
(V

ec
to

r
a)

->
Ac

c
(A

rr
ay

sh
a)

pi
ck

We
ig

ht
s

se
ed

si
ze

f
ar

r
=

le
t

I1
n

=
sh

ap
e

ar
r

in
ba

ck
pe

rm
ut

e
si

ze
(\

id
x

->
le

t
I2

i
j

=
f

id
x

in
I1

((
i

+
j

+
j

*
j

*
co

ns
ta

nt
se

ed
)

^
(1

+
se

ed
)

`m
od

`
n)

)
ar

r
mv

mu
l

ma
t

v
=

le
t

I2
m

_
=

sh
ap

e
ma

t
in

su
m

(z
ip

Wi
th

(*
)

ma
t

(r
ep

li
ca

te
(I

2
m

(c
on

st
an

t
Al

l)
)

v)
)

do
tp

v1
v2

=
su

m
(z

ip
Wi

th
(*

)
v1

v2
)

si
gm

oi
d

v
=

ma
p

(\
x

->
1

/
(1

+
ex

p
(-

x)
))

v
I1

in
le

n
=

sh
ap

e
in

pu
t

w1
=

pi
ck

We
ig

ht
s

1
(I

2
(c

on
st

an
t

le
n1

)
in

le
n)

id
we

ig
ht

da
ta

w2
=

pi
ck

We
ig

ht
s

2
(I

2
(c

on
st

an
t

le
n2

)
(c

on
st

an
t

le
n1

))
id

we
ig

ht
da

ta
w3

=
pi

ck
We

ig
ht

s
3

(I
1

(c
on

st
an

t
le

n2
))

(\
(I

1
i)

->
I2

0
i)

we
ig

ht
da

ta
in

si
gm

oi
d

(d
ot

p
w3

(s
ig

mo
id

(m
vm

ul
w2

(s
ig

mo
id

(m
vm

ul
w1

in
pu

t)
))

))

*a
co

nd
_c

on
d1

∀a
V
| #

v
>

0

le
t

b
=

ma
p

(*
2)

a
I1

n
=

sh
ap

e
a

si
gm

oi
d

x
=

1
/

(1
+

ex
p

(-
x)

)
--

id
x

is
in

[0
,

2
*

n)
id

x
=

fl
oo

r
(s

ig
mo

id
(t

he
(s

um
a)

)
*

(t
oF

lo
at

in
g

(2
*

n)
-

0.
01

))
::

Ex
p

In
t

in
--

Th
is

ex
ec

ut
es

an
ou

t-
of

-b
ou

nd
s

ar
ra

y
in

de
x

if
on

e
of

th
e

co
nd

it
io

ns
is

wr
on

gl
y

ev
al

ua
te

d.
su

m
(a

co
nd

(i
dx

<
n)

(g
en

er
at

e
(I

1
(2

*
n)

)
(\

(I
1

i)
->

co
nd

(i
<=

id
x)

(a
!

I1
i)

(b
!

I1
((

i
-

id
x)

`d
iv

`
2)

))
)

(g
en

er
at

e
(I

1
(2

*
n)

)
(\

(I
1

i)
->

a
!

I1
(i

dx
-

n)
+

co
nd

(i
>=

n)
(b

!
I1

(i
-

n)
)

(a
!

I1
i)

))
)

103

N
am

e
In

p
u
ts

P
ro

gr
am

*c
on

d_
0

∀a
V

su
m

(m
ap

(\
x

->
co

nd
(x

>
0)

x
(2

*
x)

)
v)

co
nd

_0
_f

ri
en

dl
y

∀a
V
| a

ll
N
o
n
Z
e
r
o
(
v
)

su
m

(m
ap

(\
x

->
co

nd
(x

>
0)

x
(2

*
x)

)
v)

co
nd

_1
∀a

V
su

m
(m

ap
(\

x
->

2
*

co
nd

(x
>

0)
(s

in
(x

*
x)

)
(x

*
x

*
ex

p
x)

)
a)

