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Abstract

Both metabolic syndrome and schizophrenia are associated with decreased
volume of total brain and specific brain areas. Moreover, both diseases are
found to often come together. The aim of this study is to gain insight in
the association of schizophrenia and metabolic syndrome in the brain and to
get a better understanding of the place machine learning has in the medical
field.

Therefore, a machine learning approach is used to classify subjects with
and without metabolic syndrome in a group of schizophrenic patients using
brain volume, cortical thickness and area of different regions of interest as
features. Two common challenges in the medical field (small sample size
and class imbalance) are analysed and to overcome these challenges, dif-
ferent feature selections are made, both knowledge-based selections and se-
lections based on machine learning. A soft-margin support vector machine
is trained on a real-world dataset (n = 73) using these feature selections.
The results showed that the feature selections made by machine learning
algorithms yielded better performances than the knowledge-based feature
selections. However, before the models could be used in a clinical setting,
further research should be done to the association between different regions
of interest selected and metabolic syndrome.
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Chapter 1

Introduction

1.1 Metabolic syndrome, schizophrenia and

the brain

Decreased brain volume is associated with various diseases and syndromes.
Two of them are metabolic syndrome (Tiehuis et al., 2014) and schizophre-
nia (Haijma et al., 2013; Cahn et al., 2002): both subjects with metabolic
syndrome and subjects with schizophrenia are found to have smaller total
brain volume than healthy controls. Metabolic syndrome is a cluster of car-
diovascular risk factors that can lead to several diseases (e.g. diabetes type
2, cardiovascular disease).1 Both metabolic syndrome and schizophrenia are
also associated with volume decreases of specific brain areas.

Moreover, it is found that schizophrenia and metabolic syndrome often
come together. Patients with schizophrenia have approximately a twofold
risk of developing metabolic syndrome in comparison with the general popu-
lation (Papanastasiou, 2013). Furthermore, they have a threefold risk to die
from cardiovascular disease (Ringen, Engh, Birkenaes, Dieset, & Andreassen,
2014) and a twofold risk to die from a heart attack (Galassi, Reynolds, &
He, 2006), two of the common health complications that associate with
metabolic syndrome. The frequently occurring unhealthy lifestyle of pa-
tients with schizophrenia seems to contribute to both increased prevalence of
metabolic syndrome and risk of death (Heald et al., 2017). Besides, the use
of anti-psychotic medication may play a role in the development of metabolic
syndrome in patients with schizophrenia (Papanastasiou, 2013).

These brain abnormalities in both schizophrenia and metabolic syndrome
and the fact that both diseases often occur together raise the question whether
there is a possible connection between schizophrenia and metabolic syndrome
in the brain.

A recent study compared the brain structures of patients with schizophre-
nia and metabolic syndrome to these of a control group consisting of patients
with schizophrenia but without metabolic syndrome. The brain volume was
measured from MRI data and was compared between the two groups us-

1More information about metabolic syndrome and schizophrenia can be found in Chap-
ter 2.1 and 2.2 respectively.
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1.2. CURRENT STUDY

ing statistical analyses. This study concluded that, in schizophrenia, total
brain (TB) volume and grey matter (GM) volume of patients with metabolic
syndrome is decreased in comparison to that of patients without metabolic
syndrome. Moreover, the study found that the summed volume of ten cor-
tical and subcortical brain areas (regions of interest/ROIs) that are ’reward
related’ is also smaller in subjects with metabolic syndrome (de Nijs et al.,
2018).

1.2 Current study

Although De Nijs’ finding is valuable, it is not sufficient for clinical use, since
it reports differences at group level and does not analyse the effect of the
features on individual subjects. Compared to group difference, individual
predictions are considered a much harder task (Arbabshirani, Plis, Sui, &
Calhoun, 2017).

The study in this thesis will make an attempt to individual predict which
of the patients with schizophrenia suffer from metabolic syndrome based on
certain brain measures. In this thesis, a machine learning (ML) approach is
used to make subject-oriented prediction of MetS possible. The dataset of
De Nijs’ study is used in the current study to develop and test the model.

Note the different purposes of machine learning classifications on one
side and statistical analyses like De Nijs did in her research on the other
side. The main purpose of machine learning diagnostic models is to get the
best prediction per subject. In contrast, the purpose of a statistical analysis
is to acquire knowledge about the relationship between variables in a group
of subjects. A highly significant group difference does not always translate
into a well classification result or the other way around: a feature that is
used in a well performing classification model, does not mean that there is a
significant difference at group level (Arbabshirani et al., 2017).

However, with this in mind, machine learning can also be used to gain
insight into relationships between variables, which is done in this thesis. Par-
ticularly, one of the major advantages of ML is the ability to analyse various
variables, or features, simultaneously and therefore discover underlying asso-
ciations between several of them (Falahati, Westman, & Simmons, 2014). In
this case, the associations between the volume, cortical thickness and area of
different regions of interest and the presence of metabolic syndrome will be
analysed. The purpose of the current study is to get a better understanding
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1.3. THESIS STRUCTURE

of these associations and the way machine learning can contribute to the
medical field (especially in brain-image analyses).

In this study, a support vector machine model is built to classify subjects
with and without metabolic syndrome in a group of schizophrenic patients.
Both cortical and subcortical regions of interest are used as features.

1.3 Thesis structure

In the next two chapters, the theoretical background of this thesis is set
out. Chapter 2 starts with a literature review on metabolic syndrome and
schizophrenia. In chapter 3, the different machine learning approaches used
in this thesis are described and analysed. The exact use of these machine
learning approaches is described in chapter 4, along with a detailed descrip-
tion of the used sample. In chapter 5 of this thesis, the results of the trained
models are reported. Afterwards, in chapter 6, the results are discussed and
in chapter 7, a conclusion is drawn.
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Chapter 2

Literature Review

In this chapter, literature about metabolic syndrome and schizophrenia is
reviewed. The origin, current state of affairs with regard to diagnoses (with
and without use of machine learning) and possible challenges of both diseases
are set out.

2.1 Schizophrenia

The first mention of schizophrenia was more than a century ago (Kraepelin,
1893) and a lot of research has been done since. Schizophrenia is found to
be a serious mental disorder characterized by its complexity. The lifetime
prevalence of schizophrenia is around 0.4% (Bhugra, 2005).

Currently, diagnosis of schizophrenia is made from criteria of the DSM-
V (Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition).
However, until 2013, subject were diagnosed based on a previous version of
the DSM. Because the dataset used in this study was collected before 2013,
the subjects were diagnosed through this version (DSM-IV) which consist of
the following criteria:

Two (or more) of the following, each present for a significant portion of
time during a 1-month period (or less if successfully treated):

1. delusions

2. hallucinations

3. disorganized speech (e.g., frequent derailment or incoherence)

4. grossly disorganized or catatonic behavior

5. negative symptoms, i.e. affective flattening, alogia (poverty of speech),
or avolition (lack of motivation)

These criteria are quite broad, which results in diverse clinical manifesta-
tions. However, schizophrenia is not only clinically heterogeneous, but also
the etiology of schizophrenia is known to be heterogeneous. This is, multiple
pathways can lead to schizophrenia (Schnack, 2019). One or more of those
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2.2. METABOLIC SYNDROME

might be found in the volume of the brain. A major difficulty of heterogene-
ity is the fact that a straightforward linear separation between patients and
healthy controls is impossible.

