
I

MSc. GIMA Master’s Thesis
A geo-computational workflow for
automatically classifying urban land
cover using deep learning and street view
imagery

Robin Rutten (6633072)

Supervisor: Hamed Mehdipoor
Professor: Raul Zurita-Mila
Date: 28-02-2020

II

ABSTRACT

Due to urbanization, there is a growing demand for knowledge on urban patterns and their
dynamics at multiple spatial scales. Reliable information on urban land cover is increasingly
important when dealing with this growing demand. The existing methods, such as analysis of
remotely sensed imagery, do not help to accurately classify urban land cover. The aim of this
research is to accurately classify urban land cover of the Netherlands. This is done by developing
a novel geo-computational workflow that is able to automatically classify urban land cover on a
large scale using high-resolution street view imagery and deep learning. In addition, this research
looks at what the key parameters and pre-processing strategies are for training a deep learning
model for classifying urban land cover. Furthermore, the performance difference between a pre-
trained and newly trained deep learning model for classifying urban land cover were compared
and analyzed. Finally, the effect of the image distance on the performance of urban land cover
classification was investigated.

For the development of the workflow, street view images of the Dutch city Bergen op Zoom were
used. In order to achieve this, a script to automatically extract street view images of the image
capture locations was developed. Next, the extracted street view images were cropped and an
urban land cover label was assigned. The labelled images were used to train a convolutional
neural network to recognize urban land cover. Subsequently, the best performing models were
used to classify urban land cover in a real-world application. The urban land cover classifications
as found in the Dutch land cover map Basisregistratie Grootschalige Topografie, were used as a
reference source.

The results of this research showed that the larger the images dataset, the better the performance
of the deep learning model. The performance of the trained models was measured in terms of
accuracy, recall, precision and F1-score. The application of the workflow resulted in an overall
accuracy of 52%. After applying data augmentation techniques, this accuracy increased to 54%.
In addition, comparing the predictions for different image distances resulted in the highest
accuracy of 70% for images within a range of three-meters from an image capture location.

The performances achieved by the developed geo-computational workflow appeared to be not
sufficient enough for urban land cover classification in a real-world application. This can be
explained by the fact that the model was only trained on land cover located on a three-meter
distance. In conclusion, future research should focus on improving the model that is developed in
this study by increasing the number of training images for all used distances. This improvement
could result in a higher performance of urban land cover classification and the workflow could be
applied to the whole of the Netherlands.

III

TABLE OF CONTENTS
Abstract .. II

List of figures .. IV

List of tables .. IV

1. Introduction ... 1

1.1 Research objectives and questions ... 2

1.2 Research scope ... 3

2. Theoretical framework .. 4

2.1 Deep learning .. 4

2.2 Deep learning in land cover classification ... 5

2.3 Convolutional neural network .. 6

2.4 Training a CNN-based model ... 8

2.5 Transfer learning .. 9

2.6 Image pre-processing.. 9

3. Method ... 11

3.1 Geo-computational workflow .. 11

3.2 Study area .. 12

3.3 Research tools ... 13

3.4 Data preparation .. 13

3.5 Model configuration.. 19

3.6 Model application .. 22

3.7 Results presentation ... 24

4. Results ... 26

4.1 Model training ... 26

4.2 Model performances ... 29

4.3 Urban land cover classification of test area ... 33

4.4 Urban land cover validation .. 36

5. Discussion .. 40

6. Conclusion ... 42

6.1 Research question 1 .. 42

6.2 Research question 2 .. 42

6.3 Research question 3 .. 43

6.4 Research question 4 .. 43

6.5 Main conclusion .. 43

7. Bibiliography .. 44

8. Appendix... 48

A. Learning curves ... 48

B. Performances per distance .. 49

C. Near maps .. 50

D. Urban land cover classification maps ... 51

E. Score maps ... 52

IV

LIST OF FIGURES

Figure 1. Schematic example of a simple neural network (Sorokina, 2018) .. 4
Figure 2. Visualization of the two types of pooling layers. The top right filter shows a max
pooling, and the bottom right filter an average pooling (Saha, 2018) ... 7
Figure 3. Schematic example of a CNN: C, M, and F represent the convolutional layer, max-
pooling layer, and fully connected layer, respectively (Xing & Yang, 2016). .. 7
Figure 4. Conceptual model of the urban land cover classification workflow 12
Figure 5. The geographical location of the study area Bergen op Zoom .. 12
Figure 6. Street view image capture locations of the training area (top) and the testing area
(bottom). ... 14
Figure 7. Example of multiple squared buffers ranging from one to seven meters. 15
Figure 8. Visualization of the created cropping frames: schematic top-view visualization of the
squared buffers (top left), schematic ground visualization of the squared buffers (top right),
original street view image (bottom left), visualization of the result after applying the cropping
frames (bottom right). .. 16
Figure 9. Examples of the labelled image dataset. It totally contains of 3.500 images of the urban
land cover classes tiles, pavers, asphalt and vegetation. .. 17
Figure 10. Examples of data augmentation: 1. Original; 2. Horizontal flip; 3. Vertical flip; 4.
Horizontal and vertical flip; 5. Rotation 90*; 6. Brightness decrease 50%; 7. Brightness increase
by 50% 18
Figure 11. Visualization of the test area including the image capture locations and the used cable
network ... 22
Figure 12: Visualization of the tool Near (Source: (“Pro.ArcGIS.com,” n.d.) ... 23
Figure 13. The urban land cover of each segment of the cable network retrieved from the BGT . 24
Figure 14. Example of a confusion matrix. The green tiles are either True Positives or True
Negatives. The red tiles are either False Positives or False Negatives. .. 25
Figure 15. Learning curves model accuracy (left) and model loss (right) of the scratch model
trained on the 500-dataset .. 26
Figure 16. Learning curves model accuracy (left) and model loss (right) of the trained VGG-16
model. 27
Figure 17. Learning curves model accuracy (left) and model loss (right) of the scratch model
trained on augmented images. .. 28
Figure 18. Learning curves model accuracy (left) and model loss (right) of the VGG-16 model
trained on augmented images. .. 28
Figure 19. Confusion matrices of the predictions resulting from the models trained on different
dataset sizes. ... 29
Figure 20. Confusion matrix of the predicted image classes of model trained on augmented
images. ... 31
Figure 21. Confusion matrix of the predicted image classes the VGG-16 model. 32
Figure 22. Confusion matrix of the predicted image classes the VGG-16 model trained on
augmented images. ... 33
Figure 23. Maps of the spatial distribution of the Near distance (top) and angle (bottom). Besides
the maps, graphs are presenting the count of the cable segments per distance and angle. 34
Figure 24. Visualization of the predicted urban land cover of each cable segment by the non-
augmented model ... 35
Figure 25. Visualization of the predicted urban land cover of each cable segment by the
augmented model 35
Figure 26. Visualization of the true and false predictions of the urban land cover classification. 36

V

Figure 27. Confusion matrix of the urban land cover predictions classified by the non-augmented
model. 37
Figure 28. F1-scores per distance visualized for the four urban land over classes tiles, pavers,
asphalt and vegetation. ... 38
Figure 29. Visualization of the true and false predictions of the urban land cover classification of
the augmented model. ... 38
Figure 30. Confusion matrices of the classifications of the images classified by the model trained
on augmented images. .. 39

LIST OF TABLES

Table 1. Software and tools used to implement the proposed workflow in this research. 13
Table 2. Overview of the labelled image datasets. .. 17
Table 3. Overview of the architecture of the fine-tuned VGG-16 network .. 20
Table 4: Overview of the architecture of the scratch model ... 20
Table 5. Summary of the training process of the trained models. .. 28
Table 6. Performance scores of the model trained on different dataset sizes. 30
Table 7. Performance scores of the scratch model trained on the 500-dataset.................................... 30
Table 8. Performance scores of the scratch model trained on augmented images. 31
Table 9. Comparison of the performances between the non-augmented and augmented scratch
model .. 31
Table 10. Performance scores of the VGG-16 model trained. ... 32
Table 11. Performance scores of the VGG-16 model trained on augmented images. 33
Table 12. Summary of the number of predicted images per class by the non-augmented model
and the augmented model. .. 36
Table 13. Performance scores of the urban land cover classification model. .. 37
Table 14. Overview of the performance measures per distance. .. 37
Table 15. Performance scores of the urban land cover classification model trained on augmented
images. 39
Table 16. Summary of performances of the urban land cover classification by the non-augmented
model and the augmented model. .. 39

ACRONYMS
CNN Convolutional neural network

NN Neural Network

BGT Basisregistratie Grootschalige Topografie

RELU Rectified Linear Unit

1

1. INTRODUCTION

Over the last decades, most cities have been experiencing a huge population growth and a fast
expansion of their urban areas (Jia et al., 2018). Due to urbanization, there is a growing demand
for knowledge on urban patterns and their dynamics at multiple spatial scales (Puissant, Zhang,
& Skupinski, 2012). This knowledge is used for the planning, monitoring and modelling tasks of
urban planners and decision-makers (e.g. municipalities and network operators), during ongoing
urbanization processes (Walde, Hese, Berger, & Schmullius, 2014). According to Hecht, Herold,
Meinel, & Buchroithner (2013), knowledge about urban areas varies from information about
urban structures to urban landcover. Stefanov, Ramsey, & Christensen (2001) describe urban land
cover types and their spatial distribution as fundamental information required for a wide range
of studies in the physical and social sciences, as well as for spatial planning. In the domain of land
cover classification, urban land cover is defined as a combination of a mosaic of buildings, paved
surfaces, vegetated patches, and water spaces, including, but not limited to, paved roads,
buildings, bridges, vehicles, fences, railways, trees, and grass cover (Yan, Shaker, & El-Ashmawy,
2015). In cities, the distribution of urban land cover has often of a heterogeneous character,
compared to non-urban landscapes. (Walde et al., 2014).

Several methods exist for capturing information on land cover, such as a field survey and
analyzing remotely sensed data. The use of remotely sensed imagery is considered to be the most
efficient and accurate approach (Hecht et al., 2013; Srivastava, Lobry, Tuia, & Vargas-Muñoz,
2018; Xu, Zhu, Fu, Dong, & Xiao, 2017). This imagery is mainly beneficial due to the wide-area
coverage of satellites (Walde et al., 2014). In general, the classification of various land cover was
conducted with moderate to high spatial resolution (e.g. Landsat ETM+) remotely sensed imagery
(Shahtahmassebi et al., 2016; Yan et al., 2015). In spite of many years of experience, the quality of
the resulting urban land cover maps is considered to be too low for operational applications
(Beekhuizen & Clarke, 2010). Moreover, the classification of urban land cover still appears to be
one of the most challenging areas to remote sensing analysis (Carleer & Wolff, 2006). This is
because the conventional satellite image resolution is not well enough suited for the classification
of urban land cover (Cao et al., 2018; Jia et al., 2018). This can be explained by the high spatial and
spectral diversity of the surface in urban areas, which makes it hard to identify the difference
(Carleer & Wolff, 2006; Jia et al., 2018). Furthermore, according to Xu et al. (2017), remote
sensing-based classification always requires ground referencing data for training and validation.
The collection of this reference data is considered to be a labour-intensive and time-consuming
process (Xu et al., 2017).

To address the problems associated with remotely sensed imagery, research has been conducted
on land cover classification based on ground-based imagery and deep learning. Deep learning is a
subfield within artificial intelligence, which is the science and technology of making intelligent
machines and especially intelligent computer programs (Thakur, 2019). As an example of such
research, Tracewski, Bastin, & Fonte (2017) successfully repurposed a pre-trained model to filter
and classify volunteered photographs for land cover and land use characterization. A pre-trained
model that has already learned to extract information from images and can be used as a starting
point to learn a new task. An important finding of their study was that ground-based acquired
photographs, interpreted by a neural network, have a significant added value by identifying
features that can never be distinguished with the help of satellite imagery. Furthermore, in a
recent study by Srivastava et al. (2018), land use was characterized based on Google Street View
imagery and OpenStreetMap. Both used data sources that have a large amount of information
available and their approaches are scalable to cities around the globe.

