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Abstract

Fluorescence microscopy images are blurred due to diffraction of light by passage through the
optical path of the microscope. The resulting image is the convolution of the original object with
a point spread function. We investigate the restoration of 3D fluorescence microscopy images that
are affected by convolution and noise. We use a variational approach and investigate both which
functional to minimize and how to find the minimizer. Regularization reflects a trade-off between
bias and variance that is controlled by the regularization parameter. We apply different methods for
finding the optimal value for this parameter and investigate how the optimal value depends on the
signal-to-noise ratio of the image. We minimize the functional by using a scaled gradient projection
algorithm that aims to improve the convergence rate compared to a standard gradient descent
method by multiplication of the search direction by a scaling matrix and choosing an effective step
size. The algorithm is applied to real data from confocal and widefield microscopy. The convergence
of the algorithm is investigated and different scaling matrices are compared.
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Preliminaries 1

Preliminaries

Notation

• An overline, like x or S can mean two different things, which will become clear from the
context. When x is a complex number, then x is the complex conjugate of x. When S is an
area in R3, then S is used to denote a larger area in which S is contained. Note that with S
we do not necessary mean the closure of S.

• We use the notation 〈x,y〉 to denote the inner product. When an inner product 〈·, ·〉 is used
without a subscript, the standard Hermitian inner product is meant

〈·, ·〉 : CN × CN → C : (x,y)→
N∑
i=1

xiyi

• When a norm ||x|| without a subscript is used, we mean the Euclidean norm ||x||2 =
√
〈x, x〉.

• The probability of an event A is denoted by P (A). The conditional probability of an event A
given the event B is denoted by P (A|B).

• Let X be a random variable. The expected value of X is denoted by E(X) and the variance
of X by Var(X).

Prerequisites

• Let U and V be Hilbert spaces equipped with inner products 〈·, ·〉U and 〈·, ·〉V . Let A : U → V
be a bounded, linear operator. The adjoint operator A∗ is defined as the operator A∗ : V → U
that satisfies

〈Au,v〉V = 〈u, A∗v〉U
for all u ∈ U and v ∈ V.

• When U and V are equal to CN and CM , respectively, with the standard inner product, and
A ∈ CM×N , then the adjoint operator A∗ ∈ CN×M is equal to the conjugate transpose of A,
that is

(A∗)ij = Aji.

• Let A be a complex square matrix. Then A is called a unitary matrix if its conjugate transpose
is equal to its inverse, that is

A∗A = AA∗ = I

• Let A be real square matrix. Then A is called a positive definite matrix if and only if

〈x, Ax〉 > 0

for all nonzero x ∈ RN .
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• An N ×N matrix is called a circulant matrix when it is of the form

A =


a0 aN−1 aN−2 · · · a2 a1

a1 a0 aN−1 · · · a3 a2

a2 a1 a0 · · · a4 a3
...

...
...

. . .
...

...
aN−1 aN−2 aN−3 · · · a1 a0

 ,

in other words, Amn = a(m−n) for some N -dimensional vector a where ai := a(i mod N). Each
row is a cyclic permutation of the row above it where each element is shifted one position to
the right.

• For r ∈ C, r 6= 1, the sum of the first N terms of the geometric series is given by

N−1∑
k=0

rk =
1− rN

1− r
. (0.1)



Chapter 1

Introduction

Microscopy plays an important role in many fields of scientific research such as medicine, envi-
ronmental science, forensics and material science, because it makes it possible to see objects that
are too small to be seen by the naked eye [13, 25]. Fluorescence microscopy is a subdomain of
microscopy where the object of interest is labeled with a fluorescent dye. When illuminated with
light of a specific wavelength, the excitation wavelength, the specimen will emit light of another,
typically larger, emission wavelength. This light is then recorded by a camera or detector. Since
the fluorophores can target specific biological molecules, fluorescence microscopy makes it possible
to visualize cell structures of interest. In addition to this, the method is sensitive to small amounts
of fluorophores and it allows the imaging of live cells or organisms. These advantages make that
the technique is widely applied in microbiology [12, 21].

Due to diffraction of light by passage through the optical path of the microscope the image is
blurred. This process can be described by a convolution of the object with a point spread function
(PSF). Due to the linearity of convolution, the image measured by the microscope is the sum of
point spread functions that are scaled by the intensity and translated to be centered at each indi-
vidual emitting point in the object. In addition to convolution, the image is also distorted by noise.
The main source of noise is Poisson noise that results from the discrete nature of photons.

Image restoration is the process of recovering the original object that is degraded by convolution
and noise. Restoration is important because it improves the image quality and makes it possible
to perform a better visual and quantitative analysis. Scientific Volume Imaging (SVI) develops
software for restoration, visualization and analysis of fluorescence microscopy images. Figure 1.1
shows a multichannel widefield microscope image deconvolved with SVI’s Huygens software.

An inverse problem is a problem that can be formulated as

K(w) = f (1.1)

where w ∈ U are the parameters, f ∈ V is the measured data, where U, V are Hilbert spaces. The
forward operator K : U → V is a model of some physical process. The goal is to find a solution
w for a given measurement f . However, since K is only a model for the underlying process and
because of measurements errors, it may be that no solution exists that exactly fits the data. Also,
it may be that a solution is not unique or that the solution does not depend continuously on the
data. In that case, a small measurement error can lead to a large error in the reconstruction.

3
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Figure 1.1: A 2D slice of a 3D widefield image of a cell division. Raw image (left) and image
deconvolved by SVI’s Huygens software (right). The image contains four channels which are shown
in the colours of the emission wavelengths. Data courtesy: Dr. Livio Kleij en Martijn Vroomans,
Medical Oncology, UMC Utrecht, The Netherlands.

In the inverse problem of deconvolution, the forward operator K models the image formation pro-
cess in a microscope. Convolution in the spatial domain corresponds to multiplication in the Fourier
domain. The Fourier transform of the PSF is called the optical transfer function (OTF). Decon-
volution therefore corresponds to division by the OTF in the Fourier domain. However, the OTF
usually has finite support and tends to zero for high frequencies. In addition to this, since the
noise is described by high frequencies in the Fourier domain, the division by the OTF leads to
amplification of noise. Therefore, the solution does not depend continuously on the data, making
this problem ill-posed.

The inverse problem can be rewritten as a minimization problem where a function is minimized
that measures how well the estimate for the object matches with the measured data. Gradient de-
scent algorithms are well known iterative methods for finding the minimum of a function by taking
steps in the direction of the negative gradient. These methods are robust and simple, but their
convergence can be slow. The idea of scaled gradient methods is to multiply the descent direction
by a scaling matrix to improve the convergence speed.

In this thesis we will explain the most important theory behind inverse problems and regularization,
explain how the scaled gradient projection algorithm works and apply it to the deconvolution of
three-dimensional fluorescence microscopy images. So far, the scaled gradient algorithm has pri-
marily been tested on synthetic microscopy data that was generated using an ideal PSF and Poisson
noise [7, 35, 36]. In reality, the image formation process is more complicated. In [36], the method
is tested on real data of confocal and STED microscopy. However, it has not yet been applied to
widefield microscopy images, which will be done in this thesis. Deconvolution of widefield images
can be regarded as a more difficult problem due to the infinite extent of the point spread function
and the boundary problems that arise from this.

The outline of this thesis is as follows. We will start by explaining in more detail the inverse
problem we will be dealing with. This will be done in Chapter 2 where we explain more about
fluorescence microscopy and define a forward operator K from Equation (1.1) that models image
formation process. In Chapter 3 we will treat the theory of solving inverse problems that is relevant
for our applications. We will define the pseudo-inverse and spectral regularization. We show how
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the problem can be formulated as a minimization problem. In Chapter 4 we explain how the
minimization problem can be solved using the scaled gradient projection algorithm. In Chapter 5
we will test our implementation of the scaled gradient algorithm to real microscopy data.



Chapter 2

The inverse problem

In this chapter we explain how the inverse problem of convolution. We start with the basics of
fluorescence microscopy and explain how an image of an object is formed in a microscope. We
show how the image formation process can be modeled with with a forward operator K such that
the inverse problem can be formulated as K(w) = f . From the forward model, we derive the
likelihood functions in the case of Poisson and Gaussian noise. We explain why the inverse problem
of deconvolution is ill-posed and discuss the limitations of the model.

2.1 Fluorescence microscopy

Figure 2.1: The energy levels of an electron. Source: https://firedivegear.com/

the-science-of-fluorescence/

This section is based on [18, 19, 21, 25]. The principle of fluorescence is illustrated in Figures 2.1
and 2.2. The electrons of an atom can be in different energy levels. The lowest level is called the
ground state and is denoted by S0 as shown in the Jablonski diagram (2.2a). At each energy level,
there are multiple vibrational energy levels. A fluorescent molecule that is in the ground state can
be excited to a higher vibrational state (Svib

1 ) by illumination with light. This absorption of photon
energy happens most efficiently when the light has the optimal excitation wavelength (2.2b). After
this, the electron almost immediately falls back to a lower energy level. First, the electron goes

6
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from the higher vibrational state to the lowest ground level of the excited state S1. During this,
transition energy is released in the form of heat. After that, the electron falls back to the ground
state. During this second transition, energy is released in the form of a photon. Because of the
loss of energy to the vibrational energy relaxation, the emitted photon has a lower energy than the
photon that was absorbed. Therefore, emitted light has a larger wavelength than the excitation light.

Figure 2.2: Jablonski diagram illustrating the energy state transitions (left). The excitation and
emission profile of a commonly used fluorescent dye Alexa 488 (right). Image reproduced from [11].

