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Abstract

The inclusion of temporal information in knowledge graph embedding (KGE) has re-
mained relatively unexplored, even though it stands to argue that this would result in
better embeddings. Additionally, models that do include the temporal component per-
form only marginally better than those that do not (static models). Noting this, we
introduce SpliMe, a model-agnostic pre-processor for temporal knowledge graphs that
makes it possible to embed them with static models. We show that SpliMe achieves
state-of-the-art performance on two datasets commonly used for temporal KGE method
evaluation and increases performance with regards to our baseline on another dataset.
Furthermore, we uncover problems with existing evaluation procedures for static KGE
models on temporal graphs and propose a simple method to fix these issues. Finally, we
redefine the link prediction metric for temporal knowledge graph embedding to better
suit temporal scope prediction.
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1. Introduction

A knowledge graph (KG) is a graph used for representing structured information about
the world, which can then be utilized in other tasks such as question answering, predicate
extraction and recommender systems. Many large KGs have been created in recent
years, such as DBPedia, Google Knowledge Graph and FreeBase. Using the Resource
Description Framework (RDF) language created by the World Wide Web Consortium,
these facts are stored as (subject, predicate, object) (s,p,o) triples. For instance, (Trump,
BornIn, New York). The subject and object are also referred to as entities, and the
predicate as the relationship between them. In the graph representation, the entities are
nodes, and predicates are labeled directed edges connecting them.

Existing knowledge graphs are very large: DBPedia contains around 10 billion triples
(Lehmann et al., 2015). Yet, much information is still missing. For example, only 30% of
the people in FreeBase have place of birth information (West et al., 2014). However, due
to redundancy in the data, it is often possible to recover this information. For instance,
we could deduce someones country of birth by looking at his city of birth. Predicting the
most likely connection between entities is called link prediction. Using link prediction to
fill in missing links in a KG is called knowledge graph completion.

Another problem for KGs is dealing with evolving or historic information. Facts that
may be true at one point in time might be invalidated later. As an example, (Obama,
PresidentOf, USA) was only true between 2009-2017. One approach to solving this
issue is by including temporal information with the facts. A temporal knowledge graph
(TKG) is a KG where (a subset of) the facts have a temporal scope denoting the time
during which they were valid, or the time at which they occurred. An example of the
latter is (Obama, awarded, Nobel Peace Prize, 2015 ).

Over the past few years there has been much research into how to perform knowledge
graph completion. Much research has focussed on latent variable models (Nickel et al.,
2011; Bordes et al., 2013; Trouillon et al., 2016). In these models, entities and predicates
are represented as vectors, called embeddings. Link prediction is then done through
transformations on these embeddings.

It stands to reason that including temporal information inside these embeddings would
result in improved performance. Yet, few embedding models have been created for this
purpose (e.g. (Jiang et al., 2016; Garćıa-Durán et al., 2018)), and their results are
only marginally better than static KG embedding models. Additionally, many TKG
embedding models (e.g. (Xu et al., 2019; Goel et al., 2019)) require that all facts in the
KG have temporal scopes, even though many KGs are only partially temporal.

Noting this, this thesis will aim for the following goals:

• Develop a model-agnostic TKG embedding method which utilizes feature engineer-
ing to incorporate temporal information at the level of entities and predicates.

• Reformulate the link prediction task to suit temporal scope prediction.

• Provide a runnable implementation of the system in Python for reproducibility.
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2. Preliminaries

2.1. Knowledge Graphs and the RDF Data Model

The first specification of the Resource Description Framework (RDF) was published by
the World Wide Web Consortium in 2004, with a followup 1.1 specification made official
in 2014. RDF is a general method for modelling information, specifically aimed to be
used in web resources. Information is stored as triples which consists of a subject s,
a predicate p and an object o, in that order i.e. (s,p,o). Examples of RDF triples
are (Utrecht, provinceIn, Netherlands) and (Penrose, winnerOf, Nobel prize). In some
literature, a triple is said to be composed of a head, relation and tail. In this thesis we
use the terms relation and predicate interchangeably, but stick to the (s,p,o) notation.

More formally, we consider a set of entities E = {e1, e2, . . . , en} and a set of predicates
P = {r1, r2, . . . , rm}. Let |X| denote the cardinality of set X. Then |E| = n and |P| = m.
A knowledge graph D is a set of observed RDF triples, i.e. D = {(s, p, o)|s, o ∈ E , p ∈ P}.
Predicates have different cardinality types. That is, a relation can be a one-to-one (1-
1), a one-to-many (1-n), a many-to-one (n-1) or a many-to-many (n-n) relation. This
distinction will become useful later. Furthermore, as defined in Sun et al. (2019), we
recognize four different types of predicate patterns: (anti-)symmetry, inversion and
composition. We will now give a formal definition for all four.

• A predicate p is symmetric when pair ∀x, y ∈ E , (x, p, y) =⇒ (y, p, x). An
example of this is the predicate marriedTo.

• A predicate is anti-symmetric when ∀x, y ∈ E , (x, p, y) =⇒ ¬(y, p, x). An
example of an asymmetric relationship is the childOf predicate.

• A predicates p1 ∈ P is inverse to p2 ∈ P if ∀x, y ∈ E , (x, p2, y) =⇒ (y, p1, x). An
example of this are the childOf and parentOf relations.

• Lastly, a predicate p1 ∈ P is said to be composed of predicates p2, p3 ∈ P if
∀x, y, z ∈ E , (x, p2, y) ∧ (y, p3, z) =⇒ (x, p1, z). An example of this is how the
relation nieceOf is composed of the relations childOf and siblingOf

RDF has no official semantics to specify temporal information for triples, but exten-
sions do exist. Our notation is based on the formalization of Gutierrez et al. (2005).
Specifically, we consider time as a as point based, discrete, linearly ordered domain,
i.e. T = {t1, t2, . . . , tl} s.t. |T | = l. We consider two types of temporal knowledge
graphs. The first variety is an event KG. Here, each triple is annotated with a times-
tamp h ∈ T which denotes when the fact occurred, i.e. an event KG is a set of observed
quadruples: T = {(s, p, o, h) |s, o ∈ E , p ∈ P, h ∈ T }. The second variety is the valid
time representation. Each fact is annotated with a begin time b ∈ T and end time
e ∈ T , denoting when the fact held true. This is represented as a set of quintuples:
T = {(s, p, o, b, e) |s, o ∈ E , p ∈ P, b, e ∈ T , b ≤ e}.
Whether a fact is modelled as an event can depend on the granularity at which we
consider the data. To illustrate, if we were to take the time granularity of a year we
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would say that Mt. Everest was first successfully ascended by Hillary and Norgay in
1953. Yet, at the granularity of a month we would say that it was first successfully
ascended between March 1593 and May 1953.

Additionally, we use superscript to define a subset of a (temporal) knowledge graph:
let T p=r denotes all facts in the TKG that contain predicate r ∈ P, i.e. T p=r =
{(s, p, o, b, e) ∈ T | p = r}. Analogously, we define T s=e as the TKG of all facts
containing entity e ∈ E as subject, T b=t as the TKG containing all facts with start time
t ∈ T and so on. This indexation can be chained: T p=r, e=t is the TKG of all facts
which contain predicate r and end at timestamp t.

2.2. Knowledge Graph Construction and Applications

Propietary: Knowledge graphs have seen a wide variety of uses in recent years. The
most well known use is the enhancement of search, for which the Google Knowledge
Graph was created in 2013. Containing around 500 million triples and 18 billion facts at
the time, the Google KG is used to discern entities in search and provide the user with
structured information (Dong et al., 2014). Additionally, companies like Microsoft and
Yahoo have also created KGs for this purpose. These are general purpose knowledge
graphs, which model general information about the world. E.g., who is married to who,
why a certain person is famous or that a city lies in a certain country.

Another purpose of knowledge graphs is in the case of recommender systems. An example
of this would be the Facebook Social Graph, which models which people are friends which
each other, what people link and how they interact with each other. This information
can then be used to suggest pages that one may be interested in, or people that one may
want to become friends with. However, just like the search examples these graphs are
proprietary and as a result little information is known about how they are structured
and how they were created.

Open: As a counterpart to these proprietary KGs, there also also open source knowl-
edge graphs. For instance, WordNet is a knowledge graph denoting the semantic rela-
tions between words, using relations such as ”synonym”, ”hypernym” and ”hyponym”
(Miller, 1995). Originally constructed for the english language by a group of experts,
new WordNets have since been created for other languages and are linked to the original
WordNet (e.g. (Vossen, 1998), (Vossen et al., 1999)). The resulting KG is widely used
in the natural language processing community.

One of the first academic projects to automatically construct a knowledge graph was
YAGO, which has recently seen the release of its fourth installment (Pellissier Tanon
et al., 2020). YAGO takes the semi-structured information present in Wikipedia in-
foboxes and combines this with lexical information from WordNet to create a compre-
hensive general purpose KG. Through manual inspecting of sampled facts the accuracy
of the previous version, YAGO3, has been estimated at 95%.

Another example of an open source KG is Wikidata (Erxleben et al., 2014). Wikidata is
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Knowledge Graph # Entities # Predicates # Triples Temporal

YAGO3 (2015) 5M 77 17M Partly

FreeBase (2013)* 40M 35,000 637M No
YAGO4 (2020)+ 67M 151 343M Partly
Wikidata (2020)+ 78M 7,947 974M Partly

Google KG (2013)* 570M 35,000 18000M Unknown

Table 1: An overview of several general purpose knowledge graphs, and whether they
include temporal information. *: data taken from Nickel et al. (2015), +: data
taken from Pellissier Tanon et al. (2020). YAGO3 information was taken from
(Mahdisoltani et al., 2013).

collaborative, meaning that anyone can contribute to it just like in Wikipedia. Currently,
around 40.000 people contribute to Wikidata at least once a month. However, to make
this collaboration possible Wikidata does not enforce semantic constraints (i.e. a person
can have more than one father). Consequently, its accuracy is generally lower than that
of curated KGs. Additionally, there exists an effort called Linked Open Data Cloud
which aims to interlink many different KGs by mapping related entities and predicates
to each other. As of May 2020, this effort contained around 1250 datasets1

Finally, there exist many knowledge graphs specialized to a specific domain, which mostly
useful for question answering. For instance, Bio2RDF is a comprehensive repository of
bioinformatics data. It can be used to investigate questions such as how different genes
interact in the face of a disease like Parkinson (Belleau et al., 2008).

Temporal aspect Most knowledge graphs are atemporal (also called static) or only
partially temporal, i.e. they only contain temporal information for a subset of the facts
contained in it. This is to be expected, since a general purpose knowledge graph has
no use for temporal information in many cases. For instance, the parentOf relation
generally either holds between two people or it does not hold between them, regardless
of time. A knowledge graph containing both temporal and atemporal information is
called a hybrid graph.

Additionally, event based knowledge bases are constructed through automatic analysis
of news articles. From these articles, timestamped records are extracted and the tem-
poral information is thus complete. However, these data sets generally require some
post-processing to be transformed into graph format. Examples of event KGs are the
Integrated Crisis Early Warning System (ICEWS) created by Boschee et al. (2015) and
the Global Database of Events, Language and Tone (GDELT), created by Leetaru and
Schrodt (2013).

1https://lod-cloud.net/#about (accessed on 2020/09/16).
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2.3. KG Completion

In the last section, we discussed some examples of knowledge graphs and also noted
how large they are. Yet, despite containing millions of nodes and sometimes billions of
edges, much information is still missing. To some degree this is expected; capturing all
information in the world is impossible. But also much basic information is missing. For
instance, over 70% of the in persons in Freebase are missing place of birth information,
despite this being a required field (Nickel et al., 2015).

Yet at the same time, KGs contain many redundancies and patterns. Consider for
instance those discussed in section 2.1, there exist also higher order patterns such as
autocorrelation and block structure. Autocorrelation is the tendency for entities which
have similar properties to be related to each other. Block structure is the property that
entities can be grouped into blocks in such a way that each entity in the block has similar
relations as every other member in the block.

Exploiting these patterns and redundancies to automatically infer new facts is called
knowledge graph completion (KGC) or link prediction. Specifically, we are tasked with
predicting (the probability of) edges (links) between nodes in a graph. In the context of
social networks like Facebook, this could be predicting which people (nodes) are likely
to become friends (have an edge between them). In knowledge graphs, link prediction is
more involved because we are modelling multi-dimensional data. For example, we wish
to predict not simply whether there exists a relationship between two people but also
what that relationship is: are they dating or are they just friends?

In link prediction, a model is presented with a triple where one component is missing
and asked to present the most likely entity or predicate to be inserted into the missing
component such that the result is a true triple. In entity prediction, a triple of the form
(?, p, o) or (s, p, ?) is given. In predicate prediction, a triple of the form (s, ?, o) is given.

A TKG alters the setting for link prediction as facts now contain also time information.
The model can now be given an (s, p, o, h) quadruple or (s, p, o, b, e) quintuple where one
component is missing. If the entity or predicate component is missing, the model should
predict the most likely answer at the given time (interval). If a h, b or e is missing, the
model should predict the most likely timestamp. The latter is called temporal (scope)
prediction.

2.3.1. Approaches

Roughly speaking, a KGC algorithm has two requirements. Firstly, it must be linear in
both space and time complexity (with regards to entities, predicates, triples) in order to
deal with the sizes of current KGs. Secondly, it must be expressive enough to capture
and exploit the patterns in a KG.

Given the above constraints, KGC research has focussed on two areas, pattern mining
approaches and embedding models, with the latter being the most popular. In either
approach, a model is learned on the KG, which can be used to predict the plausibility
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of any given triple. From this, the most likely triples can then be selected and accepted
into the KG. Furthermore, the model can also be used during KG construction as a
form of bootstrapping: given a triple extracted from a (possibly unreliable) source, its
likelihood can be evaluated given the current knowledge in the KG before the fact is
accepted.

Pattern mining approaches operate by mining patterns from the graph and converting
these into logical rules. For instance, we could imagine a finding a rule of the form
MarriedTo(X,Y ) ∧ livesIn(Y, Z) =⇒ livesIn(X,Z), which captures the assumption
that married people live together. The approach is based on the idea that every observed
triple is an application of a specific rule, which can then be generalized to encompass
multiple observations.

Embedding models convert a knowledge graph into a low-dimensional vector space
through learning a vector representation for each entity and predicate. The vector rep-
resentations should model the latent features of the entities and predicates, i.e. the
features that explain the entities and predicates. KG embedding can therefore be con-
sidered a form of representation learning. In this thesis, we will focus on this approach.

2.3.2. Knowledge Graph Embeddings

A knowledge graph embedding is the transformation of a KG into a continuous, low-
dimensional vector representation. The idea is that the semantics of the KG are encoded
into a simpler representation, and that the vectors represent the latent features of entities
and relationships. A good embedding model is able to capture all earlier predicate
patterns discussed earlier.

A high level overview of a KG embedding model is displayed in Figure 1. Taking a
knowledge graph as input and a random initialization of the vectors, a vector repre-
sentation of the KG is gradually learned (calibrated) using a scoring function φ(s, p, o).
The scoring function should reflect how well the embedding captures the semantics of
the KG, i.e. a poor embedding should receive a low score and a good embedding should
receive a high score

This training process eventually outputs a vector representation of the original knowledge
graph, which can then be utilized for downstream applications. A number of different
scoring functions have been proposed both for both static and temporal KG embeddings.
We will discuss a number of these in section 3.

We will denote vectors in boldface. Formally, a KG embedding is a set of vectors,
where each vector represent the embedding of a specific entity or predicate: {ek ∀e ∈
E , rk ∀r ∈ P}, where k denotes the dimensionality or size of the embedding. The larger
k, the more expressive the model can be. However, this comes at the cost of increased
training time and the chance of overfitting. The chosen value for k thus requires careful
consideration. Additionally, given a vector v, vj refers to the j’th element of that
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Figure 1: Anatomy of a KG embedding mode (Costabello et al., 2020).

vector. When discussing the embedding of a specific triple, we will use s,p,o to refer to
the embeddings of the subject, predicate and object respectively.

Updating the vectors is done using (stochastic) gradient descent. In gradient descent, the
derivative of a loss function is calculated with respect to each parameter. Embeddings
are updated proportional to the negative of the difference between two steps. In practice,
calculating the loss over the entire dataset is too computationally expensive. To combat
this, stochastic gradient descent (SGD) is used instead. Under SGD, a fixed number of
samples is taken (a batch) a a time, and the gradient is calculated only on that batch
instead of on the entire dataset. Once the entire training set has been processed, an
epoch has passed.

2.4. Model Evaluation

2.4.1. Method

A KG embedding can be evaluated through its performance on the link prediction task.
One method to evaluate how well an embedding performs at link prediction is through
the ranking test laid out in Bordes et al. (2011). For a single triple (s, p, o), the tasks
composes of removing one of its elements, resulting in either (?, p, o), (s, ?, o) or (s, p, ?).
The missing element is then substituted with every entity or predicate resulting in a set
of corrupted triplets, e.g. {(e, p, o)|e ∈ E}. Each of these triples is then scored according
the model and sorted. The rank of the original triple is recorded. This is repeated for
every triple in the test set.

From these ranks multiple metrics are computed. Let R denote the ranks obtained for
each triple in the test set. The mean rank (MR) is calculated as 1

|R|
∑

r∈R r. While useful,
MR is susceptible to outliers. To combat this, we also calculate the mean reciprocal rank
(MRR) as 1

|R|
∑

r∈R
1
r . Lastly, an additional useful concept is the Hits@x metric, which

is the fraction of queries where the correct answer was in the top x, where usually
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x ∈ {1, 3, 10}. Hits@x is calculated as 1
|R|
∑

r∈R

{
1 if r ≤ x
0 otherwise

.

However, note that these metrics can be flawed in cases where other variations of the
triple that is being ranked are also true. I.e. when creating corruptions, we may create
a true triple. Come evaluation time, this triple might score higher than the original
triple, lowering the score of embedding. To combat this problem Bordes et al. (2013)
propose removing all triples that are contained in the train, validation, or test set from
the corrupted triples. This is called the filtered setting.

2.4.2. Datasets

To help with the turnaround time associated with evaluating a new KGC method, both
pattern mining approaches and embedding models are not tested on full-sized KGs.
Instead, a number of benchmark KGs have been produced. In this section, we will
provide an overview of commonly used benchmark knowledge graphs for both static and
temporal KG completion.

Static For static model evaluation, the most commonly used datasets are WordNet18
and Freebase15k. WordNet18 is a subset of WordNet containing 18 relations, Free-
base15k is a subset of Freebase containing 15,000 entities. Both were extracted by
Bordes et al. (2013). Recently, both have been criticized as poor benchmarks datasets
because many of the test triples can be obtained by simply reversing examples from
the training set. I.e. they suffer from test leakage. This problem was first identified in
Toutanova and Chen (2015).

