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Summary 
Drylands suffer from land degradation due to increasing anthropogenic pressure and climate change. This 

threatens the existence of these valuable ecosystems and the people that live in them. The ecological stability 

of an ecosystem determines how it responds to disturbances. Understanding ecological stability is, therefore, 

crucial in preventing land degradation and designing strategies for restoration. In this study, the ecological 

stability of a dryland ecosystem in the Moroccan High Atlas Mountains, in the face of both a drought and a 

heavy flooding period, was determined. The Breaks For Additive Seasonal and Trend (BFAST) change detection 

methodology was used to determine breakpoints and trends in a time-series of Landsat NDVI data between 

1984 and 2019. The breakpoints were classified using a newly developed typology based on the trend before 

and after the breakpoint. The improved typology that is introduced in this thesis, considers the statistical 

significance of trends and subdivides them in categories of abrupt changes that lead to an improvement of 

ecosystem functioning (positive breakpoints) and abrupt changes that lead to a deterioration of ecosystem 

functioning (negative breakpoints). Ecological stability was quantified using the resistance to abrupt changes 

that lead to a deterioration in ecosystem functioning and the response to climatic disturbances (i.e. the 

drought and the flood) as indicators. The resulting data on resistance and response to climatic disturbances 

were compared to data of land cover classification, overall change in vegetation cover and initial vegetation 

cover. The results show that ecological stability is higher in the northern part of the Ounila watershed. 

Ecological stability is lowest in lower-lying bare areas in the west and south of the watershed. Areas with 

higher initial NDVI exhibited higher ecological stability. In the upper part of the watershed, there are some 

areas that have shown overall greening or browning. The areas that have experienced greening, had low 

resistance and showed an improvement in ecosystem functioning in response to the drought. These areas 

were identified as locations with high potential for land restoration. 
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1. Introduction 
About 45 percent of the Earth is covered with drylands (Prăvălie, 2016); regions in which precipitation is 

exceeded by evapotranspiration, making water scarce. These drylands are a home to more than 2.5 billion 

people (Reynolds et al., 2007). In addition, drylands exhibit unique and rich biodiversity and have great 

economic potential. A majority of the world’s oil resources are located in drylands (Maestre et al., 2012). 

Drylands are known to be vulnerable to anthropogenic pressures and climate change. Today, agricultural 

expansion and intensification is threatening dryland ecosystems (UNCCD, 2017). The ongoing cultivation of 

drylands and the transition from pastoral to sedentary lifestyles enhances desertification (Millennium 

Ecosystem Assessment, 2005). The increase in extreme weather events, such as droughts and heavy 

precipitation (IPCC, 2018) will worsen water scarcity and reduce ecosystem productivity of drylands (UNCCD, 

2017). Currently, between 10 to 20 percent of global drylands are already degraded (Millennium Ecosystem 

Assessment, 2005). This is a human tragedy, as people that live in drylands are often reliant on its ecosystem 

services and have limited possibilities to seek alternative sources of income (Millennium Ecosystem 

Assessment, 2005; UNCCD, 2017). Land degradation threatens the livelihood of those people by 

compromising food  security and water availability and exacerbating socio-political instability, conflicts and 

migration (UNCCD, 2017).  

Healthy ecosystems are more resilient to the pressures exerted by humans and climate change. Holling (1973) 

formulated the definition of ecological resilience as the ability of a system to persist when faced with changes 

in system parameters and to absorb such disturbances. In ecosystems where resilience is low, a catastrophic 

shift may occur when a certain critical threshold is reached (Scheffer et al., 2001). When this happens an 

ecosystem can shift from one stable state to another: for instance from a vegetated stable state to a barren 

stable state. Rather than a single identifiable threshold that determines whether a degradation shift or 

restoration shift happens, a transitional regime exists that captures the environmental conditions under which 

such a shift may occur (Sietz et al., 2017). In the transitional regime, minor disturbances can cause a shift in 

the state of the ecosystem. In drylands, where resilience is often undermined by harsh climatic conditions and 

overgrazing, this poses a risk. When the system has shifted from a vegetated to a barren state, it is difficult to 

restore the system to its previous state. Simply returning to the conditions that existed before the 

catastrophic shift will not be enough: this phenomenon is called hysteresis (Scheffer et al., 2001). However, 

the transitional regime also presents a “window of opportunity” (Sietz et al., 2017). When environmental 

conditions improve, for instance due to a period of prolonged heavy precipitation (such as an El Niño 

episode), a degraded ecosystem may move to the transitional regime (Holmgren and Scheffer, 2001; Sietz et 

al., 2017). When this happens there is large potential for restoration actions, as a small intervention may push 

the ecosystem towards its alternative, vegetated, state. In conclusion, understanding ecosystem resilience is 

key in the restoration of degraded land and the prevention of catastrophic shifts that lead to degradation.  

Holling’s definition of ecological resilience is widely used in policy literature (Donohue et al., 2016) and 

literature regarding catastrophic shifts (Scheffer et al., 2015, 2001; Scheffer and Carpenter, 2003). Ecological 

resilience is a broad concept that encapsulates more than one dimension of ecosystem functioning in 

response to a disturbance. However, it does not capture the totality of metrics that describe ecosystem 

dynamics and its responses to disturbances. For this, the term ecological stability is used (Donohue et al., 

2016; Grimm and Wissel, 1997; Kéfi et al., 2019). There are various dimensions to ecological stability. Grimm 

and Wissel (1997) identified constancy (“staying essentially unchanged”), resilience (“returning to the 

reference state (or dynamic) after a temporary disturbance”) and persistence (“persistence through time of 

an ecological system”) as the most important dimensions of ecological stability. In their assessment of 
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ecological stability, Donohue et al. (2016) used asymptotic stability (“binary measure describing whether a 

system returns asymptotically to its equilibrium following small disturbances away from it”), variability 

(“variation of a variable over time and space”) and resistance (“dimensionless ratio of some system variable 

measured after, compared to before, some perturbation”) in addition to resilience and persistence. Many 

more indicators have been proposed to quantify ecological stability (Grimm and Wissel, 1997). In this context, 

the term resilience is used to refer to the rate at which an ecosystem returns to equilibrium after a 

disturbance. Holling (1996) called this “engineering resilience”, however it may also simply be referred to as 

the recovery rate (Nes and Scheffer, 2007). In this thesis, the term ecological resilience is used for Holling’s 

resilience and recovery rate is used for the rate at which the ecosystem moves towards equilibrium after a 

disturbance.  

Several methods have been developed to quantify components of ecological stability. Many of these use 

conceptual modelling approaches to determine recovery rate or measure it after experimental perturbations 

(Scheffer et al., 2015). Recently, methods have emerged that make use of time-series of satellite imagery to 

determine the recovery rate after stochastic disturbances (Nes and Scheffer, 2007). Ponce Campos et al. 

(2013) studied Moderate Resolution Imaging Spectroradiometer (MODIS) satellite observations of Enhanced 

Vegetation Index (EVI) and quantified ecological resilience as the change in water-use efficiency (WUE) in 

response to drought. Von Keyserlingk et al. (2021) determined the ecological  resilience of a Mediterranean 

dryland using Normalized Difference Vegetation Index (NDVI) satellite data. Their operationalization of the 

resilience concept consists of the resistance to climatic disturbances and recovery rate after a climatic 

disturbance as was proposed by Hodgson et al. (2015). They determined the recovery rate after a drought and 

resistance was quantified using the inverse of the number of breakpoints in the NDVI time-series. A 

breakpoint is a point in the time-series of a pixel where the trend changes significantly in magnitude and/or 

direction. In this study by von Keyserlingk et al. (2021) the breakpoints and recovery rate were determined 

using a newly developed R package: “resInd”. The software uses the Breaks for Additive Seasonal and Trend 

(BFAST) method for change detection and registers the number of breakpoints during a time-series as well as 

the recovery rate after drought. The BFAST method separates seasonal, trend and noise components and 

distinguishes abrupt change from gradual change in a time-series with seasonality (Verbesselt et al., 2010a). 

Watts and Laffan (2014) assessed that the use of the BFAST method to detect abrupt change in drylands, 

where vegetation cover is typically only weakly impacted by seasonality, is effective. Furthermore, they 

demonstrated that the BFAST method can be used to detect breakpoints in response to a flooding event in a 

semi-arid region. De Jong et al. (2013) were the first to classify breakpoints according to the trend before and 

after the breakpoint. This typology was expanded and improved by Bernardino et al. (2020) in their 

assessment of major breakpoints in global drylands. Rather than focusing on the concept of ecological 

resilience, they used the breakpoint typology to quantify ecosystem functioning following Jax (2005): “a state 

or trajectory of a system that accounts for the totality of complex interactions occurring inside it and caused 

by internal or external drivers” (Bernardino et al., 2020). This is concept similar to that of ecological stability. 

