
Opleiding Natuur- en Sterrenkunde

An analysis of the binary black hole
merger GW150914

Bachelor Thesis

Suzanne Lexmond

Supervisors:

Prof. Stefan Vandoren
Institute of theoretical physics

Dirk Schuricht
Institute of theoretical physics

15/01/2020



Abstract

On September 2015 LIGO observatories detected the very first gravitational wave signal.
Since than gravitational waves play a large role of interest in modern day science. This
thesis takes a closer look at the first observed gravitatational wave signal, GW150914.
It analyses the signal by first extracting the merger from the incoming data strain
filled with dominant noise than being compared with a theoretical general relativity
template. When the signal is extracted, the data is analyzed with Newtonian mechanics
and compared to the publicly published data from LIGO. At last, it is briefly discussed
how general relativity plays a large role in black hole mergers, also deriving the Einstein
field equations.

The figure on the title page shows the binary black hole merger of GW150914. It is
a computer simulated figure clearly showing the distortion of space-time due to the strong
gravitational field of the black holes. This simulation is made by the SXS project (1).
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INTRODUCTION 1

1 Introduction

In 1916, Albert Einstein was the first to predict the existence of gravitational waves. He
already knew that the amplitude of these gravitational waves would be extremely small and
therefor very hard to detect. Until on 14 september 2015 LIGO observatories did the impos-
sible and discovered the very first gravitational wave signal which they called GW150914.
The signal came from a binary black hole merger with masses of 36 M� and 29 M�, 1.4
billion light years away. Since than science has come a very long way in discovering many
more signals from different sources of gravitational waves. So far we have only been able to
detect gravitational waves from events with extremely high mass and acceleration, like binary
black holes, binary neutron stars and neutron star-black hole mergers. Since the discovery
in 2015 the field of gravitational waves is strongly making it’s way in science. Today there
are multiple detectors looking for new discoveries and plans for newer and better detectors
are already being made.

With this new gravitational wave data, the theoretical predictions of Einstein and many
more can now finally be confirmed. So far Einstein’s theory of general relativity seems to
be in agreement with the discovered data, but many more observations to come will prove if
this indeed is true.

This thesis takes a closer look at the analysis of the GW150914 signal. The incoming signal
will be studied using several filtering techniques so the real gravitational wave signal can be
extracted. It will be studied for its properties and compared with theoretical expectations
of binary black hole mergers. Finally, using Newtonian mechanics, the data is checked and
compared with the published data from LIGO. To determine an exact theoretical template
of a gravitational wave signal, knowledge of general relativity is demanded. This thesis does
not widely look into the field of general relativity but does discuss some main ideas in this
area. We show how general relativity is crucial in binary black hole mergers, at last deriving
the Einstein field equations.
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2 Gravitational waves

2.1 What are gravitational waves?

In 1916 Einstein was the first to predict the existence of gravitational waves. With his theory
on general relativity he completely changed the idea of time. He described these gravitational
waves as wripples in space-time much like waves moving in water. These gravitational waves
would be emitted by massive accelerating bodies, moving with the speed of light.

Figure 1: The distortion of gravitational waves in space-time. (2)

Even though Einstein started the great theory it was not until 1974 when Russell Alan
Hulse and Joseph Hooton Taylor discovered the first real proof on gravitational waves (3).
What they found was a binary pulsar system acting exactly as the theory of general relativity
predicted. The decay of the orbital period matched the energy loss and loss of momentum
in gravitational radiation. This discovery earned them a Nobel prize. Since than many more
discoveries have been made for other pulsar binary systems.

Then on september 14, 2015, the LIGO observatories made the first ever direct detection
of two merging black holes nearly 1.4 billion light years away. Finally, proving Einstein’s
theory of relativity. Since then there have been many observations of gravitational waves
from an entire network of detectors, all consistent with the theory of general relativity.

Just like electromagnetic waves there is also a broad spectrum of gravitational waves
based on different kind of frequencies. Gravitational waves are known to have much lower
frequencies and the wavelengths differ from hundreds of kilometers to the span of the uni-
verse. Bigger masses produce lower frequencies. So far earth based interferometers have only
been able to detect signals from extremely massive objects up to frequencies of a few kilohertz.

Gravitational waves have a lot in common with the electromagnetic spectrum but differ
from them in a couple of ways. Since they are produced by the motion of extremely large
masses, spinning at relativistic speeds, their wavelength is in general larger than the objects
themselves. They propagate in vacuum, leaving behind wripples in the curvature of space-
time. They are considered very weak compared to other know forces and do almost not
(considered not) interact with matter. This causes them to barely weaken over long periods
of time, making it possible for us to detect gravitational waves from maybe as long ago as
the big bang. They contain a lot of useful information about their distances and certain
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parameters such as mass and spin of the emmiting bodies. However since they are so weak,
there is a high form of precision needed to measure these parameters. Therefor it is highly
necessary to compare the results with solutions of earlier determined gravitational two-body
system using general relativity.

Figure 2: The gravitational wave spectrum of different frequencies. (4)

So far it is only possible to detect relatively high frequencies of large masses like su-
pernovas, compact binary systems and pulsars. This thesis will focus on binary black hole
systems.

2.2 Gravitational waves in the geometry of space-time

2.2.1 Flat spacetime

Minkowski space was formed to specify the distance between two points in spacetime. It
is a combination of three-dimensional Euclidean space with an added fourth-dimension of
time. This is done by using the four Cartesian coordinates (t, x, y, z) and a different set
of coordinates (t’, x’, y’, z’) for an inertial frame. It is mostly used in Einstein’s special
relativity. To make the connection between these inertial frames, Minkowski space defines a
spacetime interval between two events as the following,

ds2 = −cdt2 + dx2 + dy2 + dz2 (1)

ηαβ =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 (2)

With the Minkowski metric for flat space defined as ηαβ.
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2.2.2 Linearized gravitational waves

Gravitational waves can be defined by some basic properties; they move at the speed of light,
are transverse, have two polarizations, they can be detected by their effect in the motion
of test masses, and they carry energy. Since gravitational waves are wripples in space-time,
they are often expressed as perturbations from flat space-time. This can be formulated as
a metric where gravitational waves are composed of the Minkowski metric ηαβ, representing
flat space-time, adding a perturbation metric hαβ,

gαβ = ηαβ + hαβ, (3)

where ηαβ can be defined as above and hαβ can be defined as,

ηαβ =


0 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 0

 f(t− z), (4)

where f is a function of t − z. Another property mentioned above is that gravitational
waves have two independent polarizations. The polarization is a linear combination of a
so called cross-polarization h× and a plus polarization h+ that are both transverse to the
direction of propagation,

h = F×h× + F+h+, (5)

where F and F+ are called the form factors which depend on the direction and orientation
of the source with respect to the detector. The cross- and plus polarization are just as the
polarization of electromagnetic waves only are the polarizations of gravitational waves 45◦

apart instead of 90◦. The effects of polarization on test masses is shown in fig.3. (5)

