
The integer sides of triangles with a
prime side opposite to a π/3 angle

master’s thesis

author:
Lennert den Besten

supervisor:
Lola Thompson

second reader:
Gunther Cornelissen



Abstract

Consider the non-equilateral triangles with integer sides, one of which is prime and lies opposite
a π/3 angle. Given a positive integer it is easy to predict whether or not it can occur as the
length of one of the two remaining sides of any such triangle. We will establish an asymptotic
upper bound and conditionally an asymptotic lower bound for the rate of occurrence of such
integers. Because it is natural to separate them, we prove results independently for odd and
even integers. We expect the correct size to be a double logarithmic factor smaller than the
upper bound, and a small logarithmic factor larger than the lower bound. We further expect
that the results can be replicated for a wider range of triangles.
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Symbol usage and other miscellaneous conventions

O
(
g(x)

)
The so called big-O relation f(x) = O

(
g(x)

)
between a real valued functions f

and a positively real valued function g, signifies that there exists constants C0 > 0 and x0 ∈ R
such that for all x ≥ x0, the inequality |f(x)| ≤ Cg(x) holds. Also often used in the obvious
variation where the domain of f (and then possibly also g) is a subset of R.

o
(
g(x)

)
The little-o relation g(x) = o

(
f(x)

)
between a real valued function f and a

positively real valued function g, signifies that for every ε > 0, there exists an x0 ∈ R such
that for every x ≥ x0 the inequality |f(x)| ≤ εg(x) holds. If g(x) happens to be a function
that becomes non-zero from a certain point, then the little-o relation is equivalent to saying
that

lim
x→∞

f(x)

g(x)
= 0.

� An alternative for big-O notation commonly used in analytic number theory. Saying
that f(x)� g(x) is equivalent to saying that f(x) = O(g(x)). Note that it is sometimes also
used in reverse g(x)� f(x), implying the same big-O relation as before.

� The first type of asymptotic equality we will use; the relation f(x) � g(x) between two
positive real valued functions f and g means that f � g � f (or equivalently that g � f � g).

∼ The second type of asymptotic equality we will use; the relation f(x) ∼ g(x) between
two real valued function means that the following limit holds

lim
x→∞

f(x)

g(x)
= 1.

ω(n) The function that counts the number of distinct prime divisors of an integer n. So,
if n = pk11 · · · pktt is the prime decomposition of n, we have ω(n) = t.

µ(n) The Möbius function is defined on the positive integers as follows

µ(n) =

{
(−1)ω(n) if n is square-free

0 if n is not square-free.

p We use the letter p exclusively to denote a prime number. When used as an index
under sums Σ and products Π it is used to indicate that the sum/product runs over the prime
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numbers.

P The set containing all primes.

P+(n) The largest prime number that divides a positive integer n, with the convention
that P+(1) = 1.

P−(n) The smallest prime number that divides a positive integer n, with the convention
that P−(1) = 1.

π(x) The function counting the number of primes ≤ x.

dxe The ceiling function maps a real number x to the smallest integer that is at least as
large as x.

bxc The floor function maps a real number x to the largest integer that is at least as
small as x.

“Mertens’ theorem” There seems to be some disagreement in the literature as to what
statement should carry the name Mertens’ theorem. There are three theorems which are up for
the title, all of them proven by the Polish mathematician Franz Mertens. They are concerned
with the asymptotic behaviour of one of the three functions∑

p≤N

1

p

∑
p≤N

log p

p

∏
p≤N

(
1− 1

p

)
.

In tradition with Dutch culture, we will stay impartial on this issue and simply refer to all
three of the facts as Mertens’ theorem. To avoid any confusion, we will always write down the
exact statement we are using when applying one of these theorems.

4 Where ambiguity would arise from not doing so, we will use this symbol similarly to
the qed-square to indicate the end of an example/remark/statement/etc.

4



1. Introduction

The triangle has been an object of study since ancient history, yet it still frequently is the
subject of modern mathematical research. Probably the most well known fact about triangles
is the Pythagorean theorem, a discovery popularly attributed to the ancient Greek thinker
Pythagoras, even though the content of the theorem was known to members of other civiliza-
tions in even earlier history. The theorem states that the side lengths of a triangle a, b, c with
a right angle opposite to c, satisfy the equation

a2 + b2 = c2,

and that conversely every three positive real numbers that satisfy this equation can be used
to form a right triangle.

Of particular interest to number theorists are the right triangles with integer sides, any
three positive integers that together form such a triangle are called a Pythagorean triple. As
mathematical objects, these triples lie in the intersection of number theory and geometry. It
is for example possible to prove that each coprime triple arises from the following identity

(x2 − y2)2 + (2xy)2 = (x2 + y2)2

by looking at congruences and common divisors, but another possibility is to make a corre-
spondence to the rational points on the unit circle. This is a fairly simple fact, which among
other things proves that there are infinitely many Pythagorean triples.

The triples also feature in very deep mathematics; in one of the most acclaimed pieces of
mathematics written in recent history [Wile95] Andrew Wiles proved that the Pythagorean
triples are the only positive integer solutions to the equation

an + bn = cn for an n ≥ 2.

This statement is popularly known as Fermat’s last theorem.
A recent addition to the theory of Pythagorean triples is the 2017 paper [ChPo17] by Sam

Chow and Carl Pomerance. In this paper they establish asymptotic upper and lower bounds
for the proportion of odd positive integers, as well as the proportion of even positive integers
which occur as non-hypotenuse side of a right triangle with prime hypotenuse. The bounds are
established using methods from analytic number theory, the most notable of which are Brun’s
sieve, the distribution of Gaussian primes in narrow circle sectors, and the Hardy-Ramanujan
inequality.

In this thesis, which is based on [ChPo17], we will veer away from right triangles and
Pythagorean triples, and instead look at integer sides of another class of triangles. The
Pythagorean theorem is generalized by the law of cosines which states that the side lengths of
a triangle a, b, c with angle γ opposite to c, satisfy the equation

a2 + b2 − 2ab cos γ = c2.
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Besides the angle γ = π/2 which makes the cosine vanish and corresponds to the Pythagorean
theorem, the second most standout angle is γ = π/3, which makes the cosine and the factor 2
cancel against each other and results in the following equation

a2 + b2 − ab = c2. (1.1)

The properties of the integer triples satisfying this equation and the triangles that come along
with it are in so far similar to Pythagorean triples and right triangles that we are able to
(largely) duplicate the results from [ChPo17] for triangles which have a prime side opposite
to a π/3 angle. That we are no longer concerned with Pythagorean triples though, manifests
itself in the fact that we can’t make use of the theory on the distribution of Gaussian primes
like in [ChPo17] and that we will have to leave a small gap in the proof of the lower bound.
Like the lower bound in [ChPo17] though, we expect that our (hypothetical) lower bound can
be significantly improved upon anyway. The exact statements we are going to prove are the
following.

Theorem 1.1: (a) Let A(N) be the set containing the even positive integers n ≤ N for which
there exists a positive integer solution to equation (1.1) with a = n and c a prime. Then the
following asymptotic bound holds

#A(N) ≤ N

(logN)η
(log logN)O(1)

where η = 1− 1+log log 2
log 2

≈ 0.086.

(b) If the primes of the form 3x2+y2 are distributed like the Gaussian primes (see conjecture
6.3 for a more precise meaning of this statement), then for every ε > 0, the following asymptotic
inequality holds

#A(N)� N

(logN)log 4−1+ε
.

(c) Let B(N) be the set containing the odd positive integers n ≤ N for which there exists
a positive integer solution to equation (1.1) with b = n and c a prime. Then the following
asymptotic bound holds

#B(N) ≤ N

(logN)η
(log logN)O(1).

(d) If the primes of the form 3x2 + y2 are distributed like the Gaussian primes, then for
every ε > 0 the following asymptotic inequality holds

#B(N)� N

(logN)log 4−1+ε
.

4
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In our writing, we will assume familiarity with some of the more common results in analytic
number theory. In particular the prime number theorem (for arithmetic progressions) and
Mertens’ theorem(s) will be used frequently. We will spend the upcoming two chapters intro-
ducing some of the more advanced tools that are required to establish the bounds which form
the main results of this thesis. The first chapter in which we will prove the Hardy-Ramanujan
inequality is fairly short and simple. The second is considerably longer; in it we will introduce
some sieve theory and prove a weak version of Brun’s sieve. Throughout the thesis we will
sometimes refer to the appendix to avoid having too many tedious deductions in the main
body. There will also be a few instances where we simply call upon existing literature to
provide us with the statements we need.

In the final chapter we will say a few words about possible further generalizations and
improvements of the results.
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2. The Hardy-Ramanujan inequality

In this short preliminary chapter we reproduce a result from the paper [HaRa17] which estab-
lishes the Hardy-Ramanujan theorem, which states that the normal order of ω(n) (see page 3)
is log log n. Of particular use to us will be the following lemma (lemma B on page 9), which
is only a small sub-result of the paper.

Lemma 2.1: (The Hardy-Ramanujan inequality) Uniformly for i ∈ Z≥1 and N ≥ 3,

ωi(N) := {n ≤ N |ω(n) = i} � N

logN
· (log logN + c0)

i−1

(i− 1)!

where c0 > 0 is a constant that is independent of i and N .

Proof: We proceed by induction on i. For the base case i = 1, we first establish that

ω1(N) = #{p ≤ N | p prime} + #{p2 ≤ N | p prime} + #{p3 ≤ N | p prime} + . . .

= π(N) + π(N1/2) + π(N1/3) + . . .

Note that this series is finite, as π(N1/k) = 0 for k > log2N . Using the prime number theorem,
we can further bound it as

ω1(N)� N

logN
+

N1/2

log(N1/2)
+ · · ·+ N1/dlog2Ne

log(N1/dlog2Ne)

≤ 1

logN
(N +N1/2 + · · ·+N1/dlog2Ne)

≤ 1

logN
(N +N1/2 log2N)

� N

logN
.

This confirms that base step of the induction follows for any choice of c0.
We continue with the induction step and assume that the inequality from the statement

holds for a certain i ≥ 1. How we have to choose c0 will become clear at the end of the
argument. For p prime and k a positive integer, we define A(p, k) to be the set containing all
numbers n ≤ N that can be written as a product of primes pkpk11 . . . pkii where the numbered
primes are strictly increasing in size (i.e., p1 < · · · < pi) and the largest of which satisfies
pi ≥ p. By construction, the inequality

#A(p, k) ≤ ωi

(
N

pk

)
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holds. If q`11 . . . q
`i+1

i+1 is the prime factorization of a number counted by ωi+1(N), then it is

contained in the sets A(q1, `1), . . . , A(qi, `i). By additionally observing that q
`j+1
j ≤ N holds

for j = 1, . . . , i, we see that the following inequality holds

iωi+1(N) ≤
∑

pk+1≤N

#A(p, k) ≤
∑

pk+1≤N

ωi

(
N

pk

)
.

By dividing by i and applying the induction hypothesis we find the following

ωi+1(N)� 1

i

∑
pk+1≤N

N/pk

log(N/pk)
· (log log(N/pk) + c0)

i−1

(i− 1)!

≤ N(log logN + c0)
i−1

i!

∑
pk+1≤N

1

pk log(N/pk)
.

Note that the constant associated to the � can be taken the same as in the base step. So, we
can both wrap up the induction, and ensure uniformity by proving that the inequality∑

pk+1≤N

1

pk log(N/pk)
≤ log logN + c0

logN
(2.1)

holds for an appropriately chosen c0.
To be able to confirm this inequality we want to use constants that arise in two well known

inequalities which are both due to Mertens. The first is a constant M1 > 0 such that∑
p≤N

1

p
< log logN +M1.

The second is a constant M2 > 0 such that∑
p≤N

log p

p
< M2 logN.

We now approximate (2.1) in two steps. We start by looking at the first terms of the sum
where k + 1 = 2. When 0 ≤ x ≤ 1/2, the geometric series 1/(1− x) = 1 + x + x2 + . . . is no
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larger than 1 + 2x. Using this fact we can bound the first terms as follows∑
p2≤N

1

p log(N/p)
=
∑
p2≤N

1

p logN
· 1

1− (log p/ logN)

≤
∑
p2≤N

1

p logN

(
1 +

2 log p

logN

)
≤ 1

logN

∑
p2≤N

1

p
+

2

(logN)2

∑
p2≤N

log p

p

≤ log logN +M1 +M2

logN
.