To show that this is a problem, Dettmers et al. (2017) introduce a simple rule based
model which obtained very high test scores on FB15k. Working towards solving this
issue, they introduce two new KGs: Freebase-237 and WordNet18-RR, which have the
reciprocal relations removed and thus not suffer from these issues. Furthermore, Akrami
et al. (2018) evaluate an extensive set of KG embedding models on both the original and
fixed data sets. Their results show a significant decrease in performance on all metrics,
for all models. As a result, Freebase-237 and WordNet18-RR are becoming the new
default benchmark datasets for static embedding models.

Temporal Evaluation of temporal models requires temporal knowledge graphs. We
previously noted in section 2.2 that most general purpose KGs are hybrid. However, as
we will see in section 3.3, most TKG embedding models can only embed fully temporal
graphs. Therefore, subsets of YAGO3 and Wikidata have been created which contain
only temporal facts. However, different papers have extracted different subsets suitable
to their likings, making it difficult to compare results.

Another approach is to operate on event based graphs, i.e. those containing (s,p,o,h)
quadruples. Examples of Event KGs discussed previously were ICEWS and GDELT.
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From the former, Garćıa-Durán et al. (2018) have extracted two subsets. ICEWS14
which contains all events in the year 2014 and ICEWS05-15 which contains all events
between 2005 and 2015. Furthermore, Trivedi et al. (2017) have created a subset of
GDELT containing events between April 1st 2015 and March 31st 2016 at a granularity
of 15 minutes.

2.5. Loss functions

The method described in the previous section is a ranking measure, used to evaluate the
performance between different KGE models. However, in addition to not being differ-
entiable and thus not being apply to apply gradient descent, it requires comparing each
triple with all of its possible permutations. As a consequence it is too computationally
expensive to perform at every step during fitting. Therefore, during the learning phase
a loss function is utilized. In KG literature, generally two types of loss functions are
applied: pointwise loss (e.g Nickel et al. (2011); Trouillon et al. (2016)) and pairwise
loss functions (e.g. Bordes et al. (2013), (Mohamed et al., 2019)). Both require a set of
positive examples and a set of negative examples, which can be obtained through the
procedures laid out in section 2.6.

In pointwise loss functions, the objective is to minimize the scores of negative samples,
and maximize the scores of positive samples individually. That is, each sample is scored
by itself and only compared to the output from the true labelling function l which is
generally defined to return -1 if the triple is negative, and 1 if it is true. An example of
a pointwise loss function called the pointwise hinge loss is displayed in equation 1. Note
that here, the scoring function φ must output a value in the range [−1, 1].

L =
∑
x∈D

max(0, γ − l(x) ∗ φ(x)) (1)

In pairwise loss functions, the objective is to maximize the difference between scores of
positive samples and negative samples. An example of a pairwise loss function is the
pairwise hinge loss function given in equation 2. Here, γ denotes the margin hyper-
parameter. In the context of knowledge graphs, this is equivalent to maximizing the
difference between the score of a true triple and a false triple. An explanation of how
false triples can be obtained is given in section 2.6.

L =
∑

x+∈D+

∑
x−∈D−

max(0, γ + φ(x+)− φ(x−)) (2)

Apart from having a positive impact regarding computational complexity, Trouillon et al.
(2016) have shown that using the negative log-likelihood of logistic model will have a
positive impact on the performance of most KGE models. This can be applied to both
hinge and pairwise loss functions.
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2.6. Sampling

Let D+denote the observed (positive) triples in the KG and let D− denote all false
triples. The assumption that a triple not in the KG is always false is called the closed
world assumption (CWA) i.e. D− = {(s, p, o) /∈ D+}. Due to the sparsity of a KG, this
set will be very large. Furthermore, many triples in this set will be nonsensical. The
opposite to the CWA is the open world assumptions (OWA), which states that the fact
can either missing or false, but that we do not know which.

A more useful middle ground is the local-closed world assumption (LCWA). This states
that the KG is locally complete, meaning that if we observe an (s, p) pair in the KG
then any (s, p, o) /∈ D is false, i.e. the CWA. However, if (s, p) is not observed in the KG,
then we take the OWA. Specifically, we can generate D− under the LCWA by perturbing
positive triples to generate corrupted triples. Corrupted triples are created by taking a
positive triple, modifying one of its components to obtain (s′, p, o), (s, p′, o) or (s, p, o′),
and checking whether the result is not already in D+. By only modifying one component
at a time, the result is much more likely to be sensical triple (Nickel et al., 2015).

Another way to increase the likelihood of obtaining a sensical triple is through the use
of self-adversarial negative sampling, introduced by Sun et al. (2019). Here, negative
samples are generated according to the current model. Given a triple (s, p, o), the prob-
ability of sampling the j’th negative triple (sj , p, oj) can be seen in equation 3. Here,
α ∈ [0, 1] is the sampling temperature and φ is the model specific scoring function.

p((s′j , p, o
′
j)|{(si, p, oi)}) =

expαφ(sj ,p,oj)

exp
∑

i αφ(si,p,oi)
(3)

When generating negative samples from a TKG the temporal aspect needs to be taken
into account also. Let T +

t and T−t denote the set of triples that are valid and invalid at
time t respectively. Dasgupta et al. (2018) propose two sampling methods: time agnostic
negative sampling (TANS) and time dependent negative sampling (TDNS).

In TANS the temporal aspect is simply ignored, and T−t is constructed using the same
procedure as in a static KG. That is, the triple may not occur in the data set. For-
mally, negative samples for the subject entity are {(s′, p, o, h)|s′ ∈ E , (s′, p, o, h) /∈ T +}.
Negative object samples are defined analogously, and T−t is the union of both.

With TDNS, extra negative samples are added by selecting samples which are present
in the KG, but not at that timestamp, e.g. for negative samples of the subject entity:
{(s′, p, o, h)|s′ ∈ E , (s′, p, o) ∈ D, (s′, p, o, h) /∈ T +

t }. Again, T−t can be created by taking
the union of the corruptions of both subject and object entities.

2.7. Entity Evolution and Concept Drift

In machine learning, concept drift refers to a change in properties of the target variable
which the model is trying to predict. It hints at hidden variables which influence the
prediction accuracy of a model (Gama et al., 2014). For example, because the meaning of
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words change over time, a sentiment analyser trained now would not be able to provide
accurate results in the future. A specific instance of concept drift, entity evolution refers
to the changing of an entity over time. For example, a portable music player would
have been called a Walkman in the eighties but an iPod in the zeroes (additionally, the
concept may have now have been subsumed entirely by mobile phones). It is not just
the name of the entity that can change; any of its attributes can. Entity evolution is a
major obstacle to the automatic construction of knowledge graphs and by extension its
applications.

2.7.1. Record Linkage

Given a set of records, each of which describing attributes of a singular entity, the process
of matching which records refer to which entities is called record linkage. E.g. figuring
out that ’Donald Trump’ and ’President of the USA’ are the same person, because both
records indicate that they are male, life in the White House and have five children.

Formally, record linkage is the defined as follows. Given a set of entities E and a set of
attributes A = {a1, a2, . . . , an}. R is a set of records, each of the form (x1, x2, . . . , xn, t)
with xi, i ∈ [1, n] denoting the value of attribute ai, and t denoting the records times-
tamp. Traditionally, each attribute is associated with a proximity function sima(r1, r2)
which outputs the proximity of attribute a between records r1, r2 ∈ R in the range [0, 1].

Li et al. (2011) were the first to utilize the temporal aspect of records in record linkage.
In order to capture the effect of time on entity evolution they introduce the concept of
time decay. Consider two records with associated attributes at two points in time. The
attribute values can agree or disagree with each other, pointing to the records referring to
the same entity or not. However, the strength of that (dis)agreement decays with time:
the larger the gap between the time steps, the weaker the (dis)proximity should be. The
probability that an entity changes attribute value a within ∆t timesteps is denoted as
d=(a,∆t). The probability that two entities share the same value for attribute a within
∆t timesteps is denoted d6=(a,∆t).

wa(s,∆t) = 1− s · d=(a,∆t)− (1− s) · d6=(a,∆t) (4)

The decay functions are used in the weighting function seen in equation 4, which returns
the weight that should be associated with a given attribute with its calculated proximity.
Here, 0 ≤ s ≤ 1 is the proximity between the two values. The combination of the
weighing function and proximity function to evaluate the total proximity of two records
can be seen in equation 5. Here, sima refers to the attribute specific proximity function
and t1 and t2 refer to the timestamps associated with r1 and r2 respectively.

sim(r1, r2) =

∑
a∈Awa(sima(r1, r2), abs(t2 − t1)) ∗ sima(r1, r2))∑

a∈Awa(sima(r1, r2), abs(t2 − t1))
(5)

The (dis)agreement decay functions need to be specified for every attribute and time
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span length. Li et al. (2011) note two ways of doing so. The first method is to simply
let a domain expert set the decay rates. The second method is learning them from a
labeled dataset. The learning algorithm proposed operates under the CWA and requires
that each attribute only has a singular value at any point in time.

If these assumptions hold, one can calculate the life span of each value of an attribute:
the number of timesteps between its appearance and its disappearance. If the value does
not disappear (because it does not occur in any future records), it is called a partial life
span. Otherwise it is called a full life span. The sets containing all these life spans are
denoted L̄p and L̄f . Additionally, for any two entities we can calculate the length of the
time period between when they had the same value: the span distance. If two entities
do not share a value, that span distance is set to infinity. The set of all span distances
is denoted as L̄.

The disagreement and agreement decay are calculated from the life spans and the span
distances functions. The formulas can be seen in equations 6 and 7 respectively.

d6=(a,∆t) =
|{l ∈ L̄f |l ≤ ∆t}|

|L̄f |+ |{l ∈ L̄p|l ≥ ∆t}|
(6) d=(a,∆t) =

|{l ∈ L̄|l ≤ ∆t}|
|L̄|

(7)

2.7.2. Evolution Summaries

A formal concept is a pair (A,B) where A is a set of objects and B is a set of properties,
such that all objects in A share all attributes in B and B consists of all attributes shared
by objects in A. A and B are also called the extent and the intent respectively. In the
context of KGs, we take A to be the set of entities E and B as the combination of
predicate and object. E.g. a property could be ”Lives in, New York”. Formal concepts
are useful because they represent a lattice, which when visualized may provide insights
into the data.

Given multiple revisions of a knowledge graph, Tasnim et al. (2019) propose a way
to create evolution summaries: a compact representation of all the object and data
properties that an entity was connected to over time. This enables the modelling of
temporal evolution without explicit temporal scoping of facts. The first step is to create
RDF molecules from every revision. An RDF molecule for entity e is the subgraph
containing all triples with e as the subject entity. All molecules representing the same
entity Me are then combined into an |Me| × |N | matrix, where N is the set of unique
object or data properties in Me, i.e. the object-predicate combinations. Each element
in the matrix represents whether the property is present in the molecule.

This matrix can then be input into a formal concept analyser. The output will be a set
of formal concept pairs, each combination of molecules with its shared set of properties.
These properties are properties that have remained the same over the different revisions
of the knowledge graph. From this output, a temporal summary graph is created by
first selecting for all molecules the properties that are unique to that molecule, i.e., they
do not occur in another formal concept.
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2.7.3. Change Point Detection

Change point are (abrupt) variations in time series data which may represent transitions
that occur between states (Aminikhanghahi and Cook, 2017). Change point detection
(CPD) is the problem of finding change points in time series data. E.g., given a time
series where each data point measures the height of the individual, the beginning and
end of puberty could be change points.

Broadly speaking, CPD algorithms can be divided into two categories: online CPD and
offline CPD. Online CPD regards analyzing a time series of unknown (possibly infinite)
length, and the decision on whether a change point has occurred is made every time a
new data point arrives. In contrast, offline CPD considers the entire data set at once,
and can thus look back in time to see when a change occurred. Here, we will focus on
offline CPD as it is the most relevant to this thesis.

Another division of CPD methods concerns the parametric versus nonparametric as-
sumption. Parametric methods rely on assumptions about the underlying data distri-
bution and its parameters. For instance, that it is a normal distribution with a specific
mean and standard deviation. Nonparametric methods use less such assumptions, or
none at all (Garreau, 2017).

Formally, CPD considers a time series S of length n, i.e. S = {x0, x1, . . . , xn}, where xi
is a d-dimensional data vector designating the value at timestamp i. At every timestamp
0 ≤ i ≤ n, S can be separated into two sets, one containing all data before i and one
containing all after i, i.e. S0..i and Si..n. Note that there exists 2n−1 different ways to
segment the data, making this a very difficult problem on large series.

Change point detection can be considered a hypothesis testing problem where the null
hypothesis is that the samples in S0..i and Si..n are from the same distribution, which can
be evaluated using a statistical test. Rejection of the null hypothesis implies a change
point (Dries and Rückert, 2009). Furthermore, Truong et al. (2020) define CPD as a
model selection problem which consists of selecting the best possible segmentation of S
s.t. an associated cost function is minimized.

In the latter definition, a CPD algorithm consist of three components: a cost function, a
search method and a constraint (on the number of change points). The cost function is a
measure of homogeneity, i.e. how similar data points in a given segment are. The search
method concerns locating possible segment boundaries and comes in both optimal and
approximate forms. If the number of change points is not known a priori, a complexity
penalty is used instead.

Examples of (simple) cost functions are the l1 and l2 norms. However, these can only
successfully capture the proximity between data points if the data actually represents a
structure. If this is not the case, a kernel function has to be used instead. An explanation
of kernel functions is outside the scope of this thesis. Instead we refer to section 1.4 in
Garreau (2017) for an introduction to kernel methods with regards to change point
detection.
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In our experiments, we use the bottom-up search function. This procedure starts with
many change points and then deletes those that are less significant. This method has two
parameters. The first is minimum size, which specifies the minimum length of a segment.
The second is jump, which considers how many samples apart the initial change point
possibilities are distributed.

2.8. Network Proximity

Network proximity measures capture the proximity between a pair of nodes in a graph.
To do this, two sources of information can be used: the attributes of the nodes, and the
structure of the graph itself.

Drawing from the many existing network proximity measures, Liben-Nowell and Klein-
berg (2007) apply several to the problem of link prediction in homogenous graphs (e.g.
social networks). This is done by calculating the network proximity scores for (a selection
of) pairs of nodes in the graph. The pairs with the highest scores are the most similar
and are intuitively the most likely to form a new link. We will now briefly cover a se-
lection of network proximity measures from the aforementioned paper, that are relevant
to this thesis based on their performance and complexity.

The methods we will discuss are based on node-neighborhoods. The node-neighborhood
of a node x, denoted Γ(x), is the set of nodes that are direct neighbors of x. The idea is
that two nodes are more likely to form a link if they have many overlapping neighbors.
Hence, the well known Jaccard coefficient between two nodes can be written as

score(x, y) =
|Γ(x) ∩ Γ(y)|
|Γ(x) ∪ Γ(y)|

(8)

A slightly more advanced model was introduced in Adamic and Adar (2003) in the
context of identifying social networks from personal homepages and mailing list sub-
scriptions. The idea is that common features (nodes) should be weighted less heavily
than uncommon ones. The measure is referred to as Adamic/Adar after their creators
and is defined as

score(x, y) =
∑

z ∈ Γ(x)∩Γ(y)

1

log |Γ(z)|
(9)

The last approach based on node-neighborhoods that we discuss is preferential attach-
ment. It is based on the notion that the probability that a node x obtains a new edge is
proportional to its current number of edges, i.e. |Γ(x)|. The probability that a new edge
is created between two nodes is equal to the product of the number of edges between
them, leading to the scoring measure

score(x, y) = |Γ(x)| ∗ |Γ(y)| (10)
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3. Overview of Knowledge Graph Embedding Models

Roughly speaking, KG embedding approaches using latent features can be defined in two
groups, translational approaches and tensor-factorization approaches. Models of the first
type apply meaning to latent representation, namely that entities that are similar must
be close together according to some distance measure. Models of the second type do
not apply any meaning to the embedding themselves, but try to capture the underlying
interactions directly. We will now give an overview of several important KG embedding
models, including an overview of some temporal KG embedding models.

3.1. Translational models

First introduced by Bordes et al. (2013), and perhaps the type of model with the easiest
intuition, translational, or distance models represent predicates as translations in the
vector space. Intuitively, entities that are similar should be close together, and dissimilar
ones should be far apart. Phrased in the context of vectors, combining subject and
predicate should result in the object vector. For example, the vectors representing
entities Donald Trump and Barack Obama should both be approximately equal to the
vector representing the entity USA after applying the predicate vector PresidentOf as a
transformation.

3.1.1. TransE

As stated earlier, the first distance based model was introduced by Bordes et al. (2013)
under the name TransE (Translating Embeddings). This model learns unique representa-
tions for all entities (s and o), and for all predicates (p) in the same space. Furthermore,
the entity vectors must at most unit length according to the L2 norm. If this were not
the case, the loss could simply be minimized by setting all entity vectors to high values,
maximizing the distance between corrupted and true triples. There are no constraints
on the predicate vectors. The scoring function for TransE is displayed in equation 11.

φ(s, p, o) = ||s + p− o||1,2 (11)

The largest benefit of TransE is it low number of parameters, namely Θ(nk+mk), with
k denoting the length of the embedding vector, i.e. the number of parameters scales
linearly with the number of entities and predicates in the database, a property which is
required in order for a model to be able to scale to the massive sizes of existing KB’s.
Furthermore, the approach works well for one-to-one and asymmetric relations (e.g.
parentOf ). However, it performs poorly in one-to-many or many-to-many relationships
(e.g. bornIn, playsFor), and cannot model symmetric relationships at all (e.g. spouse).

To understand why TransE fails under symmetric predicates, consider that both (s+p ≈
o) and (o+p ≈ s), therefore, p must be zero, as any other value would increase the loss.
To see why TransE cannot model one-to-many or many-to-many relationships, note that
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Figure 2: Visual comparison between the scoring functions of TransE (left) and TransH
(right). Adapted from (Wang et al., 2014).

a set of entities which share a predicate to the same object, will also receive the same
embedding, even though they are not the same entities. For example, all people who
live in New York should have an equivalent embedding.

3.1.2. TransH

To extend TransE to work on more types of predicates, Wang et al. (2014) introduce
TransH. TransH allows entities to have a distributed representation. That is, the rep-
resentation differs depending on the predicate in which the entity is involved. This is
achieved by characterizing each predicate with an additional normal vector which defines
a hyperplane. Thus, every predicate embedding consists of a pair of vectors: (r,wr). r
represents the standard predicate vector, and ||wr||2 = 1 r represents the hyperplane
normal vector. Recall that |E| = n and |P| = m, the total number of parameters for
TransH is thus Θ(nk + 2mk).