Figure 3: The effects of polarization for h× and h+ on several test masses. (6)
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2.3 Detecting gravitational waves

Gravitational waves can travel from billions of light years away. This makes it difficult to
observe direct detections. While they travel, the amplitude of the waves decrease which
makes even the largest waves only the size of an atom when reaching earth. Currently, it is
only possible to detect gravitational waves coming from really large sources. The strongest
gravitational waves arise from the most violent events such as large binary systems existing of
black holes or neutron stars. While the bodies orbit around each other the distance between
them will get smaller because of energy loss caused by the emission of gravitational waves.
For the frequency to be high enough to detect the gravitational waves, the bodies need to be
massive with a high enough orbiting velocity. To detect the gravitational waves of smaller
bodies we will have to wait for better space-based detectors. (7)

2.3.1 Laser interferometers

Figure 4: Schematic of a gravitational
wave detector. (8)

Since 2015, interferometers have finally made it
possible to directly detect gravitational waves.
An interferometer merges beams of light to cre-
ate an interference pattern. This pattern caries
information about the time of contact between
two or more lightwaves. In 1880 Albert Michel-
son was the first to invent an interferometer. An
Interferometer consists of a laser, a beam split-
ter, 2 mirrors and a photodetector as presented
in fig. 4. The beamsplitter splits the laser in two
separate paths, both travelling the same identical
pathlength. Both being reflected by a mirror at
the end, to come together again at the source. If
the path of the two beams would have been iden-
tical, the amplitudes would cancel, causing there
to be no light left at the photo detector.

An interferometer consist of two long arms. When gravitational waves make contact
with an interferometer the space around it will stretch while the space in the direction
perpendiculair to it will compress. The two arms being in perpendiculair direction of each
other will cause one arm to shorten while the other becomes longer resulting in a relative
change in pathlength,

h =
2δL

L
= 10−22. (6)

This difference in pathlength causes the waves to create an interferencepattern that no
longer results in two cancelling amplitudes. Since the amplitude of the gravitational waves
measured on earth are of such small size, the changes done to the pathlength are very min-
imal (can be as small as 10−19 m) which makes it very hard to detect. This difference in
path length can easily be caused by all kinds of noise. This makes them very important for
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a detector to use the best isolation possible.

For the gravitational wave detectors to pick up a signal of the order of 10−22, the Michel-
son interferometer has to be adjusted with a few extra modifications;

Power enlargement
If we look at the sensitivity of a single photon with an average wavelength of 10−6 m for a
detector that has an optical pathlength of 4 km, the relative change in pathlength would be,

h ≈ λ/2

Loptical
≈ 10−10. (7)

To have the right amount of power the relative pathlength needs to be at least 1012 bigger.
To make the detectors more sensitive, a power is needed of 20 MW, while the detector with
currently the largest known power can only generate a power of 18 W. This means other
adjustments have to be made.

Mirror cavities
Another way to increase the sensitivity is to increase the relative pathlength. This can be
done by circulating the signal in between cavities, build of partially reflecting mirrors. By
adding two mirrors on both arms the relative pathlength can be increased equally.

Power recycling
Another way to increase the power is by placing a partially transmitting mirror between the
laser and the beamsplitter. This way the power that gets lost by returning to the laser gets
summed with new fresh photons, increasing the power.

Signal recycling
By placing another partially reflecting mirror between the beam splitter and the photodetec-
tor the signal gets summed coherently with fresh signal to increase the power.

Fig. 5 shows an adjusted version of the Michelson interferometer, applying all the tech-
niques mentioned above, resulting in a gravitational wave detector strong enough to pick up
signals of the order of 10−22. This is the basis used by most currently existing interferometers.
(9)
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Figure 5: A Michelson interferometer adjusted with extra mirror cavities, power recycling
and signal recycling. (9)

2.3.2 Noise cancellation

Since a gravitational wave signal is of such small size, sensitivity of the detector is most im-
portant. However the more sensitive the detector becomes, the more noise it detects. There
are a lot of different kinds of sources that preduce noise which ask for different approaches
of noise cancelling for which some will be discussed;

Shot noise
Shot noise is a form of noise that occurs because of photon counting errors. It is known
that some moments there arrive more photons on the photodiode than others which cause
these counting errors. These errors are dependent on the photon flux by means of a Poisson
distribution. The photon flux depends on the power like,

N =
P

hν
. (8)

This results in a photon counting error of ∆Pshot =
√

2hνP∆f

Radiation pressure
The photons arriving at the mirrors carry momentum causing a mechanical pressure on the
surface of the mirrors. A more powerful signal causes a higher mechanical pressure.

Seismic noise
Vibrations in the earth can also be a source of noise. This can be as a result of several
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reasons like tectonic movements, lunar tides, ocean waves or wind. It is also very dependent
on the weather causing more noise on heavier days. It is also more convenient to measure
on nights since days are often a bigger source of noise. Seismic noise is often partly resolved
with multiple pendulum systems, applying a force to the test-mass.

Thermal noise
Thermal noise is caused by random movement of free electrons in conducting materials. It
appears in two forms; The first one appears in the wires needed for holding the test-masses,
while the second one appears in the mirrors. It limits the sensitivity in the frequency range of
50-500 Hz. Currently, a new method of using cryogenic temperatures for minimizing thermal
noise is being discussed.

These are only a few in the huge spectrum of sources that are able to cause noise. Fig.6
shows the sensitivity curve of advanced LIGO for a few different kinds of noise and their
amplitudes. It can be noticed that the noise is mostly apparant around the low- and high
frequency range. For low frequencies there is a large source of radiation pressure noise, while
in the high frequency range the shot noise plays a dominant role.

Figure 6: Advanced VIRGO’s sensitivity curve for different kinds of noise. (9)

2.3.3 Current gravitational wave detectors

LIGO is currently the world’s largest and most sensitive gravitational wave detector (10) . It
consist of two interferometers that each have two 4 km long arms. One in Hanford and the
other one in Livingston. LIGO consist of two detectors so it can distinguish noise from real
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gravitational waves when a signal is being measured at both detectors. Especially the LIGO
technology used for noise cancellation is most impressive. It uses seismic isolation systems,
vacuum systems, the best optics components and a computing infrastructure. The seismic
isolation consists of two working mechanisms of active and passive damping. The active
demping is made of devices that are able to dampen out the noise by analyzing the frequency
and sending out a compromising signal. The passive demping system makes sure all of the
mirrors are kept perfectly still by using a quadruppel quad consisting of vibrational damping
masses. LIGO possesses one of the largest sustained vacuums in the world. The vacuum
makes sure that no molecules present in the air are able to create noise by getting in contact
with the system. The vacuum also lowers the changes of dust getting in the way of either the
path of the lasers or possibly the mirrors. LIGO also uses the best optical system starting
with a 200W laser beam. The mirrors are made of the highest quality available, which is
sillica glass. It absorbs just one in 3 million photons for the highest level of reflection to
maintain the best resolution.