Diagnosing subjects based on brain measures instead of clinical criteria
could help, because schizophrenia is known to be associated with volume
reductions in specific brain areas. Such a association was found in white
matter and grey matter, in which the last reduction was found to be consid-
erably larger (Haijma et al., 2013). Moreover, grey matter volume was found
to decrease during the first year of illness, while white matter volume did
not (Cahn et al., 2002). However, another study found that specific areas of
white matter (i.e. frontal, parietal and temporal lobe) were associated with
a volume reduction over time (Olabi et al., 2011). In addition to white and
grey matter, also third and lateral ventricle volume (both larger in patients)
(Cahn et al., 2002), nucleus accumbens (smaller) (van Erp et al., 2016) and
hippocampal volume (smaller) (Koolschijn et al., 2010) were found to relate
with brain abnormalities.

2.2 Metabolic syndrome

Metabolic syndrome (MetS) is a cluster of five health problems (increased
blood pressure, central obesity, hypertriglyceridemia, low HDL-cholesterol
and hyperglycemia) that often occur together and increase the risk of several
health complication such as cardiovasculair disease (CVD) and diabetes type
2 (Stern, Williams, González-Villalpando, Hunt, & Haffner, 2004). Further-
more, individuals with the syndrome have a three times higher risk to have
a heart attack or stroke (Alberti, Zimmet, & Shaw, 2006).

The concept of a cluster of risk factors that often occur together and is
associated with an increased risk with regards to diseases mentioned before
is first described by Raeven in 1988. By that time, this cluster of risk factors
was called syndrome X, which is currently known as metabolic syndrome.
Remarkably, Raeven did not include central obesity as a risk factor, whereas
nowadays that is regarded as one of the most important risk factor of MetS
(Ritchie & Connell, 2007). In fact, by definition of the International Diabetes
Federation, a person is diagnosed with MetS whenever central obesity is
determined, in addition to any of two additional risk factors (Alberti et al.,
2006). The exact criteria can be found in Tabel 2.1.
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2.2. METABOLIC SYNDROME

Central
obesity

Waist circumference (ethnicity specific)

Any two of the following Raised
triglycerides

≥ 1.7 mmol/l (150 mg/dl)
or specific treatment for this lipid abnormality

Reduced
HDL cholesterol

< 1.03mmol/l (40 mg/dl) in males
< 1.29 mmol/l (50 mg/dl) in females
or specific treatment for this lipid abnormality

Raised
blood pressure

Systolic: ≥ 130 mmHg
Diastolic: ≥ 85 mmHg
or treatment of previously diagnosed hypertension

Raised fasting
plasma glucose (FPG)

FPG ≥ 100 mg/dL (5.6 mmol/L)
or previously diagnosed type 2 diabetes

Table 2.1: International Diabetes Federation metabolic syndrome criteria

To complicate things, the International Diabeters Federation definition is
not the only definition that is commonly used. For example, the World
Health Organization (WHO) and European Group for the Study of Insulin
Resistance (EGIR) use slightly different criteria which are focussed on In-
suline Resistance instead of central obesity (Kassi, Pervanidou, Kaltsas, &
Chrousos, 2011).

Since the first mention of MetS by Raeven, a great amount of studies
that describe the risk factors and prevalence of MetS has been published.
However, the prevalence of MetS vary considerably among studies (Cameron,
Shaw, & Zimmet, 2004; Ford, Li, & Zhao, 2010). Of course, one of the reasons
for this is the use of various diagnosis criteria. Yet, although the exact
prevalence in the worldwide population is unknown, all studies describe a
vast proportion of the population suffering from MetS (Kassi et al., 2011).

The last couple years, machine learning has become an innovative and
promising method to diagnose MetS. Because it is unclear which of the risk
factors exactly contribute to MetS and to what extent, machine learning
could be helpful. In a recent literature review, forty studies are found that use
several machine learning techniques to identify MetS. In this review, artificial
neural networks and decision tree are indicated as the techniques with the
highest predictive performance, followed by Support Vector Machine (SVM)
(Kakudi, Loo, & Moy, 2020). In a study comparing diagnosis of MetS using
SVM and decision tree, the first is found to have higher sensitivity, specificity
and accuracy (Karimi-Alavijeh, Jalili, & Sadeghi, 2016). In studies using
SVM usually only features with a clinical origin (e.g. body mass index, blood
pressure and age) are used (Karimi-Alavijeh et al., 2016; van Schependom et
al., 2015; Gutiérrez-Esparza, Infante Vázquez, Vallejo, & Hernández-Torruco,
2020). However, one study is found that includes genetic information as
features in addition to clinical features (Choe et al., 2018). No machine

8



2.3. BRAIN CONNECTION BETWEEN SCHIZOPHRENIA AND METS

learning study based on MRI scans is found.
However, using brain data could be very interesting, because subjects

with metabolic syndrome are known to have abnormalities in specific brain
areas. For example, metabolic syndrome is known to be associated with
a smaller hippocampal volume, in both diabetic and non-diabetic subjects
(Yau, Castro, Tagani, Tsui, & Convit, 2012). Also, the volume of grey and
white matter is found to be decreased in subjects with metabolic syndrome
(Sala et al., 2014). Furthermore, decreased volume of the right nucleus ac-
cumbens was found in a group with metabolic syndrome in comparison with
a healthy control group (Song et al., 2015). Different cortical regions of the
brain of subjects with metabolic syndrome are found to have a significantly
decreased cortical thickness (Song et al., 2015).

2.3 Brain connection between schizophrenia

and MetS

Research has conclude that metabolic syndrome and schizophrenia often oc-
cur together (see chapter 1.1). In addition, as described in the previous
sections, brain abnormalities exist in both schizophrenia and metabolic syn-
drome. It seems like there is a certain similarity in these abnormalities,
especially in some areas of the subcortical brain (hippocampus, nucleus ac-
cumbens), the grey and white matter. The question whether possible brain
abnormalities in schizophrenia cause metabolic syndrome is not that easily
answered, because also external factor may play a role.

For example, the use of anti-psychotic medication may have an influence
on the occurrence of metabolic syndrome. Studies have shown that espe-
cially schizophrenia patients that use lifelong medication against schizophre-
nia are likely to develop metabolic syndrome (Papanastasiou, 2013). Anti-
psychotic medication has a influence on appetite control, body composi-
tion and metabolic regulation, which all contribute to the development of
metabolic syndrome (Ringen et al., 2014). Furthermore, in patients with
schizophrenia, the use of antipsychotic medication is found to be associated
with a progressive reduction of the grey matter volume (Haijma et al., 2013).
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Chapter 3

Machine Learning Approaches

(Supervised) machine learning model development usually goes through two
phases: the training phase, in which a model is trained using a machine learn-
ing algorithm and the testing phase, in which the trained model is validated.
In this chapter, the approach used for training (support vector machine) and
testing (cross-validation) are set out. After that, some issues that occur fre-
quently when machine learning is used in the medical field are described, as
well as possible solutions for these issues.