--
de

ri
va

ti
ve

co
nt

in
uo

us
at

0

co
nd

_2
∀a

V

le
t

fn
x

=
le

t
fm

od
u

v
=

u
-

to
Fl

oa
ti

ng
(f

lo
or

(u
/

v)
::

Ex
p

In
t)

*
v

y
=

co
nd

(x
`f

mo
d`

(2
*

pi
)

<
pi

)
--

de
ri

va
ti

ve
co

nt
in

uo
us

at
al

l
sw

it
ch

in
g

po
in

ts
(s

in
x)

(p
i

/
12

*
((

2
-

2
/

pi
*

(x
-

pi
/

2)
`f

mo
d`

(2
*

pi
))

^^
(6

::
In

t)
-

1)
)

in
y

*
y

in
su

m
(m

ap
fn

a)
*c

on
d_

3a
∀a

V
su

m
(m

ap
(\

x
->

le
t

u
=

2
*

x
;

v
=

co
nd

(x
<=

2)
(u

+
1)

(2
*

u
-

1)
in

u
*

v)
a)

*c
on

d_
3b

∀a
V

su
m

(m
ap

(\
x

->
le

t
u

=
2

*
x

;
v

=
co

nd
(x

<=
2)

(u
+

1)
(2

*
u

-
1)

in
v

*
u)

a)

*c
on

d_
4

∀a
V

le
t

fn
x

=
le

t
u

=
co

nd
(x

>=
1)

(l
og

x
+

1)
--

co
nt

in
uo

us
(c

on
d

(x
-

2
<

-3
)

(e
xp

(x
+

1)
-

2)
x)

y
=

2
*

ex
p

u
in

u
*

co
nd

(u
<

(-
1)

)
(u

+
y)

y
--

no
t

co
nt

in
uo

us
in

su
m

(m
ap

fn
a)

ig
no

re
_a

rg
um

en
t

∀a
V

su
m

(m
ap

(\
_

->
42

.0
)

a)

104

B ADBench task definitions

B.1 GMM: Gaussian Mixture Model fitting

Given:

• N,D,K ∈ Z>0

• α = (α1, . . . , αK) ∈ RK

• M = (µ1, . . . ,µK) ∈ RK×D

• Q = (q1, . . . , qK) ∈ RK×D

• L = (`1, . . . , `K) ∈ RK×
D(D−1)

2

• X = (x1, . . . ,xN) ∈ RN×D

• γ ∈ R, m ∈ Z

Objective function: (highlighted are scalar values independent of varying parameters)

L(α,M ,Q,L) =− 1
2ND log(2π)

+
N∑
i=1

logsumexp

([
αk + sum(qk)− 1

2 ‖Q(qk, `k)(xi − µk)‖2
]K
k=1

)
− N · logsumexp(α)

+
K∑
k=1

(
1
2γ

2
(
‖exp(qk)‖2 + ‖lk‖2

)
− m · sum(qk)

)
− K ·

(
n′D

(
log(γ)− 1

2 log(2)
)
− log MultiGamma

(
1
2n
′, D
))

where n′ = D +m+ 1, and logsumexp(x : Rn) = log(sum(exp(x−max(x)))) + max(x), and:

Q(q, `) =

exp(q1) 0 · · · 0
`1 exp(q2) · · · 0
...

...
. . .

...
`D−1 `D−1+D−2 · · · exp(qD)

and log MultiGamma is SciPy’s scipy.special.multigammaln78, which can be defined by:

log MultiGamma(a, d) = log

(
πd(d−1)/4

d∏
i=1

Γ(a− (i− 1)/2)

)

= 1
4d(d− 1) log(π) +

d∑
i=1

log Γ(a− (i− 1)/2)

and log Γ is generally implemented in lgamma for real arguments.

The task is to compute the gradient of L with respect to its four arguments.