2

The previously discussed researches are examples of integration between geosciences and
computer sciences. Integration of computer science and geosciences has led to geo-computational
approaches, which help to process and integrate large amounts of geographical information to
solve a variety of problems (Liu, Xue, Palmer-Brown, Chen, & He, 2015; Mehdi Poor, 2019). A geo-
computational workflow can be described as the process of developing a relevant tool with the
use of different types of geographical data within the general context of a computational scientific
approach (Xue, Hoffman, & Liu, 2009). The use of a geo-computational workflow helps scientists
by improving the reliability and reproducibility of evidence from data (Atkinson et al., 2017).

After examining the currently available literature, there is no extensive research on developing a
geo-computational workflow for automatic classification of urban land cover with the use of deep
learning at a large spatial scale. Most studies have only focused on large-scale land cover classes
such as croplands, grasslands, urban and built-up, water bodies, etc. Little attention has been
given to accurately classifying more detailed urban land cover classes such as street cover types
(e.g. tiles, pavers, asphalt). Hence, this research aims to contribute to the scientific problem by
proposing a novel geo-computational workflow that is able to classify urban land cover types, and
optimally differentiate between street cover types, by using high-resolution street view imagery
and deep learning. Moreover, the proposed workflow contributes to society as well. For example,
the Netherlands consists of a considerable large amount of urban areas. There are lots of
institutions and companies that are greatly interested in such urban areas, for instance, spatial
planners, network operators, and contractors. An automated workflow for the classification of
urban land cover types can be beneficial to companies due to having more information for better
decision-making. For example, such companies are interested to know what kind of land cover is
present at a location before digging activities are carried out.

1.1 RESEARCH OBJECTIVES AND QUESTIONS

The main objective of this research is to develop a novel geo-computational workflow to
automatically classify urban land cover in the Netherlands using high-resolution street view
imagery and deep learning. The main objective is operationalized by splitting it into three
research sub-objectives, which are achieved by answering four research questions:

- Sub-objective 1: To explore existing street view images for analyzing and modelling urban land
cover in the Netherlands.

 Q1: What are the key parameters and pre-processing strategies for training a deep
learning model for classifying urban land cover?

Q2: What are the performance differences between a pre-trained and newly trained deep
learning model for classifying urban land cover?

- Sub-objective 2: To develop a geo-computational workflow that automatically trains and
operationalizes the classification of urban land cover in the Netherlands.

 Q3: What level of accuracy, precision and recall can be reached in classifying urban land
cover using a geo-computational workflow?

- Sub-objective 3: To analyze the effect of different image distances on the performance of the
geo-computational workflow.

Q4: What is the influence of different images distances on the performance of the geo-
computational workflow?

3

1.2 RESEARCH SCOPE

The scope of this research is defined in the previous formulated research goals and questions. Due
to the time scope of this research, a geo-computational workflow for urban land cover
classification is investigated, but is limited to investigating four classes. This research focuses on
classifying urban land cover classes asphalt, pavers, tiles and vegetation only. Furthermore, the
model is only used to predict land cover in the study area. The classification in other areas in the
Netherlands requires different input data, which takes time to collect. For this reason, no other
areas are used in this research. Finally, this research compares two types of deep learning models:
a pre-trained model and a model trained from scratch. There exist more pre-trained models that
can be used, but this research only focuses on one pre-trained model.

4

2. THEORETICAL FRAMEWORK

This chapter presents a theoretical framework that assesses the relevant techniques and methods
implemented for urban land cover classification based on deep learning. In particular, this chapter
elaborates on the definitions of deep learning, convolutional neural network, model training,
transfer learning and pre-processing of imagery. Finally, studies that are somehow similar to this
current study are considered.

2.1 DEEP LEARNING

As previously described, deep learning belongs to the field of artificial intelligence. Within the field
of artificial intelligence, machine learning is an approach that automatically trains and improves
a system from experience without being explicitly programmed through access to data. In
addition, deep learning is a subset of machine learning and uses algorithms, inspired by the neural
network functioning and structure of the brain, to let programs learn through data analysis
(Thakur, 2019). Lecun, Bengio, & Hinton (2015) describe deep learning as computational models
that are composed of multiple processing layers to learn representations of data with multiple
levels of abstraction. Deep learning appears to be useful for multiple applications. For example,
deep learning has been utilized for medical image analysis (Ker, Wang, Rao, & Lim, 2017), natural
language processing (Krizhevsky, Sutskever, & Hilton, 2012), big data analysis (Najafabadi et al.,
2015) and human voice recognition (Lecun et al., 2015).
Deep learning models are mainly based on neural networks (NN). Schmidhuber (2015) describes
a normal NN as a network that consists of many simple connected processors called neurons.
Simplified, the neurons in a neural network are arranged in a layered fashion, in which the input
and output layers are separated by a group of intermediate layers. (Aggarwal, 2018). Those
intermediate layers are referred to as hidden layers because the calculations performed are not
visible to the user. An example of a NN is shown in Figure 1. In the architecture of a NN, every
neuron is connected to at least one neuron. Moreover, each connection is evaluated by a real
number, called the weight coefficient, which reflects the degree of importance of the given
connection in the NN (Svozil, Kvasnicka, & Pospichal, 1997).

Figure 1. Schematic example of a simple neural network (Sorokina, 2018).

5

2.2 DEEP LEARNING IN LAND COVER CLASSIFICATION

In recent years, more and more studies have been using deep learning for classification of land
cover. Since 2014, the remote-sensing community has shifted its attention to deep learning (Ma
et al., 2019). According to Kussul, Lavreniuk, Skakun, & Shelestov (2017), deep learning has
proven to be an efficient and powerful method for the processing of images to extract land cover
types such as buildings and roads. Ma et al. (2019) reviewed and analyzed recent publications in
the field of remote sensing and deep learning. The research stated that deep learning is used in a
wide variety of study areas. According to Ma et al. (2019), especially urban remote-sensing
mapping has received much attention. Although a considerable amount of research has been
conducted into urban land cover classification, the accuracy and efficiency of the used methods
are often too small in practice. The application of deep learning methods has shown high precision
performance compared with traditional classification methods. However, Ma et al. (2019) also
note that the performance of deep learning in land cover classification is still inferior compared
to other land cover classification methods such as scene classification and object detection.
Therefore, it is expected that deep learning models develop more strongly because of the diversity
of available imagery, which results in further application of land cover classification (Ma et al.,
2019). This imagery consists not only of remotely sensed images, but also of ground-based
imagery.

Recently, a number of studies have looked into the application of ground-based imagery and deep
learning for land cover classification. Ground-based imagery can be described as imagery that is
collected at street level. For example, Tracewski et al. (2017) looked into the usefulness of
volunteered photos for land cover classification. In their research, a deep learning network was
used based on volunteered geo-tagged imagery gained from sources such as Flickr,
OpenStreetMap, and Instagram. Transfer learning was applied to train the deep learning model.
Their approach was fairly successful in characterizing human influence within a scene when
classifying the land cover type (Tracewski et al., 2017).

Multiple studies have been conducted combining deep learning and street view imagery. For
example, Cao et al. (2018) integrated aerial and street view images for urban land use
classification. They presented experimental studies showing that street view images add more
value when the resolutions of the aerial images are lower. In addition, Kang, Körner, Wang,
Taubenböck, & Zhu (2018) used street view imagery and CNN for the classification of the
functionality of individual buildings. With their approach, relatively high accuracies were
achieved for the classification of individual buildings.

6

2.3 CONVOLUTIONAL NEURAL NETWORK

Where deep learning is a subfield of AI, is Convolution Neural Networks (CNN) a subfield of deep
learning. Convolutional neural networks, also called ConvNets, are useful for solving visual tasks
that rely on recognition and classification. They are designed to process data that come in the form
of multiple arrays (Chellapilla, Puri, & Simard, 2006). According to Lecun et al. (2015), CNN has
been used with great success in multiple applications, such as traffic sign recognition (Cireşan,
Meier, Masci, & Schmidhuber, 2012), segmentation of biological images (Ning et al., 2005) and the
detection of faces (Garcia & Delakis, 2002). For this reason, CNN is used for urban land cover
recognition in street view imagery.

ConvNets are designed to process data that come in the form of multiple arrays, such as a 2D
colour image (Lecun et al., 2015). A CNN takes in an input image, assigns learnable weights and
biases (importance) to different aspects/objects in the image and a score is computed for each
image class as an output (Lecun et al., 2015; Saha, 2018). ConvNets have, as previously described,
an input layer, hidden layers and an output layer. In a CNN, the input layer is the image dataset
that is used for training the model. Lecun et al. (2015) state that ConvNets are designed to process
data of the input layer that come in the form of multiple arrays, which is in this research a colour
image composed of three 2D arrays containing pixel intensities in the three colour channels (red,
blue, green).

The input layer is always followed by a set of hidden layers, of which several types of layers exist.
The first hidden layer that is discussed is a convolutional layer. The role of the convolutional layer
in a CNN is to detect local patterns of features from the previous layer (Lecun et al., 2015). A
convolutional layer is, as described by Xing & Yang (2016), a set of convolutional filters. Those
filters have a specified height and a width and are smaller than the size of the input image. The
filters extend through the three channels of the input layer and can perform different kinds of
detections, such as edge, curve, colour and texture detection (“Different Kinds of Convolutional
Filters,” 2017). The output of a filter after a convolution operation is called a feature map. By
stacking those maps on top of each other, more abstract and in-depth information can be received
(“Different Kinds of Convolutional Filters,” 2017). In general, the more convolutional layers added
to the model architecture, the more details are recognized by the model. However, adding too
many layers can cause the model to see details that do not exist or are not relevant.

Another hidden layer type is a pooling layer, which is similar to a convolutional layer because of
the usage of filters. The task of the pooling layers is to merge semantically similar features into
one (Lecun et al., 2015). This is important because of two reasons. First of all, pooling layers
decrease the computational power required to process the data (Saha, 2018). This is done through
dimensionality reduction. Secondly, pooling layers are useful for the extraction of dominant
features in the input layer. This contributes to maintaining the process of effectively training the
model (Saha, 2018). There are two types of pooling layers: max pooling and average pooling
(Figure 2). Xing & Yang (2016) describe max-pooling layers as layers that summarize the activities
and picks up the max values over a neighbourhood region in each feature. In comparison, the
average pooling layer returns the average of all the values over a neighbourhood region.

7

Figure 2. Visualization of the two types of pooling layers. The top right filter shows a max pooling, and the bottom right

filter an average pooling (Saha, 2018).

The last hidden layer that is discussed is a fully connected layer. This layer, in contrast to a
convolutional layer, connect every neuron in one layer to every neuron in the next layer.
Convolutional layers do not cover the entire spatial dimension of the image which make fully
connected layers mandatory to use in a CNN (Basha, Dubey, Pulabaigari, & Mukherjee, 2019). In a
typical CNN, the fully connected layers comprise most of the parameters of the network.

Finally, a CNN ends with an output layer. This layer decides to which class an image belongs to.
The output layer is a fully connected layer, flattens the input from the previous layers, and
transforms the output into the number of classes that are defined in the model (Gupta, 2017). In
this research, the SoftMax function is used as the last layer. The SoftMax function species a
probability of the distribution of the used classes (Agarap, 2018). In other words, this function
calculates the probabilities of each target class over all possible target classes (Polamuri, 2017).
In addition, the sum of all the probabilities is equal to one. After each epoch, the output generated
by the SoftMax layer is compared to the true data for error generation and a gradient of error
(model loss) is created. This error rate is used to update the weights of the model and updates the
filters and can be used for a new training cycle. Figure 3 presents an example of how a CNN can
look like, including all three main layers.