In this research the BFAST methodology is applied to a time-series of NDVI Landsat satellite images in the 

dryland ecosystem of the Ounila watershed in the High Atlas Mountains of Morocco, covering a period 

between 1984 and 2019. The aim of the study is to map ecological stability in the Ounila watershed. NDVI is 

used as an indicator of ecosystem functioning and breakpoints are considered abrupt changes in ecosystem 

functioning. An improvement of the breakpoint typologies of Bernardino et al. (2020) is proposed that (i) 

takes into account the statistical significance of the trends before and after the breakpoint, and (ii) subdivides 

the breakpoint typologies into positive and negative categories depending on whether they represent an 

improvement or deterioration of ecosystem functioning, respectively. To this end, the “resIndSpatial” function 

from the “resInd” package developed by von Keyserlingk et al. (2021) is expanded to register the timing and 

typology of breakpoints. The ecological stability of the watershed is measured by (i) the resistance of the 
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ecosystem to abrupt changes in ecosystem functioning that lead to a deterioration in ecosystem functioning, 

and (ii) the ecosystem response after climatic disturbances. Climatic disturbances are defined as anomalies in 

precipitation: pro-longed droughts or heavy precipitation events. Resistance is determined by the inverse 

number of negative breakpoints. A number of negative breakpoints that is equal to or lower than the median 

number of negative breakpoints in the watershed, indicates relatively high resistance. The suitability of total 

number of breakpoints, total number of positive breakpoints and total number of negative breakpoints as an 

indicator for resistance is evaluated. The hypothesis that a lower number of negative breakpoints may be 

correlated with a higher number of positive breakpoints is tested. The ecosystem response to climatic 

disturbances is assessed by the occurrence of different breakpoints typologies that represent a deterioration 

or improvement in ecosystem functioning. Resistance and ecosystem response to climatic disturbances in the 

Ounila watershed are further explored by comparing them to overall change in NDVI during the monitoring 

period, the spatial distribution of land use classes, initial NDVI and NDVI before the occurrence of a 

breakpoint. 

The main question answered in this study is: 

What are the hotspots of (high and low) ecological stability in the face of climatic disturbances in the Ounila 

watershed?  

To this end, the following sub-questions are formulated: 

1. How has ecosystem functioning changed between 1984 and 2019 in the Ounila watershed?  

2. When have major climatic disturbances taken place in the Ounila watershed between 1984 and 2019? 

3. How resistant was the ecosystem of the Ounila watershed to abrupt changes in ecosystem 

functioning between 1984 and 2019 ? 

4. How has the ecosystem responded to climatic disturbances in the Ounila watershed between 1984 

and 2019?  

This research is innovative since an improved typology of breakpoints is developed and applied. New 

indicators for recovery and resistance, that represent changes in ecosystem functioning, are tested. 

Furthermore, the application of the BFAST methodology and characterization of breakpoints on a dataset with 

such a high spatial and temporal resolution is unprecedented.    

This MSc thesis is part of a larger research project that is conducted in partnership with PermaAtlas, a Dutch 

Moroccan NGO that is implementing restoration measures in the village of Douar Anguelz Ounila (upper east 

of the Ounila watershed). The aim of this larger research is to map the social-ecological networks in the Ounila 

watershed in order to generate knowledge that contributes to designing a sustainable food system for the 

region. This MSc Thesis will contribute scientific information to both the larger research project and the 

activities of PermaAtlas by characterising changes in ecosystem functioning between 1984 and 2019 and 

identifying regions of high and low ecosystem stability. The latter of particular interest for PermaAtlas to 

prioritise areas for restoration.   
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2. Case study area  
The study area is the Ounila watershed (Figure 1), which is located in Ouarzazate province and encompasses 

an area of ~730 km2. The watershed is enclosed by the peaks of the High Atlas Mountains in the north and 

stretches until the village Aït-Ben-Haddou in the south. The Asif Ounila (eastern river channel) and Asif Mellah 

(upper western river channel) rivers run through the watershed. 

Traditionally, people in the High Atlas lived a pastoral lifestyle. In winter, the herds would reside in the lower-

lying areas and in spring the herds were moved to pastures uphill (El Aich, 2018). During the summer, when 

rain is scarcer and temperatures are higher, larger distances are covered in search for water and vegetation. 

The distance travelled with the herd also depended on the size of it, as with more animals the lands are 

depleted sooner. The movements of the herds were managed by the so-called Agdal system, in which 

decisions were made collectively. In the area surrounding Anguelz, regulations were put in place in 1956, 

dividing the pastures between the shepherds. The local grazing committee, communicated and monitored 

these rules for livestock and grazing (Nieboer, 2019). In conclusion, the practices in the case study area were 

well adapted to the availability of natural resources and the seasonal variability of pastures. 

 

 

FIGURE 1 | LEFT: GOOGLE TERRAIN MAP OF MOROCCO, WITH THE CASE STUDY AREA OUTLINED IN RED. RIGHT: GOOGLE 

SATTELITE IMAGE OF THE CASE STUDY AREA, WITH THE LOCATION OF THE SETTLEMENTS DOUAR ANGUELZ OUNILA 

(ANGUELZ), TELOUET, TIGHZA AND AÏT-BEN-HADDOU AS WELL AS THE RIVER CHANNELS (ASIF MELLAH AND ASIF 

OUNILA) INDICATED. 

However, over the past 60 years, many changes have occurred in the High Atlas Mountains. Tribes have 

largely abandoned their pastoralist lifestyle and have become sedentary. In general, there has been a shift 

towards agro-pastoralism in the Atlas Mountains, where more terraced and irrigated agriculture is practiced 

than before  (El Aich, 2018). Due to this sedentary lifestyle the pressure on lands nearby settlements is 

increased and less healthy pastures are available. With motorization, outlying areas have become more 

accessible and the herds have therefore moved further away. On the other hand, motorization enables the 

transportation of water and feed to the herd, making it unnecessary to move the herd towards new pastures 
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and sources of water. At the same time, the way the pastures are managed has drastically changed. The Agdal 

has lost its power and decisions are now more commonly made by individuals according to their financial and 

social status (El Aich, 2018). As a consequence of the developments of the past decades, the mobility of herds 

has decreased. This has stimulated overgrazing and diminished the capacity of pastures to feed the herd (El 

Aich, 2018; Nieboer, 2019). The shepherd of Anguelz are driven to pastures further away (> 200 km) (Nieboer, 

2019).  

Benassi (2008) found that between 1971 and 2000 the average amount of rainfall in Morocco has decreased 

by 15% compared to the rainfall in the period between 1961 and 1990. Furthermore, heavy rainfall events 

and droughts have increased in magnitude and frequency during this period (Benassi, 2008). In November 

2014 and January 2015 heavy precipitation caused flooding in the Ounila watershed (Radiant Design Sarl, 

n.d.). Anguelz has a temperate climate with dry and hot summer, according to the Köppen-Geiger 

classification published by Beck et al. (2018) (Figure 2). The lower-lying area has an arid climate, and uphill 

from Anguelz, the climate is temperate, followed by a cold climate higher up the mountains, both with a dry 

and warm summer (see Appendix A, Figure 16 for an elevation map of the area). 

 

 

FIGURE 2 | PRESENT DAY (1980-2016) KÖPPEN-GEIGER CLIMATE CLASSIFICATION OF THE CASE STUDY AREA AT A 

0.0083° RESOLUTION AS PRESENTED BY (BECK ET AL., 2018). 

Figure 3 shows the land cover classification map of the Ounila watershed (European Space Agency, 2017). The 

major land use categories in the area are bare soil (42.5%), grassland (34.8%) and lichen mosses and sparse 

vegetation (19.7%). 2.5% of the land is classified as cropland. The bare areas are mainly located in the south of 

the watershed whereas the grasslands and sparsely vegetated areas are more dominant in the north. 

Cropland is located along the river channels, especially the Asif Ounila channel. In the north-west of the 

watershed there are also some croplands with built up areas. The higher parts of the Ounila watershed are 

more densely vegetated. 

According to Nieboer (2019) the most common perennial species in the case study area are: Atractylis 

cancellata, Bromus rubens, Launaea nudicaulis, Medicago sp and Paronychia argentea, which are species of 

shrubs, grasses and herbs. Agricultural crops grown on the river banks surrounding Anguelz are “mostly 

Mediterranean fruit trees, legumes, and vegetables, a bit of barley, maize and animal forage to provide the 

basis for human and animal nutrition for the village” (Nieboer, 2019). The degraded soils in the area cannot 



7 
 

retain the heavy rainfall well and therefore there is a lot of water runoff, causing further soil erosion, and 

occasionally landslides (Nieboer, 2019). A lack of water retainment makes the vegetation more vulnerable to 

droughts. 