78https://github.com/scipy/scipy/blob/7a7843bc1b54968ee99796333743c73608c0638d/scipy/special/
spfun_stats.py

105

https://github.com/scipy/scipy/blob/7a7843bc1b54968ee99796333743c73608c0638d/scipy/special/spfun_stats.py
https://github.com/scipy/scipy/blob/7a7843bc1b54968ee99796333743c73608c0638d/scipy/special/spfun_stats.py

B.2 BA: Bundle Adjustment

Input from file:

• N,M,P ∈ Z>0

• onecam ∈ R11; onept ∈ R3; w ∈ R; feat ∈ R2

Precompute the following:

• C ∈ Rn×11 ; C[i][..] = onecam

• X ∈ Rm×3 ; X[i][..] = onept

• w ∈ Rp ; w[i] = w

• F ∈ Rp×2 ; F [i][..] = feat

• obs ∈ Rp×2 ; obs[i] = [((i− 1) mod N) + 1, ((i− 1) mod M) + 1]

Define the following functions:

rodriguez(
3
r,

3
x) = let θ = ‖r‖,v = r/‖r‖

in x cos θ + (v × x) sin θ + v(v · x)(1− cos θ) ∈ R3

rodriguez(
3
r = [0, 0, 0],

3
x) = x+ (r × x)

p2e(
3
x) = [x1/x3, x2/x3] ∈ R2

distort(
2
κ,

2
u) = u(1 + κ1‖u‖2 + κ2‖u‖4) ∈ R2

project(
3
r,

3
c,

1
f,

2
x0,

2
κ,

3
x) = distort(κ,p2e(rodriguez(r,x− c)))f + x0 ∈ R2

reprojerr(
3
r,

3
c,

1
f,

2
x0,

2
κ,

3
x,

1
w,

2
m) = w(project(r, c, f,x0,κ,x)−m) ∈ R2

werr(
1
w) = 1− w2 ∈ R

(Note that ‘reprojerr’ is negated as compared to [51]; the existing implementations use the version
as written here, which we copy so that we compare implementations of the same problem.)

Objective function (as function of C,X,w):

reproj error ∈ Rp×2;
reproj error[i][..] = let c = C[obs[i][1]],x = X[obs[i][2]]

in reprojerr(c[1..3], c[4..6], c[7], c[8..9], c[10..11],x,w[i],F [i])

w error ∈ Rp; w error[i] = werr(w[i])

Jacobian matrix:

J ∈ R(2p+p)×(11n+3m+p); J [i][j] =
∂((reproj error) ++ w error)i
∂((C) ++ (X) ++w)j

where (M) means to flatten the matrix M in row-major order. For example, (C) ∈ R11n

contains n blocks of 11 scalars. This Jacobian is sparse, and to be represented in CSR format,
where only entries that are statically known to be zero are omitted. Figure 4 shows a diagram of
the sparsity pattern.

The task is to compute the Jacobian matrix J in CSR format.

106

C ADBench task implementations

C.1 GMM: Gaussian Mixture Model fitting
1 {- # LANGUAGE DeriveGeneric, FlexibleContexts, PatternSynonyms, TypeOperators, ViewPatterns # -}
2

3 import Prelude ()
4 import Data.Array.Accelerate
5

6 type FLT = Float
7

8 -- First some data definitions. For each structure, we define the Haskell
9 -- datatype, and derive an instance of Arrays (or Elt for scalar-level

10 -- structures) to make them useable in the Accelerate EDSL. The pattern
11 -- synonyms are for convenience lifting/unlifting.
12

13 data GMMIn =
14 GMMIn_ { gmmInAlphas :: !(Vector FLT) -- [k]
15 , gmmInMeans :: !(Matrix FLT) -- [k][d]
16 , gmmInICF :: !(Matrix FLT) -- [k][d + 1/2 d(d-1)]: d q's, then l's
17 , gmmInX :: !(Matrix FLT) -- [n][d]
18 , gmmInWisGamma :: !(Scalar FLT)
19 , gmmInWisM :: !(Scalar Int)
20 }
21 deriving (Generic)
22