Distance is calculated by first projecting the entities to the predicate specific hyperplane
before adding the predicate vector. This can be done using the dot product. The full
scoring function can be seen in equation in equation 12. Additionally, to ensure that the
translation vector is in the hyperplane, each r and wr pair must be orthogonal to each
other. This is ensured by restricting the dot product between the hyperplane normal and
the predicate to be roughly equal to the length of the translation vector, i.e.,: wr•r

||r||2 ≤ ε.

φ(s, p, o) = ||(s− (wp • s)wp) + p− (o− (wp • o)wp)||1,2 (12)
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Figure 3: Examples of three dimensional tensors. From left to right, we can take lateral,
horizontal or frontal slices of the tensor. Rabanser et al. (2017).

3.2. Tensor factorization

We will start this section with a short overview of tensor definitions required for the this
thesis. For a more complete introduction to tensors, we refer to Rabanser et al. (2017).

A tensor is an extension of a matrix to an arbitrary number of dimensions. In the same
way that one can stack multiple (row) vectors on top of each other to produce a two-
dimensional object (a matrix), one could stack multiple matrices on top of each other
in order to create a three-dimensional object; a tensor. Tensors can be thought of as
multidimensional arrays. The number of dimensions is also called the order, way, or
mode of the tensor: a first-order tensor is a vector, a second-order tensor is a matrix.

The outer product between two vectors a, b is defined as abT = a } b and produces a
matrix. This definition can be extended to the tensor outer product between n vectors,
producing an n-dimensional tensor. In the case of three dimensions, i.e. a } b } c, one
could imagine each slice of the tensor as being obtained through scaling the a} b matrix
through the corresponding index in c.

An n-dimensional tensor is defined to be a rank-1 tensor if it can be decomposed into
the outer product of n vectors. Building from this, the rank of tensor X is defined to be
the smallest number of rank-1 tensors that sum up to X . Unlike the matrix rank which
is well understood and can be efficiently calculated, tensor rank is poorly understood.
Calculating the rank of a tensor is known to be NP-hard even for a three-dimensional
tensor (Hillar and Lim, 2013).

A KG can be modelled as third-order tensor containing every possible triple, i.e. D =
E ×P ×E . Any possible triple can be modelled as a binary random value: yspo ∈ (1,−1)
where 1 indicates a true triple and −1 indicates a false triple. However, in actuality the
KG is only partially observed, and we only store positive facts. As a result not every
triple has a known truth value. Therefore, we let Y ∈ Rn×m×n denote the partially
observed knowledge graph, also called the adjacency tensor.

We can use this new formulation to rephrase our embedding task. Rather than applying
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an intuition to the embeddings and enforcing them as constraints like in translation based
models, we instead view the problem as attempting to learn a conditional probability
distribution from Y that generalizes to the unseen triples. That is, we want to produce
some scoring tensor X ∈ Rn×n×m, whose scores can be converted into the probability of a
triple being true (e.g. through the logistic function 1

1+e−x .), i.e. P (Yspo = 1) = σ(Xspo).
Or, phrased in the context of a scoring function: P (Yspo = 1) = σ(φ(s, p, o)).

The idea is that X can be modelled as the result of the interactions between the la-
tent features of the entities and predicates: given a compositional function φ(s, p, o) and
embedding vectors, we should be able to produce any value in Y. Learning X is done
through tensor factorization: the partially observed tensor is decomposed into a product
of factor matrices with smaller, fixed dimensions, resulting in more compact representa-
tion of the original tensor. Tensor factorization models differ the number of components
used and how they are composed.

In our case, factor matrices represent the entity and predicate embeddings. Since both
determining the rank of a 3-way tensor and determining the best rank-1 approximation
of a tensor are proven NP-hard, the factorization is generally an approximation of the
true tensor. That is, a dimensionality is chosen as the number of latent features to
model, and the tensor is approximated with those elements.

3.2.1. Polyadic Decomposition

A well known tensor factorization method is polyadic decomposition (PD) introduced by
Hitchcock (1927). PD can be considered an extension of matrix rank decomposition to
tensors, as such, PD decomposes a tensor as the finite sum of a series of rank-1 tensors.
I.e. it decomposes an n-dimensional tensor as the finite sum of a series of outer products
between n different vectors. If the number of rank-1 tensors is equal to the rank of the
tensor, the decomposition is called canonical.

The formalization of the objective function for a PD of a three-way tensor X can be
seen in equation 13. Here, R indicates the number of of rank-1 matrices used in the
approximation, which is equivalent to the length of the embedding vector k. This can
be thought of as the number of latent features used to model the entities and predicates.
ar, br, cr denote the vectors making up the rank-1 tensor with index r.

min||X −
∑
r∈R

ar } br } cr|| (13)

Applying polyadic decomposition to knowledge graphs has a large downside. Seeing as
it decomposes an n-way tensor into a combination of outer products between N vectors,
our 3-way KG tensor is decomposed into 3 factor matrices. One factor matrix contains
the predicate embeddings and the other two contain the entity embeddings. That means
that each entity has two embeddings: one for its occurrences as a subject and one for its
occurrences as an object. As a result, an entity’s subject representation is completely
independent of its object representation.
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To understand why this is problematic, consider the following two facts: (The Dark
Knight (Movie), leading actor, Christian Bale), (John, likes, The Dark Knight (Movie)).
In the first fact The Dark Knight (Movie) occurs as a subject and in the latter it occurs
as an object. That means that observing the first fact will only update the subject
representation of the movie and by extension thus will not affect the score and plausibility
of the second fact. Yet, we would expect that this would happen, because if we were to
observe that John likes Christian Bale, we would find it more plausible that John will
like the movie.

3.2.2. RESCAL & DistMult

Among the first to apply tensor factorization to the problem of KG embeddings, Nickel
et al. (2011) introduce RESCAL. RESCAL is based on the tucker decomposition which
decomposes a tensor into a matrix for every dimensional, along with a single core-
tensor of the same dimension Tucker (1966). In the naive case, applying the Tucker
decomposition would result in a core tensor along with three component matrices. In
addition to having the same problem with independent representation that PD has, this
naive approach would also require more parameters due to the inclusion of a core tensor.

RESCAL solves these issues by applying two constraints. Firstly, one factor matrix
is restricted to be the identity matrix, meaning it does not affect the computation.
Secondly, the two matrices representing the entity embeddings are restricted to be equal
to each other. Thus, RESCAL actually decomposes a tensor into two components. The
first is an entity matrix E ∈ Rn×k that contains the latent representations of all entities.
The second is a predicate tensor P ∈ Rm×k×k where each slice is a matrix modelling
the interactions between entities for that predicate. Each of these slices is factorized as
Xp ≈ EPrET ∀r ∈ P. RESCAL thus has θ(nk +mk2) parameters.

φ(s, p, o) = sTRpo =
K∑
a=1

K∑
b=1

Rpab ∗ sa ∗ ob (14)

The scoring function for RESCAL is displayed in equation 14. Note that in order to
compute the score of a single triple under RESCAL requires that each predicate slice of
the predicate tensor is multiplied with two vectors of length k from the entity matrix,
which puts the time complexity at O(k2). Consequently, computing the score of all
triples would imply a time complexity of O(nmk2). However, the authors provide an
efficient updating procedure based on alternating least squares, that allows for updating
Pr independently from the number of entities and lets m only occur as a linear factor.
The result is that the algorithm scales linearly with the size of the embedding, the time
complexity of RESCAL is thus O(k2).

Due to its large number of parameters (i.e., quadratic to the dimensionality of the em-
bedding and the number of predicates), RESCAL is prone to overfitting to the available
data. To alleviate this problem, Yang et al. (2015) introduce DistMult. DistMult is
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Figure 4: Illustration of the tensor decomposition applied by RESCAL. Nickel et al.
(2015).

a special case of RESCAL where every predicate matrix is restricted to be a diagonal
matrix, meaning each predicate can be modelled as just a single vector. As a result,
DistMult requires just θ(nk + mk) parameters, which is equal to other models such as
TransE.

Specifically, under DistMult each slice Xk of the tensor is decomposed as Xk = EPrE
T ,

where Pr is the diagonal matrix representing the embedding of predicate r, and E is
the matrix containing the entity embeddings. The corresponding scoring function is
displayed in equation 15. A factorization of this form is also called the eigendecompo-
sition or spectral decomposition. If this decomposition exists, the matrix is said to be
diagonalizable. However, it is known that a matrix is diagonalizable if and only if it
is symmetric. As a consequence, the decomposition only exists when Xk is symmet-
ric, meaning that DistMult can only properly model symmetric relations. Nevertheless,
DistMult has proven to be a quite effective embedding model.

φ(s, p, o) = sTPpo =

k∑
i=1

si ∗ pi ∗ oi (15)

3.2.3. ComplEx

A quick review of complex numbers: a complex number consist of a real and imaginary
part, i.e., it can be expressed in the form a+bi where a and b are real and i is imaginary.
The complex conjugate of a complex number is the number with the same real part, but
with the sign of the imaginary component inverted, e.g., the complex conjugate of 2 + 5i
is 2− 5i. The complex conjugate of z ∈ C is denoted z̄.
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The dot product or scalar product between two real vectors of equal length a,b ∈ Rk is
defined as

∑k
i=1 ai∗bi and produces a scalar. Under this definition, the square root of the

dot product between a vector by itself produces the length of the vector. However, if the
same definition was applied to complex vectors this property would not hold. Instead,
the dot product between a complex vector with itself would be an arbitrary complex
number and could even be the zero vector. To salvage this property, the dot product
between two complex numbers c,d ∈ Ck is defined as

∑k
i=1 ai ∗ bi. As a result of this

definition, the dot product of two complex vectors is not commutative: a • b 6= b • a.

Trouillon et al. (2016) note that while the representation of an entity should be equal
regardless of whether it is used as an object or subject, its behavior should not be.
Therefore, they suggest combining complex vectors with a dot product based scoring
function. Now the representation is the same, but the behavior depends on whether
the entity is used as object or subject. This way, the dot product is a very effective
composition function.

Their model, called ComplEx, factorizes X into two components just like RESCAL and
DistMult. The first component is an entity matrix E ∈ Cn×k which contains the entity
embeddings. The second component is a predicate tensor R ∈ Cm×k×k, where each slice
r is a diagonal matrix Rr ∈ Ck×k which models the behavior of a specific predicate.
Just like in DistMult, these are restricted to be diagonal matrices. Therefore, ComplEx
only has θ(mk + nk) parameters, i.e., its number of parameters grows linearly with the
number of entities and predicates.

The scoring function for ComplEx is displayed in equation 16. Here Re returns only the
real part of the complex number.

φ(s, p, o) = Re(
k∑
i=1

pi ∗ si ∗ oi) (16)

3.2.4. SimplE

Recall that the major downside to polyadic decomposition is that it learns two inde-
pendent embedding vectors for each entity even though they should be shared. Noting
this, Kazemi and Poole (2018) introduce an enhancement to PD which allows dependent
learning of the two embeddings. They name their model SimplE after the simplicity of
the change.

SimplE considers two embeddings for each entity e ∈ E : one for its occurrences as
subject es ∈ Rk and one for its occurrences as object eo ∈ Rk. This is the same as
under polyadic decomposition. However, they also consider two embeddings for each
predicate, i.e. {(r, ri) | r ∈ P}. The latter can be thought of as the inverse predicate.
The score of a triple (s, p, o) is then calculated by taking the average of its score and its
inverse score, i.e. the score obtained by taking the alternative embedding and predicate
vectors. The resulting scoring function can be seen in equation 17. Here, x−1 refers to
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the inverse embedding of entity or predicate x.

φ(s, p, o) =
1

2

k∑
i=1

(si ∗ pi ∗ oi) + (o−1
i ∗ p−1

i ∗ s−1
i ) (17)

3.3. Temporal KG embeddings

The embeddings that we discussed previously only work on static knowledge graphs
and cannot utilize temporal information of facts. Yet, it is plausible that embeddings
of a TKG that do take the temporal scope into account produce better embeddings
than those that do not. In this section, we will discuss a selection temporal knowledge
graph embedding models. Some of these are model agnostic, meaning that they operate
in conjunction with any static KG embedding model. Additionally, some are hybrid
embedding models, meaning that they can embed both temporal and atemporal (static)
graphs. This is an important feature, as most TKGs contain many atemporal facts.

3.3.1. t-TransE and variants

Noting that traditional KB embedding models such as TransE often confuse predicates
such as BornIn and DiedIn, Jiang et al. (2016) introduce a time-aware embedding ap-
proach which takes advantage of the temporal ordering of facts: BornIn must occur
before DiedIn. The underlying assumption is that through a temporal transition, a
predicate vector at time t1 ∈ T evolves into a successive predicate vector at time t2 ∈ T
(where t1 < t2). E.g., given embeddings of two temporal facts sharing the same subject:
(s, pi, om, t1), (s, pj , on, t2), and a temporal order transformation matrix M ∈ Rm×m, the
two predicates should be similar after applying the transformation matrix: piM ≈ pj .
As a result, the transformation matrix can be scored as

g(pi,pj) = ||piM − pj ||1,2 (18)

This approach is model agnostic and can thus be added to all existing KG embedding
approaches by minimizing the joint score of existing KG embedding approach and the
temporal order score function. The relative importance of the static and temporal scoring
functions can be controlled with the hyperparameter λ.

In order to generate the required samples for training M , a set of positive and negative
predicate pairs is required for each entity. Given a pair (ri, rj) | ri, rj ∈ P for entity e,
it is positive if (e, ri) occurs before (e, rj) does, and negative otherwise. More formally,
let Ω+

e be the set of positive predicate pairs for entity e. Then it can be constructed as
Ω+
e = {(ri, rj)|(s, ri, o, h1) ∈ T s=e, (s, rj , o, h2) ∈ T s=e, h1 < h2}. The corresponding set

of negative predicate pairs Ω−e can be obtained by reversing the order of each pair in
Ω+
e .
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3.3.2. Temporal-Aware Sequence Encoders

Garćıa-Durán et al. (2018) introduce a recurrent neural network architecture to learn
time aware representations of entities and predicates. Like t-TransE, their method is
model agnostic, meaning that it can be used in conjunction with traditional KG embed-
ding methods. Their method is referred to as TA-model, depending on which scoring
function is used (e.g. TA-TransE). Additionally, their method represent facts with their
original granularity.

Specifically, temporal facts are modelled by extending a triple with either the temporal
predicate ’occursSince’ or ’occursUntil’ and a timestamp. This means that for closed
time intervals (intervals that have a defined start and end date), two facts are modelled.
One fact signifying the start time and one fact signifying the end time. Therefore,
knowledge graphs using the more commonly used (s, p, o, b, e) format will have to be
pre-processed before this model can be used.

The timestamp is constructed as a sequence of characters combined with a suffix ∈
{y,m, d} indicating whether the character refers to year, month or day information
respectively. An example conversion of several triples can be seen in Table 2. The
combination of temporal predicate and timestamp combination is called a temporal token.

Fact Temporal token

(Obama, born, US, 1961) [born, 1y, 9y, 6y,1y]
(Obama, president, USA, since, 2009) [president, since, 2y, 0y, 0y, 9y, 01m]

Table 2: Facts and their corresponding predicate sequence. Adapted from Garćıa-Durán et al.
(2018).

Each token is then mapped to its corresponding embedding and used as input for the
recurrent neural network. The resulting predicate embedding is obtained from the final
layer of the network. The output of that final layer can then be used as input for any
scoring function. The parameters for the scoring function (i.e. subject and object em-
bedding) are learned jointly with the parameters of the network generating the predicate
embeddings using stochastic gradient descent.

3.3.3. HyTE

The next TKG embedding approach that we will discuss is Hyperplane-based Temporally
aware knowledge graph Embedding (HyTE) (Dasgupta et al., 2018). HyTE takes inspi-
ration from the TransH model discussed earlier. Instead of projecting embeddings on
a predicate-specific hyperplane during scoring, it projects them on a timestamp-specific
hyperplane. This idea is grounded in the observation that the main source of different
one-to-many, many-to-one or many-to-many predicate pairs are based in different points
in time, e.g., someone who moves to New York after living in Berlin.

HyTE considers a TKG as series of static KGs, where each static KG represents a
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singular point in time containing only the set of facts that were valid at that time. I.e.
T =

⋃
t∈T Dt. To this end, any fact that is true over an interval of time is deconstructed

into a fact for every year it is true and included in the relevant subgraph. Therefore, one
must take care that the time granularity is not set too high which could result in very
sparse subgraphs or imbalances between the sizes of the subgraphs. As a countermeasure,
the authors use an adaptive granularity so that a minimum number of triples is included
in every subgraph.

Unlike t-TransE, in HyTE the temporal scope is directly included in the embedding
rather than being enforced through constraints. This results in a distributed represen-
tation where the embeddings differs depending on the time. Therefore, HyTE requires
a different distance function that takes into account the timestamp at which the fact
occurred. Like TransH, it computes the dot (•) product between the embedding and the
hyperplane normal, noted h. The distance function can be seen in equation 19.

φ(s, p, o, h) = ||(s− (h • s)h) + (p− (h • p)h) + (o− (h • o)h)||1,2 (19)

Calculating the loss for a specific embedding is done using by minimizing the margin
based ranking loss. It is therefore required to iterate over all time steps. The result can
be seen in equation 20. Here, negative samples are obtained through TDNS or TANS,
as explained in section 2.6.

L =
∑
t∈T

∑
x+∈D+

t

∑
x−∈D−t

γ + φ(x+)− φ(x−) (20)

3.3.4. Diachronic Embeddings

The concept of Diachronic Entity Embeddings (DEE), introduced in Goel et al. (2019)
combines the distributed representation present in HyTE and combinatory capabilities
of t-TransE. That is, the temporal aspects are included inside the embedding vectors
and the method can be combined with any existing KG-embedding. This is achieved by
applying a time-dependent function to each embedding. The underlying intuition is that
some features of an entity may differ over time, whereas other features remain static.

A diachronic entity embedding (DEE) function is a function which maps every (entity,
timestamp) pair to its representation. Noting that the choice of DEE function can differ
based on the properties of the TKG which is being embedded, an example provided by
Goel et al. (2019) can be seen in equation 21. Here z represents the DEE of length k of a
specific entity at a specific time. Given an entity-specific embedding a ∈ Rd, its first γk
indices are transformed using a sigmoid function, where 0 ≤ γ ≤ 1 is a hyperparameter,
and two additional weight vectors w,be ∈ Rγk.
Furthermore, the authors advocate for using the sine function in favour of a classic
sigmoid function such as the logistic function, as the periodicity of the sine function
allows for multiple on and off states.
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zte[n] =

{
ae[n]σ(we[n]t+ be) if 1 ≤ n ≤ γk
ae[n] if γd < n ≤ k

(21)

3.3.5. ATiSE

In order to take the temporal uncertainty into account that occurs during the evolution
of entity and predicate representations over time, Xu et al. (2019) propose mapping
their representations into the space of multi-dimensional Gaussian distributions. Here,
an embedding at a specific timestamp is represented as the mean of the distribution, and
its uncertainty is represented as the covariance of the distribution. Evolution of entities
and predicates is modelled by using additive time series. For this reason the model is
named AtiSE, short for additive time series decomposition embedding. ATiSE operates
on timestamped facts (i.e. quadruples), but can model valid time facts by constructing
a quadruplet for every timestamp at which the fact holds.