Figure 2.3: Image of a leaf of the plant Arabidopsis thaliana. The image has two channels that
are shown in the color corresponding to the emission wavelength. Microtubules are shown in cyan,
chloroplasts revealed by their autofluorescence in magenta-red. Data courtesy: Gregory Pozhvanov
Ph.D, St. Petersburg State University, Russia.
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This principle of fluorescence is used in fluorescence microscopy. Some materials, like chlorophyll
and vitamins exhibit auto-fluorescence. Other materials can be made fluorescent by treating it with
fluorescent markers. These markers can label specific tissues or structures in a microscopic sample
because they bind to certain biochemical targets like DNA, proteins or cellular structures. By using
different markers that each have a specific excitation and emission wavelength, different structures
can be distinguished. A fluorescence microscope can register light of different emission wavelengths,
resulting in an image that consists of multiple channels. Each channel represents the intensities
recorded at a specific wavelength. Figure 2.3 shows an example of a microscopic image with two
channels that are shown in the color corresponding to their emission wavelength.

The basic principle of a fluorescence microscope is depicted in Figure 2.4. The light from a light
source is first filtered by an excitation filter that only lets through light within a specific band of
wavelengths. Then, this filtered light reflects off a dichroic mirror. This mirror is designed such that
all light above a certain wavelength gets reflected while light below that wavelength passes through.
After that, light passes through the objective to the specimen where it excites the fluorophores.
The object will then emit light of the emission wavelength. This light travels back through the
objective. Because its wavelength is now larger, it passes through the dichroic mirror. After that,
the light will be filtered by a emission filter that blocks any light that does not have the emission
wavelength. Finally, the light reaches the detector.

Figure 2.4: A schematic image of a fluorescence microscope. Source: https://serc.carleton.

edu/microbelife/research_methods/microscopy/fluromic.html

The image that is measured by the detector is a blurred version of the object. To understand this,
we look at the image of a point source in the object (Figure 2.5). This point source emits light
in all directions that travels as a spherical wave front away from the source. The Huygens-Fresnel
principle says that each point on the wave front is excited and then acts as a point source itself that
radiates spherical waves. The objective of a microscope contains a number of lenses that focus the
light emitted by the object. In Figure 2.5 this is shown in a simplified way with one convergent lens.
The lens inverts the shape of the diverging spherical wavefront emitted by the point source into a

https://serc.carleton.edu/microbelife/research_methods/microscopy/fluromic.html
https://serc.carleton.edu/microbelife/research_methods/microscopy/fluromic.html
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converging wave front. This converging wave front is a section of a full spherical wave front. The
center of this sphere is the focus point where the light converges. The intensity that is measured
is proportional to the squared amplitude of the wave, integrated over a full wavelength. At the
focal point, the waves from all the secondary sources arrive in phase. Due to this constructive
interference, the largest intensity is measured at this point. Since only part of the full spherical
wave front is captured by the lens, not all waves cancel each other out outside of the focal point.
At the plane at focal distance from the lens, alternating constructive and destructive interference
lead to a pattern of concentric rings that decrease in intensity away from the center. This pattern
is called an airy disk (Figure 2.6a). When measuring a 3D image, we need to know the three-
dimensional equivalent of an airy disk. This gives rise to the point spread function (PSF), which is
the 3D response of an imaging system to a point source (Figure 2.6b). It is common to use a three
dimensional coordinate system where the x- and y-axes are parallel to the focal plane. Since the
resolution in the z-direction is smaller than in the x- and y-direction, an object is usually recorded
such that the interesting features are in the xy-plane. The plane at z = 0 is the plane closest to the
objective. The larger the z-value, the deeper you travel into the sample.

Figure 2.5: The Huygens-Fresnel principle (left). The spherical wave front emitted by the point
source is diffracted by the lens leading to waves that converge at the focus point (right). Image
reproduced from [18].

The spatial resolution of an optical device is defined as the minimal distance that two points can be
apart such that they can still be distinguished as individual points. This depends on which fraction
of the full spherical wave front is captured by the lens which is characterized by the numerical
aperture (NA) of the lens

NA = n sin θ,

where θ is maximum angle of a light ray that can still be collected by the objective (Figure 2.7), and
n is the refractive index of the medium in which the lens in immersed. It is given by n = c

v where
c is the speed of light in vacuum and v is the speed of light in the medium. A larger numerical
aperture will lead to a diffraction pattern with a smaller airy disk which improves the resolution
of the image. The Rayleigh criterion is a standard to characterize the resolution. It says that two
points can be distinguished when their distance is larger than the distance between the central
maximum and the first minimum of the airy disk. This distance is called the radius of the airy disk
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(a) Airy disk (b) PSF

Figure 2.6: On the left an airy disk is shown in the xy-plane. On the right, a yz-slice of a 3D
point spread function is shown with the z-direction on the horizontal axis and the y-direction on
the vertical axis.

Figure 2.7: The numerical aperture is defined as NA = n sin θ where n is the refractive index.

and is denoted by r. The radius depends on the numerical aperture and the wavelength λ as follows

r = 0.61
λ

NA
.

Since the wavelength of visible light ranges from 380 to 750 nm and the numerical aperture is in
the range of 1.0 to 1.5, the resolution of light microscopy images is in the range of a few hundred
nanometers. This limitation is called the diffraction limit. However, in recent years, new techniques
have been developed that can break this limit by deterministically or stochastically making nearby
fluorophores emit light at seperate times. These systems, for example STED, PALM and STORM,
are called super-resolution microscopy [6, 17, 30]. In this summary, we will not go into this further.

An optical system is linear when the image of a weighted sum of light sources is equal to the weighted
sum of the images of the individual sources. An optical system is said to be translation invariant
when a shift of the object in space does not change the form of the output and it only leads to the
output to be shifted by the same amount. When an optical system is both linear and translation
invariant, it can be characterized by its response to a unit impulse, the PSF. The resulting image of
an object is then equal to the sum of all the translated and scaled impulse responses of each point
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in the object. The resulting image is the convolution between the object and the PSF, which we
will define in section 2.2.

Two important types of fluorescence microscopes are the widefield microscope and the confocal
microscope. In a widefield microscope the whole object in illuminated at once. The measurement
of the focal plane then contains blurring from planes that are above or below it. In a confocal mi-
croscope, the light moves through a pinhole before it reaches the detector. This pinhole is located
such that light from the focus point is focused through the pinhole while most of the out-of-focus
light is blocked, as illustrated in Figure 2.8. A confocal microscope has a much improved resolution
compared to a widefield microscope. Because the only light coming from a single point can be
measured at once by a confocal microscope, the object has to be scanned point by point.

Figure 2.8: Schematic illustration of a confocal microscope. The blue excitation light is focussed
at one point in the sample that emits the green emission light. Left: the emission light that comes
from the focal point is focussed through the pinhole and reaches the detector. Right: the emission
light from an out-of-focus point is mostly blocked by the pinhole. Image reproduced from [11].

Figure 2.9 shows the PSF of a widefield and a confocal microscope. Since a widefield microscope
collects light from all planes above and below the focal plane, the PSF extends infinitely. It has the
shape of a cone where the intensities are spread out over a larger area away from the center and
where each axial plane has the same sum. A confocal PSF is much more compact. It has the shape
of an ellipsoid with the longest axis in the axial direction.

In addition to the deterministic blurring by the PSF, the image is also distorted by noise. The most
important source of noise comes from the natural randomness of the photon flux. Since photons
are discrete and arrive independently of each other, the stream of photons can be modeled with a
Poisson process. Since the variance of a Poisson random variable is equal to the expected value,
the signal-to-noise ratio (SNR) of an image is equal to the square root of the number of photons.
Therefore, the noisiness increases when the number of photons decreases. In a confocal image, part
of the light is blocked by the pinhole. In addition to this, scanning of the object takes time, further



CHAPTER 2. THE INVERSE PROBLEM 12

(a) Widefield PSF (b) Confocal PSF

Figure 2.9: Sum projections of the PSF onto the axial plane. The z-axis is in the vertical direction.

limiting the number of photons that are measured at each point. Therefore, in general, confocal
images are noisier than widefield images.

2.2 The forward model

In the previous section we saw how an image of an object is formed in a microscope. In this section,
we will capture the image formation process in the forward model K(w) = f .

A 3D image is built up of voxels, the three-dimensional equivalent of pixels. A voxel is a cuboid
with dimensions ∆x × ∆y × ∆z, the sample sizes. An image can contain different channels that
correspond to the intensities recorded at specific wavelengths. Each voxel has an intensity value
for each channel. We make the assumption that convolution takes place for each channel inde-
pendently. Therefore, the different channels can be deconvolved separately and it suffices to only
consider single-channel images. Let Nx, Ny and Nz be the number of voxels in each direction, which
we will call the image dimensions. In typical microscopic images, Nx and Ny are around 500 and Nz

is around 50, while much larger images also exist. The z-direction is perpendicular to the focal plane.

An image can be represented as a third-order tensor. Let W ∈ RNx×Ny×Nz be the object and
H ∈ RMx×My×Mz the PSF. The PSF is extended periodically in the following way

Pi,j,k = Pi modNx, j modNy , k modNz

Then the discrete convolution of the object W with the point spread function H is an image
F ∈ RNx×Ny×Nz that is given by

Fi,j,k = (H ∗W )i,j,k :=

Nx∑
l=1

Ny∑
m=1

Ny∑
n=1

Hi−l, j−m, k−n ·Wl,m,n.

