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Abstract

One of the interesting properties of QCD is the fact that the carriers of the
strong force, gluons, are able to interact with themselves. This allows for
the gluons to form bound states in the form of glueballs. To find out more
about the properties of these glueballs, we study how their mass spectrum
reacts to an external magnetic field in the case of strong interactions. For
this, we use improved holographic QCD to construct a gravitational dual
to pure Yang-Mills theory which is coupled to a constant external magnetic
field. Surprisingly, we find that for increasing values of the magnetic field
strength, the masses decrease. This is the opposite of effects known from
Landau quantization, where a stronger external magnetic field heightens
the mass spectra.
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Chapter 1

Introduction

In the 1950s technological developments enabled the use of high energy
particle beams. This lead to the discovery of many particles with a short
lifespan. As a result, there was a desperate need for a theory which could
explain their existence. This came in the mid-1960s when Gell-Mann and
Zweig, independently, suggested the quark model as an underlying model
for these particles. They postulated that all the newly discovered particles
are in fact bound states of small constistuents called quarks.[1]

In 1971 Gell-Mann and Fritzsch expanded on this theory. They came with
a model of quarks where they assumed that the quarks have a new type
of quantum number: color. The color group, consisting of three colors was
assumed to have a SU(3) symmetry. Later, it was found that they could
interpret this color group as a gauge group. The gauge theory that came
as a result is similar to quantum electrodynamics. Just like there is an
electromagnetic force that binds two oppositely charged particles, there is
also a force binding the quarks: the strong force. The carriers of this force,
called gluons, are generated by the gauge bosons coming from this theory.
Unlike photons however, gluons are also able to interact with themselves. [2]

The fact that gluons can interact with themselves, leads to interesting
physics. The consequence of this fact we are going to focus on, is that
gluons can form a bound state called glueballs. At present, there is still a
lot unknown about these glueballs. This is because experimentally, they
are difficult to detect as they mix with other hadrons. On the other hand,
making theoretical calculations about glueballs proves to be difficult as well
because you need to consider the strongly interacting regime of QCD.
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Our main goal is to find out more about how these glueballs react to the
presence of an external magnetic field. QCD is already known to be able to
be influenced by the presence of an external magnetic field and there have
already been many studies about this influence. In [3, 4, 5, 6] for example,
the QCD phase diagrams under influences of a magnetic field, magnetic
catalysis and Landau levels of quarks are studied.

What we want to find out, and is the main focus of this project, is to find
out how the presence of an external magnetic field influences the spectrum
of glueballs. For charged particles with weak couplings, the effect of a mag-
netic field on the spectrum is already known. This is described by Landau
quantization. Here, the energy levels and the magnetic field strength B are
related as follows [7]:

En = h̄ωc

(
n+

1

2

)
+

p2
z

2m
(1.1)

with,

ωc =
qB

mc
(1.2)

Glueballs however don’t carry color charge, and we consider a strongly in-
teracting regime here, so it would be interesting to see if glueballs behave
similarly or if we get a completely different response to a magnetic field.

To study the glueball spectra, we use improved holographic QCD (ihQCD)
to construct a simplified model. It should be noted however, that only pure
Yang-Mills theory is considered here, the quarks are left out of this model.

The rest of the thesis has the following structure: We start a qualitative
review of QCD and its properties. Next, we discuss the AdS/CFT cor-
respondence and the theory we will be using: improved holographic QCD
(ihQCD). During the discussion of ihQCD, we will discuss the properties we
want the model to have, such as quark confinement. Using this knowledge,
we then construct a model in which the magnetic field is included. We start
with a very general model and fix the parameters and boundary conditions
such that we end up with a model in the ground state, with quantum con-
finement and where we can vary the magnetic field strength B. After this,
we consider fluctuations around the gravitational background and extract
the particle spectrum for various values of the magnetic field strength B.
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Chapter 2

QCD

As mentioned in the introduction, quarks form the constituents of many
particles. They are bound together through strong force, which is realised
by the exchange of gluons. The dynamics of quarks and gluons are con-
trolled by the following Lagrangian:

L = −1

4
Fα
µνF

µν
α + Ψ̄ν (iγµDµ −m) Ψν . (2.1)

Here, Fα
µν describes the gauge-field strength and is given by:

Fα
µν = ∂µA

α
ν − ∂νAαµ + gfabcAbµA

c
ν , (2.2)

where Aµ describes the gauge fields. Furthermore, the fields Ψµ denote the
quark fields, the covariant derivative is given by:

Dµ = ∂µ − igAαµtα (2.3)

and g denotes the coupling constant [8].