Additive time series decomposition decomposes a time series into three components. A
trend component, a seasonal component and an irregular component. In ATiSE, the first
is modelled as a linear combination of the embedding vector and an evolution component
The seasonal component is modelled as a sine function and the irregular component is
modelled as gaussian noise.

Scoring a triple is done through Kullback-Leibler (KL) divergence, which measures
how much one probability distribution differs from another distribution (Kullback and
Leibler, 1951). The score of a triple is the KL divergence between the entity distribution
and the predicate distribution, i.e. the subject and object distribution are first combined.
Therefore, ATiSE can be considered a translational model. The resulting equation can
be seen in equation 22, here δKL refers to the KL divergence of the two distributions.
For a full expansion of the scoring function we refer to Xu et al. (2019).

φ(s, p, o, h) = δKL(Pp,h, (Ps,t − Po,h)) (22)
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4. Method

Noting that the results obtained by many TKG embedding models are only marginally
better than those obtained using static KG embedding models, we have created a new
method called SpliMe. The name is short for SPLit and ME rge, its two main ap-
proaches. SpliMe leverages the valid time of facts to embed time inside entities or
predicates themselves. It is important to note that the output of SpliMe is not a static
KG. Instead, it is a temporal knowledge graph denoted in triples. SpliMe is model
agnostic, meaning it can be used with any of the existing static embedding models.
Additionally, it is capable of embedding both static and temporal facts.

At the core of SpliMe is a transformation function f : T 7→ T ′ which transforms a
given TKG into another TKG that incorporates time at the level of entities or predicates.
This function is applied repeatedly until a stopping criteria cs is met. The simplest
implementation of f would be to create a new predicate for every unique (predicate,
valid time) combination in the TKG. However, due to the large domain of possible
intervals, this is generally not feasible as the resulting KG would be too sparse.

To counter this, we have created four implementations of f , namely timestamping, split-
ting, merging and proximity. We will now present an explanation of each method applied
to predicates, the versions for entities can be defined analogously. Additionally, while
the implementations assume a valid time KG, we note that any event KG can be trivially
expanded into a valid time KG by setting b = e = h for every fact.

4.1. Timestamping

Conceptually the simplest approach, timestamping converts each temporal fact in the
KG into a set of facts, one for each timestamp for which the fact was true. A variant
of this approach was previously defined in Leblay and Chekol (2018) under the name
Naive-TTransE. Formally, given an injective function u(P, T ) 7→ P ′ which creates a new
predicate for every (predicate, timestamp) combination, timestamping creates a set of
facts for a given quintuple, i.e. f(s, p, o, b, e) = {(s, u(p, t), o) | ∀t ∈ T s.t. b ≤ t ≤ e}. To
obtain a fully timestamped KG, this process must be applied to every fact in the KG.
An example of timestamping can be seen in Figure 5.

(Trump, president, USA, 2017, 2020)
↓

(Trump, president[2017], USA)
(Trump, president[2018], USA)
(Trump, president[2019], USA)
(Trump, president[2020], USA)

Figure 5: Illustration of how a fact is converted into a set of facts when timestamping.

Pseudocode for the timestamping method can be seen in Algorithm 1. We start off
by initializing an empty predicate set and temporal knowledge graph in lines 4 and 5.
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Algorithm 1 : SpliMe: timestamping strategy

1: function Timestamp(T , P u)
2: input: TKG, predicate lookup function
3: output: TKG, new predicate set
4: T ′ ← {}
5: P ′ ← {}
6: for all (s, p, o, b, e) ∈ T do
7: for t = b; t ≤ e ; t++ do
8: r ← u(p, t) . Lookup/create new a predicate for this

(predicate, timestamp) combination
9: P ′ ← P ′ ∪ r

10: T ′ ← T ′ ∪ (s, r, o, t)
11: end for
12: end for
13: return T ′,P ′
14: end function

Then, for every quintuple in the knowledge graph, we iterate over all all timestamps in
its valid time (line 6). For each such timestamp we create and add a new predicate (to
the predicate set), and then add the modified fact to the TKG (lines 9, 10).

Note that the timestamp of the fact is also included in the resultant TKG. I.e., a set
of quadruples is returned instead of the expected set of triples. This is done because
timestamping is also used as a pre-processing step for the merging approach discussed in
section 4.3. However, because the temporal information is already included in the pred-
icates, the time element can simple be removed when one wishes to train a timestamped
dataset.

4.2. Splitting

Given a predicate r ∈ P and a timestamp t ∈ T , splitting adds two new predicates
to the predicate set: P ′ = {r1, r2} ∪ P. All (s, p, o, b, e) ∈ T p=r are then updated
to contain either r1 if e ≤ t, or r2 if b ≥ t. Otherwise, the fact is split into two:
{(s, r1, o, b, t), (s, r2, o, t, e)}. An example of splitting a TKG containing two facts can be
seen in Figure 6. This figure also shows that splitting does not necessarily increase the
size of the data set. Instead, splitting reduces the number of facts associated with each
predicate.

More formally, the splitting function can be defined as f : (T , cp, ct) 7→ T ′, which given
a TKG T , splitting criteria cp which selects a predicate, and criteria ct which selects a
timestamp, maps to a new TKG T ′. The challenge here lies in defining an effective cp and
ct. For cp, a general approach that produced a good performance in our experimental
evaluation is selecting the predicate that occurs the most, i.e. cp = maxr∈P |T p=r|.
Intuitively, this is the predicate that benefits the most by making it more specific.
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(Obama, president, USA, 2009, 2017)
(Trump, president, USA, 2017, 2020)

↓
(Obama, president[2009-2017], USA)
(Trump, president[2017-2020], USA)

Figure 6: Illustration of the splitting process on a small TKG containing two facts using the
count criteria. Splitting on the year 2017 results in an equal number of facts on both
sides of the splits. If the time criteria had been applied, the split year would have
been 2014.

For ct, we propose two methods: count and split. Let trf and trl denote the first and
last timestamps associated with predicate r in the TKG. The time method splits at t =
(trf + trl )/2. The count method selects for predicate r the point in time that results in the
most balanced number of triples on both sides of the split. This is done by counting how
many facts end before, or end after a specific timestamp. Formally, the count function
can be written as ct(r) = arg mint∈T abs(|T p=r,e≤t| − |T p=r,b≥t|) where T p=r,e≤t 6= ∅ and
T p=r,b≥t 6= ∅ in order to prevent the consideration of non-existing (predicate, timestamp)
combinations. We have performed experiments with both methods and found that both
achieve similar results. Which one performs best depends on the dataset used.

For the stopping condition cs, we allow a user selected grow factor g ≥ 1 and stop
when the number of predicates has become more than g times the original number of
predicates. Specifically, let m and m′ denote the number of predicates original KG and
the modified KG respectively, then we continue until cs(g,m,m

′) = g ∗m ≥ m′. In our
experimental evaluation we used grow factors between 5 and 30. If lower values are used
not enough new predicates are added, for higher values there may not be enough room
to split on.

Pseudocode for the merging approach is given in Algorithm 2. Continuing until the stop
condition is met, each iteration of the algorithm starts by finding the most common
predicate in the TKG (line 5) and selecting a timestamp based on the either the time or
count method (line 6). On line 7, two new predicates are created: the first represent the
predicate until the split timestamp t, the second represents it from that point forward.
Then for every fact in the TKG which contains the original predicate, we remove that
fact in favour of the new ’split’ facts. Which predicate (r1, r2) is used depends on the
valid time of the quintuple. Finally, we remove the original predicate from the predicate
set (line 19).

4.3. Merging

Merging can be considered as the opposite of splitting. The method starts with a times-
tamped TKG (consisting of (s, p, o, h) quadruples) and selectively merges back predicates
which belong to the same original predicate and are subsequent in time. This reduces
the number of unique predicates in the TKG. That is, given a predicate pair (r1, r2)
to merge, a new predicate rc is generated, and every (s, p, o, h) ∈ {T p=r1 ∪ T p=r2} is
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Algorithm 2 : SpliMe: splitting strategy

1: function Split(T , P, ct)
2: input: TKG, Predicate set, time selection condition
3: output: TKG, Predicate set
4: while not stop condition met do
5: r ← arg maxr∈P|T p=r|
6: t ← ct(|T p=r|) . Using either Time or Count method
7: P ← P ∪ {r1, r2}
8: for all (s, p, o, b, e) ∈ T p=r do
9: T ← T \ {(s, p, o, b, e)} . Remove the original fact from the TKG

10: if b ≤ t ≤ e then . If fact spans the split time
11: T ← T ∪ (s, r1, o, b, t)
12: T ← T ∪ (s, r2, o, t, e)
13: else if e ≤ t then . Fact ends before split
14: T ← T ∪ (s, r1, o, b, e)
15: else . Fact begins after split
16: T ← T ∪ (s, r2, o, b, e)
17: end if
18: end for
19: P ← P \ {r} . Remove the original predicate
20: end while
21: return T ,P
22: end function

33 of 85



Utrecht University

(Macron, president[2017], France)
(Macron, president[2018], France)

(Trump, president[2017], USA)
(Trump, president[2018], USA)

↓
(Macron, president[2017-2018], France)

(Trump, president[2017-2018], USA)

Figure 7: Illustration of how a small timestamped TKG containing four facts is merged.

then updated to contain rc, lowering the number of unique predicates. Like splitting,
the difficulty lies in defining a good predicate selection criterion cp, and a good time
selection criterion ct.

To this end, we define function lp(P ′) 7→ P which given a predicate of the timestamped
TKG, returns the source predicate in the original TKG and a function lt(P ′) 7→ T
which given a predicate of the timestamped TKG, returns the time associated with that
predicate. Recall from section 4.1 that u(P, T ) 7→ P ′ returns a unique (new) predicate
for every (predicate, timestamp) pair. lp and lt are defined s.t. for predicate r ∈ P ′,
u(lp(r), lt(r)) = r.

A predicate pair (r1, r2) is only valid as a merge candidate if I) the source predicates are
the same: lp(r1) = lp(r2), and II) there exists no predicate whose timestamp is in between
those associated with r1 and r2. More formally, @rc ∈ P ′ s.t. lt(r1) ≤ lt(rc) ≤ lt(r2).

Based on the intuition that we want to increase the number of examples for every
predicate, we select the (r1, r2) pair that occurs the least in the TKG, i.e. (r1, r2) =
arg minr1,r2∈P ′ |T p=r1 ∪ T p=r2 |. Naturally, the conditions described above must also
hold.

The stopping criterion cs is defined using a shrink factor s ≥ 1 . Recall that times-
tamping introduces a new predicate for every (predicate, timestamp) combination. Let
m,m′,m′′ denote the number of predicates in the original KG, the extra predicates in
the timestamped KG and the current number of predicates in the merged KG respec-
tively. Then, merging continues until cs(s,m,m

′,m′′) = m′′ ≤ p+m′−(m′− m′

s ) returns
true. The higher the value for s, the smaller the resulting number of predicates. In our
experiments, we have generally investigated values of s between 1 and 10. At higher
values, there are often not enough predicates left to merge.

Pseudocode for the merging strategy can be seen in Algorithm 3. The first step is to
apply the SpliMe timestamping method (line 4). The following procedure is performed
until the stop condition is met. On line 6 we generate all possible merge options according
to the constraints laid out above. From this, we select the pair that occurs the least (line
8). Next, we find all facts in the TKG containing either predicate selected to merge, and
iterate over them on line 9. Each of these we remove from the TKG (line 10) and then
re-add it (line 11) with the predicate replaced for the merged predicate we created on
line 7. Once we have iterated over all predicates we exit the loop. Then we update the
predicate set by adding the new, and removing the old predicate (lines 13, 14)
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Algorithm 3 : SpliMe: merging strategy

1: function Merge(T , P)
2: input: TKG, Predicate set
3: output: TKG, Predicate set
4: T ′,P ′ ← timestamp(T ) . Apply timestamping procedure in Algorithm 1
5: while not stop condition met do
6: O ← all possible merge options
7: (r1, r2) ← arg min(r1,r2)∈O |T ′ p=r1 ∪ T ′ p=r2 | . Select the least occuring pair
8: rn ← generate new predicate
9: for all (s, p, o, h) ∈ T ′ p=r1 ∪ T ′ p=r2 do

10: T ′ ← T ′ \ {(s, p, o, h)}
11: T ′ ← T ′ ∪ {(s, rn, o, h)} . Replace all occurrences of the predicates
12: end for
13: P ′ ← P ′ ∪ {rn} . Add the new predicate
14: P ′ ← P ′ \ {r1, r2} . Remove the old predicates
15: end while
16: return T ′,P ′
17: end function

4.4. Proximity

Our final approach utilizes CPD (section 2.7.3) to determine the predicate and timesteps
to split at. However, CPD cannot be immediately applied to knowledge graphs as
it operates exclusively on numeric values. Therefore, we combine this approach with
network proximity measures (section 2.8): the proximity measures output a ”signature”
vector for every predicate, at every timestamp, to which we then apply change point
detection.

We will firstly discuss the creation of the signature vectors. Given the constraints of
the CPD, these must contain numeric values, and for a single predicate the signatures
at every timestamp must be of equal length. Inspired by the format used in evolution
summaries (section 2.7.2), each entry in the vector represents the proximity score of a
specific entity pair, where the order of that entity pair does not matter. Consequently,
the KG is considered an undirected graph in this scenario.

Specifically, signatures are created first slicing the KG into subgraphs representing the
different (predicate, timestep) combination, such that each subgraph contains only the
facts containing the given predicate, and which are true at that timestep. Then, for
every predicate we create a list of entity pairs which exist in any of that predicates
subgraphs, and calculate their proximity scores on those subgraphs. If the entity pair
does not exist in a given subgraph, its score is 0. This proximity score is added to each
timesteps signature vector.

More formally, we create a subgraph sr,t = T p=r,b≤t≤e for every (predicate, times-
tamp) combination. Let f((e1, e2),T ) 7→ R denote a proximity function (e.g. pref-
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Figure 8: Illustration of an entity pair vector and the associated proximity score vectors
for a single predicate. A proximity vector is created for each timestamp.

erential attachment) that calculates the proximity score for a given entity pair on
the given subgraph. Let pairsr denote the set of entity pairs for predicate r, i.e.
pairsr = {(e1, e2) | e1, e2 ∈ E ∧ ((e1, p, e2)∨ (e2, p, e1) ∈ T p=r)}. Now, for every predicate
we calculate the proximity score of each pair in its pair set for every timestep and add
the result to the signature vector. That is, we calculate f(a, srt) ∀a ∈ pairr, ∀t ∈ T for
every predicate. An illustration of what these vectors look like is given in Figure 8.

On these signature vectors we can then apply CPD to find out at which timesteps the
signature, and thus the predicate changes significantly. This would be a split point.
Applying this to all entities or predicates would result in a list of split points for each,
which can then be applied to the original data set.

The number of change points for a given predicate is unknown. Meaning that a com-
plexity penalty or residual value has to be used to determine the optimal number of split
points. In our experimental evaluation, we utilize a bottom-up segmentation algorithm
in combination with a residual ε, where ε is in the range [1, 100] depending on the data
being transformed. Additionally, to ensure that the found change points do not depend
on the magnitude of the signatures, we normalize all signatures before feeding them into
the CPD algorithm.

4.5. Granularity and Temporal Distortion

Many TKG embedding methods that deal with valid time knowledge graphs aggregate
multiple timesteps into a time interval or bin due to the sparsity of time information (e.g.
(Dasgupta et al., 2018; Xu et al., 2019)). By requiring a minimum number of facts for
each bin, the number of distinct timesteps in the KG is decreased. The effect is that the
temporal information of facts is distributed more uniformly compared to the raw data.
The minimum number of facts in each bin is called the granularity level. Unfortunately,
the bin creation algorithms used in other papers are not clearly defined. Instead, only
the granularity level or the number of bins is reported.
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Algorithm 4 : SpliMe: binning

1: function Bin(T , g)
2: input: TKG, granularity level
3: output: Set of bins and their first and last timesteps
4: tmin ← min t ∈ T . First timestep in the TKG.
5: tmax ← max t ∈ T . Last timestep in the TKG.
6: C ← {} . Initialize bin set.
7: c ← {min : tmin,max : tmin} . Initialize first bin.
8: while cmax ≤ tmax do
9: while (|T (cmin≤b≤cmax)∨(cmin≤e≤cmax)| < g) ∨ (|T e≥cmax | < g) do

10: cmax ← cmax + 1 . Increase # timesteps in current bin.
11: end while
12: C ← C ∪ c . Update bin set.
13: c ← {min : cmax,max : cmax} . Create the next bin to be filled.
14: end while
15: return C
16: end function
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(Macron, president[2017], France)
(Macron, president[2018], France)

(Trump, president[2016], USA)
(Trump, president[2017], USA)
(Trump, president[2018], USA)

↓
(Macron, president[2016-2017], France)

(Trump, president[2016-2017], USA)
(Trump, president[2018-2018], USA)

Figure 9: Illustration of how a set of facts for the original predicate ‘president’ between 2016
and 2020 are merged, and how this can result in temporal distortion.

Therefore, we propose the bin creation procedure given in Algorithm 4. The algorithm
starts by initializing tmin and tmax as the first and last timesteps in the TKG (lines 4,
5). C is initialized as the set of all bins, and c as the first bin (lines 6, 7). For bin c, its
start and end timesteps are referred to as cmin and cmax respectively.

We continue creating bins until we have reached the final timestep in the TKG (line
8). Facts are added to a bin if their valid time overlaps with with the interval of the
current bin. The interval of the bin is extended until the required number of facts have
been added, or if it is impossible to create a new bin because there will not enough facts
to fill it to the required granularity level. These conditions are represented by the first
and last term on line 9 respectively. The bin set is then updated to contain the newly
created bin (line 12), and a new bin is initialized to the timestep at which the current
bin ended (line 13).

For splitting and merging, SpliMe does not require a granularity level to be applied
explicitly because both perform it implicitly. In the case of splitting, the most common
predicate is split into two and the number of bins is increased. In the case of merging,
the least common predicates are combined and the granularity is decreased. For this
reason, rather than requiring a minimum number of facts per timestep globally, SpliMe
can be said to operate at the level of individual predicates.