(a) LIGO, Washington State and Livingston.
(10)

(b) VIRGO, Cascina. (11)

Figure 7: Gravitational wave detectors on earth.

VIRGO is the largest gravitational wave detector in Europe and is located in Cascina,
Italy (11). It’s arms are both 3 km long with an effective optical path of 120 km per arm
extended by multiple mirror reflections. VIRGO as well uses only the best techniques for
noise cancellation. It uses high power ultrastable lasers, high reflectivity mirrors, seismic
isolation and position and alignment control. For the seismic isolation VIRGO uses a 10 m
high system of compound pendulums. The vacuum tubes are the second largest high vacuum
vessels in the world.

When searching for gravitational wave signals, collaboration between multiple detectors
is highly necessary. Because of the great sensitivity a gravitational wave detector requires it
is also very easy to mistake a possible signal for noise. By using multiple detectors, the same
signal can be verified by appearing at the same time for different detectors. Another require-
ment is for the detectors to be a great distance apart so the detectors do not mistake the same
noise for a real signal. So far the two detectors from LIGO form a collaboration with VIRGO
to build a network of three interferometers increasing the reliability of the measurements.
An even bigger network of interferometers is already being worked on. Currently, Japan is
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building a 3 km long interferometer which will be joining the LIGO/VIRGO collaboration
when ready. KAGRA will be using cryogenic systems to cool down the optics which will
decrease the vibrational noise even further. Besides the 3 current existing interferometers,
another detector, the GEO600, lies in Germany with the armlength of 0.6 km also serving as
a test object to seek for new optical systems in future detectors.

Figure 8: Sky localization of the two LIGO detec-
tors compared to the addition of VIRGO. (13)

Another reason for building a net-
work of multiple interferometers is the
ability of sky-localization. To localize
the emission source, multiple detectors
have to focus on the same signal. By an-
alyzing the time delay and loss in am-
plitude between different detectors we
can approximate a certain region from
where the signal is supposed to be emit-
ted. Fig.9 shows how LIGO and VIRGO
working together on the sky localization
map have come to cover just 60 square
degrees compared to hundreds without
the collaboration of VIRGO. (12)

2.3.4 The Einstein Telescope

The Einstein telescope (ET) is a project for the newest gravitational wave detector in cooper-
ation of The Netherlands, Belgium and Germany. The ET will be the most sensitive detector
yet and will contain three arms in triangular pattern, each consisting of two interferometers
for high- and low frequencies. The broad frequencyband will give the opportunity to look
into different paths of the universe. The arms are planned to be 10 km long which will make
them by far the largest in the world. These features are supposed to make the detector 10
times more sensitive than the best current detectors and are predicted to detect up until
a 1000 times more sources of gravitational waves. It is predicted to find new gravitational
wave events several times a day compared to several times a year by current detectors. For
now, it is still debated if the detector will be located in either Sardinia or the Netherlands.
Construction is planned to be in the year of 2025. The ET will be the first third-generation
telescope which means that the current telescopes do not have the ability to ever be upgraded
on to this level of precision. (14)

2.3.5 LISA

The LISA project is the first idea for a gravitational wave detector in space. LISA is a
combined project from the ESA (European space agency) and NASA. A gravitational wave
detector in space would give a lot of opportunities which can not be accomplished on earth.
The large amount of space makes it possible to provide LISA with three laser interferometers
arms of each 2.5 billion km long, shaped in a triangular pattern. This armlength has been
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chosen to detect signals in the frequency range of 0.1mHz to 100mHz, which would not be
possible on earth. This new frequency range will give us an entire new spectrum of gravi-
tational wave sources to explore. This frequency range will make it possible to observe new
events like; the observation of black holes and galaxy formations, the merger of massive black
holes in galaxies at all possible distances, the merger of massive black holes with other object,
binary compact stars and stellar remnants, more distant binaries and possible even sources
that are currently unknown. This new frequency range will give us opportunities to explore
the structure of the universe even further. LISA will be able to accomplish an exceptional
strain resolution of 10−20 and a directional precision of one square degree.

The structure of LISA will excist of three free-falling test masses, each protected by a
spacecraft to prevent any disturbances of noise. The free-falling test masses will prevent any
seismic and gravity-gradient noise which does play a large role in detectors build on earth.
Being in space it also has a very stable thermal environment resulting in a minimum of ther-
mal noise. The triangular system of arms will orbit the sun while following earth, keeping a
closely constant distant.

The first tests to put LISA in space have already been made. LISA pathfinder was
launched on december 2015 and succeeded to put two well functioning free-falling test masses
in space with results exceeding the expectations. The planned launch for LISA will be in
2030. (15)

Figure 9: The LISA space project will consist of three 2.4 billion km long arms orbiting in
sun with a small distance from earth. The laser-interferometer will be measuring frequencies
in a new low frequency range. (16)
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3 Binary black hole mergers

3.1 Black holes

Albert Einstein was not only the first to predict gravitational waves but also the first in line
to predict the existence of black holes during 1916. Not so long ago this was nothing more
than a theorical assumption until last April 2019, when the first photographic proof of a
black hole was finally there. An image of this can be seen in fig.10. The first photographic
proof came from the Event Horizon Telescope collaboration and was of the supermassive
black hole M87* at the center of the Messier 87 galaxy.

