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Abstract

Real gluon emission from amplitudes gives rise to logarithms dependent on the kinematic
threshold variable. In the soft limit these logarithms become very large, making conver-
gence of perturbative QCD problematic. It is well understood how these leading power
logarithms can be resummed. However, the logarithmic e�ects of next-to-leading power
(NLP) in the soft momentum are not. The emission of just one soft photon or gluon can be
related to the non-emitting amplitude up to NLP in the soft momentum (Low's Theorem)
[1][2]. This leads to the notion of the radiative jet function. Ward identities for radiative
jets are an essential tool to work out Low's theorem at NLP. In this thesis we will illustrate
the various concepts involved and construct Ward identities for the radiative jet.
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Introduction

The Standard Model is one of the most promising theories in physics. It describes three out
of four fundamental forces, namely the electromagnetic, weak and strong force. The the-
ory describing the strong interactions is referred to as Quantum Chromodynamics (QCD).
Many of its aspects are successfully tested by particle colliders such as the LHC. With the
fast progress in technology, also theoretical predictions need an increasing accuracy. This
is mostly done by calculating higher loop corrections to scattering amplitudes in pertur-
bation theory.

When one is doing perturbative QCD, singularities may be encountered when calcu-
lating diagrams as a result of an integration over loop momenta or phase space. There
are two troublesome regimes, corresponding to the high energy limit and low energy limit.
They give rise to ultraviolet (UV) and infrared (IR) singularities respectively. The UV sin-
gularities are well under control with renormalization. The IR singularities are known to
cancel in inclusive cross sections, known as the KLN theorem. However, they leave behind
�nite, but potentially large, logarithms. These so called threshold logarithms might spoil
the convergence of perturbation theory, since these potentially large contributions appear
at any order. The predictive power of perturbation theory can be reinstated when all these
logarithmic contributions are resummed.

Threshold logarithms depend on the kinematic variables of the considered process. If
we let χ be the dimensionless variable on which these threshold logarithms depend, the
perturbative expansion of the cross section then reveals a speci�c structure of logarithms.

∂σ

∂χ
=
∑
n

(αs
4π

)n 2n−1∑
m=0

(
c−1
nm

[
logχ

χ

]
+

+ cδnmδ(χ) + c0
nm logχm +O(χ)

)
The logarithms with coe�cient c−1

nm are leading power (LP) terms and the ones with c0
nm

are next-to-leading power (NLP) terms. The potentially large contributions result from
regions close to the kinematic threshold where χ = 0, hence the name.

The LP threshold logarithms are well understood. In recent years several steps were
taken towards a deeper understanding of NLP threshold e�ects as well. It has been known
that next-to-soft radiation e�ects can be understood in terms of the non-radiative ampli-
tude [1] [2]. A general resummation prescription to regulate the NLP logarithms has yet
to be developed.

In these thesis we discuss most of the concepts required to study NLP e�ects in am-
plitudes. The structure of the thesis is as follows. In the �rst chapter we start with a
short review of Wicks theorem, which we will use when constructing Ward identities for
the radiative jet later in the thesis. In chapter 2 we will give an introduction to QCD. The
corresponding QCD Lagrangian, including ghost and gauge �xing term, will be constructed
from SU(3), the Lie group on which the theory of QCD is constructed. This section will
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be �nished with a discussion of the residual symmetry after gauge �xing, called the BRST
symmetry. In chapter 3 we will start with a general discussion of IR divergencies. We will
discuss where they arise and how they can be detected in general diagrams. In chapter 4
the Wilson line is discussed. This will play a central role in factorization of amplitudes,
which we will discuss in the succeeding chapter. In chapter 6 we will discuss the origin
of Ward identities. In the �nal two chapters we will discuss how Del Duca his extension
of Low's theorem [2] gives rise to so-called radiative jets and how we can construct Ward
identities for these objects in order to extend Low's theorem to massless particles.
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Chapter 1

Wick's Theorem

Calculating correlation functions, a.k.a Greens functions, can be reduced to the problem
of calculating expressions of the form

〈0|T{φI(x1)φI(x2) · · ·φI(xn)} |0〉 , (1.1)

where the time ordered free �eld operators are evaluated in the interaction picture. The
subscript to explicitly denote the interaction-picture �elds will be omitted from now on,
but keep in mind that correlations are always calculated in this picture. For two �elds (1.1)
reduces to the Feynman propagator. For a higher number of �elds this expression could be
calculated by plugging in the expansion of the �elds in terms of operators. Wick's theorem
provides a way to simplify such calculations immensely. We will �rst focus on correlations
for bosonic �elds and then generalize to fermionic �elds.

For a time ordered product of two free bosonic �elds we can write

T (φ(x)φ(y)) = N(φ(x)φ(y) + φ(x)φ(y)), (1.2)

where the N denotes normal ordering. This ordering puts all the creation operators to
the left of the annihilation operators. Normal ordered terms therefore have a vanishing
vacuum expectation value. Furthermore the contraction of two �elds is de�ned as follows

φ(x)φ(y) = DF (x− y). (1.3)

where DF (x − y) is the Feynman propagator for the �eld φ. To see why this is true we
look at the operator expansion for bosonic �elds given in (A.1). If x0 > y0 we �nd

T (φ(x)φ(y)) =
x0>y0

N(φ(x)φ(y)) +

∫
d3p

(2π)3

1√
2Ep

∫
d3q

(2π)3

1√
2Eq

∑
s

∑
s′

[asp, a
s′†
q ] e−ip·x eiq·y,

(1.4)

= N(φ(x)φ(y)) +

∫
d3p

(2π)3

1

2Ep
e−ip·(x−y), (1.5)

and if x0 < y0 we �nd

T (φ(x)φ(y)) =
x0>y0

N(φ(x)φ(y)) +

∫
d3p

(2π)3

1√
2Ep

∫
d3q

(2π)3

1√
2Eq

∑
s

∑
s′

[asp, a
s′†
q ] eip·x e−iq·y,

(1.6)

= N(φ(x)φ(y)) +

∫
d3p

(2π)3

1

2Ep
eip·(x−y). (1.7)
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This indeed reduces to (1.2). The extension to an arbitrary number of �elds is Wick's
theorem, which states

T (φ(x1)φ(x2) · · ·φ(xn)) = N(φ(x1)φ(x2) · · ·φ(xn) + all possible contractions). (1.8)

When we apply Wicks theorem to (1.1) we see that only terms where all the �elds are
contracted survive due to the vanishing expectation value for a product of normal ordered
�elds. So, for an odd number of �elds equation (1.1) vanishes because there is always
one �eld that cannot be contracted, or in other words will annihilate the vacuum. Wick's
Theorem therefore allows us to write every expression in the form of (1.1) as a sum of
products of Feynman propagators. This can be shortly stated as

〈0|T{φI(x1)φI(x2) · · ·φI(xn)} |0〉 = sum of all possible full contractions. (1.9)

Of course (1.8) also applies to fermionic �elds. The only di�erence is that we de�ne the
Wick contraction of two fermion �elds as

ψ(x)ψ̄(y) = SF (x− y), (1.10)

to take care of the anti-commuting nature of the �elds. Here, SF (x − y is the Feynman
propagator for fermion �elds.
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Chapter 2

Quantum Chromo Dynamics

Quantum Chromodynamics (QCD) is the theory of the strong interaction. It is a non-
abelian gauge theory based on the gauge group SU(3). The fource-carriers in the theory
are the gluons, which transmit the strong force between the quarks.

The Lagrangian describing the theory looks deceptively simple, but QCD is a di�cult
theory to fully understand. The theory contains self-interactions between gluons, the force-
carriers of the theory. These self-interactions give rise to features di�erent from Quantum
Elecrodynamics (QED) and exclusive to QCD. One of the most intruiging properties of
QCD is asymptotic freedom. This phenomena describes that the coupling constant binding
the quarks gets smaller when moving them closer together, i.e. at higher energy scales.
This energy scale dependence of the coupling constant is a result of the renormalization
procedure. Asymptotic freedom allows us to do perturbative calculations when the mo-
mentum transfer is large.

2.1 Non-abelian gauge theories

As already mentioned, QCD is based on the gauge group SU(3). The Lagrangian LQCD
can be explicitly constructed by requiring local SU(3) invariance on the Dirac Lagrangian.

Let us �rst start with a general discussion of the SU(N) gauge group. The group
SU(N) has N2 − 1 generators ta which form the basis of the corresponding algebra in the
fundamental representation. These generators are N×N (hermitan and unit determinant)
matrices that close under commutation in the following way:

[ta, tb] = ifab
ctc, (2.1)

where factors fabc are called the structure constants. Elements U ∈ SU(N) are related to
the algebra by means of an exponential map, such that

U = exp [−iθata]. (2.2)

A quantity ψ transforming in the fundamental representation of SU(N) transforms as

ψ′i(x) = Uijψj(x). (2.3)

The Dirac Lagragrangian, as given in equation (2.4), is invariant under global SU(N)
transformations of the fundamental �elds ψ.

L = ψ̄ (�∂ +m)ψ. (2.4)
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Note that ψ is an N dimensional vector in gauge space and a four-spinor in Dirac space.
SU(N) is an exact symmetry of the Dirac Lagrangian. We can upgrade the theory to a
gauge theory by requiring local SU(N) invariance, i.e. invariant under gauge transforma-
tions. In order to have gauge invariance it is useful to de�ne the covariant derivative

Dµψ = (∂µ + igAµ)ψ, (2.5)

where the introduced gauge �elds Aµ are Lie-algebra valued (= Aaµta) and transform in
the adjoint representation of SU(N),

A′µ = UAµU
−1 +

i

g
∂µU · U−1. (2.6)

For in�nitesimal transformations this leads to

(Aµ)′ = Aµ −
1

g
Dµθ +O(θ2) (2.7)

where the covariant derivative of a �eld transforming in the adjoint representation is given
by

Dµθ = ∂µθ + ig[Aµ, θ], (2.8)

Up to now we used the Lie-algebra valued notation. Explointing the dependence on the
generators we �nd

(Aaµ)′ = Aaµ +
1

g
Dab
µ θ

b +O(θ2).

= Aaµ + fbc
aθbAcµ +

1

g
∂µθ

a +O(θ2), (2.9)

Replacing the normal derivative in equation (2.4) by the covariant derivative makes
the Lagrangian invariant under local SU(N) transformations. But we are not done yet.
By introducing gauge �elds to the theory we can construct another term that is invariant
under gauge transformations. Namely, the one governing the kinematics of the gauge �elds.
In analogy with QED this term reads

−1

4

∑
a

F aµνF
µνa. (2.10)

The �eld strength Fµν is de�ned by

Fµν = −[Dµ, Dν ], (2.11)

and transforms in the adjoint representation of SU(N).

Now that we have established all the building bocks to construct a gauge theory for
fermions, let us apply this to SU(3). The generators of SU(3) are

ta =
1

2
λa, (2.12)

where λa are the eight Gell-Mann matrices. Following the discussion for SU(N) above,
the gauge invariant QCD Lagrangian density is given by

L = LDirac + LGauge Fields =
∑
f

ψ̄f (i��D −mf )ψf −
1

4

∑
a

Fµν
aFµνa, (2.13)
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where

Fµνa = ∂µAνa − ∂νAµa − gfabcAµbAνc . (2.14)

The ψf are the Dirac spinors corresponding to the quark �elds. There are six types of
quarks, called �avors: up, down, strange, charm, beauty and top1. All �avours have their
own mass mf . Furthermore, quarks appear in three colors, related to the dimensions of
the SU(3) generators. Traditionally, these dimensions are not explicitly shown in the La-
grangian, but one should remember that each quark has an implicit color index i = 1, 2, 3.
The anti-commuting gauge �elds in the theorie are called gluons. They transform in the
adjoint representation of SU(3), which is 8 dimensional and therefore give rise to 8 di�er-
ent types of gluons.

2.2 Gauge �xing the QCD Lagrangian

In this section we will review how the gluon propagator can be extracted from the La-
grangian using standard quantum �eld theory methods. The kinetic term for the gluons
is given by LGauge Fields in equation (2.13). In path integral formalism one de�nes the
functional integral ∫

DAeiS[A] =

∫
DA ei

∫
dx4 −1

4
(Faµν)2 , (2.15)

where the measure reads DA =
∏
a,µ
DAaµ. Since the matrix is singular there is no solution

for the Feynman propagators of each gauge �eld. This has to do with the gauge invariance
present in LGauge Fields. We would like to �x the redundant degrees of freedom such that
each physical con�guration is only accounted for once. This can be done using the Fadeev
Popov trick. Let G(A) be some function that will de�ne the gauge �xing. We would
then constrain the functional integral to cover only con�gurations for which G(A) = 0 by
inserting a functional delta function, δ(G(A)). The trick now is to insert the identity

1 =

∫
Dξ δ(G(Aξ)) det

(
δG(Aξ)

δξ

)
, (2.16)

where Aξµ are the transformed gauge �elds,

Aξµ = Aµ −
1

g
Dµξ. (2.17)

The functional integral given in equation (2.15) then reads∫
DAeiS[A] =

∫
DA

∫
Dξ δ(G(Aξ)) det

(
δG(Aξ)

δξ

)
eiS[A], (2.18)

where the delta function must be seen as a product of delta functions for all gauge �elds. We
choose our gauge �xing condition G(A) in such a way that det(δG(Aξ)/δξ is independent
of ξ and Aµ. For example, choosing the Lorentz gauge (∂ ·A = 0) corresponds to G(Aξ) =
∂µAµ + (1/g)∂µD

µξ, so that the functional determinant is equal to det(∂µD
µ/g). To

continue we interchange the order of the functional integrals and then change A→ Aξ. The
measure remains unchanged since inside the functional integral over ξ the transformation is

1These quark �avours can be grouped into doublets (constituents of which are said to be in the same
generation) transforming under SU(2), which is also part of the standard model. There is no evidence for
more than 3 generations.
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nothing more than a shift followed by a unitary rotation between the di�erent gauge �elds.
Furthermore we know that the Lagrangian is invariant under such gauge transformations,
and thus ∫

DAeiS[A] = det

(
δG(Aξ)

δξ

) ∫
Dξ

∫
DA δ(G(A)) eiS[A]. (2.19)

where we have changed the variable Aξ back to A inside the functional integral since it is
only a dummy now. The integral over the gauge �elds is now restricted to physical modes
through the delta function. The integral over ξ contains all the in�nities, but since it is just
a multiplicative factor it will be cancelled out in correlation functions. To clean up nicely
we will choose the general class of gauge �xing conditions given by G(A) = ∂µA

µ(x)−ω(x).
Since equation (2.19) is valid for each choice of ω(x), we can choose a properly normalized
linear combination of di�erent ω(x). The trick now continues by choosing a normalized
Gaussian weighting function centred around ω = 0.∫

DAeiS[A] = det

(
δG(Aξ)

δξ

)
N(λ)

∫
Dω

∫
Dξ

∫
DA δ(∂µA

µ(x)− ω(x))e−
iλω2

2 eiS[A].

(2.20)

Note that there are as many Gaussian functions as there are gauge �elds,
∫
Dω =

∏
a

∫
Dωa.

The normalisation factor N(λ) is again unimportant since it will drop out in correlation
functions. Performing the functional integral over ω results in∫

DAeiS[A] = det

(
δG(Aξ)

δξ

)
N(λ)

∫
Dξ

∫
DAe−

iλ(∂µA
µ)2

2 eiS[A]. (2.21)

We e�ectively introduced a new term in our Lagrangian, referred to as the gauge �xing
term,

Lgf = −1

2
λ(∂µA

µ)2. (2.22)

From this we can extract the propagator using Fourier transformation. The equation to
�nd the propagator reads

(−k2gµν + (1− λ)kµkν)δab∆νρ
bc = iδµ

ρδc
a, (2.23)

such that

∆µν
ab (k) =

−i δab
k2 + iε

(
gµν − (1− λ−1)

kµkν

k2

)
. (2.24)

As one can see the gauge �eld is massless, since the propagator has a pole at p2 = 0.
Furthermore di�erent choices of λ imply di�erent gauge �xing conditions, λ = 1 is called
the Feynman gauge and λ =∞ the Landau gauge.

2.3 Appearance of Ghost Fields

We can use our knowledge of anti-commuting �elds to rewrite the determinant part in
(2.21)

det

(
1

g
∂µD

µ

)
=

∫
Dc̄

∫
Dc ei

∫
dx4 c̄ (−∂µDµ) c, (2.25)
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where we have rescaled the anti-commuting �elds c and c̄ such that the coupling constant
g is absorbed. The �elds we introduced are generally known as ghost �elds. From equation
(2.25) we see that we e�ectively added

Lghost = ∂µc̄
a∂µca + gfabc(∂

µc̄a)cbAcµ, (2.26)

to the Lagrangian. From this contribution we can extract the ghost propagator and the
coupling to gauge �elds, which after Fourier transforming yield

Dab(p) =
iδab

p2 + iε
,

Lint ghost = −gfabcpµc̄a(p)cbAcµ. (2.27)

The full gauge �xed QCD Lagrangian now reads

LQCD =
−1

4
F aµνF

aµν + iψ̄ γµ(∂µ + igAµ)ψ − ξ

2
(∂ ·A)2 − c̄a∂µ∂µca − gc̄a∂µ(fabcc

bAcµ),

(2.28)

where λ still depends on which gauge is chosen; for example λ = 1 is known as the Feynman
gauge. The corresponding Feynman rules are given in Appendix B

2.4 BRST symmetry

In earlier sections we used the Fadeev-Popov prescription to gauge �x our non-abelian
theory. As a result we got a gauge �xing term and had to introduce ghost �elds. The
resulting gauge-�xed Lagrangian, given in equation (2.28), is not invariant under gauge
transformations, which is obviously due to the gauge �xing term. However, Becchi, Rouet,
Stora and Tyutin showed that the transformations given in equation (2.29) describe a
remaining global symmetry in the theory [3][4]

δAaµ = Dµc
a θ,

δψ = igcψ θ,

δψ̄ = igψ̄ c θ,

δca = −1

2
gfabc c

bcc θ,

δc̄a = ξ ∂ ·Aa θ, (2.29)

where θ is an anti-commuting parameter (independent of spacetime). To validate this
statement we will show that the in�nitesecimal transformations from equation (2.29) will
leave the Lagrangian given in (2.28) invariant. The �rst term in the Lagrangian is invariant
by construction, since the BRST transformation of the gauge �elds is the same as (2.7)
with θa → gcaθ. The same holds for second term, the one including the fermionic �elds.
The gauge �xing term however is not invariant by itself but yields under variation

δLgf = −ξ ∂ ·A∂µ[(Dµc) θ]. (2.30)

Lastly we look at the variation of the ghost �eld contribution to the Lagrangian.