 

 

FIGURE 3 | LAND COVER CLASSIFICATION MAP (EUROPEAN SPACE AGENCY, 2017) THE CASE STUDY AREA IN 2016 AT A 

20 BY 20 M SPATIAL RESOLUTION. 
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3. Methods   

3.1. Datasets 

3.1.2. NDVI 
As a proxy for vegetation density and ecosystem functioning in the case study area, Normalized Difference 

Vegetation Index (NDVI) data from Landsat satellite imagery was used. NDVI represents the greenness and 

fraction of energy absorbed by the vegetation and is a function of near infrared (NIR) and red (R) energy:  

NDVI = (NIR-R)/(NIR+R) 

The surface reflectance NDVI product that was used is available via the EROS Science Processing Architecture 

(ESPA) from the archive of the U. S. Geological Survey (USGS), on demand (USGS/EROS, 2020). This data is the 

output of the Landsat Ecosystem Disturbance Adaptive Processing System (LEDAPS) (USGS/EROS, 2019). The 

total NDVI data set that was obtained covers a time period from March 1984 to December 2019. This includes 

images from Landsat 5 TM (March 1984 – November 2011), Landsat 7 ETM+ (July 1999 – December 2019) 

and Landsat 8 OLI (March 2013 – December 2019). The Landsat NDVI data has a spatial resolution of 30 m by 

30 m. Landsat 5, 7 and 8 images all have a 16-daily temporal resolution. However, in the NDVI dataset that 

was used in this research there are images missing in between and there is a temporal overlap in the 

availability of NDVI products from different Landsat satellites. The result is an irregular NDVI time-series. In 

addition to the NDVI-product, level-1 quality flag data was acquired from the ESPA interface. The Ounila 

watershed covers 4 tiles with WRS-II Path/Row: 201/038, 201/039, 202/038 and 202/039. With the maximum 

amount of cloud cover allowed set at 100%, a total of 3492 images were obtained, corresponding to 1967 

scenes on different dates.  

3.1.2. Precipitation 
To analyse precipitation in the area and identify climatic disturbances, ERA-5 reanalysis daily precipitation 

data, which has a spatial resolution of 0.1°x0.1° (native ~9km) and is accumulated to a daily temporal 

resolution (Copernicus, 2020) was used. In order to have a good coverage of the Ounila watershed, this data 

was reprojected to the same resolution as the NDVI data. The ERA-5 Reanalysis data currently has the highest 

spatial and temporal resolution of all freely available precipitation data. Reanalysis data are a combination of 

field observations and output from atmospheric circulation models, these are used to inform a continuous 

spatiotemporal dataset. Typically, the product is closer to model output than observational data in remote 

areas, where it is likely that fewer ground observations have informed the reanalysis. 

3.1.3. Ancillary data: DEM and land use data  
The NASA Making Earth System Data Records for Use in Research Environments (MeaSUREs) Digital Elevation 

Model (DEM) dataset (Buckley et al., 2020) was downloaded via the NASA EOSDIS Land Processes Distributed 

Active Archive Center (LP DAAC) Data Pool (LP DAAC, n.d.). The data has a spatial resolution of 30 by 30 m and 

was acquired in HGT format Using the raster package. The NASADEM data was converted to GeoTIFF format 

and reprojected to geographic (WGS84) projection. The product contains a pre-calculated slope (°) product 

that was used as ancillary data. The aspect (°) was calculated from the DEM data. The land use product that 

was used is a prototype land use map of the African continent for the year 2016 on a spatial scale of 20 by 20 

m (European Space Agency, 2017). 
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3.2. Determination of climatic disturbances  
The Standardized Precipitation Index (SPI) (McKee et al., 1993) was used to determine the occurrence and 

duration of droughts. The SPI is best determined on a time-series of at least 30 years, making it a very suitable 

indicator to apply on the NDVI time-series studied in this research. Calculation of the SPI requires that the 

precipitation data is normally distributed. In order to meet this requirement, a cube root transformation was 

applied to the precipitation data. The SPI was calculated per hydrological year, which runs from October until 

September following the definition of the U.S. Geological Survey (n.d.), using a yearly averaging period. 

According to the definition by McKee et al. (1993) a drought period starts when the SPI reaches -1 and is over 

when the SPI is above 0 again. The different drought categories, as formulated by McKee et al. (1993) are 

shown in Table 1. 

 

SPI value Drought Category 

0 to -0.99 Mild drought 

-1.00 to -1.49 Moderate drought 

-1.50 to -1.99 Severe drought 

≤ -2.00 Extreme drought 

TABLE 1 | DROUGHT CLASSES RELATED TO SPI FOLLOWING MCKEE ET AL. (1993) 

The duration of the flooding period was determined by calculating the Rainfall Anomaly Index. For this, the 

“rai” function of the R package “precintcon” was used (Povoa and Nery, 2016). This function uses the method 

developed by van Rooy (1965) to calculate rainfall anomaly. The function arranges the precipitation data in 

descending order. The mean of the highest ten and lowest ten values are calculated for an averaging period of 

one year and set as a threshold for the positive and negative Rainfall Anomaly Index, respectively.  

3.3. Detection and classification of abrupt changes in ecosystem functioning 

3.3.1. Pre-processing of the satellite data  
For each of the 1967 dates there were between one and 4 tiles with NDVI data. All pixels with a value of -9999 

(fill value) and 20000 (saturated pixels) were set to NA before mosaicking the tiles together. The mosaicked 

scenes were then sorted in chronological order. The quality flag data was processed in similar steps, with the 

difference that in this product there were no saturated or filled pixels removed. Using the quality flag, all 

clouds, snow, ice, water and clouds shadows were masked out of the data, leaving pixels with NA. A scaling 

factor (0.0001) was then applied to scale the NDVI data to values between -1 and 1. Pixels with negative 

values were removed as the NDVI of natural vegetation over land is above zero. Subsequently the data was 

reprojected to geographic (WGS84) projection and masked to the extent of the Ounila watershed. 

After elimination of the low quality and cloud covered pixels there were some scenes that did not contain 

data. Those scenes were removed. In addition, there were some scenes with erroneous data due to sensor 

failures, especially in the later Landsat 5 images. This is most likely due to old mirror bumpers, causing 

synchronization failures between the shutter and primary scan mirror. After removing these scenes, 1834 

scenes remained. In Figure 19 of Appendix B, an overview of the number of scenes over time is given. On 31 

May 2003, the Scan Line Corrector (SLC) of Landsat 7 failed, resulting in data gaps from this date onwards. In 

the Level-2 NDVI product, all these errors are already masked out. The SLC failure did not have a large impact 

on the spatial distribution of NA frequency in the Ounila watershed (see Figure 20, Appendix B ). 

Finally, due to a difference in spectral response functions of the ETM sensor of Landsat 4-7 and the OLI sensor 

of Landsat 8 the NDVI data were not continuous: there was an offset between the data from different  
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sensors (see Figure 21, Appendix C). Therefore, the Landsat 5-7 images were transformed using the following 

linear relationship proposed by Roy et al. (2016) for NDVI surface reflectance data:  

OLI = 0.0235 + 0.9723  * ETM+ 

3.3.2. The breakpoints detection procedure   
The first step in the breakpoint detection procedure is to test whether there is a significant deviation from 

structural stability. When a breakpoint occurs this means that there is an abrupt change in mean response. In 

this study, mean response was modelled by: 

response ~ (trend + harmon) 

In this form of the General Linear Model (GLM) there is an intercept, a trend, and between one and three 

harmonic components, depending on the value chosen for the order. The harmonic component consists of a 

sinus and cosinus component. MOSUM OLS method was used to test the null hypothesis that the regression 

coefficients do not change over time. If the test is significant that means that at least one breakpoint can be 

detected. 

In case the structural stability test was significant, the “breakpoints” function from the “strucchange” package 

was used to find an optimal model fit and determine the number and dates of breakpoints. The goodness of 

fit is assessed by the Bayesian Information Criterion, which includes a penalty for the inclusion of more 

breakpoints to avoid overfitting (Zeileis et al., 2002). 

After the breakpoints were identified a GLM was fitted to the segments between the breakpoints: 

formula = response ~ segment/(trend + harmon)  

A robust linear regression method using iterated re-weighted lest squares (IWLS) was used. This form of 

regression is particularly useful in case there are outliers present in the data. This is the case in for the NDVI 

data, despite the removal of erroneous scenes and low-quality pixels. To confirm that IWLS regression indeed 

resulted in a better fit to the data than OLS regression, the relative effectiveness of each model was calculated 

for a few example pixels.  

3.3.3. The typology of breakpoints   
The “resInd” package developed by von Keyserlingk et al. (2021) was expanded to classify breakpoints based 

on the trend before and after the breakpoint. To this end a new typology was developed, shown in Figure 4. 

There are nine type of breakpoint categories, based on the sign and significance of the slopes before and after 

the breakpoint.  

The typology is based on the typology proposed by Bernardino et al. (2020). In their typology Bernardino et al. 

(2020) only considered significance relevant in the case of positive reversal and negative reversal. The reversal 

was deemed complete when both slopes are significant and incomplete when one of the slopes (either before 

or after the breakpoint) was not significant. In the typology proposed in this research, significance of slopes 

was included in all breakpoint typologies. The significance was determined based on (95%) confidence 

intervals around the trend. A distinction was made between breakpoints that show a more positive trend 

after the breakpoint compared to before the breakpoint and breakpoints that show a degrading trend 

compared to the trend pre-breakpoint. In other words: positive breakpoints (“interrupted increase”, ”increase 

after no trend”, ”no trend after decrease”, ”positive reversal”) and negative breakpoints (“interrupted 

decrease”, ”decrease after no trend” ,”no trend after increase”, ”negative reversal”). The positive breakpoints 

can be interpreted as an improvement of ecosystem functioning whereas the negative breakpoints represent 

a deterioration of ecosystem functioning. The “no trend after decrease”, “increase after no trend”, “no trend 

after increase” and “decrease after no trend” typologies correspond to the transitional state as mentioned by 

Bernardino et al. (2020), with the inclusion of a differentiation between a significant trend before or after the 

breakpoint.  
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Bernardino et al. (2020) included a difference between trends that are accelerating or slowing down based on 

the fact whether the increase/decrease is larger before or after the breakpoint. However, it was not 

considered whether the trends before and after the breakpoints differed significantly from each other. 