23 deriving instance Show GMMIn
24 instance Arrays GMMIn
25

26 pattern GMMIn :: Acc (Vector FLT) -> Acc (Matrix FLT) -> Acc (Matrix FLT)
27 -> Acc (Matrix FLT) -> Acc (Scalar FLT) -> Acc (Scalar Int) -> Acc GMMIn
28 pattern GMMIn a mu i x g m = Pattern (a, mu, i, x, g, m)
29 {- # COMPLETE GMMIn # -}
30

31 data GMMOut =
32 GMMOut_ { gmmOutAlphas :: !(Vector FLT) -- [k]
33 , gmmOutMeans :: !(Matrix FLT) -- [k][d]
34 , gmmOutICF :: !(Matrix FLT) -- [k][d + 1/2 d(d-1)]: d q's, then l's
35 }
36 deriving (Generic)
37

38 deriving instance Show GMMOut
39 instance Arrays GMMOut
40

41 pattern GMMOut :: Acc (Vector FLT) -> Acc (Matrix FLT) -> Acc (Matrix FLT) -> Acc GMMOut
42 pattern GMMOut a mu i = Pattern (a, mu, i)
43 {- # COMPLETE GMMOut # -}
44

45 -- This structure contains the two nontrivial precomputed values.
46 data Precomputed =
47 Precomputed_ FLT -- ^ 1/2 N D log(2 pi)
48 FLT -- ^ K (n' D (log gamma - 1/2 log(2)) - multigammaln(1/2 n', D))
49 deriving (Show, Generic)
50

51 instance Elt Precomputed
52

53 pattern Precomputed :: Exp FLT -> Exp FLT -> Exp Precomputed
54 pattern Precomputed c1 c2 = Pattern (c1, c2)
55 {- # COMPLETE Precomputed # -}
56

57 cAll :: Exp All
58 cAll = constant All
59

60 -- We elide the actual out-of-Accelerate precomputation.
61 precompute :: GMMIn -> Precomputed
62 precompute input = {- elided -}
63

64 logsumexp :: (Ord e, Floating e, Shape sh) => Acc (Array (sh :. Int) e) -> Acc (Array sh e)
65 logsumexp x =
66 let len = indexHead (shape x)
67 maxx = maximum x
68 shiftedx = zipWith (-) x (replicate (lift Any ::. len) maxx)
69 in zipWith (+) (map log (sum (map exp shiftedx))) maxx

107

70

71 sqsum :: (Num a, Shape sh) => Acc (Array (sh :. Int) a) -> Acc (Array sh a)
72 sqsum = sum . map (\x -> x * x)
73

74 -- The second term of L.
75 logWishartPrior :: Exp Int
76 -> Acc (Matrix FLT) -> Acc (Vector FLT) -> Acc (Matrix FLT)
77 -> Acc (Scalar FLT) -> Acc (Scalar Int)
78 -> Exp Precomputed
79 -> Acc (Scalar FLT)
80 logWishartPrior k qdiags sumQs lvals wisGamma wisM (Precomputed _ c2) =
81 let res1 = sum $
82 zipWith (-)
83 (zipWith (*) (zipWith (+) (sqsum qdiags) (sqsum lvals))
84 (replicate (I1 k) (map (\x -> 0.5 * x * x) wisGamma)))
85 (zipWith (*) sumQs (replicate (I1 k) (map fromIntegral wisM)))
86 in map (subtract c2) res1
87

88 -- The full objective function. This does not yet include anything specific to
89 -- AD, except for the choice of expression in computing lmats. We just compute L.
90 objective :: Acc GMMIn -> Exp Precomputed -> Acc (Scalar FLT)
91 objective (GMMIn alphas means icf x wisGamma wisM) prec@(Precomputed c1 _) =
92 let I2 n d = shape x
93 I2 _ numQL = shape icf
94 numL = numQL - d -- numL = 1/2 d (d - 1)
95 I1 k = shape alphas
96 qvals = backpermute (I2 k d) (\v -> v) icf
97 lvals = backpermute (I2 k numL) (\(I2 i j) -> I2 i (j + d)) icf
98 qdiags = map exp qvals
99 sumQs = sum qvals