δLghost = −ξ∂µ(∂ ·A)Dµc θ − 1

2
g2fabcfbde∂

µc̄acdceAcµ θ + g2fabcfcde∂
µc̄acbcdAeµ θ. (2.31)

The last two terms cancel each other due to the Jacobi identity. So the variation of the total
Lagrangian is therefore given by a total derivative, which does not change the kinematics of
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the system and can therefore be discarded. The fact that the Lagrangian is invariant under
the BRST-transformations means that there exists a conserved current. Using Noethers
theorem we �nd that

jµBRST = −ξ(∂ ·A)Dµc− 1

2
gfabc∂µc̄

acbcc − FµνaDνc
a + gψ̄γµtaψc

a. (2.32)

To support the claim that this is a conserved current we can explicitly calculate ∂ · jBRST .
This calculation will also be used in our discussion of the radiative jet in chapter 8 and
therefore useful to discuss in more detail. Explicitly performing the ∂µ operation on the
BRST-current we �nd

∂ · jBRST =− ξ∂µ(∂ ·A)aDµca − ξ(∂ ·A)∂µD
µc− 1

2
gfabc∂

µ(∂µc̄
acbcc)

− ∂µFµνaDνca − Fµνa∂µDνca + ∂µ(jaEMca), (2.33)

where jµa EM = gψ̄γµtaψ. We would like to group everything such that it becomes clear
that the ∂ · jBRST vanishes on shell. In order to make this manifest it is convenient to
rewrite the expression in terms of the equations of motion given in (2.34).

Oψ̄ = (�∂ + ig��A)ψ,

Oψ = ψ̄(−�∂ + ig��A),

O c̄ = −∂µDµc,

Oc = Dµ∂
µc̄,

OAν = ∂µF
µν + gfabcF

µνbAcµ − gψ̄γµtaψ + ξ∂ν∂ ·Aa + g∂ν c̄
bfabcc

c. (2.34)

Another important element during this procedure will be to �nd a term proportional to
∂ · jQCD, where the QCD current is de�ned through vaiation of the classical action and
yields

jµaQCD = gfabcF
µνbAcν + gψ̄γµtaψ. (2.35)

It is most insightful to break the expression in equation (2.33) down to parts and put them
in the right format separately before combining them again. Let us �rst consider the last
term in equation (2.33), namely ∂µ(gψ̄γµtaψc

a).

∂µ(gψ̄γµtaψca) = ∂µ(gψ̄γµtaψ)ca + gψ̄γµtaψ ∂µca, (2.36)

where the �rst term will be part of the ∂ · jQCD and the second will disappear in the e.o.m
for the gauge �eld. Next we turn to −Fµνa∂µDνc

a. First of all the antisymmetry of Fµν
can be used to write

−Fµνa∂µDνc
a = −������

Fµνa∂µ∂νc
a − Fµνa∂µ(gfabcc

bAcν)

= −Fµνa∂µ(g fabcA
c
ν)cb − Fµνa(g fabcAcν) ∂µc

b

= −Fµνc∂µ(g fabcA
b
ν)ca − Fµνc(g fabcAbν) ∂µc

a. (2.37)

Now we look at −∂µFµνaDνca. We �nd

−∂µFµνaDνca = −∂µFµνa∂νca − ∂µFµνcfabcAbνca. (2.38)

Combining this with equation (2.37) we arive at the following result

−Fµνa∂µDνc
a − ∂µFµνaDνca = ∂µ(−g fabcFµνcAbν) ca − (g fabcF

µνcAbν + ∂νF
νµa)∂µca,

(2.39)
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where the �rst term will be part of ∂ · jQCD and the second will disappear in the equations
of motion for the gauge �eld. Next we look at the third term in ∂ · jBRST from (2.33) and
explicitly perform the partial derivative

−1

2
gfabc∂

µ(∂µc̄
acbcc) = −1

2
gfabc∂

µ∂µc̄
acbcc − gfabc∂µc̄acb∂µcc. (2.40)

In the �rst term on the RHS the equation of motion for c̄ can be substituted, to yield

(2.40) =− 1

2
gfabcc

bccOca +
1

2
g2fabcfade∂

µc̄ dcbccAeµ − gfabc∂µc̄acb∂µcc. (2.41)

Using the three identities given in equations (2.36), (2.39) and (2.41) we can reduce equa-
tion (2.33) to

∂ · jBRST =− ∂µca OAµ + ξ ∂ ·AOc̄ + ∂ · (jaQCD)ca −
1

2
gfabcc

bccOca

− gξ∂µ(∂ ·A)afabcc
bAcµ +

1

2
g2fabcfade∂

µc̄ dcbccAeµ (2.42)

At last, substituting the explicit form of in terms of ∂ · (jaQCD)ca the e.o.m yields

∂ · jBRST =− ∂µc ·OµA + ξ ∂ ·AOc̄ −
1

2
gfabcc

bccOc
a

− gfabcAbµOµ,cA ca + g(Oψ̄t
aψ − ψ̄taOψ)ca (2.43)

This expression clearly vanishes on shell. The reason why The classical QCD current is
not conserved on-shell is due to the presence of ghosts and the gauge �xing term in the
Lagrangian.

We will hereby �nish our discussion of the QCD Lagrangian. The most important
results are the Feynman rules, which can be found in appendix B, and the vanishing of the
non-abelian BRST-current. In chapter 8 we will come back to the BRST-current and use
it to construct the Ward Idenity for the radiative jet.
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Chapter 3

Divergences

It is well known that certain Feynman diagrams may contain singularities, when integration
over loop momenta is performed. Perhaps the best known singularity is the ultraviolet
(UV) divergence, which is associated with the high-momentum limit of the loop momenta.
Such divergences can be removed with standard renormalization techniques and will not be
discussed here. When one considers the zero mementum limit of loop or external momenta,
soft divergences arise. In addition, when �nite mementa of on-shell massless particles
become proportional, collinear divergences can appear. Soft and collinear singulariteis are
collectively referred to as infrared (IR) singularities.

In the next sections we will �rst explain how these two kinds of infrared divergencies
arise when evaluating loop momentum integrals. Then we will establish some criteria for
�nding singularities that is applicable to any process, which are generally known as the
Landau equations. Finally we discuss the degree of divergence for the solutions of the
Landau equations.

k

p1

p2

p1 − k

p2 + k

µ

Figure 3.1: The one loop correction to the electormagnetic vertex.

3.1 Soft and Collinear Divergencies

We will start by studying the QCD loop correction to the electromagnetic vertex shown in
Figure 3.1. To illustrate where the IR singularities arise we consider the denominators of
the internal propagators

1

((p2 + k)2 + iε)((p1 − k)2 + iε)(k2 + iε)
. (3.1)

The singularities will arise when the denominator becomes zero while integrating over all
possible loop momenta k. It can be easily seen that this happens when k → 0, which is
called the soft singularity. Other possibilities for the denominator to become zero are when
either (p2 + k)2 or (p1 − k)2 yield zero. Both of these cases correspond to collinearity of
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the gluon to one of the external legs. To make this more explicit, let the gluon momentum
become collinear such that kµ = zpµ2 with z not equal to zero. Since p2 corresponds to
an incomming quark it is an on shell momentum. Therefore the internal collinear gluon
goes on-shell as well, resulting in a zero of the denominator. To summarize, an infrared
singularity is found in either of the following cases:

kµ = 0 (soft singularity)

kµ = zpµ1 (collinear singularity)

kµ = z′pµ2 (collinear singularity)

Evaluating the integral over k using dimensional regularization with d = 4−2ε each of these
singularities gives rise to a single ε−1 pole. Whenever the gluon becomes both collinear
and soft a double pole arises, ∼ ε−2. In the analysis we did before, this would correspond
to a collinear gluon kµ = zpµi which we let go soft by taking z to zero. In this way both
(pi ± k)2 and k2 vanish, yielding a double pole.

In the analysis above we only considered the denominators. The full integrand how-
ever also contains the numerators of the internal propagators among other elements. These
should be taken into account when integrating over loop momenta. Hence, in some con�gu-
rations the singularities we discussed might actually be integrable. Therefore the vanishing
of the denominator only corresponds to potential singularities. In the next section we will
derive a general machinery which can be used to �nd these potential singularities in an
arbitrary diagram.

3.2 Landau Equations

We start with a general diagram G in a massless theory. Let G have L loops, E external
legs and I internal lines. The internal lines can either be quarks or gluons. The internal
lines have momenta lj , with j = 1, ..., I. The loop momenta are denoted by ki, with
i = 1, ..., L. The corresponding expression for G reads

G(p1, ...., pE) =
( L∏
i=1

∫
ddki

)
N (kj , pr)

I∏
j=1

1

(l2j + iε)
, (3.2)

where r can be 1, ..., E and all numerators of internal line propagators are grouped in
N (kj , pr). Introducing Feynman parameters as explained in appendix D we can rewrite
the expression above to

(I − 1)!

 I∏
j=1

∫ 1

0
dxj

 δ(1− x1 − ...xI)
(

L∏
i=1

∫
ddli

)
N (kj , pr)

 I∑
j=1

xj(l
2
j + iε)

−I .
(3.3)

Let us now de�ne

D(ki, pr, xi) =
I∑
j=1

xj(l
2
j + iε). (3.4)

Possible IR divergent regions are found when D(ki, pr, xi) is unavoidably zero. To see what
this entails we need to read the integrand as a function of complex integration variables,
xi and l

µ
i . We �rst refresh how one could avoid singularities by integrating over a single

propagator. The poles of a single propagator sit at k2 = 0. In the complex k0 plane they
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are distributed according to Figure 3.2. We can use Cauchy's theorem to evaluate the
integral by deforming the contour without crossing a singularity, as shown in the same
graph. In practice this is accomplished by shifting the poles into the complex k0 plane
using the iε prescription. In summary, the singularities of the propagator can be 'avoided'
by adjusting the contour.

Figure 3.2: Contour integration in the Feynman prescription in the k0 complex plane. The
two poles of the Feynman propagator are indicated by the two crosses. The iε prescrition
is introduced to conveniently deal with time ordering.

So, for D(ki, pr, xi) to be unavoidably zero, the singularities should be such that the
countour cannot be deformed to avoid them. In other words, they should be pinched
together and are called pinched singularities for that reason. To see wether D has any
pinches we need to take a closer look. D is quadratic in loop momenta kµi and linear in
Feynman paramters xi. Consider now D as a kwadratic function of a particular kµi , such
that it can be seen as a parabola depicted in Figure 3.3. The solutions for D(ki) = 0 will
be pinched in the complex kµi plane whenever they also solve

∂D
∂kµi

= 0, (3.5)

which is referred to as the pinching condition. In other words, pinching occurs when two
solutions merge into a single point at the extremum of the parabola. The pinching condition
needs to be satis�ed for all loop momenta kµi in all of their components µ. Indeed, if even
a single component does not satisfy the pinching condition, the contour can be deformed
in this subspace to avoid the singularities. Inserting equation (3.4) for D into the pinching
condition gives

I∑
j=1

xj
∂l2j
∂kµi

= 0. (3.6)

Now realize that each line momentum is part of a speci�c loop, and therefore linear in the
corresponding loop momentum. We can therefore make the pinching condition even more
explicit by writing

I∑
j=1

xjl
µ
j σj,i = 0, (3.7)

where σj,i is +1 if the line momentum lµj �ows in the same direction as the loop momentum

ki in loop i, −1 if it �ows in the opposite direction and zero otherwise1. Note that this

1σj,i = 0 if line momentum lµj does not �ow through loop i, but corresponds to a line in another loop
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Figure 3.3: In the �rst row the solutions of the Landau equation D = 0 (left) are shown in
the complex kµi plane (right). Since the solutions do not satisfy the pinching condition in
equation (3.5), the contour can be deformed to deal with the singularities. In the second
row the pinching condition is satis�ed, leading to a pinched contour in the kµi complex
plane: the poles are distributed in such a way that the contour cannot be deformed away
from the singularities.

formula will have as many terms as there are line momenta in loop i, because all other
contributions vanish.

All that is left is to determine when D = 0. From equation (3.4) it becomes clear that
D vanishes when all of its terms vanish individually. Each term has the same structure
and becomes zero when xi = 0 or l2i = 0. Necesarry conditions for �nding IR divergences
therefore read

l2j = 0 or xj = 0 ∀j,
I∑
j=1

xjl
µ
j σj,i = 0 ∀µ, i. (3.8)

and are called the Landau eqautions [6].

3.3 Pinch Surfaces

Sets of solutions to the Landau equations are often said to cover a surface in kµ integration
space for which D = 0. To show how one could use the Landau equations to determine
such pinch surfaces we return to our one loop example in �gure 3.1. Here

D = x1(p2 + k)2 + x2(p1 − k)2 + x3k
2, (3.9)

such that the Landau equations read

x1(p2 + k)µ − x2(p1 − k)µ + x3k
µ = 0,

x1 = 0 or (p2 + k)2 = 0,

x2 = 0 or (p1 − k)2 = 0,

x3 = 0 or k2 = 0. (3.10)
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There are three solutions to this set equations. One of them describes the soft region

kµ = 0,
x1

x3
= 0,

x2

x3
= 0, (3.11)

where we note that x3 6= 0 means that the gluon is on-shell, k2 = 0. The other two
solutions correspond to the collinear pinches

kµ = zp1, x1 = 0, x3 =
1− z
z

x2.

kµ = z′p2, x2 = 0, x3 = −1 + z′

z′
x1. (3.12)

These are exactly the results we would expect from our earlier analysis in section (3.1) and
there are no other solutions to be found.

In fact, one may wonder how we know that the only solutions to the Landau equations
in equation (3.10) are the three mentioned above. The easiest way to see this is by using
the Coleman-Norton approach [7]. They developed a technique to track down all pinches
for a set of Landau equations, by means of a graphical representation. First they de�ned
a space-time seperation ∆xµi between two vertices connected by a propagating momentum
pi by making two identi�cations

∆xµi = xil
µ
i , xi =

∆0
i

l0i
. (3.13)

From this it becomes clear that ∆xµi can be written as

∆xµi = ∆0
i v
µ
i , with vµi = (1,

~li
l0i

). (3.14)

This indeed discribes the displacement of a propagating on-shell particle between two
spacetime points. The on-shell particles propagate freely along the classical trajectories
with velocity vµi . We notice that a line has zero displacement whenever xi = 0. Remember
that the condition D = 0 constrains lines with xi = 0 to be o�-shell l2i 6= 0. The idea
now is that the solutions to the Landau equations can be graphically depicted by diagrams
where o�-shell lines are contracted to a point. Such a diagram is called a reduced dia-
gram. In addition one also has to include the reduced diagrams in which loop momenta
become soft, depicted by a dotted line. In the case where the loop momentum goes soft
all other lines in the loop are o� shell by de�nition and yield xi = 0. In reduced diagrams
the particle character (quark, gluon) is suppressed since one is merely interested in the
topological nature of the diagram. Furthermore, in the Coleman-Norton picture all the
physical displacements should add up to zero in each loop, re�ecting the ∂D

∂kµi
= 0. In this

way there is a corresponding reduced diagram for each singularity and solutions to the
Landau equations can now be depicted in terms of them.

To make this point more clear let us go back to our example in which we considered
the QCD correction to the decay of a photon into two quarks. We �rst construct all pos-
sible reduced diagrams, shown in �gure 3.4. The last diagram belongs to the soft pinch
kµ = x1 = x2 = 0. The �rst diagram belongs to one of the collinear regimes, as does the
second. They indicate x1 = 0, ∆xµ2 = ∆xµ3 and x2 = 0, ∆xµ1 = −∆xµ3 , corresponding to the
solutions in equation (3.12) respectively. Hereby we have exhousted all solutions, so what
about the other reduced diagrams? First of all the diagram where all lines are contracted
to a point belongs to the hard part of the diagram (it only contains UV divergences, which
we already took care of). The remaining diagrams do not describe propagation of classical
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Figure 3.4: Reduced diagrams for the one-loop contribution to a three-point vertex in the
Coleman-Norton picture

particles. Classical particles are free, following a free path of propagation. This means
that they do not leave and come back to the same point. Neither can two non-collinear
particles recombine after a free path. Therefore only classically allowed con�gurations will
lead to pinches and the remaining diagrams should be excluded.