Figure 3. Schematic example of a CNN: C, M, and F represent the convolutional layer, max-pooling layer, and fully

connected layer, respectively (Xing & Yang, 2016).

8

2.4 TRAINING A CNN-BASED MODEL

In order to let a deep learning model predict data, the model has to be trained. There are several
parameters that influence the performance of a model. The main parameters of a model are the
optimizer, the learning rate, the batch size and the number of epochs. This section discusses those
parameters individually. First of all, the optimization parameter is one of the most important
parameters of a deep learning algorithm. An optimizer starts with defining a loss function and
ends with minimizing the optimization routine. The choice of optimizer can make the difference
between getting good accuracy in hours or days (Parmar, 2018). The loss value indicates how well
or poorly a model is behaving after every epoch. The model loss is basically a summation of the
errors made for each image in training or validation datasets. In general, the lower the model loss,
the better the performance of the model. The learning rate is the rate at which a function move
through the search space and defines how much parameters should change each iteration (Amara,
Bouaziz, & Algergawy, 2017; Parmar, 2018). In general, when the learning rate decreases, the loss
decreases and the accuracy increases. It helps to prevent overfitting of the model. However, a
model can be trained too accurate when is learning rate is too low. This is because, the model
cannot generalize the characteristics of the training samples well enough which decreases the
performance of the model (Tang, Mhamdi, McLernon, Zaidi, & Ghogho, 2016). The general rule,
according to Kamilaris & Prenafeta-Boldú (2018), is to start with a high learning rate and lower it
during the training process.

 Furthermore, another important model parameter is the batch size setting. The batch size is the
number of training samples in a single batch. At the end of every batch, a prediction is made which
is compared with the expected output variables. This results in a calculated error which is used
to improve the model by updating the algorithm. A dataset is divided into batches because it is
often not possible to train a model on the whole dataset. Brownlee (2019) describes three types
of batches: 1) A batch that consists of the whole training dataset called batch gradient descent; 2)
A batch that consists of one sample is called stochastic gradient descent; 3) When the batch size
is more than one sample and less than the training dataset it is called mini-batch gradient descent.
Keskar, Nocedal, Tang, Mudigere, & Smelyanskiy (2019) suggest that the performance of the
model is often worse when the model is trained with a large batch size compared to the small
batch size. However, large batch sizes can be parallelized across many machines and reduce the
training time of the model (Smith, Kindermans, Ying, & Le, 2018). The last parameter is the
number of epochs. The number of epochs determines how many times an image is used for
training. The number of epochs differs per model, which is difficult to predict beforehand. During
the training process, it should be determined what the optimal parameter settings are for each
model.

9

2.5 TRANSFER LEARNING

Training a convolutional neural network is a difficult, computation expensive and time-consuming
process. As a result, many researchers choose to make use of transfer learning. Goodfellow (2016)
defines transfer learning as follow:

“Transfer learning and domain adaptation refer to the situation where what has been learned in
one setting is exploited to improve generalization in another setting.” (p.427)

Tracewski et al. (2017) state that the reason for this choice is because building a model from
scratch is a computationally expensive process, it requires a huge set of labelled samples for
training and expertise in computer vision and machine learning. When applying transfer learning,
an existing deep learning model that is trained on often millions of images is used as a start and
retrained with a new dataset in order to solve a problem at hand (Pan & Yang, 2010). There exist
several pre-trained networks that can be used for transfer learning. VGG-16, AlexNet, ResNet, and
GoogleNet are examples of pre-trained models.

There are two types of transfer learning: fine-tuning and feature extraction. To start with, the
feature extraction method uses the weights of the pre-trained network, and results in a pre-
specified layer and taking the outputs of that layer as the output features. This method is suitable
when the image data is similar to the original training data of the pre-trained model (Xu, Zhu, Fu,
Dong, & Xiao, 2017).

The second type of transfer learning is fine-tuning. Similar to feature extraction, with fine-tuning
the weights of the pre-trained network are used as the starting point of the training on new data.
In this case, the last layer from the pre-trained model is removed, and a new layer fitting to the
number of classes is added to the model architecture. The advantage of using the fine-tuning
method is that this method is less time-consuming. This is because the training starts with the
weights of the pre-trained models (Xu et al., 2017).

2.6 IMAGE PRE-PROCESSING

2.6.1 Image classification

There are two main types of deep learning classification: supervised classification and
unsupervised classification. Supervised classification is used when the training set consists of
input features and an associated class label (Augusta, Deardon, & Taylor, 2019). It enables a model
to predict on never seen data, based on labelled input training data (Sen, Hajra, & Ghosh, 2020).
Supervised classification has proven to achieve state-of-the-art results on computer vision
classification tasks (Augusta et al., 2019). However, this type of classifications also has limitations.
First of all, the model is bound by the biases in which class it is classified. Although the model
teaches itself, is still bases its decisions on the supervised classes it is trained on. Secondly,
supervised classification often requires a huge manual effort in creating the labels. This manual
effort could cause a smaller train dataset (Shaikh, 2018). Moreover, fully supervised methods
could introduce biases during the classification.

In contrast to supervised methods, unsupervised classification does not require manual effort.
With this type of learning, all the given data is unlabeled. The goal of unsupervised learning is to
find underlying structures or distributions in the data (Brownlee, 2019c). Unsupervised learning
can result in finding patterns that humans normally would not find. The decision to use either
supervised or unsupervised learning depends on the characteristics of the dataset at hand, such
as the structure and volume of data and the use case of issue (Yin Low, 2020).

10

2.6.2 Data augmentation

As mentioned before, deep learning modelling requires a large dataset consisting of a large
number of training samples from which the model can learn. Perez & Wang (2017) state that the
more data a deep learning algorithm has access to, the more effective it can be. This is emphasized
by Ma et al. (2019), who state that a supervised deep learning model normally requires a great
number of training samples. As stated before, acquiring labelled data with the supervised
classification method is often a costly- and/or time-intensive task. In order to overcome this
problem, data augmentation techniques are used.

Data augmentation is a method that increases the amount of training data. Examples of
augmentation techniques are the following: rotating, mirroring, cropping, colour adjustment,
brightness adjustment, and contrast adjustment of the image dataset. The application of those
techniques creates an extensive training dataset, which includes not only the original data, but
also the augmented data. The application of data augmentation has shown to produce promising
ways to increase the performance of the model (Kamilaris & Prenafeta-Boldú, 2018). Data
augmentation is an especially useful method for models that consists of a small number of input
images (Sørensen et al., 2017).

11

3. METHOD

This section covers the various methods and techniques that were implemented to conduct the
proposed geo-computational workflow in this research. The workflow developed in this research
consisted of three phases: data preparation, model training, and workflow application. The main
steps are discussed in more detail in the general workflow description. After the general workflow
description, the method of each step is discussed separately.

3.1 GEO-COMPUTATIONAL WORKFLOW

This research proposed a geo-computational workflow that is able to automatically recognize
urban land cover classes with the use of deep learning on street view imagery. Figure 4 shows a
conceptual model of this workflow and its steps. The workflow started with the data preparation
step. This step was used for the extraction of the street view imagery. After the collection, the
street view images were cropped using cropping frames. Next, the data was labelled into four
different urban land cover classes: tiles, pavers, asphalt, and vegetation. To increase the image
dataset, the images were preprocessed with the use of data augmentation. The last step was to
resize the images to a size of 224 by 224 pixels, which is the required input size of the VGG-16
model.

The next step was the training of two training models: a model from scratch and a pre-trained
VGG-16 model. Before training the models, the images of the dataset were divided into three
separate datasets: training, validation, and test. This step was repeated several times in order to
train and test the models on different kinds of training input and hyper-parameters. Subsequently,
the pre-trained VGG-16 model was loaded and both model configurations were set. After the
training of the models, the model performances were tested on the previously created test dataset.
The performance was quantified with the use of the statistical measurements: accuracy, recall,
precision, and F1- score (see section 3.5.3). The model that had the best performance was used
for urban land cover classification, which was the last phase of this research. In the last phase, the
developed workflow was applied by classifying the urban land cover of the area of interest. The
images used for this application were collected with the same method as the model training
images. For the land cover classification, only the images that included the area of interest were
considered and used for classification. After the classification of the images, the predictions were
validated on reference data. The reference dataset that was used is the Basisregistratie
Grootschalige Topografie (BGT).

12

Figure 4. Conceptual model of the urban land cover classification workflow.

3.2 STUDY AREA

The area that was used for this research is the Dutch city Bergen op Zoom. This city is located in
the south-west of the Netherlands in the province Noord-Brabant, close to the border with
Belgium (Figure 5). The study area of this research was divided into three neighbourhoods in
Bergen op Zoom: two in the Zeekant district and one in the city centre. Those neighbourhoods
were chosen because the areas consist of multiple street cover types. This made those areas
suitable for this research.

Figure 5. The geographical location of the study area Bergen op Zoom.

13

3.3 RESEARCH TOOLS

In this research, several tools were used for the development of the workflow. ArcGIS Pro was
used for the exploration, preprocessing, analyzing, and visualization of the spatial data. Within
ArcGIS Pro, the add-in Globespotter, provided by the company Cyclomedia, was used. This add-in
enabled to open, visualize, and store 360° street view imagery. Moreover, with Globespotter was
it possible to display spatial data within the street view imagery. In addition, the programming
tool Python was mainly used for the automation of processes, data preparation and deep learning
processes. The main Python modules used were Keras, Arcpy, Pynput and Sklearn. Within Python,
Keras was used for deep learning tasks. Keras is a high-level neural networks API, which is written
in Python (“Keras Documentation,” n.d.). Furthermore, Arcpy is a Python package of ArcGIS that
enables Python to work with geographic data. Also, Pynput was used for controlling the positions
and actions of the mouse of the computer. Finally, the Python library Sklearn was used for the
interpretation of the deep learning model results. The used tools and software are summarized in
Table 1.

Table 1. Software and tools used to implement the proposed workflow in this research.

Software Implementation Notes
ArcGIS Pro Used for exploration,

preprocessing,
analyzing, and
visualization of data

License required

Python General programming,
data preparation,
deep-learning processes

Main modules used:
- Arcpy (Licensed)
- Keras (Open-source)
- Pynput (Open-source)
- Sklearn (Open-source)

Globespotter Visualization of
Cyclomedia street view
imagery in ArcGIS Pro

License required

3.4 DATA PREPARATION

3.4.1 Data collection

For this research, high-resolution street view imagery was used, which was provided by the
company Cyclomedia. The street view images, collected by Cyclomedia, consisted of 360°
panoramas including accurate location and orientation information. The images are annually
captured with an interval of five meters for every road accessible by car in the Netherlands
(“CycloMedia,” n.d.). The study area of this thesis included 1.100 image capture locations on which
a 360° image was extracted. The study area was divided into three areas (Figure 6). Two areas
were used for the training of the deep learning model and one area was used for the land cover
classification. Images in those areas are captured between the 20th of March and 24th of April 2019.

14

Figure 6. Street view image capture locations of the training area (top) and the testing area (bottom).

The Globespotter add-in (Table 1) lacks functionality to retrieve all available street view image
locations inside the study area imagery at once. This means that the data of Cyclomedia was not
directly available to use for this research. However, it was possible to open, view, and download
the imagery at every capture location in ArcGIS. To efficiently extract the required image data, an
automated script was created used within the ArcGIS Pro environment. In addition, the Python
library Pynput that allows to control and monitor the position of the mouse of the computer was
used. First, the script used the Python module Arcpy to select an image capture location. Next, the
corresponding 360° street view image was displayed by clicking on the image location.
Subsequently, a standard downward pitch and the zoom level of the camera was set. Next, the
camera vision was set into the direction of one of the eight cardinal directions which were North,
Northwest, West, Southwest, South, Southeast, East and Northeast. Finally, the image was saved
in the corresponding directory. This process was repeated for every image location within the
study area and for all cardinal directions with the ID of the image as the filename. This process
was done for 752 capture locations in the three areas and resulted in a dataset of 6.016 images.
The size of the collected street view imagery was 3.216 by 1.772 pixels.