Figure 10: First photografhic proof of a black hole, M87*. The image on the left was taken
by NASA’s Chandra X-ray observatory. The radio image on the right was taken by the Event
horizon telescope. (17)

Black holes can be classified in different groups depending on their mass and origin. After
forming, they can always gain mass by accreting dust and gas from nearby galaxies. They
are classified in the following groups:

Stellar black holes:
Stellar black holes are formed through stellar evolution of the larger stars. When an evolving
star has a mass larger than the Tolman−Oppenheimer−volkoff limit (TOV) the star will
eventually evolve into a black hole. At a certain point the nuclear force created by stellar
energy sources will exhaust which results in a gravitational collapse of the star. When the
star is massive enough, the gravitational forces will become so strong that the evolution re-
sults in the creation of a black hole. Depending on the mass of the star before evolution, the
mass of the black hole will be smaller or larger. Black holes formed by stellar collapse are
relativily small but are known to be extremely dense. Stellar black holes mostly vary from
masses between 5M� to 10M�.
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Supermassive black holes:
Most black holes are known to be supermassive black holes. Their masses seem to vary
around hundred of thousands of solar masses (105M� − 109M�). They are known to lie at
least at the center of every galaxy. There are a few theories on how they are formed. They
may have been formed by smaller black holes merging together or large gas clouds collapsing
into quasi-stars. Another possibility is the collapse of entire stellar clusters. Some think it
might be from large clusters of dark matter. Finally, another theory would be a primordial
black hole, which are formed in the first moments after the big bang, having a lot of time to
absorb more mass.

Intermediate black holes:
Intermediate black holes haven’t been known for a very long time. Scientists used to believe
that there would only be small or large sized black holes. Since they are too massive to form
from stellar collapse of a single star they were not thought to exist. They can be formed
by the merger of stellar black holes and other compact bodies threw accreting these masses.
They are also though to be primordial black holes. Another way could be as a result of chain
reactions during the collision of massive stars in stellar clusters with relatively high densities.
Their masses lie within the range of 102M� − 105M�. (18)

3.2 Binary black hole mergers

To detect gravitational waves that are strong enough for our current detectors, we need ex-
tremely massive accelerating bodies. Black holes on it’s own do not satisfy this condition.
However certain binary systems do. Fig.11 shows a diagram of the known masses that were
detected up until 2018. The last year there have been many more detections like binary
neutron stars, binary black holes but also the first black hole and neutron star merger. This
thesis is mainly focused on the merger of binary black holes.

Figure 11: Known masses detected up until 2018. This diagram shows multiple sources found
threw gravitational waves as well as some detections of single black holes and neutron stars
found by the means of X-ray radiation. (19)
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The merger of binary black holes happens in three phases. The first phase is called the
inspiral and describes the first step in which the black holes spiral in around a shared center
of mass, slowly decreasing in relative distance. During the inspiral, the system loses energy
by emmiting gravitational waves. This energy loss causes the black holes to spiral inwards,
decreasing in orbit. This decrease in orbital radius causes the velocity of the black holes to
increase which causes more gravitational waves to be emitted. The emmiting of gravitational
waves at the beginning of the inspiral is still very weak due to the great distance and slow
velocities of the two black holes. While the black holes spiral closer together the signal will
become stronger, making it easier to detect. Other stars accreting around the black holes
might cause a loss of angular momentum. While they get closer into the inspiral the orbits
will appear more circulair. The last stable orbit before it enters the next phase is called the
innermost stable circulair orbit (ISCO).

Figure 12: The three phases of merger in a binary black hole system; the inspiral, the merger
and the ringdown.(20)

The next phase is the merger. When the two black holes come at the end of their inspiral,
they merge. This is where the two smaller black holes transform into one larger black hole.
The mass of the newly formed black hole is slightly smaller than the sum of the two original
ones due to the energy loss of the emmited gravitational waves. The merger shows a high
peak in the emmision caused by the high velocities in this phase.

The merger ends in a ringdown phase where the newly merged black hole finds a stable
state. The distortions in shape are corrected by the emission of gravitational waves, going
from an elongated spheroid shape into a perfect sphere. The final shape might slightly defer
due to the spin of the black hole. (21)
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Figure 13: A gravitational wave signal from two a merging binary black hole system. Showing
the three phases of merger; inspiral, merger and ringdown. (22)

Fig.13 shows the transformations for the gravitational wave signal through all three phases
of merger. During the inspiral phase, the velocities are still quite low because of the relatively
large distances between the two black holes. Because of these low velocities, the inspiral phase
is very slow resulting in a long signal with a relatively low amplitude. In the merger phase,
the distance between the black holes decreases, while the spiraling increases in velocity. The
high velocities cause a stronger signal of gravitational waves. The amplitude keeps increasing
until the actual merge causes a peak in the gravitational wave signal. After this peak the
ringdown phase stabilizes the newly formed black hole, emmiting gravitational waves. These
waves will have a much lower amplitude until they finally fade out and the merger comes to
an end.
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4 Data analysis of the GW signal

In this chapter we take a look at the data-analysis of a gravitational wave signal. The data
used for this analysis comes from the LIGO-VIRGO open science center (9). So far the
LIGO-VIRGO collaboration has made three runs of observations, where each run the detec-
tors were improved. The first run, O1, was from 12 September 2015 to 19 January 2016, the
second, O2, from 30 November 2016 until 25 August 2017 and the last run , O3, ran from 30
september 2019 till 1 November 2019. These runs have given us a lot of data for a further
study in gravitational wave signals. In this chapter we mostly focus on the very first detected
gravitational wave event, GW150914. This signal came from a binary black hole merger of
two black holes with masses of 35.6M� and 30.6M�. (10)

Figure 14: Imported data from Livingston and Hanford before filtering of the signal. Both
strings are 32 seconds logn with a frequency of 4069 Hz.

With this analysis the two gravitational wave signals from the Livingston and Handford
detector are observed and compared, using a Python based script. They are both filtered of
noise with multiple filtering techniques to find the underlying signal of the binary black hole
merger. At last the data is compared with a numerical template, theoretically determined
with general relativity. (24)

To begin, both the data from Livingston and Handford are imported as a 32 second file
in which the strain is given for a certain time. These files can both be found in the catalog
of the open science center (9). Fig.14 shows the imported data of both the detectors before
filtering. This datastrain does not yet reveal much information about the signal. Since the
amplitude of the noise is much higher than that of our signal we are not able to see the signal
in this given strain. Therefor to find the signal, multiple filtering techniques are used. (9)

Next to the data from Hanford and Livingston, there is also a theoretical template
imported to compare with the data from LIGO. This template was already determined and
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published by LIGO (23). The template shows a typical merger signal as described in
section 3.2 for two black holes of 26 M� and 29 M�. The template can be seen in fig.16.

(a) Spectrogram Livingston data. (b) Spectrogram Hanford data.

Figure 15

Before we start the filtering process it can be convenient to make a spectrogram of the
data. A spectrogram is a figure that shows the frequency domain over time. It also shows
the power of the signal by varying in brightness. Fig.15 presents the spectrograms of the
two imported datastrains. Both show a bright vertical peak around 15.4 seconds, showing
an increase in power, visualizing the signal for the binary black hole merger.

Figure 16: Numerical relativity template
for a binary black hole merger for two
black holes of 36 M� and 29 M�.