In conclusion, the pinch singularities can be found by considering all possible reduced
diagrams in the Coleman-Norten picture and �ltering out all the unphysical processes.
This is a powerful tool for tracking down pinch surfaces for complicated diagrams.

S H

J

Figure 3.5: A typical two Fermion diagram containing IR singularities. Soft and collinear
lines are given a yellow and blue colour respectively. The o�-shell lines are marked in red.
In the Coleman-Norton picture the red lines are shrunk to a point and are re�ered to as
the the hard vertex. Furthermore, the soft lines make up the 'soft subdiagram' and the
collinear lines are grouped together in the 'jet subdiagram'. Here we have shown a speci�c
case, but all possible reduced diagrams can be factorized in this way.

3.4 Power Counting

It turns out that the Landau equations are only nessecary requirements for infrared diver-
gent behaviour, but they are not su�cient. As discussed before, at the integrand level these
potential singularities may be balanced by some numerator factor. A technique which is
often used to tell whether or not an integral is going to be singular given a speci�c pinch
surface is infrared power counting [8][9].
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Figure 3.6: Schematic picture of pinch surface S. One normal and two intrinsic coordinates
are drawn for illustration.

Consider a general pinch surface in kµ integration space, schematically depicted in
�gure 3.6. We can separate the integration variables in two sets, intrinsic coordinates and
normal coordinates. The normal coordinates move you towards/from the surface, so these
are the ones in which the integral is singular by construction. The intrinsic coordinates
parametrize the pinch surface and therefore just move you along the surface. We will scale
the normal variables with knormi = λai k̃normi , such that the integral will become singular
when λ → 0. To �nd the largest degree of divergence we make a perturbative expansion
in λ for each denominator, l2i and only retain the leading power term ∼ λAi . The resulting
integral is called the homogeneous integral. The homogeneous integral will have an λns in
the integrand. The degree of divergence ns is given by

ns =

N∑
j

aj −
I∑
i

Ai + c (3.15)

where aj is the contribution from rescaling the measure for all normal coordinates dkµj , Aj
is the contribution from each denominator factor in the homogeneous integral and c is the
contribution from possible momentum factors in the numerator. Furthermore I is the num-
ber of internal lines and N the number of normal coordinates. The integral will produce
a singularity if ns is non-positive. More speci�cally: for ns = 0 the integral diverges log-
arithmically, for ns < 0 the integral diverges as a power and for ns > 0 the integral is �nite.

The discussion so far has been very general. It will be insightful to look at the photon
decay example in �gure 3.1 and de�ne the homogeneous integrals for each pinch surface
we found in section 3.3. We start by writing down the corresponding expression to the
proces:

Γµ1-loop = −ieg2

∫
d4k

(2π)4
ū(p2)(ta)ik

γαi(�p2 +�k)γµ(−i(�p1 −�k))γβ

((p2 + k)2 + iε)((p1 − k)2 + iε)
(tb)kjv(p1)

−iδabgαβ
(k2 + iε)

= eg2CF

∫
d4k

(2π)4

N

D
, (3.16)

where we used Feynman gauge and

N = ū(p2) γα(�p2 +�k)γµ(�p1 −�k)γβ v(p1) gαβ,

D = D1D2D3 = (p2 + k)2 (p1 − k)2 k2. (3.17)

Furthermore the Casimir operator Cr depends on the representation of the gauge group
and is de�ned through

(tart
a
r)ij = δijCr. (3.18)
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We will be working in the the fundamental representation, and the corresponding Casmir
operator will be denoted as CF . We will now introduce lightcone coordinates such that
kµ = (k+, k−, k⊥), where k2

⊥ is de�ned by the standard Euclidean product in the dimensions
untouched by changing to lightcone coordinates. In this frame the quark momenta can be
chosen such that p1µ = δµ+

Q√
2
and p2µ = δµ−

Q√
2
. The denominator D in expresion (3.16)

then reduces to

D1 = 2p−2 k
+ + 2k+k− − k2

⊥,

D2 = −2p+
1 k
− + 2k+k− − k2

⊥,

D3 = 2k+k− − k2
⊥. (3.19)

In what follows we will determine the degree of divergence for the soft and collinear
pinch surfaces.

• Soft pinch surface

Recall that the soft pinch surface has kµ → 0 in all components. Since this pinch surface
is just a point, it is intuitive that coordinates of kµ are considered normal coordinates. It
can also be checked by noting that the internal gluon must be kept on-shell on this pinch
surface and changing any component of k]mu would violate this requirement. Scaling the
normal coordinates by kµ → λkµ the denominator terms become

D1 =
√
Qk+λ+O(λ2)

D2 = −
√
Qk−λ+O(λ2)

D3 = λ2(2k+k− − k2
⊥) (3.20)

Looking at N we see that with the usage of Dirac equations

N = 4p1 · p2ū(p2)γµv(p1) +O(λ). (3.21)

Now we can use infrared power counting to �nd ns = 0, which corresponds to a divergence
of logarithmic nature.

• Collinear pinch surface

Assume now that we are on the collinear pinch surface k // p1. Again, we need to �nd the
normal and intrinsic coordinates in order to perform infrared power counting. First we note
that the considered pinch surface solves the Landau equations such that the collinear gluon
and the internal quark to which it is collinear are on-shell, i.e. D2 = D3 = 0. The intrinsic
coordinates must preserve this, while the normal coordinates will move the corresponding
particles o�-shell. Looking at equation (3.19) we see that changing k⊥ would make both
particles go o�-shell and is therefore a normal coordinate. Changing k− away from zero
will make D2 nonzero, and is therefore also considered a normal coordinate. Furthermore
we see that changing k+ does not bring any of the particles o� shell. Namely, for the
gluon to be collinear we �nd k− = 0 and therefore all combinations with k+ in D2 and
D3 will not be altered by changing it. Note that changing k+ will change D1, but since
the corresponding particle was o�-shell to begin with we do not mind. We now scale the
normal coordinates by kµ → (1, λ,

√
λ), such that changing any of the normal coordinates

has the same inpact. The denominators after rescaling read

D1 = 2p−2 k
+ +O(λ),

D2 = λ(−2p+
1 k
− + 2k+k− − k2

⊥),

D3 = λ(2k+k− − k2
⊥). (3.22)
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We will now focus on the numerator N of equation (3.16). Since k // p1, we can use the
Dirac equation such that (�p1 −�k)v(p1) = 0. This will simplify N to

N ' ū(p2) (2pα2 + γα�k) γµ 2(p1 − k)β v(p1) gαβ, (3.23)

where we have also used the anti-commutation of gamma matrices and the Dirac equation
for the outgoing fermion ū(p2) �p2 = 0. We can now simplify N even more. Remember
that the only nonzero component of pµ1 is the + component. The collinear approximation
therefore implies

k+ � k−,
√
|k⊥|2. (3.24)

As a result of this approximation N reduces to an expression with β = +. This automat-
ically causes the only remaining term in N to have α = −, because this gives the only
nonzero component of gα+.

N ' ū(p2) (2p−2 + γ−�k) γµ 2(p1 − k)+ v(p1), (3.25)

Lastly, the approximation in equation (3.24) allows us to aproximate �k ' k+γ−. Notice
that the �k term drops out in this approximation due to the fact that g−− = 0 and therefore
(γ−)2 = 0. So �nally we write

N = ū(p2) γµ 4p+
1 p
−
2 (1− k+

p+
1

) v(p1) +O(λ) , (3.26)

Power counting in normal variabels now tells us that the homogeneous integral exhibits a
logarithmic divergence. Investigation of the other collinear pinch surface is quite similar
and will lead to a logarithmic divergence as well.

Let us come back to the Coleman-Norton picture of our 1 loop example for a second, see
�gure 3.4. The hard part of the reduced diagram, corresponding to the collinear divergence
k // p1, consists of the quarkline carrying momentum (p2 + k)µ and its adjecent vertices.
In the approximation executed above this yields:

Hµ
α = H−µ δ

α
− = −ig2ū(p2)

γ−(p−2 γ
+)

2p−2 k
+

γµδ
α
−. (3.27)

When the collinear photon is contracted with the hard subdiagram, its polarization will
be longitudinal, i.e. ε ∼ k. In chapter 5 we will show how these unphysical polarizations
will decouple from the hard part, resulting in a factorization between H and J .
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Chapter 4

Wilson Lines

Radiation of soft gluons, which have kµ → 0, is very common in scattering processes and
often gives rise to divergences. This is because the coupling strength gets large if interac-
tions involve soft particles and propagators diverge. In principle, the soft gluon radiation
can consist of an in�nite number of gluons. This would make perturbation theory an in-
correct tool in calculating physical amplitudes involving soft radiation since higher orders
in perturbation theory become more and more signi�cant. In the eikonal approximation,
k → 0, however all the soft radiation can be captured in a so-called Wilson line. The
Wilson line can be seen as the source of all soft radiation and is represented by a path
ordered exponential of gauge �elds. The path used in the Wilson line is the path taken by
the parton that emits or absorbs the soft gluons.

In the next section we will show how the eikonal approximation gives rise to the Wilson
line. The Wilson line will be a useful description when calculating Feynman diagrams
with soft photon emission. It will turn out to play a central part in the factorization of
amplitudes later in this thesis.

4.1 Eikonal Approximation

p p− k1

k1

µ1

M0

Figure 4.1: Photon emission from an external fermion line.

Consider the process in which a fermion emits a photon. The corresponding Feynman
diagram is shown in �gure 4.1. Using the Feynman rules for QED the corresponding
expression reads

Mµ1(p, k1) = M0
i(�p−��k1)

(p− k1)2
(−ieγµ1)u(p). (4.1)

Expanding in soft photon momentum k1 and only keeping the lowest order gives the eikonal
approximation

Mµ1εµ1 ≈M0 [− e p
µ1

p · k1
u(p) ]εµ1(k1), (4.2)
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where we have used the Dirac equation �pu(p) = 0. The emitter spin becomes irrelevant
in this approximation. This is easily seen by the fact that there are no γ matrices left
in the expression. Furthermore the e�ective coupling of the photon is proportional to the
momentum of the emmitting fermion,

k

p

p− k

=
−epµ
p · k . (4.3)

Note that in the case of an absorbed photon the sign of the e�ective vertex changes due to
the sign change of the photon momentum k. Consider now the emission of two photons.
The two diagrams that contribute to this proces are given in �gure 4.2. The corresponding
amplitude is

Mµ1µ2(p, k1, k2) = M0
e2(�p−��k1 −��k2)

(p− k1 − k2)2

[γµ1(�p−��k2)γµ2

(p− k2)2
+
γµ2(�p−��k1)γµ1

(p− k1)2
]. (4.4)

Expanding in soft momentum k1 and k2 this expression reduces to

Mµ1µ2(p, k1, k2) = M0 [
e2 2pµ1 2pµ2

−2p · (k1 + k2) (−2p · k2)
+

e2 2pµ2 2pµ1

−2p · (k1 + k2) (−2p · k1)
+O(1)].

(4.5)

This can be further simpli�ed using the eikonal identity

∑
π

1

p · kπ1
1

p · (kπ1 + kπ2)
. . .

1

p · (kπ1 + . . . kπn)
=

n∏
i

1

p · ki
, (4.6)

where the sum over π indicates all permutations of the photon momenta, and kπi is the i
th

momentum in a given permutation. There are n! permutations, each contributing equally
to the amplitude. For n = 2 these correspond to the diagrams in �gure 4.2. A closer
look at equation (4.6) reveals that on the RHS there is no sign of the order of emissions,
while on the LHS the order in which the photons are emitted remains apparent in the
denominators. The eikonal identity therefore indicates the decorrelation of emissions in
amplitudes due to the eikonal approximation. Upon using the eikonal identity in equation

k1 k2

µ1 µ2

p p− k1 p− k1 − k2

k1 k2

µ1 µ2

p p− k2 p− k1 − k2

Figure 4.2: Both contributions to the double emission of a photon from a fermion line.

(4.6) the emisson of two soft photons from a fermion line just becomes the product of two
eikonal vertices as given in equation (4.3). In practice, each soft photon emission can be
expressed by the e�ective Feynman rule from equation (4.3),

Mµ1..µn(p, k1, ...kn) = M0

n∏
i=1

−epµi
p · ki

. (4.7)
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It becomes clear that all the soft photon emissions factorize from the amplitude without
emissions M0. From a more formal point of view all the soft radiation can be described by
a Wilson line, which we formulate as follows

Φn(x1, x2) = exp
[
− ie

∫ x2

x1

dxµAµ(x)
]
. (4.8)

where the gauge �elds Aµ act as sources for radiation of photons. When the radiated gauge
bosons are soft, one may neglect the recoil of energetic particles. In this case the path can
be parametrized by a straight line xµ = λnµ, where nµ is the directional vector of the
classical path taken by the emitting parton.

To see how the eikonal vertices arise in this prescription let us consider, without loss
of generality, an external line created at xi = 0 and in direction nµ = pµ. After a Fourier
transform of the gauge �elds to momentum space and performing the integral over λ
equation becomes

Φn(0,∞) = exp
[
− ie

∫ ∞
0

dλ

∫ ∞
−∞

dk4

(2π)4
n ·A(k)e−ik·nλ

]
= exp

[ ∫ ∞
−∞

dk4

(2π)4

−e n ·A(k)

n · k − iε
]
, (4.9)

where we used the iε prescription to make sure the integral is �nite. The resulting factor
in equation (4.9) acts as a source term for the soft gauge �eld when the path integral over
Aµ is performed. An equivalent way to see this fact is by using Wick contraction in the
operator formalism. One could expand the Wilson line from equation (4.9) such that

Φn(0,∞) = 1 +

∫ ∞
−∞

dk4

(2π)4

−e n ·A(k)

n · k − iε

+
1

2

∫ ∞
−∞

dk4

(2π)4

−e n ·A(k)

n · k − iε

∫ ∞
−∞

dk′4

(2π)4

−e n ·A(k′)

n · k′ − iε +O(e3). (4.10)

Wick contracting the gauge �eld(s) with the external particle(s) we �nd a polarization
vector εµ(k) for each contraction times the eikonal vertex. Note that for the second order
expansion there are two possible ways one can Wick contract the gauge �elds with the
external states. The contributions of the two are equal and correspond to the two diagrams
in Figure 4.2. Therefore the factor 1

2 from Taylor expanding will be cancelled and the
factorization as described by equation (4.7) is still valid. We have now established that
soft emissions a�ect the hard particle only by dressing it with a gauge phase, which is the
Wilson Line in equation (4.8).

4.2 Wilson Lines in QCD

In QCD we can also de�ne the Wilson line. Only here we need some kind of ordering to
take care of the non-commuting nature of the gauge �elds. Therefore we de�ne the Wilson
line using path ordering

Φn(λ1, λ2) = P exp
[
− ig

∫ λ2

λ1

dλ n ·Aa(λ)ta
]
. (4.11)

We have parametrized the path by a straight line xµ = λnµ, because we assume no recoil
of the emitting parton. The path ordering is such that �elds with higher values of λ are to
the left. This means that if the line momentum travels from left to right the �elds should
be organized in the opposite direction. As a result, the �elds that are emitted further
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on the path are drawn to the right of the diagram. Therefore we read Wilson lines in a
Feynman diagram as we read Dirac lines: in the opposite direction of the line momentum
when writing the corresponding formula.

In order to see how this works let us make an expansion of the Wilson line

Φn(a, b) =
∞∑
m=0

(−ig)m
1

m!

∫ b

a
(dλi)

m P
(
n ·A(λm) · · ·n ·A(λ1)

)
, (4.12)

where it should be clear that A(λ) = Aa(λ) ta. If we now reduce the product of integrals
such that λm > · · · > λ1 the path ordering of the �elds becomes manifest. This can be
acomplished by replacing

1

m!

∫ b

a
...

∫ b

a
dλ1..dλm =

∫ b

a

∫ b

λ1

...

∫ b

λm−1

dλ1...dλm =

∫ b

a

∫ λm

a
...

∫ λ2

a
dλm...dλ1,

(4.13)

which are both equally useful.

We now investigate a Wilson line created at xµi = −∞ and anihilated at xµi = aµ,
in the direction nµ = pµ. These can be used to describe incoming particles emitting soft
photons in scattering processes. First fourier transform the gauge �elds to momentum
space and apply the iε prescription to make sure the λ integrals are �nite. The second
order expansion term of the Wilson Line in equation (4.13), corresponding to the double
absorbtion of gluons, then reads

−g2

∫ a

−∞
dλ2

∫ λ1

−∞
dλ1

∫ ∞
−∞

d4k2

(2π)4
n ·A(k2)e−i(k2+iε)·nλ2

∫ ∞
−∞

dk4
1

(2π)4
n ·A(k1)e−i(k1+iε)·nλ1 .

(4.14)

Performing the integral over λ1, followed by the integral over λ2 we �nd

(4.14) = (−ig)2

∫
d4k1

(2π)4

d4k2

(2π)4

∫ a

−∞
dλ2 n ·A(k2)n ·A(k1)e−i(k1+k2+iε)·nλ2 i

(k1 · n+ iε)

= (−ig)2

∫
d4k1

(2π)4

d4k2

(2π)4
n ·A(k2)n ·A(k1)e−i(k1+k2+iε)·na i

((k1 + k2) · n+ iε)

i

(k1 · n+ iε)
.