The second step is to look at the remaining terms of (2.1) when k + 1 > 2. Note that the
condition pk+1 ≤ N holds iff pk+1N1/k ≤ N (k+1)/k which holds iff N1/(k+1) ≤ N/pk, we can
therefore bound the remaining terms as follows

∑
pk+1≤N
k 6=1

1

pk log(N/pk)
≤

∑
pk+1≤N
k 6=1

1

pk log(N1/(k+1))

=
1

logN

∑
pk+1≤N
k 6=1

k + 1

pk

≤ 1

logN

∞∑
k=2

∞∑
m=2

k + 1

mk

≤ 3

logN

∞∑
m=2

∞∑
k=2

k − 1

mk

≤ 3

logN

∞∑
m=2

1

(m− 1)2

=
3ζ(2)

logN

Combining this with the inequality we established in the first step, we conclude that the
inequality (2.1) holds if we choose c0 ≥M1 +M2 + 3ζ(2).
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3. Brun’s Sieve

The goal of this preliminary chapter is to establish a weak version of a theorem called Brun’s
sieve. It will be an important tool that we will utilise multiple times in the main part of
this thesis. The Norwegian Viggo Brun is the founder of modern sieve theory. Early in the
twentieth century he was able to use his sieve to establish meaningful results for problems
which had hitherto been unapproachable, in particular problems related to the twin prime
conjecture, a proof of which was his original goal. More than a hundred years and many ideas
later, sieve theory has grown into a versatile and indispensable tool for the analytic number
theorist.

We start by examining the sieve of Eratosthenes and predominantly carry out ideas that
don’t quite work as one would hope. Trying to avoid the problems we will run into moti-
vates the alternative approach Brun took. Before we can even properly state the theorem and
present its proof, we also need to introduce a lot of notation. To help us motivate and explain
our choices we will work through some examples as well. We loosely follow chapter 1 and the
first part of chapter 6 of the book [OdC10].

It was in ancient Greece that Eratosthenes created the first mathematical sieve. Around 200
BC he conceived of a quick and simple way to find, given a number n, what the prime numbers
up to n are. The easiest way to explain his method is through an example, let’s take n = 30.
The first step is to write down all the integers up to 30. The next step is to go through this list
and cross out all the multiples of 2 excluding 2 itself. We then iteratively repeat this general
recipe, we take the next number on the list that’s not crossed out and then cross out all it’s
multiples excluding the number itself. Once we reach an integer that is greater than

√
n we

can stop, any composite number ≤ n must have a divisor in the numbers up to and including√
n. For n = 30 we end up with the following table

1 2 3 �4 5 �A6 7 �8 A9 ��10

11 ��ZZ12 13 ��14 ZZ15 ��16 17 ��ZZ18 19 ��20

ZZ21 ��22 23 ��ZZ24 25 ��26 ZZ27 ��28 29 ��ZZ30

Ignoring 1, the numbers that remain are exactly the primes. Note that we crossed out the
multiples of 2 with a /, the multiples of 3 with a \, and the multiples of 5 with a −. This helps
us explain how we can make this quantitative, i.e. how we can use this to compute π(n) (see
page 3). We started out with 29 numbers, we then crossed out b30

2
c − 1 = 14 numbers with a

/, crossed out b30
3
c − 1 = 9 numbers with a \ and b30

5
c − 1 = 5 numbers with a −. If we now

compute 29− 14− 9− 5 = 1 we end up underestimating π(n), this is caused by the fact that
we crossed out some numbers more than once. To compensate we count the number of double
crossing outs and add them back. There are b 30

2·3c = 5 double ��SS∵ crossings, there are b 30
2·5c = 3
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double ��∵ crossings, and finally b 30
3·5c = 2 double SS∵ crossings. Computing 1 + 5 + 3 + 2 = 11

now gives us an overestimation of π(n) by one. This is because 30 can be crossed out twice in
two different ways, but thrice in only one way. What we are doing here is called the principle
of inclusion-exclusion. Generalizing this idea for an arbitrary n gives us the following formula

π(n) = π(
√
n) + (n− 1)−

∑
p≤
√
n

⌊
n

p

⌋
+

∑
p1<p2≤

√
n

⌊
n

p1p2

⌋
−

∑
p1<p2<p3≤

√
n

⌊
n

p1p2p3

⌋
+ . . .

Note that it becomes clear here why we have to use the floor function, that 30 is divisible by
all primes ≤

√
30 is just a nice coincidence. Moving the π(

√
n) − 1 to the left hand side and

using the well known Möbius function µ (see page 3), we can write this succinctly as

π(n)− π(
√
n) + 1 =

∑
d

p|d⇒p≤
√
n

µ(d)
⌊n
d

⌋

Note that moving π(
√
n)− 1 translates to counting 1 and including the primes themselves in

the crossing out of their multiples, so for our example this just means we would have crossed
out 2,3 and 5 as well.

An interesting question to explore is whether or not we can use this formula to give an
accurate approximation of π(n). A natural first step is to use bn

d
c = n

d
− {n

d
} and absorb the

sum of the fractional parts in an error term R of yet unknown size. The remaining main-term
is a well-known (finite) Dirichlet series which can be rewritten as a (finite) Euler product∑

d
p|d⇒p≤

√
n

µ(d)
⌊n
d

⌋
= n

∑
d

p|d⇒p≤
√
n

µ(d)

d
+R = n

∏
p≤
√
n

(
1− 1

p

)
+R

Mertens’ theorem tells us that the product asymptotically equals e−γ/ log(
√
n), where γ ≈

0.577 is Euler’s constant. Likewise, we can use the prime number theorem to approximate
π(
√
n). We end up with the following approximation

π(n) = 2e−γ
n

log n
+R +O

( √
n

log n

)
We know from the prime number theorem though that π(n) is asymptotically equal to n/ log n.
This basically tells us that the constant we found for our main term is wrong, and correspond-
ingly that R which we dubbed as error term is actually the same order of magnitude as the
main term, which is a problem. No matter how well we estimate R, it will never be negligible
compared to the main term. Taking another look at this error term

R = −
∑
d

p|d⇒p≤
√
n

µ(d)
{n
d

}
(3.1)
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we actually see that by crudely estimating its terms with 1, and hence estimating the sum by
its number of terms, we end up with a gross overestimation of its size. Each prime p ≤

√
n

can either divide or not divide d, so the sum has 2π(
√
n) terms, which is almost exponential in

our main term. Controlling error terms like these represents a fundamental problem of sieves.
It also represents the fact that sieves are typically not used for their accuracy, the strength of
the sieve tends to lie in its the ability to handle more general questions like ‘how many primes
are there of the form P (x)?’ where P is some polynomial.

Brun was the first who thought of generalizing the above approach and modifying it in a
way that produces error terms that we can control. As mentioned earlier, we will introduce a
lot of notation before we discuss his methods. This notation is standard for stating so called
sieve problems. We will look back at how the sieve of Eratosthenes translates into a sieve
problem, as well as look at a few other examples that will help explain how more general
problems can be described.

The first thing we do is fix two positive real numbers z < x which will act respectively as the
upper bound for the primes we are going to sieve with and the upper bound for the numbers
we are going to sieve for. We define a sequence

A := (am)m≤x am ∈ R≥0
whose entries will act as weights, and which is usually just defined as the characteristic function
of a set of natural numbers. Next, we let P be the set containing the primes we want to sieve
with, and define the product

P (z) :=
∏
p<z
p∈P

p.

This enables us to define our object of interest, the sifting function

S(A, z) :=
∑
m≤x

gcd(m,P (z))=1

am, (3.2)

which sifts out the am which we are not interested in. The idea is that appropriately choosing
A,P and z (which we will typically take as function of variable x) will make the sifting function
S(A, z) an interesting quantity. We can for example define the sieve of Eratosthenes as follows,
take A to be 1 everywhere, P to be the set of all primes and take z =

√
x. The condition

gcd(m,P (z)) = 1 then acts as a detector of sufficiently large primes and the sifting function
equals π(x) − π(

√
x). We will have a look at more illuminating examples in a moment, but

first we have more to say about the sifting function.
The following well known property of the Möbius function∑

d|m

µ(d) =

{
1 if m = 1

0 else
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allows us to reformulate the condition on the gcd as follows

S(A, z) =
∑
m≤x

gcd(m,P (z))=1

am =
∑
m≤x

∑
d| gcd(m,P (z))

µ(d)am =
∑
d|P (z)

µ(d)
∑
m≤x
m≡0(d)

am.

What we are doing here is more or less the same as what we did above in the sieve of Eratos-
thenes example, but now in a more general fashion. We want to further examine the inner
sums, which we denote as

Ad(x) :=
∑
m≤x
m≡0(d)

am.

In the example we would have Ad(x) = x
d

+ O(1) with a small error term of size not greater
than 2. So, we are able to write Ad(x) as the sum of a nice function and some small error
term. This is a common occurrence which we introduce notation for. In general we assume
that we can approximate these sums as follows

Ad(x) = g(d)X + rd(A)

where X � A1(x) =
∑

m≤x am is a convenient approximation of the total weight of the sequence
A, where the density function g : Z≥1 → [0, 1) is assumed to be multiplicative and rd(A) is an
error term. In the example, the obvious choice would be

X = x, g(d) =
1

d
, rd(A) = 2.

What we more or less assume, is that we can closely describe the distribution of the total
weight over the congruence classes with the density function g. The values of this density
function can be interpreted as the probability of a member of the sequence A being divisible
by d. The assumption for it to be multiplicative reflects that this is an independent event for
two coprime numbers.

Note that all this is defined very loosely. Especially this last piece of notation is meant to
be suggestive rather than restrictive, we are merely agreeing on a framework in which we can
nicely phrase and study sieve problems.

A pair of examples will demonstrate how this notation comes together, and shed some more
light on the strengths and shortcomings of sieves.

Example 3.1: A famous unsolved problem in number theory asks how often the polynomial
m2 + 1 equals a prime. It is not even known whether this happens infinitely often. With the
above notation we can rephrase this as a sieve problem.

Let A be the characteristic function of the set {m2 + 1 ≤ x}. As set of primes we can take
P = {p prime | p 6≡ 3 (mod 4)} because m2 + 1 is never divisible by a prime that is 3 (mod 4).

14



We are looking for primes, so we take z =
√
x like before. The sifting function S(A, z) is then

equal to the number of primes of the form m2 + 1 in the interval (z, x]. The total weight of
the sequence is

A1(x) = b
√
x− 1c

which we can approximate nicely by taking X =
√
x. For p prime, the size of the sets

Ap(x) = #{m2 + 1 ≤ x |m2 ≡ −1 (mod p)}

depends on whether or not −1 is a quadratic residue mod p. This is only happens when p 6≡ 3
(mod 4). In that case there are two solutions contained in each residue class for odd p and one
per residue class when p = 2. The Chinese remainder theorem generalizes this to squarefree
d. This motivates defining g(d) by putting

g(2) =
1

2

g(p) =
2

p
for p ≡ 1 (mod 4),

which uniquely defines a multiplicative function supported on the squarefree numbers without
prime divisors equal to 3 mod 4. It is good to note that we could have equivalently taken P
to be the set of all primes and additionally put g(p) = 0 for the primes 3 mod 4. We have as
approximation

Ad(x) = g(d)X + rd(A)

with an error term rd(A) which is bounded absolutely by 2ω(d) where ω(d) counts the number
of distinct prime factors of d.

Producing a lower bound for S(A, z) that grows to infinity would prove that there are
infinitely many primes of the form m2 + 1. As mentioned before, current methods have not
proven to be powerful enough to generate such a bound. With Brun’s sieve though, it is
possible to produce the non-trivial upper bound O(

√
x/ log x).

By slightly changing the approach or widening the search to include more numbers than
just primes, one is often able to derive sharper results. See for example [OdC10] example 1.6,
where an asymptotic formula for the number of squarefree integers of the form m2 + 1 follows
from a moderate amount of effort.

Example 3.2: Another famous unsolved problem is the twin prime conjecture, which proposes
that there are infinitely many primes p such that p+ 2 is prime as well. We can also rephrase
this as a sieve problem.

If two primes form a twin pair, their product contains exactly two prime divisors. Therefore,
one way to set up our sieve is such that it excludes the numbers that have more than two prime
divisors from the set {m(m + 2) ≤ x}. We take A as the characteristic function of this set.
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There is no class of primes we can exclude beforehand, so we take P = P = {all primes}. If
one of the factors m or m+2 is composite it must have a prime divisor of size at most x1/4. So
if we take z = x1/4, the sifting function S(A, z) is equal to the number of twin prime pairs in
the interval (z, x]. Because m(m+ 2) = (m+ 1)2 − 1, the total weight is equal to the number
of squares which aren’t greater than x+ 1, i.e.

A1(x) = b
√
x+ 1c.

This approximates nicely as X =
√
x. The size of Ad(x) directly depends on the number

of solutions to the equation m(m + 2) ≡ 0 (mod d). Because d is squarefree, the Chinese
remainder theorem reduces this to the case where d is prime. For odd primes there are two
distinct solutions and for 2 there is only one. We let g(d) be the unique multiplicative function
supported on squarefree numbers defined by

g(2) =
1

2

g(p) =
2

p
for p odd.