3.1 Support vector machine

Support vector machine (SVM) is a machine learning technique that is first
mentioned in 1995 (Cortes & Vapnik, 1995) and is the most popular technique
in neuro imaging (Orru, Pettersson-Yeo, Marquand, Sartori, & Mechelli,
2012). The goal of a SVM is to classify subjects into two or more different
classes while using a hyperplane as a decision boundary (Luts et al., 2010). In
this study, we focus on support vector machine models that classify subjects
into two classes.

In a two-dimensional feature space a hyperplane is a line separating the
classes, while in higher dimensions a hyperplane is a higher dimension gen-
eralization of a line. There can be multiple lines that exactly separate two
classes, but the SVM selects the optimal separating hyperplane (OSH), that
is the hyperplane with the largest margin (i.e distance between hyperplane
and nearest datapoint) (Orru et al., 2012). In Figure 3.1 several lines sepa-
rating a two-dimensional dataset are shown. The line in Figure 3.1 (c) has
the largest margin and is therefore considered optimal. The data points lying
on the margin are called support vectors. The support vectors determine the
orientation of the OSH and influence the width of the margin.

The decision boundary of a SVM consist of a set of weights, one attached
to each feature. The optimal set of weights for a certain dataset results in
the largest margin and is the decision boundary of the OSH. Let w be a
vector including the weights of each feature and x be a vector describing
a data point. Both are of length n, the amount of features in the dataset.
In addition, let y ∈ {−1, 1} be the actual class label of data point x. The

10



3.1. SUPPORT VECTOR MACHINE
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Figure 3.1: A two-dimensional dataset is linearly separated by four lines. All lines
classify the data perfectly in the right class. The line in (c) has the largest margin and so

is the OSH.

output of the SVM is given by:

sign(wTx + b)

Intercept b is added and is, as well as weight vector w, optimized by the
support vector machine. Note that for a perfect separation every datapoint
xn should be classified correctly and so:

∀xn (yn(̇wTxn + b) ≥ 1)
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In order to get the optimal separating hyperplane, the margin of the
decision boundary must be maximized. The margin is given by:

2

||w||
=

2√
wTw

Maximizing the margin could be done by minimizing the inverse:

minimise
wT w

2
=

1

2
wTw

This optimization problem could be easily solved using for example gra-
dient descent.

Soft-margins
The described procedure works with precisely separable datasets, which in
reality are not that common. Instead, most datasets have overlapping classes.
However, in this case a slightly adjusted version of SVM could be used. In
soft-margin SVM, a certain penalty could be added to allow for some misclas-
sifications. In doing so, big margin could still be used, but data points lying
inside the margin or on the wrong side are allowed. A correctly classified
data point does not contribute to a penalty and the further a data point lies
from its own margin, the bigger the penalty becomes.

A cost parameter C determines the amount of error given by a data point
in the margin. A high C results in a smaller margin. Let ξ be the error and
C the cost parameter. Our optimization problem becomes:

minimise
1

2
wT w + C.

N∑
n=1

ξn

3.2 Cross-validation

After the training phase, model evaluation is done during the test phase.
It is important that evaluation is done with unseen data, since the use of
new data gives an unbiased estimate of the capacity of the model when used
in real-world situations (Vabalas, Gowen, Poliakoff, & Casson, 2019). One
method to make sure that unseen data is used, is to simply split the dataset
into a train set and a test set. The test set mimic the real-world samples for
which class labels have to be predicted (R. Simon, 2003).
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However, when dealing with small datasets, this so called split-sample
method could cause overfitting, because the train test is too small. A model
that is perfectly trained on only a few data points, is not able to generalise
well on new data. On the other side, a larger train set, results in a small test
set, which is not able to estimate the performance of the model reliable.

K-fold cross-validation (CV) could be used as an alternative method to
split test and train set. In k-fold cross-validation all data can be used for
training and be reused for testing, which ensures that less data is needed
(Vabalas et al., 2019). This can be achieved by dividing the data into k
non-overlapping folds and using every created fold as a test fold once. For
each fold, a model is trained using all k − 1 folds (except the test fold) and
validated using the test fold. The performance of the model is estimated
with the mean of the performance of the test folds.

It is important that stratification is used when the data is divided into
folds. Stratification ensures that in all folds the class proportions reflect that
of the entire sample (Berrar, 2019). For example, if a sample consists of ten
subjects in the positive class and thirty subject in the negative class, all folds
should contain around three times as many samples in the negative class as in
the positive class. Hence, all folds are an as good estimate of the real-world
as the entire sample.

In a soft-margin support vector machine, the cost parameter C has to be
tuned. A lack of parameter tuning could decrease the model performance
significantly (Arbabshirani et al., 2017). However, Varma and Simon (2006)
showed that tuning parameters using the train data could cause a biased
estimate of the model performance . Therefore, the optimal value of C should
be chosen in another cross-validation loop. The method in which a double
CV-loop is used, is called nested cross-validation and reduces the bias of the
model properly (Varma & Simon, 2006).

In nested cross-validation, the training fold is again split up into l (inner)
folds in which the cost parameter C is optimized. Just like the outer folds,
one of the folds is used as test fold, while the other l − 1 folds are used as
training fold. The value of C with the best performance in the inner fold is
used to train a model based on the corresponding outer fold and validated on
the outer fold test set. The nested cross-validation procedure is schematically
shown in Figure 3.2.
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3.3. CHALLENGES IN THE MEDICAL FIELD

Outer fold 1

Outer fold 2

Outer fold 3

Outer fold 4

Outer fold 5

TrainTest

Inner loop for outerfold 5

Inner fold 1

Inner fold 2

Inner fold 3

Inner fold 4

Inner fold 5

Inner fold 6

Tune Validate

Figure 3.2: Illustration of nested cross-validation with k = 5 and l = 6

3.3 Challenges in the medical field

Despite a great amount of studies about machine learning in the medical
field and the potentials of diagnostic classifiers reported by that studies,
(Arbabshirani et al., 2017; Gunčar et al., 2018; Kakudi et al., 2020) ML
models are not often deployed into clinical practice. The purpose of this
paragraph is to get a better understanding of the way machine learning could
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3.3. CHALLENGES IN THE MEDICAL FIELD

contribute to the medical field (especially in brain-image analyses) and to
gain insight into two main challenges in this field: small sample size and
class imbalance.

3.3.1 Small sample size

One of the major challenges in the medical field and especially in neuroimag-
ing studies is a relatively small sample size. Small sample size is a commonly
seen problem in neuroimaging studies, because MRI scans and other types of
data collection using human subjects are quite expensive and time consuming
(Kononenko, 2001). Small sample sizes pose multiple problems, for example
it could cause an unstable model, that is varying performance measures in
different runs. In a study that used a SVM to classify schizophrenia patients
and healthy controls, it was found that a training set of at least 130 subject
was required for a stable model (Nieuwenhuis et al., 2012). Besides that,
a model is less likely to generalise well on unseen data, whenever the ratio
between amount of features and sample size becomes higher (Vabalas et al.,
2019). It appears that the reason for this is that small sample sizes do not
represent the entire patient group (Arbabshirani et al., 2017).