To try and take a better look at the signal we
can plot an ASD (amplitude spectral density).
Even though the amplitude of the noise is much
bigger than the signal itself, the signal does have
more power for some frequencies. An ASD plots
the power of the signal for certain frequencies giv-
ing us a better idea of the frequency content. It
does this by fourier transformation of the time
domain to a frequency domain,

E =

∫ ∞
−∞
|x(t)|2dt, (9)

where E is the energy of the signal x(t) given
as a function of time. This can be fourier trans-
formed with Parseval’s theorem:∫ ∞

−∞
|x(t)|2dt =

∫ ∞
−∞
|x̂(f)|2df, (10)

for which,

x̂(f) =

∫ ∞
−∞

exp−2πift x(t)dt, (11)
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is the fourier transform given in the frequency domain.

Fig.17a shows the ASD for GW150914. The figure shows multiple peaks in the amount
of power of which one of these will probably be the signal. However in this situation the
signal can not be seen because it is of such short time and the plot averages over 32 seconds.
Another reason for this is that the signal is relatively low. The spectral lines (peaks) are
caused by instrumental noise of which some can already be predicted beforehand, such as
engineered noise caused by resonance (500 Hz and harmonics). There will also be some noise
around 60 Hz and the harmonics. Further information about other sources of noise will be
discussed later on.

(a) The ASD of the data from Livingston
and Hanford, plotting the power of the signal
against the frequency.

(b) The ASD of the data after whitening from
Livingston and Hanford.

Figure 17

The ASD is plotted between 10 Hz and 2000 Hz. One of the reasons for this is that
the frequency below 10 Hz isn’t properly calibrated. Besides this, the data above 2000
Hz isn’t valid because of the nyquist frequency. The nyquist frequency is the maximum
frequency given at a certain sampling rate for which the signal can be fully constructed,
fN = fs/2 = 4096/2 = 2048 Hz.

Next a few filtering techniques are applied in order to filter out the noise. First the data is
whitened with a whitening filter. A whitening filter is a way of describing the data as
deviations from the mean value. This way the data can be shown as deviation from the
noise. By whitening the data, the ASD will be flattened to make sure all frequencies
contribute equally as shown in fig.17b.

The next step in filtering is applying a butterworth bandpass filter. This bandpass filter
cuts off frequencies outside of a certain chosen bandwidth. The butterworth filter can be
adjusted for different orders of the cut-off angle (fig.18). Since we know from experience
that the signal will be between the frequency band of 20 Hz - 300 Hz we can bandpass for
this frequency range. Fig.19 shows the signal after applying a bandpass filter for both
Livingston and Hanford. The data clearly shows a large peak in the signal around 15.2
seconds. (25)
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Figure 19: The data of the signal after whitening and applying a bandpass filter. With the
data for Hanford on the left and the data for Livingston on the right it can be seen that for
both there is a large peak in the amplitude around 15.2 seconds which shows the signal for
the merger.

Figure 18: A butterworth bandpass filter
for different orders of the cut-off angle.
(25)

When zooming in on this peak it shows a
clear signal of merger for two black holes (fig.20).
When comparing the signal from Livingston and
Hanford it can be seen that there appears to be
a time shift of 7 ms. This shift is caused by the
distance between the detectors which lay on the
same line with the source of emission. This causes
the signal to appear 7 ms earlier at the detector
in Livingston than it does in Hanford.
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Figure 20: Gravitational wave data after whitening and bandpassing the signal from Liv-
ingston and Hanford. Both compared to a numerical relativity template.

At last there is also the option of using notch filters. A notch filter can be used to remove a
precise small band of frequencies. Instead of the butterworth bandpass filter which passes
all frequencies above or below a certain frequency, a notch filter rejects all frequencies for a
small bandwidth. This can be used to remove the spectral lines in the signal (26). A notch
filter fits in a frequency response in the form of a notch. The depth and width of the notch
can be adjusted with the quality factor Q, which can be determined using
Q = (f2 − f1)/fnull, with f1, f2 and fnull given as in fig.21.

(a) The frequency response of a notch
filter. (28)

(b) A notch filter for different values
of the quality factor Q. (27)

Figure 21

The largest spectral lines are known to be
caused by instrumental effects. The notch
filters are added around the following fre-
quencies:

• 60*n Hz (*n for the harmonics) due
to electromagnetic shielding and mag-
netic coupling to the mirror suspen-
sions.

• 500*n Hz thermal noise of the mirrors.

• 9 Hz and 13.8 Hz due to bounce and
roll modes of the mirrors.

• 300*n Hz of vibrations in the suspen-
sion that hangs the beam splitter.



DATA ANALYSIS OF THE GW SIGNAL 21

• calibration lines by moving the end mir-
rors during O1:
- L1: 33.7, 34.7, 35.3, 331.3, 1083.1 Hz
- H1: 35.9, 36.7, ,37.3, 331.9, 1083.7
Hz

• More spectral lines can be found at the
open science center (9). This research
only consideres the most obvious spec-
tral lines mentioned above.

Figure 22: ASD of the data after filtering through whitening, bandpassing ans notching.

When we look at the ASD after notching it is noticeable that the ASD decreases after
300 Hz due to the bandpass filter. It is also almost entirely removed from spectral lines,
comparing fig.22 after notching with fig.17b.
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5 Physical aspects of a BBH merger

5.1 Newtonian mechanics

To determine a theoretical gravitational wave signal we need general relativity, but with
Newtonian mechanics we can however already look at some basic properties of the black hole
merger. We can start by analyzing the data based on what we know of black holes. We will
derive a few Newtonian properties and check these with the data found by LIGO.

We first start by ananlyzing some black hole properties. The definition of a black hole
is stated as ”a region of space-time where the gravitational field is so intense that neither
matter nor radiation can escape.” (29). The radius for which nothing can escape a black hole
is called the Schwarzschild radius,

rSchwarz(m) =
2Gm

c2
, (12)

with m the mass of the object, G = 6.6710−11m3/s2kg the gravitational constant and
c = 2.998108m/s the speed of light. Every non-spinning mass within this radius must be a
black hole.