15

3.4.2 Cropping frames

Before the extracted imagery was usable for training a deep learning model, pre-processing
techniques had to be applied. First of all, after extracting the images, it could occur that multiple
land cover classes existed within one image. In order to lower the chance of multiple classes and
to be able to classify land cover for different distances, image cropping frames were created. The
cropping frames cut out parts of the original images and resulted in smaller cropped images. In
this research, the size of the cropping frames was one by two meters. Several steps were required
to create those cropping frames. The first step was to choose a calibration location within the
study area. This calibration location was used to set the camera to the pitch and zoom level the
same as used for the image extraction. The next step was to create multiple squared buffers
around the calibration location. With the use of the Globespotter add-in, it was possible to
visualize the created buffers within the street view imagery (Figure 7). The buffers were created
in a range of one to seven meters and act as a reference for the cropping frames. During the
extraction of the street view imagery, the same pitch and zoom level were used. Because of this,
the cropping frames were always located at the position for every extracted street view image.
Figure 8 presents an example of the result of this method.

Figure 7. Example of multiple squared buffers ranging from one to seven meters.

16

Figure 8. Visualization of the created cropping frames: schematic top-view visualization of the squared buffers (top left),
schematic ground visualization of the squared buffers (top right), original street view image (bottom left), visualization

of the result after applying the cropping frames (bottom right).

3.4.3 Image labelling

The previous extraction and cropping led to a street view image dataset consisting of 6.016 unique
images. Cropping the images using the seven different cropping frames resulted in 42.112 unique
images. Due to time limitation, it was chosen to only use the images that are cropped by the three-
meter cropping frame. Only those images were used for training the model. After extracting and
the preprocessing the images, the three-meter cropped images were manually labelled based on
human expertise using Python. In this manual method, each individual image was displayed and
a specific land cover class was given. The labels that were given consisted out of three main
classes, which were open pavement, closed pavement and vegetation. Open pavement can be
described as a road surface that is made of separate elements such as pavers or tiles. In the
Netherlands, tiles are commonly made of concrete and used for sidewalk pavement
(“Geostandaarden - Tegels,” n.d.). The second class was pavers. In the Netherlands, many different
types of pavers exist. In general, pavers are smaller than tiles and have an average size of 10 by
25 centimetres. Closed pavement is defined as asphalt what is made from asphalt concrete or
other materials bound with bitumen (“Geostandaarden - Asphalt,” n.d.). At last, the class
vegetation was given for every type of greenery that exists. In this thesis, no distinction was made
between different types of vegetation. Figure 9 shows examples of images of the classes asphalt,
pavers, tiles, and vegetation that were used in this research.

The labelling of the images resulted in a dataset of 3.650 images. However, the created dataset
appeared to be unbalanced: the class pavers was over-presented. Hensman & Masko (2015) found
a relationship between the large imbalances and low performances when some classes were over-
represented. To avoid the problem of an unbalanced dataset, it was chosen to only use a maximum
of 500 images for each class for the training of the CNN. In addition, multiple image datasets
consisting of different amount of images were created. This was done to see how the performance
of the trained models responded to different image dataset sizes. Table 2 shows the number of
images per class for every used dataset.

17

Figure 9. Examples of the labelled image dataset. It totally contains of 3.500 images of the urban land cover classes tiles,
pavers, asphalt and vegetation.

Table 2. Overview of the labelled image datasets.

Dataset Tiles Pavers Asphalt Vegetation

Original dataset (N = 3.500) 635 2025 498 492

Dataset 1 (N= 400) 100 100 100 100

Dataset 2 (N= 800) 200 200 200 200

Dataset 3 (N= 1.200) 300 300 300 300

Dataset 4 (N= 1.600) 400 400 400 400

Dataset 5 (N= 1.992) 500 500 498 492

18

3.4.4 Data augmentation

Due to the large size and complexity of the used CNN, the need existed to artificially expand the
dataset in order to both maximize the benefits of fine-tuning and to minimize the risk of
overfitting. In order to expand the images of the dataset, data augmentation techniques were
applied. The goal of data augmentation is to make the model more robust.

For the initial training of the model, the previously collected images were used. Hereafter, several
data augmentation methods were used to increase the image dataset in order to improve the
performance of the models. Data augmentation adds value to the base dataset by providing extra
information derived from the base dataset. The horizontal and vertical flipping of the image was
done to increase the number of images in the initial dataset. Moreover, brightness and colour
changes were applied. This helped to train the model in such a way that it could predict on images
that are slightly different than the original training data, due to shadowing effects for example.
Figure 10 shows examples of the result of data augmentation. After data augmentation, the
training dataset was increased to 9.960 images.

Figure 10. Examples of data augmentation: 1. Original; 2. Horizontal flip; 3. Vertical flip; 4. Horizontal and vertical flip; 5.
Rotation 90*; 6. Brightness decrease 50%; 7. Brightness increase by 50%.

19

3.5 MODEL TRAINING

3.5.1 Model preparation

The previous steps have led to a large labelled image dataset. This created image dataset was used
as input of the model training. A CNN requires three different datasets: a training dataset, a
validation dataset, and a test dataset. A training dataset consists of images that are used to train
(fit) the model. The model tries to find patterns in the training dataset and it validates itself on the
validation dataset. A test dataset consists of data that the model has never seen before. The
weights of the trained model are used to make a prediction on the test dataset. For this research,
the image dataset was split into 90% training dataset and 10% as test dataset. The training dataset
was split into 80% training data and 20% validation data.

3.5.2 Model architecture

In this research, the pre-trained VGG-16 model was fine-tuned. This pre-trained model is trained
on more than a million images and is able to classify on 1.000 different scene categories of the
ImageNet database (MathWorks, 2019). VGG-16 has already proved to provide satisfactory
performances in multiple cases. This is substantiated by Yu et al. (2016) who compared the VGG-
16 network with AlexNet. Yu et al. (2016) conclude that unlike VGG-16, AlexNet retains more
unrelated background information in last convolutional layer. This retaining of unrelated
background information often disturbs the final prediction. However, there is also a drawback of
using the VGG-16 model. The computational power that is required for this model is higher than
other networks such as AlexNet and GoogLeNet (Siegmund, Prajapati, Kirchbuchner, & Kuijper,
2018). This due to the fact that VGG-16 has a greater number of parameters which is more
expensive to evaluate and requires a large amount of memory in optimizing the learning
parameters.

The VGG-16 network consists of sixteen weighed layers: thirteen convolutional layers, five max-
pooling layers, and three fully-connected layers (Table 3). The main contribution of Siegmund et
al. (2018), is the usage of small convolutional filters (3x3) which proved remarkable improvement
on the prior-art configurations. Also, the model applies the rectified linear unit (RELU) as the
activation function for all convolutional layers and uses group regularization in the fully-
connected layers file (Siegmund et al., 2018). Table 3 presents an overview of the architecture of
the pre-trained VGG-16 network. To classify images of a more limited dataset, VGG-16 can be used
as a starting point from which transfer learning can be applied. The required input size of VGG-
16 is 224x224x3. In this case, the 224 stands for the number of pixels and the 3 for the number of
bands (RGB) in the image. The last layer of the VGG-16 was replaced for a SoftMax layer. This
output layer results in a probability number for each class and sums up to a total of 1.

20

Table 3. Overview of the architecture of the fine-tuned VGG-16 network.

Layer (type) Output Shape Param
Conv2D 224,224,32 1792
Conv2D 224,224,64 36928
MaxPooling 112, 112, 64 0
Conv2D 112, 112, 128 73856
Conv2D 112, 112, 128 147584
MaxPooling 56, 56, 256 0
Conv2D 28, 28, 512 1180160
Conv2D 28, 28, 512 2359808
Conv2D 28, 28, 512 2359808
MaxPooling 14, 14, 512 0
Conv2D 14, 14, 512 2359808
Conv2D 14, 14, 512 2359808
Conv2D 14, 14, 512 2359808
MaxPooling 7, 7, 512 0
Flatten 25088 0
Fully Connected 4096 102764544
Fully Connected 4096 16781312
SoftMax 4 4004

Although several pre-trained image classification models exist, the models are usually not trained
on images of urban land cover classes. Due to the previously described disadvantages, a new CNN
configuration was developed from scratch. The goal of this was to see what the performance of a
non-trained model can be. This new model consisted of two convolutional layers, one max-pooling
layer, and three fully-connected layers (see Table 4). In the convolutional layers, as explained
before, filters of the size 3x3 slide over each image. The same image input size as the VGG-16
model was used, which is 224x224x3. A flattened layer was included because the convolutional
layer is a 2D layer and the fully connected layer requires a 1D layer. The activation layer was RELU
and for the last fully connected layer a SoftMax layer was used. The optimizer of this model was
Adam, with a learning rate of 0.0001. Finally, to prevent over-fitting from occurring, early stopping
was applied. Overfitting occurs, according to Ling (1995), when the error on the testing sample
increases if training goes on for too long. Therefore, training was stopped at the most optimal
point, rather than allowing to proceed until the training error was as small as possible. Also, to
decrease the training time of the model, two dropout layers were included. Those layers consist
of settings to zero the output of each hidden neuron with probability 0,1(Krizhevsky et al., 2012).

Table 4: Overview of the architecture of the scratch model.

Layer (type) Output Shape Param
Conv2D 222,222,32 896
Conv2D 220,220,64 18496
MaxPooling 110, 110, 64 0
Dropout 110, 110, 64 0
Flatten 774400 0
Fully Connected 256 198246656
Dropout 0,1 0
Fully Connected 128 32896
Dropout 0,1 0
Fully Connected 4 516

21

3.5.3 Model performance

To evaluate the performance of both modes, an accuracy assessment was conducted. This was
done by the statistical parameters accuracy, recall, precision, and F1 score. The previously defined
test dataset consisting of 10% of the original train dataset, was used for this evaluation. In order
to do so, a confusion matrix was used where a prediction could be either a True Positive (TP),
False Positive (FP), True Negative (TN), or False Negative (FN). Where True Positive is the number
of images that are correctly classified, False Positive is the number of images that are classified as
true while being false. True negative is the number of images that are correctly rejected. False
Negative is number of images that are classified false while being true.

First of all, accuracy (A) is the fraction of the prediction of the model that is correct. In other words,
the accuracy can be defined as the number of correct predictions divided by the total number of
predictions. The overall accuracy is given in percentages and indicates 100% when all images are
classified correctly. Accuracy is mathematically defined as follows:

(1) 𝐴𝐴 =
𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇 + 𝐹𝐹𝑇𝑇
.

Accuracy is not the only performance measurement method that needed to be considered. This is
due to the fact that the performance differs per class. Three more methods were used to measure
the performance of the model which are recall, precision and F1- score. Those measures are
computed from the elements of the confusion matrix.

Recall (R) can be described as the fraction of the total amount of true positives that are found. The
precision (P) of a model can be defined as the fraction of positive instances which was correct. In
other words, recall measures how many truly relevant results are predicted, and precision
measures the relevancy of the result (“scikit-learn - precision and recall,” n.d.). Recall and
precision are mathematically defined as follows:

(2) 𝑅𝑅 =
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇
 (3) 𝑇𝑇 =

𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇

.

The last measure that was considered is the F1-score. The F1 is the weighted average of recall and
precision (Huang, Wang, & Abudureyimu, 2012). This method results in a score between 0 and 1,
where 0 is the lowest possible score and 1 the highest possible score F1-score is mathematically
defined as follows:

(4) 𝐹𝐹1 − 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 =
𝑅𝑅 ∗ 𝑇𝑇
𝑅𝑅 + 𝑇𝑇

 ∗ 2.

22

3.6 MODEL APPLICATION

In order to check whether the workflow was able to classify urban land cover, a prediction of the
land cover was done with the use of the best performing deep learning models. This section covers
the method that was used for the prediction and validation of the land cover classification. For the
classification, the area of interest, the image capture location of the test area, and the weights of
the best performing CNNs were used. The classification resulted in predicted land cover classes
in the test area. After the classification, the urban land cover predictions were validated on
reference data.