Possible solution: feature selection with machine learning

Because sample size and amount of features are associated numbers, a pos-
sible solution of a small sample size could be to also reduce the amount of
features. If less features are used to train a linear support vector machine
model, the ratio between the amount of features and the sample size will be
lower. Therefore, the variance of the model will be lower, which ensures a
better performance. Especially when multiple features contain overlapping
information, removing features could improve the performance. The ques-
tion is, however, which features contain noise or overlap with other features?
A selection could be knowledge-based, but another option is to use machine
learning to select the best possible subsets of features. In the next para-
graphs, some of the commonly used feature selection methods are described.

There are many different methods for feature selection. These methods
roughly can be classified into three different groups: filter methods, wrapper
methods and embedded methods. Filter methods select a feature subset
regardless of the machine learning algorithm used. Features are for example
ranked or a chosen subset is evaluated. Only after selecting the optimal
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3.3. CHALLENGES IN THE MEDICAL FIELD

features, a machine learning model is trained and evaluated (Jović, Brkić, &
Bogunović, 2015). Because filter methods select features independent from a
specific machine learning method, they avoid overfitting, which is, of course,
a great advantage of this kind of feature selection (Chandrashekar & Sahin,
2014). However, the fact that feature selection is done before model training
has its disadvantages too. Because the estimated accuracy of a machine
learning algorithm is the best measure to evaluate the values of a certain
feature, the use of this algorithm usually leads to a more optimal feature
selection (Das, 2001).

Wrapper method: step forward algorithm
Methods that use a machine learning algorithm to select features are called
wrapper methods. In such methods a machine learning model is used as a
black box and its performance as a function to evaluate feature subsets. The
main drawbacks of wrapper methods are that they are more likely to overfit
and are much slower compared to filter methods (Chandrashekar & Sahin,
2014).

An example of a wrapper method is called step forward algorithm, which
is a iterative method that starts with an empty subset and add features one
at a time. The step forward algorithm works as follows: In the first step, all
features are evaluated individually using a certain performance measure and
the feature which results in the best performance is selected. Afterwards,
all possible combinations of the selected feature with a another feature are
tested and the pair that produces the best performance is chosen. In this
way, features are selected until a certain stopping criteria is met. A pos-
sible stopping criteria could be that none of the features does increase the
performance of the model when added to the feature set (Aha & Bankert,
1996). All possible machine learning algorithms could be chosen in the step
forward algorithm, but because of the slow speed of wrapper algorithms, fast
modelling algorithms such as SVM work out the best (Jović et al., 2015).
The step forward algorithm is visually shown in Figure 3.3.

A variation of the step forward algorithm allows for deletion of added
features, which could increase the chance of selecting the optimal subset
(Pudil, Novovičová, & Kittler, 1994). The opposite of the algorithm also
exists. This, so-called step backward algorithm is similar to the step forward
algorithm but starts from the set of all features and removes one feature at
a time (Chandrashekar & Sahin, 2014).
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Figure 3.3: Step forward algorithm

Embedded method: LASSO
Both filter and wrapper methods have advantages and disadvantages and
work better in particular situations. A third group of feature selection meth-
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3.3. CHALLENGES IN THE MEDICAL FIELD

ods named embedded methods and are in between filter and wrapper meth-
ods. They use a machine learning algorithms to select feature (an advantage
of wrapper methods), but are also relatively fast due to the embedded nature
of these methods (an advantage of filter methods) (Tang, Alelyani, & Liu,
2014). Unlike other methods embedded methods do not split the feature
selection and training steps, but the feature selection is embedded in the
machine learning algorithm (Lal, Chapelle, Weston, & Elisseeff, 2006).

Many embedded models for feature selection are regularization models
that add a penalty to the loss function of the model and eventually eliminate
certain features which coefficients have shrunken to zero. The features with
non-zero coefficents are selected to be part of the model (Fonti & Belitser,
2017).

An example of an regularised feature selection method is LASSO (Least
Absolute Shrinkage and Selection Operator.) The loss function without
penalty of LASSO is the same as the ordinary least squares (OLS) regression
(linear regression), that is the sum of the squared residuals (distance between
predicted point and real point). So the loss function LASSO can be defined
by (Tang et al., 2014; van der Kooij & Meulman, 2008) :

Loss(w) = ||y−
m∑
i=1

wix||2 + λ penalty(w)

In which w is a vector including the weights of each feature and λ is the
regularization or tuning parameter that controls the strength of the penalty.
The penalty used in LASSO regression is defined by:

penalty(w) =
m∑
i=1

|wi|

So the penalty is ≥ 0 and the higher the regularization parameter, the
higher the penalty, which results in more features become equal to zero.
Actually, if λ is high enough, all features will be zero.

3.3.2 Class imbalance

Class imbalance means that one class is over- or under-represented compared
to other classes. Most machine learning classifiers are biased towards the
biggest class, which leads to poor results in the smallest class or even to a
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model that classifies all subjects into the biggest class (Longadge & Dongre,
2013).

Due to the class imbalance, even a model that classifies all subjects in one
class can reach a pretty high accuracy. Accuracy is the ratio of the number
of correct classifications and the total number of subjects and is commonly
used in evaluation of classification problems. The sample used in the current
study includes 54 subject in the negative class and 19 in the positive class.
The accuracy of the model that classifies all subjects as negative will be
pretty high, which could give a disorted view of the model performance.

Accuracy =
0 + 54

0 + 54 + 0 + 19
≈ 0.7397

Not only in final evaluation class imbalance causes problems. If cross-
validation is used to tune parameters, accuracy is often used to tune pa-
rameters, which easily leads to a model that is biased toward the biggest
class.

Most real-world datasets are somehow imbalanced and often the most
interesting class (for example the class of subjects with a certain illness)
is the smaller one (Liu, Yu, Huang, & An, 2011). In the medical field,
the cost of misclassifying a subject in the smaller class is higher than that
of misclassifying a subject in the bigger class, that is misclassifying an ill
subject as healthy is way worse than misclassifying a healthy control as ill.
Therefore, class imbalance in the medical field is a serious issue and there is
need for good sampling techniques in the medical field (Rahman & Davis,
2013).

Possible solution: different performance metrics

One way to deal with class imbalance is by calculating not only accuracy
scores of the model, but also use other performance metric scores. As men-
tioned before, the accuracy score could give an overly optimistic view of the
model performance. Measures like balanced sensitivity and specificity are
more desirable than accuracy for evaluation of classification problems with
imbalanced classes (Arbabshirani et al., 2017).

Performance metrics often are calculated based on a confusion matrix
which labels a subject in a binary model in one of four groups based on its
predicted and actual value. The Confusion Matrix can be seen in Table 3.1.
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Actual value

Postive Negative

Positive True Positive (TP) False Positive (FP)
P

re
d
.

va
lu

e

Negative False Negative (FN) True Negative (TN)

Table 3.1: Confusion Matrix

The accuracy of a model is the proportion of correct predicted subjects
and could be calculated by:

Accuracy =
#TP + #TN

#TP + #TN + #FP + #FN

In an imbalanced dataset, the balanced accuracy is a way more accurate
metric, since it ensures that both positive and negative classification classes
contribute equally to the final score. Balanced accuracy is the mean of two
other performance metrics, sensitivity and specificity.

Balanced Accuracy =
Sensitivity + Specificity

2

Sensitivity, also known as recall, tells what proportion of the subjects in
the positive class is classified as positive by the algorithm and is commonly
used to evaluate medical algorithms, since mislabelling someone ill as healthy
is worse than vice versa.