We stack the voxels of an image on top of each other to represent an image as a vector in RN . Let
w ∈ RN be the ground truth image and h ∈ RM the PSF that result from stacking the voxels of
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W and H, where N = Nx ·Ny ·Nz and M = Mx ·My ·Mz.

The first step in the forward model is the discrete convolution of w with h. The convolution can be
represented by multiplication with a matrix K that we will call the convolution matrix. Convolution
of a one-dimensional signal is illustrated in Figure 2.10 and it can be represented by multiplication
with a circulant matrix. In the case of a three-dimensional image, the structure of K becomes more
complicated as we will see in Chapter 3.

Figure 2.10: The convolution of a one-dimensional signal (red) with the PSF (blue).

The second step is the addition of a background intensity b. This background intensity is all
intensity that does not come from the object we are interested in. We make the assumption that
the background has the same value b ∈ R≥0 everywhere in the image. The convolved image with
background is then given by

Kw + b.

The third step is the addition of noise. We model the number of photons that are measured in voxel
i in a time interval with a random variable fi that is Poisson distributed with parameter λi > 0.
The value of λi is equal to the expected number of photons in that voxel after convolution and
addition of background, that is λi = (Kw + b)i. The probability of measuring an intensity of k is
then

P (fi = k) =
λki exp(−λi)

k!
.

The Poisson distribution has the property that

λi = E(fi) = Var(fi)

To summarize, the total image formation process can be modeled as

f = Kw + b+ δ

where f is the measured image and δ is the noise. The data fi is a realization of a Poisson random
variable with parameter λi = (Kw + b)i. Note that from now on we will use K for the convolution
matrix and not for the for the total forward operator. Image 2.11 shows the image formation process
of a synthetic image with a widefield PSF.
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(a) Ground truth (b) Convolved image (c) Background and noise added

Figure 2.11: Image formation process of a synthetic image. The images are xy-slices.

2.3 Limitations of the model

The relatively simple model that we will use, with a single PSF and Poisson noise, captures the most
important aspects of the real processes that take place. However, this model has some limitations,
which we will now discuss.

Figure 2.12: A mismatch between the lens immersion medium and the specimen embedding medium
leads to refraction of the rays at the boundary of the media. This causes rays that were focused to
become out-of-focus which leads to an asymmetric PSF that becomes more elongated with depth.
Figure reproduced from [8].

Ideally, the objective converts the wave front into a spherical wave front with the focal point in the
center of that sphere. However, when the lens immersion medium does not match the specimen
embedding medium, not all light rays have the same focal point. This effect is called spherical
aberration. When rays pass from one medium to another, they are bend according to Snell’s law

sin θ2

sin θ1
=
n1

n2
,

where θ1 is the angle of incidence, θ2 is the angle of refraction, n1 is the refractive index of the
lens immersion medium and n2 is the refractive index of the specimen embedding medium (Figure
2.12). This refraction causes rays with different incident angles to be focused at a different point,
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spoiling the focus of the lens. The asymmetry of the PSF increases with the focal depth into the
specimen, making the PSF dependent on the z-coordinate. Figure 2.13 shows how the PSF changes
with depth when the refractive index of the lens embedding medium is larger than that of the
specimen. In that case, the PSF has a tail at the side farthest away from the lens. When it is the
other way around, the tail appears at the side closest to the lens. In this case, the angle of the rays
increases when moving from the specimen to the lens. Part of the light is then internally reflected
back into the specimen, decreasing the effective numerical aperture of the objective. Restoration of
images that are affected by spherical aberration requires an algorithm with a depth dependent PSF.

0 µm 5 µm 10 µm 15 µm 20 µm 25 µm

Figure 2.13: The PSF at increasing depth with an oil lens immersion medium (n1 = 1.515) and a
watery specimen embedding medium (n2 = 1.338). The lens is at the bottom of the image. The
width of each image is 2 µm. Image reproduced from [18].

A fluorescent molecule can only undergo a finite number of absorption-emission cycles. After that,
the molecule loses its fluorescence permanently. This process of photobleaching leads to a fading of
the emission intensity of the sample over time. This is especially problematic for widefield images
because planes above and below the focal plane are also illuminated. This leads to a decrease of
intensity in the z-direction of the image, which is problematic when deconvolving such an image.

In the derivation of the likelihood functions, we set the Poisson parameter λ for each voxel equal to
the intensity of that voxel after convolution and addition of background. By doing that, we make
the assumption that one unit of intensity corresponds to one photon. However, in reality it is more
complex than that. Also, the assumption that the noise is purely Poisson noise, is not completely
correct. To understand the noise process in more detail, we need to know how the intensities are
measured in a microscope. Charge-coupled device (CCD) cameras are often used in fluorescence
microscopy. This camera contains a CCD-chip that consists of a two-dimensional array of pixels.
The chip makes use of the photoelectric effect to convert electromagnetic radiation into electrons.
The quantum efficiency is the rate at which the sensor converts photons to electrons. The total
number of electrons is the sum of electrons due to radiation of the object and background radiation.
Because the photons arrive randomly, the number of photoconversions can be seen as a Poisson
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random process. An amplifier converts the electrons to an electric charge. After that, an AD con-
verter translates the analog signal into a digital signal. The amplifier and the digitization together
introduce noise that is normally distributed [5]. Thus, the noise is a combination of Poisson photon
noise and Gaussian read-out noise. This leads to a more complex likelihood function as described
in [34]. It turns out that this likelihood function is only necessary in very particular circumstances
[5].

The number of photons is found by multiplying the intensity by the PPU (photons per unit) of
the image. To know the PPU, we need to know the quantum efficiency of the CCD camera. Also,
we need to know how the amplifier converts the electrons into a voltage and how this is signal is
converted to a digital signal by the AD converter. Generally, the PPU is unknown and therefore, the
model that we are fitting to the data is not completely correct. In Chapter 5 we will perform an ex-
periment to measure how much the result of deconvolution is affected when the PPU is far from one.

2.4 The inverse problem and ill-posedness

We showed how the image formation process can be modeled. The inverse problem is now to re-
construct the original object w from the noisy measurement f . We want to invert the process of
convolution and noise that degraded the original object. To solve the inverse problem, the goal will
be to find an image w̃ such that if the image formation process is applied to it, the result matches
f . In some cases, an inverse problem can be solved in a direct way by applying the inverse operator
K−1 to f . This is possible, for example, when K is a invertible matrix. We will see in this section
that convolution has an inverse operator. However, it will be shown that the problem is ill-posed
and that the solution of the inverse operator is useless.

An inverse problem K(w) = f is a well-posed problem when

1. A solution exists.

2. The solution is unique.

3. The solution depends continuously on the data. This means that there exists a constant C ∈ R
such that for all K(w) = f and K(w′) = f ′ it holds that |w −w′| ≤ C|f − f ′|

A problem is ill-posed when it is not well-posed [16]. To investigate the ill-posedness of deconvolution
we will use the Fourier transform F which decomposes a signal into frequencies. The convolution
theorem says that the convolution of two signals H and W in the spatial domain corresponds to an
element-wise product in the frequency domain. In other words,

F(h ∗w) = F(h) · F(w). (2.1)

The Fourier transform of the PSF is called the optical transfer function (OTF). In Chapter 3 we
will formally define the Fourier transform and prove the convolution theorem. It follows from (2.1)
that the solution can be found by dividing by the OTF

w = F−1

(
F(h ∗w)

F(h)

)
.

Whenever F does not contain zero values this is well defined and a solution exists. However, this
method will lead to heavy amplification of noise in the measurements. Let f = h ∗w be the image
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without noise and fδ = f + δ be the noisy data. Let wδ be the solution that we get from the noisy
data

wδ = F−1

(
F(fδ)

F(h)

)
. (2.2)

Then, because both the Fourier transform and the inverse Fourier transform are linear, the error in
the solution is

||wδ −w|| =
∣∣∣∣∣∣∣∣F−1

(
F(f)

F(h)

)
−F−1

(
F(fδ)

F(h)

)∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣F−1

(
F(δ)

F(h)

)∣∣∣∣∣∣∣∣ .
For high frequencies, the OTF usually tends to zero while the high frequency noise does not. This
leads to amplification of the noise. Therefore, the solution does not depend continuously on the
data and so the inverse problem is ill-posed [3]. An example is shown in Figure 2.14 where the
noisy measurement of Figure 2.11c is deconvolved using division by the OTF. In this image we can
see how the very small values of h lead the to amplification of the high frequencies. The resulting
image is then completely dominated by noise.

When a problem is ill-posed, we can instead solve a modified version of the problem K̃(w) = f
where K̃ is a well-posed operator, as we will see in Chapter 3. Another approach is to use varia-
tional methods. The original problem is then replaced by a minimization problem in such a way
that the solution to the inverse problem is the minimizer of some functional [20]. This functional is
often chosen as a likelihood function together with a regularization term. The likelihood function
expresses the probability of finding the measured data for a given object and noise model. This
function is minimized by the objects that best fits the data. In Section 2.5 we will derive likelihood
functions in the case of Poisson and Gaussian noise.

2.5 Maximum likelihood estimation

The image f can be seen as a realization of a random variable F = (F1, ..., FN ). The maximum
likelihood estimator ŵ is the object that maximizes the probability of measuring the observed data
f , that is

ŵ = arg max
w

P (F = f |w).

Since the logarithmic function is strictly increasing, maximizing the likelihood is equivalent to
minimizing the negative log-likelihood

y(w) := − log (P (F = f |w)) . (2.3)

We will now derive a formula for y(w) that follows from the forward model of Section 2.2 and the
assumption of Poisson noise. We will show that the Poisson distribution can be approximated by
the normal distribution and also derive a formula for y(w) in with the assumption of Gaussian noise.