(4.15)

As one can see we �nd the product of two eikonal vertices, but with some ordering of the
gluon �elds. Doing this to all orders in perturbation theory we �nd

Φn(−∞, a) =
∞∑
m=0

(−ig)m
∫ ( d4ki

(2π)4

)m
n ·A(km) . . . n ·A(k1)e−iK(j)·na

m∏
j=1

i

n ·K(j) + iε
,

(4.16)

−∞

k1 k2 km

k1 K(j)

k3

k1 + k2
aµ

Figure 4.3: Gluon emission from an eikonal line. This graph shows the m-th order expan-
sion term of the Wilson line Φn(−∞, a). Due to the time ordering the gluon �eld emissions
are ordered from left-to-right.
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where K(j) =
∑m

i=j ki. The left-to-right ordering of the �elds then corresponds to the
emission of gluons as depicted in �gure 4.3. We can also assume a Wilson line created at
xµi = aµ traveling to in�nty, as depicted diagramaticcally in �gure 4.4. A similar calculation
as we did above then results in

Φn(a,∞) =
∞∑
m=0

(−ig)m
∫ ( d4ki

(2π)4

)m
n ·A(km) . . . n ·A(k1)e−iK(j)·na

m∏
j=1

−i
n · K̃(j)− iε

,

(4.17)

where K(j) =
∑m

i=j ki and K̃(j) =
∑m

i=j km−i+1.

∞aµ

kmK̃(m)

k1

km + km−1

km−2 km−1 km

Figure 4.4: Gluon emission from an eikonal line. This graph shows the m-th order expan-
sion term of the Wilson line Φn(a,∞). Due to the time ordering the gluon �eld emissions
are ordered from left-to-right.

From these calculations we can extract the Feyman rules for a Wilson line, which are
depicted in �gure 4.5. Feynman rules for oposite line momenta are also given and can be
found by the complex conjugate of the Wilson line. This will become clear when looking
at the properties of the Wilson line in the next section. At this point it is important to
realize that when drawing Wilson lines with the rules we just established, the momenta
of the gluons always point inwards (towards the vertex). For an outgoing gluon one just
simply makes the substitution ki → −ki.

i
n̂·k+iη

i
n̂·k+iη

−i
n̂·k−iη

−i
n̂·k−iη

−ign̂µ(ta)ij ign̂µ(ta)ij
j i i j

k

k k

k

Figure 4.5: Feynman rules for Wilson lines

To conclude this section we also give the expression for the �nite Wilson line in equation
(4.18).

Φn(a, b) =

∞∑
m=0

(−ig)m
∫ ( d4ki

(2π)4

)m
n·A(km) · · ·n ·A(k1)

m∑
l=0

e−ia·K(l)e−ib·K̃(m−l)

×
l∏

j=1

−i
n · K̃(j)

m∏
j=l+1

i

n ·K(j)
. (4.18)
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4.3 Properties of the Wilson line

Now we are ready to look at some characteristics of the Wilson line and why it turns out
to be a useful tool. First of all we will look at what happends when performing a gauge
transformation, as de�ned in equation (2.6). It turns out that the Wilson line transforms
as [5]

Φn(λ1, λ2)→ U(λ2)Φn(λ1, λ2)U−1(λ1). (4.19)

This feature will be very convenient to describe gauge invariant amplitudes. Consider the
bi-local product of two matter �elds

∆(x, y) = ψ̄(y)φ(x). (4.20)

These products are common objects in quantum �eld theory and often appear in correlation
functions. In particular, they de�ne the Green's functions via

〈0| T ψ̄(y)ψ(x) |0〉 . (4.21)

where T denotes the time-ordering. Obviously this expression is not gauge invariant, since

∆(x, y)→ ψ̄(y)U †(y)U(x)ψ(x) (4.22)

This expression can be made gauge invariant by insertion of the Wilson line between the
two �eld operators. By doing so the Wilson line then transports the gauge dependence
of ψ(x) from point x to y, where it is cancelled by the gauge dependence of ψ̄(y). One
more thing one could do with the Wilson line is transport the gauge dependence to in�nity,
where it is set to unity.

Furthermore the hermitian conjugate of the Wilson line just reverses path ordering and
can therefore be interpreted as the same Wilson line with opposite directional vector n.
To see how this comes about we investigate what changes when we reverse the path of the
Wilson line. Firstly, we now integrate from bµ to aµ. This is similar to integrating from
a to b, but changing the sign of the exponent. The most important thing is however that
now the order of the �elds must be reversed. Since the path �ows from right to left, the
�elds should be organised in the opposite direction. Fields that are �rst on the path will
be encountered last when following the reversed path �ow. This idea of antipath-ordering
is de�ned such that �elds with highes value for λ are written rightmost and we denote this
ordering by P̄. The reversed wilson line is thus given by

Φ̄n(b, a) = P̄eig
∫ b
a dλn·A (4.23)

where nµ still points in the direction of a left to right path �ow and bar indicates the
reversed path�ow. Equation (4.23) is actually the same as the hermitian conjugate of
a Wilson line from aµ to bµ with normal path ordering for a path from left to right as
de�ned in the previous section. Hermitian conjugation namely also reverses the order of
�elds, since (A(λm) · · ·A(λ1))† = A(λ1) · · ·A(λm) 1, and in addition it changes the sign of
the exponent. We therefore �nd

Φ̄n(b, a) = Φ†n(a, b) (4.24)

It would be more convenient to express the Hermitian conjugate Wilson line as a
function of normal path-ordered �elds, such that the Feynman rules we made in the last

1remember that A(x) is real
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section still apply. To get there we will Hermitian conjugate the wilson line from −∞ to
aµ:

Φ†n(−∞, a) =
[ ∞∑
m=0

(−ig)m
∫ ( d4ki

(2π)4

)m
n ·A(km) . . . n ·A(k1)e−iK(j)·na

m∏
j=1

i

n ·K(j) + iε

]†
=

∞∑
m=0

(ig)m
∫ ( d4ki

(2π)4

)m
n ·A†(k1) . . . n ·A†(km)eiK(j)·na

m∏
j=1

−i
n ·K(j)− iε

(4.25)

Because A(x) is a real �eld, A†(k) = A(−k). We therefore make the substitution k → −k.
In addition we relabel the �elds by

k1 → kn, k2 → kn−1, · · · , kn → k1,

which gives

Φ†n(−∞, a) =

∞∑
m=0

(ig)m
∫ ( d4ki

(2π)4

)m
n ·A(km) . . . n ·A(k1)e−iK(j)·na

m∏
j=1

i

n ·K(j) + iε

(4.26)

Here we recognise the Wilson line from aµ to in�nity, but with the substitution nµ → −nµ.
So we conclude that the direction of the wilson line is reversed. This can be interpreted
as a Wilson line with anti-path ordering, but is more usefull as a Wilson line with normal
path ordering but with opposite directional vector nµ → −nµ. The same calculation can
be done for Φ†n(a,∞). In summary one �nds

Φ†n(−∞, a) = Φ−n(a,∞),

Φ†n(a,∞) = Φ−n(−∞, a), (4.27)

which diagramatically is depicted in Figure 4.6. The details of the hermitian conjugate of

† †

Figure 4.6: Diagramatic explaination for the hermitan conjugate of in�nite Wilson lines

a �nite Wilson line can be found in Appendix F.2. This is less important for our purposes,
since scattering of radiative fermions, and is therefore just added for completeness. It turns
out that Φn(a, b)† = Φ−n(b, a), which is diagrammatically depicted in the Appendix as well.

Lastly, due to the path ordering we can glue two Wilson lines together. If we assume
a Wilson line from λ1 to λ2 we can extend the line to λ3 by adding another Wilson line
from λ2 to λ3 in the following way

Φn(λ2, λ3)Φn(λ1, λ2) = Φn(λ1, λ3) (4.28)

In the next chapter, Wilson lines will appear in our attempt to factorize amplitudes
into smaller building blocks.
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Chapter 5

Factorization

In general, the singular diagrams found by solving the Landau equations and surviving the
power counting can be represented as reduced diagrams in the Coleman Norton picture,
as shown in �gure 5.1. In this compact representation of singular diagrams, S is the
subdiagram involving all on-shell soft lines. Note that the S does not have to be connected
by itself. The jet subdiagrams, J1 and J2, are the subdiagrams involving all on-shell
collinear lines. Lastly, the hard vertex H collects all the o�-shell lines, which in the
Coleman-Norton picture are shrunk to a point.

S

J2

H

J1

Figure 5.1: A typical solution to the Landau equations depicted as a reduced diagram in
the Coleman-Norton picture. There are no quark lines between the various blobs, because
they ill not survive power counting (ns > 0)

The term 'factorization' is applied to the separation of hard, collinear and soft subdi-
agrams. Our goal is to decouple all subdiagrams, such that no indices connect Ji, S and
H. From power counting we can inmediately disconnect S from H. The argument goes as
follows. Internal lines in H are far o�-shell. Connecting a soft gluon to such an internal
line would give rise to an extra internal far o�-shell propagator in H. This would give us
a non-leading contribution to the diagram, i.e. suppressed by the inverse of a large scale.
We therefore neglect any soft gluon connection to H.

Factorization is an important step to resummation [9]. Resummation is a technique
to organize the large logarithms coming from IR divergences in perturbative expansions.
Once this is accomplished, one can do predictions of the large logarithmic terms to all
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orders in perturbation theory. We will not go in further detail because we will not perform
resummation in this thesis.

5.1 Soft Subdiagram

We already argued that for the leading divergencies there is no coupling from the soft
subdiagram to the hard vertex. We are now ready to isolate the soft subdiagram entirely.
Let us start by revisiting our one loop example, depicted in �gure 3.1. We already found
that in the soft limit the quark line can be replaced by an eikonal one. In the soft limit we
therefore �nd that the gluon factorizes from the diagram and instead couples to a eikonal
line. Consider now a more complex structure, in which the soft gluon is attached to the
jet. The jet may be a subdiagram involving more collinear lines than the quarkline we
just considered. Only longitudinally polarized photons are considered to couple to the
jet, since transverse polarisations are suppressed [10]. We can use the non-abelian Ward
identity for longitudinal polarized gluons to couple the gluon to the quarkline connecting J
en H instead. Note that using the Ward identity you will �nd a diagram in which the soft
gluon is connected to the hard part, but as we just argued this is subleading and can be
discarded. Once the gluon is attached to the quark line, the same analysis as before applies.
Using the eikonal approximation we can decouple all soft radiation from the jet and instead
couple it to a eikonal line, as shown in �gure 5.2. The soft subdiagram together with its
connection to the Wilson lines, i.e. the factorized diagram, is called the soft function. The
corresponding expression reads

S = 〈0|Φn(∞, 0)Φn̄(0,∞) |0〉 , (5.1)

where we used the non-abelian Wilson line as a source for soft gluons, as we extensively
explained in section 4.2.

When constructing diagrams contributing to a speci�c order in perturbation theory
there is a constraint one should keep in mind: photons originating from an eikonal line
must land on the other one, since contributions from soft photons landing on the same
eikonal line are proportional to pµp

µ = 0 (massless quarks).

J2

H

J1

S

Figure 5.2: This �gure shows the decoupling of the soft subdiagram from the hard and jet
subdiagrams. The gluons connecting the soft subdiagram couple to Wilson lines instead.
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5.2 Jet Factorization

In the previous section we saw how soft divergences could be factorized from the hard and
collinear subdiagrams into the soft function. We would like to do a similar factorization
for the collinear divergencies.

In order to demonstrate this decoupling let us look at the QCD correction to the QED
vertex again, given in �gure 3.1. The corresponding expression is proportional to∫

d4k

(2π)4
ū(p2)

AργµBρ
(p2 + k)2 (p1 − k)2 k2

v(p1), (5.2)

where we have de�ned

Aρ = γρ(�p2 +�k),

Bρ = (�p1 −�k)γρ. (5.3)

Note that we have chosen the Feynman gauge for the gluon propagator. Later in this
section we will also look at implications of di�erent gauges, and how the factorization of
collinear gluons is not gauge dependent. Assume we are on the collinear pinch surface
k //p1. The corresponding reduced diagram in the Coleman-Norton picture is given by one
of the �rst two diagrams in Figure 3.4. The only nonzero component of pµ1 is chosen in the
plus direction, and therefore the largest component of kµ is in the plus direction as well.
This means that �p1 −�k = (p+

1 − k+)γ−. Observing that γ−γρ only gives a contribution
for ρ = +, the most dominant term in equation (5.2) is B+. Consequently the minus
component of Aρ appears. The numerator in the collinear approximation then becomes

AργµBµ
k//p1

−−−−−−−→ A−γµB+. (5.4)

Now we use the Grammer and Yennie approach to decouple the collinear gluon from the
hard part of the diagram [11]. Only keeping the most dominant terms this leads to

A−B+ = A−
k+

k+
B+ = Aµkµ

B+

k+
= k ·AB · n

k · n , (5.5)

where in the last step we introduced a directional unit vector nµ in the minus direction.
We now focus on ū(p1)k · A. The massless Dirac equation allows us to add the term
ū(p1)�p2(�p2 + �k) at no cost, because doing so is similar to adding zero. Inserting A and
using this trick of doing nothing we �nd

ū(p1)k ·A = ū(p1)(p2 + k)2 (5.6)

It inmediately becomes clear that one of the terms in the denominator will be cancelled.
More explicitly, at the collinear pinch surface diagram 3.1 is proportional to∫

d4k

(2π)4
ū(p2)γµ

(�p1 −�k) γ · n
(p1 − k)2 k2

1

k · n v(p1) (5.7)

The coupling of the gluon to one of the external legs, namely the one with p2, has disap-
peared. Instead it couples to an eikonal line in the direction of p2, diagramatically shown
in Figure 5.3. To verify this, note the resemblance of nρ/k ·n to the radiative fermion in the
eikonal approximation. It can be more rigorously checked by using the eikonal Feynman
rules listed in Figure 4.5 to reproduce equation (5.7) from the decoupled diagram 5.3 (up
to a minus sign).
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×

Figure 5.3: This diagram shows the decoupling of a collinear gluon from the hard part.
The gluon now connects to an eikonal vertex, generated by the Wilson line. This factorizes
the amplitude into a 'jet function' and a hard vertex.

Until now we used the Feynman gauge to prove the decoupling of the gluon from the
quark-line. We found that the most dominant contribution came from the A−B+ part,
corresponding to the ∆ab

−+ component of the gluon propagator. In axial gauge this leads
to

∆ab
−+ =

−iδab
k2 + iε

(
g−+ − n+k− + n−k+

n · k +
k−k+

(n · k)2

)
. (5.8)

On the collinear pinch surface k−, k⊥ → 0 and the gluon propagator in axial gauge will
vanish, indicating no gluon attachment between the jet to the hard part.

To generalize this factorization to more general diagrams in which a collinear gluon
connects the hard subdiagram with the jet subdiagram, one uses Non-Abelian Ward iden-
tities. Consider the coupling of a collinear gluon to the hard function. As a matter of fact
collinear gluons couple to the hard function only with their longitudinal degrees of freedom
[13][10]. In section 3.4 we already argued that the collinear gluon couples with its longi-
tudinal degrees of freedom to the hard subdiagram. Non-abelian Ward identities describe
how the sum over all attachments of the longitudinally polarized gluon must vanish. Since
there is only one other possible insertion, we �nd the relation depicted diagrammatically
in �gure 5.4 (A). Now there is only one quark line connecting the jet subdiagram to the
hard vertex. As we saw before we could simplify this by means of an eikonal line, leading
to the identity in �gure 5.4 (B). combining (A) and (B) we see how the longitudinal gluon
can be detached from the hard subdiagram.

We have now treated the simple case in which just one collinear gluon is attached to H.
Considering an arbitrary number longitudinally polarized gluons we will �nd that they will
all decouple from H and instead couple to an eikonal line. This can be done by repeated
use of the identity (C) and the appropriate application of the Ward identity for a general
number of collinear gluons connecting to H. A nice graphical illustration of how this would
work for two collinear gluons is given in �gure 5.6.
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(A)

(B)

(C)

Figure 5.4: (A) Diagrammatic interpretation of the non-ablian Ward identity kµM
µ = 0.

The arrow on the gluons indicates that they are longitudinally polarized. (B) Using the
Grammar-Yennie trick, longitudinally polarized gluons may be connected to an eikonal
line instead. (C) Shows the result of (A) and (B) successively. Figure based on [12]

.

In section 4.2 we already discussed how the attachment of several gluons to an eikonal
line can be represented by a Wilson line. Therefore, if we adopt the Wilson line in our
de�nition of the jet function we have decoupled all gluons fromH; and so we have factorized
the jet subdiagram from the hard part in any gauge. The jet function is given by

J(p) = 〈0|T{Φn(∞, 0)ψ(0)} |p〉 . (5.9)
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S

J2

H

J1

Figure 5.5: Full factorization of the soft, jet and hard subdiagrams into the soft, jet and
hard functions. The hard function is proces dependent, but the soft function and jet
function are universal (they only depend on the external line properties).

5.3 Jet-Soft-Hard Factorization

Lastly we will turn to the issue of double counting between soft and collinear divergencies.
Gluons which are soft and collinear at the same time are included in the operator de�nitions
of both S and J . Namely soft functions whose soft gluons become collinear gives the same
result as jet functions whose collinear gluons become soft. We can solve this issue by an
extra division in the factorization formula. The object we need to cancel is a correlator of
Wilson lines, called the eikonal jet function J ,

J (n, n̄) = 〈0|Φn(∞, 0)Φn̄(∞, 0) |0〉 , (5.10)

where Φn approximates the original parton direction. We can now write down our �nal
factorization formula as follows

Γµ(
Q2

µ2
) = H({pi})S({βi})

2∏
i=1

Ji(ni, pi)

Ji(βi, ni)
, (5.11)

where ni is the directional vector in the direction of the other jet, Q2 is the kinematic
scale of the scattering (the invariant mass of the virtual photon in Drell-Yan) and µ is the
renormalization scale. So, in our two jet event n1 is the directional vector in the direction
of p2 and vice versa. The directional vector βi is in the same direction as pi.