Sensitivity =
#TP

#FN + #TP

The counterpart of sensitivity is specificity, that tells what proportion of
healthy people are classified as so. The specificity can be calculated by:

Specificity =
#TN

#FP + #TN

Another way to evaluate machine learning algorithms is the ROC (Re-
ceiver Operating Characteristics) curve, which could compare two classifiers
across the entire range of class distribution (Ling, Huang, Zhang, et al.,
2003). It expresses the trade off between sensitivity and the false positive
ratio. The false positive ratio is calculated by:
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False positive ratio =
#FP

#FP + #TN
= 1− Specificity

The ROC curve gives a lot of information about a classifier, but comparing
two models could be difficult. Fortunately, the area under the ROC curve
(AUC score) gives a simple score of the performance of the model. The higher
the score, the higher the performance of the model.

An ideal model has completely separable classes and consequently a sen-
sitivity and specificity score of 1. As a result, Area Under the Curve (AUC)
will be 1. In Figure 3.4, ROC curves of 4 different models are shown. A model
with an AUC score of around 0.5 performs as good as a random classifier and
is therefore not so valuable.

Figure 3.4: An ROC curve of 4 different models with AUC ranging from 0.5 (random
classifier) to 1 (perfect classifier)

Another metric that could be used to evaluate a machine learning model
is Odds Ratio (OR). In the medical field, OR is the ratio of the likelihood
a subject will be ill given a positive prediction relative to the likelihood a
subject will be ill given a negative prediction (Szumilas, 2010).
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The odds ratio is calculated by:

Odds ratio =
#TP/#FP

#FN/#TN
=

#TP ×#FN

#FP ×#TN

If the odds ratio for an event become substantially higher than 1, the odds
ratio for the non-occurrence of the event will become substantially lower than
1 (S. D. Simon, 2001).

Possible solution: class weights

The use of various performance metrics gives a more complete picture of
the capacity of models than accuracy does. However, it does not completely
solve the problem of class imbalance. Therefore, class weights could be added,
which penalise misclassifications of the positive (smaller) class heavier then
misclassifications of the negative (larger) class.
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Chapter 4

Methods

4.1 Sample

The sample is part of a longitudinal study named GROUP (Genetic Risks
and Outcome of Psychosis) project, a Dutch research that conducts research
on psychotic disorders (Korver et al., 2012).

The sample contains information of 84 subjects with schizophrenia or
other schizophrenia-like diagnoses. All subjects are fluent Dutch speakers
and have given written permission to participate in the study. Furthermore,
of all the subjects a diagnosis of a non-affective psychotic disorder according
to the criteria of DSM-IV (see chapter 2.2) is present. The sample includes
both clinical information (i.e. sex, age, IQ) and MRI scans of the subjects.
This study only uses MRI data (Korver et al., 2012).

Information about a metabolic syndrome diagnosis is available from 73
subjects of the same sample. The patients diagnosed with metabolic syn-
drome together are identified as one group (MetS+). The other group con-
sists of patients without metabolic syndrome (MetS-). Patients are catego-
rized into the MetS+ group using the diagnosis criteria of the International
Diabetes Federation (see chapter 2.1). The MetS+ group consists of 19 sub-
ject, that is 26% of all 73 subjects. All were in the age range between 16
and 43 years at time of the study (mean ± SD = 27.14± 5.54 ) and a large
majority of the subjects is male (89%).

4.2 Neuro-imaging

Structural 3-dimensional T1-weighted scans with 1 × 1 × 1.2 mm3 voxels
were acquired on a 1.5 tesla MRI Philips scanner and were preprocessed at
the Department of Psychiatry at the UMC in Utrecht. Freesurfer software
was used to automatically subdivide both left hemisphere (LH) and right
hemisphere (RH) into 7 subcortical and 34 cortical regions of interest (ROIs)
(Desikan et al., 2006). All ROIs used in this study can be found in Appendix
A.

Cortical thickness and surface area of the cortical ROIs were calculated
using Freesurfer Software. Brain volumes of cortical ROIs were computed us-
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ing the thickness by area of each vertex. Brain volumes of subcortical ROIs
were automatic calculated using image intensity, probabilistic atlas location
and spatial relationships between subcortical structures. In addition to in-
formation about ROIs, also information about larger brain areas (e.g. total
brain volume, grey matter volume) was automatic calculated and manually
corrected, if necessary after inspection (Kubota et al., 2015).

A quality check was done with regard to the MRI scans. Around a quarter
of the subjects was excluded, because the quality of the MRI scans was too
low. This quality check was done at the start of the study, therefore all 84
subjects mentioned before did have a well enough quality. More information
about the MRI scans and preprocessing can be found in Kubota et al (2015).

4.3 Models to classify metabolic syndrome

The brain measures from MRI data were used to train a linear soft-margin
support vector machine algorithm using the 73 subject with a schizophrenia-
like diagnosis and available MetS-data. The goal was to separate the MetS+
group and the MetS- group as accurate as possible.

After training, the performance of all models was estimated using nested
cross-validation with 5 inner folds and 5 outer folds. To find the optimal
cost value C, a range of possible values of C was reviewed: C ∈ {0.01, 0.025,
0.05, 0.075, 0.1, 0.25, 0.5, 0.75, 1, 2.5, 5 }. The value of C with the best
balanced accuracy in the inner folds was used to train a model based on the
corresponding outerfold.

The nested cross-validation as described above was repeated 100 times.
This is, the data set was randomly divided into 5 outer folds 100 times. The
outer test fold was used to evaluate the models using several performance
metrics, which are described in section 4.5.

4.3.1 Feature selection

As mentioned before, one of the major difficulties of this study is the relatively
small sample size alongside a large quantity of features. As described in
chapter 3, one way to deal with this challenge is by reducing the amount of
features. This method is used in the present study.

First, all clinical features such as IQ and sex were removed, since only
brain measures are used in this study. Afterwards, a model was trained with
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Feature selection No. features

All features Without merging LH and RH 224

With merging LH and RH 114

Knowledge-based Cortical volume + area + thickness 102

Cortical + subcortical volume 41

Cortical volume 34

Subcortical volume 7

Hippocampus + accumbens volume 4

Machine Learning StepForward 48

LASSO 21

Table 4.1: Feature selections used to train a MetS classifier with number of features

the remaining 224 features. Because no research is found which shows that
ROIs in the left or right hemisphere individually contribute to the develop-
ing of metabolic syndrome, the amount of features was further reduced by
merging the same features in LH and RH. Merging was done by taking the
mean of the LH and RH values of one brain area. All remaining features
were used to train a second model (114).

In this study, several methods to further reduce the amount of features
were used. These methods are described below and all feature selections,
with the amount of features are shown in Table 4.1.

Knowledge-based feature selection

One method of feature selection is a knowledge-based method, that makes
selections based on previous research. A possible feature selection could be
to train the model on GM and TB volume of the patients. As described
before, de Nijs (2018) found that TB volume, GM volume and a group of ten
reward-related brain structures are smaller in the MetS+ group compared to
the MetS- group. However, de Nijs’ research used the same sample as the
current study, which poses bias (Arbabshirani et al., 2017).