Figure 23: A two-body system with two
masses orbiting the same center of mass.
(31)

The energy that is emitted by a binary black
hole system can be defined as the quadrupole mo-
ment, Qij, which can be compared to the dipole
moment of electromagnetic waves. With gravi-
tational waves there is no dipole moment. For
a mass-energy density of ρ(~r), the gravitational
monopole moment,

∫
ρ(~r)d3r, would be the to-

tal mass-energy, which in this case is constant so
there is no gravitational monopole moment. The
dipole moment,

∫
ρ(~r)~rd3r, is in this case just the

center of mass-energy which does not change in a
center of mass frame, so there is no static dipolar
gravitational radiation either. The next possible
moment is the quadrupole moment which is not
conserved. This means that there is a gravita-
tional quadrupole moment, Iij =

∫
ρ(~r)rirjd

3r.
(30)

In a two-body system in the xy-plane with m1 and m2 orbiting the same center of mass
we can calculate a quadrupole moment:

Qij =

∫
d3xρ(x)(xixj −

1

3
r2δij), (13)

with r2 = x2 + y2, δij is the Kronecker-delta function and z = 0 because of the 2 dimensional
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system this can be writen as,

Qij =
∑

Aε{1,2}

mA

2
3
x2A − y2A xAyA 0
xAyA

2
3
y2A − x2A 0

0 0 −1
3
r2A.

 (14)

Using x = rcos(ωt), y = rsin(ωt) and the goniometric idenitities cos2(ωt) = 1
2
+ 1

2
cos(2ωt)

and sin2(ωt) = 1
2
− 1

2
cos(2ωt), the above equation can be reduced to:

QA
ij(t) =

mAr
2
A

2
Iij, (15)

with Ixx = cos(2ωt) + 1
3
, Ixy = Iyx = sin(2ωt), Iyy = 1

3
− cos(2ωt) and Izz = −2

3
. This gives

a total quadrupole moment of Qij = 1
2
µr2Iij.

The quadrupole moment can give us information about the rate at which the energy is
emitted in gravitational waves. For a certain distance from the source dL, the strain can be
expressed in teh quadrupole moment Qij:

hij =
2G

c4dL

d2Qij

dt2
. (16)

The energy rate over time is equal to the flux for a sphere of radius dL,

dEGW
dt

= −FGW =
c3

16πG

x
|ḣ|2dS =

1

5

G

c5

∑
3

i,j=1
d3Qij

dt3
d3Qij

dt3
. (17)

Taking the third time derivative of the quadrupole moment we find:

d3Qij

dt3
= 4ω3µr2

 sin(2ωt) −cos(2ωt) 0
−cos(2ωt) −sin(2ωt) 0

0 0 0

 . (18)

Substituting this in eq. 17 gives a value for the radiated power:

dEGW
dt

=
32

5

G

c5
µ2r4ω6. (19)

The power radiated in the form of gravitational waves is equal to the loss of orbital energy.
This means we can state, dEorb

dt
= −dEGW

dt
. For an orbital energyloss of dEorb = G(m1+m2)µ

2r
we

can now equate the two by using Kepler’s third law (r3 = GM/ω2), finding:

(m1m2)
3/5

(m1 +m2)1/5
=
c3

G
(
32

15
ω−11/3

dω

dt
)3/5 (20)

Integrating this will give a relation of the chirp mass as a function of the frequency:

1

f
8/3
1

− 1

f
8/3
1

=
256

5
π8/3

G5/3M
5/3
schirp

c5/3
(t2 − t1) (21)
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The equality on the left side of eq. 20 now gives the definition of the chirp mass. The
chirp mass is a mass scale often used when working with binary merges. Since the chirp
mass is just a mass scale it is not possible to determine the individual masses of the binaries.
However a rough estimation can be made with the following method. It is possible to find a
value of the highest frequency and use this to approximate a value for the individual masses.
We know that when the two black holes start to coalesce, their seperation will be equal to
the sum of their Schwarzschild radius (equation 12), for which we can state:

r1 + r2 =
2G

c2
(m1 +m2) (22)

If we know use Kepler’s third law,

ω2 =
G(m1 +m2)

(r1 + r2)3
, (23)

we can find the angular frequency given at the start of coalescense. Since this is the begin
of the merger phase, we can assume that the angular frequency will reach it’s maximum
around this point in the signal. This gives us an angular frequency of,

ωc = fcπ =
1√
8

c3

G(m1 +m2)
. (24)

As been shown in fig. 15 we can convert the signal into a frequency-time plot showing
us an average (of Livingston and Hanford) maximum frequency of around fc = 320Hz. This
would give a total mass of 71 M�. Now that we have the total mass we can use eq. 21
to estimate the chirp mass and determine the masses of the individual black holes. Using
the same frequency-time plot as before we can observe values for f1 = 50Hz, f2 = 300Hz,
(t2 − t1) = 0.07 s. Plugging this in to the equation for the chirp mass we find a value of
Mchirp = 29 M�. With a value for the chirp- and total mass of the system we can derive the
individual values for the masses. Defining m1 = αM and m2 = (1 − α)M and substituting
this in the equation for the chirp mass:

Mchirp =
(α(1− α)M2)3/5

M1/5
= (α(1− α))3/5M. (25)

Inserting the values for the chirp- and total mass followed by the abc-formula we find
α = 0.55. Giving individual masses of m1 = 39.1M� and m2 = 31.9M�. Comparing this to
the actual data published by LIGO which yields M = 65M�, Mchirp = 30M�, m1 = 29M�
and m2 = 36M�, these values are in reasonable agreement keeping in mind that the data
was roughly estimated from a figure.

It is also possible to make an estimation of the total energy radiated. If we again assume
that the final point of merger is the sum of the Schwarzschild radii, we can insert eq.12 in
the formula for the radiated power (eq.19). While LIGO determined the power radiated to
be equal to 3M�, the estimation gives a value of 4M�, which is still fairly in agreement.
(31)(32)
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5.2 General relativity

Even though some assumptions of a black hole binary system can be made only using New-
tonian mechanic, general relativity plays the main role in extremely massive and accelerating
bodies. This chapter will review a brief explanation of general relativity and how it can be
used to determine certain aspects of black hole binary systems.

The theory of general relativity is based on two main ideas. The first idea is called the
Principle of equivalence. It states that an observer in space, accelerating with an accelera-
tion of g can not know the difference from standing on an inertial mass being subject to a
gravitational force with the same value for g. The second idea is that massive accelerating
bodies bend light. The more massive the body, the more extreme the light is bend. The
theory describes how space exists of four dimensions, being three dimensions of space and
one dimension of time. Keeping in mind, the postulates mentioned above, Einstein came up
with the theory of gravity, in which gravity is not just a force of attraction between bodies,
but where gravity is defined as the curving of space-time.

With his theory of general relativity, Einstein found a way of describing the geometry of
curved space-time and called it The Einstein field equations,

Rµν −
1

2
gµνR + gµνΛ =

8πG

c4
Tµν , (26)

with G the gravitational constant and c the speed of light, also known as Gµν = 8πGTµν .
The Einstein field equations contain a lot of other constants and so called tensors. In the
following part the Einstein field equations will be further explained, defining the meaning
and symbols of the equations.