Furthermore, it can be argued that to conclude whether the acceleration or slowing down of a trend is 

actually meaningful, it would be necessary to look at the effect size of such a change in addition to 

significance. In the typology proposed in this research, the differentiation between a slowing down and 

accelerating trend is omitted. The typologies are only based on the direction and significance of the trends, 

and not on their relative magnitudes, this results in a manageable number of breakpoint categories that have 

a solid theoretical basis and practical meaning in terms of ecosystem functioning.  

3.3.4. Input parameters 
For the expanded “resIndSpatial” function a few input parameters had to be selected, namely the order and 

the h parameter. Watts and Laffan (2013) conducted a sensitivity analysis on different h values in a sparsely 

vegetated area and found that a value of 0.2 or smaller resulted in smaller confidence intervals around the 

timing of breakpoints than a value above 0.2. In the data-set of the Australian dryland that Watts and Laffan 

(2014) used, this h-value corresponded to +/- 3 years in between breakpoints. Following these 

recommendations and the manual inspection of a few example pixels in the Ounila watershed, it was found 

that an h value of 0.10 was best for the data in this study. This means that the minimum segment size 

between observations was 184 and a maximum number of 10 segments and 9 breakpoints might be fitted. 

This translates to an average minimum period of 3.5 years in between breakpoints. After inspection of the 

relative Efficiency of different values for order on a few example pixels it was determined that a value of 2 was 

most suitable for the NDVI data in the Ounila watershed. 

3.3.6. Postprocessing of “resIndSpatial” output 
Because the case study area is very large, the input NDVI data was sub-divided in smaller sub-sections. The 

adapted “resIndSpatial” function was subsequently executed on these smaller sub-sections. Once the output 

was generated the sub-sections had to be merged together. Croplands were masked out of the layers 

containing the indicators for ecological stability (number of breakpoints, and breakpoint types), because 

conclusions on ecological stability can not be drawn from data of managed and irrigated land. 

3.4. Statistical analysis  
To calculate the correlation between the total number of positive and negative breakpoints the Spearman 

correlation method was used. The correlation coefficient was calculated on a moving window of 7 by 7 (49) 

pixels to account for spatial variations in correlation. This window size was chosen in order to obtain a decent 

group size (>30) and still retain a high spatial resolution. The “rasterCorrelation” function from the R-package 

“spatialEco” was used for this (Evans, 2020). 

3.5. Software, scripts and availability of data  
All scripts that were used in this research are available via https://github.com/angeliquelv/ThesisSUSD. Most 

data processing and analysis was conducted using RStudio (RStudio Team, 2018). The adapted “resIndSpatial” 

algorithm was applied on the data with the help of a High-Performance Computing Facility. The sub-sections 

were submitted to nodes with 24-cores to enable parallel processing of pixels.  

 

 



12 
 

  

 

FIGURE 4 | TYPOLOGY OF TRENDS AND BREAKPOINTS. THE GREY BACKGROUND INDICATES THAT THESE TYPES HAVE NO 

BREAKPOINT. 
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4. Results 

4.1. Ecosystem functioning between 1984 and 2019  
Figure 5 shows that the majority of the Ounila watershed has seen no remarkable increase (greening) nor 

decrease (browning) in NDVI. When looking at the relative change in NDVI between 1984 and 2019, it seems 

like there has not been major land degradation in most of the watershed. A few patches of land show a slight 

decrease in NDVI. However, the absolute decrease in NDVI has been very small in all locations that 

experienced browning (Appendix D, Figure 22). In the upper part of the watershed there has been more 

change in NDVI compared to the lower part of the watershed. The NDVI during first three years of the 

monitoring period (1984-2019) was higher in the upper part of the watershed too (Appendix D, Figure 23). In 

conclusion, the areas that initially had a higher vegetation cover, also experienced a stronger increase in 

vegetation cover during the monitoring period. The croplands in the Asif Ounila river channel, located  in the 

eastern part of the watershed have experienced greening. Croplands in the north-west of the watershed have 

experienced a strong increase in NDVI as well.  

 

FIGURE 5 | RELATIVE CHANGE IN NDVI IN THE OUNILA WATERSHED BETWEEN THE FIRST THREE YEARS OF THE 

MONITORING PERIOD (1984-2019) AND THE LAST THREE YEARS OF THE MONITORING PERIOD. IN THE RED BOXES AREAS 

OF INTEREST ARE INDICATED. SPATIAL RESOLUTION IS 30 BY 30 M. 
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Five areas of interest are defined that are studied in more detail: these are indicated in Figure 5. The areas of 

interest are regions that have shown remarkable greening or browning. They have experienced an 

improvement or deterioration in ecosystem functioning, respectively. Therefore, they are potential hotspots 

of high and low ecological stability. Areas that contained many pixels that were classified as cropland or 

showed tree plantations in satellite images were not selected as areas of interest because these are most 

likely irrigated. In Appendix E, a map of relative change in NDVI without croplands and satellite images of the 

selected areas of interest are provided.  

 

 

 

FIGURE 6 | ZOOMED IN PLOTS OF RELATIVE CHANGE IN NDVI BETWEEN FIRST AND LAST THREE YEARS OF MONITORING 

PERIOD (1984-2019) AND LAND USE CLASSIFICATION IN 2016 (EUROPEAN SPACE AGENCY, 2017) FOR THE AREAS OF 

INTEREST: A-E. SPATIAL RESOLUTION OF NDVI AND LAND USE DATA IS 30 BY 30 M AND 20 BY 20 M, RESPECTIVELY.  
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In Figure 6 the relative NDVI change and land use are shown for each of the areas of interest. Area A, C and D 

are part of a lower-lying region surrounding Telouet (see Appendix A, Figure 16) that also contains croplands 

and tree plantations. Area A, located east of Telouet and west of Tighza, has experienced an increase in NDVI, 

especially in the pixels classified as grassland. The north-facing slopes (Appendix A, Figure 18) of area C and D, 

located slightly south and south-west of Telouet, respectively, have also experienced greening that is more 

prominent in the grassland parts. Both (C and D) contain some pixels that are classified as built up areas. 

However, satellite images of these areas show that this is not the case (Appendix E). The land use map is thus 

not entirely accurate in classifying built-up areas. Area B shows the lands surrounding Tighza that experienced 

browning. There are much more barren pixels here than in the other areas of interest. Finally, the area that 

experienced a slight greening south-east of Anguelz (E) is predominantly covered with grassland. The area 

consists of south and north facing slopes (Appendix A, Figure 18) and the greening is mostly visible on the 

north-facing slopes. 

Figure 7 shows that the overall NDVI in the Ounila watershed is low and not very sensitive to seasonal 

variation. The seasonal amplitude varies between 0.025 and 0.1 approximately. The occurrence of 

breakpoints over time does not seem to be heavily impacted by the number of scenes (Appendix B, Figure 

19): although the number of available scenes increases over time there is no apparent increase in number of 

breakpoints detected over time. Rather, the number of breakpoints detected seem to correspond to the 

Rainfall Anomaly Index. This is especially visible between the year 2000 and 2003 and in 2015. In 2000-2002 

there is an extended period of negative RAI followed by a peak in breakpoint occurrence. In the end of 2014 

there is a peak in positive RAI closely followed by a peak in breakpoint occurrence. Both negative and positive 

extremes in RAI appear to impact the occurrence of breakpoint. This confirms the assumption that climatic 

disturbances, in the form of droughts as well as heavy precipitation events may induce breakpoints in the 

NDVI time-series.  

4.2. Climatic disturbances  
The SPI per hydrological year was calculated (Table 2). The drought started with a moderate drought period in 

1999. In the following three years the drought developed from mild, to extreme to severe. In 2003 the SPI was 

positive again and the drought period ended. In conclusion, the drought period lasted from October 1998 

until September 2002.  

 

Year SPI Year SPI Year SPI Year SPI Year SPI 

1985 -0.05 1992 -0.19 1999 -1.39 2006 0.23 2013 -0.49 

1986 1.21 1993 -0.81 2000 -0.49 2007 0.78 2014 -0.60 

1987 0.15 1994 0.20 2001 -2.47 2008 -0.66 2015 1.27 

1988 1.36 1995 -0.84 2002 -1.52 2009 1.10 2016 -0.38 

1989 0.73 1996 0.55 2003 0.07 2010 -0.01 2017 0.21 

1990 1.33 1997 0.49 2004 0.68 2011 0.65 2018 -0.39 

1991 -0.07 1998 0.33 2005 -0.82 2012 -0.06 2019 0.27 

TABLE 2 | SPI PER HYDROLOGICAL YEAR IN THE OUNILA WATERSHED. BROWN SHADING INDICATES THE YEARS IN WHICH 

THERE WAS A DROUGHT ACCORDING TO THE CLASSIFICATION OF (MCKEE ET AL., 1993). 