The factorization of amplitudes, graphically shown for for a two jet event in 5.5, will
have a central role in our discussion of next-to-soft radiation in chapter 7.
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Figure 5.6: This �gure displays the factorization of two longitudinally polarized gluons
from H. The �rst step is to use the non-abelian Ward identity, which states that the sum
of diagrams with all possible momenta instertions of the two longitudinal gluons must
vanish. In a covariant gauge, Lorentz invariance requires that the gluon produced by the
gluon 3-vertex interaction with the two longitudinal gluons must also be longitudinally
polarized (it has no other vectors on which it may depend). The second step is to use
identity (C) in �gure 4.6 for the last two diagrams in the �rst step. In the last step, we let
the second and fourth diagram in the second step cancell by means of (C). Furthermore
we use identity (C) on the surviving two diagrams to �nd our �nal result. Note that
the diagrams in which the two insertions are interchanged are implicit. This �gure was
constructed by Collins in [10].
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Chapter 6

Ward Identities

Ward identities play an important role in factorization, as seen in the previous chapters.
They will also play a central role when we investigate next-to-soft radiation in the follow-
ing chapters. It will turn out that Ward identities are needed to prove Low's theorem for
next-to-soft gluon radiation from amplitudes.

Ward identities are constructed for correlation functions based on a symmetry in the
Lagrangian. In this chapter we will discuss the nature of Ward identities. We start with a
discussion of current conservation for symmetries in the Lagrangian. Subsequently we will
use this observation to construct a general Ward identity for a given correlation function.

6.1 Current conservation

Consider a Lagrangian for an arbitrary number of �elds L(φa(x), ∂µφa(x)). The action S
is de�ned by the time integral of the Lagrangian.

S =

∫∫
L(x, ẋ, t)d3xdt (6.1)

Here L is the Lagrangian density, to which we will refer as Lagrangian from now on. An
in�nitesimal transformation of the �elds, given by φa(x) → φa(x) + εδφa(x), will change
the Lagrangian to �rst order in ε according to equation (6.2). Here ε is the constant
in�nitesimal parameter, so we will be looking at global transformations.

δL =
∑
a

∂L
∂φa

ε δφa +
∂L

∂(∂µφa)
ε ∂µδφa(x). (6.2)

Varying the action and inserting equation (6.2) gives the following relation up to �rst order
in ε

δS

δφb(x)
=

∫
d4y

δL
δφb(x)

=

∫
d4y

∑
a

(
∂L

∂φa(y)

δφa(y)

δφb(x)
− ∂µ

∂L
∂(∂µφa(y))

δφa(y)

φb(x)

)
ε

=

(
∂L

∂φb(x)
− ∂µ

∂L
∂(∂µφb(x))

)
ε, (6.3)

The equations of motion for the �elds can be obtained by the principle of least action,
setting δS = 0. In other words, if the particles are on shell δS will be zero. This leads to
the Euler-Lagrange equation

∂L
∂φb(x)

− ∂µ
∂L

∂(∂µφb(x))
= 0. (6.4)
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We can now rewrite δL using the Euler lagrange equations as

δL = ε ∂µ
[ ∂L
∂(∂µφa)

δφa(x)︸ ︷︷ ︸
jµ(x)

]
+
δS

δφa
ε δφa(x). (6.5)

If the set of in�nitesimal transformations leaves L unchanged and the equations of motion
are satis�ed, equation (6.5) shows that jµ(x) is conserved. This is called Noethers Theorem.

Ward Identities re�ect the consequences of a symmetry in terms of correlation functions.
We will now use Noethers theorem to give a derivation of general Ward identities.

6.2 General Ward Identity

To derive the general Ward identity we will make a change of variables in the generating
functional Z[J ]. The functional integral is given by

Z[J ] =

∫
Dφa e

i
(
S[φa(x)]+

∫
d4xJaφa(x)

)
, (6.6)

where the index a runs over the number of �elds. Changing variables from φ to φ′ does
not change anything, since it is just a label. So, choosing the new variables to be the
in�nitesimal transformations that leave L unchanged, given by φ

′
a = φa + δφa, we �nd

Z[J ] =

∫
Dφa e

i
(
S[φa(x)+δφa(x)]+

∫
d4xJa(φa(x)+δφa(x))

)
,

= Z[J ] + i

∫
Dφa

∫
d4x
(δS[φa(x)]

δφa(x)
+ Ja

)
δφa(x) +O2(δφa(x)), (6.7)

where we assumed the measure to be invariant under the symmetry transformation. We
already noted that the extra terms induced by this change of variables should add up to
zero at each order of δφa. We therefore �nd

0 =

∫
Dφa

∫
d4x ei

(
S[φa(x)]+

∫
d4xJaφa(x)

)(δS[φa(x)]

δφa(x)
+ Ja

)
δφa(x). (6.8)

The Ward identities now follow by taking n functional derivatives with respect to Ji(xi)
and then setting J = 0. For n = 1 the result reads

0 =

∫
Dφa

∫
d4x eiS[φa(x)]

(δS[φa(x)]

δφa(x)
iφb(xb) + δabδ

4(x− xb)
)
δφa(x). (6.9)

Since the path integral computes vacuum expectation values of time ordered products we
can express the relation above in terms of operator �elds,

0 = i 〈0|T{∂ · j(x)φb(xb)} |0〉+ δabδ
4(x− xb) 〈0|T{δφa(x)} |0〉 , (6.10)

where we used equation (6.5), in which we used that δL = 0 for the symmetry transfor-
mations used. The generalization to n �elds in the Ward Identity then follows naturally,

0 = i 〈0|T{∂ · j(x)

n∏
i=1

φi(xi)} |0〉+

n∑
i=1

〈0|T{φ1(x1) . . . δai δ
4(x− xi) δφa(x) . . . φn(xn)} |0〉 .

(6.11)

There are di�erent methods of deriving Ward Identities. It is common to start with a
correlation function of the desired process and then use �eld transformations to �nd the
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corresponding Ward Identity. The transformations used to derive the Ward identity do
not necessary have to be the full symmetry transformations under which the Lagrangian
is invariant. For example, one of the methods only uses the transformations of the fermion
�elds and not the transformation of the gauge �eld to arrive at the desired Ward identity
[14]. Furthermore one could use the full gauge transformations to construct the Ward Iden-
tity, as explained in [15]. Lastly one could use the transformations under which the full
quantum action is invariant, which are the BRST-transformations as explained in section
2.4. This method will yield the same Ward Identity as well.

In the presence of a Wilson Line the equivalence of those methods can be non-trivial.
Therefore we will discuss all methods described above to obtain a Ward identity for a QED
(non-)radiative process in chapter 8. Finally, we shall generalize this to a non-abelian
theory.
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Chapter 7

Low's Theorem

Low has shown [1] that when one expands a radiative amplitude in powers of the radiated
photon energy q, the �rst two terms of this expansion can be obtained given the nonradia-
tive process. His analysis relies on the observation that the radiative amplitude contains
two types of contributions: terms where the photon is emitted from an external line and
terms where the photon is radiated from internal propagators. In the next section we will
review Low's theorem of radiative amplitudes [1], which was extended by Brunett and
Kroll to charged particles with spin [16]. Later Del Duca showed that in the high energy
limit, the original form of Low's theorem (which is a low energy theorem) holds in the
region q0 � m2/E [2]. In the following section we will mainly follow [14]. Thereafter we
will extend Low's theorem as Del Duca did [2].

+

k

p1

p2

+

k

p1

p2

k

p1

p2

Γµ
H H H

Figure 7.1: The radiative ampltude contributions come from

7.1 Radiative amplitude

Let us start with the scattering amplitude Γµ which corresponds to a single soft photon
emission from a hard interaction of two external scalar particles. The emitted gluon can
either be radiaton from one of the external legs or from within the hard interaction part
of the amplitude, as depicted in �gure 7.1. Using standard Feynman rules for scalar QED,
we �nd

Γµ =
e (2p1 − k)µ

−2p1 · k
Γ[(p1 − k)2, p2

2, (p1 − k) · p2)]

+
e (2p2 + k)µ

2p2 · k
Γ[p2

1, (p2 + k)2, p1 · (p2 + k)] + Γµint, (7.1)
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where Γ[p2
1, p

2
2, p1 ·p2] is the non-radiative amplitude and Γµint includes all possible emissions

from within the hard interaction.

If we now let k go soft, we may expand equation (7.1) around k = 0. We �nd

Γµ =
epµ1
−p1 · k

(
Γ− 2p1 · k

∂Γ

∂p2
1

− p2 · k
∂Γ

∂p1 · p2

)
+
( ekµ

2p1 · k
+

ekµ

2p2 · k
)

Γ

+
epµ2
p2 · k

(
Γ + 2p2 · k

∂Γ

∂p2
2

+ p1 · k
∂Γ

∂p1 · p2

)
+ Γµint +O(k), (7.2)

where Γ should be read as Γ[p2
1, p

µ
2 , p1 · p2]. Now one should note that we have an on-shell

external photon coupling to Γµ. Gauge invariant theories imply gauge invariant amplitudes
and since polarisation vectors εµ are gauge dependent we require kµΓµ = 0 1, such that
unphysical polarisations are not present. Explicitly evaluating this constraint entails

kµΓµint = −2ep2 · k
∂Γ

∂p2
1

− 2ep1 · k
∂Γ

∂p2
2

− ek · (p1 + p2)
∂Γ

∂p1 · p2
. (7.3)

This relation must hold for all values of k, so the relation above is still true after removing
factors of kµ. Inserting this constraint on Γµint back in equation (7.2) we �nd

Γµ =

(
e(p1 − k)µ

−p1 · k
+
e(p2 + k)µ

p2 · k

)
Γ

+ e

(
pµ1 (k · p2 − k · p1)

p1 · k
+
pµ2 ((k · p1 − k · p2)

p2 · k

)
∂Γ

∂p1 · p2
+O(k) (7.4)

From this result we conclude soft radiative amplitude is, to next-to-leading power in k,
fully determined by the non-radiative amplitude. This is Low's theorem [1], although it is
often applied speci�cally to the �rst order term O(1/k). Furthermore we note that the �rst
order term is exactly the eikonal approximation of soft photon emission from a fermion
line. This is no coincidence, using the e�ective rules for soft photon emission given in
equation (4.3) and expanding all terms around k = 0 as we did before, we would end up
with O(1/k) in equation (7.4).

7.2 Extension of Low's Theorem

In the remaining part of this section we closely follow the work of Del Duca [2].

Let us consider a non-radiative process in which two fermions create an o�-shell photon.
We denote the amplitude by ρ(p1, p2). We can write the amplitude in a factorized form,

ρ(p1, p2) = H(p1, p2)S(n1, n2)

2∏
i=1

J(pi, ni), (7.5)

where J is the jet functions, S the soft function and H the hard function. This factorization
formula was already discussed in chapter 5. An equivalent discussion is also true for
abelian theories and is even less technical due to the absence of self-interactions. The
jet functions Ji(pi, ni) depend on pi and ni, which is the vector in the opposite-moving

1It can also be argued by noting that the photon couples to Γµ through the current of scalar electro-
dynamics. Current conservation therefore implies that kµΓµ = 0

41



p1

p2J1

H
k

p1

p2

n2

n1

J2

Figure 7.2: Photon emission from the hard subdiagram.

direction n1,2 ∼ p2,1. The jet function was already given in equation (5.9), and stated here
for convenience:

J(p) = 〈0|T{Φn(∞, 0)ψ(0)} |p〉 , (7.6)

with

Φn(∞, 0) = exp[−ig
∫ ∞

0
dλn ·A(λ)]. (7.7)

Now consider the emission of a soft photon with polarisation vector εµ from the diagram,
ρµε

µ. The photon is said to be soft when ωk < m, with m the mass of the fermions. This
regime is chosen such that there is no IR enhancements due to photon emissions from
fermion loops inside S, an explanation is behond the scoop of this thesis but can be found
in [11]. In the following discussion we do not consider the soft diagram explicitly, but it can
be seen as to be included in H. The radiative amplitude can be factorized in the same way
as ρ in equation (7.5). This tells us that the total radiative amplitude includes the emission
from both of the jets and the hard part, as shown in �gure 7.3 and 7.2 respectively. With
this understanding of factorization we write

ρµε
µ(k) = ρJµε

µ(k) + ρHµ ε
µ(k), (7.8)

where ρJµ includes emissions from both of the jets and ρHµ is the diagram where the photon
is emitted from H. Since the total radiative amplitude should be gauge independent we
know that the corresponding Ward identity, kµρ

µ = 0, imposes the following constraint

ρHµ k
µ = −ρJµkµ. (7.9)

One of the advantages of this is that ρHµ can be determined by ρJµ. The contribution of the
radiative jets to the full radiative amplitude is given by

ρJµε
µ =

2∑
a=1

H(pa + k, p′a)Jµ(pa, k, ua)J(p′a, u
′
a)ε

µ, (7.10)

where pa = p1,2, p
′
a = p2,1, ua = u1,2 and u′a = u2,1. Furthermore the de�nition for a

radiative jet reads

Jµ(p, k, u) = −i
∫
ddyei(p−k)·y 〈0|Φn(∞, y)ψ(y) jµ(0) |p〉 , (7.11)

where the current insertion jµ(0) indicates radiation.
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Before moving on with our investiation of ρHµ , let us now for a moment consider the
lowest order contribution to the radiative jet function, shown in �gure 7.4. In the derivation
of Low's theorem in the previous section we needed to expand the diagram around k = 0
in order to get to our �nal result. In order to do so for this diagram we need to expand
the (l2 + 2l · k)−1 term, comming from the internal propagator. Reminding ourselfs that
l2 = O(m2) and l0 = O(

√
s), expanding in soft photon momentum requires ωk < m2/

√
s.

We now would like to ease this energy constraint a bit by extending the energy regime
such that it also includes m2/

√
s < ωk < m.

We return to our original discussion on how to �nd ρHµ . The QED Ward identity for
the radiative jet function is given by the equation below. More details considering this
Ward identity will be provided in chapter 8.

kνJν(p1, n1) = −eJ(p1, n1), kνJν(p2, n2) = eJ(p2, n2). (7.12)

Implementing this radiative jet Ward identity in equation (7.10), we can obtain the am-
plitude for the emission of longitudinally polarized photon from the jet subdiagram

ρJµk
µ =

2∑
a=1

qaH(pa + k, p′a)

2∏
i=1

J(pi, ui), (7.13)

where qa denotes the charge of the jet-line (+e and −e as descirbed by equation (7.12)).
Now we would like to expand H(pa +k, p′a) in soft photon momentum, as we did for Low's
theorem. Expanding H to �rst order in momentum k of the emitted photon we �nd

H(pa + k, p′a) =
(

1 + kµ
∂

∂pµa

)
H(p1, p2) +O(k2). (7.14)

Inserting the expansion of H back in equation (7.13) and using the fact that
∑

a qa = 0 we
�nd

ρJµk
µ =

2∑
a=1

qak
µ ∂

∂pµa
H(p1, p2)

2∏
i=1

J(pi, ui). (7.15)

The full Ward identity for the radiative diagram in equation (7.9) now allows us to deter-
mine the photon emission from H, up to O(k0), to be

ρHµ ε
µ(k) = −

∑
a

qa
∂

∂pµa
H(p1, p2)

2∏
i=1

J(pi, ui), (7.16)
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Figure 7.3: Photon emission from one of the jets.
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Figure 7.4: Lowest order contribution to the radiative jet

where we used that physical (transverse) polarisations do not contribute at the level of the
amplitude [13] [1].

Now that we have determined ρHµ ε
µ(k) up to next-to-leading order, O(k0), we still need

to �nd ρJµε
µ(k). It will be convienient to introduce polarization tensors in the following

way [11]

εµ = Kµ
νε
ν +Gµνε

ν , (7.17)

with

Kµ
ν = kµ

(2p+ k)ν
2p · k + k2

, Gµν = gµν −Kµ
ν . (7.18)

E�ectively we rewrote our polarisation as a sum of two modi�ed polarization sums K and
G, instead of the real and virtual polarization splitting which we often use.