100 shiftedX = zipWith (-) (replicate (I3 cAll k cAll) x)
101 (replicate (I3 n cAll cAll) means)
102 -- If array indexing would be nice and efficient under AD, the 'generate'
103 -- definition of lmats would be the most readable. However, since it
104 -- isn't particularly, we will define it in terms of more information-
105 -- retaining primitives in the 'backpermute' definition of lmats.
106 lmats = if False -- We do not use RebindableSyntax; this is a Haskell 'if'.
107 then generate (I4 n k d d)
108 (\(I4 _ ki i1 i2) ->
109 let li = d * (d - 1) `div` 2 - (d-1 - i2) * (d-1 - i2 + 1) `div` 2
110 + i1 - i2 - 1
111 in cond (i1 > i2) (lvals ! I2 ki li) 0)
112 else let -- For lack of a backpermute-with-default primitive
113 lvalsWithZero = zipWith (*)
114 (generate (I2 k (numL + 1)) (\(I2 _ j) -> cond (j == 0) 0 1))
115 (backpermute (I2 k (numL + 1)) (\(I2 i j) -> I2 i (j + d - 1)) icf)
116 in backpermute (I4 n k d d)
117 (\(I4 _ ki i1 i2) ->
118 let li = d * (d - 1) `div` 2 - (d-1 - i2) * (d-1 - i2 + 1) `div` 2
119 + i1 - i2 - 1
120 in cond (i1 > i2) (I2 ki (li + 1)) (I2 ki 0))
121 lvalsWithZero
122 eqxprod = zipWith (*) (replicate (I3 n cAll cAll) qdiags) shiftedX
123 lxprod = sum (zipWith (*) lmats (replicate (I4 cAll cAll d cAll) shiftedX))
124 innerTerm = zipWith (-) (replicate (I2 n cAll) (zipWith (+) alphas sumQs))
125 (map (* 0.5) $ sqsum (zipWith (+) eqxprod lxprod))
126 slse = sum (logsumexp innerTerm)
127 in zipWith (\a1 a2 -> -c1 + a1 + a2)
128 (zipWith (-) slse
129 (map (fromIntegral n *) (logsumexp alphas)))
130 (logWishartPrior k qdiags sumQs lvals wisGamma wisM prec)
131

132 -- Compute the gradient using AD. 'gradientA' is the new Accelerate primitive
133 -- that our reverse AD implementation adds to the language. Here it computes
134 -- the gradient with respect to _all_ input arguments, but we return only those
135 -- that we actually need (recall from the definition of GMMIn that Q and L are
136 -- together in a single array, ICF).
137 jacobian :: Precomputed -> Acc GMMIn -> Acc GMMOut
138 jacobian prec input =
139 let GMMIn a m i _ _ _ = gradientA (\input' -> objective input' (constant prec)) input
140 in GMMOut a m i

108

C.2 BA: Bundle Adjustment
1 {- # LANGUAGE DeriveGeneric, FlexibleContexts, FlexibleInstances, MultiParamTypeClasses, TypeApplications # -}
2

3 import Prelude ()
4 import Data.Array.Accelerate hiding (pi)
5

6 type FLT = Float
7 type Pt3D = (FLT, FLT, FLT)
8 type Pt2D = (FLT, FLT)
9

10 data Camera =
11 Camera_ { camR :: !Pt3D
12 , camC :: !Pt3D
13 , camF :: !FLT
14 , camX0 :: !Pt2D
15 , camKappa :: !Pt2D }
16 deriving (Generic)
17

18 deriving instance Show Camera
19 instance Elt Camera
20

21 pattern Camera :: Exp Pt3D -> Exp Pt3D -> Exp FLT -> Exp Pt2D -> Exp Pt2D -> Exp Camera
22 pattern Camera r c f x0 k = Pattern (r, c, f, x0, k)
23 {- # COMPLETE Camera # -}
24