To determine the flood period the Rainfall Anomaly Index per hydrological year was calculated (Appendix E, 

Figure 26). As is also visible in Figure 7, there is one year with a much higher positive rainfall anomaly; namely 

the hydrological year of 2015. This also corresponds to the incidence of heavy precipitation events in Anguelz 

in November 2014 and January 2015 (Radiant Design Sarl, n.d.). 
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FIGURE 7 | UPPER: TIME-SERIES OF MEAN NDVI IN THE OUNILA WATERSHED BETWEEN 1984 AND 2019 WITH THE 

SATELLITE THAT COLLECTED THE DATA INDICATED. MIDDLE: DENSITY OF THE NUMBER OF BREAKPOINTS REGISTERED 

BETWEEN 1984 AND 2019. LOWER: RAINFALL ANOMALY INDEX PER MONTH BETWEEN 1984 AND 2019. 

4.3. Resistance to abrupt changes in ecosystem functioning   
The inverse of the negative number of breakpoints is considered a proxy for resistance. The median of the 

total number of negative breakpoints in the Ounila watershed is two. When the number of negative 

breakpoints in the watershed is between zero and two, resistance is considered to be relatively high. When 

the total number of negative breakpoint is above two, resistance is considered to be relatively low. In the 

upper part of the Ounila watershed, the total number of negative breakpoints is considerably lower than in 

the lower part of the watershed (see Figure 8). In the most northern part, there are even pixels that contain 
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no negative breakpoints at all and many pixels that contain only one or two negative breakpoints, indicating 

that resistance is high. The region with the lowest number of negative breakpoints has the highest altitude 

and steepest slopes (see Appendix A, Figure 16 and Figure 17). In the centre and in the south of the 

watershed there are more negative breakpoints present. The most frequently occurring negative breakpoint 

types are interrupted decrease and negative reversal (see Appendix G, Figure 27). Areas with a high number 

of negative breakpoints are predominantly bare areas (see Appendix H, Figure 29). However, the location in 

the watershed (upper north or lower south) has a larger impact on the number of negative breakpoints than 

land use type. In the areas of particular interest  that showed greening (Area A, C, D and E, Figure 6), the 

number of negative breakpoints is relatively high with most pixels having values between three and six. The 

number of positive breakpoints is high as well, with many pixels having values between three and five (Figure 

9). Remarkably, the area surrounding Tighza (B), where browning has occurred, has a low number of negative 

breakpoints in many of the pixels, indicating high resistance (Figure 9 B). However, some of the pixels that 

showed browning, especially those in the north-west corner of the area, have three or more negative 

breakpoints indicating low resistance to abrupt changes in ecosystem functioning.  

 

 

FIGURE 8 | LEFT: TOTAL NUMBER OF POSITIVE BREAKPOINTS BETWEEN 1984 AND 2019 IN THE OUNILA WATERSHED 

WITH CROPLANDS MASKED OUT. RIGHT: TOTAL NUMBER OF NEGATIVE BREAKPOINTS BETWEEN 1984 AND 2019 IN THE 

OUNILA WATERSHED WITH CROPLANDS MASKED OUT. 

There is less contrast between number of positive breakpoints in the upper and lower watershed than for the 

number of negative breakpoints. Some hotspots of high number of positive breakpoints are located in the 

north. These regions of higher positive breakpoints are classified as grassland. The dominant negative 

breakpoint types are interrupted increase and positive reversal (see Appendix G, Figure 28). There are slightly 

more positive breakpoints located in the bare areas of the centre-west part of the watershed (see Appendix 

H, Figure 30). The total number of positive and negative breakpoints accumulated, is higher in the lower part 

of the Ounila watershed than the upper part (Appendix I, Figure 32). Grassland and sparse vegetation, 

experienced more breakpoints than bare areas (see Appendix H, Figure 31). In general, the results for the 

total number of breakpoints and the total number of negative breakpoints are similar.  
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FIGURE 9 | ZOOMED IN PLOTS OF TOTAL NUMBER OF POSITIVE AND NEGATIVE BREAKPOINTS DETECTED PER PIXEL 

BETWEEN 1984 AND 2019 FOR THE AREAS OF INTEREST: A-E. SPATIAL RESOLUTION OF IS 30 BY 30 M 

 

When comparing the total number of negative breakpoints with the total number of positive breakpoints in 

Figure 8, it stands out that in many areas where no negative breakpoints occurred, positive breakpoints did 

occur. Furthermore, in the areas where there were the most negative breakpoints, far less positive 

breakpoints were present. In Figure 10, the correlation between the total number of positive and the total 

number of negative breakpoints is shown. This map shows that the correlation between the two indicators 

varies from -1 to 1: meaning that in some locations there is a positive correlation between the two and in 

some places a negative. It indeed shows that a negative correlation is present in large parts of the watershed. 
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However, the sign of correlation between negative and positive breakpoints depends on location and seems 

to be more negative in areas with low vegetation cover and a high number of total breakpoints (bare areas).  

 

 

FIGURE 10 | MOVING WINDOW CORRELATION BETWEEN THE NUMBER OF NEGATIVE AND THE NUMBER OF POSITIVE 

BREAKPOINTS USING SPEARMAN’S  CORRELATION METHOD. THE CORRELATION COEFFICIENT IS CALCULATED OVER A 

MOVING WINDOW OF 7 BY 7 PIXELS (N=49). 

4.4. Ecosystem response after climatic disturbances  

4.4.1. Ecosystem response after a drought  
In the majority of the Ounila watershed (77.7%) a breakpoint occurred during the drought period in the 

hydrological years 1999-2002. In 1.4% of breakpoints there was no trend before or after the breakpoint, 

52.0% of breakpoints were positive and 24.3% of breakpoint were negative. The dominant breakpoint type 

was the positive reversal. The map in Figure 11 shows that the positive reversal type was especially dominant 

in the upper part of the watershed, whereas in the lower part of the watershed more pixels followed an 

interrupted increase. In any case, this indicates that NDVI was decreasing before the drought, but after the 

drought areas in the upper part of the watershed, especially those covered with grassland have experienced a 

transition towards an increase in NDVI. 
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FIGURE 11 | MAP OF THE OUNILA WATERSHED WITH THE TYPOLOGY OF BREAKPOINTS THAT OCCURRED DURING THE 

DROUGHT PERIOD (HYDROLOGICAL YEAR 1999-2002). BELOW THE MAP: BAR WITH THE PERCENTAGE OF PIXELS THAT 

FOLLOW A CERTAIN TYPOLOGY.  

FIGURE 12 | BAR WITH THE PERCENTAGE OF PIXELS THAT FOLLOW A CERTAIN BREAKPOINT TYPOLOGY FOR EACH OF THE 

MAJOR LAND USE CLASSES: SPARSE VEGETATION, GRASSLAND AND BARE AREAS. 
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In Figure 12, the percentage of pixels that follow a certain breakpoint typology for each of the major land use 

classes in the Ounila watershed is shown. Bare soil has the lowest percentage of pixels with a positive 

breakpoint following the drought and the highest percentage of pixels with a negative breakpoint. Pixels that 

are classified as sparse vegetation have the highest percentage of pixels without a drought breakpoint. In the 

areas that are covered with grassland 45.8 percent of the pixels follow the positive reversal breakpoint 

typology. Areas that are more vegetated have a higher occurrence of positive breakpoints.  

 

 

FIGURE 13 | ZOOMED IN PLOTS OF THE TYPOLOGY OF THE BREAKPOINTS DURING THE DROUGHT (HYDROLOGICAL YEAR 

1999-2002) AND THE NDVI DURING THREE YEARS BEFORE THE DROUGHT BREAKPOINT FOR THE AREAS OF INTEREST : A-
D. SPATIAL RESOLUTION OF BOTH DATA IS 30 BY 30 M. 
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Figure 13 shows the distribution of drought breakpoint types and NDVI in the three years before the drought 

breakpoint for each of the areas of interest. In area A and B the dominant drought breakpoint type is the 

positive reversal. What stands out is that some pixels that showed browning near Tighza (Figure 6, area B), 

have experienced an interrupted decrease (north-west of area B), whereas some are classified as positive 

reversal. The pixels with interrupted decrease type had relatively high NDVI before the drought breakpoint. In  

area C and D, relatively high number of pixels experienced no abrupt change in ecosytem functioning during 

the drought. In area D, the pixels that showed browning (see Figure 6) experienced an interrupted decrease 

during the drought. In area E, the greened land south-east of Anguelz, there are many pixels with interrupted 

decrease and positive reversal typologies. Here, the areas that had a higher NDVI before the breakpoint, seem 

to have a higher occurrence of the positive reversal type compared to interrupted decrease. This is also what 

can be observed in general in the whole Ounila watershed. Pixels that had a higher NDVI during the three 

years before the droughtpoint (see Appendix J, Figure 33) had a higher incidence of the postive reversal type, 

whereas areas with lower NDVI before the drought breakpoint experienced more interrupted decrease. 