First consider the emission of a 'K-photon' from a jet. Using the Ward identities for
radiative jets in equation (7.12) and the explicit expression for the polarisation vector K
in equation (7.18), we obtain

Jν(pa, k, ua)K
ν
µ(pa, k)εµ(k) = qa

(2pa + k)µ
2pa · k + k2

εµ(k)J(pa, ua). (7.19)

The radiative amplitude for emission from the jet, equation (7.15), can now be expanded
up to O(k0). Using equations (7.19) and (7.14) we �nd the amplitude for emission of a
K-photon from the jet subdiagram to next-to-leading order

ρJνK
ν
µε
µ(k) =

2∑
a=1

qa
(2pa + k)µ
2pa · k + k2

εµ
[
1 + kν

∂

∂pνa
H(p1, p2)

] 2∏
i=1

J(pi, ui). (7.20)

Before devoting ourselfs to the last term in ρµε
µ, which is the emission of a G-photon

from the jet subdiagrmas, we will add the two terms we got up to here. Adding the emission
of the photon from H, ρHµ , with the emission of a K-photon from either of the jets, ρJνK

ν
µ,

we �nd up to O(k0)

(ρHµ ε
µ + ρJνK

ν
µ)εµ(k) =

2∑
a=1

qaε
µ(k)

[
(2pa + k)µ
2pa · k + k2

ρ(p1, p2)

−
( ∂

∂pµa
H(p1, p2)

)
Gνµ(pa, k)

2∏
i=1

J(pi, ui)

]
, (7.21)

where we have used the the de�nition of G in equation (7.18) to simplify the expression. A
more usefull form however is when there are no derivatives on H. The hard subdiagram is
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process dependent, while the jet functions are generic. This can be acomplished by using
the factorisation of ρ, given in equation (7.5). Acting on this equation we �nd

∂

∂pµa
ρ(p1, p2) =

(
∂

∂pµa
H(p1, p2)

) 2∏
i=1

J(pi, ni) +H(p1, p2)
∂

∂pµa

2∏
i=1

J(pi, ni). (7.22)

The derivative on H in equation (7.21) can therefore be replaced, resulting in

(ρHµ ε
µ + ρJνK

ν
µ)εµ(k) =

2∑
a=1

qaε
µ(k)

[( (2pa + k)µ
2pa · k + k2

−Gνµ(pa, k)
∂

∂pνa

)
ρ(p1, p2)

+H(p1, p2)Gνµ(pa, k)
∂

∂pµa

2∏
i=1

J(pi, ui)

]
. (7.23)

Two important observations can now be made:

• (7.23) holds for all spins; In other words there is no radiative jet present. Namely,
the current insertion in the de�nition of the radiative jet makes it dependend on the
spin of the external particles.

• (7.23) is gauge invariant. This can be checked by showing that longitudinal polari-
sations do not contribute.

Finally we consider the emission of a G-photon from the jets to �nd the total amplitude
ρµε

µ(k). It will be convenient to investigate some of the properties of G. We notice that
G-polarisations are transverse

Gµν(p, k)kν = 0 (7.24)

Furthermore we see that G polarisations vanish upon contracting with (2p+ k)µ

(2p+ k)µG
µ
ν(p, k) = 0. (7.25)

From this one can conclude that pµG
µ
ν = O(k) and even more important, we can make a

connection to the �eld-strength tensor in momentum space

Gνµ(p, k)εµ(k) =
(2p+ k)µ
2p · k + k2

Fµν(k, ε(k)), (7.26)

with Fµν(k, ε(k)) = kµεν − kνεµ. It becomes clear that emission of a G-photon only
contributes to O(k0) and higher. The amplitude of emitting a G-photon from the jet is
obtained by implementing the G polarisation tensor in equation (7.10) as follows

ρJνG
ν
µε
µ =

2∑
a=1

H(pa + k, p′a)Jν(pa, k, ua)J(p′a, u
′
a)G

ν
µ(pa, k)εµ. (7.27)

First of all we note that this expression is gauge invariant as well, due to equation (7.24).
As argued above, projection with the G tensor ensures that this contribution starts at next-
to-leading power in the soft expansion. One may therefore retain only the zeroth order
term in the Taylor expansion of the shifted hard function, equation (7.14). Combining the
resulting expression for an emission of G-photons from the jets with equation (7.23) yields
the total radiative amplitude to O(k0)

ρµ(p1, p2, k)εµ(k) =
2∑

a=1

[
qa

(
(2pa + k)µ

2pa · k + k2
+Gνµ(pa, k)

∂

∂pνa

)
ρ(p1, p2) (7.28)

+H(p1, p2)Gνµ(pa, k)

(
qa

∂

∂pνa
j(pa, na)− Jν(pa, k, na)

)
J(p′a, n

′
a)

]
,
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This form is the extension of Low's theorem to m2/
√
s < ωk < m. Note that in this form

it is spin dependent, since the radiative jets depend on the spin of the external lines. A
more elaborated discussion on the valid region can be found in [2].
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Chapter 8

Radiative Jets

In our discussion of factorization we constructed jet functions, which contained the collinear
participants of the amplitude. In Del Duca his extension of Lows theorem, which we dis-
cussed in the previous chapter, a new object arose: the radiative jet. This is nothing
more than a jet with one more gauge boson emission. In this chapter we will look more
closely at the Ward identities for the radiative jet, which are an important tool to prove
the NLP factorization[2]. We will start by considering a QED radiative jet and show that
there exsist a Ward identity which relates it to the non-radiative jet. Thereafter we will
generalize to QCD and try to prove that the same Ward identity is still valid.

First, let us consider the de�nitions for the QED radiative and non- radiative jets, given
by

Jµ(p, k, n)us(p) = −i
∫
ddyei(p−k)·y 〈0|Φn(∞, y)ψ(y) jµ(0) |p, s〉 ,

J(p, n)us(p) = 〈0|Φn(∞, 0)ψ(0) |p, s〉 . (8.1)

Remember that eiSint is always implicitly present in correlators to generate the higher
order contritutions to the interaction. The state |p, s〉 describes an incoming fermion with
momentum pµ and spin s = 1, 2 (up,down). The jet function was already discussed in
chapter 5. The de�nition of the radiative jet most easily obtained by looking at its structure
at tree level, see �gure 8.1. The insertion of the QED current jµ(x) = gψ̄(x)γµψ(x) allows
for the emission of a photon. The internal propagator with momentum p−k is found after
the Wick contraction between ψ(y) and (̄ψ)(0) in jµ(0). The integral and phase factor
are inserted to describe the propagator in momentum space. The other elements in the
de�nition of the radiative jet are similar to the non-radiative one.

Figure 8.1: Radiative jet at tree level
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Upon LSZ reduction the incoming fermion state, as explained in appendix G, yields

|p, s〉 =

∫
ddx ψ̄(x) |0〉 (

←
i∂) e−ip·x us(p) (8.2)

Using this in equation (8.1) we �nd that the operator matrix element for the radiative jet
is given by 〈0|Φn(∞, y)ψ(y)ψ̄(x) |0〉.

The action SQED is invariant under the abelian gauge transformation given by

ψ(x)→ ψ′(x) = eieθ(x)ψ(x),

ψ̄(x)→ ψ̄′(x) = ψ̄(x)e−ieθ(x),

Aµ(x)→ A′µ(x) = Aµ(x)− ∂µθ(x). (8.3)

Also the bilinear ψ̄(x1)Φ(x1, x2)ψ(x2) is invariant under these transformations. To see how
this is true we will look at the transformation of the Wilson line under the transformations
in equation (8.3). The result,

Φ′(x1, x2) = exp
[
− ie

∫ x2

x1

dx ·A′(x)
]
,

= exp
[
− ie

∫ x2

x1

dx · (A(x)− ∂θ(x)
]
,

= Φ(x1, x2) eieθ(x2) e−ieθ(x1). (8.4)

explicitly shows that the transformations of ψ and ψ̄ will be cancelled, so the bilinear is
invariant.

Note that the Φ(∞, 0)ψ(0) is gauge invariant as well. The Wilson line transports the
gauge transformation to in�nity, where we set it to zero.

8.1 Ward Identity

We are now ready to construct the Ward identity for the (non-)radiative jets in equation 8.1.
We will start with the method described by [14], which only uses the tranformations of the
fermion �eld alone. We show that, even in the presence of Wilson lines, this is equivalent
to exploiting the full gauge transformations to �nd the Ward identity [15]. Finally we will
treat the BRST-method of �nding a Ward identity, since this one is potentially best for a
generalization to non-abelian gauge theories such as QCD.

8.1.1 Partial Gauge Transformation

The goal is to derive a Ward identity for the radative jet in equation (8.1), which upon
LSZ reduction yields

Jµ(p, k, n)us(p) = −i
∫
ddyei(p−k)·y

∫
ddx 〈0|Φn(∞, y)ψ(y)ψ̄(x) |0〉

←
(i�∂x) e−ip·x us(p).

(8.5)

In order to do so we will consider the gauge transformation of the fermion �eld, given in
equation (8.3), but assume that the gauge �eld Aµ(x) does not transform. Under these
transformations the Lagrangian is not invariant, but changes by a factor

δLQED = −e∂µθψ̄γµψ = − (∂µθ) j
µ(x). (8.6)
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We now proceed by considering the operator matrix element for the radiative jet,
〈0|Φn(∞, y)ψ(y)ψ̄(x) |0〉. As described in section 6.2, the �rst step in �nding a Ward
identity is to change to path integral formalism.

〈0|Φn(∞, y)ψ(y)ψ̄(x) |0〉 =

∫
DψDψ̄DAeiSQEDΦn(∞, y)ψ(y)ψ̄(x). (8.7)

We then make a change of variables from ψ and ψ̄ to ψ′ and ψ̄′, which does not change
the value of the path integral.

〈0|Φn(∞, y)ψ(y)ψ̄(x) |0〉 =

∫
Dψ′Dψ̄′DAeiSQEDΦn(∞, y)ψ′(y)ψ̄′(x). (8.8)

In this case we will change ψ and ψ̄ according to the symmetry transformations in equatin
(8.3) as mentioned earlier. Since we are not performing a change in variables on the gauge
�eld A, the Lagrangian changes according to equation (8.6). We �nd

(8.8) =

∫
DψDψ̄DAeiSQED−i

∫
ddz∂µθ(z)jµ(z) Φn(∞, y)(ψ(y) + ieθ(y)ψ(y) +O(θ2))

× (ψ̄(x)− ieθ(x)ψ̄(x) +O(θ2)),

= original expression +

∫
DψDψ̄DAeiSQED Φn(∞, y)

× i
∫
ddz

(
∂µj

µ(z)ψ(y)ψ̄(x) + ieδd(z − y)ψ(y) ¯ψ(x)− ieδd(x− z)ψ(y) ¯ψ(x)
)
θ(z) +O(θ2),

(8.9)

where we used the fact that the measure is invariant under these transformations since
the Jacobian is unity; the phases arising from the transformations of ψ and ψ̄ cancel each
other. Furthermore, θ(z) is factored out after partial integration in the last line. Since we
obtain the original expression on the right hand side, all extra terms should vanish. This
results in the following Ward identity

〈0|Φn(∞, y)∂ · j(z)ψ(y)ψ̄(x) |0〉 = e
(
δd(z − x)− δd(z − y)

)
〈0|Φn(∞, y)ψ(y)ψ̄(x) |0〉 .

(8.10)

In order to see what this Ward identity means on the level of the radiative jets we de�ne

f(z) =

∫
ddy ei(p−k)·y

∫
ddx 〈0|Φn(∞, y)ψ(y)ψ̄(x)∂ · j(z) |0〉 i

←
�∂xe

−ip·xus(p). (8.11)

Partial integration of ∂ · j(z) gives an object we shall call f(0) = kµJµ(p, k, n)us(p), where
the argument refers to z = 0 in (8.11). Note that the sign of this expression is related
to an outgoing photon with momentum k. On the other hand, if we substitute equation
(8.10) in (8.11) we �nd that

f(0) =

∫
ddyei(p−k)·y

∫
ddx
[
− e δd(y) 〈0|Φn(∞, y)ψ(0)ψ̄(x) |0〉

+ e δd(x) 〈0|Φn(∞, y)ψ(y)ψ̄(0) |0〉
]
i
←
�∂x e

−ip·x us(p). (8.12)

Wick contraction of ψ with ψ̄ gives a fermion propagator in real space. Partial integration
of i∂x yields a factor −�p. Then, in the �rst term of equation (8.12) the �p from partial
integration is cancelled by the propagator . However, in the second term the propagator
yields a factor 1/(�p−�k) and therefore the �p annihilates us(p). We conclude that only the
�rst term gives a contribution to the Ward identity, which now yields

kµJµ(p, k, n) = −eJ(p, n), (8.13)

as we need for factorization theorems at NLP.
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8.1.2 Full Gauge Transformation

We will now rederive the abelian identity given in equation (8.13) by exploiting the full
gauge transformations, as in [14]. We will see that in the presence of the Wilson line the
equivalence with the method described in the previous section is non-trivial. It turns out
that we need to add the divergence of an eikonal source to connect the di�erent Ward
identities.

Consider again the matrix element in equation (8.7), and again perform a change of
variables. This time however, according to the full gauge transformations described in
equation (8.3). The classical QED action is invariant under these transformations, but the
full quantum action is not. The gauge �xing term derived in section 2.2 namely changes.

LGF = −ξ
2

(∂ ·A)2 ⇒ δLGF = ξ ∂ ·A2θ. (8.14)

Since we are now considering the full gauge transformations, the Wilson line will transform
as well. As a result the combination Φn(∞, y)ψ(y) is now invariant, assuming θ(∞) = 0
because the variation on the boundary vanishes. Using these building blocks a variation of
the matrix element, after changing variables and substituting the transformations, yields

〈0|Φn(∞, y)ψ(y)ψ̄(x) |0〉 =

∫
DψDψ̄DAeiSQED(1 + iξ

∫
ddzθ(z) 2 ∂ ·A(z) +O(θ2))

× Φn(∞, y)ψ(y)ψ̄(x)(1− ieθ(x) +O(θ2)),

= original expression +

∫
DψDψ̄DAeiSQED

∫
ddz

× (iξθ(z) ·A(z)− ie δd(z − x)θ(x)) Φn(∞, y)ψ(y)ψ̄(x) +O(θ2),
(8.15)

where we used that also the measure of A is invariant, since the shift in the gauge �eld is
purely additive. From this we can obtain the Ward identity

〈0| ξ2∂ ·A(z)Φn(∞, y)ψ(y)ψ̄(x) |0〉 = eδd(z − x) 〈0|Φn(∞, y)ψ(y)ψ̄(x) |0〉 . (8.16)

In the absence of the Wilson line one could simply make the replacement ξ2∂ ·A→ ∂ · j.
If this replacement is made in the matrix element above we would �nd a Ward identity
di�erent from the one in equation (8.10). Even worse is that the missing term is the one
that will generate the Ward identity for the radiative jet given in equation (8.13). The
important observation now is that the substitution ξ2∂ · A → ∂ · j is not allowed in the
presence of the Wilson line, since its presence induces more photon sources.

To investigate where the di�erence between the two Ward identities arises let us expand
the Wilson line

Φn(∞, y) =
∞∑
m=0

(−ie)m
m!

∫ m∏
i=1

dµixi Aµ1(x1) . . . Aµm(xm), (8.17)

such that

λ2z 〈0| ∂ ·A(z)Φn(∞, y)ψ(y)ψ̄(x) |0〉

=
∞∑
m=0

(−ie)m
m!

∫ m∏
i=1

dµixi
[
λ2z 〈0| ∂ ·A(z)

m∏
i=1

Aµi(xi)ψ(y)ψ̄(x) |0〉
]
. (8.18)
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We can use the general Ward Identity for local gauge transformations on the metric element
above, derived in the appendix E and given by

−λ2z 〈0| ∂ ·A(z)
m∏
i=1

Aµi(xi)ψ(y)ψ̄(x) |0〉 =
m∑
j=1

〈0|
m∏
i 6=j

Aµi(xi)ψ(y)ψ̄(x) |0〉
[
i∂µjδ(xj − z)

]
+ e 〈0|

m∏
i=1

Aµi(xi)ψ(y)ψ̄(x) |0〉 [δ(y − z)]

− e 〈0|
m∏
i=1

Aµi(xi)ψ(y)ψ̄(x) |0〉 [δ(x− z)] , (8.19)

to write

(8.18) =

∞∑
m=0

(−ie)m
m!

∫ m∏
i=1

dµixi
∑
j=1m

〈0|
m∏
i 6=j

Aµi(xi)ψ(y)ψ̄(x) |0〉 (−i∂µjδd(xj − z))

− e 〈0|Φn(∞, y)ψ(y)(̄ψ)(x) |0〉 δd(z − y) + e 〈0|Φn(∞, y)ψ(y)(̄ψ)(x) |0〉 δd(z − x),
(8.20)

where the series are resummed to the Wilson line in the last two terms, since the photon
�elds are una�ected. Let us de�ne Sm as

Sm =
(−ie)m
m!

∫ m∏
i=1

dµixi

m∑
j=1

〈0|
m∏
i 6=j

Aµi(xi)ψ(y)ψ̄(x) |0〉 (−i∂µjδd(xj − z)). (8.21)

The only dependence on xj is found in the delta function and therefore the integral over
xj can be performed, yielding∫ ∞

y
dx

µj
j ∂µjδ

d(z − xj) = −δd(z − y). (8.22)

Since z is the location of insertion for ∂ · A and A(∞) = 0 the contribution at in�nity
vanishes in the above equation. So after performing the integration over xj we can write
Sm as

Sm =i
(−ie)m
m!

∫ m∏
i 6=j

dµixi

m∑
j=1

〈0|
m∏
i 6=j

Aµi(xi)ψ(y)ψ̄(x) |0〉 (δd(z − y)),

=e
(−ie)m−1

(m− 1)!

∫ m−1∏
i

dµixi 〈0| Aµi(xi)ψ(y)ψ̄(x) |0〉 (δd(z − y)), (8.23)

where in the second line the sum over j was performed, which yields m identical terms.
Now re-exponentiate the Wilson line by summing Sm over m,∑

m

Sm = eδd(z − y) 〈0|Φm(∞, y)ψ(y)ψ̄(x) |0〉 . (8.24)

Using this result we see that the �rst two terms in equation (8.20) cancel and we recover
the Ward identity from equation (8.16). As shown, the Wilson line contribution exactly
cancels the terms in the Ward identity that arise at the 'y end' of the fermion line, where
the �eld ψ(y) resides. This was expected since the Wilson line carries the gauge variantion
of ψ(y) to in�nity, where it vanishes.