The forward model is given by
f = Kw + b+ δ

In the case of Poisson noise, the measured intensity fi is the realization of the Poisson-distributed
random variable Fi. For each voxel i = 1, ..., N , the probability of measuring fi photons is given by
the probability density function

P (Fi = fi) =
λfii exp(−λi)

fi!
(2.4)
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(a) F(fδ) (b) F(h)

(c) F(fδ)
F(h)

(d) wδ = F−1
(
F(fδ)
F(h)

)
Figure 2.14: Deconvolution of the noisy image of Figure 2.11c by using equation (2.2). The images
are sum projections onto the plane spanned by the first two coordinate axes and the origin lies in
the corners of the frequency domain images. Therefore, the corners represent the low frequencies
while the high frequencies are depicted in the center of the images. The last image is in the spatial
domain.

where λi = (Kw+b)i. The measured intensities fi are independent of each other and therefore the
probability of measuring f is the product of the probabilities of measuring the individual intensities.
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The function y(w) is then given by

y(w) = − log

(
N∏
i=1

P(Fi = fi |w)

)

= −
N∑
i=1

log (P(Fi = fi |w))

= −
N∑
i=1

log

(
(Kw + b)fii exp(−(Kw + b)i)

fi!

)

=
N∑
i=1

−fi log ((Kw + b)i) + (Kw + b)i + log(fi!)

≈
N∑
i=1

−fi log ((Kw + b)i) + (Kw + b)i + fi log(fi)− fi

where we approximated log(fi!) using Stirling’s approximation log(n!) = n log(n)− n+O(log(n)).
The maximum likelihood estimator is then given by

ŵ = arg max
w

N∑
i=1

(Kw + b)i − fi − fi log

(
(Kw + b)i

fi

)
(2.5)

which is known as the Kullback-Leibler divergence or KL-divergence from Kw+ b to f . The term

KL-divergence is often used to denote the slightly different function
∑N

i=1−fi log
(

(Kw+b)i
fi

)
. This

function is only applicable when comparing two probability distributions and in that case equal to
equation (2.5) since the terms sum up to one. In the remainder of this text, we will always mean
equation (2.5) when referring to the KL-divergence.

We will now shown that when λ is large enough, the Poisson(λ) distribution can be approximated
by the normal distribution N(µ = λ, σ2 = λ). Let λ ∈ N and let X1, X2, ..., Xλ be independent
Poisson(1) random variables. Then Y =

∑λ
i=1Xi is Poisson distributed with parameter λ. Then it

follows from the central limit theorem that

Y − λ√
λ

d−→ N(0, 1)

as λ→∞. Then it follows that Y approaches N(λ, λ). So for images with high photon counts, we
can assume the noise to be normally distributed. However, for images with a small signal-to-noise
ratio, this is not a good approximation.

In the case of additive Gaussian noise, the forward model is given by

f = Kw + b+ η

where ηi ∼ N(0, σ2) for some σ ∈ R≥0. Note that we assume the same variance for each voxel, in
contrast to the Poisson distribution where each voxel has a different variance. The probability of
measuring fi photons is given by

P(Fi = fi) =
1

σ
√

2π
exp

(
−1

2

(
fi − (Kw + b)i

σ

)2
)
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Substituting this into equation (2.3), we get

y(w) = − log

(
N∏
i=1

P(Fi = fi |w)

)

= −
N∑
i=1

log (P(Fi = fi |w))

= −
N∑
i=1

log

(
1

σ
√

2π

)
− 1

2

(
fi − (Kw + b)i

σ

)2

Since we are interested in the minimizer of this function, constants can be omitted. We then find
that ŵ minimizes the residual sum of squares

ŵ = arg max
w

N∑
i=1

(fi − (Kw + b)i)
2 (2.6)



Chapter 3

Regularization

In the previous chapter we defined the inverse problem of image reconstruction as finding an object
w ∈ RN that fits the model Kw + b = f where f ∈ RM is the measurement, K ∈ RM×N is
the convolution matrix, and b ∈ RN is the background. By subtracting the background from the
original measurement, and regard that vector as the new measurement, it suffices for this chapter
to view the problem as only a matrix-vector product. Therefore, we will consider linear inverse
problems of the form

Kw = f , (3.1)

where K ∈ RM×N , w ∈ RN and f ∈ RM . When M = N , and K is invertible, the solution is given
by w = K−1f . When K is not invertible, we can use a generalized inverse called the pseudo-inverse,
which we will define in this chapter. We start by defining the singular value decomposition of a
matrix. Also, we define the discrete Fourier transform. We show how, in the case that K represents
a convolution, the singular value decomposition is given by a discrete Fourier transform. After that,
it will be shown how the pseudo-inverse is defined in terms of the singular value decomposition.
We will explain how noise in the measurements is amplified by small singular values and how
regularization tries to solve this problem. We define Tikhonov regularization as an example of
spectral regularization. This chapter is based on [3] and [4].

3.1 Singular value decomposition

Definition 3.1. Let K be an M ×N matrix. The singular value decomposition (SVD) of K is a
decomposition of the form

K = UΣV ∗,

where U ∈ CM×M and V ∈ CN×N are unitary matrices, and Σ is an M × N diagonal matrix
with real non-negative diagonal elements. The diagonal elements σi = Σii are called the singular
values of K. It is conventional to sort the singular values such that σ1 ≥ σ2 ≥ ... ≥ σp ≥ 0 where
p = min(M,N). The columns {u1, ...,uM} of U and the columns {v1, ...,vN} of V are called the
left-singular vectors and the right-singular vectors of K, respectively. �

Each real or complex matrix K has a singular value decomposition. The SVD generalizes the
eigendecomposition of a diagonizable square matrix. This can be seen by computing the matrices
K∗K and KK∗

K∗K = V Σ∗U∗ UΣV ∗ = V (Σ∗Σ)V ∗

KK∗ = UΣV ∗ V Σ∗U = U (ΣΣ∗)U.

21
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The right hand sides are now the eigendecompositions and so the singular vectors {u1, ...,uM} and
{v1, ...,vN} are the eigenvectors of KK∗ and K∗K, respectively, and the squared singular values
σ2
i are the corresponding eigenvalues. The number of nonzero singular values is equal to the rank

of K. The sequence {(σj ,uj ,vj)} is called the singular system of K.

We now consider K as a linear transformation K : RN → RM . Applying K to some vector w ∈ Rn
can now be written as

Kw =

k∑
j=1

σj〈w,vj〉uj , (3.2)

where k is the rank of K. Since U and V are unitary, {u1, ...,uM} and {v1, ...,vN} are orthonormal
bases of Cm and Cn, respectively. The matrix-vector multiplication can now be interpreted as a
linear transformation that consists of three steps. The first step is a basis transformation from the
standard basis of Rn to the basis {v1, ...,vN} where the component of w in the direction of vj is
given by 〈w,vj〉. Next, each coordinate j is scaled by the singular value σj . The last step is a
basis transformation from {u1, ...,vM} to the standard basis of Cm. The scalar σj〈w,vj〉 is the
component of the solution in the direction of uj and therefore the desired result is given by equation
(3.2).

3.2 The discrete Fourier transform

Definition 3.2. (Discrete Fourier transform)
The discrete Fourier transform (DFT) is a linear transformation that maps an N -dimensional
complex vector onto another N -dimensional complex vector. Let f = (f0, f1, ..., fN−1) ∈ CN . Then
the discrete Fourier transform F : CN → CN ,f 7→ f̂ is defined by

F(f)m =
1√
N

N−1∑
n=0

fn exp

(
−i2π

N
mn

)
(3.3)

for m = 0, 1, ..., N − 1. The term discrete Fourier transform can refer to both the map F as the

resulting vector f̂ =
(
f̂0, f̂1, ..., f̂N−1

)
. �

The DFT can be seen as a linear combination of vectors of an orthonormal basis. We define

ω = exp

(
2πi

N

)
(3.4)

and the DFT basis vectors v0,v1, ...,vN−1 ∈ CN where the n-th element of the m-th vector is given
by

(vm)n =
1√
N
· ωmn. (3.5)

The inner product of two vectors is

〈vm,vl〉 =
1

N

N−1∑
k=0

exp

(
2πi

N
(m− l)k

)
.
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When m = l, this is equal to 1 and when m 6= l, it follows from the summation formula for the first
N terms of a geometric series (equation (0.1)), that this is equal to

1

N

1− exp (i2π(m− l))
1− exp

(
i2π
N (m− l)

) = 0.

Therefore, the vectors v0,v1, ...,vN−1 form an orthonormal basis of CN .

We can now express the components of the DFT as an inner product of f with a DFT basis vector

f̂m = 〈f ,vm〉. (3.6)

We define the DFT matrix Ω as the matrix that has the DFT basis vectors as columns. That is,

Ωm,n =
1√
N

exp

(
2πi

N
mn

)
(3.7)

where we start counting the rows and columns at zero. The matrix then looks like

Ω =
1√
N



1 1 1 1 · · · 1
1 ω ω2 ω3 · · · ωN−1

1 ω2 ω4 ω6 · · · ω2(N−1)

1 ω3 ω6 ω9 · · · ω3(N−1)

...
...

...
...

. . .
...

1 ωN−1 ω2(N−1) ω3(N−1) · · · ω(N−1)(N−1)


.