4.4.1. Ecosystem response after a flood  
The map of flood breakpoints in Figure 14 shows that during the flood period (hydrological year 2015) a 

breakpoint only occurred in 41.0 % of the pixels. 38.6 % of pixels had a negative breakpoint typology and only 

2.3 % of pixels had a positive breakpoint typology. The dominant breakpoint type was the interrupted 

decrease. In the upper part of the watershed almost no breakpoints occurred, the flooding seems to have had 

little impact on ecosystem functioning in this region. This becomes apparent in Figure 15 as well, since the 

land-use types that are more heavily represented in the north of the case study area (sparse vegetation and 

grassland) have about 70% of pixels without a breakpoint during the flood period. More pixels follow a 

positive breakpoint typology in the upper part of the watershed than in the lower part, especially the 

interrupted increase and positive reversal typologies occur in patches. The areas that showed particular 

greening or browning (Figure 6, Area A-E) contained little breakpoints, in particular the land near Tighza (B) 

contained almost no breakpoints (Appendix K, Figure 35). In the lower part of the watershed the majority of 

pixels have experienced an interrupted decrease breakpoint following the drought. This corresponds to the 

higher occurrence of barren areas in the south, the percentage of pixels without breakpoints for this land use 

class is lower (48.4%) and the amount of breakpoints with an interrupted decrease is higher (45.9%) than for 

the other land use classes. 

In general, it can be concluded that after both climatic disturbances more negative breakpoints occurred in 

the lower part of the watershed than in the upper part. During the flooding period as well as during the 

drought, the interrupted decrease is the dominant breakpoint in the north.  
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FIGURE 14 | MAP OF THE OUNILA WATERSHED WITH THE TYPOLOGY OF BREAKPOINTS THAT OCCURRED DURING THE 

FLOOD PERIOD (HYDROLOGICAL YEAR 2015). BELOW THE MAP: BAR WITH THE PERCENTAGE OF PIXELS THAT FOLLOW A 

CERTAIN TYPOLOGY. 

 

FIGURE 15 | BAR WITH THE PERCENTAGE OF PIXELS THAT FOLLOW A CERTAIN BREAKPOINT TYPOLOGY FOR EACH OF THE 

MAJOR LAND USE CLASSES: SPARSE VEGETATION, GRASSLAND, CROPLAND AND BARE AREAS. 
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5. Discussion 

5.1. Ecological stability in the Ounila watershed  
In general, vegetation cover in the Ounila watershed is low and exhibits very little seasonality, as is often the 

case in drylands (Watts and Laffan, 2014). In the upper part of the Ounila watershed there has been more 

change in NDVI, both in negative and positive direction, than in the lower part of the watershed. Some of the 

patches that experienced greening were cropland or tree plantations, but considerable greening also occurred 

in areas covered by sparse vegetation or grassland. The observed greening of cropland, along the river 

channel and in the north-west, is in accordance with the general shift towards irrigated agriculture in the Atlas 

Mountains observed by El Aich (2018).  

In the upper northern part of the watershed the number of negative breakpoints was low, indicating high 

resistance to abrupt changes towards a deterioration in ecosystem functioning. During the first three years of 

the monitoring period, NDVI was high in these parts of the watershed too. The higher resistance may be 

explained by the more vegetated state that the ecosystem was already in. However, it is also important to 

note that the slopes are very steep in this region. It may be the case that these lands are less accessible to the 

herds and therefore have experienced a lower grazing intensity. The dominant breakpoint type during the 

drought in the upper part of the watershed was the positive reversal. In general, the pixels that experienced a 

positive breakpoint during the drought had a higher vegetation cover during the three years preceding the 

drought breakpoint. These is in line with observations from von Keyserlingk et al. (2021), who found that 

higher recovery rates are associated with higher values of NDVI before the drought, in their assessment of a 

Mediterranean dryland.  

Several areas that showed greening were studied in more detail. All these areas were located close to 

settlements (Area A, C and D are close to Telouet, Area E is located south-east of Anguelz). Resistance to 

abrupt negative changes in ecosystem functioning was found to be low in these areas, as there was a 

relatively high number of negative breakpoints present. Given that these areas showed an overall greening 

throughout the monitoring period, it was expected that they might represent potential hotspots of ecological 

stability, however the low resistance in these areas does not confirm this. The dominant breakpoint type 

during the drought was the positive reversal (area A and D) or no breakpoint (C and E). In the area south-east 

of Anguelz (E) there were also quite a few pixels that experienced an interrupted decrease during the drought. 

The response of the ecosystem to climatic disturbances indicates high variability: there simultaneously is a 

high number of abrupt changes towards improvement (positive breakpoints) and deterioration (negative 

breakpoints) of ecosystem functioning. These areas, that had relatively high initial NDVI and showed overall 

greening, are neither hotspots of low or high ecological stability. Possibly, ecological stability is impaired by 

grazing, which may enlarge the width of the range of environmental conditions under which a catastrophic 

shift can occur (the transitional regime) (Schneider and Sonia, 2016). The fact that these greened areas, that 

could be referred to as “islands of fertility”, are located in the lower-lying areas presents another indication 

that these parts of the watershed are in the transitional regime. When the surrounding land is degraded, 

enhanced run-off causes concentration of resources in patches of more vegetated land (Holmgren and 

Scheffer, 2001). At the same time, this leads to less resource availability for the surrounding lands, further 

encouraging the formation of vegetation patches (Kéfi et al., 2007; Rietkerk et al., 2004). In conclusion, there 

are indications the lands surrounding the settlements of Telouet and Anguelz are currently in a bi-stable state. 

Therefore, they are at risk of a catastrophic shift towards a barren state. However, it also makes them 

potential hotspots for land restoration efforts that might move the system to a more stable, vegetated state. 

These efforts may especially be effective when carried out in parallel with a period of heavy precipitation, for 

instance during an El Niño episode (Scheffer et al., 2005; Sietz et al., 2017). 
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In the bare areas located in the centre-west of the watershed, resistance was lowest. In these same areas the 

interrupted decrease was the dominant breakpoint type during the drought and during the flood period. It 

can be concluded that ecological stability in the bare areas is low. Initial NDVI during the first three years was 

low for the bare areas. Not surprisingly, the NDVI before the flood and drought breakpoints was low as well. 

Most likely, the ecosystem was already in a barren, stable state, before the onset of the monitoring period. 

This is in accordance with de Keersmaecker et al. (2015), who found that, in a modelling study on a global 

scale, regions that are sensitive to drought and have a high percentage of bare soil have slow recovery after a 

disturbance and high “vegetation memory” (their response to disturbances mimics the previous response of 

the ecosystem). 

Interestingly, the degrading lands near Tighza have high resistance to abrupt changes towards deterioration of 

ecosystem functioning. The dominant breakpoint type is the positive reversal. One patch of land, north of 

Tighza (located in north-west of Area B), shows other results. Here resistance was high, and vegetation 

experienced an interrupted decrease during the drought period. This same area had higher NDVI during three 

years before the drought breakpoint than the surrounding areas, where resistance was high and the response 

to drought positive. It is curious that the pixels with lower NDVI before the drought show higher ecological 

stability than the pixels that were more vegetated. It could be that the grazing intensity in the more vegetated 

areas has been higher, lowering the ecological stability of that area.  

It is remarkable that the positive reversal is the most frequently occurring breakpoint category triggered 

during the drought across all major land use types in the Ounila watershed. This means that in the Ounila 

watershed, where the ecosystem is water-limited, ecosytem functioning improved after the drought. In 

general, vegetation cover decreases in dryland ecosystems after a drought (Lotsch et al., 2005). This is in line 

with what was observed in the bare areas of the centre-west  of the case study area, but not with the 

dominance of positive reversal in the upper half of the watershed. Bernardino et al. (2020) found a similar 

dominance of the positive reversal breakpoint type in Central Asia (north-west of Caspian Sea). In their case 

study, this could be related to changes in land management which led to diminished agricultural activities and 

grazing intensity. Perhaps, a change in land management, for instance in the form of a different grazing 

regime occurred after the drought. Indeed, the findings of Nieboer (2019) indicate that shepherds have 

moved their herds further away from the settlements due to land degradation. 

In contrast, the dominant breakpoint type after the flood is the interrupted decrease. In a dryland ecosystem 

where vegetation-growth is water-limited it might be expected that a climatic disturbance with increased 

precipitation would induce positive breakpoints. The theory that heavy precipitation events might push a 

degraded ecosystem towards the transitional regime, where recovery towards a vegetated shift may be 

triggered, can not be confirmed by these results. Apparently, the heavy precipitation alone was not enough to 

induce such a shift.  

5.2. Indicators based on breakpoint typologies to assess ecological stability 
The correlation between total number of positive and negative breakpoints did not have a uniform sign and 

was dependent on location. The hypothesis that positive and negative breakpoints are negatively correlated 

with each other can not be confirmed based on these results.  This means that total number of breakpoints 

can not straightforwardly be related to one dimension of ecological stability. If positive and negative 

breakpoints are negatively corelated with each other, a higher ratio of positive to negative breakpoints may 

indicate that the system resists changes towards a deterioration in ecosystem functioning but not changes 

that represent an improvement. If this is the case, the total number of breakpoints is hard to interpret as it is 

an accumulation of two proxies that have different meaning for ecosystem functioning. When the two are 

positively correlated, this would mean that in areas where there are more abrupt changes towards a 

deterioration in ecosystem functioning there are more abrupt changes that represent an improvement in 
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ecosystem functioning as well. In that case, the total number of breakpoints would describe the variability of 

ecosystem functioning, rather than the resistance of the ecosystem towards degradation. In conclusion, the 

inverse of the total number of breakpoints is not an optimal indicator for ecological stability as it not clear to 

which dimension of ecological stability it relates. In contrast, the inverse of the total number of negative 

breakpoints can be used as a proxy of resistance.  