However, both the approach used in SpliMe and the traditional approach seen in the
literature result in what we call temporal distortion. This entails association of a fact
with a timestamp at which it is not true. An example can be seen in Figure 9. In
this example, Macron is noted as being the president of France in 2016. However, the
timestamped KG shows that he only became president in 2017. The temporal scope of
the fact (Macron, president, France) has been

Notably, the model proposed Garćıa-Durán et al. (2018) does not suffer from temporal
distortion because it embeds facts with their original granularity. For other models, the
only way to reduce the amount of distortion is by reducing the granularity level. That
is, requiring less facts per bin. However, this in turn increases the sparseness of the data
which may worsen the quality of the embeddings. An investigation of the effect of the
granularity level on the performance of SpliMe is available in section 5.7.1.
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4.6. Complexity Analysis

Because SpliMe is a pre-processing method, it has a dual effect on the running time and
space requirements of knowledge graph embedding. Firstly, there is a time associated
with running SpliMe which depends on the method utilized. Secondly, because SpliMe
increases the number of entities or predicates by introducing more facts and reducing
the number of facts associated with each element, this in turn can cause an increase in
space and time used during the embedding process. As in the description of the models,
we will discuss the complexity of splitting on predicates. However, that of entities is
again defined analogously.

4.6.1. SpliMe

Lets first consider the time complexity of the proposed methods. Let k denote the
number of facts in the original KG, and n,m, t denote the amount of entities, predicates
and timesteps. The worst case for SpliMe is when every fact in the KG spans the entire
time range. In this scenario the most iterations can be performed.

Timestamping In the case of timestamping, a new fact is created for every (predicate,
timestamp) combination, which results in a time complexity of O(kt). For the other
methods, the runtime depends on the number of merges and splits performed, which is
influenced by the stopping criterion cs, or the ε residual in the case of the proximity
approach.

Splitting The pathological case for the splitting method also assumes that the KG
originally contains only one predicate. Under this scenario the time and count methods
have the same result. Every time a fact is split, it produces two facts. Thus, at first
there is only one predicate and splitting it doubles the size of the KG. The second and
third split then take these two predicates and split them again, doubling the size again.
After x splits, the size of the TKG is thus O(k ∗ log2(x+ 1)).

The number of occurrences for each predicate can be calculated before the first split
is applied with a single pass, and then updated at every split in constant time. The
difficulty therefore lies in efficiently updating all facts. Assuming one stores all facts in
an index in which inserts, deletes and lookups can be performed in (amortized) constant
time (e.g. a hashmap), the time is linear in the number of facts being split. In the
given scenario, this is O(k). Combining this, the time complexity for applying x splits
is O(xk).

Merging Recall that merging starts of with a timestamped KG and merges back pairs
of predicates. I.e., we begin with O(kt) facts, to which we can apply t merges, one for
each (predicate, timestamp) combination. Let us again assume that inserts, deletes and
lookups of facts can be done in constant time. Obviously, calculating the number of
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occurrences for each predicate pair can be done in linear time. These counts can then
be stored as a sorted list (O(m log2(m) using Quicksort for example) and updated when
required. The time complexity of the merging method is thus O(kt2 +m log2(m)).

Proximity Finally, we consider the proximity approach. Here the complexity depends
on the complexity of the creation of the signatures, and on that of the CPD algorithm
utilized. Regarding the latter, we used bottom-up segmentation in our experiments,
which has a runtime complexity of O(s log(s)), where s is the number of signatures.
This is then applied to every predicate.

Signature creation requires calculation of the node neighborhoods of every entity on
every subgraph. Assuming that the data has already been processed into the form of
an adjacency list (s.t. creation of each signature is equal to the number of entity pairs,(
n
2

)
in the worst case2). Calculating a signature for every timestep leads to a worst-case

complexity of O(tn2). In real-world use cases however, the number of entities associated
with each predicate is generally much smaller than the complete entity set.

4.6.2. Embedding

Lastly, lets consider the effect of the increased number of entities and predicates on the
static embedding methods. The maximum number of new predicates that can be created
is also the number that is created in the worst case of the timestamping approach, which
is when every facts spans the entire time period. This is equal to applying splits until
no longer possible, or performing no merging. This would result in O(mt) predicates.

Assuming a model whose parameters grow linearly with respect to the number of entities
and predicates, its space complexity would beO(mt+n). However, we note that generally
m, t � n, especially when a minimum granularity is applied. As a result, in all normal
cases applying SpliMe does not have a large effect on the number of parameters learned
by embedding models, and thus by extension their runtime.

2Equal to n(n−1)
2

, or O(n2) asymptotic complexity.
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5. Experiments

In order to evaluate the effectiveness of SpliMe we have implemented the aforemen-
tioned methods and executed them on several knowledge graphs commonly used for the
evaluation of TKG embedding methods. In this section we will explain our methodology,
list our results and draw conclusions.

All SpliMe methods were implemented in the Python programming language3 using the
NumPy4 and Pandas5 libraries. Additionally, we use the Ruptures6 library for change
point detection. Lastly, the source code and the data used in this thesis are available on
Github7 for reproducibility.

Unless noted otherwise, all models were trained and evaluated using the Ampligraph
framework, a suite of machine learning tools used for supervised learning created by
Costabello et al. (2019). This framework contains implementations for many popular
embeddings such as TransE and ComplEx. All models were trained on the UU gemini
computing cluster. This cluster is a shared computing environment consisting of several
Intel Xeon E5-2683 CPUs running at 2.10GHz. Each CPU has 16 cores, and each
machine has 256GB ram. The cluster does not have GPUs, so models were trained on
the CPU instead.

5.1. Data

We will now give an overview of the knowledge graphs used in our evaluation. Ad-
ditionally, making the KGs viable for our purposes required some pre-processing and
cleanup. These will be noted and motivated as well. Lastly, an overview of characteris-
tics of each KG can be seen in Table 3. For our experiment, we maintained the original
train/test/validation splits.

Valid time KGs The first KG that we will use is Wikidata. Wikidata is the large, open
knowledge graph which acts as central storage for the structured data of other Wikimedia
projects such as Wikipedia (Erxleben et al., 2014). Secondly, we use YAGO, an open
source knowledge graph created by extracting information from Wikipedia (Suchanek
et al., 2007). Specifically, we use the Wikidata12k and YAGO11k subsets extracted by
Dasgupta et al. (2018). Both have time granularity set to the year level.

For many facts in these KGs, either the begin or end time is missing. This is denoted
with four hashtags: ####. If the begin time is missing, this is because it is unknown.
If the end year is missing, this can be because the end date is unknown, or because the
fact is still true. However, as in Dasgupta et al. (2018), we do not discern these cases.

3https://www.python.org Python documentation
4https://numpy.org NumPy documentation
5https://pandas.pydata.org Pandas documentation
6https://centre-borelli.github.io/ruptures-docs Ruptures documentation
7https://github.com/wradstok/thesis radstok Source code and data repository
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Dataset |E| |P| |T | |train| |valid| |test|
YAGO11k 10,526 10 - 16,408 2,050 2,051
Wikidata12k 12,554 24 - 32,497 4,062 4,062
ICEWS14 7,128 230 365 72,826 8,941 8,963

Table 3: Overview of the characteristics of the used datasets. Number of timesteps is not
noted for the valid time KGs because this depends on the applied granularity
level.

In either situation we replace a missing begin time or end time with the first and last
timestep in the TKG respectively. Additionally, there are facts whose temporal scope is
invalid either because they cannot be parsed correctly (e.g. 19#5), or because the end
time is before the start time. These facts are removed before any SpliMe methods are
applied. Unless noted otherwise, valid time KGs are converted as described in section 4.5
with a granularity level of 300.

Event based KGs Additionally, we run our experiments on the Integrated Crisis Early
Warning System (ICEWS) data set. ICEWS is a system designed to monitor and forecast
national, sub-national and internal crises. Its data consists of timestamped political
events at day granularity (Boschee et al., 2015). In our experiments, we use ICEWS14
subset created by Garćıa-Durán et al. (2018). ICEWS14 contains all events in 2014.
All timesteps are of day level granularity, meaning it has 365 timesteps. Alternatively,
there exists a subset called ICEWS05-15 which contains all events from 2005 until 2015.
However, we opted not to use this one due to computing power constraints.

5.2. Hyperparameters

SpliMe is model agnostic and can thus be combined with any KG embedding method.
However, in our experiments we have opted to use TransE. This is for two reasons.
Firstly, TransE is the simplest model and therefore provides a good baseline to show
the viability of our approach. Secondly, many TKG embedding models are built on top
of the TransE family (e.g. (Dasgupta et al., 2018; Jiang et al., 2016)), and thus using
TransE provides a fair comparison.

We have adapted our hyperparameters from Garćıa-Durán et al. (2018) and use the same
hyperparameters for all models. Specifically, we train for 200 epochs with embedding size
= 100 and learning rate = 10−3. We set the batch size to 500 and generate 500 negative
samples per batch. Optimization was done using the ADAM optimizer in combination
with a self-adversarial loss function (Kingma and Ba, 2014). For the proximity method,
we use a kernelized mean change cost function with bottom-up search for the CPD
algorithm. Jump size and minimal section length are set to 1.
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Hits@10 performance
Paper Model Wikidata12k YAGO11k ICEWS14
Dasgupta et al. (2018) HyTE 8.5% 2.8% -
Tang et al. (2020) TDG2E 8.5% 2.8% -
Xu et al. (2019) ATiSE 33.9% 24.4% -
Garćıa-Durán et al. (2018) TA-TransE - - 63.7%
Goel et al. (2019) DE-SimplE - - 63.7%
Jin et al. (2019) RE-Net - - 47.1%
Ours (HyTe) - 10.1% 2.6% 54.1%
Ours (RotatE) - 50.4% 28.3% 70.3%
Ours (Ampligraph) - 52.7% 35.6% 56.1%

Table 4: Comparison between the results obtained by the TransE model on the same
dataset, but in different implementations. Dashes denote that the result is not
available. Below the horizontal line are our experiments using three different
frameworks. Note that model refers to the model introduced in the paper to
make it easier to reference the papers contributions. It does not refer to the
model tested.

5.3. Entity Prediction

For evaluation, we follow the ranking procedure laid out in Bordes et al. (2013) which is
explained in detail in section 2.4. Specifically, we use the filtered setting. To re-iterate,
for a triple in the test set (s, p, o) both the subject or object is replaced with all e ∈ E
in turn. That is, subject and object evaluation is combined. In line with the filtered
setting, we remove any resulting triples which occur in the train, test or validation sets.
All triples are then scored by the model and the result is sorted. The rank of the original
triple is recorded.

We report the MRR, Hits@1, Hits@3 and Hits@10. Following recent TKG embedding
literature, we report the combined subject and object prediction results. In addition to
our three transformation methods, we also report results on a reference version. Here,
all temporal information is removed from the TKG turning it into a static KG. We refer
to this as a vanilla model. A further explanation is given in section 5.4.

5.4. On Evaluating TKGs with Static Methods

In Table 4 we have collected the TransE results for several different data sets from a
number of papers. Many other papers choose to operate on their own subset of Wikidata
or YAGO and can thus not be compared. Nevertheless, we note a big discrepancy be-
tween the valid time KG results of HyTE and TDG2E and those in ATiSE. Furthermore,
there exists also a large discrepancy for ICEWS14 between the RE-Net and TA-TransE
papers. In order to properly compare our results to the current state of the art, we need
to understand what causes these differences.

We have evaluated the performance of TransE under three different implementations:
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Parameter HyTE RotatE Ampligraph

Dimension 100 100 100
Margin 1 24 1
Neg samples 5 500 500
Norm l2 l1 l1
Batch size 50,000 512 500
Learning rate 10−4 10−3 10−3

Loss Pairwise Self-adversarial Self-adversarial
Sampling temperature - 1.0 0.5
Initializer Xavier Uniform Xavier
Steps/Epochs 500 150k 200

Table 5: Overview of the applied hyperparameters used for the three different models.
RotatE uses steps instead of epochs as a stopping condition.

Data set MRR Hits@1 Hits@3 Hits@10

Wikidata12k 0.038 1.9% 3.6% 6.9%
YAGO11k 0.034 1.1% 3.0% 7.4%
ICEWS14 0.146 0.3% 21.3% 41.8%

Table 6: Results for the reference datasets in the Ampligraph framework. The same
parameters as described in section 5.2 are applied, but with pairwise loss instead
of self-adversarial loss.

HyTE, RotatE and Ampligraph. All experiments were run on the same dataset, apply-
ing only transformations to put it in the required format for the framework. Applied
hyperparameters are displayed in Table 5.

From the results, we see that the HyTE framework results match closely with the ATiSE
results on Wikidata12k and YAGO11k. The RotatE and Ampligraph framework exper-
iments however perform much higher. Yet, on the ICEWS14 data set we see similar
results across all frameworks, with the performance being roughly in between those
obtained in Garćıa-Durán et al. (2018) and Jin et al. (2019).

We believe that this result is due to the use of self-adversarial negative sampling imple-
mented in RotatE and Ampligraph. To evaluate this hypothesis we used Ampligraph to
train TransE on all three data sets using the same hyperparameters, but with pairwise
loss instead of self-adversarial loss. The results are available in Table 6 and show that
both valid time KGs suffer from this change, with their results being approximately equal
those seen in the original HyTE paper. However, the ICEWS14 result suffers much less.
Thus, this indeed explains the observed difference.
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Wikidata12k YAGO11k ICEWS14

# duplicates in train (%) 4720 (14.53%) 0 (0%) 30136 (41.38%)
# duplicates in test (%) 214 (5.27%) 0 (0%) 1544 (17.23%)
# duplicates in valid (%) 193 (4.75%) 0 (0%) 1610 (18.01%)

# test triples in train (%) 1042 (27.10%) 0 (0%) 3499 (47.16%)
# valid triples in train (%) 1027 (26.54%) 0 (0%) 3527 (48.11%)

Table 7: Overview of the number of inter and intra set duplicates after stripping temporal
information for each of the used datasets. Note how YAGO is unaffected.

5.4.1. Filtering

Generally, when temporal KGs are embedded using static methods in order to generate
a baseline result, the temporal information is simply discarded. However, we note that
doing so leads to duplicate information which might distort the evaluation result. To give
an example, consider the following two facts: (Obama, visited, the Netherlands, 2014 )
and (Obama, visited, the Netherlands, 2014 ). When temporal information is stripped
these both result in (Obama, visited, the Netherlands).

This process has two issues. Firstly, triples can be duplicated inside any given train/test/test
split: a set might contain multiple examples of the exact same triple if they previously
denoted different occurrences in time. If this happens in the train set, the model will
get multiple instances of the triple to fit to. If it happens in the test set, the model’s
performance will be abnormally determined by such triples. Secondly, and of greater
importance, examples may be duplicated between sets, causing test-leakage.

A full overview of the number of duplicate triples in each dataset is given in Table 7.
Investigations show that YAGO11k is unaffected by both types. However, Wikidata12k
and ICEWS are not, with ICEWS14 scoring the worst, having almost half of its test
triples appear in the training set. This is probably due to its large number of timesteps.

To counteract this issue and show how it affects performance, we introduce two new
filtering methods. Intra-set filtering which filters out any duplicate triples inside a given
split, and inter-set filtering which removes any triples from the train/validation split if
they occur in the test set. Next, we re-run the experiments from Table 4 but, apply both
filtering approaches. These results are displayed in Table 8 and confirm our hypothesis:
the model performance on the filtered data sets is much lower than on the original.

Comparing these results to those found in the papers in Table 4, it is unclear what
filtering approaches are used for some papers. As we showed in our comparison with
pairwise loss functions, hyperparameter tunings also have a large effect on the result.
For instance, after consulting the authors, we learned that both Goel et al. (2019) and
Jin et al. (2019) did not apply any filtering. Yet, their results on ICEWS14 are very
different. We hope that now we have made this issue explicit, applied filtering methods
will be noted along the results.
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Hits@10 performance
Dataset Implementation No Filter Inter Intra Both

Wikidata12k HyTE 10.1% 3.8% 5.3% 3.5%
RotatE 53.8% 36.4% 52.4% 33.9%
Ampligraph 52.7% 37.7% 52.8% 37.9%

YAGO11k HyTE 2.6% - - 2.6%
RotatE 28.9% - - 28.8%
Ampligraph 35.6% - - 35.6%

ICEWS14 HyTE 54.1% 25.7% 40.6% 23.7%
RotatE 70.3% 38.4% 65.1% 37.9%
Ampligraph 56.1% 42.2% 56.1% 42.2%

Table 8: Results on Wikidata12k and ICEWS14 using three different TransE imple-
mentations, combined with the different filter settings. YAGO11k results for
intra/inter settings were not generated, because these are the same as the
both/unfiltered.

5.5. Results

In order to evaluate the effectiveness of our proposed methods, we also create a random
baseline, which works by applying splits randomly across predicates and timesteps in a
uniform manner. Specifically, at every split step, a predicate is chosen from the currently
existing predicates. Then, from the time span of that predicate (i.e., its first and last
occurrence in the data set) a timestamp is chosen. This is repeated until the desired
number of predicates have been created. The method is denoted as Random in our
results. For the valid time KGs we take the average of 7 runs. For ICEWS14 we take
the average between 5 runs. The per-run results are available in section D.7 in the
appendix.

Because SpliMe applies transformations to the knowledge graphs, we also have hyper-
parameters for the data. For both the time and count splitting methods we experimented
with x ∈ {5, 10, 15, 20, 25, 30} for all data sets. Regarding merging, we tested a shrink
factor ∈ {1.5, 2, 4, 6, 8, 10}. Lastly, for the proximity method, we tested the three prox-
imity metrics described in section 2.8 with ε (residuals) ∈ {1.25, 2.5, 5, 10, 15, 20} for
Wikidata12k and YAGO11k, and ε ∈ {5, 12.5, 25, 50, 100, 150, 200} for ICEWS14. The
best results are displayed in Table 9. Results of all runs are available in the appendix.
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Method Setting MRR Hits@1 Hits@3 Hits@10 # Preds

Vanilla - 0.209 12.4% 22.7% 37.9% 24
Random - 0.289 17.9% 33.3% 50.7% 423

Timestamp - 0.340 21.1% 40.8% 58.1% 1622
Split (time) Grow = 10 0.320 20.1% 37.2% 54.9% 240
Split (count) Grow = 25 0.300 18.3% 34.5% 53.8% 600
Merge Shrink = 4 0.358 22.2% 43.3% 61.0% 423
Proximity Pref, ε = 2.5 0.328 20.9% 38.1% 56.0% 726

(a) Wikidata12k results

Method Setting MRR Hits@1 Hits@3 Hits@10 # Preds

Vanilla - 0.188 8.2% 23.8% 35.6% 10
Random - 0.197 7.8% 25.2% 39.9% 200

Timestamp - 0.197 6.9% 26.0% 41.2% 570
Split (time) Grow = 20 0.213 9.0% 27.0% 43.2% 200
Split (count) Grow = 25 0.196 8.1% 24.1% 40.3% 250
Merge Shrink = 2 0.195 6.2% 26.3% 42.0% 290
Proximity Pref, ε = 5 0.214 6.5% 29.9% 45.8% 177

(b) YAGO11k results

Method Setting MRR Hits@1 Hits@3 Hits@10 # Preds

Vanilla - 0.141 0.1% 18.9% 42.2% 230
Random - 0.172 2.0% 23.4% 48.1% 3500

Timestamp - 0.213 4.7% 29.4% 54.4% 17061
Split (time) Grow = 20 0.190 3.0% 26.3% 51.6% 4600
Split (count) Grow = 25 0.191 3.0% 26.2% 52.2% 5750
Merge Shrink = 1.5 0.207 4.1% 28.7% 53.9% 11449
Proximity Adar, ε = 25 0.196 2.9% 27.3% 53.0% 5866

(c) ICEWS14 results

Table 9: Overview of the best results obtained for each method. All results were ob-
tained for the inter -filtering setting. Best results among for each dataset all
are highlighted in bold. For a complete overview of all runs, we refer to the
appendix.