Then the approximation
Ad(x) = g(d)X + rd(A)

has an error term that is of size at most |rd(A)| ≤ 2ω(d).
As in the previous example, there is no known method that produces a lower bound that

is strong enough to confirm that S(A, z) grows infinitely large. Like before though, Brun’s
sieve produces a non-trivial upper bound, now of size O(x/(log x)2). At the end of the chapter
we will establish the slightly weaker bound O

(
x(log log x/ log x)2

)
using the likewise weaker

version of Brun’s sieve which we are working towards.
4

The first problem we ran into when trying to approximate π(n) with the sieve of Eratosthenes,
was that the error term (3.1) is of the same order of size as the main term. This prevents the
main term from producing an accurate asymptotic formula. However, (3.1) is in theory still
small enough to produce correct upper and lower bounds. While the prime number theorem is
of course a lot more powerful for counting primes, and makes the sieve of Eratosthenes useless
in this regard, no such theorems exist in current mathematics for problems like in the above
examples.

The other problem we noticed is the fact that the approach we took to estimate (3.1) greatly
overestimates its size. A big cause of this problem is that the number of terms that are being
summed is enormous compared to the size of the main term. In the above two examples the
situation isn’t particularly better. Remember that in general the complete error term equals

S(A, z)−X
∑
p|P (z)

µ(d)g(d) =
∑
d|P (z)

µ(d)rd(A).
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In the examples this sum contains roughly the same number of terms as we had with the
sieve of Eratosthenes (in example 1, P only contains about half the primes) while the terms
themselves are typically larger, the bound 2ω(d) is even a lot worse than before. So the obvious
approach of trying reduce the error term by improving the approximations seems hopeless. In
reality, we don’t really run into bounds better than O(1) for the terms.

Brun succeeded to control the error term by approaching the main term with a truncated
version in which only a limited number of steps of inclusion/exclusion have been carried out.
What we will concretely do is compare the sifting function with its approximation by comparing
them both with the following truncated version of the approximation

X
∑
d|P (z)
ω(d)<r

µ(d)g(d)

where r > 1 is an integer.
We start with comparing the sifting function with its truncated version∑

d|P (z)
ω(d)<r

µ(d)Ad(x) (3.3)

Like we saw in the numerical example of the sieve of Eratosthenes, this gives either an overes-
timation or underestimation of S(A, z) depending on the parity of r. That this is true in this
generality isn’t directly clear. A straightforward way to prove this is through the identity∑

d|P (z)
ω(d)<r

µ(d) = (−1)r+1

(
ω(n)− 1

r − 1

)
.

It is however also an easy consequence of the following formula, which we need anyway to help
us quantify how far off (3.3) is from the complete sum.

Lemma 3.3: (Buchstab formula) For an integer d, define Ad to be the sequence which is equal
to A on multiples of d and 0 elsewhere. The following equality holds

S(A, z) = A1(x)−
∑
p|P (z)

S(Ap, p)

Proof: Comparing the right hand side to the original definition of S(A, z), equation (3.2),
we see that we have to confirm that the sum which is subtracted from A1(x) exactly deletes
the am for which m has a common divisor with P (z). Fix such an m and let p be its smallest
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prime divisor. For primes p′ < p, we have that am is not featured in the sequence Ap′ and
hence is not a summand of S(Ap′ , p′).

Because p|m we have that am is a member of the sequence Ap. The product P (p) by
definition factors into the primes smaller than p, so it has no common divisor with m. Hence
am is a summand of S(Ap, p).

For primes p′ > p, we have that p is a common divisor of m and P (p′), which implies that
am is not a summand of S(Ap′ , p′).

For an m that doesn’t have a common divisor with P (z), it follows tautologically that m
also doesn’t have a common divisor with any of the primes dividing P (z). Therefore am is
never a term of the S(Ap, p).

The reason why this is a useful formula is that S(A, z) becomes easier to understand when z
gets smaller, as there will be fewer terms to exclude. Basically, this formula lets us subdivide
our problem into easier parts. By repeatedly applying it, we obtain the following.

Corollary 3.4: We use P−(d) to denote the smallest prime divisor of an integer d. The
following equality holds

S(A, z) =
∑
d|P (z)
ω(d)<r

µ(d)Ad(x) + (−1)r
∑
d|P (z)
ω(d)=r

S
(
Ad, P−(d)

)
. (3.4)

Proof: We use induction on r. The base case r = 1 is exactly the Buchstab formula. Assuming
the equality holds for an r, we apply the Buchstab formula to find that

S(A, z) =
∑
d|P (z)
ω(d)<r

µ(d)Ad(x) + (−1)r
∑
d|P (z)
ω(d)=r

S
(
Ad, P−(d)

)
=
∑
d|P (z)
ω(d)<r

µ(d)Ad(x) + (−1)r
∑
d|P (z)
ω(d)=r

(
Ad(x)−

∑
p|P (P−(d))

S(Adp, p)
)

=
∑
d|P (z)
ω(d)<r

µ(d)Ad(x) +
∑
d|P (z)
ω(d)=r

µ(d)Ad(x) + (−1)r+1
∑
d|P (z)
ω(d)=r

∑
p|P (P−(d))

S(Adp, p)

=
∑
d|P (z)

ω(d)<r+1

µ(d)Ad(x) + (−1)r+1
∑
d|P (z)

ω(d)=r+1

S
(
Ad, P−(d)

)

To see that equality of the rightmost sums in the last step holds it is best to fix an am and
compare how often it is a summand in both sums. The expression S(Adp, p) sums am exactly
once iff P−(m) = p and d|m. So the coefficient of am in the double sum is equal to the number
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of divisors d|P (z) for which d|m and P−(m) < P−(d) and ω(d) = r. Similarly, the expres-
sion S

(
Ad, P−(d)

)
sums am exactly once iff P−(d) = P−(m) and d|m. So the coefficient of

am in final sum in the equation is equal to the number of divisors d|P (z) for which d|m and
P−(d) = P−(m) and ω(d) = r + 1.

Because the quantities S
(
Ad, P−(d)

)
are all positive, (3.3) gives an upper bound for S(A, z)

when r is odd and a lower bound when r is even.
We want to expand the sifting function one step further than (3.4) and replace the Ad with

their approximations µ(d)g(d) + rd(A). Doing this gives us

S(A, z) = X
∑
d|P (z)
ω(d)<r

µ(d)g(d) + E1 + E2

where E1 and E2 are defined as

E1 := (−1)r
∑
d|P (z)
ω(d)=r

S
(
Ad, P−(d)

)
and E2 :=

∑
d|P (z)
ω(d)<r

µ(d)rd(A)

and are error terms which we will deal with later. Like we wanted, we now have a comparison
of the sifting function with a truncated version of its approximation.

By only slightly adapting the proof of the Buchstab formula we can similarly expand the
complete approximation of the sifting function XV (z), where

V (z) :=
∑
d|P (z)

µ(d)g(d)

Repeating the arguments we now obtain as Buchstab formula

V (z) = 1−
∑
p|P (z)
d|P (p)

µ(d)g(d)g(p) = 1−
∑
p|P (z)

g(p)V (p)

and repeated application of this now gives

V (z) =
∑
d|P (z)
ω(d)<r

µ(d)g(d) + (−1)r
∑
d|P (z)
ω(d)=r

g(d)V
(
P−(d)

)
.

As promised, we use this to compare the sifting function with its approximation, subtracting
the two yields

S(A, z)−XV (z) = E1 + E2 + E3
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where the third error term equals

E3 = (−1)r+1X
∑
d|P (z)
ω(d)=r

g(d)V
(
P−(d)

)
.

The error terms we are left with seem a lot more reasonable than what our näıve approach
gave us before. The expressions for E1 and E3 look somewhat similar; we will be able to relate
both of them to something roughly like XV (z). The term E2 will be collected in a larger
application-dependent error term together with some similar terms that we have to shave off
E1 along the way. What we are able to prove is the following.

Theorem 3.5: (Brun’s sieve weak version) Let c be the solution to the equation (c/e)c = e.
Let z ≥ 2 and r ≥ c| log V (z)|, then

|S(A, z)−XV (z)| ≤ e−r−1V (z)1−cX +R(A, zr)

where
R(A, D) :=

∑
d|P (z)
d<D

|rd(A)|

for D > 1.

Proof: With all of the above, what we have left to do is appropriately bound the three error
terms. We find the following bound for the first error term

|E1| ≤
∑
d|P (z)
ω(d)=r

S
(
Ad, P−(d)

)
≤
∑
d|P (z)
ω(d)=r

Ad(x)

=
∑
d|P (z)
ω(d)=r

g(d)X + rd(A)

= XGr +
∑
d|P (z)
ω(d)=r

rd(A).

where we write
Gr =

∑
d|P (z)
ω(d)=r

g(d).
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The series V (z) has the following product expansion

V (z) =
∑
d|P (z)

µ(d)g(d) =
∏
p<z

(
1− g(p)

)
.

Because 1 − g(p) ≤ 1 for all p, we have the trivial bound V (z) ≤ 1. Therefore we have the
following bound for the third error term

|E3| ≤ X
∑
d|P (z)
ω(d)=r

g(d)V
(
P−1(d)

)
≤ XGr

which is, up to the rd(A) terms, the same as the bound for E1. We collect these rd(A) terms
together with the second error term E2. Summed together they are not greater than R(A, zr)
which will act as an application-dependent error term. Also using that the signs of E1 and E3

are opposite to one another, we may conclude that

|E1 + E2 + E3| ≤ GrX +R(A, zr).

So, if we now appropriately bound Gr for r ≥ c| log V (z)|, the theorem statement follows.
Using that g(p) < 1 we find the following

G1 =
∑
p|P (z)

g(p) ≤
∑
p|P (z)

− log(1− g(p)) = − log V (z).

For larger r we can use the multiplicative property of g to relate Gr to G1. Given a d|P (z)
with ω(d) = r, the multinomial theorem tells us that the coefficient of g(d) in the polynomial

Gr
1 =

∑
p|P (z)

g(p)

r

equals
(

r
1,1,...,1

)
= r!. Therefore the inequality Gr ≤ Gr

1/r! holds. Applying the inequality

1/r! ≤ e−1(e/r)r (which, without going into detail, follows from Stirlings approximation of the
factorial) allows us to write

Gr ≤
1

e

(
eG1

r

)r
≤ 1

e

(
e| log V (z)|

r

)r
. (3.5)

Heuristically, Gr should represent the portion of the total weightA1(x) that gets added/subtracted
in the r-th step of inclusion/exclusion. So we expect this inequality to become useful from
around the point where r is least as big as e| log V (z)|, because then the fraction is ≤ 1. The
slightly stronger assumption that r ≥ c | log V (z)| (note that c ≈ 3.591 > e) additionally allows
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us to nicely deal with the term r−r. For any number b ≥ c we have that bb ≥ e2b−c+1 (for
b = c we have equality and the LHS grows faster). This true, in particular, when we put
b = r/| log V (z)|. With this (3.5) becomes

Gr ≤ er−1b−b| log V (z)| ≤ er−1
(
e2

r
| log V (z)|−c+1

)−| log V (z)|
≤ e−r−1V (z)1−c.

The theorem statement now follows.

By making a small assumption on the size of the error terms rd(A), we are able to prove an
alternative version of the above theorem which is less general but easier to use. This is the
statement we will use later on in the main part of this thesis. For a stronger version of Brun’s
sieve we refer to [OdC10] corollary 6.10.

Corollary 3.6: Suppose the remainder terms rd(A) satisfy rd(A) ≤ g(d)d for all d|P (z), then

|S(A, z)−XV (z)| ≤ (1 + e)V (z)X(logX)−1 +X3/4

for X ≥ 16 and z in the range 4 ≤ z ≤ X1/ log(V (z)−c logX), where c is the same constant as in
theorem 3.5 .

Proof: In the proof of theorem 3.5 we bounded the error term

Rr :=
∑
d|P (z)
ω(d)≤r

|rd(A)|

as R(A, zr). The assumption on the size of rd(A) allows us to give a bound for Rr that is more
explicit. One thing we will use is the bound Gk ≤ G1/k! for k ∈ Z≥1, which we established in
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the proof of theorem 3.5. We further put A = max{1, zG1/r}, and estimate

Rr ≤
∑
d|P (z)
ω(d)≤r

g(d)d

≤
∑
d|P (z)
ω(d)≤r

g(d)zω(d)

=
r∑

k=0

Gkz
k

≤
r∑

k=0

(zG1)
k

k!