The use of a breakpoint typology to describe ecosystem response to climatic disturbances, instead of focusing 

on the recovery rate adds valuable information. It gives additional insight into the state of the ecosystem 

before the abrupt change in ecosystem functioning and whether this change has represented an 

improvement or deterioration. The breakpoint typology could be expanded to include a distinction between 

accelerating and slowing down trends to be able to differentiate even more between improvements and 

deteriorations in ecosystem functioning. The effect size of the trends should also be incorporated, to be able 

to determine the relative importance of such a change in trend. With the method used in this study, hardly 

any breakpoint of the types containing non-significant trends were detected. Very small trends were 

significant, because of the high number of observations (between 1200 and 1600 for most pixels, see 

Appendix B, Figure 20). De Jong et al. (2013) used an arbitrary threshold of 0.25% to distinguish positive and 

negative trends from no trend. No such threshold was used in this research. Establishing a threshold to 

distinguish between trends that can be considered stable and trends with meaningful positive or negative 

magnitude and incorporating this threshold in the classification of breakpoints would be an improvement.  

5.3 The use the BFAST method in a dryland ecosystem  
It is obvious from the results that the magnitude of NDVI and overall trends in NDVI are very small in the 

Ounila watershed. The magnitude of change may be small compared to the noise signal in the time-series, 

making the BFAST method less reliable. BFAST is validated for cases where the noise signal is not bigger than 

the magnitude of change, however it is not shown to be robust when this is not the case (Verbesselt et al., 

2010a). Verbesselt et al. (2010b) postulated that a seasonal amplitude of at least 0.1 is needed to have a 

sufficient signal-to-noise ratio to generate valid results, assuming that the noise ratio is equal to or greater 

than 0.1. When the signal to noise ratio is below one there is a higher chance that phenological changes go 

undetected. There is no risk for false positives (the detection of a breakpoint that is not there). In the data of 

this study, in 88.8 percent of pixels one or more breakpoints were detected, indicating that the methodology 

used was rather successful in detecting phenological changes. In addition, Watts and Laffan (2014) applied 

BFAST to almost aseasonal data, comparable to the data in this study, and validated the BFAST method to 

detect abrupt changes in dryland ecosystems. It can, therefore, be concluded that the BFAST method has 

been effective in detecting abrupt changes in the case study area. However, in the pixels with extremely low 

NDVI and seasonal amplitude, some breakpoints may have gone undetected. It is also worth noting that the 

Landsat 8 data has better signal to noise ratio than the data from Landsat 4-7, which may have led to a slightly 

higher chance for detection of breakpoints in the part of the time-series were Landsat 8 data is included (2013 

– present). 

Although an effort was made to base the value of the h parameter on scientific literature and some manual 

inspections of the data it was not feasible to carry out a sensitivity analysis on the full case study area due to 

computational limitations. Future case studies that utilize the BFAST method would benefit form a generic 

study on appropriate h-values across biomes for different data densities.  

In this study, no assessments were based on the exact determination of the breakpoint date because it was 

deemed not robust. The accuracy of the determination of the timing of phenological changes, such as 

breakpoints, is dependent on the temporal resolution and the incidence of missing data (Zhang et al., 

2009).The data that was used in this research was very irregular. This means that the chance of detecting a 

breakpoint is expected to be impacted by the data density at the given time. When there is more data 
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available, there is a higher chance of detecting a breakpoint in that period. Therefore, the exact timing of 

breakpoints is not robust for irregular time-series. For the method chosen in this research, this has not 

impacted the results because it focused on the total number of breakpoints. Since the amount of observations 

in the case study area is roughly equal throughout the case study area it is not expected to have impacted the 

spatial analysis on total number of breakpoints or the distribution of drought and flood breakpoints. Only in 

the north-eastern limit of the watershed data availability was much lower. It is important to note that the 

number of breakpoints, positive or negative, and the occurrence of drought and flood breakpoints was lower 

there too. Possibly, breakpoints have gone undetected due to the by lower data density in that area.  

5.5. Future research directions 
Verbesselt et al. (2010a) recommend that Landsat images can best be used in combination with satellite 

images from other sources, such as MODIS, to improve its data coverage and temporal resolution. Future 

research efforts could focus on creating a multi-sensor time-series of NDVI in which gaps of missing data are 

imputed. Since the exact timing of breakpoints may then be determined more reliably, this would allow other 

indicators of ecological stability to be derived from the NDVI data. For instance: the time period between the 

onset of the drought and the occurrence of a breakpoint. It could be argued that in a healthy ecosystem it 

would take a longer time for a breakpoint to occur after the drought as healthy vegetation has a buffering 

capacity. Another interesting indicator would be the amount of days it takes after a drought breakpoint to 

reach the same NDVI level as before the breakpoint. This is a proxy for critical slowing down. Critical slowing 

down is the phenomena that occurs when recovery rates decrease as the ecosystem approaches a critical 

threshold (Scheffer et al., 2015). This can also be quantified using spatial autocorrelation. Verbesselt et al. 

(2016) found that with precipitation levels that are associated with critical thresholds, spatial autocorrelation 

increases. It would be interesting to quantify critical slowing down using spatial autocorrelation in periods of 

low precipitation in the watershed. Incorporating more indicators of ecological stability will improve the 

understanding of this multi-dimensional concept. When doing so in future research, it also important to study 

the correlations between the multiple dimensions of ecological stability (Donohue et al., 2016). 

Investigating ecological stability on other organisational levels, will lead to a more complete understanding of 

ecosystem functioning (Kéfi et al., 2019). In addition, direct advice on land management can not be obtained 

from results purely based on satellite data. For these reasons, the findings of this research should be 

complemented with field observations. Species diversity and soil properties such as soil texture and type are 

known to control the response of ecosystem functioning to droughts and other disturbances (Maestre et al., 

2016). These data can be used to validate the findings of this research and provide further insight in the 

ecosystem functioning. Soil moisture content can be measured in the field to identify those areas that have 

the highest potential for successful land management interventions. Seneviratne et al. (2010) argue that the 

direction of feedbacks between vegetation and atmosphere are dependent on the soil moisture regime. 

When the soil moisture content is in the transitional regime, a small intervention can move the system 

towards a healthier vegetated state. In addition, it would be good to have a more exact picture of the 

distribution of precipitation levels in the watershed so that local differences in rainfall can be taken into 

account. Using rainfall gauges to measure precipitation would be beneficial. Finally, the land use map that was 

used in this research is a prototype map for the whole African continent, that has not yet been validated in 

the field. To obtain a better understanding of the land cover types present in the Ounila watershed, 

information on land cover and vegetation types should be obtained from the field. 

This study has resulted in the identification of hotspots of high and low ecological stability and has given 

indications of areas with high potential for land restoration. This provides valuable insight in order to prevent 

land degradation and may aid in the development of land management strategies based on ecological 

stability. However, to gain a better understanding of the drivers behind ecological stability, it is very important 

that the grazing intensity in the watershed is quantified. Future research should focus on mapping the grazing 
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intensity and its development over time in the Ounila watershed. The most effective method for mapping 

current grazing intensity would be to use GPS-tracking on the herds that are present in the watershed. To 

reconstruct a map of past grazing intensity a participatory mapping approach could be applied (Altmann et al., 

2018; Ramirez Gómez, 2019; Wario et al., 2015). Alternatively, grazing intensity can be determined as the 

inverse distance from grazing hotspots, such as drinking points or settlements (Manthey and Peper, 2010). In 

addition to vegetation cover and grazing regime, geomorphological features such as slope and aspect are 

important determinants of ecosystem functioning and may control the effects of climatic disturbances on 

ecosystems (Maestre et al., 2016). Therefore, it would be interesting to explore the relationships between 

these potential drivers and the indicators of ecological stability more in depth.   
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5. Conclusions 
In this study, ecological stability was successfully quantified using newly developed indicators based on the 

typology of abrupt changes in response to climatic disturbances. This has provided insight on the hotspots of 

low and high ecological stability in the Ounila watershed and potential areas for land restoration. The main 

findings are:  

1. In the upper watershed both greening and browning occurred between 1984 and 2019. Areas that 

already had very low vegetation in the beginning of the monitoring period, exhibited little change in 

overall NDVI.  

2. Two major climatic disturbances have occurred in the Ounila watershed: a drought (hydrological years 

1999 – 2002) and a flood period (hydrological year 2015). 

3. The ecosystem was more resistant to abrupt changes, leading to a deterioration in ecosystem 

functioning, in the upper, more vegetated, part of the watershed than in the lower, more barren, 

part. In the areas that showed greening, resistance was generally low. In contrast, the degraded lands 

near Tighza had relatively high resistance. 