The best results displayed in Table 9 show that all methods, even random baseline,
provide an increase in performance on all metrics with regards to the vanilla model.
Therefore, we can say that incorporating time at the level of predicates improves the
link prediction capabilities of static KG embedding models. Furthermore, all SpliMe
methods have improved performance compared to the random baseline at a comparable
number of predicates, suggesting that they indeed capture temporal information in a
more efficient manner.

On Wikidata12k the best result is achieved using the merge method creating a version
of the dataset with 423 predicates (17.6 times increase). Here, merging outperforms all
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other approaches on every recorded metric. It outperforms vanilla TransE and the ran-
dom baseline by just over 23 and 10 percentage points at the hits@10 level respectively.
This represents a 60% and 20% increase in performance respectively.

On YAGO11k the best result is achieved using change point detection in combination
with preferential attachment as a proximity function. Notably, this method produces
177 predicates (17.7 times increase), which are 113 and 23 fewer than the best merge
and split approaches respectively. Proximity outperforms the vanilla baseline by just
over 10 percentage points at the hits@10 level, which is a 28% increase in performance.

Lastly, on ICEWS14 the best result is achieved with the timestamping approach, which
achieves the highest scores on all metrics. Timestamping outperforms the random base-
line with 6 percentage points (13% increase) at the hits@10 level. On the hits@10 metric,
the difference is 2.7 percentage points, representing a 135% increase. Compared to our
vanilla TransE baseline the results are even better, especially on hits@1 as the vanilla
baseline scores just 0.1% here.

5.5.1. Comparison with other models

In Table 10 we have compared the best results obtained by SpliMe with the current
literature. The results show that SpliMe outperforms the current state-of-the-art on
the valid time datasets. Indeed, SpliMe performs 15 and 12 percentage points better
than the second-best model on the hits@10 metric for Wikidata12k and YAGO11k re-
spectively. Only on the hits@1 metric on the YAGO11k dataset it is outperformed by
ATiSE. Yet, it still outperforms the other models.

The ICEWS14 results are not as good. Here, SpliMe is significantly outperformed
by the other models. However, we still observe a noteworthy increase in performance
compared to our vanilla baseline, which as explained in section 5.4.1 differs from those
seen in most literature. Furthermore, we note that by not applying any filtering, we
have previously shown vanilla (i.e. without temporal information) results comparable
to the state-of-the-art in link prediction performance on this data set. Therefore, we
believe SpliMe is best evaluated against itself and not its competitors in this case.
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Method MRR Hits@1 Hits@3 Hits@10

SpliMe 0.358 22.2% 43.3% 61.0%

ATiSE∗ 0.252 14.8% 28.8% 46.2%
HyTE∗ 0.180 9.8% 19.7% 33.3%
TTransE∗ 0.172 9.6% 18.4% 32.9%
SEDE - - - 45.8%
TDG2E - - 40.2%

(a) Wikidata12k results. Best SpliMe result was achieved with the merge method.

Method MRR Hits@1 Hits@3 Hits@10

SpliMe 0.214 6.5% 29.9% 45.8%

ATiSE∗ 0.185 12.6% 18.9% 30.1%
HyTE∗ 0.105 1.5% 14.3% 27.2%
TTransE∗ 0.108 2.0% 15.0% 25.1%
SEDE - - - 30.1%
TDG2E - - - 31.1%

(b) YAGO11k results. Best SpliMe result was achieved using change point detection.

Method MRR Hits@1 Hits@3 Hits@10

SpliMe 0.213 4.7% 29.4% 54.4%

ATiSE∗ 0.545 42.3% 63.2% 75.7%
HyTE∗ 0.297 10.8% 41.6% 60.1%
TA-DistMult 0.477 36.3% - 68.6%
RE-Net 0.457 38.2% 49.1% 59.1%

(c) ICEWS14 results. Best SpliMe result was achieved with the timestamp method.

Table 10: Comparison of the best SpliMe approach for each data set and the current
state of the art. Best results among all were highlighted in bold. ∗: re-
sults were obtained from Xu et al. (2019), other results were taken from their
respective papers. SpliMe results are from using the inter filter setting.

5.6. Baseline

We note that through increasing the number of predicates or entities, SpliMe also in-
creases the number of parameters in the model. In this section, we will show that the
increased performance is not just due to this, but because SpliMe helps embeddings
models capture more information by including temporal information at the level of en-
tities or predicates.

To this end, we learn a baseline model with 1000 parameters per predicate which we call
vanilla-1k. Next, we compare this to the split (time) and merge approaches which allow
for 10 predicates for each original predicate. We then learn these with 100 parameters
per predicate such that the total number of parameters is equal for each model. The
results from this experiment are displayed in Table 11.
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Dataset Version MRR Hits@1 Hits@3 Hits@10 Runtime

Wikidata12k Vanilla-1k 0.115 5.7% 12.4% 22.3% 12:26:28
Split (time) 0.272 15.3% 32.3% 50.1% 04:22:09
Merge 0.346 21.2% 41.9% 59.2% 06:58:48

YAGO11k Vanilla-1k 0.188 8.2% 23.8% 35.6% 08:01:18
Split (time) 0.199 7.8% 26.2% 40.1% 05:14:11
Merge 0.172 6.8% 19.5% 37.2% 05:24:50

ICEWS14 Vanilla-1k 0.107 0.0% 14.5% 31.4% 16:33:45
Split (time) 0.187 2.8% 25.7% 51.1% 03:02:13
Merge 0.192 2.6% 26.9% 52.3% 03:03:00

Table 11: Comparison between a vanilla dataset and two SpliMe methods with the same
total number of parameters for each. Both inter and intra set filtering were
applied to the data sets. Runtime is given in hh:mm:ss.

Results show for both Wikidata12k and ICEWS14 that the vanilla-1k variant has over-
fitted to the data: the performance is worse than that observed of the standard (100
parameters/predicate) model. Yet, the SpliMe methods still perform very will. From
this, we conclude that SpliMe indeed helps extract more information from the data. Ad-
ditionally, we also note the much lower fitting time compared to vanilla1k. For instance,
in the case of ICEWS14 the vanilla dataset takes over five times as long to fit.

5.7. Ablation Studies

In this section, we will perform investigations regarding several components and hyper-
parameters of SpliMe, and of (temporal) KG embedding models in general. This allows
us to measure their effect on the effectiveness of the learned embeddings.

5.7.1. Granularity

Many TKG embedding models which operate on valid time KGs aggregate time periods
such that a minimum number of facts is achieved for every timestep (e.g. Dasgupta et al.
(2018); Xu et al. (2019); Chen et al. (2019); Zhou et al. (2019)). However, to the best of
our knowledge the effect of different granularity levels has not been extensively studied.
To this end, we perform an ablation study to investigate effect of enforcing different
granularity levels when applying SpliMe. Specifically, using the merge and split (time)
approaches. The results are available in tables 12a and 12b.

Note that since merging uses timestamping for pre-processing, the number of predicates
in the data set depends on the applied granularity level. As a result, the lower the
granularity level, the more parameters are available. Therefore, we would expect better
results at lower granularity. This indeed proves to be the case. However, seeing as the
split method also performs best at a low granularity level (≈ 10) even though the number
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Wikidata12k Split (time), grow=10, inter set filtering

Granularity MRR MR Hits@1 Hits@3 Hits@10 |T | |P|
0 0.334 89 21.5% 38.8% 56.7% 620 240
5 0.309 101 18.2% 35.1% 56.2% 334 240
10 0.333 89 20.4% 39.3% 58.6% 266 240
25 0.345 350 23.5% 38.8% 57.7% 191 240
50 0.285 120 16.1% 33.7% 54.1% 150 240
150 0.303 128 19.8% 33.3% 53.3% 98 240
300 0.272 155 15.3% 32.3% 50.1% 70 240
500 0.294 116 16.8% 35.1% 54.1% 56 240
1000 0.277 118 16.4% 32.2% 50.0% 39 240

(a) Results on the Wikidata12k dataset after applying the SpliMe split method using different
levels of granularity. Best results are highlighted in bold.

Wikidata12k Merge, shrink=4, inter set filtering

Granularity MRR MR Hits@1 Hits@3 Hits@10 |T | |P|
0 - - - - - 2002 9194
5 0.401 96 27.0% 46.7% 64.7% 334 1684
10 0.384 83 24.8% 45.6% 62.9% 266 1378
25 0.396 100 25.7% 47.6% 64.6% 191 1030
50 0.383 82 24.8% 45.2% 63.8% 150 838
150 0.380 114 24.1% 46.1% 62.7% 98 576
300 0.358 100 22.2% 43.3% 61.0% 70 423
500 0.345 107 21.3% 41.6% 59.1% 56 344
1000 0.322 117 20.3% 37.5% 56.1% 39 246

(b) Results on the Wikidata12k dataset after applying the SpliMe merge method using different
levels of granularity. Results for granularity 0 have been excluded due to processing time
constraints. Best results are highlighted in bold.

of predicates remains the same, the increased performance does not solely come from an
increased parameter count.

5.7.2. Embedding size

One of the most important hyperparameter is the dimensionality of the embedding
(k). The higher the number of parameters, the more flexible the model is. However, in
addition to increasing the time and memory consumption of the learning process, setting
the parameter count too high might also lead to overfitting. To this end, we perform an
ablation study to investigate the effect of k on the hits@1, hits@3 and hits@10 metrics.
We also measure the total fitting time.

All evaluations were performed using the vanilla model (i.e. regular TransE) and ap-
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plying both filtering approaches. Both valid time KGs had granularity 300 applied.
The results of this investigation are displayed in Figure 10. While generally embedding
sizes of 100 are applied in literature, our results show that similar performance can be
achieved at much lower levels. This poses an interesting tradeoff with regards to training
time versus maximum performance. Furthermore, as expected, performance degrades
when k becomes very large, with the 1000 parameter model performing worse than the
15 parameter model on Wikidata12k and ICEWS14.

Note that the given fitting times can only be seen as an indication of the expected fitting
time. There are many external factors that influence this time such as which server the
model was fitted on, and the load of the that server. For instance, on ICEWS14 the 100
parameter model was fitted more quickly than the 50 parameter model. Futhermore,
when generating the baseline results we found that fitting times on the same dataset
with the same number of predicates could differ by a factor of 4.
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(a) Wikidata12k results. Left: TransE vanilla. Right: SpliMe merge with shrink = 4

(b) YAGO11k results. Left: TransE vanilla. Right: SpliMe merge with shrink = 2

(c) ICEWS14 results. Left: TransE vanilla. Right: SpliMe merge with shrink = 1.5

Figure 10: Ablation study regarding the effect of different embedding dimensionality.
Left y-axis plots the hits@x percentage. Right y-axis plots the fitting time
in minutes. For vanilla models, embedding sizes ∈ {15, 25, 50, 100, 250, 1000}
were tested. For merge models, embeddings sizes ∈ {15, 25, 50, 100, 250} were
tested.
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5.8. Qualitative Analysis

To strengthen the claim that SpliMe improves embeddings we also perform a qualita-
tive analysis of the result. We investigate this through two avenues. The first is link
prediction. Specifically we perform predicate prediction and compare the results from
a vanilla TransE model and a SpliMe TransE model. The second avenue is through a
t-SNE plot, which allows us visualize the embeddings learned by a model. Each method
will be explained further in the relevant section.

5.8.1. Predicate Prediction

In this section, we will perform qualitative analysis with regards to the predicate predic-
tion task. (Temporal) predicate prediction is defined analogously to entity prediction.
Instead of replacing the subject and object with every entity, the predicate is replaced
with every other predicate. That is, given an (s,?,o,b,e) quintuple we are tasked with
predicting the most likely predicate. Since SpliMe operates on triples, we cannot di-
rectly pass (s,p,o,b,e) quintuples or (s,p,o,h) quadruples to the model. However, we
can include the temporal aspect by filtering any answers which are not of the correct
temporal scope. Specifically, we feed the model with a head and tail entity and ask for
the 25 most likely predicates. From this list of predicates we then remove any predicate
whose time span does not at least partially overlap with the time span of the original
quintuple.

A selection of such queries is shown in Table 13. Here, the top two results are shown for
every query. The correct answer is highlighted in bold. These queries were performed on
a vanilla dataset and on a dataset transformed with the split (time) method with growth
set to 20. The first four questions are the same as in the original HyTE paper. From
these results, it appears that the vanilla TransE model and SpliMe seems to achieve
equal results. We do note however that our TransE vanilla model also performs better
than the one used in the original HyTE paper.

Examples where SpliMe works best are those where similar predicates are queried, but
at different timesteps. For example, when a person has both the ‘wasBornIn‘ and ‘diedIn‘
predicates, but at (significantly) different timestamps. Unfortunately, the YAGO11k
test set contains just one such example. Instead, the few people for which both the
‘wasBornIn‘ and ‘diedIn‘ relation are present in the test set have them occur in (almost)
the same internal timestamp. Therefore, we believe that this qualitative analysis does
not paint the full picture, and SpliMe will outperform TransE in a more exhaustive
test.
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5.8.2. t-SNE plots

t-distributed stochastic neighborhood embedding (t-SNE) is a non-parametric high-
dimensional data visualization technique. Each high-dimensional data point is mapped
to a location on a two or three dimensional map (van der Maaten and Hinton, 2008).
We will use t-SNE to provide a legible visualization of the high-dimensional predicate
embeddings that are learned by our model.

Specifically, we use the embeddings of a model learned on the Wikidata12k dataset
transformed with the SpliMe merge method, with a granularity of 300 and a shrink
factor of 4. The accompanying t-SNE plot is displayed in Figure 11. We observe that
predicates of the same type are mostly clustered together in the embedding space. While
we create the t-SNE plot for all predicates, only the ten most common predicates are
plotted for legibility. Otherwise, there would be some predicates scattered throughout.
This is most true for the predicates to which few splits have been applied, for example
winner of an event (P1346), which was only split once.

Figure 11: Two-dimensional t-SNE projection of the embedding learned by the model.
For legibility, only the ten most common predicates are plotted.

Additionally, we note that predicates with many points seem to form lines or circles in the
reduced dimensionality plot. To investigate this, we took the same t-SNE embeddings
and created a plot containing just the predicate member of sports team (P54). This plot
is displayed in Figure 12b. It shows that the model has successfully learned a somewhat
smooth temporal evolution of the embedding: each step in time moves the embedding
in a similar direction, and the different points in time are well separated.

To evaluate how much of this is due to SpliMe, we also created a plot on a baseline
dataset (i.e. one obtained through random splits) for a predicate that had an approx-
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imately equal number of splits. The original could not be used as none of the random
baseline models had the required number of splits. Figure 12a shows that here the tem-
poral evolution of the embedding is completely erratic, jumping all over the place. This
implies that SpliMe includes temporal information in an intelligent manner.

(a) t-SNE plot of a dataset created by applying splits randomly. Only the residence (P551)
predicate is drawn.

(b) t-SNE plot of a dataset created using the SpliMe merge method. Only the member of sports
team (P54) predicate is drawn.

Figure 12: Two t-SNE projections. The colors are based on the end-time of the predicate,
ranging from red (long ago) to blue (recent). The lines between the points
illustrate how the embedding moves through the vector space, and the labels
denote the time period during which the predicate is valid.
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5.9. Temporal Evaluation

Lastly, we provide an alternative evaluation metric for temporal prediction. As a re-
minder, in temporal prediction a model is given an (s,p,o) triple and is asked to predict
the most likely time point. In designing a new evaluation metric, we note that the fol-
lowing aspects influence the result: I) whether the fact re-occurs, II) the valid time of
the original quintuple, III) the number of temporal classes in the dataset.

To show why these requirements are important and non-trivial, consider Grover Cleve-
land, who was president of the United States from 1885 to 1889 and 1893 to 1897 (i.e. he
was president for two non-consecutive terms). Given that we are evaluating quadruples
with year level granularity, the query (s,p,o, ? ) has 8 correct answers. If we apply
the normal ranking approach, given a data set consisting of 20 temporal classes (e.g.
1880-1900), there is a large chance that an alternative answer will be ranked above our
answer. However, if we apply filtering to counteract this, we are left with only 13 classes,
which also greatly distorts the result.

To counteract this, we propose two different evaluation procedures. These procedures
are similar to the one used in entity and predicate prediction, but with a few changes
to the associated metric. That is, we apply an additional penalty term depending on
the length of the valid time interval. This term normalizes the difference in magnitude
between small and long intervals. To be specific, given an (s,p,o,b,e), we first convert
it to a set of (s,p,o,h) quadruples. Next, all possible (s,p,o,? ) quadruples are scored by
the model the scores are sorted.

Approach 1 records the sum of the ranks of all valid quadruples rather than that of the
best quadruple, and divides this by the sum of best possible ranks to normalize the result.
Suppose that we are attempting to predict the first presidential term of Grover Cleveland
as described earlier. In this case, the sum of best possible ranks is (1 + 2 + 3 + 4 = 10).
Assuming that the model output the correct years at ranks 1, 4, 5 and 6 respectively, the
sum of recorded ranks is 16. The true rank using this approach can then be calculated
as 16

10 = 1.6. More generally, given a set of ranks of valid quadruples Rv for a single
(s,p,o,b,e) quintuple, the true rank can be calculated as8

∑
r∈Rv

r∑e−b+1
i=0 i

(23)

Approach 2 goes one step further and operates by calculating scores of time intervals
rather than time points. Specifically, given a quintuple (s,p,o,b,e), the scores of all
intervals of length (e − b + 1) are calculated by summing the score of the relevant
(s,p,o,h) quadruples. These intervals are then sorted according to score, and the rank
of the original interval is recorded. However, the number of classes is depends on the

8The calculation in the denominator, i.e. the calculation of the sum of all elements in the interval [b,e]
can be efficiently calculated as (e− b + 1) ∗ ((2 + e− b)/2).
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length of the interval: a large interval will have fewer classes, and thus a lower expected
rank. For a quintuple (s,p,o,b,e) whose interval was ranked at position r, the true rank
can be calculated as

1 + (r − 1) ∗ |T |
|T | − (e− b)

(24)

Using our Grover Cleveland example, this approach would calculate the score of every
interval of length four between 1880 and 1900 by summing the scores of the quadruples in
it. Suppose that the correct interval was ranked at position 4. Since the data contains 20
temporal classes, this means we apply a penalty term of 20

20−4 = 1.25. The rank obtained
with this approach would then be 1 + (4− 1) ∗ 1.25 = 4.75.