3.6.1 Classification

In this research, the area of interest was the urban land cover above a hypothetical cable network,
which was stored as a shapefile, within the study area. Normally, the cables are located one meter
below the surface. This cable network was a feature line and each element of the feature line was
split on every two meters. The total length of this network within the study area is 4,3 km and is
visualized in Figure 11. In addition, the test area consistst of 504 image capture locations.

Figure 11. Visualization of the test area including the image capture locations and the used cable network.

The first step of the classification was to calculate both the distance and angle between the capture
location and the cable network. By doing this, the street view image that contains the area of
interest could be selected. Both distance and angle were calculated with the use of the tool ‘Near’
in ArcGIS. This tool calculates the distance and additional proximity information between the
input features and the closest feature in another layer or feature class (“Pro.ArcGIS.com,” n.d.)
(Figure 12). Other variables that can be calculated with this tool are the location and the angle of
the nearest feature. The location is given by x and y coordinates and the angle is within the range
of -180° to 180°, with 0° to the east, 90° to the north, 180° (or -180°) to the west, and -90° to the
south (“Pro.ArcGIS.com,” n.d.). To prevent incorrect calculations, it is essential that both input and
near features are projected in the same coordinate system.

23

This information was used for the street view image extraction of the test area. For the training
images were all eight cardinal directions used. However, for the test area, we were only interested
in the image facing the area of interest: the cable network. With the information from the
previously calculated angle, it was possible to select only the locations that were facing the area
of interest, including the corresponding direction. This method significantly reduced image
extraction time because not all eight cardinal directions were required. The result of this method
was information about the image capture locations that were closest to the features, the distances
between the capture locations and features of interest, and in which the direction the camera
should be facing. Combining those three inputs resulted in a cropped image containing the nearest
feature.

Figure 12. Visualization of the tool Near (“Pro.ArcGIS.com,” n.d.).

3.6.2 Validation

The next and final step was to validate the previous predicted urban land cover classes. This was
done by comparing the results of the prediction with reference data. This validation was done
with the use of an accurate, already existing land cover map. The existing land cover map used in
this research was the topological map of the Dutch national ‘basic registry’ called: Basisregistratie
Grootschalige Topografie (BGT). Data providers, such as municipalities and organizations, are
responsible for maintaining the topographical information in this registry (“Digitaleoverheid,”
n.d.). The BGT contains object definitions of roads, water, land use/ land cover, bridges, and
tunnels. The BGT was used as the validation source because the registry includes the same classes
as used in this research. In this case, the BGT was a suitable validation source because the registry
is accurate and up-to-date in the study area. However, this is not always the case for the whole of
the Netherlands. By comparing the predicted urban land cover classes with the BGT data, the
model could be validated on true data.

In order to be able to validate the predictions, the BGT classes were joined on the cable segments
separately. First, the BGT was converted to a raster layer, with a cell size om 10 centimetres.
Secondly, the tool zonal statistic was used to calculate statistic on the values of the BGT raster
within the zones of the cable network. The calculated median was used for the assignment of the
BGT class of the segments of the cable network.

The BGT classes of each cable segment are shown in Figure 13. This figure shows that the cable
network consisted of 15 asphalt segments, 884 paver segments, 1.578 tile segments, and 200
vegetation segments.

24

Figure 13. The urban land cover of each segment of the cable network retrieved from the BGT.

3.7 RESULTS PRESENTATION

In order to monitor the performance of the learning models, a learning curve was used. According
to Anzanello & Fogliatto (2011), learning curves are considered to be effective tools for
monitoring the performance of models learning a new task. In addition, a learning model
behaviour can be diagnosed using the shape and the dynamics of a learning curve (Brownlee,
2019b). A learning curve is a line-pot with the number of epochs (time) on the x-axis and the
learning or improvement on the y-axis. The plot consists of the learning curve of both the training
and validation of the model. The train learning curve indicates how well the model is learning on
the training dataset. Likewise, the validation learning curve indicates how well the model is
generalizing on the validation dataset (Brownlee, 2019b). In addition, the train and validations
curves are plotted for both accuracy and loss. The model loss is a number that indicates how the
model’s prediction was over a single epoch. If the model’s predictions are perfect, the loss is equal
to zero. The model loss is plotted for both the train and the validation loss.

For the presentation of the results, several methods were used. First of all, a confusion matrix was
used to report the number of predictions of the urban land cover classification model (Figure 14).
This confusion matrix was based on the amount of True and False Positive and negative
predictions. The vertical axis represents the true images labels and the horizontal axis represent
the labels of the predicted images. The confusion matrix was used for both testing the
performances of the trained models and for the validation of the land cover classification. From
the constructed confusion matrices, the validation measures accuracy, precision, recall and F1-
scores were calculated and presented in a table.

25

Figure 14. Example of a confusion matrix. The green tiles are either True Positives or True Negatives. The red tiles are

either False Positives or False Negatives.

In addition, the results of the urban land cover classification of the test area are visualized with
the use of maps. Those maps consist of the cable network segments including the predicted urban
land cover. Also, along with the maps, a graph is provided that shows the count of cable segments
per classified class. For visualization purposes, only a part of the cable network is presented in the
maps. The complete maps are presented in Appendix C, D and E.

26

4. RESULTS

In this chapter, the results of this research are presented. First, the training process of the models
is discussed. Secondly, the performances of the trained models are shown. In addition, accuracy,
recall, precision and F1-score are the measures that are discussed. Furthermore, the results of the
urban land cover classification are shown. Finally, the performances differences between the
different image distances are compared.

4.1 MODEL TRAINING

4.1.1 Scratch model

For visualization purposes, only the learning curves of the model trained on the 500-dataset are
shown in Figure 15. The learning curves of the other scratch models are shown in Appendix A.1,
where both training and validation accuracy and loss are plotted. The learning curves show that
the train accuracies of the models slowly increased to a maximum of 96%. This means that the
model was able to generalize of 96% of the training dataset. Furthermore, the validation accuracy
of all models fluctuated a lot between 45% and 55 %. Remarkable is that the validation accuracy
of dataset-1 appeared to reach the highest of all, namely 67%. The difference between the training
and validation accuracy suggests that parts of the learned patterns specific to the training data
were not relevant to the validation data.

The accuracy of the train model increased when the dataset size increased. The opposite applied
to the train loss. The train loss of the smallest dataset size started at an error of 345, and the train
loss of the largest dataset size started at 55. Over the epochs, the train loss of all models decreased
slowly until a minimum of 0.3. The validation loss of most models decreased to a value of 0.5, but
fluctuated over the epochs between 1.5 and 0.5. The fluctuation of the validation accuracy and loss
suggests that over-fitting of the model was occurring. Although the model seems to fit the training
data well, the model appeared not to be able to generalize on new data. Lastly, the model runtime
increased when the size of the dataset increased. The exact runtime of each model is shown in
Table 5.

Figure 15. Learning curves model accuracy (left) and model loss (right) of the scratch model trained on the 500-dataset.

27

4.1.2 VGG-16 model

The second model that was trained is the pre-trained model VGG-16. The learning curves of both
model accuracy and model loss are visualized in Figure 16. The models train accuracy slowly
increased until a maximum of 58%. The validation accuracy followed the same pattern, but this
accuracy did not rise above 47%. Remarkably, the model train loss started at 1.39 and constantly
decreased to 1.33 over the epochs. The validation loss, however, fluctuated a lot between a loss of
1.35 and 1.43. The total runtime of this model was 8.500 seconds.

Figure 16. Learning curves model accuracy (left) and model loss (right) of the trained VGG-16 model.

4.1.3 Augmented models

In this section, the learning curves of the models trained on the augmented image dataset are
presented. With the use of data augmentation, the largest labelled image dataset was increased
from 1.992 to 9.960 images. This was done with the use of horizontally and vertically flipping the
images and changing the brightness of the images. Unlike the non-augmented models, the models
were trained for 10 epochs. This was done due to the long-runtime of the augmented models. The
learning curves of the augmented models of both the model from scratch and the pre-trained VGG-
16 are presented in Figure 17 and Figure 18.

First of all, the scratch model train accuracy started at a percentage of fifty-six. This accuracy
slowly increased to a maximum of 95% at the end of the tenth epoch. The validation accuracy
started at 65%. Hereafter, this accuracy increased to 71% over the next two epochs. After this, the
validation accuracy slowly decreased. At the last epoch, the validation accuracy increased to a final
70%. Furthermore, the model train loss started at an error rate of 30. After the first epoch, the
loss rapidly decreased to 1 and remained at a constant level over the following epochs.

28

Figure 17. Learning curves model accuracy (left) and model loss (right) of the scratch model trained on augmented

images.

Figure 18. Learning curves model accuracy (left) and model loss (right) of the VGG-16 model trained on augmented

images.

Table 5. Summary of the training process of the trained models.

Model 100 200 300 400 500
500-
aug

VGG-
16

VGG-
16 aug

Train accuracy 95% 96% 97% 97% 97% 95% 58% 56%
Validation accuracy 66% 58% 55% 55% 54% 71% 46% 53%
Train loss (error) 0.5 0.5 0.5 0.5 0.5 0.1 1.33 1.27
Validation loss (error) 0.5 0.5 0.5 0.5 0.5 0.3 1.35 1.21
Runtime per epoch (seconds) 400 450 500 550 600 4800 600 3200

29

4.2 MODEL PERFORMANCE

After the training of the models was done, the trained models were used to classify the land cover
in images of the previously defined test image dataset. In this section, the model performances are
shown and discussed. This is done for the scratch models and VGG-16 model separately.
Furthermore, the results of the models that are trained on the augmented dataset are shown and
compared with the non-augmented results. All models were tested on the same test dataset,
containing 200 images (50 per each land cover class). Among those models, the best performing
model was used for generating urban land cover maps.

4.2.1 Models from scratch

In order to see the effect on the performance of the models trained on different image dataset
sizes, predictions were made on the test image dataset. Figure 19 presents those predictions made
by the models separately. In addition, the performance scores of the models are summarized in
Table 6. Remarkably, the accuracy appeared to increase when a larger training dataset size was
used. Likewise, the F1-score of the trained models showed a higher score when a larger training
dataset was used. The best performance can be found in the 500-dataset, where the accuracy
resulted in 76%. It should be noted that the accuracy, recall and precision of the 100-dataset were
higher than the performance of the 200-dataset. However, the F1-score of both models resulted
in 65%. Overall can be stated that the larger the dataset size the better the performance of the
model. The model with the best performance was the model that is trained on the 500-dataset.
This model is from now on referred to as the ‘scratch’ model. The details of this best performing
scratch model are discussed in more detail in the following paragraph.

Figure 19. Confusion matrices of the predictions resulting from the models trained on different dataset sizes.

30

 Table 6. Performance scores of the model trained on different dataset sizes.

Measure 100 200 300 400 500
Accuracy 67% 66% 68% 70% 76%
Recall 72% 66% 68% 72% 76%
Precision 67% 66% 70% 70% 76%
F1-Score 65% 65% 69% 70% 76%

The model trained on the 500-dataset had a varying degree of success according to the statistical
measures. First of all, the overall accuracy of this model was 76%. This means that 152 out of 200
images were predicted correctly. The results of the model training, presented in Table 7, show a
remarkably high performance of the vegetation class, with a precision score of 1 and a recall score
of 0,98. This resulted in an F1-score of 99%. This means that the model was able to accurately
predict land cover in vegetation images. The model, however, had more difficulties with the other
three classes. The second-best performing class was asphalt. For this class, 36 out of 50 images
were correctly predicted as asphalt. The recall score of this class was 0,71 and the precision was
0,72. Furthermore, the models appeared to have the most difficulties with classifying the classes
pavers and tiles. The tile class had an accuracy of 72%: 34 out of 50 images were correctly
classified. Also, this class had the lowest recall score of 0,63 and a precision score of 0,68.