Despite this Lagrangian looking deceptively simple, there are difficulties
when working with this theory. QCD is a theory with asymptotic free-
dom. This means the interactions between particles become asymptotically
weaker as the energy scale increases. At high energies, the coupling con-
stant is small, allowing the use of perturbative calculations. On the other
hand for smaller energies, which are also the energy scales we are interested
in, the coupling constant becomes too large to be able to use perturbative
calculations effectively. This makes calculations very difficult to perform
analytically.
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Figure 2.1: Linear confinement in QCD-like theories. Taken from [10]

Another property of QCD is color confinement. It is based on the idea that
color charged particles cannot be separated. While there is no analytic
proof, it can be qualitatively understood as the result of the interactions of
gluons. In contrast to the electromagnetic force, where photons do not self-
interact and the field lines spread out, the gluons which can self-interact,
stay confined to a ’tube’ between the quarks. At relatively large distances,
the density of the gluons is constant [9]. As a result, the binding force
between the quarks remains roughly constant and the potential takes the
form:

Vqq̄(L) = σ0L+ . . . , (2.4)

where L denotes the distance between the quarks. Because V increases
linearly with increasing L, it would take an infinite amount of energy to
separate the quarks and thus explains why singular color charged particles
are not observed.

As mentioned before, when working at low enough energy scales, the cou-
pling constant becomes too large and perturbative methods fail. Therefore,
it becomes necessary to switch to non-perturbative methods. Lattice-QCD
is the most well-established among these. Instead of a continuous space-
time, a discrete lattice is considered here and all quarks and gluons can
only exist on the lattice points. As a result, there is a minimum distance α,
the distance between two neighbouring lattice points, between the quarks
and gluons which cannot be breached. This removes the divergency in the
ultraviolet section.

Another advantage of transcribing QCD onto a lattice is that it calculations

6



JPC = 0++ JPC = 2++

n=0 1475 MeV 2150 MeV
n=1 2755 MeV 2880 MeV
n=2 3370 MeV
n=3 3990 MeV

Table 2.1: Spectra for glueballs with Jpc = 0++ and Jpc = 2++, taken from
[12]

can be performed with methods analogous to well-known methods used in
condensed matter theory. [11]. Through these calculations, the partition
function and matrix elements of any operator between two hadronic states
can be calculated numerically. Furthermore, the effective masses of glue-
balls can be determined by studying the propagator of these particles. This
has been done in [12], for which the results are shown in Table 2.1.

There are disadvantages to lattice QCD, however. Besides the fact that
calculations using lattice QCD are slow and resource intensive, in the cal-
culation of real-time operators there are systemetic and statistical errors
that can provide inaccurate results. [10]. Because of these reasons, there
has been a demand for an alternative method. This demand has been re-
alised when it was found out that through the AdS/CFT correspondence
an alternative formulation for QCD can be made.

It should be noted, however, that this approach often makes use of a toy
model of QCD, where only the properties of QCD thought to be relevant
are included. For our research this is also the case. Here, we leave out the
contribution of the quarks to the theory and only consider a pure Yang-Mills
theory given by the Lagrangian:

LYM = −1

4
Tr(F 2). (2.5)

As can be seen, only the part of LQCD which describes the gluon-gluon
interactions is included here.
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Chapter 3

AdS/CFT correspondence

3.1 AdS/CFT

To understand AdS/CFT, it is important to understand the concept of du-
ality. This refers to the fact that two concepts which are physically very
different are the same on a mathematically deep level. By making use of the
mathematical similarities, a dictionary can be created which maps proper-
ties of one side of the duality onto the other side.

AdS/CFT makes use of such a duality. It provides a link between quan-
tum field theory on a flat four-dimensional spacetime and a gravitational
theory in five dimensions. The AdS/CFT-correspondence is a realisation of
the holographic principle, which states that in a gravitational theory, the
number of degrees of freedom in a given volume V scales with the surface
volume ∂V . As a result, the information on the surface volume encodes the
information about the volume V .