Since the DFT basis vectors form an orthonormal basis of CN , the DFT matrix is unitary. Therefore,
its inverse is given by the conjugate transpose Ω∗ with

Ω∗m,n =
1√
N

exp

(
−2πi

N
mn

)
. (3.8)

We can now express the DFT as a matrix-vector multiplication

f̂ = Ω∗f .

The inverse discrete Fourier transform (IDFT) is given by

f = Ωf̂ (3.9)

which can be expressed in a similar way as equation (3.3)

F−1(f̂)n =
1√
N

N−1∑
m=0

f̂m exp

(
i
2π

N
mn

)
or in terms of the DFT basis vectors

f =

N−1∑
m=0

f̂mvm. (3.10)

Combining equations (3.6) and (3.10) we get

f =

N−1∑
m=0

〈f ,vm〉vm.
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In addition to a transformation of vectors, the discrete Fourier transform can also be interpreted
as a transformation for periodic sequences. For a given vector f = (f0, f1, ..., fN−1), we can define
the periodic sequence fn by fn := fn mod N for all n ∈ Z. Then, the sequence f̂m, with m ∈ Z,
defined by equation (3.3) is also periodic with period N . The DFT basis vectors can be seen as
discrete periodic functions of increasing frequencies. The discrete Fourier transform can then be
interpreted as decomposing a periodic sequence into a sum of complex exponential functions of
different frequencies. The amount that each frequency is present in a signal is determined by taking
the inner product of the signal with the corresponding DFT basis vector.

The formulas related to the DFT can differ slightly in different textbooks. Sometimes, the normal-
ization factors of 1√

N
are chosen in a different way. Instead of a factor of 1√

N
for both the forward

are the inverse transform, there can be a factor of 1
N in front of one of them. Also, the sign of

the exponent of the basis vectors is sometimes chosen negative. This can lead to small changes in
the properties. This is correct as well, as long as the product of the two normalization factors is
1
N and the sign of the exponents in the DFT and its inverse are opposite. Our choice of 1√

N
and

the positive sign has the favorable property that the DFT matrix is unitary and that the eigen-
vectors of a circulant matrix are equal to the DFT basis vectors instead of their complex conjugates.

Multidimensional DFT

In Section 2.2 we explained how a 3D image can be represented by a vector in RN where the voxels
are stack onto each other. However, when computing the Fourier transform of an image it is impor-
tant to take into account the spatial structure on an image. When we would compute the Fourier
transform of the vector representation of an image, we would regard the image as a one-dimensional
signal and then decompose that signal into complex exponential functions. However, two inten-
sity values that are far away from each other in the vector representation can actually represent
neighboring voxels. Therefore, we want to decompose the image into three-dimensional exponential
functions of different frequencies. The theory of discrete Fourier transforms can be extended to
multidimensional signals. With our applications in mind we will give the formulas for the DFT of
a three-dimensional image. The extensions to other dimensions will then also be clear.

Definition 3.3. Let F (n1, n2, n3) ∈ CN1×N2×N3 be a third-order tensor. Then the three-dimensional
discrete Fourier transform of F is a given by F̂ (m1,m2,m3) ∈ CN1×N2×N3 which is given by

F̂ (m1,m2,m3) =
1√

N1N2N3

N1−1∑
n1=0

N2−1∑
n2=0

N3−1∑
n3=0

F (n1, n2, n3) exp

(
−2πi

(
m1n1

N1
+
m2n3

N1
+
m3n3

N1

))
.

and the inverse three-dimensional discrete Fourier transform is given by

F (n1, n2, n3) =
1√

N1N2N3

N1−1∑
m1=0

N2−1∑
m2=0

N3−1∑
m3=0

F (m1,m2,m3) exp

(
2πi

(
n1m1

N1
+
m2n3

N1
+
m3n3

N1

))
.

�

3.3 Diagonalization of a convolution matrix

In the case that K represents a convolution, the singular value decomposition has a special form. We
will treat the case of a one-dimensional signal because this makes the theory easier to understand
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and the notation less complex. The extension to 2D-images is described in appendices A and B of [1].

Let w = (w0, w1, ..., wN−1) ∈ RN be a signal and h = (h0, h1, ..., hn−1) ∈ RN be a point spread
function. We extend h periodically by defining hi := hi mod N for all i ∈ Z. The convolution of w
with h is given by

(h ∗w)m =

N−1∑
n=0

hm−nwn

for i = 0, 1, ..., N − 1. Convolution of a vector w with a fixed point spread function h defines a
linear operator K such that

Kw = h ∗w.
The elements of K are given by Km,n = hm−n and so K is the circulant matrix

K =


h0 hN−1 hN−2 · · · h2 h1

h1 h0 hN−1 · · · h3 h2

h2 h1 h0 · · · h4 h3
...

...
...

. . .
...

...
hN−1 hN−2 hN−3 · · · h1 h0

 . (3.11)

We will now show the connection between the discrete Fourier transform and the eigenvalues and
eigenvectors of a convolution matrix.

Theorem 3.4. Let K be a circulant matrix that is generated by a vector h = (h0, ..., hN−1), as in

equation (3.11). Let ĥ =
(
ĥ0, ..., ĥN−1

)
be the DFT of h, given by equation (3.3). Let v0, ...,vN−1

be the DFT basisvectors, given by equation (3.5). Then the eigenvectors of K are equal to vm, and
the corresponding eigenvalues are equal to

√
Nĥm for m = 0, 1, ..., N − 1.

Proof. Let vm be the m-th DFT basis vector. We will show that

Kvm =
√
Nĥmvm. (3.12)

The k-th element of Kvm is given by

(Kvm)k =
1√
N

N−1∑
n=0

hk−n exp

(
2πi

N
mn

)
. (3.13)

We apply a change of variables by letting l = k − n.

(Kvm)k =
1√
N

k−N+1∑
l=k

hl exp

(
2πi

N
m(k − l)

)

=
1√
N

[
k−N+1∑
l=k

hl exp

(
−2πi

N
ml

)][
exp

(
2πi

N
mk

)]
.

Because hl and exp
(

2πi
N ml

)
are periodic in l with period N this is equal to

(Kvm)k =
√
N

[
1√
N

N−1∑
l=0

hl exp

(
−2πi

N
ml

)][
1√
N

exp

(
2πi

N
mk

)]
=
√
N (Ω∗h)m (vm)k

=
√
Nĥm(vm)k.
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A consequence of this is that a convolution matrix K can be diagonalized as

K = ΩΣΩ∗ (3.14)

where Σ is the diagonal matrix with Σmm =
√
Nĥm. Since Ω is unitary, this eigendecomposition is

equal the singular value decomposition of K in the case that ĥ is real.

The convolution theorem tells us that convolution in the spatial domain corresponds to element-wise
multiplication in the frequency domain.

Theorem 3.5. (Convolution theorem)
Let w = (w0, w1, ..., wN−1) ∈ RN be a signal and h = (h0, h1, ..., hn−1) ∈ RN be a point spread
function. Let f be the convolution of w with h. Then f̂ is the element-wise product of ŵ and ĥ,
up to a constant of

√
N . That is,

f̂m =
√
Nĥmŵm (3.15)

for m = 0, 1, ..., N − 1.

Proof. Let K be the convolution matrix generated by h with diagonalization K = ΩΣΩ∗. Then the
convolution can be expressed as

f = h ∗w
= Kw

= ΩΣΩ∗w

=
√
N

N−1∑
k=0

ĥk〈w,vk〉vk.

From equation (3.6) it follows that this is equal to

f =
√
N

N−1∑
k=0

ĥkŵkvk.

Equation (3.10) says that f can be expressed as

f =

N−1∑
k=0

f̂kvk.

Since the DFT basis vectors are linearly independent, it follows that equation (3.15) is true.

3.4 The pseudo-inverse

We will now use the singular value decomposition to find a solution to the inverse problem (3.1).
Let

K = UΣV ∗

be the singular value decomposition of K. Using the singular value decomposition, we can construct
a generalization of the inverse of a matrix. This generalized inverse is known as the pseudo-inverse
or the Moore-Penrose inverse. Let Vk ∈ Cn×k be the matrix that contains the first k right singular
vectors as columns, let Uk ∈ Cm×k be the matrix that contains the first k left singular vectors
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as columns and let Σk ∈ Rk×k be the diagonal matrix with σ1, ..., σk on the diagonal. Then the
pseudo-inverse K† is defined as

K† = VkΣ
−1
k U∗k .

Applying the pseudo-inverse to the measurements gives the solution

w̃ = K†f = VkΣ
−1
k U∗kf =

k∑
j=1

〈f ,uj〉
σj

vj . (3.16)

Note that the solution is found by applying the opposite operations as in equation (3.2). The mea-
surements are projected onto the basis {u1, ...,um}, then divided by the singular values and finally
expressed in the standard basis of Cm.

When the columns and/or rows of K are independent, we can give more specific expressions for the
pseudo-inverse. We will treat three different cases.

Case 1: m = n = rank(K).
In this case, the pseudo-inverse corresponds to the normal inverse K−1. In this case the solution
exists and is unique.

Case 2: m > n = rank(K).
In this case there are more measurements than unknowns. When f is not in the range of K, there is
no exact solution. It can be shown that the pseudo-inverse solution corresponds to the least-squares
solution.

Theorem 3.6. Let K ∈ Rm×n and f ∈ Rm with m > n = rank(K). Let w̃ be the solution given by
equation (3.16). Then w̃ is equal to the least squares solution, that is

w̃ = arg min
u
||Kw − f ||2.

Proof. The gradient of ||Kw − f ||2 is given by

∇||Kw − f ||2(w) = 2K∗Kw − 2K∗f .