≤ ArezG1/A

≤
(
ezG1

r

)r
+ er

where the second to last inequality follows from expanding the exponential to at least its r-th
term and using that A ≥ 1. From the proof of theorem 3.5 we take the bounds for E1, E2 and
E3 as well as the bound Gr ≤ e−1(eG1/r)

r, combining these with our new bound for Rr we
obtain

|E1 + E2 + E3| ≤ GrX +Rr ≤
(
eG1

r

)r
(e−1X + zr) + er. (3.6)

We choose r = blogX/ log zc, which together with the bounds for X and z specified in the
statement ensures that we can further bound this as desired. We highlight how each of these
choices comes into effect. Firstly, the choice of r directly implies that

e−1X + zr ≤ e−1X + zlogX/ log z = (e−1 + 1)X (3.7)

and together with the lower bound z ≥ 4 it ensures that

er ≤ elogX/ log 4 ≤ X1/ log 4 ≤ X3/4. (3.8)

Because of the upper bound z ≤ X1/ log(V (z)−c logX) and X ≥ 16, we have

r =

⌊
logX

log z

⌋
≥
⌊

logX

log(X1/ log(V (z)−c logX))

⌋
=
⌊
log(V (z)−c logX)

⌋
≥ b−c log V (z) + log log 16c
≥ c| log V (z)|.
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which allows us to deal with the r−r term as before in the proof of theorem 3.5. Following the
same steps we now obtain (

eG1

r

)r
≤ e−rV (z)1−c,

and using r ≥ log(V (z)−c logX)− 1, we can further bound this as(
eG1

r

)r
≤ eV (z)

logX
(3.9)

Substituting the equations (3.7),(3.8) and (3.9) back into (3.6) proves the corollary.

Let’s finish with an example of how these results can be applied. We return to the twin prime
problem from example 3.2. Using the corollary we can fairly quickly establish a meaningful
upper bound for the number of twin primes.

Example 3.7: To have our results nicely formulated we slightly rephrase the sieve problem
from example 3.2. We take A to be the characteristic function of the set {m(m+ 2) |m ≤ x}
and we keep P as the set of all primes. The sifting function then counts at least all the twin
prime pairs whose smallest prime lies in the interval (z, x]. We emphasize the fact that the
sifting function can count more than just the number of twin primes pairs when z is not taken
to be sufficiently large, in this case when z <

√
x+ 2. The total weight now becomes

A1

(
x(x+ 2)

)
= x

which we approximate accordingly as X = x. For d|P (z) we approximate

Ad
(
x(x+ 2)

)
=

∑
m≤x

d|m(m+2)

1 = Xg(d) + rd(A)

with the same the density function g and remainder terms rd(A) as before. Note that the
size of |rd(A)| is bounded by g(d)d which equals the number of solutions to the equation
m(m + 2) ≡ 0 (mod d) that are contained in one residue system. Therefore we may apply
corollary 3.6.

To be able to quantify the statement of the corollary we would like some sort of asymptotic
expression for V (z). We can find this by looking at the product expansion of V (z). To help
us we need two facts, the first of which is Mertens’ theorem, which says that∏

p<z

(
1− 1

p

)
=

eγ

log z

(
1 +O

(
1

log z

))
.
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The second fact is the absolute convergence of the product

∏
p 6=2

(
1− 2

p

)(
1− 1

p

)−2
which we will establish ourselves. Recognizing the geometric series we can approximate the
square as (

1− 1

p

)−2
= (1 + p−1 + p−2 + . . . )2 = 1 + 2p−1 +O(p−2).

Multiplying this with (1 − 2p−1) gives something with order of size 1 + O(p−2), the infinite
product over this is absolutely convergent. A sufficient condition for absolute convergence of
an infinite product

∏
n 1 + bn is the absolute convergence of the infinite series

∑
n bn. Now,

using the product expansion of V (z) we find its order of growth

V (z) =
∏
p<z

(1− g(p))

=
1

2

∏
3≤p<z

(
1− 2

p

)

=
1

2

∏
3≤p<z

(
1− 1

p

)2 ∏
3≤p<z

(
1− 2

p

)(
1− 1

p

)−2
� 1

(log z)2
.

With this piece of information we can determine how we want to choose the size of z. We
want the main term to be accurate, the error terms to be small, and we of course need z to
stay within the bounds the corollary prescribes.

For better accuracy of our main term XV (z) = xV (z) we basically just want z to be as
close to x1/2 as possible; when z =

√
x+ 2 the sifting function counts all of the twin prime pairs

in (z, x] and nothing more. As z ≤ x, it follows from the above asymptotic expression that
V (z) � (log x)−2. Therefore, the second summand of the error term, X3/4 will be negligible
compared to the main term no matter how we choose z. The upper bound z ≤ x1/ log(V (z)−c log x)

from the corollary ensures that the first summand of the error term, (1 + e)V (z)x(log x)−1 is
also negligible compared to the main term. As this upper bound is not as good as x1/2 (it
actually moves away from x1/2 as x increases), we just take z as large as this bound permits
us. Then log z is of size

log z = log(x1/ log(V (z)−c log x)) =
log x

log log x− c log
(
V (z)

) � log x

log log x
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where we use that | log V (z)| � | log log z| � | log log x|. The main term is therefore bounded
as

XV (z)� x

(
log log x

log x

)2

We conclude that the number of twin primes is O
(
x(log log x/ log x)2

)
.
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4. Triangles with integer sides

We define T to be the set consisting of the sets {p, a, b} containing three positive integers
which satisfy

a2 + b2 − ab = p2

and for which p is prime. The elements in T represent the non-equilateral triangles with integer
sides which have a π/3 angle opposite to a prime side. We will call the two sides a, b which do
not lie opposite to the π/3 angle the legs of such a triangle. Our interest lies in the proportion
of positive integers which occur as a leg of a triangle in T . We will in particular distinguish
between the even and the odd numbers that occur as a leg. The reason why we want to ignore
the side p is that these are exactly the primes equal to 1 modulo 3; their rate of occurrence is
known through the prime number theorem for arithmetic progressions.

In this chapter we will establish explicit descriptions of both the set of odd numbers that
occur as legs in T and the set of even numbers that occur as a leg in T . We will rely on the
following lemma, which gives an alternative construction of the triangles in T .

Lemma 4.1: For a triangle p, a, b in T with b odd, there exists a coprime pair of positive
integers x, y which satisfy 3x2 + y2 ∈ 4P, such that the sides of the triangle can be expressed
in x, y as

p =
3x2 + y2

4
,

b = xy,

a =
3x2 − y2 + 2xy

4
or a =

y2 − 3x2 + 2xy

4

And conversely, if we have a coprime pair of positive integers x, y that satisfy 3x2 + y2 ∈ 4P,
then defining p, a, b like this gives a triangle in T as long as a > 0, which is the case for at
least one of the two expressions for a.

Proof: We start by proving the latter statement which is the more straightforward of the two.
To confirm that a2 + b2 − ab = p2 holds we just need to carry out a few computations. First
we see that

p2 =
9x4 + 6x2y2 + y4

16

so that for the first of the possible expressions for a we have

a2 =
(3x2 − y2 + 2xy)2

42
=

9x4 + 12x3y − 2x2y2 − 4xy3 + y4

16
= p2 +

3x2 − y2 + 2xy

4
b− b2

27



and for the second we similarly have

a2 =
(y2 − 3x2 + 2xy)2

42
=

9x4 − 12x3y − 2x2y2 + 4xy3 + y4

16
= p2 +

y2 − 3x2 + 2xy

4
b− b2

so that indeed a2 + b2−ab = p2 holds in both cases. To see that at least one of the expressions
for a is positive, note that they add up to xy which is positive.

We move on to proving the first of the two statements of the lemma. Let p, a, b be a triangle
in T . Like with right triangles, if we divide all the side lengths by p and put the side with
length a/p on the horizontal axis, we find a unique point on the positive part of the unit circle
S1. The law of sines gives us the coordinates of this point, they are(√

3b

2p
,

√
1− 3b2

4p2

)
=

(√
3b

2p
,
2a− b

2p

)
.

The stereographic projection from the north pole N = (0, 1) on the circle maps a point (x, y)
on S1 \N to

(
x

1−y , 0
)

on the horizontal axis (see illustration below).
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The point corresponding to our triangle gets mapped to
√
3b
2p

1− 2a−b
2p

=

√
3b

2p− 2a+ b
.

Note that the resulting fraction is reduced only when 3 - 2p+ 2a− b. Alternatively, it can be
represented as

√
3b

2p− 2a+ b
=

√
3b(2p+ 2a− b)

4p2 − (2a− b)2

=
2p+ 2a− b√

3b
.

Where we use that the equality a2 + b2 − ab = p2 holds to obtain the last step. In either case
we end up with something of the form

√
3x/y or y/

√
3x where 3 - y.

We look at how a point on the real line of the same general shape maps back to the circle
under the inverse stereographic projection, which maps an arbitrary point r on the real line
to the coordinate

(
2r
r2+1

, r
2−1
r2+1

)
on S1. For x, y coprime and 3 - y, it maps the relevant fractions

as follows
√

3x

y
7→

(
2
√

3xy

3x2 + y2
,
3x2 − y2

3x2 + y2

)
and

y√
3x
7→

(
2
√

3xy

3x2 + y2
,
y2 − 3x2

3x2 + y2

)
.

For certain x, y one these coordinates should correspond to the earlier coordinates on S1 that
we found using the law of sines. Comparing these will allow us to express p, a, b in terms of x
and y. We need to take care though, because not all fractions are necessarily reduced in their
above forms.

As b is odd and b 6= p, the fraction
√

3b/2p is reduced. This implies that 3x2 + y2 is a
multiple of 2p. This prevents either of the coprime x and y from being even. Any odd prime
that divides xy divides either x or y and because 3 - y, this prime then can’t divide 3x2 + y2.
Therefore, the only common divisor of 2xy and 3x2+y2 is 2. This allows us to compare the first
coordinates, which because of the identical denominators also allows us to compare the second
coordinates. The expressions from the lemma statement follow directly from this comparison.

Remark 4.2: It is insightful to note a few facts regarding the triangles in T and lemma 4.1.
Associated to any triangle p, a, b in T , is the triangle p,max(a, b), |a − b| which also lies in
T . This implies that the triangles come in pairs and that for each such pair there are three
integers occurring as leg lengths, two of which are odd and one of which is even.

Related to this is the fact that (under the assumption that b is an odd leg) there are two
possible expressions for a given in the lemma. The value of the ‘remaining’ expression is not
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some random number, its absolute value is equal to the differing leg of the associate triangle.
This follows from the fact that adding up both expressions for a gives xy = b.

Lastly, for a triangle pair, there are two different odd legs which can be taken as b in the
lemma. Therefore, there are also two different coprime pairs x, y which generate this triangle
pair. They in turn give four expressions for a, at least one of which the even leg has to occur
as. There is some irregularity as to which of these four expressions is going to equal the even
leg. Similarly, there is irregularity with regards to the parity of the leg that occurs in both of
the triangles of the pair.

The following numerical examples illustrate these observations.

x = 1, y = 5 x = 3, y = 1 x = 5, y = 1 x = 3, y = 7

(3x2 + y2)/4 7 7 19 19

(3x2 − y2 + 2xy)/4 -3 8 21 5

(y2 − 3x2 + 2xy)/4 8 -5 -16 16

xy 5 3 5 21

4
We are interested in either the odd or even numbers that occur as legs of triangles in T .
Lemma 4.1 immediately gives us a characterization of the set of odd legs. We define B(N) to
be the set that contains the odd numbers ≤ N that occur as a leg. From the lemma it follows
that

B(N) = {xy ≤ N | 3x2 + y2 ∈ 4P and x, y are coprime}.

At first glance, lemma 4.1 doesn’t seem to give us as nice a description of the even legs.
We define A(N) to be the set that contains all the even numbers ≤ N that occur as a leg.
From the lemma and the comments in the remark, it only follows that A(N) equals the union
of the following two sets

A1(N) :=

{
3x2 − y2 + 2xy

4
≤ N

∣∣∣∣ xy ∈ B(∞) and xy ≡ −1, 3 (mod 8)

}
A2(N) :=

{
y2 − 3x2 + 2xy

4
≤ N

∣∣∣∣ xy ∈ B(∞) and xy ≡ 1,−3 (mod 8)

}
.

By a change of variables we will be able to give a more convenient description of A(N) though.
Consider the following set

A′(N) := {uv ≤ N | 3u2 + v2 ∈ 4P and gcd(u, v) = 2},
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which at first sight seems to be more related to the odd legs B(N) than to the even legs A(N).
Applying the substitution u = (x+ y)/2 and v = (3x− y)/2 to an even leg in A1(N), we find
that

uv =
3x2 + 2xy − y2

4
= the even leg,

3u2 + v2 =
3x2 + 6xy + 3y2 + 9x2 − 6xy + y2

4
= 3x2 + y2 ∈ 4P.

Note that the above equalities force both u and v to be even but also prevents them from
having a larger common divisor than 2. It follows that A1(N) ⊆ A′(N).