In the case of AdS/CFT this principle is used to link the information
of a quantum field theory on four-dimensional Minkowski spacetime onto
a higher dimensional space which is locally Minkowski near the bound-
ary. A five-dimensional spacetime satisfying this property and used in the
AdS/CFT correspondence is the five-dimensional Anti-deSitter space.

3.1.1 AdS space

Anti-deSitter space describes a negatively curved spacetime which is maxi-
mally symmetric. It can be embedded into a Minkowski spacetime (X0, . . . , Xd+1)

8



which has one extra dimension and is given by the metric:

ds2 = −(dX0)2 + (dX1)2 + · · ·+ (dXd)2 − (dXd+1)2 (3.1)

The embedding consists of a hypersurface which satisfies:

−(X0)2 + (X1)2 + · · ·+ (Xd)2 − (Xd+1)2 = −L2, (3.2)

where L denotes the radius of the anti-deSitter space. [13].

To see how AdS is locally similar to Minkowski space, consider the fol-
lowing coordinate transformation to the coordinates (t, ~x, r) with t ∈ R,
~x = (x1, . . . , xd−1) ∈ Rd−1 and r ∈ R:

X0 =
L2

2r

(
1 +

r2

L4

(
~x2 − t2 + L2

))
X i =

rxi

L
for i ∈ {1, . . . , d− 1}

Xd =
L2

2r

(
1 +

r2

L4

(
~x2 − t2 − L2

))
Xd+1 =

rt

L

(3.3)

Since only positive values of r are allowed, only half of the AdS space is
described by these coordinates. However, to see how AdS5 behaves locally,
this suffices. The coordinates used here are also known as the Poincaré
patch. With these coordinates, the metric now reads:

ds2 =
L2

r2
dr2 +

r2

L2

(
−dt2 + d~x2

)
(3.4)

For fixed values of r, we find that the metric reduces to a d-dimensional
Minkowski spacetime Rd−1,1. At the conformal boundary r →∞, we there-
fore find that AdSd+1 locally behaves as Rd−1,1. In general, the quantum
gravity theory of AdS/CFT lives on a manifold AdS×X, where X denotes
a compact space.

We will now look at a well-known example of AdS/CFT. This links N = 4
Yang-Mills theory to a type IIB string theory which lives on a compacti-
fied AdS5 × S5 space. The relation, also known as the Gubser-Klebanov-
Polyakov-Witten relation and is given by:
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〈e
∫
ddx J (x)O(x)〉CFT =

∫
DΦe−SAdS

∣∣
Φ(x,∂AdS)=J (x)

. (3.5)

For the parameters of both sides of the duality, we have the following rela-
tions:

gs ∼ g2
YM Rl2s ∼ (g2

YMNc)
−1/2. (3.6)

Here, gs denotes the coupling constant in the string theory, gYM is the
coupling constant of the gauge theory, RL2

s is the Ricci curvature of the
background in terms of string units and Nc stands for the number of colors.
In the limit

Nc →∞, λ ≡ g2
YMNc →∞, (3.7)

the coupling gs → 1 while Rl2s becomes sufficiently small. As a result, at
leading order in gs, the theory on the AdS side of the duality reduces to
semi-classical gravitational theory.

One final relation we need to establish between both sides of the duality is
a relation between the operators in the Yang-Mills theory and the fields in
the gravitational theory. For this we use the operator-field correspondence.

Consider an operator O(x) that is sourced by the field J (x). The dual for
such an operator in the gravitational theory is given by a field Φ(x, r). Close
to the boundary of the AdS-space, there are two independent solutions for
this field. They scale with z∆ and z(d−∆) respectively, where ∆ is the scaling

dimension given by ∆ = d
2

+ ν, ν =
√
m2R2 + d2

4
, with m describing the

mass of bulk field and where d denotes the dimension of the string theory.
We can therefore write Φ(x, r) as

Φ(r, x) = A(x)rd−∆ +B(x)r∆ (3.8)

near the boundary.
The functions A(x) and B(x) are related to properties of the operator O(x).
Specifically, A(x) corresponds with the source J (x) and B(x) is related to

the vacuum expectation value 〈O(x)〉 by B(x) = O(x)
2ν

. This gives:

Φ(r, x) = J (x)rd−∆ +
〈O(x)〉

2ν
r∆, (3.9)

From the behaviour of Φ(x, r) near the boundary, we can therefore already
extract important information about the properties of the operator. So is
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YM gravity
energy-momentum field tensor Tab metric field gab

scalar operator Ob scalar field φ
fermionic operator Of Dirac field ψ

Table 3.1: Examples of operators and their corresponding fields.

the leading term of Φ(x, r) directly related to the source of the operator,
while the vacuum expecation value of the operator can be extracted from
the subleading term.

By making use of these relations, we can create a dictionary between the
operators and fields. Examples of related operators and fields can be found
in Table 3.1.

Besides the expectation values for operators, two-point correlators can also
be extracted from the field-operator relation. On the field theory side of the
relation, we find that the two-point function can be derived by taking the
derivative with respect to J (x) twice and setting J to zero. To perform
the same steps on the gravity side, one first has to determine the classical
solution Φ(r, x) in terms of J (x) with the boundary condition φ(0, x) =
J (x). By substituting this solution in SAdS, the right-hand side of Eq. 3.5
is now written in terms of J (x). Now, after taking the derivative with
respect to J (x) twice and setting J (x) to zero, the two-point function is
determined on the string side of the duality.

3.2 Improved Holographic QCD

With the basics of AdS/CFT explained, we now discuss how this corre-
spondence can be used to construct a dual theory to QCD. For this, we
briefly look at different approaches that have already been tried to find this
relation and discuss their advantages and disadvantages.

Top-down approach: In the top-down approach you start with a certain D-
brane configuration and take the decoupling limit as described in [14]. This
way the D-brane configuration gets replaced by a gravitational background
with various form fields. While this correspondence gives a precise relation
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between the D-branes and the QFT, it not only results in a theory different
than QCD or pure Yang-Mills theory but also has an additional sector in
the Hilbert space spanned by infinite many operators. While the second
problem is also present in the N = 4 SYM theory, the operators there are
in direct correspondence with higher conformal dimension. In QCD how-
ever, this is not the case, which provides many difficulties. [15], [14]. As a
result, a different approach was considered.

Bottom-up approach: In the bottom-up approach, the goal of giving a pre-
cise dual to QCD is given up. Instead, a theory is constructed which only
captures the infrared dynamics of the operators in the QCD theory.

In early theories a hard-wall model was considered. Here, to ensure only
the infrared dynamics are encaptured, a strict cut-off in the gravitational
theory is introduced somewhere deep in the interior. However, these models
gave unrealistic results such as m2

n ∝ n2 for large n [16], [17]. To overcome
these problems, the hard-wall was made less strict by introducing, instead
of a cut-off, a dilaton to the AdS5 gravitational theory whose profile was
chosen by hand to obtain realistic features. However, in this new soft-wall
model, there were still unrealistic features present in the glue sector and in
the thermodynamics of the theory [18].

Improved holographic QCD : In improved holographic QCD, instead of choos-
ing the background by hand, it is obtained by minimizing the action for
gravity coupled to a scalar field. For this theory only the parts of QCD are
considered which involve the so-called low-lying operators. Furthermore,
the gravitational dual we wish to construct should be a dual to a SU(Nc)
gauge theory in the large Nc limit. The three relevant operators for this
theory are the stress tensor Tµν , the scalar glueball operator trF 2 and the
axionic glueball operator trF ∧ F . The last operator, however, is shown
to scale with 1/Nc and can thus be treated as a perturbation in the limit
Nc →∞. For the remaining two operators it is propsed that Tµν should be
dual to gµν and trF 2 should be dual to the dilaton Φ in the gravitational
theory.