However, we could use the information of de Nijs’ research that TB vol-
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ume is associated with MetS. TB volume is based on cortical and subcortical
volume, so instead of the TB volume feature, all volume cortical and subcor-
tical ROI volume features (41) were used to train a model. Moreover, two
additional models were trained on just volume cortical ROI volume features
(34) or subcortical ROI volume features (7).

Alternatively, previous studies with a different data set can be used to
select features. As described before, hippocampal volume (Yau et al., 2012)
and volume of the nucleus accumbens (Song et al., 2015), both areas of the
subcortical brain, are associated with a smaller brain in metabolic syndrome.
Therefore a model is trained on the small feature set consisting of hippocam-
pus and nucleus accumbens volumes (4).

Selecting features with machine learning

Another method for feature selection could be to use a machine learning
algorithm to select a subset of features. In this study, step forward algorithm
and LASSO were used to select a subset of the features. Step forward feature
selection can be used with every machine learning algorithm possible and in
this study a soft-margin SVM with 5-fold nested cross-validation was used.
Balanced accuracy was used to test which combination performs best. The
step forward algorithm had selected 48 features.

In the LASSO regression model also nested cross-validation was used,
with 5 outer folds and 5 inner folds, to determine the value of the penalty.
To extract the selected features, after cross-validation, a final model using
all subjects is trained. This was the model with the optimal regularization
parameter lambda. The final model that was trained using LASSO regression
had selected 21 features.

4.4 Models to classify schizophrenia

Classification of subjects with MetS- and MetS+ in a group with schizophrenic
patients based on brain measures is quite complex and is, as far as we know,
never done before. Therefore, it is difficult to predict how well the classi-
fication will work. So, first of all, two models were trained with a dataset
that was expected to be easier to classify. In this case, a SVM model sepa-
rated patients with schizophrenia from healthy controls. These models used
288 subjects, which included all 84 subjects of the sample diagnosed with
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schizophrenia and a control group of 204 healthy subjects of whom MRI
data is available.

A first model was trained using all features (after merging RH and LH).
A second model used only the cortical volume ROIs as features to train the
model. To keep this model the same as the other trained model, as far
as possible, again a soft-margin version of SVM with 5-fold nested cross-
validation was used, along with the same performance metrics (section 4.5).

The expectation was that the schizophrenia models would perform better
than the MetS models. Not only is classification of schizophrenic patients
considered easier, but also is the sample size used in the schizophrenia models
almost 4 times as big as the sample used in the MetS models. As described in
chapter 3.1, a model with a larger sample size is able to better generalise on
new data (Vabalas et al., 2019), which will increase the model performance.

4.5 Performance Metrics

All models were compared on various performance metrics. More than one
is chosen to get a more realistic view of the capacity of the algorithm.

First of all, the accuracy of all models was computed. Accuracy is, despite
some failures (see chapter 3.3) a great measure to give a first view of the
performance of the model.

Also balanced accuracy, sensitivity and specificity were calculated, which
are more accurate metrics for an imbalanced dataset. In this case, sensitivity
tells what proportion of people with metabolic syndrome are classified as
positive by the algorithm. Because mislabelling someone with metabolic
syndrome as healthy is worse than mislabelling a healthy subject as someone
with metabolic syndrome, sensitivity can be seen as a more important metric
than specificity that tells what proportion of healthy controls are classified
as so. Moreover, AUC scores and odds ratio of the models were calculated.

Balanced accuracy scores were used to determine the optimal cost value
in the Suport Vector Machine models. The other performance metrics were
mainly used to compare the different models.

Finally, a permutation significance test was performed to obtain how big
the chance of a random model that is performing as well as the original model.
The class labels of the data set were randomly permuted 1000 times and the
permutation significance score was calculated. This score was calculated by
the ratio of the number of permutation models performing better than the
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original model and the number of permutations (1000). A threshold of p
< 0.05 was chosen, that is a model with a permutation significance score
smaller than 0.05 was considered significant.

4.6 Class weights

As mentioned before, the GROUP dataset is quite unbalanced. The dataset
used in this study includes 73 patients with schizophrenia, of which 19 pa-
tients (around 26%) are diagnosed with metabolic syndrome and 54 patients
are not (around 74%).

To penalise misclassifications of the positive (smaller) class heavier then
misclassifications of the negative (larger) class, class weights are added. The
class weights are opposed to the class size, that is the positive subjects are
penalised 54 times, while the negative subjects are penalised 19 times.
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Chapter 5

Results

In this section, the performance of the classification models are presented
and compared.

5.1 Schizophrenia classifier

Firstly, the support vector machine algorithms that classify subjects with and
without schizophrenia are evaluated. As can be seen in Figure 5.1, the model
using all features clearly has better performance scores on all performance
metrics than the model using the cortical volume features.
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Figure 5.1: Average performance scores over 100 runs of the schizophrenia classifier
trained on two different feature selections with number of features and standard deviation

Figure 5.1 also shows that balanced accuracy and AUC score lie close to
each other, with balanced accuracy around 69% and AUC score around 67%
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for the model using all features. Both balanced accuracy and AUC score of
the model using the cortical volume features are around 58%.

For both models, specificity score is higher than sensitivity score, indi-
cating that the chance that a patient with schizophrenia is misclassified as a
healthy control is higher, than the chance that a healthy control is misclas-
sified as ill.

In addition, odds ratio of the model using all features (5.343) is more
than two times as high as that of the cortical volume feature model (2.017).

A permutation significance test was done, of which the results are shown
in Tabel 5.1. Both models have a permutation significance score smaller than
0.05, which means that both results are considered significant.

Permutation significance score Significant?

All features < 0.001 Yes

Cortical volume features 0.014 Yes

Table 5.1: Permutation significance score over 1000 permutations of the schizophrenia
classifier trained on two different feature selections

5.2 MetS classifiers

All features

The support vector machine algorithms that classify subjects with and with-
out metabolic syndrome are evaluated. First, the models using all data with
and without merging RH and LH are compared. The result is shown in
Figure 5.2.
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Figure 5.2: Average performance scores over 100 runs of the MetS classifiers trained
with SVM on featuresets with and without merged LH/RH values with number of

features and standard deviation

The model trained with merged features is performing not significantly
better than the model without merged features on all performance metrics.
For both models, specificity score (around 63%) is almost two times as big as
sensitivity score (around 37%), which means that the chance that a MetS+
subject is misclassified as a MetS- subject is much higher, than the chance
that a MetS+ subject is misclassified as a MetS- subject.

Note that the standard deviation of the sensitivity score and odds ratio
is quite high, which could indicate an unstable model.

Knowledge-based feature selection models

The models using smaller knowledge-based selected feature subsets are com-
pared. The model using all features (with merging) is added as a reference.
The results are shown in Figure 5.3 and Figure 5.4.
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Figure 5.3: Average performance scores over 100 runs of the MetS classifier trained
with SVM on different feature selections with number of features and standard deviation
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All models perform poorly, with balanced accuracy scores ranging from
50% to 56%. The best performing model measured on accuracy, balanced
accuracy, AUC scores and OR is the model trained with the cortical vol-
ume features. The model with the highest sensitivity is the model using
hippocampus and accumbens volume features, which is the model with the
smallest number of features.