Similarly, if we take an even leg inside A2(N) and apply the substitution u = (y − x)/2
and v = (3x+ y)/2, we find

uv =
y2 + 2xy − 3x2

4
= the even leg,

3u2 + v2 =
3y2 − 6xy + 3x2 + 9x2 + 6xy + y2

4
= 3x2 + y2 ∈ 4P.

from which we likewise conclude that A2(N) ⊆ A′(N).
We can do one of two changes of variables back to prove that A′(N) ⊆ A1(N) ∪ A2(N).

Given an element uv ∈ A′(N), first consider the substitution x = (u+v)/2 and y = (3u−v)/2.
We have that

3x2 − y2 + 2xy

4
=

3u2 + 6uv + 3v2 − 9u2 + 6uv − v2 + 6u2 + 4uv − 2v2

16
= uv,

3x2 + y2 =
3u2 + 6uv + 3v2 + 9u2 − 6uv + v2

4
= 3u2 + v2 ∈ 4P.

This corresponds to an element inA1(N) if x and y are positive integers such that gcd(x, y) = 1.
Note that {u, v} = {0, 2} (mod 4), otherwise (3u2 +v2)/4 is an even number. Therefore x and
y are both (odd) integers. Suppose that d|x and d|y, then d|(x+ y) = 2u and d|(3x− y) = 2v,
which implies that d| gcd(u, v) = 2. As d is odd, indeed d = 1.

In the case that 3u < v, the above substitution doesn’t give a positive integer value for y.
We can alternatively make the substitution x = (v − u)/2 and y = (3u + v)/2. We similarly
have that

y2 − 3x2 + 2xy

4
=

9u2 + 6uv + v2 − 3u2 + 6uv − 3v2 + 2v2 + 4uv − 6u2

16
= uv,

3x2 + y2 =
3u2 − 6uv + 3v2 + 9u2 + 6uv + v2

4
= 3u2 + v2 ∈ 4P.

which corresponds to an element in A2(N) because gcd(x, y) = 1 like before. We conclude
that A′(N) = A(N).
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There is an obvious bijection between A′(N) and C(4N), where the latter is defined as follows

C(N) := {uv ≤ N | 3u2 + v2 ∈ P}.

In a sense this is the most natural of the three sets A(N),B(N), C(N), even though it doesn’t
necessarily contain any legs of triangles in T . Not coincidentally, this is also the most work-
able of the three, and luckily for us their likeness is so strong that we will be able to permit
ourselves to mainly concern ourselves with that one. We will say a few more words as to why
this is the case in the following chapters.

What we would ultimately like is an asymptotic expression for the size of C(N). While this
will remain out of reach for now, we will be able to fully establish an asymptotic upper bound
and conditionally establish a lower bound in the following two chapters. We expect the upper
bound to be tight up to a factor of around log logN , while the lower bound can probably be
improved by small power of logN to match the upper bound.

Before we start off our effort, we want to go through some heuristics to form an idea of
what we could realistically expect the size of C(N) to be. The first useful observation to make
is the following.

Proposition 4.3: Exactly the primes p ≡ 1 (mod 3) can be expressed (uniquely) as p =
3u2 + v2 with u, v ∈ Z≥1.

Proof: For a prime p ≡ 1 (mod 3), quadratic reciprocity dictates that −3 is a quadratic
remainder modulo p. This implies that there is an integer x such that p divides x2 + 3 =
(x +

√
−3)(x −

√
−3). As p divides neither of these factors inside Z[1+

√
−3

2
], this prevents

p from being prime in this unique factorization domain (see appendix A for a proof of this
fact). So, this ring must contain two non-unit elements α and α′ in such that p = αα′.

Mapping this equality with the multiplicative norm map N : Z[1+
√
−3

2
] → Z tells us that

N(α) = N(α′) = p. By possibly multiplying with an appropriate unit (one of 1±
√
−3

2
) we may

assume that α ∈ Z[
√
−3], so that we can express it as α = u

√
−3 + v. It then follows that

p = N(α) = αα = 3u2 + v2

The uniqueness of u, v follows from the unique factorization inside Z[1+
√
−3

2
] and the fact

that the unit with which an element α ∈ Z[1+
√
−3

2
] has to be multiplied with to end up in

Z[
√
−3] is unique up to sign.

By the prime number theorem for arithmetic progressions, the number of primes equal to 1
mod 3 up to N grows asymptotically as N/2 logN . This at least ensures that C(N) grows
infinitely large as N increases.
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As mentioned earlier, the Hardy-Ramanujan theorem states that the expected number of
distinct prime divisors of a positive integer n is log log n. Therefore, n should have around
2log logn = (log n)log 2 divisors d|n such that d and n/d are coprime. Each such divisor represents
a pair which we can fill into the equation 3u2 + v2 and try to hit a prime with. The odds of
hitting such a prime are around (log n)−1. Because log 2− 1 < 0, a reasonable expectation for
#C(N)/N would be some negative power of logN .
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5. An upper bound

In this chapter we will establish an asymptotic upper bound for the count of odd/even numbers
that occur as legs of triangles in T . More precisely, we will spend this chapter proving the
following statement.

Theorem 5.1: The following asymptotic inequality holds

#C(N) ≤ N

(logN)η
(log logN)O(1)

where η = 1− 1+log log 2
log 2

≈ 0.086.
4

This constant η is not uncommon in mathematics, its first occurrence seems to be in a paper
by Paul Erdös concerning the number of distinct integers in an n × n multiplication table
[Erdö60]. It is commonly known as the Erdös-Ford-Tenenbaum constant, referring to two
other mathematicians who came across this constant in their works [Ford08] [Tene84].

As we mentioned before, we can permit ourselves to mainly work with C(N). This is be-
cause firstly, the relation #A(N) = #C(4N) directly implies that theorem 5.1 also holds for
A(N). Furthermore, most of the things we are going to do in this chapter to prove theorem
5.1 immediately work when we take the odd legs B(N) instead of C(N), and where needed,
only slight adaptations are needed to count quadruples of primes instead of just primes. We
will quickly discuss these adaptations at the end of the chapter, when more context is in place.

The general idea we will be executing is to remove the numbers from C(N) which have a large
number of prime divisors or are divisible by only small primes. The set that remains is then
approximable with Brun’s sieve. The bound obtained from the sieve as well as the size of the
removed sets will depend on how we quantify our notions of ‘small’ and even more so ‘large’.
In order to optimize the result from our methods, some fine tuning will be needed at the end.

Throughout this chapter we will use N to denote an arbitrarily large positive integer.
We start by defining and establishing bounds for the (sub)sets that are to be removed. Let
1 < α < 2 be a real parameter which will be chosen optimally at the end of the chapter.
Why it has to satisfy these bounds will become clear somewhere along the way. Further put
L = bα log logNc and define

E1(N) := {n ≤ N |ω(n) > L}

which is the first set of numbers we are going to exclude from C(N). Note that the expected
number of distinct prime factors of a positive integer n is log log n. The Erdös-Kac theorem
even states that ω(n) has a normal distribution.
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Lemma 5.2: The following bound holds

#E1(N)� N

(logN)1−α+α logα

Proof: In lemma 2.1 we uniformly determined an asymptotic upper bound for the count of
numbers not greater than N which have exactly n distinct prime divisors. Because of the
uniformity, we can turn this into a bound for E1(N) by summing over i. Writing k = log logN
to shorten notation, we find

#E1(N)�
∑
i>L

N

logN
· (k + c0)

i−1

(i− 1)!
=

N

logN

∑
i≥L

(k + c0)
i

i!

In the sum on the right hand side we recognize the tail end of the Taylor expansion of the
exponential ek+c0 . In appendix B we will elaborate on the fact that L being larger than k+ c0
(which is true for large N and the reason why we require α > 1) ensures that asymptotically
the entire sum can be approximated by its largest term (which is its first term). We will
actually use this and similar approximations a few more times. For now it tells us that∑

i≥L

(k + c0)
i

i!
� (k + c0)

L

L!

≤
(

(k + c0)e

L

)L
=

(
e

α
+O

(
1

k

))L
�
( e
α

)L
≤ (logN)α−α logα (5.1)

where we used that 1/L! ≤ eL/LL (which follows from looking at the L-th term of eL) and
where the second to last step follows in the same fashion as(

1 +
1

k

)αk
= ek log(1+

1
k
) = e1+O(k−1) ≤ some constant

follows for large k. Multiplying equation (5.1) with N/ logN gives us the promised inequality.

We move on to the second set of numbers we want to exclude from C(N). We define

E2(N) := {n ≤ N |P+(n) ≤ N1/ log logN}
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For this set we have a fixed bound that we won’t need to worry about when optimizing later on.

Lemma 5.3: The following bound holds

#E2(N) ≤ N

(logN)2

Proof: For positive integers x ≥ 1 and y ≥ 2, define

Ψ(x, y) := #{n ≤ x |P+(n) ≤ y}.

In equation 1.6 in the paper [Brui51] (not to be confused with the very similar equation 1.6 in
the second version of this paper from 1966), the following inequality is established

Ψ(x, y) ≤ x(log y)2 exp
(
− z log z − z log log z +O(z)

)
for 3 < z <

4
√
y

log y
(5.2)

where z = (log x)/ log y.
With x = N and y = N1/ log logN , the condition on z becomes

3 < log logN <
4(log logN)N1/2 log logN

logN
,

which is satisfied for large enough N , to easily see that this is true for the upper bound one
may rewrite it to 1 < 4 exp

(
logN

2 log logN
− log logN

)
. Now applying the inequality, we find that

E2(N) = Ψ(N,N1/ log logN)

≤ N(logN)2

(log logN)2
(logN)− log log logN−log log log logN+O(1)

≤ N

(logN)2
.

Again, the last step just follows when N is taken to be large enough.

Note that we could have taken any fixed power of logN in the denominator. We just choose
2 because this makes the bound strong enough that it won’t get in our way during the opti-
mization at the end of the chapter.

This might raise the legitimate question as to why we bother with excluding such a small
set. The reason for this is that it will clean up our upcoming application of Brun’s sieve. Sieves
are set up in a way that the sifting function counts numbers we are interested in inside the
interval (z, x], but ignores the numbers inside the interval (0, z]. In practice this isn’t a big
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problem because z is always such a small number that it is negligible compared to the sifting
function, but it isn’t something we can just ignore. By excluding elements from E2(N) we are
preemptively dealing with this, which somewhat simplifies the application of the sieve.

Having bounded the sizes of the sets we want to exclude from C(N), we will now bound
the size of the set that remains. We define

C∗(N) := C(N) \
(
E1(N) ∪ E2(N)

)
.

Excluding the elements in E2(N) from C(N) ensures that an integer n in the remaining C∗(N)
can be decomposed in at least one of two ways. The first possibility is that n = u0`v where `
is a prime larger than N1/ log logN and 3u20l

2 + v2 is prime, the other possibility is that n = uv0`
where ` is a prime larger than N1/ log logN and 3u2 + v20`

2 is prime. The removal of elements
from E1(N) additionally ensures that the remainder n/` has at most L distinct prime divisors.
This confirms the following inequality

#C∗(N) ≤
∑

u0v≤N1−1/ log logN

ω(u0v)≤L

S1(u0, v) +
∑

uv0≤N1−1/ log logN

ω(uv0)≤L

S2(u, v0) (5.3)

where
S1(u0, v) =

∑
N1/ log logN<`≤N/u0v

`, 3u20l
2+v2∈P

1 and S2(u, v0) =
∑

N1/ log logN<`≤N/uv0
`, 3u2+v20 l

2∈P

1.

This is useful to us because S1 and S2 can be bounded with Brun’s sieve.

Lemma 5.4: For j = 1, 2, we have

Sj(u, v) ≤ N(log logN)O(1)

(logN)2uv

Proof: The proofs for j = 1, 2 are almost identical. To avoid confusion and having to interrupt
the proof too much, we will proceed under the assumption that j = 1. We will say a few words
at the end about where the differences lie.

Note that we may assume that 2|uv and that u and v are coprime, because otherwise
S1(u, v) = 0. We are going to define a sieve problem for which the sifting function is at least
as large as S1(u, v), and then we will use corollary 3.6 to give us an asymptotic upper bound.