5.9.1. Evaluation

The aforementioned approaches cannot be utilized for SpliMe , as SpliMe is not made
to perform temporal prediction in general. This is due to the granularity level being
applied implicitly at the level of individual predicates. To illustrate, assume that the
predicate presidentOf receives a single timestep for the period 2000-2016. The query (?,
presidentOf, USA, 2008, 2012 ), will now return both Bush and Obama s answers. Yet,
only the latter is actually correct.

We have implemented9 the aforementioned approaches in the code created by Dasgupta
et al. (2018). We compare these novel approaches with the original approach, which
simply returns the lowest correct rank. Additionally, we compare the results for both
the TANS and TDNS approaches (see section 2.6 for more information).

The results for YAGO11K and ICEWS14 are displayed in Table 14. We do not perform
our experiments on ICEWS14, as here all approaches will have equal results. This is
because ICEWS14 is an event dataset where the scope of every fact is exactly one day
long. As a result, the penalty terms in both our approaches is just 1. All models were
trained using the same hyperparameters: l2 distance norm, margin 10 and 5 negative
samples per batch. No filtering was applied. The models were run for 500 epochs.

To begin with, the results confirm the findings from Dasgupta et al. (2018) in that TDNS
improves the result of temporal prediction. The difference is smaller, but is present
everywhere but the YAGO11k Hits@10. It appears regardless of which evaluation metric
is used. However, the choice of evaluation metric has a large influence on how the result
should be interpreted.

In general, it seems that the original approach is too optimistic. By taking the best rank
of any quadruple in the interval of the quintuple, it overestimates the hits@1 performance
of the models. This is reflected in the fact that approach 1 has much lower hits@1
performance, but similar hits@10 performance to it. Furthermore, we observe that that
approach 2 is especially strict, having lower scores across the board.

9https://github.com/wradstok/HyTE temporal evaluation implementation in HyTE codebase.
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Sampler Approach MR MRR Hits@1 Hits@3 Hits@10

TANS original 27 0.055 5.5% 12.2% 28.8%
1 26 0.109 0.9% 8.0% 22.3%
2 34 0.016 1.6% 4.1% 13.5%

TDNS original 27 0.060 6.0% 12.7% 30.2%
1 26 0.114 1.2% 8.5% 24.1%
2 33 0.021 2.1% 5.2% 14.8%

(a) Wikidata12k results. This dataset contains 78 temporal classes.

Sampler Approach MR MRR Hits@1 Hits@3 Hits@10

TANS original 15 0.171 17.1% 32.1% 54.9%
1 14 0.238 1.4% 27.5% 55.0%
2 27 0.077 7.7% 13.7% 25.2%

TDNS original 15 0.171 17.1% 32.2% 53.0%
1 14 0.238 1.5% 28.5% 54.9%
2 27 0.067 6.7% 11.4% 23.5%

(b) YAGO11k results. This data set contains 61 temporal classes.

Table 14: Results for the different temporal evaluation metrics.
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6. Conclusion

The first contribution of this thesis is the design and implementation of SpliMe, a
model-agnostic method that uses static KGE models to embed temporal knowledge
graphs. SpliMe operates through selectively splitting and merging predicates or en-
tities, and we have created five different methods for doing so. We have shown that
even incorporating temporal information by randomly applying splits improves the link
prediction performance of TransE, indicating the viability of the inclusion of temporal
information and the power of our approach.

Additionally, all our methods achieve results above both the vanilla TransE baseline and
the random baseline. Our results show that SpliMe achieves state-of-the-art results
in link prediction performance on two datasets commonly used for temporal knowledge
graph embedding model evaluation (Wikidata12k, Yago11k), and has significantly in-
creased performance compared to our baseline on another dataset (ICEWS14 ). We
have further shown the strength of our results through our qualitative analysis. All
things combined, we have shown that our approach is sound.

Secondly, we have uncovered issues with the evaluation procedures used for static KG
embedding models on temporal knowledge graphs. Through this problem, static KGE
models achieved higher scores than they should have, which causes literature to under-
estimate the effect of their temporal KGE methods. To combat this, we have introduced
two explicit filtering methods which remove this effect.

Thirdly, we have reformulated the link prediction task on temporal knowledge graphs to
better suit temporal scope prediction. Specifically, we introduced two new approaches
which apply a penalty to make comparison between scores achieved on a different number
of temporal classes possible.

As a final contribution, we have made available a fully runnable implementation of the
system10. In addition to providing third parties with the ability to reproduce the research
in this thesis, this repository contains an extensible framework which can be used for
continued research in this topic.

6.1. Future Work

Lastly, we consider some possible avenues for future research. In this section, we discuss
several future works related to both SpliMe and the general area of temporal KG
embedding.

Temporal scope prediction: Due to both many models not having an implementation
available and time constraints, we were only able to apply our new method temporal
scope prediction evaluation metrics to HyTE. In future work, it will be interesting to
evaluate other TKG embedding models as well. These models could be obtained by

10https://github.com/wradstok/thesis radstok
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acquiring their source code, or through an own implementation. This will provide yet
another avenue to investigate the strengths and weaknesses of different approaches.

More static models: To keep evaluation simple and to provide a fair baseline to com-
pare SpliMe with to other models, we have continually used TransE to learn the em-
beddings in this thesis. Generally, more advanced models such as ComplEx, RotatE or
SimplE outperform TransE. Noting that SpliMe is model-agnostic, it will be interest-
ing to investigate the performance of our approach in conjunction with more advanced
embedding models.

Background knowledge: Several KG embedding models (e.g. (Kazemi and Poole,
2018)) have support to utilize background information in the learning process. A similar
approach can be imagined for SpliMe. For instance, we could imagine implementing a
hybrid approach which applies different methods depending on the class of the predicate
being split. It is likely that such an approach could lead to better results.

Entities: after preliminary research showed that SpliMe was better applied to predi-
cates than to entities, we have not invested any time in the latter. However, since this
research we have developed several different split approaches which were not tested on
entities. It is plausible that some of these operate just as well, or even better on entities
than on predicates.

Better data: Both ICEWS14 and Wikidata12k require filtering before results can be
properly evaluated. It would be nice if better subsets of the original data could be
extracted so that this is no longer required. Furthermore, with only 20.000 and 40.000
triples for YAGO11k and Wikidata12k respectively, the data sets can be considered
small. Larger data sets are required to more closely resemble a real-world scenario. For
Wikidata this step is already being undertaken (e.g. Lacroix et al. (2020)).
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A. Alternative SpliMe Methods

A.1. Snapshots

We briefly investigated embedding a TKG by deconstructing it into a series of static
knowledge graphs, and learning and evaluating each instance separately rather than
applying some form of joint learning. I.e. TKG T can be written as T = D1 ∪ D2 ∪
· · ·∪D|T | where each KG represents the facts which are true at or during that particular
instant in time. The total score for the TKG could be calculated by taking the average
of the scores according to the number of triples in each instance.

Unfortunately, preliminary investigations showed that this method is not feasible while
maintaining the original train/test/validation splits of the original knowledge graphs.
Since each time instance contains only a subset of all entities, the search space for entity
link prediction is significantly reduced. Furthermore, it is very common for an entity to
appear in the test set for a particular time instant, while not appearing in that instants
training set. In these cases prediction is not possible at all. For these reasons, we decided
not to continue our investigations in this direction.

A.2. Embedding Refinement

One could also imagine refining embeddings through change point detection (CPD).
Specifically, applying SpliMe timestamping, and then learning the dataset would re-
sult in an embedding vector for every predicate or entity at every timestamp. Under
the assumption that similar entities are close together in the vector space (i.e. distance
models), we could analyse the evolution of an entity by calculating how much its em-
bedding shifts between two timesteps using the l1 or l2 norm. Doing this would give a
new list of the ’most important’ split points, which can then be applied to the original
data set.

We implemented the above description. We have included the refinement results in
Table 15. Here, Reference refers to the timestamped model. Unfortunately, the result
turned out to be generally worse than those achieved by just timestamping, which is a
required pre-processing step. Only on the YAGO11k dataset was there a slight increase
in performance. We believe that this is due to the fact that the learned embeddings
are too smooth; they do not differ enough from timestep to timestep for CPD to find
meaningful changes. This is emphasized by the t-SNE plots seen in section 5.8.2.
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Epsilon MRR Hits@1 Hits@3 Hits@10 # Preds

Reference 0.337 21.1% 39.9% 57.4% 1485

5 0.208 10.8% 22.5% 41.6% 337
10 0.216 11.3% 23.9% 43.6% 455
20 0.237 12.8% 27.2% 46.8% 642
50 0.264 15.6% 29.3% 49.1% 673
100 0.297 18.0% 34.0% 52.7% 703
250 0.323 20.2% 38.1% 55.6% 717

(a) Wikidata12k results. Any increase of ε past 250 did not result in a larger number of predicates.
For CPD we used bottom-up search in conjunction with a jump of 1 and a minimum section
size of 2.

Epsilon MRR Hits@1 Hits@3 Hits@10 # Preds

Reference 0.197 6.9% 26.0% 41.2% 570

5 0.139 5.1% 15.4% 30.1% 82
10 0.153 4.8% 18.6% 33.3% 116
20 0.194 6.3% 25.2% 41.2% 166
50 0.196 6.3% 26.0% 41.7% 228
100 0.195 6.4% 26.1% 41.0% 257

(b) YAGO11k results. Any further increase in ε did not increase the number of predicates. For
CPD we used bottom-up search in conjunction with a jump of 1 and a minimum section size
of 2.

Epsilon MRR Hits@1 Hits@3 Hits@10 # Preds

Reference 0.213 4.7% 29.4% 54.4% 17061

5 0.170 1.5% 23.6% 48.1% 4364
10 0.187 2.3% 26.2% 51.9% 6312
20 0.198 3.1% 27.9% 53.1% 7156
50 0.198 3.2% 27.6% 53.3% 7480
100 0.199 3.3% 27.7% 53.4% 7545
250 0.199 3.2% 27.8% 53.2% 7559

(c) ICEWS14 results. For CPD we used the pelt with a jump of 1 and a minimum section size
of 2.

Table 15: Refinement results. Inter-set filtering was used for all runs. For Wikidata12k
and YAGO11k granularity 300 was used. For ICEWS14 granularity 0 was
used. Used hyperparameters are: embedding size = 100, learning rate =
0.001, self-adversarial sampling loss, 500 negative examples and trained for
200 epochs.
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B. Hybrid Graphs: YAGO15k

Because SpliMe utilizes static embedding models to embed temporal graphs, it also has
the ability to embed hybrid knowledge graphs. Specifically, we can apply our transfor-
mation to the temporal part of the knowledge graph while leaving the atemporal part
untouched. The result can then be merged back together and fed into a static KGE
model.

To investigate this claim we used the YAGO15k dataset released in Garćıa-Durán et al.
(2018). This dataset was also recently used in Lacroix et al. (2020). As per the require-
ments of the embedding model which was introduced alongside it, temporal facts are
modelled by extending a triple with a temporal modifier (occursSince, occursUntil) and
a timestamp. Therefore, the dataset first needs to be converted to the (s,p,o,b,e) format
used in this thesis. Characteristics of the transformed data set are given in Table 16.

Dataset |E| |Etemp| |P| |Ptemp| |T | |train| |valid| |test|
YAGO15k 15403 4193 32 10 48 98,156 12,290 12,268

Table 16: Characteristics of the YAGO15k dataset. Etemp and Ptemp denote the sets of
entities and predicates which are used at least once in a fact with a temporal
scope respectively. A granularity level of 300 was applied to the data.

Unfortunately, preliminary investigations showed a decrease in performance with regards
to the vanilla version rather than the expected increase. This effect is not unique to our
evaluation. The original paper also notes a decrease in performance for several temporal
measures. In fact, only one out of their four approaches improves over their baseline, and
only by 0.1% and 0.2% at the hits@1 and hits@10 metrics respectively. For this reason
we have not performed a full hyperparameter search to find the parameters that give the
best result on the dataset. Instead, this section will be dedicated to investigating why
the results are so poor. Firstly, the initial experimental result are shown in Table 17.

Method Setting MRR Hits@1 Hits@3 Hits@10 # Preds

Vanilla N/A 0.170 6.1% 21.1% 36.3% 32
Random N/A 0.144 7.0% 15.7% 28.7% 152

Timestamp N/A 0.112 5.1% 11.4% 23.2% 464
Split (time) Grow = 4 0.122 5.7% 12.7% 24.9% 72
Merge Shrink = 2 0.107 4.6% 10.9% 22.4% 253
Proximity Pref,ε = 10 0.147 7.1% 15.9% 29.7% 74

Table 17: Overview of the experiments performed on the YAGO15k dataset. All results
were obtained using both inter and intra set filtering. Random is the average
of 5 runs.
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(a) t-SNE plot of the ten most common predicates in the YAGO15k dataset after applying the
SpliMe proximity method.

(b) t-SNE plot of the ten most common predicates in the YAGO11k dataset after applying the
SpliMe split (time) method.

Figure 13: Two t-SNE plots. Each point represent a temporal predicate, the color of the
points groups them based on their original predicate. The lines between the
points denote the same predicate at different points in time.
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To further investigate the quality of the YAGO15k embeddings, we have created two
more t-SNE plots. One for YAGO15k and one for YAGO11k to compare it to. These
are pictured in figures 13a and 13b respectively. This comparison is useful because the
datasets share a large number of facts, and by extension entities and predicates.

Looking at the first plot we observe that different predicates receive similar embeddings,
and this happens in pairs. For example, we see the pairs WorksAt and graduatedFrom,
created and wroteMusicFor, and isMarriedTo and owns. Furthermore, the embeddings
for a single predicate seem much more erratic: the interval between different timesteps
and the direction of that interval seem to change much more than in the comparable
YAGO11k dataset. This confirms that the embeddings learned on the YAGO15k dataset
are of lower quality than those learned on other datasets.

A partial explanation is that only 27% of entities and 21% of the predicates present in
YAGO15k are actually temporal. Additionally, temporal facts only make up just over
17% of the data in the training set. Consequently, the average number of facts associated
with each temporal predicate is lower than that of an average atemporal predicate.

However, we believe the largest problem is the poor distribution of predicates in the
temporal part of the dataset. In Table 18 we have displayed the ten most common pred-
icates in each half of the dataset. The temporal part of the data is dominated by the
predicate playsFor, occurring in almost 98% percent of all facts. As a result of this, any
approach that attempts to learn a separate representation for temporal and atemporal
will have issues with the lack of temporal data available for most predicates. Addition-
ally, we hypothesize that the playsFor relation is exceptionally hard to learn due to its
semantics. To illustrate, consider that any football club in Europe might be interesting
in picking up a young talent. Predicting which one exactly requires information that is
just not present in the data.

Atemporal Temporal
Predicate Count Share Predicate Count Share

isAffiliatedTo 32,176 31.7% playsFor 20,854 97.6%
isCitizenOf 18,497 18.2% isMarriedTo 229 1.1%
isLocatedIn 12,270 12.1% hasWonPrize 140 0.7%

playsFor 9,169 9.0% graduatedFrom 46 0.2%
actedIn 6,487 6.4% participatedIn 33 0.2%

wasBornIn 5,411 5.3% created 26 0.1%
hasWonPrize 3,355 3.3% isAffiliatedTo 15 0.1%

influences 1,537 1.5% owns 11 0.1%
dealsWith 1,458 1.4% worksAt 5 0.0%

happenedIn 1,243 1.2% wroteMusicFor 1 0.0%

Total 101,354 90.4% Total 21,360 100%

Table 18: The 10 most common predicates in the atemporal and temporal part of the
YAGO15k dataset.
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As a further investigation we also learned models on the atemporal and temporal parts of
the data set separately. These results are available in Table 19. Naturally, SpliMe can
only be applied to the temporal subset of the data. Our results show that both halves
individually perform worse than when combined, with the temporal part performing
the worst. Applying any further transformations using SpliMe also worsens the result,
though by a smaller margin that previously.

All together, we conclude that YAGO15k is not a representative dataset to measure the
performance of (current) temporal knowledge graph embedding methods.

Method Setting MRR Hits@1 Hits@3 Hits@10 # Preds

Vanilla N/A 0.134 7.1% 14.6% 25.4% 32

Vanilla N/A 0.055 1.7% 4.7% 11.4% 10
Timestamped N/A 0.046 1.1% 3.8% 10.4% 432
Split (time) grow = 4 0.036 0.7% 2.1% 8.6% 40
Merge shrink = 2 0.044 0.7% 3.4% 10.5% 221

Table 19: YAGO15k results split out over the atemporal and temporal parts of the
dataset. Above the double horizontal line are atemporal results, below are
the temporal result.

C. SpliMe on Entities

Preliminary research showed that SpliMe operates better on predicates than on entities.
For this reason most of our research has focussed on the former. However, the timestamp,
split (both time and count) and merge approaches have also been implemented for
entities. In this section we will list the results obtained using these methods.

After observing that the split (count) method performed worse than the split(time)
method at equivalent number of entities, we did not perform further investigations into
this method. As a result, only two different grow values were tested on each data set.
Furthermore, on the Wikidata12k and ICEWS14 datasets, the best results from the
merge strategy are competitive with their equivalent predicate version. However, on
YAGO11k the result is significantly worse.
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Dataset # Entities MRR Hits@1 Hits@3 Hits@10

Wikidata12k 12554 0.209 12.4% 22.7% 37.9%
Yago11k 10526 0.188 8.2% 23.8% 35.6%
ICEWS14 7128 0.141 0.1% 18.9% 42.2%

Table 20: Results for the SpliMe timestamping method on entities. Inter-set filtering
was used for all runs. For Wikidata12k and YAGO11k granularity 300 was
used. For ICEWS14 granularity 0 was used. Used hyperparameters are: em-
bedding size = 100, learning rate = 0.001, self-adversarial sampling loss, 500
negative examples and trained for 200 epochs.