As earlier mentioned, the Einstein field equations (EFEs) describe the curvature of space-
time. It is often said that the equations are a way of showing two important things; They
mention how mass tells space-time how to curve and show how curved space-time tells mass
how to move. To get more insight on what the equations actualy present, we start by an-
alyzing the physical meaning of the left- and right-hand side of eq. 26. The left-hand side
of the equation shows the curvature of space-time, while the right hand-side of the equation
describes the mass and energy of the system. When we take an even closer look, the EFEs
are actually defined as 16 separate equations. The µν subscript in the equations suggest a
total of 4 × 4 equations, where µ and ν can both take on the form of the 4 dimensions of
space-time, given µν ∈ {0, 1, 2, 3}. Where µ = ν = 0 describes the dimension of time and
µ = ν = 1, 2, 3 describe the three dimensions of space. Since 6 of the equations are duplicates
the EFEs consist of 10 different equations.

To give a good explanation of the EFEs we are going to derive some main concepts of
space-time concerning the relativity postulates. Deriving these concepts will reveal the fur-
ther meaning of the Einstein field equations. (33)

Before we can analyze the curvature of space-time, we first need to define space-time
itself. Space-time can be seen as a field containing four dimensions. This field can be defined
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as an area (xy-plane) containing wripples (z-axis), adding a fourth dimension of time. To
describe a field we can use the gradient defining the rate of change for all four dimensions in
spacetime:

dφ =
∂φ

∂x1
dx1 +

∂φ

∂x2
dx2 +

∂φ

∂x3
dx3 +

∂φ

∂x4
dx4. (27)

For n dimensions this can be simplified to,

dφ =
∑
n

∂dφ

∂xn
dxn. (28)

Now that we’ve defined space-time we need to include the conditions of general relativity.
An important postulate is that the equations must be independent of reference frame (fig.24).
If we define two reference frames x and y, we can ask ourselves if the derivatives for the
reference frame x, ∂φ

∂xn
, is equal to the derivatives in the reference frame of y, ∂φ

∂yn
. To switch

between reference frames we can use the chain rule to find:

∂φ

∂y1
=

∂φ

∂x1

∂x1
∂y1

+
∂φ

∂x2

∂x2
∂y2

(29)

Figure 24: The same point in space
observed from a different reference
frame. (34)

A more general way of defining this is for the ref-
erence frames n and m,

∂φ

∂yn
=

∑
m

∂φ

∂xm

∂xm
∂yn

. (30)

The above equation is meant to work on vectors.
However the EFEs work with something called ten-
sors. Tensors contain the data of multiple vectors,
having N dimensions. A vector is a tensor of rank
1. When adjusting eq. 29 for the case of a tensor we
find:

V n
y =

∑
m

∂yn
∂xm

V m
x , (31)

where x and y are reference frames and n is the
dimension of the tensor, V .

Tensors can be stated in two different forms; the contravariant and covariant form. The
contravariant form is defined as:

Tmn = AmBn. (32)

If m and n can be either 1 or 2, the tensor has a total of 4 values. Substituting this
definition in eq. 31 we find,

Tmny =
∑
r,s

∂ym
∂xr

∂yn
∂xs

ArxB
s
x, (33)
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for which we define a new tensor ArxB
s
x in a reference frame x having the dimensions of r

and s. The most common way of using the tensor definition is the covariant way which we
will be working with from now on:

Tmn(y) =
∑
r,s

∂xr
∂ym

∂xs
∂yn

Trs(x). (34)

If we now apply our knowledge of tensors to the geometry of space we can define the
space-time metric. We start by using the simple Pythagoras theorem to define a small space
ds, ds2 = dx2 + dy2, which can be more generalized to ds2 =

∑
m,n dxmdxnδ. Since we take

ds to be so small it can be taken to be straight, for a curved space s. Using again eq. 29 we
can define dxm = ∂xm

yr
dyr, which we substitute in eq.34 to obtain,

Tmn(y) =
∑
r,s

∂xr
∂ym

∂xs
∂yn

∂Vr(x)

∂xs
. (35)

Substituting this is the Pythagoras theorem we find,

ds2 = δmn
∑ ∂xm

∂yr

∂xn
∂ys

dyrdys, (36)

defining the geometry of space-time and also the first unknown of the Einstein equations
called the metric tensor gmn,

gmn = δmn
∑ ∂xm

∂yr

∂xn
∂ys

. (37)

The metric tensor makes corrections to the Pythagoras theorem, turning flat space into
curved space.

Next we will discuss the Christoffel symbol, Γ. This symbol doesn’t directly occur in
the EFEs, but does appear indirectly in the Ricci tensor, Rµν , which will be derived next.
Since we know from Einstein’s postulates that our calculations should be the same in every
reference frame, we should ask ourselves if this is also true for the derivatives. Unfortunately
this is not the case. The Christoffel symbol is a compensation for the change in derivative
for different reference frames, Tmn(x) = ∂Vm(x)

∂xn
, Tmn(y) = ∂Vm(y)

∂yn
, for a vector V . Using eq.

34 and redefining the equation gives,

Tmn(y) =
∂xr
∂ym

∂xs
∂yn

∂Vr(x)

∂xs
=
∂xr
∂ym

∂Vr(x)

∂yn
, (38)

where the last part shows an inverse chaine rule, explaining for the second equation. Now
defining the derivative for a different frame of reference, using eq. 31 and the product rule,

∂Vm(y)

∂yn
=

∂

∂yn
(
∂xr
∂ym

Vr(x)) =
∂xr
∂ym

∂Vr(x)

∂yn
+
∂xr
∂ym

∂

∂yn
Vr(x). (39)

Comparing eq. 38 and eq. 39 we find that the derivative in the y frame of reference has an
extra term, which is the Christoffel symbol. This means that we can not simply use a normal
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derivative when we’re talking about general relativity. Which is why in general relativity we
talk about a special covariant derivative, ∇ defined as above:

Tmn(y) = ∇nVm =
∂Vm
∂yn

+ ΓrnmVr(x). (40)

Taking the derivative of a tensor we derive:

∇pTmn =
∂Tmn
∂yp

+ ΓrpmTrn + ΓrpnTmr. (41)

Knowing that the covariant derivative of a flat space time geometry must be zero, we can
find a value for the Christoffel symbol. Applying eq. 41 for flat spacetime:

∇pgmn =
∂gmn
∂yp

+ Γrpmgrn + Γrpngmr = 0. (42)

When Einstein passed this equality on to a mathematician which found that the Christof-
fel symbol should be equal to,

Γabc(x) =
1

2
gad(

∂gdc
∂xb

+
∂gab
∂xc

+
∂gbc
∂xd

). (43)