As already mentioned the Ward identities arising from a full gauge transformation,
equation (8.16), and a partial gauge transforamtion, equation (8.10), are clearly di�erent.
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The di�erence between the two can be bridged by changing from λ2∂ · A→ ∂ · j + ∂ · Σ.
Here Σ is a so called eikonal source given by Σµ(x, n) = e nµ

∫∞
0 dλ δd(x − λn), which

makes up for the presence of the Wilson line. To be more precise, Sigma makes up for the
contribution in (8.21) and ∂ · Σ is exactly (8.21).

8.1.3 BRST Method

Ward Identities for the radiative jet can also be constructed with the BRST formalism.
The only di�erence is that we should start with a matrix element

〈0| c̄(z)Φn(∞, y)ψ(y)ψ̄(x) |0〉 . (8.25)

This is not yet clear, but it will turn out that it produces the right Ward Identity. Imposing
invariance under the abelian BRST transformations, which are given by equation (2.29) in
the case that fabc = 0, leads to the Ward identity

〈0| ξ∂ ·A(z)θΦn(∞, y)ψ(y)ψ̄(x) |0〉+ ie 〈0| c̄(z)Φn(∞, y)ψ(y)c(x)θψ̄(x) |0〉 = 0, (8.26)

where we used the invariance of Φn(∞, y)ψ(y). In the second term we can perform a
contraction of the ghost �elds. In QED the ghost �elds do not interact with other �elds in
the theory such that the ghost �elds can be eliminated by performing a Wick contraction,
which yields

c(w)c̄(z) = i

∫
ddk

(2π)d
eik(w−z)

k2 + iε
(8.27)

Now act with the 2z operator on all terms in equation (8.26). Since the free ghost propaga-
tor is a Green's function of the box operator the second term will become a delta function
δ(z − x). The �nal result is exactly the Ward identity in equation (8.16).

Note that in QCD the ghost �elds interact with other �elds through the vertex given
in equation (2.27). In that case one should use the complete ghost propagator, de�ned by
the two-point function to all orders in perturbation theory.

One could now bridge the gap to the most relevant Ward identity in equation (8.10) by
making the substitution λ2∂ ·A→ ∂ · j + ∂ · Σ, as was explained in the previous section.
However, for the generalization to QCD we want a more general method of recovering the
relevant Ward Identity. Namely, we are unsure what the substitution for λ2∂ · A will be
in a non-abelian theory. In what follows we will explain an alternative way to produce the
most relevant Ward identity by means of a 'local BRST transformation'.

Local BRST transformation

It was already proven in section 2.4 that the action SQED is invariant under the BRST
transformations. Taking θ to be a local parameter, one �nds that upon varying with
respect to the 'local' BRST transformations the QED Lagrangian changes according to
δL = jµBRST∂µθ. In the abelian limit the BRST-current given by equation (2.32) simpli�es
to

jµBRST = −Fµν∂νc+ eψ̄γµψc− ξ∂ ·A∂µc. (8.28)

Consider now the matrix element in equation (8.25). As before we switch to path integral
formalism and perform a change of variables. Choosing the new variables to be the BRST
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transformations on the �elds, under which the measure remains invariant, we �nd

〈0| c̄(z)Φn(∞, y)ψ(y)ψ̄(x) |0〉 =

∫ ∏
�elds

[Dφ] eiSQED(φ)+i
∫
jµ
BRST

∂µθ

×
[
c̄(z) + ξ∂ ·A(z)θ(z)] Φn(∞, y)ψ(y) [ψ̄(x) + ieψ̄(x)c(x)θ(x)

]
,

(8.29)

where the product over �elds denotes that there should be a path integral for each �eld in
the theory. This will produce the following Ward identity:

〈0| ∂ · jBRST(w)c̄(z)Φn(∞, y)ψ(y)ψ̄(x) |0〉 = iξ δd(z − w) 〈0| ∂ ·A(z)Φn(∞, y)ψ(y)ψ̄(x) |0〉
−eδd(x− w) 〈0| c̄(z)Φn(∞, y)ψ(y)ψ̄(x)c(x) |0〉 .

(8.30)

Note that integrating in
∫
ddw the left hand side of this equation vanishes, because the

current is zero on the boundary. One therefore recovers the Ward identity from equation
(8.16). This is precisely the Ward Identity obtained by imposing BRST invariance of the
matrix element.

The goal is not met, since we would like to reproduce the most relevent Ward identity
directly. In order to do so we write the divergence of the BRST current as

∂ · jBRST = −OAν∂νc+Oc̄ ξ ∂ ·A+ ∂ · jEM c, (8.31)

where the operators OAν and Oc̄ vanish by the equations of motion of the gauge and ghost
�eld respectively. Therefore we can write

〈0| ∂ · jBRST(w)c̄(z)Φn(∞, y)ψ(y)ψ̄(x) |0〉 = −〈0|OAν (w)∂νc(w)c̄(z)Φn(∞, y)ψ(y)ψ̄(x) |0〉
+ 〈0|Oc̄(w)ξ∂ ·A(w)c̄(z)Φn(∞, y)ψ(y)ψ̄(x) |0〉
+ 〈0| ∂ · jEM(w)c(w)c̄(z)Φn(∞, y)ψ(y)ψ̄(x) |0〉 .

(8.32)

This allows us to recover the Ward identity for the electromagnetic current from the Ward
Identity in equation (8.30) for the BRST current. To end up with the Ward identity it
is important to know the impact of the operators OAν and Oc̄, present in the RHS of
equation (8.32). Let Oφi be an operator that vanishes upon imposing the equations of
motoin for the corresponding �eld φi, where φi can represent any �eld in the theory. For
such operators there exist an operator identity

〈0|OφiX |0〉 = i 〈0| δX
δφi
|0〉 , (8.33)

where X is any combination of �elds. A proof can be found in appendix C. This can be
used in equation (8.32) to reduce the RHS. For the term involving the operator OAν this
is somewhat non trivial so we will discuss this in more detail. A variation of the Wilson
line to the gauge �eld is given by

δΦn(∞, y)

δAν(w)
= −ie δ

δAν(w)

[ ∫ ∞
y

dvµAµ(v)
]
Φn(∞, y)

= −ie
∫ ∞
y

dvν δ
d(v − w) Φn(∞, y). (8.34)
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This step in the derivation of the Ward Identity is not easily generalized to non-abelian
theories as we will see later. If we now apply equation (8.33) to the term in equation (8.32)
involving the OAν it can be rewritten to

〈0|OAν (w)∂νc(w)c̄(z)Φn(∞, y)ψ(y)ψ̄(x) |0〉 = e

∫ ∞
y

dvν δd(v − w)

× 〈0| ∂νc(w)c̄(z)Φn(∞, y)ψ(y)ψ̄(x) |0〉 (8.35)

Doing the same for the other terms in equation (8.32) yields

−eδd(x− w) 〈0| c̄(z)Φn(∞, y)ψ(y)ψ̄(x)c(x) |0〉 =

− e
∫ ∞
y

dvν δd(v − w) 〈0| ∂νc(w)c̄(z)Φn(∞, y)ψ(y)ψ̄(x) |0〉

+ 〈0| ∂ · jEM(w)c(w)c̄(z)Φn(∞, y)ψ(y)ψ̄(x) |0〉 , (8.36)

where we substituted equation (8.30) for the LHS. This caused the cancellation of iξδd(z−
w) 〈0| ∂ ·A(w)Φn(∞, y)ψ(y)ψ̄(x) |0〉 which appeared on both sides. To get rid of the ghost
�elds we perform a Wick contraction, see (8.27). Then one acts with the 2z on the resulting
equation. Doing so results in

− ieδd(x− w)δd(x− z) 〈0|Φn(∞, y)ψ(y)ψ̄(x) |0〉
=

+ie

∫ ∞
y

dvν δd(v − w)
∂

∂wν
δd(w − z) 〈0|Φn(∞, y)ψ(y)ψ̄(x) |0〉

−iδd(w − z) 〈0| ∂ · jEM(w)Φn(∞, y)ψ(y)ψ̄(x) |0〉 (8.37)

Integrating over w now results in the well known Ward identity

〈0| ∂ · jEM(z)Φn(∞, y)ψ(y)ψ̄(x) |0〉 = e (δd(x− z)− δd(y − z)) 〈0|Φn(∞, y)ψ(y)ψ̄(x) |0〉 .
(8.38)

In the absense of the Wilson line this construction works as well. There are two small
adjustments. Firstly there appears an extra term on the RHS from transforming ψ(y),
since the invariant combination Φn(∞, y)ψ(y) is absent. Secondly the term in equation
(8.32) with the operator OAν vanishes due to the absence of gauge �elds in the correlator.
Together they will make sure that even in the absence of the Wilson line the Ward identity
from equation (8.38) still holds.

8.2 Non-Abelian Ward Identity

To generalize to non-abelian gauge theories, the BRST method using the local transforma-
tions seems the most suited to �nd the Ward identity for the radiative jet. We therefore
start with the matrix element

〈0| c̄(z)Φn(∞, y)ψ(y)ψ̄(x) |0〉 . (8.39)

Changing variables with respect to the local non-abelian BRST transformations, which are
given by equation (2.29) leads again to

〈0| ∂ · jaBRST(w)c̄(z)Φn(∞, y)ψ(y)ψ̄(x) |0〉 = iξ δd(z − w) 〈0| ∂ ·A(z)Φn(∞, y)ψ(y)ψ̄(x) |0〉
−gδd(x− w) 〈0| c̄(z)Φn(∞, y)ψ(y)ψ̄(x)c(x) |0〉 .

(8.40)
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but here with the non-abelian BRST-current given in equation (2.32). Note that we have
used the fact that the combination Φn(∞, y)ψ(y) is gauge invariant, as was the case in
abelian theories. This can be argued from the transformation properties of the non-abelian
Wilson line, given in equation (4.19).

In section 2.4 we already showed that the non-abelian BRST-current is conserved on
shell. There is however a more usefull prescription of ∂ · JBRST, which makes the link to
the classical QCD current (present in the non-abelian version of the radiative jet), namely:

∂ · JBRST =− OµA · ∂µc+ ξ ∂ ·AOc̄ + ∂ · (jaQCD)ca −
1

2
gfabcc

bccOca

− gfabcAbµOµ,cA ca − gfabcAbµ(∂νF
µν + JµQCD)ca, (8.41)

where JµQCD is given in equation (2.35). Unfortunately, written in the way above, conser-
vation of the BRST-current is not manifest. Due to the precence of ghosts and the gauge
�xing term in the quantum theory, JµQCD is not conserved on shell. There might be a way
out using the work of Kugo and Ojima[17]. They showed that

∂µF
νµ + gJµ = {QBRST, Dµc̄}, (8.42)

where QBRST is the conserved BRST charge. We know that QBRST annihilates all physical
states [18]. Therefore,

〈phys| (∂µF νµ + gJµ) |phys〉 = 0. (8.43)

Using equation (8.41) in the LHS of (8.40) we �nd

〈0| ∂ · jBRST(w)c̄(z)Φn(∞, y)ψ(y)ψ̄(x) |0〉
=− 〈0|OµA(w) · ∂µc(w)c̄(z)Φn(∞, y)ψ(y)ψ̄(x) |0〉

+ 〈0|Oc̄(w)ξ ∂ ·A(w)c̄(z)Φn(∞, y)ψ(y)ψ̄(x) |0〉
+ 〈0| ∂µjµQCD(w) · c(w)c̄(z)Φn(∞, y)ψ(y)ψ̄(x) |0〉

− 〈0| 1
2
g(c(w)× c(w)) ·Oc c̄(z)Φn(∞, y)ψ(y)ψ̄(x) |0〉

− 〈0| g(Aµ(w))×OµA(w)) · c(w)c̄(z)Φn(∞, y)ψ(y)ψ̄(x) |0〉
− 〈0| g(Aµ × (∂νF

µν + JµQCD)) · c(w)c̄(z)Φn(∞, y)ψ(y)ψ̄(x) |0〉 . (8.44)

The �rst three terms are similar to the ones in (8.32). The fourth term vanishes, due to the
Dyson equation (8.33). For the �fth term we need a special form of the Dyson equatons,

〈χ×OχF 〉 = i

〈
χ× δF

δχ

〉
. (8.45)

Lastly we assume that the last term in equation (8.44) vanishes due to an extension of
(8.43). This however is not fully proved. A formal prove for this assumption will be
investigated in future research. Pushing through and using equation RHS of equation
(8.40), we �nd

i 〈0| ∂ · JaQCD(z)Φn(∞, y)ψ(y)ψ̄(x) |0〉 =δ(y − z)gta 〈0|Φn(∞, y)ψ(y)ψ̄(x) |0〉
− δ(x− z) 〈0|Φn(∞, y)ψ(y)ψ̄(x) |0〉 gta (8.46)

which leads to the Ward identity we wanted to �nd

kµJ
a,µ(p, k, n) = gJ(p, n). (8.47)
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This is not yet a full proof. First of all, we used the assumption that

〈0| g(Aµ × (∂νF
µν + JµQCD)) · c(w)c̄(z)Φn(∞, y)ψ(y)ψ̄(x) |0〉 = 0, (8.48)

as a result of equation (8.43). Secondly, during the derviation we used

δΦn(∞, y)

δAν(w)
= −ie

∫ ∞
y

dvν δ
d(v − w) Φn(∞, y). (8.49)

Although this is most probably true for the non-abelian case as well, we still need to check
this.
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Summary and Outlook

In this thesis we �rst studied the factorization of soft gluons. The extension to next-
to-soft gluons is not so clear, but can be studied using the work of Del Duca [2]. We
mainly focussed on the Ward identity of the radiative jet in QCD, which has important
implications for NLP factorization. With the use of the radiative jet Ward identity, the
radiative amplitude can be found to O(k0) in terms of the non-radiative amplitude. We
found that the Ward identity for the radiative jet is most probably given by

kµJ
a,µ(p, k, n) = gJ(p, n). (8.50)

In further research the Ward identity can be checked on a diagram-by-diagram basis.
This will give an extra argument on whether or not we found the right non-abelian gen-
eralization of the Ward identity. There is also still work in sorting out the last details
considering the derivation of the Ward identity. Furthermore, once the correctness of the
identity is established, one could generalize to gluon initiated jets. These arise in gluon
fusion processes, as for example in Higgs-production.

The tools discussed in this thesis, with the focus on Ward identities for radiative jets,
are important for NLP factorization theorems. The ultimate goal is to �nd a factorization
which holds up to NLP and make resummation of the NLP logarithms possible.
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Appendix A

Conventions

In this thesis we use the (+ − −−) metric. Underneath we list some corresponding con-
ventions and usefull identities.

L0 = ψ̄(x)(i�∂ −m)ψ(x)

Sαβ =
i(�p+m)αβ
p2 −m2 + iε

φ(x) =

∫
d4k

(2π)4
e−ikxφ(k)

φ(k) =

∫
d4xeikxφ(x)

Operator expansions for the scalar and Dirac �eld in this metric are given by

ψ(x) =

∫
d3p

(2π)3

1√
2Ep

∑
s

(aspu
s(p)e−ip·x + bs†p v

s(p)eip·x)

φ(x) =

∫
d3p

(2π)3

1√
2Ep

∑
s

(aspe
−ip·x + as†p e

ip·x) (A.1)

where the Dirac spinors obey the following Dirac equations and normalization

(�p−m)us(p) = 0

(�p+m) vs(p) = 0∑
s

usa(p)ū
s
b(p) = (�p+m)ab∑

s

vsa(p)v̄
s
b(p) = (�p−m)ab (A.2)

Some other usefull identities for Gamma matrices and Dirac spinors read

{γµ, γν} = 2ηµν

γ0γµγ0 = γµ†

v̄s(p)γ
0us(p) = 0

v̄s(p)γ
0vs′(p) = 2Ep δss′

ūs(p)γ
0us′(p) = 2Ep δss′

v̄s(p)vs′(p) = −2mδss′

ūs(p)us′(p) = 2mδss′ (A.3)
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Appendix B

Feynman Rules

Below we list the Feynman rules for the QCD Lagrangian given in equation (2.28). The
QCD �elds can interact with each other through the following vertices:

µ

b

c

a

p

= gpµfabc

µ

j

i

a = −igγµ(ta)ij

k1
a
α

k2

b
β

c
γ

k3
= −gfabc[gαβ(k1 − k2)γ + gβγ(k2 − k3)α + gγα(k3 − k1)β]

a
α

b β

c
γ d

δ

= −ig2

 fabef cde(gαγgβδ − gαδgβγ)

+facef bde(gαβgγδ − gαδgγβ)

+fadef bce(gαβgδγ − gαγgδβ)

 (B.1)
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The propagators for each �eld present in QCD:

p
νµ

a b =
−i δab
p2 + iε

(
gµν − (1− λ−1)

pµpν

k2

)
p

ij
nf =

i(�p+m)ij δnf
p2 −m2 + iε

p
ab =

i δab
p2 + iε

(B.2)

To be complete we also list the QED Feynman rules:

p
νµ

=
−i

k2 + iε

(
gµν − (1− λ−1)

kµkν

k2

)
p

ij
nf =

i(�p+m)ij
p2 −m2 + iε

µ = −igγµ (B.3)
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Appendix C

Schwinger Dyson equation

A tool to describe the implications of the classical conservation of the Noether currents on
the quantum level is to introduce the Euler-Lagrange operators Oφi , for any �eld φi,

Oφi =
δS

δφi
(C.1)

On the quantum level we can use the generating functional to write∫
[Dφi]e

iS δS

δφi
X =

∫
[Dφi]

(
− i δ

δφi
eiS
)
X = i

∫
[Dφi]e

iS δ

δφi
X (C.2)

where X is a product of �elds. In terms of operator formalism this reads

〈Oφi(z)X〉 = i 〈 δX

δφi(z)
〉 (C.3)

and this is just the Swinger-Dyson equation in compact form, i.e. the quantum equivalent
of the classical equations of motion Oφi = 0.
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Appendix D

Feynman parametrization

Loop integrals arizing from Feynman diagrams with several loops are mostly hard to eval-
uate. They contain denominators like 1

A1...An
. Feynman parametrization is a technique to

rewrite a of denominators such that they may be evaluated more easily. The idea is to
introduce auxiliary parameters to write a product of denominators into a sum to a speci�c
power. It works as follows

1

A1....An
= (n− 1)!