25 data Observation =
26 Observation_ { obsCamIdx :: !Int
27 , obsPtIdx :: !Int }
28 deriving (Generic)
29

30 deriving instance Show Observation
31 instance Elt Observation
32

33 pattern Observation :: Exp Int -> Exp Int -> Exp Observation
34 pattern Observation ci pi = Pattern (ci, pi)
35 {- # COMPLETE Observation # -}
36

37 data BAIn =
38 BAIn_ { baInCams :: !(Vector Camera) -- [n]
39 , baInPts :: !(Vector Pt3D) -- [m]
40 , baInW :: !(Vector FLT) -- [p]
41 , baInFeats :: !(Vector Pt2D) -- [p]
42 , baInObs :: !(Vector Observation) } -- [p]
43 deriving (Generic)
44

45 deriving instance Show BAIn
46 instance Arrays BAIn
47

48 pattern BAIn :: Acc (Vector Camera) -> Acc (Vector Pt3D) -> Acc (Vector FLT)
49 -> Acc (Vector Pt2D) -> Acc (Vector Observation) -> Acc BAIn
50 pattern BAIn c p w f o = Pattern (c, p, w, f, o)
51 {- # COMPLETE BAIn # -}
52

53 data BAOut =
54 BAOut_ { baOutRows :: !(Vector Int) -- [2p + p]
55 , baOutCols :: !(Vector Int) -- [11n + 3m + p]
56 , baOutVals :: !(Vector FLT) } -- [31p]
57 deriving (Generic)
58

59 deriving instance Show BAOut
60 instance Arrays BAOut
61

62 pattern BAOut :: Acc (Vector Int) -> Acc (Vector Int) -> Acc (Vector FLT) -> Acc BAOut
63 pattern BAOut r c v = Pattern (r, c, v)
64 {- # COMPLETE BAOut # -}
65

66 -- Pick a parameter from a Camera definition based on its index. Note that the
67 -- list here is on the meta-level from the perspective of Accelerate;
68 -- Accelerate, and later LLVM, only see a number of nested conditionals. This
69 -- function is never differentiated.
70 camIndex :: Exp Camera -> Exp Int -> Exp FLT
71 camIndex (Camera (T3 r1 r2 r3) (T3 c1 c2 c3) f (T2 x1 x2) (T2 k1 k2)) =
72 pick [r1, r2, r3, c1, c2, c3, f, x1, x2, k1, k2]

109

73 where
74 pick [x] _ = x
75 pick (x:xs) i = cond (i == 0) x (pick xs (i-1))
76 pick [] _ = error "pick: what"
77

78 ptIndex :: Exp Pt3D -> Exp Int -> Exp FLT
79 ptIndex (T3 x y z) i = cond (i == 0) x (cond (i == 1) y z)
80

81

82 vecadd :: TLift t FLT => Exp t -> Exp t -> Exp t
83 vecadd = tlift @_ @FLT (+)
84

85 vecsub :: TLift t FLT => Exp t -> Exp t -> Exp t
86 vecsub = tlift @_ @FLT (-)
87

88 dot :: TLift t FLT => Exp t -> Exp t -> Exp FLT
89 dot v w = treduce (+) (tlift @_ @FLT (*) v w)
90

91 scale :: TLift t FLT => Exp FLT -> Exp t -> Exp t
92 scale = tlift1 (*)
93

94 cross :: Exp Pt3D -> Exp Pt3D -> Exp Pt3D
95 cross (T3 a b c) (T3 x y z) = T3 (b*z - c*y) (c*x - a*z) (a*y - b*x)
96

97 rodriguez :: Exp Pt3D -> Exp Pt3D -> Exp Pt3D
98 rodriguez r@(T3 r1 r2 r3) x =
99 let sqtheta = r1 * r1 + r2 * r2 + r3 * r3