Now that we found the Christoffel symbol, we can determine the Ricci tensor. The Ricci
tensor expresses in what measure space differs from normal Euclidean space. To express
this problem we can move a vector with a certian magnitude and angle parallel along a
sphere. If we place the vector on the top of the sphere going down, turning 90 degrees on
the equator and up again to the starting point, the vector will not be in the same direction
as the starting position. This is a result of the curvature of the sphere. To measure this
difference we can derive the commutator [∇m,∇n]. Applying the commutator to a vector V ,
using the definition for the covariant derivative (eq. 41),

[∇m,∇n]V = ∇m∇nV −∇n∇mV = (∂m + Γm)(∂n + Γn)V − (∂n + Γn)(∂m + Γm)V =

−([∂n,Γm] + [∂m,Γn] + [Γm,Γn])V,
(44)

we have derived the Ricci tensor, Rµν . Another unknown in the EFEs is the Ricci curvature
scalar, R. This scalar describes how much the volume of a geodesic ball deviates from a ball
in Euclidean space and can be determined from the Ricci tensor.

At last we will derive the right-hand side of the equation, The stress energy momentum
tensor, Tµν . A geodesic is the shortest distance between two points. The distance between

two points can be defined as dxµ
τ

, with dxµ the distance and dτ the proper time which is the
time that is the same in every reference frame. To determine the shortest distance between
two points, we can now minimise the distance by taking the first derivative and setting it
equal to zero:

∇dxµ
dτ

=
∂

∂τ

∂xµ
∂τ

+ Γ = 0, (45)

or in a different form ∂2xµ
∂τ2

= −Γ. We could describe this equality as the acceleration
being equal to the Christoffel symbol. As we know from Newton’s first law, the acceleration
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should be linearly equivalent to the force, a = F/m. If we combine relativity with Newton,
we can assume that the Christoffel symbol should be similar to the force. More specific,
the gravitational force tells us that F = −mg, for a potential φ = mgx, keeping in mind
that F = −dφ. For a low gravity field and low velocity, we know that the EFEs should
reduce to a Newtonian situation. These conditions given, we should be able to determine
the Christoffel symbol. Since we consider a flat space-time, the metric tensor should reduce
to g = 1, with its space derivatives small enough to neglect. This should leave us with the
Christoffel symbol,

1

2

∂g00
dx

= F = −∂φ
∂x
. (46)

Integrating both sides with respect to x, we find g00 = 2φ+ constant. Looking at it from
a Newtonian point of view we can integrate Newton’s gravitational force,∫

F · dA = −
∫
GM

r2
dA = −4πGM. (47)

Rewriting M =
∫
ρdV and using the divergence theorem we obtain,

−4πG

∫
ρdV =

∫
∇ · FdV, (48)

from which we can state ∇F = −aπGρ or otherwise ∇2φ = 4πGρ. Substituting eq. 46
for the potential, this results in something very similar to the Einstein field equations,

∇2g00 = 8πGρ (49)

however, this is not yet a tensor equation. Transforming the found equality in a tensor
equation we find the Einstein field equations, Gµν = 8πGTµν , with on the right-hand side
the stress energy momentum tensor which is defined as the energy per unit volume or force
per unit surface (E/V = F/A). The tensor can be expressed as a 4 × 4 matrix containing
the four-dimensions,

Tµν =


T00 . . . . . . T00
...

. . .
...

. . .

T03 T33

 (50)

To expand the equation we can look at the energy conservation within the system. Since
we know that the energy is conserved we can set the derivative of the energy tensor equal to
zero. However this means that the derivative of the Ricci tensor should also be zero, even
though this is not the case. Deriving ∇Rµν and subtracting this value from the left hand-side
of the EFEs we find that both sides are equal to zero. The EFEs now state:

Rµν −
1

2
gµνR =

8πG

c4
Tµν , (51)

where c4 is of dimensional purposes. The last term of the EFEs, gµνΛ is a very small term
for which it is often left out of the equations. This term balances the effects of gravity in the
universe, representing a counter force, successfully deriving the Einstein field equations.
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6 Discussion and conclusion

In this thesis we analyzed the gravitational wave signal from the binary black hole merger
GW150914. We did this by performing a data-analysis on the gravitational wave signal from
LIGO observatories. We compared the datastrains from the two LIGO detectors build in
Livingston and Hanford. Observing that noise plays a large part in gravitational wave de-
tectors, we developed a script which filters the datastrains from noise using several filtering
techniques. First the signal was whitened to flatten the ASD. Knowing in which frequency-
band the merger signal would appear, we next applied a butterworth bandpass filter for a
frequencyband of 20 Hz to 300 Hz. Finally, we applied a notchfilter to reject certain spectral
lines which are caused by instrumental noise. After applying filtering we obtained a signal
matching the theoretical waveform of a binary black hole merger. Also comparing both the
datastrains with a general relativity template, the signal seemed to be in perfect agreement.

After finding the gravitational wave signal we applied a theoretical analysis to test our
findings. We found that the gravitational wave signal of a binary black hole merger includes
mostly general relativity caused by the extreme masses and high velocities of the system.
This thesis did not mainly focus on general relativity due to a minimum amount of time.
However the Einstein field equations were briefly mentioned, showing how mass tells space-
time how to curve and explaining how curved space-time shows mass how to move. Not
being able to apply general relativity on the signal, we did however perform a rough esti-
mation using Newtonian mechanics. Deriving multiple properties for black holes and binary
systems, we made an estimation of the masses and radiated energy. Obtaining values for the
individual masses of 39.1M� and 31.9M and a radiated energy of 4M�, this was roughly in
agreemement with the values published by LIGO (m1 = 29M�,m2 = 36M�, Erad = 3M�).

In future research a more specific analysis on general relativity could be applied to the
data, checking with the data published from LIGO or other gravitational wave detectors.
Since the network of detectors keeps expanding, a more specific analysis could be done in
the future. Being able to detect the same event on a more extended network would result
in better comparisment between data. This could lead to a higher reliability and a more
advanced sky localization system. With the future plans for the Einstein telescope on earth
and the LISA project in space we have a bright future to look forward to. The Einstein
telescope will be even more sensitive, with a much wider frequency-band, predicted to find
new events several times a day. This gives us the opportunity of discovering different parts
of the universe in a much faster rate than is possible today. The LISA will be even more
remarkable, especially focusing on an entirely different frequencyband than the detectors
present on earth. The LISA project will open our eyes about an entire new spectrum of the
universe, maybe even finding new sources of gravitational wave events.
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7 Appendix

The Python based script used for the filtering process in chapter 4 can be found under the
following link: ”https://github.com/suzannelexmond/filtering process GW150914.git”
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