Table 7. Performance scores of the scratch model trained on the 500-dataset.

4.2.2 Augmented scratch model

In this section, the results of the models that are trained on the augmented image dataset are
discussed and compared with the model trained on non-augmented data. To start with, the overall
accuracy of the augmented scratch was 73%. In total, 147 out of 200 images were predicted
correctly. First of all, the predictions of this model for the vegetation class were similar to the
predictions made by the non-augmented scratch model. However, this augmented model
classified 4 vegetation images as a different land cover type. The second-best performing class
was asphalt. There were 35 asphalt images classified correctly. The recall and precisions scores
were respectively 0,76 and 0,70. In contrast to the non-augmented scratch model, the tile class
performed better than the paver class. Also, the F1-score of tiles was slightly higher than the score
of the pavers. Remarkable is that the recall score of the tiles class was relatively high (0,80), and
the precision was relatively low (0,53). The opposite applied to the scores of the paver class: 0,52
for recall and 0,79 for precision. The model appeared to have the most difficulties in classifying
the difference between both classes. The predictions of this model are reported in Figure 20 and
the performance scores of this model are presented in Table 8.

Class Recall Precision F1-Score
Tiles 0,63 0,68 0,65
Pavers 0,73 0,64 0,68
Asphalt 0,71 0,72 0,71
Vegetation 0,98 1,00 0,99
Accuracy: 0,76

31

Figure 20. Confusion matrix of the predicted image classes of model trained on augmented images.

Table 8. Performance scores of the scratch model trained on augmented images.

Class Recall Precision F1-Score
Tiles 0,80 0,53 0,64
Pavers 0,52 0,79 0,63
Asphalt 0,70 0,76 0,73
Vegetation 0,92 1,00 0,96
Accuracy: 0,73

Table 9 presents the performances of both the non-augmented scratch model and the augmented
scratch model. The main difference between the non-augmented model and the augmented model
is the overall model accuracy: 76% for the non-augmented model over 73% for the augmented
model. In addition, the augmented model resulted in a lower score of the overall accuracy (73%),
recall (63%), and F1-score (74%). However, the precision of the augmented model scored 1%
higher. This is mainly due to the higher precision of the paver and asphalt classes.

Table 9. Comparison of the performances between the non-augmented and augmented scratch model.

Measure
Non-augmented
scratch model

Augmented scratch
model

Accuracy 76% 73%
Recall 76% 73%
Precision 76% 77%
F1-Score 76% 74%

32

 4.2.3 VGG-16

The model trained based on the pre-trained VGG-16 is tested on the same images as the scratch
models. The results of the predictions made by the VGG 16 are presented in (Figure 21). The
overall accuracy of this model is 26%, which is significantly lower than the accuracy of the scratch
model. Remarkably, only one image is classified as tiles. Moreover, this classification appears to
be a False Positive classification. Apparently, during the training, this model was not able to find
patterns in images of tiles. The best performances of this model can be found for the asphalt class,
with F1-score of 0,37 (Table 10).

Table 10. Performance scores of the VGG-16 model trained.

Class Recall Precision F1-Score
Tiles 0,00 0,00 0,00
Pavers 0,30 0,33 0,31
Asphalt 0,52 0,29 0,37
Vegetation 0,26 0,21 0,23
Accuracy: 0,27

Training the VGG-16 model on the augmented images had a negative effect on the performance of
the pre-trained model. The predictions and performances of this model are presented in Figure
22 and Table 11 respectively. The augmented VGG-16 model resulted in an accuracy of 24%,
which is 2% lower than the model trained on non-augmented images. Figure 22 shows that the
images were mainly predicted as asphalt and vegetation. Also, compared with the non-augmented
VGG-16 model, more images were predicted as tile. This resulted in a F1-score of 0,06 of the tile
class. It should be noted that the vegetation class, with a F1-score of 0,33, was the best performing
class of this model.

Figure 21. Confusion matrix of the predicted image classes the VGG-16 model.

33

Figure 22. Confusion matrix of the predicted image classes the VGG-16 model trained on augmented images.

Table 11. Performance scores of the VGG-16 model trained on augmented images.

Class Recall Precision F1-Score
Tiles 0,04 0,17 0,06

Pavers 0,12 0,30 0,17
Asphalt 0,38 0,21 0,27

Vegetation 0,42 0,28 0,33
Accuracy: 0,24

4.3 URBAN LAND COVER CLASSIFICATION OF TEST AREA

4.3.1 Near distance and angle

In this section, the results of the application of the workflow are shown and discussed. Based on
the previously trained CNN, the urban land cover in the study area is predicted. This was done for
the cable network which was introduced in section 3.6. The cable network of the test area consists
of 2.929 segments of two meters. For every cable network segment, the distance to the nearest an
image capture location was determined with the method described in section 3.6.1 function. Only
the segments located within a range of 7,5 meters from the image capture locations were
considered. The total number of cable segments located within this range was 1.099. Remarkably,
most segments (402) were located within a range of 3,5 to 4,5 meters. Furthermore, the angle of
every cable network segment to the nearest image capture location was determined. Only the
segments located within a range of 7,5 meters of the locations were considered. The distribution
of the cardinal directions appeared to be balanced for the test area. Although, the north direction
is overrepresented and the southwest direction is underrepresented. Figure 23 shows the
distribution of the near distances and cardinal directions of the segments.

34

4.3.2 Urban land cover prediction

In order to be able to predict urban land cover for the image capture location, street view images
of the test area were collected and cropped according to the method described in section 3.4. The
previously calculated distance and angle were used for this process as well. Furthermore, the
weights of the scratch model were used for urban land cover prediction. This process resulted in
a land cover classification for every extracted and cropped street view image. The land cover
predictions resulting from the model were joined on the cable network. Lastly, in order to see the
effect of data augmentation on the performance, the weights of both CNN models with and without
data augmentation were used.

The predicted urban land cover is visualized in Figure 24. In total, urban land cover was predicted
for 1.099 segments. From the graph can be learned that the predicted urban land cover of this
area mainly consists of pavers, tiles, and vegetation. In more detail, the model predicted 5 asphalt
segments, 289 pavers segments, 517 tiles segments and 288 vegetation segments. 1.100 segments
were not classified since no corresponding image capture locations were found close enough to a
cable segment.

Figure 23. Maps of the spatial distribution of the Near distance (top) and angle (bottom). Besides the maps, graphs are
presenting the count of the cable segments per distance and angle.

35

The classified urban land cover resulting from the augmented model is visualized in Figure 25.
The classified land cover of this model consists of 34 asphalt segments, 297 paver segments, 611
tiles segments and 157 vegetation segments. Table 12 presents the differences between the
amount of non-augmented and the augmented model classifications per land cover class. First of
all, the number of predicted paver classes was similar for both models. However, more differences
were present for the other classes. The most striking differences occurred for the asphalt and
vegetation class. In comparison to the non-augmented model, the augmented model classified 34
asphalt segments, while the non-augmented model classified 5 asphalt segments. Furthermore,
the augmented model classified 157 asphalt segments, while the non-augmented model classified
288 asphalt segments.

Figure 25. Visualization of the predicted urban land cover of each cable segment by the augmented model.

Figure 24. Visualization of the predicted urban land cover of each cable segment by the non-
augmented model.

36

Table 12. Summary of the number of predicted images per class by the non-augmented model and the augmented model.

Class
Non-Augmented
model

Augmented
model

Tiles 517 611
Pavers 289 297
Asphalt 5 34
Vegetation 288 157

4.4 URBAN LAND COVER VALIDATION

In this section, the result of the validation of the previously classified urban land cover of the test
area is presented. Furthermore, the performances of the models per distance were validated.
Finally, the validation of both non-augmented and augmented are compared.

4.4.1 Non-augmented model validation

Figure 26 shows both true and false predictions of previously predicted urban land cover classes.
The overall accuracy of the model is 52%: 520 predicted land cover classes were correct and 480
predicted land cover classes were incorrect. The performance of the model, however, differed per
class and is summarized in Table 13. The confusion matrix, presented in Figure 27, shows that
many tiles were predicted as pavers and many pavers as tiles. The lower performance of the
prediction of tiles and pavers could be attributed to their relatively similar spectral properties. It
should be noted that, according to the BGT, the asphalt classes were barely present in the test
area. Therefore, the performance of asphalt is not a fair representation. However, it is noteworthy
that the model did not predict asphalt for images of the other classes.

Figure 26. Visualization of the true and false predictions of the urban land cover classification.

37

Figure 27. Confusion matrix of the urban land cover predictions classified by the non-augmented model.

Table 13. Performance scores of the urban land cover classification model.

4.4.2 Performance per distance

Although the models were trained on the labelled three-meter images, the urban land cover of
other distances was predicted as well. To examine the usefulness of the model more thoroughly,
its performance on different distances was examined. If the model can classify urban land cover
for different distances and is not limited to land cover on exactly three-meter, the model would be
more robust and could be easier be implemented in a real-world application. The confusion
matrices of the different distances and the performances are visualized in Appendix B.1. It should
be mentioned that for some distances the land cover class asphalt was not included in the
confusion matrix. This is because no asphalt existed and/or was predicted for this distance. First
of all, Table 14 shows that the model performed the best on images located at a three-meter
distance. The accuracy of this distance was 70%. Secondly, the one-meter and two-meter
distances performed the worst, with an accuracy of 15% and 4%. This can be explained by the fact
that the images of those distances are too close to the car on which the camera is installed.
Furthermore, the accuracy of the distances greater than thee-meter had an accuracy ranging
between 47% and 55%.

Table 14. Overview of the performance measures per distance.

Measure Overall 1 meter 2 meters 3 meters 4 meters 5 meters 6 meters 7 meters
Accuracy 52% 15% 42% 70% 52% 49% 55% 51%
Precision 58% 94% 63% 72% 57% 47% 61% 67%
Recall 52% 15% 42% 70% 52% 49% 55% 51%
F1-score 53% 21% 50% 70% 51% 47% 55% 53%

Class Recall Precision F1-score
Tiles 0,63 0,59 0,61
Pavers 0,37 0,62 0,47
Asphalt 0,25 1,00 0,40
Vegetation 0,76 0,26 0,39
Accuracy: 0,52

38

The difference in performances per distances is substantiated in the graphs in Figure 28. Those
graphs show the F1-score for the distances per class separately. Similar to the model its overall
performance, the highest F1-scores of the classes tiles, pavers and vegetation were reached for
the three-meter distances. This was not the case, however, for the asphalt class. This is because
no BGT asphalt class existed for the three-meter segments.

4.5.2 Augmented model validation

The results of the validation of the classifications made by the augmented model are presented in
Figure 29 and Figure 30. The accuracy of the augmented scratch model was 54% (Table 15). The
predictions of the augmented trained scratch model seem to reflect the same pattern as the
classification of the non-augmented scratch model. Remarkably, the performance scores of the
asphalt appeared to be zero. This is because no asphalt segment was correctly classified by this
model. Moreover, the augmented model predicts 29 False Positive asphalt classes.

Figure 29. Visualization of the true and false predictions of the urban land cover classification of the augmented model.

Figure 28. F1-scores per distance visualized for the four urban land over classes tiles, pavers, asphalt and vegetation.

39

Figure 30. Confusion matrices of the classifications of the images classified by the model trained on augmented images.

Table 15. Performance scores of the urban land cover classification model trained on augmented images.

Class Recall Precision F1-Score
Tiles 0,68 0,55 0,61
Pavers 0,39 0,63 0,48
Asphalt 0,00 0,00 0,00
Vegetation 0,68 0,46 0,55
Accuracy: 0,54

Table 16 shows the weighted average of the performance measures of both non-augmented and
augmented models. In comparison, the augmented model had a 2% higher accuracy, 2% higher
recall and 1% higher F1-score than the non-augmented model. In contrast, the precision of the
non-augmented model appeared to be 1% higher than the augmented model.