100 theta = sqrt sqtheta
101 v = T3 (r1 / theta) (r2 / theta) (r3 / theta)
102 in cond (sqtheta == 0)
103 (x `vecadd` cross r x)
104 (scale (cos theta) x
105 `vecadd` scale (sin theta) (cross v x)
106 `vecadd` scale ((v `dot` x) * (1 - cos theta)) v)
107

108 p2e :: Exp Pt3D -> Exp Pt2D
109 p2e (T3 x1 x2 x3) = T2 (x1 / x3) (x2 / x3)
110

111 distort :: Exp Pt2D -> Exp Pt2D -> Exp Pt2D
112 distort (T2 k1 k2) u@(T2 u1 u2) =
113 let lensq = u1 * u1 + u2 * u2
114 in scale (1 + k1 * lensq + k2 * lensq * lensq) u
115

116 project :: Exp Camera -> Exp Pt3D -> Exp Pt2D
117 project (Camera r c f x0 kappa) x =
118 scale f (distort kappa (p2e (rodriguez r (x `vecsub` c)))) `vecadd` x0
119

120 reprojerr :: Exp Camera -> Exp Pt3D -> Exp FLT -> Exp Pt2D -> Exp Pt2D
121 reprojerr cam x w m = scale w (project cam x `vecsub` m)
122

123 werr :: Exp FLT -> Exp FLT
124 werr w = 1 - w * w
125

126 -- We compute the Jacobian chunks in the following packed arrays:
127 -- - 2p x 11: d(flatten(reproj_error)) / d(cams_{obs[i]})
128 -- - 2p x 3: d(flatten(reproj_error)) / d(pts_{obs[i]})
129 -- - 2p: d(flatten(reproj_error)) / d(w_i)
130 -- - p: d(w_error) / d(w_i)
131 jacobianPacked :: Acc BAIn -> Acc (Matrix FLT, Matrix FLT, Vector FLT, Vector FLT)
132 jacobianPacked (BAIn cams pts ws feats obs) =
133 let I1 p = shape obs
134 grads :: Acc (Vector ((Camera, Camera), (Pt3D, Pt3D), (FLT, FLT)))
135 grads = map (\(T2 i (Observation ci pi)) ->
136 let T4 dcam1 dpt1 dw1 _ =
137 gradientE (\(T4 cam pt w feat) -> fst (reprojerr cam pt w feat))
138 (T4 (cams ! I1 ci) (pts ! I1 pi) (ws ! i) (feats ! i))
139 T4 dcam2 dpt2 dw2 _ =
140 gradientE (\(T4 cam pt w feat) -> snd (reprojerr cam pt w feat))
141 (T4 (cams ! I1 ci) (pts ! I1 pi) (ws ! i) (feats ! i))
142 in T3 (T2 dcam1 dcam2) (T2 dpt1 dpt2) (T2 dw1 dw2))
143 (indexed obs)
144 campacked = generate (I2 (2 * p) 11)
145 (\(I2 i j) -> let T3 (T2 dcam1 dcam2) _ _ = grads ! I1 (i `div` 2)

110

146 in camIndex (cond (i `mod` 2 == 0) dcam1 dcam2) j)
147 ptpacked = generate (I2 (2 * p) 3)
148 (\(I2 i j) -> let T3 _ (T2 dpt1 dpt2) _ = grads ! I1 (i `div` 2)
149 in ptIndex (cond (i `mod` 2 == 0) dpt1 dpt2) j)
150 rwpacked = generate (I1 (2 * p))
151 (\(I1 i) -> let T3 _ _ (T2 dw1 dw2) = grads ! I1 (i `div` 2)
152 in cond (i `mod` 2 == 0) dw1 dw2)
153 wwpacked = map (gradientE werr) ws
154 in T4 campacked ptpacked rwpacked wwpacked
155

156 jacobian :: Acc BAIn -> Acc BAOut
157 jacobian input@(BAIn cams pts _ _ obs) =
158 let I1 n = shape cams
159 I1 m = shape pts
160 I1 p = shape obs
161