We take x = N/uv, take P = P = {all primes} and define A as the characteristic function
of the set

{m(3u2m2 + v2) | 1 ≤ m ≤ x}.
We further choose z = N (log logN)−3

, which is simultaneously both small and large enough to
make the corollary work, to give us a useful bound, and such that

S1(u, v) ≤ #
{
m ∈ (z, x]

∣∣ gcd
(
m(3u2m2 + v2), P (z)

)
= 1
}

= S(A, z).
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As in example 3.7, we have chosen A such that the total weight can be approximated nicely by
putting X = x. For d|P (z), the size of Ad

(
x(3u2x2 + v2)

)
is directly dependent on the number

of solutions m to the equation m(3u2m2+v2) ≡ 0 (mod d). By the Chinese remainder theorem
this reduces to the case where d = p is prime. If p|3uv, the equation has only the one solution
m ≡ 0 per residue system (note that this includes the case p = 2). When this isn’t the
case there might be more solutions, depending on the number of solutions of the equation
3u2m2 + v2 ≡ 0 (mod p). Using quadratic reciprocity we find that(

−v23−1u−2

p

)
=

(
−3

p

)
=
(p

3

)
,

which implies that when p ≡ 1 (mod 3) there are two additional solutions to the equation,
and in the other case when p ≡ 2 (mod 3) there are none. This motivates defining g(d) by
putting

g(p) =

{
1
p

if p|3uv or p ≡ 2 (mod 3)
3
p

if p - 3uv and p ≡ 1 (mod 3).

With this the size of
|rd(A)| = |g(d)X − Ad

(
x(3u2x2 + v2)

)
|

is bounded by the number of solutions m to the equation 3u2m2 + v2 ≡ 0 (mod d) contained
in one residue system, which is equal to g(d)d. This confirms that the main condition to apply
corollary 3.6 is satisfied. To be able to quantify the statement and verify that the z we chose
isn’t too large, we want an asymptotic expression for

V (z) =
∏
p<z

(1− g(p)) .

Firstly, Mertens’ theorem generalized for arithmetic progressions (see theorem 1 in [Will74])
tells us that ∏

p<z
p≡1(mod3)

(
1− 1

p

)
�

∏
p<z

p≡2(mod3)

(
1− 1

p

)
� 1

(log z)1/2
.

Secondly, the product ∏
p>3

(
1− 3

p

)(
1− 1

p

)−3
is absolutely convergent; after expanding the geometric series the cube can be approximated
as 1 + 3p−1 + O(p−2), hence the terms of the infinite product are of size 1 + O(p−2). Using
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these two facts we find

V (z) =
∏
p|3uv

(
1− 1

p

) ∏
p<z
p6 | 3uv

p≡2(mod3)

(
1− 1

p

) ∏
p<z
p 6 | 3uv

p≡1(mod3)

(
1− 3

p

)

�
∏
p<z

p≡2(mod3)

(
1− 1

p

) ∏
p<z

p≡1(mod3)

(
1− 3

p

)

�
∏
p<z

p≡2(mod3)

(
1− 1

p

) ∏
p<z

p≡1(mod3)

(
1− 3

p

)(
1− 1

p

)−3 ∏
p<z

p≡1(mod3)

(
1− 1

p

)3

� 1

(log z)2
.

Before we can apply the corollary we need to check that the upper bound z ≤ X1/ log(V (z)−c logX)

holds, which we can only properly do now that we have an asymptotic expression for V (z).
Let C1 be a constant such that for (large) N the inequality

−c log V (z) ≤ C1 log log z

holds. Then, also using that X ≥ N1/ log logN we compare logarithms

log
(
X1/ log(V (z)−c logX)

)
=

logX

log logX − c log V (z)

≥ logN

log logN
(

log logN − c log V (z)
)

≥ logN

(1 + C1)(log logN)2

≥ logN

(log logN)3

= log z

which confirms that z is indeed small enough for the corollary to apply.
Both our choice of X and the asymptotic we have found for V (z) is the same as in example

3.7. So, for the same reasons as we gave there, the error term XV (z)(logX)−1 + X3/4 is
negligible compared to the main term XV (z). Therefore the sifting function is asymptotically
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equal to this main term. We conclude that

S1(u, v) ≤ S(A, z)
� XV (z)

� X

(log z)2

=
N(log logN)O(1)

uv(logN)2

which finishes the proof for the case j = 1.

At the beginning we promised we would point out what’s different for the case j = 2. We have
to change the sieve such that it detects primes of the form 3u2 + v2m2 instead of ones of the
form 3u2m2 + v2, under the same restrictions for m. Really the only point where we have to

take care doing this is when defining g(d), but because
(
−3u2v−2

p

)
=
(
p
3

)
the definition of g

remains unchanged and from there on the rest of the proof can essentially be repeated word
for word.

By substituting these bounds into (5.3) we obtain

#C∗(N) ≤ N(log logN)O(1)

(logN)2
I (5.4)

where

I =
∑

uv≤N1−1/ log logN

ω(uv)≤L

1

uv
,

which we bound as follows.

Lemma 5.5: The following asymptotic bound holds

I � (logN)α(1+log 2−logα).

Proof: We start with the following inequality

I ≤
∑
i+j≤L

∑
u≤N
ω(u)=i

1

u

∑
v≤N
ω(v)=j

1

v
.

Summing up to N instead of N1/ log logN in the second sum and N instead of N1/ log logN/u in
the third is just for ease of notation, it will not worsen the bound we obtain.
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Given a u ≤ N with ω(u) = i, the multinomial theorem implies that u−1 is a summand in
the polynomial (∑

pν≤N

1

pν

)i

with coefficient
(

i
1,1,...,1

)
= i!. Making a similar observation for v ≤ N with ω(v) = j allows us

to further bound I as

I ≤
∑
i+j≤L

1

i!

(∑
pν≤N

1

pν

)i
1

j!

(∑
pν≤N

1

pν

)j

=
∑
i+j≤L

1

(i+ j)!

(
i+ j

i

)(∑
pν≤N

1

pν

)i+j

.

Making the substitution n = i + j and using the binomial identity
∑n

i=0

(
n
i

)
= 2n, we can

further bound this as

I ≤
∑
n≤L

1

n!

n∑
i=0

(
n

i

)(∑
pν≤N

1

pν

)n

=
∑
n≤L

1

n!

(
2
∑
pν≤N

1

pν

)n

.

Mertens’ theorem tells us that there exists a constant c1 such that for all N ≥ 2 the differ-
ence between the sum of prime reciprocals

∑
p≤N p

−1 and log logN does not exceed c1. The sum
of the higher power prime reciprocals is convergent, and it is not larger than

∑∞
n=2(ζ(n)−1) = 1

(this equality follows by expanding ζ(n) and switching the order of summation). Using this
we can further bound I as

I ≤
∑
n≤L

(2 log logN + 2c1 + 2)n

n!
, (5.5)

which is a sum that should look familiar to us. Earlier on in the chapter we gave an upper
bound for the tail end of an exponential. The sum above however contains the first terms, but
because L < 2 log logN + 2c1 + 2 (using that α < 2), this sum can likewise be asymptotically
approximated by its largest term (which is now its last term). We will prove this in detail in
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appendix B. Applying this and reusing the inequality 1/L! ≤ eL/LL, we finally bound I as

I � (2e log logN + 2ec1 + 2e)L

L!

≤
(

2e log logN + 2ec1 + 2e

L

)L
=

(
2e

α
+O

(
1

L

))L
�
(

2e

α

)L
≤ (logN)α(1+log 2−logα).

By substituting this bound for I into (5.4) we finalize our approximation of #C∗(N) as follows

#C∗(N) ≤ N(log logN)O(1)

(logN)2−α(1+log 2−logα) .

Now, after a lot of bounds and approximations we can wrap up the proof of theorem 5.1
and with it the chapter. We have established asymptotic bounds for sizes of the three sets
E1(N), E2(N), C∗(N) which unioned together contain C(N). So, the size of C(N) is bounded
by the size of the largest of the three. The bounds for #E1(N) and #C∗(N) are dependent of
our choice of 1 < α < 2. The bound for #E2(N) is the best bound of the three, regardless of
how α is chosen. Comparing the bounds for the other two sets we see that to find the best
bound we need to pick α such that it maximizes

min{2− α(1 + log 2− logα), 1− α + α logα}.

These functions respectively have derivatives logα − log 2 and logα. With this it is easy to
see that the first function is decreasing in the interval (1, 2) while the second is increasing in
the interval (1, 2). Therefore their minimum is maximal at their intersection α = 1/ log 2. We
conclude that

#C(N) =
N(log logN)O(1)

(logN)η
,

where η = 1− (1 + log log 2)/ log 2.
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Remark 5.6: In the introduction of this chapter we promised to end the chapter with a few
words on how to adapt the proof for the set of odd integers B(N) instead of C(N). Remember
that we were able to characterize B(N) as follows

B(N) = {uv ≤ N | 3u2 + v2 ∈ 4P and u, v are coprime}.

The only place in the proof that needs attention is where we apply Brun’s sieve, starting
at page 37. First of all the definitions of S1 and S2 need to be redefined as

S1(u0, v) =
∑

N1/ log logN<`≤N/u0v
`, (3u20l

2+v2)/4∈P

1 and S2(u, v0) =
∑

N1/ log logN<`≤N/uv0
`, (3u2+v20 l

2)/4∈P

1.

We need to accordingly change a few things in the proof of lemma 5.5. The first change is
a bit subtle; we may now assume that 2 - uv and that u and v are coprime. Looking mod 8
ensures us that (3u2 + v2)/4 is never even. Therefore, we can take P = Podd. The next change
to make is to define A as the characteristic function of the set{

m(3u2m2 + v2)/4
∣∣ 1 ≤ m ≤ x

}
∩ Z≥1.

All the other setup parameters stay the same. Because we excluded 2 from P , all d|P (z) are
odd and 4 is invertible modulo d. So the solutions m to the equation m(3u2m2 + v2)/4 ≡ 0
(mod d) occur in the exact same manner as in the original proof.
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6. A (conditional) lower bound

As mentioned before, the general idea we follow comes from the paper [ChPo17] in which the
authors establish asymptotic upper and lower bounds for the number of the odd/even integers
that occur as a non-hypotenuse side of right triangles with a prime hypotenuse. In the previous
chapter we successfully adapted the methods from one of their chapters to replicate the upper
bound established there for legs of triangles in T .

Sadly though, not all of the tools that are used to produce the lower bound in [ChPo17] are
general enough to be applicable in the same manner for legs of triangles in T . The obstruction
is the usage of a theorem which allows us to count Gaussian primes (which are pairs (u, v)
such that u2 + v2 is prime) in an area of the positive quadrant. What we would like is to be
able to instead count the pairs (u, v) in the same area for which 3u2 + v2 is prime. Numerical
evidence suggests that a result similar to the theorem on Gaussian primes should be true, but
sadly no such generalization seems to exist in the literature. Since the rest of the methods
used to establish the lower bound in [ChPo17] do carry over nicely, we choose to still present
the proof of an analogous lower bound which works up to this result. When a bit more context
is in place we will provide the exact details of what it is that we are assuming, as well as the
numerical data which supports it. The exact statement we are going to prove is the following.

Theorem 6.1: If the primes of the form 3u2 + v2 are distributed like the Gaussian primes,
then for every ε > 0, the following asymptotic inequality holds

#C(N)� N

(logN)log 4−1+ε
.

4

As in the previous chapter, the relation #A(N) = #C(4N) implies that this bound also holds
for A(N), and all the methods we will use also work for B(N) with only minor adaptations.

It unfortunately isn’t the case that we can just give lower bounds for the same subsets of
C(N) that we bounded from above in the previous chapter. The approach we take is slightly
different, but still similar enough that it conveniently allows us to reuse a lot of the tools from
the previous chapter.

As in the previous chapter, N is an integer of arbitrary size and 1 < β < 2 a parameter.
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We start by defining the following sets

L0 = {(u, v) ∈ Z2
≥1 | 1 ≤ uv ≤ N, 3u2 + v2 ∈ P},

L1 = {(u, v) ∈ L0 | P+(uv) ≤ N1/ log logN},
L2 = {(u, v) ∈ L0 \ L1 | ω(u) > β log logN},
L3 = {(u, v) ∈ L0 \ L1 | ω(v) > β log logN},
L := L0 \ (L1 ∪ L2 ∪ L3).

All of which should look quite familiar, as these sets are very similar to the ones we bounded
in the previous chapter. We shall be looking for a lower bound for #L, which means that we
need a lower bound for #L0 and we need upper bounds for the cardinalities #Li for i = 1, 2, 3.

The reason we are interested in #L is because we can relate it to the size of C(N) via the
following set

S(N) :=
{(

(u, v), (s, t)
)
∈ L2 |uv = st

}
.

Through a clever application of the Cauchy-Schwarz inequality we can prove the following.

Lemma 6.2: The following inequality holds

#C(N) ≥ (#L)2/#S(N). (6.1)

Proof: We will prove the stronger inequality with the smaller set

C ′(N) := {n ∈ C(N) | ∃(u, v) ∈ L such that uv = n}

in the place of C(N).
Say that C ′(N) contains τ elements n1, . . . nτ . We can then partition L into τ parts ac-

cording to what the product uv of an element (u, v) is. Denote with k1, . . . kτ the sizes of each
subset of the partition, i.e., there are ki pairs (u, v) ∈ L such that uv = ni. With this we have
#L = k1 + · · · + kτ . We can partition S(N) in the same manner, but now the i-th subset of
the partition has size k2i . So that #S(N) = k21 + · · · + k2τ . Cauchy-Schwarz relates the two
cardinalities as follows

(#L)2 =

(
τ∑
i=1

ki

)2

≤ τ

τ∑
i=1

k2i = #C ′(N)#S(N).