Table 16. Summary of performances of the urban land cover classification by the non-augmented model and the
augmented model.

Measure Non-augmented model Augmented model
Accuracy 52% 54%
Precision 58% 57%
Recall 52% 54%
F1-score 53% 54%

40

5. DISCUSSION

This research aimed to develop a geo-computational workflow that is able to classify urban land
cover. The results of this research shown that a convolutional neural network trained from scratch
is capable of classifying urban land cover on a highly challenging dataset using purely supervised
learning. Although this research has accomplished a workflow that is able to classify land cover
based on street view imagery, the issue deserves further additional research. The following
sections address multiple suggestions for improvement for future work.

First of all, this research was done for specific study areas in the Dutch city Bergen op Zoom. The
proposed workflow performed successfully in this area. However, especially in the Netherlands,
the characteristics of street cover, such as design, structure, and texture, can differ substantially
between cities, districts, and even neighbourhoods. At this stage of research, it is uncertain how
the workflow performs in other areas. In future research, it would be interesting to see how the
model responds to the different characteristics of urban land cover in different areas. Elaborating,
the images that were used during this research are captured within a short time period under the
same weather and light conditions. This is a disadvantage because this decreases the robustness
of the model. With the use of data augmentation, different light conditions were simulated.
However, this does not cover all different conditions such as rain or shadow effects. In future
research, it would be interesting to see how the workflow performs in a different city and under
different weather conditions.

The second improvement refers to the size of the dataset that was used for this research. The
image extraction and cropping method provided a large image dataset that can be used for
training the models. However, a significantly high amount of images were not useable for training
due to the random extraction of the street view imagery. This random extraction resulted in
images that include, for example, multiple classes or contained classes that were not used for this
research. The result of the random extraction was an image dataset with unbalanced classes. At
this point, the training image dataset consisted of 7.345 images, of which only 25% was usable for
the training of the model. In future research, the street view extraction method could be improved
by only extracting images that include the land cover classes of interest. For example, this could
be done with the use of the reference map (e.g. BGT) and calculating the angle and distance to the
land cover of interest. After combining the results of that calculation, street view images that are
facing the land cover of interest could be extracted. Extending the training image dataset with
more labelled images could help to increase the performance of the CNN.

In this research, the models were trained to recognize images the urban land cover classes tiles,
pavers, asphalt, and vegetation. However, there are more types of urban land cover that can be
classified such as bare ground, water, different types of vegetation, decorative pavement, stones
and marble stones. Further research could integrate the other classes in the model. In addition,
the street view data used for this research is annually collected for every accessible road in the
Netherlands. In further research, land cover change over time could be measured using this
workflow when historical images are available. With the use of those historical images, urban land
cover change over time could be analyzed.

Furthermore, the model architecture of the used deep learning models could be improved. This
study used two different training models: one model built from scratch and one pre-trained model
(VGG-16). There exist more pre-trained models that can be used. It would be interesting to see
how the performance differs when other pre-trained models are used. Moreover, the model from
scratch consisted of three convolutional layers, two pooling layers, and two dense layers. Although
the performance of the model is satisfying, further research could try to find another model

41

architecture that results in a higher performance of the model. This can be done by adding more
convolutional or pooling layers for example. There is not a rule that states how many layers should
be added to the model. Every model acts differently due to different input data. More experiments
should lead to a more optimal model architecture.

A limitation of this research is the size of the area that can be classified. This study was bound to
the accessibility of roads in an area. Moreover, solely land cover with a maximum range of 7
meters from the capture location was classified. In order to overcome this issue, the workflow
could be extended with the use of high resolution (about 10 cm) aerial imagery. Previous
researches have argued that high-resolution aerial imagery is able to classify land cover. However,
in urban areas top views may be blocked which make street view image classification necessary.
A combination of both street view and aerial imagery could make it possible to classify urban land
cover that exists outside of the seven-meter range.

Furthermore, due to time limitation, the models in this research were trained on the urban land
cover that was located in a range of 2,5 and 3,5 meter from an image capture location. The results
of the validation showed that the workflow reached an accuracy of 70% for the classification of
land cover that was located within this range. Future research could investigate what the effect of
training the models on images with multiple distances is on the performance of the
workflow. Moreover, the used cropping frames had a size of one by two meters. In further
research, the effect of different cropping frame sizes could be investigated. It would be interesting
to see the effect of decreasing the size of the cropping frames on the accuracy of the workflow.
Smaller cropping frames could make it possible to classify urban land cover even more precise.
However, smaller images provide less training material for the model. This could have an effect
on the accuracy of the model as well.

Finally, this research developed a workflow that was able to automatically classify the urban land
cover above a cable network. In this case, the cable network was a feature line. However, this
workflow is not bounded to this geometry type. The workflow can be adjusted so it could be used
to classify features with other geometries such as polygons and points. In order to achieve this,
the cropping frames have to be adjusted to the size of the area of interest. This workflow can be
applied for other purposes than urban land cover classification. For example, to classify the quality
of roads, to recognize litter in urban areas and to recognize objects along the road.

42

6. CONCLUSION

6.1 RESEARCH QUESTION 1

The first research question is: “What are the best parameters and pre-processing strategies for
training a deep learning model for classifying urban land cover?”

This question was answered by comparing three different pre-processing strategies. First of all,
the training dataset was divided into five separate image datasets, containing 400, 800, 1.200,
1.600 and 1.992 images respectively. The learning curves of the models showed that the larger
the dataset, the lower the validation accuracy. However, this was in contrast to the results of the
performances test of the different models. The result of this analysis showed that the overall
accuracy of the models trained on a larger image dataset performed better, by considering
accuracy, recall, precision and F1-score.

Secondly, the performance of the non-augmented and the augmented images were analysed. The
results of this analysis showed that the overall accuracy of the models trained on non-augmented
images was 1% higher than the model trained on the augmented images. However, the model
trained on augmented images scored 1% higher on precision, which means that more of the
positive classifications were correct. Based on these results, it can be concluded that training a
model to classify urban land cover with augmented images did not significantly improve the
performance. However, it makes the trained model more robust and able to classify land cover in
images under different conditions as well.

6.2 RESEARCH QUESTION 2

The second research question is: “What are the performance differences between a pre-trained
and newly trained deep learning model?”

In order to answer this sub-question, a comparison between the performances of a pre-trained
and a model trained from scratch was made. With the use of transfer learning, the pre-trained
VGG-16 model was trained to classify urban land cover images. In conclusion, the model trained
from scratch resulted in an accuracy of 76%. The fine-tuned VGG-16 resulted in significantly lower
accuracy, namely 27%. Moreover, the overall accuracy resulted in even lower accuracy of 24%
after training the model on augmented images. In addition, the learning curve of this model
showed that the train and validation loss are both relatively high compared to the loss of the
scratch model. This could indicate that the model is not to be able to find patterns in the training
data. It can be concluded that the pre-trained VGG-16 model, as used in this research, was not able
to successfully predict urban land cover.

43

6.3 RESEARCH QUESTION 3

The third research question is: “What level of accuracy, precision and recall can be reached in
classifying urban land cover using a geo-computational workflow?”

This question was answered by applying the trained scratch models (non-augmented and
augmented) for classifying urban land cover above a hypothetical cable network located in the
test area. The accuracy of the non-augmented model resulted in 52%, which means that 52%
positive classifications were correct. Moreover, the recall score is 52%, the precision score was
58%, and the F1-score was 53%. In addition, the model trained on augmented images was also
used for classifying urban land cover in the test area. This model resulted in an overall accuracy
of 54%. Furthermore, the recall score was 56%, the precision score was 57% and the F1-score
53%. It can be concluded that this workflow was able to successfully classify 52-53% of the land
cover in urban areas.

6.4 RESEARCH QUESTION 4

The fourth research question is: “What is the influence of different image distances on the
performance of urban land cover classification?”

To answer this sub-question, the performance of the model trained for urban land cover
classification was analysed for distances ranging from one to seven meters separately. Of those
distances, the image with a three-meter distance appeared to be the best performing distance with
an accuracy of 70%. The distances of one to two meters returned significantly worse results. In
addition, the performances of the model on distances of four to seven-meter resulted in accuracy
scores ranging between 47% and 55%. It can be concluded that the model has more difficulties in
classifying urban land cover correctly when the distance changes.

6.5 MAIN CONCLUSION

Due to urbanization, there is a growing demand for knowledge on urban patterns and their
dynamics at multiple spatial scales. Reliable information on urban land cover is important for
dealing with this urbanization. The existing methods, such as analysis of remotely sensed imagery,
do not help to accurately classify urban land cover. The main objective of this research was to
develop a novel geo-computational workflow to automatically classify urban land cover at large
scale using high-resolution street view imagery and deep learning.

This study developed a successful method for extracting and pre-processing street view imagery.
In addition, the workflow accomplished an overall accuracy of 54% for urban land cover
classification. In more detail, the results show that the workflow was able to correctly classify 70%
of the urban land cover located on a three-meter distance. However, the accuracy reached by the
developed workflow is not sufficient enough for real-world application. By improving the model,
that is developed in this research, a higher performance of urban land cover classification can be
achieved and the workflow can be applied for the whole of the Netherlands.

44

7. BIBLIOGRAPHY

Agarap, A. F. (2018). Deep Learning using Rectified Linear Units (ReLU). (1), 2–8.
Retrieved from http://arxiv.org/abs/1803.08375

Aggarwal, C. C. (2018). Neural Networks and Deep Learning. In Neural Networks and
Deep Learning. https://doi.org/10.1007/978-3-319-94463-0

Amara, J., Bouaziz, B., & Algergawy, A. (2017). A deep learning-based approach for
banana leaf diseases classification. Lecture Notes in Informatics (LNI), Proceedings -
Series of the Gesellschaft Fur Informatik (GI), 266, 79–88.

Anzanello, M. J., & Fogliatto, F. S. (2011). Learning curve models and applications:
Literature review and research directions. International Journal of Industrial
Ergonomics, 41(5), 573–583. https://doi.org/10.1016/j.ergon.2011.05.001

Atkinson, M., Gesing, S., Montagnat, J., Taylor, I., Atkinson, M., Gesing, S., … Taylor, I.
(2017). Scientific workflows : Past , present and future. Future Generation Computer
Systems, 75, 216–227.

Basha, S. H. S., Dubey, S. R., Pulabaigari, V., & Mukherjee, S. (2019). Impact of fully
connected layers on performance of convolutional neural networks for image
classification. Neurocomputing. https://doi.org/10.1016/j.neucom.2019.10.008

Brownlee, J. (2019a). Difference Between a Batch and an Epoch in a Neural Network.
Retrieved December 1, 2019, from
https://machinelearningmastery.com/difference-between-a-batch-and-an-epoch/

Brownlee, J. (2019b). How to use Learning Curves to Diagnose Machine Learning Model
Performance. Retrieved February 23, 2020, from
https://machinelearningmastery.com/learning-curves-for-diagnosing-machine-
learning-model-performance/

Brownlee, J. (2019c). Supervised and Unsupervised Machine Learning Algorithms.
Retrieved February 16, 2020, from
https://machinelearningmastery.com/supervised-and-unsupervised-machine-
learning-algorithms/

Cao, R., Zhu, J., Tu, W., Li, Q., Cao, J., Liu, B., … Qiu, G. (2018). Integrating aerial and street
view images for urban land use classification. Remote Sensing, 10(10), 1–23.
https://doi.org/10.3390/rs10101553

Chellapilla, K., Puri, S., & Simard, P. (2006). High performance convolutional neural
networks for document processing. La Baule (France).