162 T4 dcams dpts drdw dwdw = jacobianPacked input
163

164 rows = enumFromStepN (I1 (2 * p)) 0 15 ++ enumFromN (I1 (p + 1)) (2 * p * 15)
165 colsvals =
166 generate (I1 (2 * p * 15))
167 (\(I1 i) -> let obsi = i `div` (2 * 15)
168 valouti = i `div` 15
169 Observation ci pi = obs ! I1 obsi
170 j = i `mod` 15
171 in cond (j < 11)
172 (T2 (11 * ci + j) (dcams ! I2 valouti j))
173 (cond (j < 14)
174 (T2 (11 * n + 3 * pi + j - 11) (dpts ! I2 valouti (j - 11)))
175 (T2 (11 * n + 3 * m + obsi) (drdw ! I1 valouti))))
176 ++
177 generate (I1 p)
178 (\(I1 i) -> T2 (11 * n + 3 * m + i) (dwdw ! I1 i))
179 in BAOut rows (map fst colsvals) (map snd colsvals)
180

181

182 class (Elt t, Elt a) => TLift t a where
183 tlift :: (Exp a -> Exp a -> Exp a) -> Exp t -> Exp t -> Exp t
184 tlift1 :: (Exp a -> Exp a -> Exp a) -> Exp a -> Exp t -> Exp t
185 treduce :: (Exp a -> Exp a -> Exp a) -> Exp t -> Exp a
186

187 instance Elt a => TLift a a where
188 tlift f = f
189 tlift1 f = f
190 treduce _ x = x
191

192 instance (TLift t1 a, TLift t2 a) => TLift (t1, t2) a where
193 tlift f (T2 a1 a2) (T2 b1 b2) = T2 (tlift f a1 b1) (tlift f a2 b2)
194 tlift1 f a (T2 b1 b2) = T2 (tlift1 f a b1) (tlift1 f a b2)
195 treduce f (T2 x y) = treduce f x `f` treduce f y
196

197 instance (TLift t1 a, TLift t2 a, TLift t3 a) => TLift (t1, t2, t3) a where
198 tlift f (T3 a1 a2 a3) (T3 b1 b2 b3) = T3 (tlift f a1 b1) (tlift f a2 b2) (tlift f a3 b3)
199 tlift1 f a (T3 b1 b2 b3) = T3 (tlift1 f a b1) (tlift1 f a b2) (tlift1 f a b3)
200 treduce f (T3 x y z) = treduce f x `f` treduce f y `f` treduce f z

111

D Benchmark graphs

112

113

114

	Acknowledgements
	Introduction
	Contributions
	Report structure

	Background
	Automatic differentiation
	What does AD compute?
	In practice
	Implementation methods
	Optimisations
	Higher-order derivatives

	Functional AD
	On untyped lambda calculus
	Delimited continuations
	Via categorical language
	Via compiler optimisations

	Functional programming
	Functional array languages
	The Accelerate language
	Type-safe program representations
	The Accelerate compiler
	Automatic differentiation
	Typed AST

	The AD algorithm
	Idealised Accelerate
	Input/output specification of the algorithm
	Limitations

	Example programs
	Simple array program
	Array program with indexing

	Array transformation
	Interface of expression AD
	Labeling
	Primal
	Dual
	Combining primal and dual
	Example
	Conclusions

	Expression transformation
	Primal
	Dual

	Implementation
	Reified types
	Implementation experiences
	Methodology
	Overview
	Difficulties
	Patterns

	Testing
	Unit tests
	Methodology
	Results

	Experimental results
	Benchmarking tasks
	Methodology
	Experimental setup

	Results
	Four versions
	Conclusions
	Discussion

	Conclusions
	Discussion & Future work
	Related work

	Bibliography
	Unit test programs
	ADBench task definitions
	GMM: Gaussian Mixture Model fitting
	BA: Bundle Adjustment

	ADBench task implementations
	GMM: Gaussian Mixture Model fitting
	BA: Bundle Adjustment

	Benchmark graphs