Setting the gradient to zero gives
K∗Kw = K∗f .

Since the rank(K) = n, also rank(K∗K) = n and so K∗K is invertible. Therefore, the least squares
solution is given by

wls = (K∗K)−1K∗f .

Filling in the singular value decomposition of K we find

wls = (V Σ∗U∗UΣV ∗)−1 V ΣU∗f

=
(
V Σ2

nV
∗)−1

V ΣU∗f

= V Σ−2
n V ∗V Σ∗U∗f

= VnΣ−1
n U∗nf

= K†f = w̃.
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So in the case that m > n and rank(K) = n, the pseudo-inverse is equal to

K† = (K∗K)−1K∗.

Then K†K = In and so K† is a left-inverse of K.

Case 3: n > m = rank(K).
In this case, there are more unknowns than measurements. A solution will always exist but it is
not unique. It can be shown that the pseudo-inverse solution corresponds to the solution with the
smallest norm.

Theorem 3.7. Let K ∈ Rm×n and f ∈ Rm with n > m = rank(K). Let w̃ be the solution given
by the pseudo-inverse as in equation (3.16). Let W = {w ∈ Rn | Kw = f}. Then w̃ ∈ W and
||w̃||2 < ||w||2 for all w ∈ W.

For the proof of this theorem we refer to [3]. The smallest solution does not have contributions in
the null-space of K. In this case, the pseudo-inverse is equal to

K† = K∗ (KK∗)−1 .

Then KK† = Im and so K† is a right-inverse of K.

3.5 Spectral regularization

Now suppose that the measured data contains noise. We will see how this affects the solution given
by the pseudo-inverse. Let f δ = f +δ be the noisy data with δ ∈ Rm. Applying the pseudo-inverse
to fδ gives

w̃δ = K†fδ

=
k∑
j=1

〈fδ,uj〉
σj

vj

=
k∑
j=1

〈f ,uj〉
σj

vj +
k∑
j=1

〈δ,uj〉
σj

vj

= w̃ +
k∑
j=1

〈δ,uj〉
σj

vj .

When there is a fast decay of the singular values and the noise components in the directions of the
corresponding basis vectors is nonzero, this leads to amplification of the noise. Spectral regulariza-
tion tries to solve this problem by applying a function to the singular values that prevents them
from becoming too small. We define the family of functions gβ : R≥0 → R≥0 that is parameterized
by β ≥ 0 and satisfies

lim
β→0

gβ(σ) =
1

σ
. (3.17)

A function gβ defines a regularized pseudo-inverse Rβ as follows

Rβf :=
k∑
j=1

gβ(σj)〈f ,uj〉vj .
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The function gβ determines the type of regularization and the values of β determines the amount
of regularization that is applied. We want to choose gβ such that the solution of the regularized
inverse is close to the true solution while being less sensitive to noise in the data than than the
unregularized solution. Also, we want that

Rβf → K†f as β → 0.

An example of such a function is the trucated singular value decomposition (TSVD)

gβ(σ) =

{
1
σ σ ≥ β
0 σ < β

which sets all singular values below β to zero. This leads to the regularized solution

w̃β = Rβf =
∑
σj≥β

〈f ,uj〉
σj

vj .

We see that indeed condition (3.17) is satisfied.

3.6 Tikhonov regularization

Tikhonov regularization is a type of spectral regularization where gβ is chosen in the following way

gβ(σ) =
σ

σ2 + β
.

When σ is large compared to β then gβ(σ) ≈ 1
σ and so the large singular values are almost unaffected.

When σ is small compared to β, then gβ(σ) ≈ σ
β which prevents division by small values. The

condition gβ(σ)→ 1
σ as β → 0 is satisfied. The resulting Tikhonov regularized solution is given by

w̃β = Rαf =
k∑
j=1

σj
σ2
j + β

〈f ,uj〉vj . (3.18)

In addition to characterizing Tikhonov regularization as a shift of the sigular values of K, the
Tikhonov regularized solution can also be interpreted as the solution of a minimization problem.

Lemma 3.8. Let K ∈ Rm×n with singular system {(σj ,uj ,vj)} and let f ∈ Rm. Let β > 0 and let
w̃β be the regularized solution as defined by equation (3.18). Then w̃β is given by

w̃β = (K∗K + βI)−1K∗f . (3.19)
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Proof.

(K∗K + βI)w̃β = (K∗K + βI)

k∑
j=1

σj
σ2
j + β

〈f ,uj〉vj

=

k∑
j=1

σj
σ2
j + β

〈f ,uj〉K∗Kvj +

k∑
j=1

βσj
σ2
j + β

〈f ,uj〉vj

=

k∑
j=1

σj
σ2
j + β

〈f ,uj〉σ2
jvj +

k∑
j=1

βσj
σ2
j + β

〈f ,uj〉vj

=

k∑
j=1

σj(σ
2
j + β)

σ2
j + β

〈f ,uj〉vj

=

k∑
j=1

σj〈f ,uj〉vj

= K∗f .

The eigenvalues of (K∗K+βI) are equal to σ2
j +β. Therefore, (K∗K+βI) is invertible when β > 0

and so equation (3.19) is satisfied.

Theorem 3.9. Let K ∈ Rm×n with singular system {(σj ,uj ,vj)} and let f ∈ Rm. Let β > 0 and
let w̃β be the regularized solution as defined by equation (3.18). Then w̃β is the unique solution to
the minimization problem

arg min
w

||Kw − f ||2 + β||w||2. (3.20)

Proof. Define Tβ(w) := ||Kw−f ||2 +β||w||2. Let w̃min be a global minimizer of Tβ(w). We show
that w̃min is equal to w̃β. It then follows that the minimizer is unique.

For w = w̃min + τv with τ > 0 and an arbitrary direction v we have that

0 ≤ Tβ(w)− Tβ(w̃min)

= ‖Kw − f‖2 + β ‖w‖2 − ‖Kw̃min − f‖2 − β ‖w̃min‖2

= ‖Kw‖2 − 2〈Kw,f〉+ β ‖w‖2 − ‖Kw̃min‖2 + 2〈Kw̃min,f〉 − β ‖w̃min‖2

= ‖Kw̃min + τKv‖2 − 2〈Kw̃min + τKv,f〉+ β ‖w̃min + τv‖2

− ‖Kw̃min‖2 + 2〈Kw̃min,f〉 − β ‖w̃min‖2

= 2τ〈Kw̃min,Kv〉+ τ2 ‖Kv‖2 − 2τ〈Kv,f〉+ 2βτ〈w̃min,v〉+ βτ2 ‖v‖2

= τ2
(
‖Kv‖2 + β ‖v‖2

)
+ 2τ (〈Kw̃min,Kv〉+ β〈w̃min,v〉 − 〈Kv,f〉)

= τ2
(
‖Kv‖2 + β ‖v‖2

)
+ 2τ (〈K∗Kw̃min,v〉+ β〈w̃min,v〉 − 〈K∗f ,v〉)

= τ2
(
‖Kv‖2 + β ‖v‖2

)
+ 2τ〈(K∗K + βI)w̃min −K∗f ,v〉.

When we divide by τ and take the limit τ ↓ 0 we obtain

〈(K∗K + βI)w̃min −K∗f ,v〉 ≥ 0.
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Because this holds for all v it follows that

(K∗K + βI)w̃min = K∗f .

In Lemma 3.8 we showed that this is also true for w̃β and so w̃min = w̃β.

Let us now look at what this theory means in the specific case that K represents a convolution. In
that case, the singular values σj correspond to the DFT of the point spread function. In Chapter
2 we saw that the exact solution of deconvolution is given by

wδ = F−1

(
F(fδ)

F(h)

)
,

where dividing by the OTF leads to a solution that does not depend continuously on the data.
This method corresponds to the unregularized inverse operator from Equation (3.16). In the case
of Tikhonov regularization, we replace 1

σj
by

σj
σ2
j +β

and in that way prevent division by small values

in the OTF.



Chapter 4

Scaled gradient projection methods

In the previous chapters we have seen how the inverse problem of deconvolution can be formulated
as a minimization problem of the form{

minimize J(w)

subject to w ∈ Ψ
(4.1)

where J : RN → R is a convex function, Ψ ∈ RN is a closed and convex set, w ∈ RN is the object.
We looked at objective functions of the form

J(w) = D(w) + βR(w) (4.2)

that consist of a data fidelity term D(w) and a regularization term R(w) that are scaled with a
regularization parameter β. The set Ψ contains all the allowed solutions. In this chapter, we will
show how to find the minimizer of this functional. The methods we discuss are applicable to any
problem of the form (4.1), of which our problem is a special case.

4.1 Descent direction

We consider iterative algorithms that start at some initial point w(0) and where the consecutive
iterations are given by

w(k+1) = w(k) + λkd
(k),

where λk is the step size and d(k) is the search direction. We want to choose λk and d(k) such that
J
(
w(k+1)

)
< J

(
w(k)

)
and in that way converge towards the minimum of J .

Definition 4.1. A direction d(k) ∈ RN is called a descent direction for the function J : RN → R
at w(k) when 〈

∇J
(
w(k)

)
,d(k)

〉
< 0. (4.3)

�

This definition makes sense because J can be approximated near w(k) by the Taylor series

J
(
w(k+1)

)
≈ J

(
w(k)

)
+
〈
∇J

(
w(k)

)
,
(
w(k+1) −w(k)

)〉
32
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and therefore condition (4.3) guarantees that J
(
w(k+1)

)
< J

(
w(k)

)
when the step size λk is small

enough.