In fact, with regard to sensitivity, the smaller the amount of features,
the higher the score. The opposite is true for specificity: the higher the
amount of features, the higher the score, except for the specificity score of
the cortical volume model (around 60% ), which is higher than the cortical
and subcortical volume model (around 56%).

Again it is striking that the standard deviation of the odds ratio and sen-
sitivity score, and to a lesser extent the specificity score, is quite high. This
could indicate an unstable model.

Moreover, permutation significance test are done. Table 5.2 shows the per-
mutation significance scores of all knowledge based feature selection models.

Permutation Significant?

significance

All features 0.499 No

Cortical volume + area + cortical thickness 0.520 No

Cortical + subcortical volume 0.370 No

Cortical volume 0.192 No

Subcortical volume 0.275 No

Hippocampus + accumbens volume 0.236 No

Table 5.2: Permutation significance score over 1000 permutations of the MetS classifier
trained on six different feature selections

The permutation significance scores of all models are quite high, ranging
from 0.192 for the model with cortical and subcortical volume features to
0.52 for the model using volume, area and cortical thickness of all cortical
regions of interest.
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Machine learning feature selection models

The models using smaller feature subsets selected by machine learning al-
gorithms are evaluated. Table 5.3 shows the features selected by LASSO and
StepForward algorithm.

Feature LASSO StepForward

parsorbitalis VOL freesurfer X X

bankssts VOL freesurfer X X

frontalpole VOL freesurfer X X

bankssts area freesurfer X

entorhinal area freesurfer X X

rostralmiddlefrontal VOL freesurfer X

transversetemporal CT freesurfer X X

supramarginal VOL freesurfer X

parstriangularis area freesurfer X

caudalanteriorcingulate area freesurfer X X

lingual VOL freesurfer X

cuneus VOL freesurfer X

inferiorparietal area freesurfer X

precentral area freesurfer X

parsorbitalis area freesurfer X

parsorbitalis CT freesurfer X X

supramarginal area freesurfer X X

precentral VOL freesurfer X

inferiortemporal VOL freesurfer X

inferiorparietal VOL freesurfer X

superiortemporal area freesurfer X

parahippocampal CT freesurfer X

superiorfrontal VOL freesurfer X

totalgray VOL freesurfer X

paracentral CT freesurfer X
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medialorbitofrontal area freesurfer X

fusiform area freesurfer X

inferiorparietal CT freesurfer X

frontalpole area freesurfer X X

lingual CT freesurfer X

rostralanteriorcingulate area freesurfer X

precentral CT freesurfer X

totalbrain VOL freesurfer X

frontalpole CT freesurfer X X

bankssts CT freesurfer X

rostralanteriorcingulate VOL freesurfer X

fusiform VOL freesurfer X

inferiortemporal area freesurfer X X

caudate VOL freesurfer X

lingual area freesurfer X

middletemporal area freesurfer X

cuneus CT freesurfer X

superiorparietal CT freesurfer X

superiortemporal CT freesurfer X

superiorfrontal area freesurfer X

temporalpole CT freesurfer X

parsopercularis CT freesurfer X

caudalmiddlefrontal CT freesurfer X

pallidum VOL freesurfer X

inferiortemporal CT freesurfer X

middletemporal CT freesurfer X

parstriangularis CT freesurfer X

precuneus CT freesurfer X

parstriangularis VOL freesurfer X

caudalmiddlefrontal area freesurfer X

pericalcarine area freesurfer X

posteriorcingulate area freesurfer X

parsopercularis area freesurfer X

Table 5.3: Selected features of the LASSO model and StepForward model
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As shown in Table 5.3, eleven features are selected by both algorithms.
LASSO selected twenty features of the cortical brain and one feature of the
subcortical brain, whereas StepForward selected 45 features of the cortical
brain, one feature of the subcortical brain and two features based on larger
brain volumes.

Since LASSO does not use SVM, an additional soft-margin support vector
machine model is trained using the non-zero features selected by the LASSO
model. The result of this model is compared to the StepForward model and
the original LASSO model, which is visualised in Figure 5.5. The best of
the knowledge-based feature selection models (using cortical volume), is also
shown as a reference.
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Figure 5.5: Average performance scores of the MetS classifier trained on different
feature selections with number of features

Figure 5.5 shows that Step Forward and both variants of LASSO perform
better than the knowledge based model, whereby the original LASSO model
is performing best with performance metrics between 85% and 100%.

The SVM model using the non-zero LASSO features is also performing
better on all performance metrics, except sensitivity, than the StepForward
model with scores ranging between 70% and 81%. However, the scores of
this model are clearly lower than the scores of the original LASSO model.
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Figure 5.6: Average odds ratio of the MetS classifier trained on different feature
selections with number of features and standard deviation

The odds ratios of the models are calculated. Because in the LASSO
model the amount of False Negatives is equal to 0, the odds ratio of the
model could not be calculated (dividing by zero is not allowed). The other
three models are shown in Figure 5.6. The SVM model using the LASSO
features has the highest OR (7.812), however the standard deviation is quite
high.

Permutation Significant?

significance

LASSO 0.13 No

SVM: LASSO < 0.001 Yes

SVM: StepForward 0.006 Yes

Table 5.4: Permutation significance score over 1000 permutations of the MetS classifier
trained on two feature selections selected by machine learning algorithms: LASSO and

StepForward

Moreover, the permutation significance scores of the feature selections
are calculated. As shown in Table 5.4, the odds ratio both SVM models are
smaller than 0.05 and are therefore considered significant. The LASSO model
is not considered significant, yet LASSO is an embedded model. Therefore,
the feature selection process is done in the training phase of the machine
learning model. Therefore, the feature selection process is done in the train-
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ing phase of the machine learning algorithm. If the class labels are randomly
permuted, different features might be selected while training, which causes a
some what unfair comparison.
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Chapter 6

Discussion

In this study, classifiers are built that tend to divide patients with and with-
out schizophrenia. Inside the schizophrenia group classification of subjects
with and without metabolic syndrome is attempted. Different feature are
used to train the models and those features are selected based on written
literature (knowledge-based) and machine learning approaches.

Schizophrenia models

Two feature sets were used to train schizophrenia classifiers. The model us-
ing all features was the best of the two models, with an estimated balanced
accuracy score around 69%. With a permutation significance of <0.001 and
relatively small variance among different runs, the result of the model is
considered stable.

The other model, that was trained on cortical volume features, is also
significant, with a permutation significance score of 0.0014. It is notable
that this model performs worse than the model using all features. However,
a direct explanation cannot be given. More research with different feature
combinations should be done to draw a conclusion about which features have
the greatest link with schizophrenia.

Knowledge-based feature selection models

The metabolic syndrome classifier with a knowledge-based features selec-
tion that is performing best, is the model using cortical volume features with
a balanced accuracy of 56% and a AUC score of 60%. However, based on
De Nijs et al. (2018), the expectation was that the model using cortical and
subcortical volume features would perform best. De Nijs’ statistical study
found that total brain volume of subjects with metabolic syndrome is smaller.
Because total brain volume is based on both cortical and subcortical volume,
the expectation was that the model trained on both cortical and subcortical
volume features would be the best performing model. A possible explanation
for our different result is that the decreased total brain volume De Nijs found
is mainly caused by abnormalities in cortical brain features.