Cireşan, D., Meier, U., Masci, J., & Schmidhuber, J. (2012). Multi-column deep neural
network for traffic sign classification. Neural Networks, 32, 333–338.
https://doi.org/10.1016/j.neunet.2012.02.023

CycloMedia. (n.d.). Retrieved October 16, 2019, from https://www.cyclomedia.com/en

Different Kinds of Convolutional Filters. (2017). Retrieved February 25, 2020, from
https://www.saama.com/different-kinds-convolutional-filters/

45

Digitaleoverheid. (n.d.). Retrieved November 8, 2019, from
https://www.digitaleoverheid.nl/overzicht-van-alle-
onderwerpen/basisregistraties-en-afsprakenstelsels/inhoud-basisregistraties/bgt/

Garcia, C., & Delakis, M. (2002). A neural architecture for fast and robust face detection.
Proceedings - International Conference on Pattern Recognition, 16(2), 44–47.
https://doi.org/10.1109/icpr.2002.1048232

Geostandaarden - Asphalt. (n.d.). Retrieved February 5, 2020, from
https://definities.geostandaarden.nl/concepten/imgeo/doc/begrip/asfalt

Geostandaarden - Tegels. (n.d.). Retrieved February 6, 2020, from
https://definities.geostandaarden.nl/imgeo/doc/begrip/Tegels_fysiekVoorkomen
WegPlus

Gupta, D. (2017). Architecture of Convolutional Neural Networks (CNNs) demystified.
Retrieved December 5, 2019, from
https://www.analyticsvidhya.com/blog/2017/06/architecture-of-convolutional-
neural-networks-simplified-demystified/

Hensman, P., & Masko, D. (2015). The Impact of Imbalanced Training Data for
Convolutional Neural Networks.

Huang, H., Wang, J., & Abudureyimu, H. (2012). Maximum F1-score discriminative
training for automatic mispronunciation detection in computer-assisted language
learning. 13th Annual Conference of the International Speech Communication
Association 2012, INTERSPEECH 2012, 1, 814–817.

Kamilaris, A., & Prenafeta-Boldú, F. X. (2018). Deep learning in agriculture: A survey.
Computers and Electronics in Agriculture, 147, 70–90.
https://doi.org/10.1016/j.compag.2018.02.016

Kang, J., Körner, M., Wang, Y., Taubenböck, H., & Zhu, X. X. (2018). Building instance
classification using street view images. ISPRS Journal of Photogrammetry and
Remote Sensing, 145, 44–59. https://doi.org/10.1016/j.isprsjprs.2018.02.006

Ker, J., Wang, L., Rao, J., & Lim, T. (2017). Deep Learning Applications in Medical Image
Analysis. IEEE Access, 6, 9375–9379.
https://doi.org/10.1109/ACCESS.2017.2788044

Keras Documentation. (n.d.). Retrieved December 4, 2019, from https://keras.io/

Keskar, N. S., Nocedal, J., Tang, P. T. P., Mudigere, D., & Smelyanskiy, M. (2019). On large-
batch training for deep learning: Generalization gap and sharp minima. 5th
International Conference on Learning Representations, ICLR 2017 - Conference Track
Proceedings, 1–16.

Krizhevsky, A., Sutskever, I., & Hilton, G. E. (2012). Imagenet classification with deep
convolutional neural networks. Advances in Neural Information Processing Systems,
1097–1105. https://doi.org/10.1201/9781420010749

Kussul, N., Lavreniuk, M., Skakun, S., & Shelestov, A. (2017). Deep Learning Classification
of Land Cover and Crop Types Using Remote Sensing Data. IEEE Geoscience and
Remote Sensing Letters, 14(5), 778–782.
https://doi.org/10.1109/LGRS.2017.2681128

46

Lecun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436–444.
https://doi.org/10.1038/nature14539

Ling, C. X. (1995). Overfitting and generalization in learning discrete patterns.
Neurocomputing, 8(3), 341–347.

Ma, L., Liu, Y., Zhang, X., Ye, Y., Yin, G., & Johnson, B. A. (2019). Deep learning in remote
sensing applications: A meta-analysis and review. ISPRS Journal of Photogrammetry
and Remote Sensing, 152, 166–177.
https://doi.org/10.1016/j.isprsjprs.2019.04.015

MathWorks. (2019). Pretrained VGG-16 convolutional neural network. Retrieved
December 1, 2019, from
https://www.mathworks.com/help/deeplearning/ref/vgg16.html#bvo3twr-
1.mw_6dc28e13-2f10-44a4-9632-9b8d43b376fe

Najafabadi, M. M., Villanustre, F., Khoshgoftaar, T. M., Seliya, N., Wald, R., & Muharemagic,
E. (2015). Deep learning applications and challenges in big data analytics. Journal of
Big Data, 2(1), 1–21. https://doi.org/10.1186/s40537-014-0007-7

Ning, F., Delhomme, D., Lecun, Y., Piano, F., Bottou, L., Barbano, P. E., … Lecun, Y. (2005).
Toward automatic phenotyping of developing embryos from videos. EEE
Transactions on Image Processing, Institute of Electrical and Electronics Engineers,
14(9), 1360–1371.

Parmar, R. (2018). Demystifying Optimizations for machine learning. Retrieved
December 3, 2019, from https://towardsdatascience.com/demystifying-
optimizations-for-machine-learning-c6c6405d3eea

Perez, L., & Wang, J. (2017). The Effectiveness of Data Augmentation in Image
Classification using Deep Learning. Retrieved from
http://arxiv.org/abs/1712.04621

Polamuri, S. (2017). Difference between softmax funtion and sigmoid function. Retrieved
February 26, 2020, from https://dataaspirant.com/2017/03/07/difference-
between-softmax-function-and-sigmoid-function/

Pro.ArcGIS.com. (n.d.). Retrieved February 6, 2020, from
https://pro.arcgis.com/en/pro-app/tool-reference/analysis/near.htm

Renuka, J. (2016, September 9). Accuracy, Precision, Recall & F1 Score: Interpretation of
Performance Measures - Exsilio Blog. Retrieved February 4, 2020, from
https://blog.exsilio.com/all/accuracy-precision-recall-f1-score-interpretation-of-
performance-measures/

Saha, S. (2018). A Comprehensive Guide to Convolutional Neural Networks — the ELI5
way. Retrieved December 1, 2019, from https://towardsdatascience.com/a-
comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-
3bd2b1164a53

Schmidhuber, J. (2015). Deep Learning in neural networks: An overview. Neural
Networks, 61, 85–117. https://doi.org/10.1016/j.neunet.2014.09.003

scikit-learn - precision and recall. (n.d.). Retrieved February 7, 2020, from https://scikit-
learn.org/stable/auto_examples/model_selection/plot_precision_recall.html?highli

47

Siegmund, D., Prajapati, A., Kirchbuchner, F., & Kuijper, A. (2018). An integrated deep
neural network for defect detection in dynamic textile textures. International
Workshop on Artificial Intelligence and Pattern Recognition, (September), 77–84.
https://doi.org/10.1007/978-3-030-01132-1

Smith, S. L., Kindermans, P. J., Ying, C., & Le, Q. V. (2018). Don’t decay the learning rate,
increase the batch size. 6th International Conference on Learning Representations,
ICLR 2018 - Conference Track Proceedings, (2017), 1–11.

Sorokina, K. (2018). Image Classification with Convolutional Neural Networks. Retrieved
December 5, 2019, from https://medium.com/@ksusorokina/image-classification-
with-convolutional-neural-networks-496815db12a8

Svozil, D., Kvasnicka, V., & Pospichal, J. (1997). Introduction to multi-layer feed-forward
neural networks. Chemometrics and Intelligent Laboratory Systems1, 39, 43–62.

Tang, T. A., Mhamdi, L., McLernon, D., Zaidi, S. A. R., & Ghogho, M. (2016). Deep learning
approach for Network Intrusion Detection in Software Defined Networking.
Proceedings - 2016 International Conference on Wireless Networks and Mobile
Communications, WINCOM 2016: Green Communications and Networking, 258–263.
https://doi.org/10.1109/WINCOM.2016.7777224

Thakur, V. (2019). scienceabc.com. Retrieved November 6, 2019, from
https://www.scienceabc.com/innovation/what-is-the-difference-between-deep-
learning-and-artificial-intelligence.html

Tracewski, L., Bastin, L., & Fonte, C. C. (2017). Repurposing a deep learning network to
filter and classify volunteered photographs for land cover and land use
characterization. Geo-Spatial Information Science, 20(3), 252–268.
https://doi.org/10.1080/10095020.2017.1373955

Xing, F., & Yang, L. (2016). Machine learning and its application in microscopic image
analysis. In Machine Learning and Medical Imaging. https://doi.org/10.1016/B978-
0-12-804076-8.00004-9

Xu, G., Zhu, X., Fu, D., Dong, J., & Xiao, X. (2017). Automatic land cover classification of
geo-tagged field photos by deep learning. Environmental Modelling and Software, 91,
127–134. https://doi.org/10.1016/j.envsoft.2017.02.004

Yin Low, J. (2020). Supervised Learning vs. Unsupervised Learning. Retrieved February
12, 2020, from https://blog.supahands.com/2020/01/21/supervised-learning-vs-
unsupervised-learning/

Yu, W., Yang, K., Bai, Y., Xiao, T., Yao, H., & Rui, Y. (2016). Visualizing and Comparing
AlexNet and VGG using Deconvolutional Layers. Retrieved from
http://www.robots.ox.ac.uk/

48

8. APPENDIX

A. LEARNING CURVES

Figure A.1. Learning curves, of the model accuracy and loss, plotted for the models trained on the different image datasets.

49

B. PERFORMANCES PER DISTANCE

Figure B.1. Confusion matrices of the classifications of the images on distances ranging from one to seven meter.

50

C. NEAR MAPS

Figure C.1. The nearest distance between cable network segments and the image capture locations in a range of 7.5
meters.

Figure C.2. Cardinal direction of the cable network segments to the closest image capture locations in a range of 7.5
meters.

51

D. URBAN LAND COVER CLASSIFICATION MAPS

Figure D.1. Visualization of the predicted urban land cover of each cable segment by the non-augmented model.

Figure D.2. Visualization of the predicted urban land cover of each cable segment by the non-augmented model.

52

E. SCORE MAPS

Figure E.1. Visualization of the true and false predictions of the urban land cover classification by the non-
augmented model.

Figure E.2. Visualization of the true and false predictions of the urban land cover classification by the augmented
model.

	ABSTRACT
	LIST OF FIGURES
	LIST OF TABLES
	1. INTRODUCTION
	1.1 RESEARCH OBJECTIVES AND QUESTIONS
	1.2 RESEARCH SCOPE

	2. THEORETICAL FRAMEWORK
	2.1 DEEP LEARNING
	2.2 DEEP LEARNING IN LAND COVER CLASSIFICATION
	2.3 CONVOLUTIONAL NEURAL NETWORK
	2.4 TRAINING A CNN-BASED MODEL
	2.5 TRANSFER LEARNING
	2.6 IMAGE PRE-PROCESSING

	3. METHOD
	3.1 GEO-COMPUTATIONAL WORKFLOW
	3.2 STUDY AREA
	3.3 RESEARCH TOOLS
	3.4 DATA PREPARATION
	3.5 MODEL TRAINING
	3.6 MODEL APPLICATION
	3.7 RESULTS PRESENTATION

	4. RESULTS
	4.1 MODEL TRAINING
	4.2 MODEL PERFORMANCE
	4.3 URBAN LAND COVER CLASSIFICATION OF TEST AREA
	4.4 URBAN LAND COVER VALIDATION

	5. DISCUSSION
	6. CONCLUSION
	6.1 RESEARCH QUESTION 1
	6.2 RESEARCH QUESTION 2
	6.3 RESEARCH QUESTION 3
	6.4 RESEARCH QUESTION 4
	6.5 MAIN CONCLUSION

	7. BIBLIOGRAPHY
	8. APPENDIX
	A. LEARNING CURVES
	B. PERFORMANCES PER DISTANCE
	C. NEAR MAPS
	D. URBAN LAND COVER CLASSIFICATION MAPS
	E. SCORE MAPS