In gradient descent algorithms, the direction is chosen as

d(k) = −∇J(w(k)).

This choice is based on the fact that the gradient is perpendicular to the level set and therefore the
function decreases fastest in the direction of the negative gradient (Figure 4.1). Indeed, whenever
∇J

(
w(k)

)
6= 0, then d(k) is a descent direction because〈

∇J
(
w(k)

)
,d(k)

〉
= −

∥∥∥∇J (w(k)
)∥∥∥ < 0.

Figure 4.1: Illustration of a gradient descent algorithm on level sets of a function.

4.2 The scaled gradient algorithm

In a scaled gradient algorithm, the idea is to multiply the gradient descent direction of with a scaling
matrix Dk in such a way that it improves the convergence. In other words, we want to choose

d(k) = −Dk∇J
(
w(k)

)
.

To assure that d(k) is a descent direction, it must hold that

0 >
〈
∇J

(
w(k)

)
,d(k)

〉
= −

〈
∇J

(
w(k)

)
, Dk∇J

(
w(k)

)〉
. (4.4)

This is satisfied when Dk is a positive definite matrix. In a scaled gradient projection method, in
addition to the scaling of the search direction, there is also a projection involved to assure that the
solution is in Ψ.

Scaled gradient projection methods applied to image deconvolution are studied in [7, 26–28, 36].
We will now explain the basic algorithm that is summarized in Algorithm 1 and based on [7]. After
that, we will discuss different choices that can be made. Each iteration consists of two parts. In
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the first part, a search direction d(k) is found. We will prove that the search direction is a descent
direction. In the second part, a line search is performed along the search direction to find a point
where the objective function decreases sufficiently. We refer to [7] for the full proof that the algo-
rithm converges to a stationary point of J over Ψ.

Algorithm 1: Scaled gradient projection method

Initialization: choose a starting point w(0) ∈ Ψ and set the parameters γ, θ ∈ (0, 1) and
0 < αmin < αmax.

for k = 0, 1, 2, ... do
STEP 1. Choose the step size αk ∈ [αmin, αmax] and the scaling matrix Dk

STEP 2. Projection: y(k) = PΨ,D−1
k

(
w(k) − αkDk∇J

(
w(k)

))
.

STEP 3. Search direction: d(k) = y(k) −w(k)

STEP 4. Line-search: select a step size λk
STEP 5. Set w(k+1) = w(k) + λkd

(k)

end

Let Ψ ∈ RN be a closed and convex set and let D ∈ RN×N be a symmetric positive definite matrix.
We define the norm ||.||D as

||w||D :=
√
〈w, Dw〉. (4.5)

The projection operator PΨ,D is defined as

PΨ,D(w) := arg min
v∈Ψ
||v −w||D. (4.6)

For later use, we rewrite the projection operator in another form. By using equation (4.5) and the
fact the D is symmetric we can write

||v −w||2D = 〈(v −w), D(v −w)〉
= 〈v, Dv〉 − 〈w, Dv〉 − 〈v, Dw〉+ 〈w, Dw〉
= 〈v, Dv〉 − 2 〈v, Dw〉+ 〈w, Dw〉 .

Therefore, we can write

PΨ,D(w) = arg min
v∈Ψ

(
φ(v) :=

1

2
〈v, Dv〉 − 〈v, Dw〉

)
. (4.7)

Now assume that in iteration k we have some symmetric and positive definite scaling matrix Dk ∈
RN×N , and we have some step size αk. In section 4.3 we will explain how to choose Dk and αk. We
define y(k) as

y(k) := PΨ,D−1
k

(
w(k) − αkDk∇J

(
w(k)

))
. (4.8)

The search direction is then defined as

d(k) := y(k) −w(k) (4.9)

as shown in Figure 4.2.
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Figure 4.2: Schematic image of the descent direction in two dimensions where Ψ is the first quadrant.

For a constrained minimization problem of the form 4.1, a stationary point of J over Ψ is a point
w∗ ∈ Ψ for which

〈∇J (w∗) , (v −w∗)〉 ≥ 0 (4.10)

for all v ∈ Ψ. This means that when moving a small distance from w∗ to any point v in Ψ, the
value of J does not decrease, which means that there is no feasible descent direction at w∗. We will
now show that the search direction is a descent direction, whenever Dk is symmetric and positive
definite. The proof is based on [7].

Theorem 4.2. Let J : RN → R be a convex funtion, Ψ a closed and convex set and Dk a symmetric
positive definite matrix. Define the search direction d(k) as in equations (4.8) and (4.9). Then d(k)

is a descent direction for J at w(k).

Proof. We are going to show that
〈
∇J

(
w(k)

)
,d(k)

〉
< 0. We start from equation (4.7) for the

projection operator. Since φ(v) is a strictly convex function, v minimizes φ over Ψ whenever v is
a stationary point of φ. The gradient of φ is given by

∇φ(v) = D(v −w).

Therefore, it follows from (4.10) for φ at the stationary point PΨ,D(w) that for all v ∈ Ψ

0 ≥ 〈∇φ (PΨ,D(w)) , PΨ,D(w)− v〉
= 〈D(PΨ,D(w)−w), (PΨ,D(w)− v)〉 .

(4.11)

Now, by choosing w = w(k) − αkDk∇J
(
w(k)

)
, D = D−1

k , and v = w(k) we find

0 ≥
〈
D−1
k

(
y(k) −w(k) + αkDk∇J

(
w(k)

))
,
(
y(k) −w(k)

)〉
=
〈
D−1
k

(
d(k) + αkDk∇J

(
w(k)

))
,d(k)

〉
=
〈
D−1
k d

(k),d(k)
〉

+ αk

〈
∇J

(
w(k)

)
,d(k)

〉
.

Then, because D−1
k is symmetric and positive definite, it follows that〈

∇J
(
w(k)

)
,d(k)

〉
≤ −

〈
d(k), D−1

k d
(k)
〉

αk
< 0.
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After finding a descent direction d(k), the second part of the iteration consists of finding a point in
this direction that will become the next estimate

w(k+1) = w(k) + λkd
(k).

The step size λk is selected by some line search method. We want to select choose λk in such a
way that the decrease in the objective function is large while also taking into account computation
time. Ideally, we want that λk that satisfies

arg min
λk> 0

J
(
w(k) + λkd

(k)
)
.

However, finding a minimizer is computationally costly because it requires many evaluations of J
and possibly ∇J [24].

Note that we refer to both αk and λk as a step size. Figure 4.2 shows the difference between the
two. The value αk is the step size in the direction −Dk∇J

(
w(k)

)
. After projection, we find a search

direction d(k). Then, λk refers to the step size in the direction of d(k). For both αk and λk there
should be a balance between finding a new descent direction and optimizing the descent in a given
direction. When finding a descent direction is costly, it is worth spending some time on finding a
good step size in this direction.

So far, we defined the basic scaled gradient algorithm. In the following two sections, we will look
at how the scaling matrix, steps size and line search method can be chosen.

4.3 Scaling matrix and step size

In this section we discuss how to choose the scaling matrix Dk and the step size αk. In literature,
the scaling matrix is often chosen as a diagonal matrix

Dk = diag
(
d

(k)
1 , d

(k)
2 , ..., d

(k)
N

)
to reduce computational costs. One possibility is the quasi-Newton approach to choose for Dk an
approximation of the inverse of the Hessian matrix ∇2J

(
w(k)

)
. In [7, 36] they choose

d
(k)
i = min

{
L2,max

{
L1,

(
∂2J

(
w(k)

)
(∂wi)

2

)−1}}
(4.12)

for i = 1, ..., N and where L1, L2 > 0 are used to bound the eigenvalues of Dk from above and
below. This choice for dk can me motivated by the fact that the second derviative gives information
about the curvature. When the error landscape is more curved in some direction, the first order
approximation by the gradient is correct over a shorter distance. Therefore, we want to decrease
our step in this direction which is achieved by scaling the corresponding component of the descent
direction by the inverse of the second derivative. Another approach proposed by [7] is

d
(k)
i = min

{
L2,max

{
L1, w

(k)
i

}}
(4.13)
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for i = 1, ..., N . This choice is motivated by the fact that, as shown in the Supplementary Infor-
mation of [36], the iteration step of the Richardson-Lucy algorithm [10, 22, 29, 33] can be written
as

w(k+1) = w(k) − diag
(
w

(k)
i

)
∇J(w(k)),

where J(w) is the Kullback-Leibler divergence as in (2.5). So with this choice of Dk, the descent
direction corresponds to that of the Richardson-Lucy algorithm, corrected with a threshold to make

sure that d
(k)
i ∈ [L1, L2]. Note that this only makes sense if we choose as objective function the

Kullback-Leibler divergence.

A third choice for Dk is proposed in [36] where a split-gradient method is used. This method is
suitable for the case that the objective function is of the form (4.2) where D(w) is the Kullback-
Leibler divergence as in equation (2.5) and R(w) is some regularization function. We use two
non-negative vectors U(w) and V (w) such that

∇R(w) = V (w)− U(w).

The diagonal components of Dk are now defined as

d
(k)
i = min

{
L1,max

{
L2,

w
(k)
i

1 + β
(
V
(
w(k)

))
i

}}
. (4.14)

This choice for the scaling matrix can be motivated as follows. Compared to the previous method,

the value of w
(k)
i is divided by 1 + β

(
V
(
w(k)

))
i
. For a given voxel i, the value of V (w)i is positive

whenever the derivative of the regularization with respect to this voxel is positive. This means that
increasing the intensity of this voxel would lead to an increase of the regularization. By dividing by
1 + β

(
V
(
w(k)

))
i
, the step in the direction of this voxel is decreased. Therefore, this matrix can be

interpreted as a matrix that speeds up the convergence toward a more regularized solution.

The Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm [9, 14, 15, 32] is Quasi-Newton method
that can be seen as a scaled gradient method where the scaling matrix is an approximation of the
inverse of the Hessian. Unlike before, this scaling matrix is not a diagonal matrix. The scaling
matrix is updated at the end of each iteration step as follows

Dk+1 =

(
I −

skz
T
k

〈zk, sk〉

)
Dk

(
I −

zks
T
k

〈zk, sk〉

)
+

sks
T
k

〈zk, sk〉
,

where sk = −αkDk∇J
(
w(k)

)
and zk = ∇J

(
w(k+1)

)
−∇J

(
w(k)

)
. Here we have to multiply N ×N

matrices which is costly. However, limited memory versions of the BFGS method are described by
[23] and [31].

In the specific case that D is a diagonal matrix with non-negative elements di for i = 1, ..., N and
Ψ is the set of non-negative solutions it follows from equation (4.11) that

0 ≥
N∑
i=1

(PΨ,D(w)i − wi) di (PΨ,D(w)i − vi)

=

N∑
i=1

di
(
PΨ,D(w)2

i − viPΨ,D(w)i − wiPΨ,D(w)i + wivi
)
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for all v ∈ Ψ. This inequality is satisfied when

PΨ,D(w)i =

{
wi if wi ≥ 0

0 if wi < 0

and therefore the projection reduces to setting the negative elements to zero.

We will now discuss a method for selecting the step size αk. We want to choose the step size such
that the decrease of the functional in the direction −Dk∇J

(
w(k)

)
is maximized. The Barzilai-

Borwein rules [2] are rules for choosing the steplength in a gradient descent algorithm that are
based on a quasi-Newton approach. We want to find a step size α such that αI approximates the
inverse Hessian. The reasoning behind this can be understood by using the secant method. This
is a finite difference approximation to Newton’s method where the root of a function f : R→ R is
found by using the iteration

xk+1 = xk −
xk − xk−1

f (xk)− f (xk−1)
f (xk) . (4.15)

which is visualized in Figure 4.3.

Figure 4.3: Finding the root of a function f(x) using the secant method. We start with x0 and x1

and then find x2 and x3 using Equation (4.15).

The standard gradient descent method uses the iteration

wk+1 = wk − αk∇J(wk).

The idea is to choose αk such that the gradient of J is zero at w(k+1). If the gradient would be
larger than zero, we could take a larger step in that direction. Translating the secant method to
multiple dimensions and taking ∇J for f we want choose αk such that

w(k) −w(k−1) = αk

(
∇J

(
w(k)

)
−∇J

(
w(k−1)

))
.
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Define sk = w(k) −w(k−1) and zk = ∇J
(
w(k)

)
−∇J

(
w(k−1)

)
. Then αk is chosen as

arg min
α
‖αsk − zk‖2 or arg min

α
‖sk − αzk‖2.

Taking the derivative, setting it to zero gives and solving for α gives

α
(1)
k =

〈sk, sk〉
〈sk, zk〉

and α
(2)
k =

〈sk, zk〉
〈zk, zk〉

. (4.16)

These are known as the Barzilai-Borwein (BB) rules. In [7, 36] the BB rules are adapted to the

case of a scaled gradient descent direction such that αkDk approximates
(
∇2J

(
w(k)

))−1
. For that

reason αk is chosen such that it satisfies

arg min
α
‖ (αkDk)

−1 sk − zk‖2 or arg min
α
‖sk − αkDkzk‖2

from which it follows in an equivalent way that

α
(1)
k =

〈
sk, D

−1
k D−1

k sk
〉〈

sk, D
−1
k zk

〉 and α
(2)
k =

〈sk, Dkzk〉
〈zk, DkDkzk〉

. (4.17)

When Dk = I, the step sizes reduce to (4.16) and therefore this approach generalizes the standard
BB-rules.

4.4 Line search

Figure 4.4: The sufficient decrease condition. The function J
(
w(k) + λd(k)

)
is plotted as a function

of λ. The dashed line r(λ) represents the right hand side of equation (4.18) that is a linear function
of λ. Figure adapted from [24] p.33.

In this section we discuss a line search method. When using a step size αk that is determined with a
Quasi-Newton method as just discussed, we already have a good step length to start from. In that
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Figure 4.5: Line search.

case it suffices to use a simple backtracking method to determine λk. In the backtracking method,
a value θ ∈ (0, 1) is chosen which is the factor by which the step size will be reduced each time.
Also, a value γ ∈ (0, 1) is selected that determines the minimal decrease in the objective function
that has to be achieved. We say that the step size λk gives sufficent decrease when

J
(
w(k) + λkd

(k)
)
≤ J

(
w(k)

)
+ γλk

〈
∇J

(
w(k)

)
,d(k)

〉
. (4.18)

That is, J
(
w(k) + λkd

(k)
)

is as small as it is expected to become based on a fraction γ of the

gradient at w(k) and a step length λk in the direction d(k). This is shown in Figure 4.4 where r(λ)
is the right hand side of (4.18). We start with λk = 1 and stop as soon as (4.18) is satisfied. If
not, λk is decreased by a factor θ, as depicted in Figure 4.5. Since γ ∈ (0, 1), the sufficient decrease
condition is guaranteed to be true when λk is small enough.
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Numerical experiments

This chapter is not accessible.
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Conclusion and future work

This chapter is not accessible.
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Appendix A

Derivatives

This appendix contains the gradient of the different components of the objective function that are
used. Also, we derive formulas for the diagonal of the Hessian that is used for one of the scaling
matrices.
The objective function has the form

J(w) = D(w,f) + β ·R(w).

In order to express the objective functions correctly we define the mask MS as the square, diagonal
matrix that is 1 for the indices that belong to S and 0 for the indices outside of S. Multiplication
of MS with a vector v will set all elements of v outside S to zero.

Calculating KTw
In the calculation of the derivatives we will encounter multiplication of a vector with the transpose
of the blurring matrix. To calculate KTw we first realize that K is structured as in equation 3.11
where the PSF appears in the reverse order on the last row and each row is shifted towards the
right by one position compared to the row above it. Because Km,n = hm−n and the periodicity of
h, the last row of KT is given by(

KT
)
N,n

= Kn,N = hn−N = hN+n−N = hN−(N−n) = KN,N−n.

Therefore, KTw represents convolution of w with the reversed PSF. That is, when hm is the m-th
elements of the PSF h, then KTw represents a convolution with the PSF h′ for which h′m = hN−m.
To calculate this convolution using Fourier transforms, we use the property that reversal of space
corresponds to reversing the frequency

F ({hN−n})m = F ({hn})N−m .

In addition to this, when h is real, then the reversal of the frequencies corresponds to complex
conjugation

F (hn)N−m = F (hn)m.

Then it follows that
h′m = F (hn)m,

and so transposition of the blurring matrix corresponds to complex conjugation of the OTF.
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Residual sum of squares
In this case, the data fidelity function is given by

D(w,f) = ||MS(Kw + b− f)||2.

The gradient is given by
∇wD(w,f) = 2KTMS(Kw + b− f)

and the Hessian is then equal to
2KTMSK.

The diagonal elements are given by

(
2KTMSK

)
ii

=

N∑
l=1

N∑
m=1

Kmi(MS)mlKli.

Since MS is zero when m 6= l we can leave out of one of the summations

(
2KTMSK

)
ii

=
N∑
m=1

(Kmi)
2(MS)mm, (A.1)

and so the i-th element of the diagonal of the Hessian is given by the sum of the squares of the
elements of the i-th column of the blurring matrix where we only count the indices for which the
mask is nonzero.

KL-divergence
In this case, the data fidelity is given by

D(w,f) =

N∑
i=1

(MS (Kw + b− f))i −MS

(
log

(
Kw + b

f

))
i

where the division inside the logarithm is element-wise. The gradient is given by

∇wD(w,f) = KTMS

(
1− f

Kw + b

)
.
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The ii-th element of the Hessian is given by

∂2

∂w2
i

D(w,f) =
∂

∂wi
(∇wD(w,f))i

=

(
∂

∂wi
KTMS

(
1− f

Kw + b

))
i

=

(
−KTMS

∂

∂wi

(
f

Kw + b

))
i

=

(
−KTMS

∂

∂wi

(
f1

K11w1 + ...+K1NwN + b1
, ... ,

fN
KN1w1 + ...+KNNwN + bn

)T)
i

=

−KTMS

(
−K1if1

(Kw + b)2
1

, ... ,
−KNifN

(Kw + b)2
N

)T
i

=

N∑
j=1

(
(KTMS)ij

(
Kjifj

(Kw + b)2
j

))

=

N∑
j=1

(
N∑
l=1

Kli(MS)lj

(
Kjifj

(Kw + b)2
j

))

=
N∑
j=1

(
Kji(MS)jj

(
Kjifj

(Kw + b)2
j

))

=

N∑
j=1

(
(Kji)

2(MS)jj

(
fj

(Kw + b)2
j

))
.

Therefore, the diagonal of the Hessian is calculated by applying the mask to the image f
(Kw+b)2

and then convolving it with the transpose of the element-wise squared PSF.

Tikhonov regularization
In this case, the regularization is given by

R(w) =
1

2
||MSw||2.

Then, the gradient is given by

∇R(w) = MT
SMSw

= MSw.

The Hessian is given by MS and therefore the diagonal of the image is 1 inside S and 0 outside of
S.
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