The inequality (6.1) follows immediately.
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Because #S(N) features in the denominator in (6.1), we will also have to bound it from above.
We will do this at the end of this chapter by yet again using Brun’s sieve.

The irony now is that L0 is the only set we want to give a direct lower bound for, but that
this is the point where we are going to have to leave a gap in the proof. The lower bound we
expect to hold is the following.

Conjecture 6.3: The following asymptotic bound holds

#L0 � N.

4

The set L0 contains the positive integer pairs (u, v) under the curve v = N/u for which
3u2 + v2 is prime. For convenience we will call such pairs (3, 1)-Gaussian primes. In [ChPo17]
the analogous statement (equation (3.2)) is that the same � bound holds when counting the
number of Gaussian primes (a, b) under the curve b = N/a. The proof relies on a theorem
which, under a few mild conditions, gives a lower bound for the number of Gaussian primes
lying in a given circle sector. As mentioned before, we could not find such a statement for
(3, 1)-Gaussian primes in the literature. Other than the analogous statement being true, we
also have some numerical evidence which backs up the conjecture. In the figure below we have
graphed the number of (3, 1)-Gaussian primes under the curve v = N/u up to N = 5000. The
linearity of the graph needs no mention. The few lines of (Sage) code that produced this graph
can be found in appendix C.
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Leaving this difficulty behind, we are now going to establish upper bounds like we promised.
To show that L is of the same size as L0, we are first going to prove that Li for i = 1, 2, 3 are
all negligibly small compared L0. Starting with the following.

Lemma 6.4: The following relation holds

L1 = o(N).

Proof: Remember that for a pair (u, v) ∈ L0, we have that uv ≤ N . Therefore u ≤
√
N or

v ≤
√
N . A quick application of equation (5.2) from the proof of lemma 5.3 in the previous

chapter, we find

#L1 ≤
∑
a≤
√
N

∑
b≤a−1N

P+(b)≤N1/ log logN

1 =
∑
a≤
√
N

Ψ(N/a,N1/ log logN)�
∑
a≤
√
N

N

a(logN)2
� N

logN
= o(N).

A similar result holds for the remaining two Li.

Lemma 6.5: The following relation holds

Li = o(N) for i = 2, 3.

Proof: The two sets L2 and L3 are very similar, but because of the asymmetry of the equation
3u2 + v2 they aren’t equal. They are however similar enough that we will continue the proof
under the assumption that i = 2. Only minimal changes are required to adapt the proof to
work for L3.

It might be somewhat surprising that we will be able to very closely follow the steps we
took in the previous chapter to establish the upper bound for C∗(N). After all, L2 contains
numbers with a minimum number of distinct prime divisors while C∗(N) excludes numbers with
too many distinct prime divisors. The key difference is that the restriction on the number of
distinct prime divisors in L2 is there only for u instead of for the product uv. After the
computations ahead, we will say a few more words about this, which will hopefully make it
clear why this makes such a difference.

That an element (u, v) ∈ L2 cannot lie in L1 implies that u or v must contain a prime
factor ` > N1/ log logN . We can therefore bound #L2 as

#L2 ≤
∑

uv≤N1−1/ log logN

ω(u)>β log logN

S1(u, v) + S2(u, v)
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where S1 and S2 are the same as on page 37. In lemma 5.4, we used Brun’s sieve to bound S1

and S2. Applying this we further bound #L2 as

#L2 ≤
N(log logN)O(1)

(logN)2

∑
u≤N1−1/ log logN

ω(u)>β log logN

1

u

∑
v≤u−1N1−1/ log logN

1

v

≤ N(log logN)O(1)

logN

∑
u≤N1−1/ log logN

ω(u)>β log logN

1

u
. (6.2)

This sum of reciprocals can be bounded in more or less the same manner as we bounded I in
lemma 5.5. Writing T = bβ log logNc, we quickly go through the steps and now find

∑
u≤N1−1/ log logN

ω(u)>β log logN

1

u
≤
∑
i>T

1

i!

(∑
pν≤N

1

pν

)i

≤
∑
i≥T

(log logN + c1 + 1)i

i!

� (log logN + c1 + 1)T

T !

≤
(
e log logN + ec1 + e

T

)T
�
(
e

β

)T
� (logN)β(1−log β).

Note that the fact that only ω(u) is restricted manifests itself here. The power of the
exponential which we are taking the tail end of its series expansion of, is a factor 2 smaller
compared to when we bounded I (looking in particular at equation (5.5)). Along with this, the
position of the large terms of the sum is shifted towards its beginning. Therefore we can still
approximate this sum by its biggest term, even though we are looking at its tail end instead
of at its first terms. Additionally note that β > 1 is a requirement to be able to make this
approximation.

Substituting the bound back into (6.2), we conclude that

#L2 �
N log logNO(1)

(logN)1−β(1−β log β)
= o(N)

as 1− β(1− log β) > 0.
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We combine lemma 6.5 with lemma 6.4 and conjecture 6.3 to conclude that

L � N. (6.3)

The only set left that is still unbounded is S(N). We plan to establish an upper bound for
it with yet another application of Brun’s sieve. Because we now have to deal with two integer
pairs at the same time, it will take some effort to arrive at something that is nicely siftable.

Note that S(N) contains L as a diagonal. Using that u ≤
√
N or v ≤

√
N as in lemma

6.4, and applying lemma 5.4, we bound #L form above as follows

#L ≤
∑
a≤
√
N

∑
b≤a−1N1−1/ log logN

(
S1(a, b) + S2(a, b)

)
≤ N(log logN)O(1)

(logN)2

∑
a,b≤N

1

ab

≤ N(log logN)O(1). (6.4)

Note that according to (the data of) our conjecture this bound is a bit sloppy, but it will be
good enough to be able to show that the diagonal, which satisfies the same bound, is negligibly
small compared to the rest of S(N).

Ignoring the diagonal and factoring out a prime of size greater than N1/ log logN , we define

G :=
{

(u, v, s, t) ∈ Z4
≥1
∣∣uv = st ≤ N1−1/ log logN ;u 6= s;ω(u), ω(v), ω(s), ω(t) ≤ T

}
where T = bβ log logNc, as before. With this, we have the following inequality

#S(N) ≤ #L+
∑

(u,v,s,t)∈G

S ′1(u, v, s, t) + S ′2(u, v, s, t) + S ′3(u, v, s, t) + S ′4(u, v, s, t) (6.5)

where

S ′1(u, v, s, t) :=
∑

N1/ log logN<`≤N/uv
`,3u2`2+v2,3s2`2+t2∈P

1, S ′2(u, v, s, t) :=
∑

N1/ log logN<`≤N/uv
`,3u2`2+v2,3s2+t2`2∈P

1,

S ′3(u, v, s, t) :=
∑

N1/ log logN<`≤N/uv
`,3u2+v2`2,3s2`2+t2∈P

1, S ′4(u, v, s, t) :=
∑

N1/ log logN<`≤N/uv
`,3u2+v2`2,3s2+t2`2∈P

1.

Just like the Sj in the previous chapter, we can bound these S ′j using Brun’s sieve. Having
excluded elements from the diagonal ensures that the three primality conditions in the sums
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defining S ′j are distinct. This results in a slightly improved bound compared to the ones we
established for the Sj.

Lemma 6.6 : For j = 1, 2, 3, 4 we have the bound

S ′j(u, v, s, t)�
N(log logN)O(1)

uv(logN)3

Proof: As in the proof of lemma 5.4, the proofs for the different j are almost identical, so we
will only treat the case j = 1. Furthermore, a lot of the parts of the setup of the sieve are the
same as in lemma 5.4. We will omit detailed explanations accordingly.

We take x = N/uv, take P = P = {all primes} and take A to be the characteristic function
of the set

{m(3u2m2 + v2)(3s2m2 + t2) | 1 ≤ m ≤ x}.
We further put z = N (log logN)−3

and X = x.
The point where this proof diverges from that of lemma 5.4 is when determining the size

of Ad
(
x(3u2x2 + v2)(3s2x2 + t2)

)
. We want to know, for a prime p, how many solutions to

the equation m(3u2m2 + v2)(3s2m2 + t2) ≡ 0 (mod p) exist in one residue system. The extra
primality condition means that there are at most two extra solutions compared to lemma 5.4.
As before the solution m ≡ 0; always exists, whether there are zero, two or four more solutions
depends on the existence and distinctness of solutions to the equations 3u2m2 + v2 ≡ 0 and
3s2m2 + t2 ≡ 0. The existence condition for both equations is the same as in lemma 5.4,
two solutions for each equation exist exactly when p ≡ 1 (mod 3) as long as p doesn’t divide
3uv. These pairs of solutions are distinct iff −v2/3u2 6≡ −t2/3s2 (mod p), which happens iff p
doesn’t divide ut± vs. This motivates defining the density function as follows

g(p) =


1
p

if p | 3uv or p ≡ 2 (mod 3)
3
p

if p - 3uv and p | (ut± vs) and p ≡ 1 (mod 3)
5
p

if p - 3uv and p - ±vs and p ≡ 1 (mod 3).

It is easy to glance over the fact that this would be a problematic state of affairs if we didn’t
exclude the diagonal. To get the logarithm cubed in the bound from the statement, we basically
need g(p) to equal 3/p on average. An important part in coming to this average is that the
second case g(p) = 3/p happens only finitely often, which is true because ut± vs is non-zero.
For suppose that it does equal zero, then ut = sv because both ut and sv are positive. A
multiplication with u then shows that u2t = suv = s2t, which implies that u = s, but this
is only possible for

(
(u, v), (s, t)

)
on the diagonal of S(N). Applying Mertens’ theorem for

arithmetic progressions in the same manner as in the proof of lemma 5.4 now yields

V (z) � 1

(log z)3
.
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The final steps from lemma 5.4 can now be repeated to conclude that

S ′1
(
(u, v), (s, t)

)
� XV (z)� N(log logN)O(1)

uv(logN)3
.

By substituting the bounds from the lemma and equation (6.4) into (6.5) we obtain

#S(N) ≤ N(log logN)O(1) +
N(log logN)O(1)

(logN)3
I (6.6)

where

I =
∑

(u,v,s,t)∈G

1

uv
.

After restructuring the sum slightly, we can bound I similarly to how we bounded I in lemma
5.5. Because the sum now has more terms, the bound becomes slightly worse.

Lemma 6.7: The following asymptotic bound holds

I � (logN)2β(1+log 2−log β).

Proof: Factorizing the elements of G will allow us to conveniently rewrite I. Fix two pairs(
(u, v)(s, t)

)
∈ G and let g = gcd(u, s). Then there are coprime integers x, y such that

u = gx and s = gy.

Because uv = st, there is an additional integer z such that

v = yz and t = xz,

where z = gcd(v, t) and the four integers g, x, y, z are pairwise coprime. This proves that the
set

G ′ :=
{

(g, x, y, z) ∈ Z4
≥1
∣∣ gxyz ≤ N1−1/ log logN ;x 6= y;ω(gx), ω(yz), ω(gy), ω(xz) ≤ T

}
surjects onto G. This allows us to bound I as follows

I ≤
∑

(g,x,y,z)∈G′

1

gxyz
≤

∑
i1+···+i4≤2T

4∏
j=1

( ∑
n≤N

ω(n)=ij

1

n

)
.
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Using the multinomial theorem we can further bound this as

I ≤
∑

i1+···+i4≤2T

4∏
j=1

1

ij!

( ∑
pν≤N

1

pν

)ij

=
∑

i1+···+i4≤2T

1

(i1 + i2 + i3 + i4)!

(
i1 + i2 + i3 + i4
i1, i2, i3, i4

)( ∑
pν≤N

1

pν

)i1+i2+i3+i4

.

After making the substitution n = i1 + · · · + i4 and applying the multinomial identity 4n =∑
i1+···+i4=n

(
n

i1,...,i4

)
, we follow the final few steps from the proof of lemma 5.5 (omitting details

and using the same constant c1), to conclude that

I ≤
∑
n≤2T

1

n!

(
4
∑
pν≤N

1

pν

)n

≤
∑
n≤2T

(4 log logN + 4c1 + 4)n

n!

� (4 log logN + 4c1 + 4)2T

(2T )!

≤
(

4e log logN + 4ec1 + 4e

2T

)2T

≤
(

2e

β
+O

(
1

T

))2T

� (logN)2β(1+log 2−log β)

Note that it is here that we use β < 2 to be able to approximate the sum by its largest term.