∫ 1

0
dx1...

∫ 1

0
dxn

δ(1−∑n
i=1 xi)

(
∑n

i=1 xiAi)
n

(D.1)

where the auxiliary parameters xi are called the Feynman parameters. A full proof will not
be shown here, but it includes an explicit evaluation of the n = 2 case and the induction
step to generalize to generic n.
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Appendix E

Ward Identity local gauge

transformation QED

We will derive the Greens funciton Ward identities for QED. Consider a change of �elds in
the correlation function. Choose it to be equal to the form of an in�nitesimal local gauge
transformations. For the �elds present in QED these local gauge transformations imply

δgψ(x) = ieθ[x]ψ(x), δgψ̄(x) = ψ̄(x)[−ieθ(x)],

δgA
µ(x) = −∂µθ(x), δgL[ψ, ψ̄, A] = λ(∂ ·A)(2θ). (E.1)

Here, θ is an arbitrary (small) function of space-time. The Jacobian of this transforamtion
is unity, since the phases beween ψ̄(x) and ψ(x) cancel for every x and the shift in A is
purely additive. Changing variables in the correlation function means

n∑
i=1

〈0|φ1(x1) . . . δgphii(xi) . . . φn(xn) |0〉+ i

∫
d4y 〈0|φ1(x1) . . . φn(xn)δL(φj(y)) |0〉 = 0

(E.2)

where φ can be any �eld in the theory. Using the objects speci�c to QED, see equation
(??), and taking the variation to θ(z), we �nd

−λ2z 〈0| ∂ ·A(z)
∏
a

Aµa
∏
b

ψ(yb)
∏
c

ψ̄(wc) |0〉

=
∑
d

〈0| ∂ ·A(z)
∏
a6=d

Aµa
∏
b

ψ(yb)
∏
c

ψ̄(wc) |0〉 [9∂µdδ(xd − z)

+ e 〈0| ∂ ·A(z)
∏
a

Aµa
∏
b

ψ(yb)
∏
c

ψ̄(wc) |0〉 δ(yb − z)

− e 〈0| ∂ ·A(z)
∏
a

Aµa
∏
b

ψ(yb)
∏
c

ψ̄(wc) |0〉 δ(wb − z). (E.3)
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Appendix F

Non-abelian Wilson Line

F.1 Wilson line bounded from above

If we bound the Wilson line from above we can consider the absorbtion of gluons from an
external line created at xi = a and in the direction nµ = pµ. We fourier transform the
gauge �elds to momentum space as we did before in section 4.2. Only here we add the −iε
to make sure the λ integral is �nite. The second order expansion term of the Wilson line,
corresponding to the double absorbtion of gluons, then reads

−g2

∫ ∞
a

dλ1

∫ ∞
λ1

dλ2

∫
d4k2

(2π)4
n ·A(k2) e−i(k2−iε)·nλ2

∫
d4k1

(2π)4
n ·A(k1)e−i(k1−iε)·nλ1 ,

(F.1)

Performing the integral over λ2 and thereafter the integral over λ1 we �nd

(F.1) = −g2

∫∫
d4k1

(2π)4

d4k2

(2π)4

∫ ∞
a

dλ1 n ·A(k2)n ·A(k1)e−i(k1+k2−iε)·nλ1 −1

−i(k2 · n− iε)

= −g2

∫∫
d4k1

(2π)4

d4k2

(2π)4
n ·A(k2)n ·A(k1)

−i
((k1 + k2) · n− iε)

−i
(k2 · n− iε)

e−i(k1+k2−iε)·na

(F.2)

As one can see we �nd the product of two eikonal vertices, but with a speci�c ordering
of the gluon �elds. Repeating this procedure to all orders in perturbation theory we �nd

Φn(a,∞) =
∞∑
m=0

(−ig)m
∫ ( d4ki

(2π)4

)m
n ·A(km) . . . n ·A(k1)e−iK(j)·na

m∏
j=1

−i
n · K̃(j)− iε

(F.3)

where K(j) =
∑m

i=j ki and K̃(j) =
∑m

i=j km−i+1. This is an Wilson line comming in from
in�nity with oposite momentum to the line momentum, absorbing m gluons on its way.

F.2 Finite Wilson Line

Finite Wilson lines are not used often in scattering amplitues, but we will still consider
them here for completeness. Assume a Wilson line stretching from aµ to bµ. In order
to see how equation (4.18) comes about we will expand the Wilson line from (8.10). We
will explicitly investigate in the second order expansion term, corresponding to the double
absorbtion of gluons. Thereafter we will make a compelling argument for all other orders.
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After fourier transforming the gauge �elds to momentum space, the second order ex-
pansion term of the Wilson line reads

(−ig)2

∫∫
d4k1

(2π)4

d4k2

(2π)4

∫ b

a
dλ1

∫ b

λ1

dλ2n ·A(k2)e−ik2·nλ2n ·A(k1)eik1·nλ1 (F.4)

Performing the λ2 and λ2, in that order, we �nd

(F.4) = (−ig)2

∫∫
d4k1

(2π)4

d4k2

(2π)4

∫ b

a
dλ1n ·A(k2)n ·A(k1)

i

k2 · n
(
e−ik2·nb − e−ik2·nλ1

)
eik1·nλ1

= (−ig)2

∫∫
d4k1

(2π)4

d4k2

(2π)4
n ·A(k2)n ·A(k1)

[ i

k2 · n
i

k1 · n
e−ik2·nb(e−ik1·nb − e−ik1·na)

+
i

k2 · n
i

(k1 + k2) · n(e−i(k1+k2)·na − e−i(k1+k2)·nb)
]

(F.5)

Now one could use the eikonal identity as given in equation (4.6) to reduce the terms
multiplying e−i(k1+k2)·nb. The three remaining terms are

(F.4) = (−ig)2

∫∫
d4k1

(2π)4

d4k2

(2π)4
n ·A(k2)n ·A(k1)

[ −i
k2 · n

i

k1 · n
e−ik2·nae−ik1·nb

+
i

k2 · n
i

(k1 + k2) · ne
−i(k1+k2)·na +

i

k1 · n
i

(k1 + k2)
e−i(k1+k2)·nb

]
(F.6)

which are exactly the terms resulting from the m = 2 part of the summation in equation
(4.18). For a full proof an induction step is required. Here we will just provide some
observations on how each higher order of m would also be discribed by equation (4.18).
For m = 3 there is one more λ integral than in the calculation above and one would end
up with 8 terms after performing all of them. There are 4 di�erent prefactors:

1

k3k2k1

1

k3k2(k1 + k2)

1

k3(k2 + k3)k1

1

k3(k2 + k3)(k1 + k2 + k3)
(F.7)

Now all 4 of them are multiplicated by two di�erent exponentials depending on a or b.
Group terms with the same exponential and use eikonal identities such that one ends up
with 4 terms as described by (4.18). This was just to give an intuition on how to proceed,
not to give a full proof.

Hermitian conjugate

We start with the formal de�nition of a �nite the Wilson line, as given in equation (4.11):

Φn(λ1, λ2) = P exp
[
− ig

∫ λ2

λ1

dλ n ·Aa(λ)ta
]
. (F.8)

To see what it means to hermitian conjugate this expression we will make an expansion of
the path ordered exponent and manipulate the boundaries of the integral in the following
way

Φn(a, b)† = [P exp
[
− ig

∫ b

a
dλ n ·Aa(λ)ta

]
]†,

=
[
1− ig

∫ b

a
dλ n ·Aa(λ)ta + (−ig)2

∫ b

a
dλ

∫ λ

a
dλ′ n ·A(λ)n ·A(λ′) +O(g3)

]†
= 1 + ig

∫ b

a
dλ n ·Aa(λ)ta + (ig)2

∫ b

a
dλ

∫ λ

a
dλ′ n ·A(λ′)n ·A(λ) +O(g3)

(F.9)
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where in the last line we used that the gauge �eld is real and (AB)† = B†A†. Now we
switch the boundaries of integration in all terms, which yields a minus sign for each integral.
Furthermore we can rename the integration variables in the second term, λ ↔ λ′. These
steps result in

Φn(a, b)† = 1− ig
∫ a

b
dλ n ·Aa(λ)ta + (−ig)2

∫ a

b
dλ

∫ a

λ
dλ′ n ·A(λ′)n ·A(λ) +O(g3)

= 1− ig
∫ a

b
dλ n ·Aa(λ)ta + (−ig)2

∫ a

b
dλ′
∫ a

λ′
dλ n ·A(λ)n ·A(λ′) +O(g3)

(F.10)

Now we can use equation (4.13) to change the boundaries of the λ integral in the third
term.

Φn(a, b)† = 1− ig
∫ a

b
dλ n ·Aa(λ)ta + (−ig)2

∫ a

b
dλ

∫ λ

b
dλ′ n ·A(λ)n ·A(λ′) +O(g3)

(F.11)

It becomes clear that the �elds are now anti-path ordered, since λ′ > λ. As stated before
in section 4.2 this is similar to changing the directional vector n to −n, because then bµ
corresponds to a point earlier on the path than aµ and path ordering is restored. Therefore
we conclude that

Φn(a, b)† = Φ−n(b, a), (F.12)

which is diagrammatically depicted in �gure F.1

†

Figure F.1: Diagramatic explaination for the hermitan conjugate of �nite Wilson lines
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Appendix G

LSZ reduction

In this section we derive a general relation between correlation functions and S-matrix
elements, known as the LSZ reduction formula. We consider the overlap of incoming and
outgoing �elds 〈in|out〉. Using the adiabatic hypothesis that �elds behave as if they are
free of interactions in the limit where x0 → −∞ and x0 →∞, we de�ne

lim
x0→−∞

φ(x) = φin(x) lim
x0→∞

φ(x) = φout(x) (G.1)

where φin(x) and φout(x) are free �elds that obey the free �eld equations of motion. We
now see that

φ(x) = φin(x) +

∫
d4y Dret(x− y) j(y),

φ(x) = φout(x) +

∫
d4y Dadv(x− y) j(y). (G.2)

Furthermore we can derive that

ap =

∫
t

d3x√
(2π)3 2Ep

i eipx
↔
∂0 φ(x)

a†p =

∫
t

d3x√
(2π)3 2Ep

(−i) e−ipx
↔
∂0 φ(x) (G.3)

If we now look at an S-matrix element, which are the amplitudes of transitions between
in and out states, we can write

〈out{q}| in{p}〉 = 〈out| a†in(p) |0〉 , (G.4)

where we assume just one ingoing particle with momentum p. If we now assume that the
out state does not contain any particle with momentum p (ignore forward scattering), we
can write

〈out{q}| in{p}〉 = 〈out| (a†in(p)− a†out(p)) |0〉

= 〈out|
∫
t

d3x√
(2π)3 2Ep

(−i) e−ipx
↔
∂0 (φin − φout) |0〉 b

=
(

lim
x0→∞

− lim
x0→−∞

)
〈out|

∫
t

d3x√
(2π)3 2Ep

(−i) e−ipx
↔
∂0 φ |0〉

= −
∫ ∞
−∞

∂0 〈out|
∫
t

d3x√
(2π)3 2Ep

(−i) e−ipx
↔
∂0 φ |0〉

= −〈out|
∫

d4x√
(2π)3 2Ep

(−i) (e−ipx ∂2
0 φ− φ∂2

0 e
−ipx) |0〉 (G.5)
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If we now use that (∂2 +m2)e−ipx = 0 we �nd that

〈out{q}| in{p}〉 = −〈out|
∫

d4x√
(2π)3 2Ep

(−i) e−ipx (∂2
0 − ∂2

i +m2)φ(x) |0〉

= i 〈out|
∫

d4x√
(2π)3 2Ep

e−ipx (∂2
0 − ∂2

i +m2)φ(x) |0〉

= i

∫
d4x√

(2π)3 2Ep
e−ipx (∂2 +m2) 〈out|φ(x) |0〉

= i

∫
d4x√

(2π)3 2Ep
e−ipx (−p2 +m2) 〈out|φ(x) |0〉 (G.6)

This calculation can be repeated for the out states or in the case that there are multiple
particles in the in / out state. We �nd that we can replace

a†in(p)→ i

∫
d4x√

(2π)3 2Ep
e−ipx (−p2 +m2)φ(x)

aout(p)→ i

∫
d4x√

(2π)3 2Ep
eipx (−p2 +m2)φ(x)

(G.7)

The same can be done for fermions. First we see from (A.1) that

as†p =

∫
d3xe−ipxψ̄(x)γ0us(p)

bs†p =

∫
d3xe−ipxv̄(p)γ0ψ(x) (G.8)

In the same way as we did before we can look at the S-matrix element. If we assume two
incoming fermion with momentum p1 and p2 and two outgoing fermions with momentum
q1 and q2 we can write

〈 in{q, s′} | out{p, s}〉 = 〈0| as
′
1
out(q1) a

s′2
out(q2) as1†in (p1) as2†in (p2) |0〉 (G.9)

Now note that the out operators are inserted at t→ −∞ and the in operators are inserted
at t→∞. This means that they are naturally time ordered and we could write

〈 in{q, s′} | out{p, s}〉 = 〈0|T{as
′
1
out(q1) a

s′2
out(q2) as1†in (p1) as2†in (p2)} |0〉 (G.10)

If we now replace a
s′1
out(q1) by a

s′1
out(q1) − a

s′1
in (q1), the term with the in operator would

be replaced to the right by the time ordered product to annihilate the vacuum. We can
therefore safely do this without a�ecting the current expression. This can be done for any
operator, but let us just choose one for simplicity.

〈 in{q, s′} | out{p, s}〉 = 〈0|T{as
′
1
out(q1) a

s′2
out(q2) as1†in (p1)

(
as2†in (p2)− as2†out(p2)

)
} |0〉

= 〈0|T{as
′
1
out(q1) a

s′2
out(q2) as1†in (p1) (−)

∫
dx0∂0 a

s2†
p2 } |0〉

= 〈0|T{as
′
1
out(q1) a

s′2
out(q2) as1†in (p1) (−)

∫
dx0∂0

∫
d3x e−ip2xψ̄(x)γ0us2(p)} |0〉

= 〈0|T{as
′
1
out(q1) a

s′2
out(q2) as1†in (p1) (−)

∫
dx4 e−ip2x(−i(p2)0 + ∂0)ψ̄(x)γ0us2(p)} |0〉

(G.11)
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Using the fact that the spinors obey (A.2) we can reduce this expression to

〈 in{q, s′} | out{p, s}〉 = 〈0|T{−A
∫
dx4 e−ip2x ψ̄(x) (iγi(p2)i − im+ γ0←−∂0)us2(p)} |0〉

= 〈0|T{−A
∫
dx4 e−ip2x ψ̄(x) (−γi←−∂i + γ0←−∂0 − im)us2(p)} |0〉

= 〈0|T{−A
∫
dx4 e−ip2x ψ̄(x) (

←−
�∂ − im)us2(p)} |0〉

= 〈0|T{iA
∫
dx4 e−ip2x ψ̄(x) (i

←−
�∂ +m)us2(p)} |0〉 (G.12)

where A = a
s′1
out(q1) a

s′2
out(q2) as1†in (p1). A similar calculation can be performed for the other

operators. This results in

〈 in{q, s′} | out{p, s}〉 =i4
∫∫∫∫

dy4 dz4 dw4 dx4

× eiq1z eiq2w (−i�∂z +m)(−i�∂w +m)ūs
′
1(q1) ūs

′
2(q2)

× 〈0|T{ψ(w)ψ(z)ψ̄(x)ψ̄(y)} |0〉
× (i
←−
�∂ x +m)(i

←−
�∂ y +m) e−ip1y e−ip2x us2(p2)us1(p1). (G.13)

Now we can see that this can easily be generalised for any in or out state by applying

a†s(p)in → i

∫
d4xψ̄(x)(i

←−
�∂ +m)us(p)e

−ipx,

as(p)out → i

∫
d4xūs(p)e

ipx(−i�∂ +m)ψ(x),

b†s(p)in → −i
∫
d4xe−ipxv̄s(p)(−i�∂ +m)ψ(x),

bs(p)out → −i
∫
d4xψ̄(x)(i

←−
�∂ +m)vs(p)e

ipx. (G.14)

Furthermore note that for a non-interacting theory the S-matrix element will always vanish,
due to the fermionic free �eld equation of motion. For an interacting theory however the
equations of motion read

(i�∂ −m)ψ(x) = j(x). (G.15)
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