4. In general, the ecosystem has experienced a shift from degrading trends to positive vegetation trends 

following the drought Especially in the upper part of the watershed this was the dominant breakpoint 

type. In the bare areas in the lower half of the watershed the trend in NDVI was negative both before 

and after the drought period as well as the flood period, indicating continued land degradation. 

Ecological stability in the Ounila watershed is higher in the grasslands of the upper north and low in the bare 

areas in the centre-west and south of the watershed. In regions that showed relatively high or low ecological 

stability (i.e. high resistance and improvement in ecosystem functioning in response to climatic disturbance 

and low resistance and deterioration in ecosystem functioning in response to climatic disturbance, 

respectively), this could be related to initial NDVI and land cover type. Areas with low initial NDVI and a high 

fraction of bare land typically showed low ecosystem  stability, whereas  areas with high initial NDVI and 

higher fraction of more vegetated land use types (grassland or sparse vegetation) showed relatively high 

ecological stability. Most interesting are the areas, close to the settlements, that experienced particular 

greening or browning throughout the monitoring period. The areas that experienced greening had low 

resistance but a general improvement in ecosystem functioning in response to drought. The greened areas 

are not hotspots of ecological stability, but may indicate high potential for land restoration in the surrounding 

areas. The area near Tighza, that experienced browning, had high resistance and a general improvement in 

ecosystem functioning in response to drought. With the exception for a small patch north-west of this area, 

that had low resistance and a negative response to drought. 

The findings of this MSc thesis are a first step towards the implementation of stability-based restoration 

measures in the Ounila watershed. To bridge the gap between the findings from this thesis and 

implementation, field data and information on grazing intensity should be obtained to complement these 

results.  
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Appendix A: Ancillary data: elevation, slope and aspect 

 

FIGURE 16 | DIGITAL ELEVATION MODEL (DEM) IN THE OUNILA WATERSHED WITH A SPATIAL RESOLUTION OF 30 BY 30 

M. DATA FROM THE NASA MAKING EARTH SYSTEM DATA RECORDS FOR USE IN RESEARCH ENVIRONMENTS 

(MEASURES) DIGITAL ELEVATION MODEL (DEM) DATASET (BUCKLEY ET AL., 2020).  

. 
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FIGURE 17 | SLOPE IN THE OUNILA WATERSHED WITH A SPATIAL RESOLUTION OF 30 BY 30 M. DATA FROM THE NASA 

MAKING EARTH SYSTEM DATA RECORDS FOR USE IN RESEARCH ENVIRONMENTS (MEASURES) DIGITAL ELEVATION 

MODEL (DEM) DATASET (BUCKLEY ET AL., 2020). 
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FIGURE 18 | ASPECT (ORIENTATION OF SLOPES) IN THE OUNILA WATERSHED WITH A SPATIAL RESOLUTION OF 30 BY 30 M. 
DATA FROM THE NASA MAKING EARTH SYSTEM DATA RECORDS FOR USE IN RESEARCH ENVIRONMENTS (MEASURES) 

DIGITAL ELEVATION MODEL (DEM) DATASET (BUCKLEY ET AL., 2020). 
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Appendix B: Data density  

 

FIGURE 19 | RELATIVE FREQUENCY OF NUMBER OF LANDSAT SCENES OVER TIME 

 

FIGURE 20 | NUMBER OF LANDSAT NDVI OBSERVATIONS THROUGHOUT THE MONITORING PERIOD (2981-2019) PER 

PIXEL IN THE OUNILA WATERSHED. SPATIAL RESOLUTION IS 30 BY 30 M. 
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Appendix C: Untransformed NDVI data 

 

FIGURE 21 | TIME-SERIES OF MEAN NDVI IN THE OUNILA WATERSHED BETWEEN 1984 AND 2019 BEFORE ANY 

TRANSFORMATION WAS APPLIED TO MAKE THE DATA CONTINUOUS. THE SATELLITE THAT COLLECTED THE DATA IS 

INDICATED. 
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Appendix D: Absolute change in NDVI and initial NDVI 

 

FIGURE 22 | ABSOLUTE CHANGE IN MEAN NDVI DURING THE FIRST THREE YEARS OF THE MONITORING PERIOD (1984-
2019) AND THE LAST THREE YEARS, IN THE OUNILA WATERSHED. SPATIAL RESOLUTION IS 30 BY 30 M.  
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FIGURE 23 | INITIAL MEAN NVDI DURING THE FIRST THREE YEARS OF THE MONITORING PERIOD (1984-2019) IN THE 

OUNILA WATERSHED. SPATIAL RESOLUTION IS 30 BY 30 M.  
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Appendix E: Selection of areas of interest  

 

FIGURE 24 | RELATIVE CHANGE IN NDVI IN THE OUNILA WATERSHED BETWEEN THE FIRST THREE YEARS OF THE 

MONITORING PERIOD (1984-2019) AND THE LAST THREE YEARS OF THE MONITORING PERIOD. IN THE RED BOXES AREAS 

OF INTEREST ARE INDICATED. THE CROPLANDS ARE MASKED OUT, AND PIXELS WITH NA-VALUES ARE BLACK. SPATIAL 

RESOLUTION IS 30 BY 30 M. 
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FIGURE 25 | GOOGLE SATTELITE IMAGES OF THE AREAS OF INTEREST: A-E 
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Appendix F: RAI per hydrological year  

 

FIGURE 26 | RAINFALL ANOMALY INDEX (FOLLOWING THE METHOD OF VAN ROOY (1965)) PER HYDROLOGICAL YEAR. 
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Appendix G: Total number of positive and negative breakpoints per type 

 

FIGURE 27 | TOTAL NUMBER OF BREAKPOINTS DETECTED BETWEEN 1984 AND 2019 PER NEGATIVE BREAKPOINT TYPE: 
INTERRUPTED DECREASE, DECREASE AFTER NO TREND, NO TREND AFTER INCREASE AND NEGATIVE REVERSAL. CROPLANDS 

ARE MASKED OUT. SPATIAL RESOLUTION IS 30 BY 30 M. 
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FIGURE 28 | TOTAL NUMBER OF BREAKPOINTS DETECTED BETWEEN 1984 AND 2019 PER POSITIVE BREAKPOINT TYPE: 
INTERRUPTED INCREASE, INCREASE AFTER NO TREND, NO TREND AFTER DECREASE AND POSITIVE REVERSAL. CROPLANDS 

ARE MASKED OUT.  SPATIAL RESOLUTION IS 30 BY 30 M. 
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Appendix H: Number of breakpoints per Land Use type  

 

FIGURE 29 | TOTAL NUMBER OF NEGATIVE BREAKPOINTS DETECTED BETWEEN 1984 AND 2019 PER MAJOR LAND USE 

TYPE IN THE OUNILA WATERSHED: GRASSLAND, CROPLAND, SPARSE VEGETATION AND LICHEN MOSSES AND BARE SOIL. 
SPATIAL RESOLUTION IS 30 BY 30 M. 
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FIGURE 30 | TOTAL NUMBER OF POSITIVE BREAKPOINTS DETECTED BETWEEN 1984 AND 2019 PER MAJOR LAND USE TYPE 

IN THE OUNILA WATERSHED: GRASSLAND, CROPLAND, SPARSE VEGETATION AND LICHEN MOSSES AND BARE SOIL. SPATIAL 

RESOLUTION IS 30 BY 30 M. 
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FIGURE 31 | TOTAL NUMBER OF BREAKPOINTS DETECTED BETWEEN 1984 AND 2019 PER MAJOR LAND USE TYPE IN THE 

OUNILA WATERSHED: GRASSLAND, CROPLAND, SPARSE VEGETATION AND LICHEN MOSSES AND BARE SOIL. SPATIAL 

RESOLUTION IS 30 BY 30 M. 
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Appendix I: Total number of positive and negative breakpoints per type 

 

FIGURE 32 | TOTAL NUMBER OF BREAKPOINTS DETECTED PER PIXEL BETWEEN 1984 AND 2019 IN THE OUNILA 

WATERSHED. SPATIAL RESOLUTION IS 30 BY 30 M. 
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Appendix J: Mean NDVI 3 years before climatic disturbance 

 

FIGURE 33 | MEAN NDVI DURING THREE YEARS BEFORE THE DROUGHT BREAKPOINT. ONLY PIXELS THAT EXPERIENCED A 

DROUGHT BREAKPOINT HAVE A VALUE, CROPLAND IS MASKED OUT. SPATIAL RESOLUTION IS 30 BY 30 M. 
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FIGURE 34 | MEAN NDVI DURING THREE YEARS BEFORE THE FLOOD BREAKPOINT. ONLY PIXELS THAT EXPERIENCED A 

FLOOD BREAKPOINT HAVE A VALUE, CROPLAND IS MASKED OUT. SPATIAL RESOLUTION IS 30 BY 30 M. 
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Appendix K: Typology of flood breakpoints and NDVI before flood 

 

FIGURE 35 | ZOOMED IN PLOTS OF THE TYPOLOGY OF BREAKPOINTS DURING THE FLOOD AND THE MEAN NDVI DURING 

THREE YEARS BEFORE FLOOD BREAKPOINT FOR THE AREAS OF INTEREST: A-E. SPATIAL RESOLUTION OF IS 30 BY 30 M. 