Grow factor # Entities MRR Hits@1 Hits@3 Hits@10

1.5 18831 0.218 13.6% 23.9% 38.1%
2 25108 0.192 12.0% 21.2% 33.8%
5 38976 0.106 2.9% 13.3% 23.2%

(a) Wikidata12k results. Increasing the grow factor past 5 did not result in more splits being
applied.

Grow factor # Entities MRR Hits@1 Hits@3 Hits@10

1.5 15789 0.118 4.0% 14.6% 24.9%
2 21052 0.117 3.5% 14.8% 25.0%
5 22794 0.165 9.9% 18.1% 29.5%

(b) YAGO11k results. Increasing the grow factor past 5 did not result in more splits being
applied.

Grow factor # Entities MRR Hits@1 Hits@3 Hits@10

1.5 10692 0.135 0.0% 18.9% 39.8%
2 14256 0.149 0.0% 21.6% 44.5%
5 35640 0.182 0.0% 31.1% 50.8%

(c) ICEWS14 results.

Table 21: Results for the SpliMe split (time) method on entities. Inter-set filtering was
used for all runs. For Wikidata12k and YAGO11k granularity 300 was used.
For ICEWS14 granularity 0 was used. Used hyperparameters are: embedding
size = 100, learning rate = 0.001, self-adversarial sampling loss, 500 negative
examples and trained for 200 epochs.
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Grow factor # Entities MRR Hits@1 Hits@3 Hits@10

1.5 18831 0.203 12.8% 21.9% 35.6%
2 25108 0.178 11.1% 19.2% 31.2%

(a) Wikidata12k results.

Grow factor # Entities MRR Hits@1 Hits@3 Hits@10

1.5 15789 0.100 2.8% 12.4% 21.6%
2 21052 0.101 2.6% 13.1% 21.6%

(b) YAGO11k results.

Grow factor # Entities MRR Hits@1 Hits@3 Hits@10

1.5 10692 0.133 0.0% 18.4% 39.4%
2 14256 0.146 0.0% 20.7% 43.5%

(c) ICEWS14 results.

Table 22: Results for the SpliMe split (count) method on entities. Inter-set filtering was
used for all runs. For Wikidata12k and YAGO11k granularity 300 was used.
For ICEWS14 granularity 0 was used. Used hyperparameters are: embedding
size = 100, learning rate = 0.001, self-adversarial sampling loss, 500 negative
examples and trained for 200 epochs.
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Shrink Factor # Entities MRR MR Hits@1 Hits@3 Hits@10

1.0125 15788 0.342 115 23.5% 36.6% 61.1%
1.025 18944 0.344 200 24.7% 37.3% 54.8%
1.05 25030 0.307 404 20.6% 34.1% 52.8%
1.1 36372 0.272 593 18.0% 29.8% 46.5%

(a) Wikidata12k results.

Shrink Factor # Entities MRR MR Hits@1 Hits@3 Hits@10

1.025 16436 0.088 358 2.8% 9.1% 19.5%
1.05 22065 0.090 451 3.2% 9.2% 19.6%
1.1 32556 0.096 636 3.3% 10.0% 21.4%
1.3 66449 0.123 1248 4.6% 13.8% 26.9%

(b) YAGO11k results.

Shrink Factor # Entities MRR MR Hits@1 Hits@3 Hits@10

1.025 8978 0.125 190 0.0% 16.7% 36.6%
1.05 10740 0.132 232 0.0% 18.3% 38.8%
1.1 14025 0.146 314 0.0% 20.8% 43.6%
1.3 24636 0.173 773 0.0% 27.9% 50.0%
2 45063 0.193 5410 0.1% 35.1% 51.2%

(c) ICEWS14 results.

Table 23: Results for the SpliMe split (count) method on entities. Both inter and intra
set filtering was applied for all runs. For Wikidata12k and YAGO11k granular-
ity 300 was used, for ICEWS14 granularity 0 was used. Used hyperparameters
are: embedding size = 100, learning rate = 0.001, self-adversarial sampling
loss, 500 negative examples and trained for 200 epochs.
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D. Full results

D.1. Vanilla TransE Results

Granularity Filter MRR MR Hits@1 Hits@3 Hits@10

300 None 0.357 113 26.9% 38.8% 52.8%
300 Inter 0.209 153 12.4% 22.7% 37.9%
300 Intra 0.357 113 26.9% 38.8% 52.8%
300 Both 0.209 153 12.4% 22.7% 37.9%

(a) Wikidata12k results.

Granularity Filter MRR MR Hits@1 Hits@3 Hits@10

300 None 0.188 443 8.2% 23.8% 35.6%
300 Inter 0.188 443 8.2% 23.8% 35.6%
300 Intra 0.188 443 8.2% 23.8% 35.6%
300 Both 0.188 443 8.2% 23.8% 35.6%

(b) YAGO11k results.

Granularity Filter MRR MR Hits@1 Hits@3 Hits@10

0 None 0.201 80 0.7% 30.8% 56.1%
0 Inter 0.141 140 0.1% 18.9% 42.2%
0 Intra 0.201 80 0.7% 30.8% 56.1%
0 Both 0.141 140 0.1% 18.9% 42.2%

(c) ICEWS14 results.

Table 24: Results for vanilla TransE for the different filtering methods. Embedding
size = 100, learning rate = 0.001, self-adversarial sampling loss, 500 negative
examples and trained for 200 epochs.
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D.2. Timestamp Results

Dataset # Preds MRR MR Hits@1 Hits@3 Hits@10

Wikidata12k 1622 0.340 115 21.1% 40.8% 58.1%
Yago11k 570 0.197 175 6.9% 26.0% 41.2%

ICEWS14 17061 0.213 106 4.7% 29.4% 54.4%

Table 25: Results for the SpliMe timestamping method. Inter-set filtering was used
for all runs. For Wikidata12k and YAGO11k granularity 300 was used. For
ICEWS14 granularity 0 was used. Used hyperparameters are: embedding
size = 100, learning rate = 0.001, self-adversarial sampling loss, 500 negative
examples and trained for 200 epochs.
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D.3. Split (time) Results

Grow factor # preds MRR MR Hits@1 Hits@3 Hits@10

5 120 0.279 94 15.2% 32.9% 52.9%
10 240 0.320 111 20.1% 37.2% 54.9%
15 360 0.295 105 17.9% 34.3% 53.2%
20 480 0.299 165 18.8% 35.1% 51.2%
25 525 0.306 112 19.0% 35.3% 53.8%

(a) Wikidata12k results.

Grow factor # preds MRR MR Hits@1 Hits@3 Hits@10

5 50 0.154 194 6.0% 17.5% 33.6%
10 100 0.194 200 8.0% 24.4% 39.4%
15 150 0.210 185 9.0% 26.6% 42.4%
20 200 0.213 183 9.0% 27.0% 43.2%
25 250 0.201 211 8.9% 24.9% 39.6%
30 273 0.202 201 8.2% 25.7% 40.5%

(b) YAGO11k results.

Grow factor # preds MRR MR Hits@1 Hits@3 Hits@10

5 1150 0.185 100 2.6% 25.6% 50.7%
10 2300 0.187 99 2.8% 25.7% 51.3%
15 3450 0.188 98 2.7% 25.8% 51.5%
20 4600 0.190 101 3.0% 26.3% 51.6%
25 5750 0.190 103 3.2% 25.6% 52.1%
30 6900 0.192 107 3.3% 25.8% 51.8%

(c) ICEWS14 results.

Table 26: Results for the SpliMe split (time) method. Best results among all were
highlighted in bold. Inter-set filtering was used for all runs. For Wikidata12k
and YAGO11k granularity 300 was used. For ICEWS14 granularity 0 was
used. Used hyperparameters are: embedding size = 100, learning rate =
0.001, self-adversarial sampling loss, 500 negative examples and trained for
200 epochs.
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D.4. Split (count) Results

Grow factor # preds MRR MR Hits@1 Hits@3 Hits@10

5 120 0.292 92 17.7% 33.4% 52.0%
10 240 0.281 117 16.6% 31.6% 51.3%
15 360 0.290 119 17.4% 32.7% 53.3%
20 480 0.290 119 17.4% 32.7% 53.3%
25 600 0.300 119 18.3% 34.5% 53.8%
30 604 0.290 105 16.8% 34.1% 53.6%

(a) Wikidata12k results.

Grow factor # preds MRR MR Hits@1 Hits@3 Hits@10

5 50 0.126 251 5.8% 12.9% 26.3%
10 100 0.182 206 7.2% 22.2% 37.9%
15 150 0.184 309 7.5% 23.2% 36.8%
20 200 0.189 314 8.6% 22.5% 37.6%
25 250 0.196 174 8.1% 24.1% 40.3%
30 300 0.191 201 8.2% 23.4% 37.7%

(b) YAGO11k results.

Grow factor # preds MRR MR Hits@1 Hits@3 Hits@10

5 1150 0.182 100 2.5% 24.9% 49.9%
10 2300 0.190 98 2.9% 26.1% 51.6%
15 3450 0.190 100 3.0% 25.8% 51.9%
20 4600 0.189 99 2.7% 25.9% 51.9%
25 5750 0.191 101 3.0% 26.2% 52.2%
30 6900 0.192 104 3.2% 26.0% 52.2%

(c) ICEWS14 results.

Table 27: Results for the SpliMe split (count) method. Best results among all were
highlighted in bold. Inter-set filtering was used for all runs. For Wikidata12k
and YAGO11k granularity 300 was used. For ICEWS14 granularity 0 was
used. Used hyperparameters are: embedding size = 100, learning rate =
0.001, self-adversarial sampling loss, 500 negative examples and trained for
200 epochs.
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D.5. Merge Results

Shrink factor # preds MRR MR Hits@1 Hits@3 Hits@10

1.5 1088 0.348 119 21.9% 41.0% 58.9%
2 823 0.348 121 22.0% 41.0% 59.4%
4 423 0.358 100 22.2% 43.3% 61.0%
6 290 0.345 96 20.9% 41.6% 59.8%
8 223 0.342 90 20.3% 42.3% 59.1%
10 183 0.330 94 19.8% 39.6% 57.2%

(a) Wikidata12k results.

Shrink factor # preds MRR MR Hits@1 Hits@3 Hits@10

1.5 383 0.192 191 6.0% 25.5% 41.4%
2 290 0.195 183 6.2% 26.3% 42.0%
4 150 0.180 204 6.5% 22.4% 38.1%
6 103 0.169 213 6.1% 20.6% 37.5%
8 80 0.173 207 6.2% 21.3% 37.9%
10 66 0.180 208 6.3% 22.6% 38.6%

(b) YAGO11k results.

Shrink factor # preds MRR MR Hits@1 Hits@3 Hits@10

1.5 11449 0.207 99 4.1% 28.7% 53.9%
2 8645 0.203 95 3.7% 28.2% 53.6%
4 4437 0.198 94 3.1% 27.7% 53.5%
6 3034 0.193 94 2.6% 27.3% 52.7%
8 2332 0.192 96 2.6% 27.1% 52.3%
10 1912 0.191 97 2.6% 26.8% 52.0%

(c) ICEWS14 results.

Table 28: Results for the SpliMe merge method. Best results among all were high-
lighted in bold. Inter-set filtering was used for all runs. For Wikidata12k and
YAGO11k granularity 300 was used. For ICEWS14 granularity 0 was used.
Used hyperparameters are: embedding size = 100, learning rate = 0.001, self-
adversarial sampling loss, 500 negative examples and trained for 200 epochs.
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D.6. Distance Results

Measure Epsilon MRR Hits@1 Hits@3 Hits@10 # preds

Adar 20 0.246 14.6% 27.0% 45.4% 182
15 0.245 14.4% 27.4% 45.7% 258
10 0.254 15.1% 28.4% 46.4% 356
5 0.287 17.8% 32.7% 50.5% 545
2.5 0.318 19.6% 37.6% 55.2% 707
1.25 0.318 19.6% 37.6% 55.2% 742

Jaccard 20 0.248 15.1% 27.2% 45.0% 188
15 0.248 14.6% 27.5% 45.7% 267
10 0.253 15.3% 27.7% 46.6% 361
5 0.287 17.6% 32.9% 50.6% 547
2.5 0.316 19.3% 37.6% 55.4% 706
1.25 0.316 19.3% 37.6% 55.4% 742

Pref 20 0.227 13.3% 25.0% 42.6% 154
15 0.236 13.7% 26.0% 44.5% 217
10 0.237 13.8% 25.6% 44.7% 315
5 0.284 18.0% 31.5% 49.8% 504
2.5 0.322 20.1% 37.7% 55.4% 726
1.25 0.322 20.1% 37.7% 55.4% 742

(a) Wikidata12k results. For each measure, there was no difference between ε = 2.5 and ε = 1.25
at any number of significant digits.
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Measure Epsilon MRR Hits@1 Hits@3 Hits@10 # preds

Adar 20 0.186 7.1% 24.3% 36.5% 60
15 0.180 5.9% 24.4% 37.1% 84
10 0.183 5.9% 24.7% 38.1% 120
5 0.180 4.8% 24.7% 39.7% 226
2.5 0.182 5.0% 25.3% 40.0% 257
1.25 0.182 5.0% 25.3% 40.0% 257

Jaccard 20 0.185 7.1% 24.2% 36.4% 60
15 0.179 5.8% 24.4% 36.8% 89
10 0.174 5.6% 23.1% 36.8% 126
5 0.181 5.4% 24.2% 40.1% 236
2.5 0.182 5.0% 25.3% 40.0% 257
1.25 0.182 5.0% 25.3% 40.0% 257

Pref 20 0.191 7.4% 24.9% 37.0% 52
15 0.190 6.4% 25.9% 39.1% 72
10 0.183 5.9% 24.7% 38.1% 98
5 0.202 5.4% 28.8% 43.7% 177
2.5 0.182 5.0% 25.3% 40.0% 257
1.25 0.182 5.0% 25.3% 40.0% 257

(b) YAGO11k results. Note that for each split the maximum number of splits is already achieved
at ε = 2.5
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Measure Epsilon MRR Hits@1 Hits@3 Hits@10 # preds

Adar 200 0.156 1.0% 21.1% 45.6% 495
150 0.182 3.1% 24.1% 50.1% 1699
100 0.188 3.7% 24.6% 50.4% 3418
50 0.189 3.7% 25.3% 50.6% 4918
25 0.190 3.7% 25.2% 50.7% 5866
12.5 0.190 3.9% 24.9% 50.6% 6390
5 0.190 3.8% 25.2% 50.1% 6699

Jaccard 200 0.168 1.9% 22.9% 47.7% 671
150 0.186 3.4% 24.8% 49.9% 2183
100 0.188 3.6% 24.8% 50.0% 3629
50 0.189 3.6% 25.1% 50.5% 4900
25 0.188 3.5% 25.2% 50.3% 5958
12.5 0.189 3.8% 25.1% 50.2% 6431
5 0.189 3.8% 24.8% 49.9% 6717

Pref 200 0.167 1.7% 22.6% 47.4% 604
150 0.184 3.2% 24.8% 49.8% 2184
100 0.189 3.7% 24.9% 50.2% 3689
50 0.190 3.8% 25.4% 50.2% 5009
25 0.188 3.6% 25.1% 50.2% 6026
12.5 0.191 4.1% 25.1% 50.3% 6451
5 0.190 4.0% 25.0% 50.3% 6730

(c) ICEWS14 results.

Table 29: Similarity measures with CPD results. Best results for each measure are high-
lighted in bold. Inter-set filtering was used for all runs. For Wikidata12k and
YAGO11k granularity 300 was used, for ICEWS14 granularity 0 was used.
Used hyperparameters are: embedding size = 25, learning rate = 0.001, self-
adversarial sampling loss, 500 negative examples and trained for 200 epochs.

Notably, the effect of the proximity measure utilized does not seem to have a large
effect on the resulting performance. We observe changes of around a percentage point
at most, which is well within the realm of random difference obtained in the fitting
process. Instead, the result seems to depend only on the ε value used. The best results
are obtained with ε = 2.5 on Wikidata12k and ε = 5.0 on Yago11k.

On ICEWS14, ε values seems to have little effect on the link prediction performance of
the embeddings. While maximum performance is achieved at lower ε values, it may be
more advantageous to use higher values instead. Seeing that difference in performance
is minimal, the increase in training time due to the larger number of predicates might
not be worth it.
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D.7. Random Baseline Results

Seed MRR Hits@1 Hits@3 Hits@10 Fit. Time

Run 1 2312384781 0.271 16.1% 31.1% 49.2% 03:41:05
Run 2 463751933 0.308 19.8% 35.5% 52.0% 07:38:30
Run 3 682021680 0.289 17.7% 33.5% 50.7% 01:55:26
Run 4 93266380 0.292 18.5% 32.6% 51.2% 02:33:29
Run 5 56546590 0.329 20.5% 39.1% 55.6% 02:02:50
Run 6 88033396 0.275 16.6% 31.6% 49.6% 03:50:40
Run 7 96240958 0.262 16.1% 29.5% 46.7% 04:14:13

Average 0.289 17.9% 33.3% 50.7% 03:42:19

(a) Wikidata12k results, splits were applied at random until the data set contained 423 predi-
cates.

Seed MRR Hits@1 Hits@3 Hits@10 Fit. Time

Run 1 2312384781 0.219 9.9% 27.8% 41.9% 03:45:51
Run 2 463751933 0.216 9.4% 26.6% 43.4% 02:15:28
Run 3 682021680 0.213 8.6% 27.9% 41.7% 02:18:29
Run 4 93266380 0.194 7.2% 25.0% 39.6% 02:54:38
Run 5 56546590 0.166 6.2% 20.6% 34.8% 03:19:57
Run 6 88033396 0.166 6.1% 20.5% 35.0% 03:56:16
Run 7 96240958 0.208 7.3% 27.9% 43.2% 03:33:50

Average 0.197 7.8% 25.2% 39.9% 03:09:13

(b) YAGO11k results, splits were applied at random until the data set contained 200 predicates.

Seed MRR Hits@1 Hits@3 Hits@10 Fit. Time

Run 1 2312384781 0.171 2.0% 23.1% 47.9% 01:29:43
Run 2 463751933 0.173 1.8% 23.7% 48.5% 01:35:12
Run 3 682021680 0.175 2.4% 23.8% 48.2% 05:22:31
Run 4 93266380 0.172 1.7% 23.8% 48.5% 02:47:32
Run 5 56546590 0.171 2.1% 22.8% 47.2% 02:46:42

Average 0.172 2.0% 23.4% 48.1% 02:39:14

(c) ICEWS14 results, splits were applied at random until the data set contained 3500 predicates.

Table 30: Random baseline results. Each run represents a new creation of a baseline data
set. Inter-set filtering was used for all runs. For Wikidata12k and YAGO11k
granularity 300 was used. For ICEWS14 granularity 0 was used. Used hyper-
parameters are: embedding size = 100, learning rate = 0.001, self-adversarial
sampling loss, 500 negative examples and trained for 200 epochs.
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