In fact, none of the knowledge-based model is yielding good performance
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results. Balanced accuracies range from 50% to 54%, while none of the
permutation significance scores are lower than 0.05. Moreover, the sensitivity
and odds ratio score of all models have a large standard deviation, meaning
that the variance among different runs is big. With regard to sensitivity, the
small positive class contributes to the large standard deviation, since even 1
True Positive more or less causes a relatively big difference in sensitivity score.
However, even with this in mind, the standard deviation is still relatively
large, which could indicate an unstable model.

Remarkably, sensitivity and specificity score seems to be associated with
the amount of features used to train the model. The more features are used,
the higher the specificity and the lower the sensitivity score becomes. More
research should be done to investigate this relationship.

Comparison MetS and schizophrenia models

The expectation was that the schizophrenia models would perform better
than the MetS models. With regard to the model using all features, this
clearly was the case. Nevertheless, the model using the cortical volume fea-
tures yields similar results for both classifiers. Accuracy, odds ratio and
balanced accuracy were higher for the schizophrenia classifier, while AUC
score was higher for the MetS classifier. However, the model trained on cor-
tical volume features was the best performing model of the knowledge-based
MetS models, while the model with the same feature selection was the worst
of the schizophrenia models. This makes the comparison not entirely fair,
but it indicates that metabolic syndrome somehow is associated with corti-
cal volume features. Also, the permutation significance score of the MetS
model was not significant, while the score of the schizophrenia model was
significant.

Machine learning feature selection models

Both LASSO and StepForward models are performing clearly better than
all knowledge-based feature selection model, wherby the first is performing
best with a balanced accuracy of 93%. This result suggest that in classifica-
tion of metabolic syndrome a machine learning feature selection out-performs
knowledge-based feature selection, despite a great amount of studies to brain
abnormalities in subjects with metabolic syndrome. Nevertheless, more re-
search should be done using more samples.
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An additional model is trained using the selected features by the LASSO
algorithm in a support vector machine. This model is also having pretty good
results (balanced accuracy: 73%), but not as good as the LASSO model. A
possible explanation is that the performances of the LASSO model might be
over-optimistic given the fact that after the nested cross-validation procedure
one model is trained to obtain the features selected by the algorithm. Another
explanation of the different performances could be the choice of the machine
learning algorithm, in this case LASSO, that could effect the performance of
the models. Further research should be done that compare different machine
learning algorithms. A different validation set is preferred to avoid bias.

The permutation significance scores of both the StepForward and the
SVM: LASSO model are <0.05, which suggest that the chance the perfor-
mance of the models is yield by luck is small.

Amount of features in feature selection

From our literature review about using a small sample size in machine learn-
ing, we expected that merging features of the left and right hemisphere would
result in a better performing model, since a lower ratio between the amount
of features and sample size usually causes a model that better generalises
to new data (Vabalas et al., 2019). In our study, the model with merged
features of both hemispheres indeed performs a little better than the model
without merged features, yet the difference is not as striking as expected. A
possible reason for this could be that features of ROIs in the left and right
hemisphere individually influence the occurrence of metabolic syndrome. A
study is found that indicates a certain asymmetry between volume of the left
and right hemisphere (Goldberg et al., 2013). More research on the impact
of the hemispheric volume difference on metabolic syndrome should be done
to conclude if merging features of left and right hemisphere is a good step.
Based on the present study, it seems not.

Furthermore, if the models with smaller knowledge-based features selec-
tions are considered, models with only a few features not necessarily are
the best performing models. However, it could also be the case that in those
models the features that are selected are not the features that have the great-
est link to the target and therefore the performance of these models is lower.
Also, the amount of features does not seem to play a role. Perhaps, a certain
threshold exist with regard to the ratio between amount of features and sam-
ple size. A possible further research could be to investigate whether there is
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such a threshold.
The problem of an unstable model, of which the expectation was that it

is associated with amount of features, is seen in the knowledge-based models
more than in the machine learning feature selection models. This suggest
that the stability of a model over different runs does not depend on amount
of features but rather on which features are selected.

Clinical utility

The major reason that the sample size of this study is relatively small,
is that neuro-imaging data collection (i.e. MRI scans) is quite expensive
(Kononenko, 2001). Therefore, a model based on MRI data should perform
really well to be interesting for clinical use. If the results of the machine
learning feature selection models are compared to a model that is trained
using clinical features, both LASSO (balanced accuracy: 93%, AUC: 83%)
and StepForward models (balanced accuracy: 69%, AUC: 70%) out-perform
the clinical model (balanced accuracy: 61%, AUC: 62%) (van de Poppe,
2018). The clinical model uses a soft-margin SVM, as well as the StepFor-
ward model. The sample of the clinical model is part of the GROUP project,
yet the sample size of the clinical model is higher (N = 1973). The result
suggest that further research with MRI scans could be worth it, despite the
high costs, also with a higher sample size.

Moreover, models used in a clinical setting should be explainable, which
means that it must be able to explain why a certain diagnosis is made
(Kononenko, 2001). Models trained on features selection made by machine
learning algorithms are not always explainable and therefore not clinical us-
able. However, those models could inspire further (statistically) research.
For example, eleven features are selected by both LASSO model and Step-
Forward model. A further research could be done to look whether there is
an association between one or more of these features and the occurence of
metabolic syndrome.

Note that a large majority of the subjects (89%) is male, which is a major
limitation of this study. Furthermore, there are indications that volumes of
specific brain areas differ between men and women (Schlaepfer et al., 1995),
which could effect the presence of metabolic syndrome. Further research
should be done with a more balanced dataset and sex as feature before a
model could be of clinical utility.
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Chapter 7

Conclusion

The purpose of this study was to get a better understanding of the associa-
tion between metabolic syndrome and the cortical and subcortical regions of
interest in the brain and to gain insight into the way machine learning can
contribute to neuro-imaging field.

This study shows that despite a small sample size and class imbalance,
machine learning can be useful in the classification of subjects with and
without metabolic syndrome. Feature selection plays an important role in
how well a model performs. In this study, machine learning feature selections
models perform significantly better than models trained with knowledge-
based selected features, which suggest that especially in feature selection
machine learning could be helpful.

Models using machine learning for feature selection cannot directly be of
clinical utility, because such models should be understandable for clinicians.
Therefore, it should be understood how selected features relate to certain
diseases. This can be achieved by additional clinical research to the features
selected by a machine learning algorithm. Machine learning could help to
find associations between disaeses and brain features, which seems the most
important way machine learning can contribute to the neuro-imaging field.
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Appendix A

Regions of Interest cortical and
subcortical

Cortical Subcortical

bankssts parsorbitalis thalamus

caudalanteriorcingulate parstriangularis caudate

caudalmiddlefrontal pericalcarine putamen

cuneus postcentral pallidum

entorhinal posteriorcingulate hippocampus

fusiform precentral amygdala

inferiorparietal precuneus accumbens

inferiortemporal rostralanteriorcingulate

isthmuscingulate rostralmiddlefrontal

lateraloccipital superiorfrontal

lateralorbitofrontal superiorparietal

lingual superiortemporal

medialorbitofrontal supramarginal

middletemporal frontalpole

parahippocampal temporalpole

paracentral transversetemporal

parsopercularis insula
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