Note that 2β(1 + log 2− log β) > 3, so that substituting this into equation (6.6) finalizes our
bound for S(N) as

#S(N) ≤ N(log logN)O(1)(logN)2β(1+log 2−log β)−3.

By combining this with lemma 6.2 and inequality (6.3), and making the substitution β = 1+ε,
we deduce theorem 6.1.
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7. Closing comments

There are two possible improvements of the results in this thesis that we want to highlight.
The first has already been mentioned in the previous chapters: it is the improvement of the
upper bound by removing the factor (log logN)O(1) and the improvement of the lower bound
by a factor of logN to bring it up to the anticipated upper bound. The sole reason we expect
this to be possible is that the authors of [ChPo17] formulated an analogous conjecture in their
final chapter. For a suggestion of a possible route leading to these improved bounds, we refer
to their comments at the end of their paper.

The second improvement we have in mind is to determine whether there are (and if so which)
other angles γ that correspond to triangles whose side values behave in the same manner as
right triangles and the triangles in T .

Some (limited) numerical experimentation suggests that for a general fraction cos γ = s/t,
things do not necessarily work as nicely as for cos γ = 0 and γ = 1/2. The law of cosines
becomes

ta2 + tb2 − 2sab = tp2.

For all the fractions that we checked (all the reduced fractions s/t < 1 with t ≤ 6) there
seem to be plenty of solutions. Additionally, the set of primes for which there is a solution
seems predictable as well.

To illustrate this we will consider the example value s/t = 1/3. This will bring some funda-
mental differences to light, but also show enough similarities to suggest that a generalization
to ‘nicely behaved’, if not all, fractions s/t is possible.

When trying to replicate chapter 4 with s/t = 1/3, things only seem to half work. The core
of the problem lies in the fact that the statement analogous to lemma 4.1 only works in one
direction. Given a triangle, the trick with the stereographic projection does dictate that there
are coprime positive integers x, y such that the prime side is of the form p = (2x2 + y2)/3, one
of the legs is of the form xy and the remaining leg equals one of the following expressions

2x2 − y2 + xy

3
or

y2 − 2x2 + xy

3

Given such a coprime pair x, y for which (2x2 + y2)/3 is a prime, it is not always the case
that choosing one of above expressions always gives back a triangle with integer sides though.
We have written down a few numerical examples below which support these claims, as well as
bring other important differences to light.
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x = 2, x = 4, x = 2, x = 5, x = 1 x = 7 x = 1

y = 1 y = 1 y = 5 y = 1 y = 7 y = 5 y = 11

(2x2 + y2)/3 3 11 11 17 17 41 41

(2x2 − y2 + xy)/3 3 35/3 -7/3 18 -40/3 36 -36

(y2 − 2x2 + xy)/3 5/3 -9 9 -44/3 18 -38/3 130/3

xy 2 4 10 5 7 35 11

For example, the column x = 4, y = 1 does not even feature three positive integers, so it
cannot correspond to a triangle with integer sides.

The contents of the bottom three rows do not seem as nicely ordered as in chapter 4. First
of all the distribution of even/odd integers is no longer predictable. We have to look modulo
3 instead to bring back structure. Ignoring the fractions and negative numbers in the middle
two rows leaves us exactly with the integers divisible by 3 which feature as a leg. This suggests
that we can define a set A(N) which counts exactly the legs divisible by 3 in a very similar
manner to how we defined the set A(N) in chapter 4 which exactly contained the even legs
(remember that in chapter 4 we had to similarly filter out odd numbers from the middle two
rows). The appropriate definition seems to be

A(N) = {uv ≤ N | 2u2 + v2 ∈ P}.

If we analogously to chapter 4 define B(N) to contain all the integers from the bottom row,
we run into a bit of a problem though. Not all the integers in this row (e.g. 4 and 11) seem to
feature in a triangle with only integer sides. This means that if we take the nice definition

B(N) := {xy ≤ N | 2x2 + y2 ∈ 3P},

that B(N) gets contaminated with ‘bad’ numbers that we are not interested in. This might
not be a huge problem though. For the primes of the form (2x2 + y2)/3 (which are exactly
the primes 1, 3 mod 8) there seems to be at least one such pair x, y (while there are typically
two pairs) that does correspond to a triangle with integer sides. This suggests that B(N) is
at most half-filled with ‘bad’ numbers. Since the bounds we established are asymptotically
accurate up to an integer anyway, this factor 1/2 wouldn’t meaningfully affect the results.

The thing that changes the most when adapting the proof of the upper and lower bounds
to work for these new definitions of A(N) and B(N) is the application of Brun’s sieve, which
should be able to handle modifications like these quite well.

All of this bodes well for generalization to a wider range of angles. How wide this range
is exactly needs further investigation though. While the problems we run into with s/t = 1/3
seem manageable, other things might start breaking down when (one of) s and t gets larger.
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8. Appendix

A

In this section we provide a proof of the fact that Z[1+
√
−3

2
] is a unique factorization domain.

We will do this by directly proving that it admits a Euclidean algorithm It is then automatically
a principal ideal domain and hence has unique factorization.

Given two elements α, β in Z[1+
√
−3

2
] with β 6= 0, we need to confirm that there exist two

more elements q, r in Z[1+
√
−3

2
] such that α = qβ + r and such that |r| < |β|. If we divide by

β this translates into α/β = q + r/β with |r/β| < 1. From this we deduce that the condition

is fulfilled if every fraction α/β in Q(
√
−3) can be approximated by an element q in Z[1+

√
−3

2
]

such that |q−α/β| < 1. This is indeed possible because the collection of open discs of radius 1

centered at the elements of Z[1+
√
−3

2
] covers the entire complex plane, as can be deduced from

the picture below.
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B

In this section we will justify the approximations we made of the partial exponential sums
throughout chapters 5 and 6. It suffices to prove the following statement.

Lemma B1: For η > 1 > µ, the asymptotic inequalities∑
m≤L

(ηL)m

m!
� (ηL)L

L!
and

∑
j≥L

(µL)j

j!
� (µL)L

L!

hold as L grows to ∞.
4

The truth of this statement relies on the way the size of the exponential is distributed over
the terms of its Taylor expansion. For an integer n, by far the largest term of the expansion
of en is the term nn/n!, Stirlings formula approximately says that the entire series is only a
factor

√
2πn larger. The terms are almost normally distributed around the largest term nn/n!,

though not quite like a Gaussian e−x
2
, but more like e−x log x. This will still mean that the

largest term in the sums in lemma B1 is so dominant that it asymptotically approaches the
entire sum. The symmetrical character of the distribution is also reflected in the following
related asymptotic equality ∑

n≤L

Ln

n!
∼ eL/2.

One way to properly prove this is through a technique known as Laplace’s method, which can
be used to approximate the integral representation of the remainder of this truncated Taylor
series. We will prove lemma B1 basically following the same idea, but we need a slight vari-
ation of the statement that is commonly referred to as Laplace’s method. The statement we
will use is the following, we will also provide the proof.

Lemma B2: (Laplace’s method) Let U ⊆ R be an open that contains the interval [a, b) and
let f : U → R a continuously differentiable function decreasing at a and such that for every
δ > 0, the supremum of f on (a + δ, b) is strictly less than f(a) and such that

∫ b
a
ef(x)dx

converges. Then ∫ b

a

eMf(x)dx ∼ eMf(a)

M |f ′(a)|
as M goes to ∞.

Proof: To prove that the ∼ relation holds we will show that the limit of the quotient of the
RHS and LHS is bounded from below and above by 1.
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We first prove the lower bound. Let ε > 0, by Taylor’s theorem there is a δ > 0 such that
for x ∈ (a, a+ δ) the inequality

f(x) ≥ f(a) + (f ′(a)− ε)(x− a)

holds. From this we derive the following inequality∫ b

a

eMf(x)dx ≥
∫ a+δ

a

eM(f(a)+(f ′(a)−ε)(x−a))dx

= eMf(a) e
−δM(ε−f ′(a)) − 1

M(f ′(a)− ε)

Dividing both sides of this inequality by eMf(a)/M |f ′(a)| and taking the limit M → ∞, we
find

lim
M→∞

∫ b
a
eMf(x)dx

eMf(a)/M |f ′(a)|
≥ |f ′(a)|
f ′(a)− ε

lim
M→∞

(e−δM(ε−f ′(a)) − 1) =
|f ′(a)|
ε− f ′(a)

.

Because this is true for any ε > 0 and f ′(a) is negative by assumption, we may conclude that

lim
M→∞

∫ b
a
eMf(x)dx

eMf(a)/M |f ′(a)|
≥ 1.

To prove that the upper bound also holds we will follow a similar strategy, but we need to
work around the fact that we will not be able to ignore the remainder part

∫ b
a+δ

of the larger
integral like before.

Let ε > 0, by Taylor’s theorem there is a δ > 0 such that for x ∈ (a, a+ δ) the inequality

f(x) ≤ f(a) + (f ′(a) + ε)(x− a)

holds. Because of the condition on the supremum, there must exist some γ > 0 such that
f(x) ≤ f(a)− γ for all x ∈ (a+ δ, b). From this we now derive the inequality∫ b

a

eMf(x)dx ≤
∫ a+δ

a

eM(f(a)+(f ′(a)+ε)(x−a))dx+

∫ b

a+δ

eMf(x)dx

≤ eMf(a) e
−δM(−f ′(a)−ε) − 1

M(f ′(a) + ε)
+ e(M−1)(f(a)−γ)

∫ b

a+δ

ef(x)dx.

Like before we want to divide both sides by eMf(a)/M |f ′(a)| and let M → ∞. Note that the
right summand on the right hand side vanishes in this process as e−MγM · constant → 0 as

57



M →∞. So, ignoring this summand and proceeding as described, we get close to the situation
we had before, we now find

lim
M→∞

∫ b
a
eMf(x)dx

eMf(a)/M |f ′(a)|
≤ |f ′(a)|
−ε− f ′(a)

.

Because this is true for every ε > 0, we may conclude that

lim
M→∞

∫ b
a
eMf(x)dx

eMf(a)/M |f ′(a)|
≤ 1.

Note that a mirrored version where f(b) is the maximum instead of f(a) and where f ′(b) > 0
follows by symmetry. We will use both versions to prove lemma B1.

Proof of lemma B1: The remainder of the n-th order Taylor expansion of a function f is∫ x

0

(x− t)n

n!
f (n+1)(t)dt.

We write x = ηL and use this to rewrite first of the two sums from the lemma as follows∑
m≤L

xm

m!
= ex −

∫ x

0

(x− t)L

L!
etdt

= ex − ex

L!

∫ x

0

yLe−ydy

= ex − ex

L!

(
L!−

∫ ∞
x

yLe−ydy

)
=
ex

L!

∫ ∞
x

yLe−ydy.

We can use Laplace’s method to find a useful asymptotic for the integral. After carrying out
the substitution y = Lz and applying Laplace, we find the following∫ ∞

x

yLe−ydy = LL+1

∫ ∞
η

zLe−Lzdz

= LL+1

∫ ∞
η

eL(log z−z)dz

∼ LL+1 e
L(log η−η)

L|η−1 − 1|
= (ηL)Le−x

η

η − 1
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substituting this back into the above, we find∑
m≤L

(ηL)m

m!
∼ η

η − 1
· (ηL)L

L!
� (ηL)L

L!

which is exactly the approximation we wanted to establish for the first sum.

The second sum we want to approximate already is the remainder part of the Taylor series.
In order to get nicer formulas we ignore the first term of the sum for now, we will add it back
at the end. Writing x = µL and making similar substitutions as before, we now see that∑

j≥L+1

(µL)j

j!
=

∫ x

0

(x− t)L

L!
etdt

=
ex

L!

∫ x

0

yLe−ydy. (8.1)

We substitute y = Lz and apply the mirrored version of the Laplace method to find the
following asymptotic for the integral∫ x

0

yLe−ydy = LL+1

∫ µ

0

zLe−Lzdz

= LL+1

∫ µ

0

eL(log z−z)dz

∼ LL+1 e
L(log µ−µ)

L|µ−1 − 1|
= (µL)Le−x

µ

1− µ
.

By substituting this back into (8.1), we obtain

∑
j≥L+1

(µL)j

j!
∼ (µL)L

L!
· µ

1− µ
� (µL)L

L!
.

Adding back to both sides the term (µL)L/L! which we chose to ignore at the start, we conclude
that the second inequality from the lemma also holds.
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C

L = []

for N in range(1,5000):

Counter = 0

if (N/10).is_integer():

for u in range(1,N):

for v in range(1,floor(N/u)):

if (3*u^2 + v^2) in Primes():

Counter = Counter+1

L.append([N,Counter])

list_plot(L, color = ’blue’)

This piece of Sage code was used to generate the graph on page 46. Note that for this range
of N , this computation might take a few minutes on a present-day consumer grade PC.
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