As a starting point for the gravity side of the duality, consider the following
Einstein-Dilaton action:

S = M3
pN

2
c

∫
d5x
√
−g
(
R− 4

3
(∂Φ)2 + V (Φ)

)
+ SGH + Sct (3.10)
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Here, Mp represents Plank energy scale, Nc denotes the number of colors
and SGH refers to the Gibson-Hawking term given by:

SGH = 2M3
p

∫
∂M

d4x
√
hK, (3.11)

with

Kµν = −∇µnν =
1

2
nρ∂ρhµν

K = habKab,
(3.12)

where hab refers to the induced metric and nµ is the unit normal to the
boundary. Both the dilaton and the metric fields are assumed to be depen-
dent on a holographic coordinate u which runs from the boundary u→ −∞
to the origin at an interior point u = u0. In the vacuum state, with vanishing
temperature, the boundary of this theory should have SO(3, 1) symmetry.
This gives us the following ansatz for the metric:

ds2 = du2 + e2A(u)ηµνdx
µdxν (3.13)

From the action and metric described above, the equations of motion for
A(r) and Φ(r) can now derived and are given by:

A′′ =
−4

9
(Φ′)2

3A′′ + 12(A′)2 = V (Φ).
(3.14)

By choosing the right boundary conditions for A(r), Φ(r) and an expression
for the potential V (Φ), the fields A(r) and Φ(r) can be fully determined
from which one can, eventually, derive the glueball spectra as we will show
later on.

One important concern to consider for this approach, however, is that we
consider the limit Nc → ∞, while we know that in QCD, the number of
colors is given by Nc = 3. Luckily, lattice calculations show, that after
normalization, various observables of QCD remain the same for varying
values of Nc [19]. Moreover, the results for ihQCD, are also consistent with
these results [10]. An example of this fact is shown in Fig. 3.1, where the
trace of the EM-tensor is calculated for different values of Nc.
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Figure 3.1: Trace of the energy momentum tensor for various values of Nc.
Taken from [10]
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Figure 3.2: Schematic picture of a Wilson loop C.

3.3 Confinement Conditions

For the model above, we still need to ensure that there is quark confine-
ment present. To determine the conditions for this, we closely follow the
discussion of [20], where through the use of Wilson loops, the behaviour of
the quark-antiquark potential E(L) is determined.

Firstly, we first study the expectation value of a Wilson loop on both sides
of the duality as motivated in [21]. There, it is stated that for a rectagular
Wilson loop C with sides T and L (as shown in Fig. 3.2), the expectation
of the Wilson loop in the Yang-Mills theory is given by:

〈W (C)〉 = A(L)e−TE(L). (3.15)

On the string theory side of the duality, the expectation value of the Wilson
loop is proposed to be:

〈W (C)〉 ∼ e−S, (3.16)

where S describes the area of the world-sheet for which boundary coincides
with the Wilson Loop C in the UV limit (which denotes the region where
u→ −∞). This gives the relation:

SNG[Xmin
µ (σ, τ)] = TE(L), (3.17)

where S denotes the Nambu-Goto action.
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Direct calculation shows that for a general 5D metric of the form:

ds2dxµdxν = grrdr
2 − g00dt

2 + g‖d~x
2
‖ + g⊥d~x

2
⊥, (3.18)

where x⊥ describe the coordinates of the space transverse to the Wilson
Loop, SNG[Xmin

µ (σ, τ)] equals:

S =

∫
dσdτ

√
det [(∂αXM) (∂βXN) gMN ]

= T

∫
dx
√

det
[
g00(s(x))g‖(s(x)) + g00(s(x))gss(s(x)) (∂xs)

2]
= T

∫
dx
√

det
[
f 2(s(x)) + g2(s(x)) (∂xs)

2],
(3.19)

with
f 2(s(x)) ≡ g00(s(x))g‖(s(x))

g2(s(x)) ≡ g00(s(x))gss(s(x)).
(3.20)

Therefore, we find that E is given by:

E =

∫
dx
√

det
[
f 2(s(x)) + g2(s(x)) (∂xs)

2]. (3.21)

From the Lagrangian L(s, s′) =
√

det [f 2(s) + g2(s)(s′)2], one can calculate
the differential equation for a geodesic line which minimizes this action.
This is given by:

ds

dx
= ±f(s)

g(s)

√
f 2(s)− f 2(s0)

f(s0)
, (3.22)

where s0 = s(0) which satisfies s′(0) = 0. The distance between the quark
and anti-quark can now be calculated as:

L =

∫
dx =

∫ (
ds

dx

)−1

ds = 2

∫ s1

s0

ds
g(s)

f(s)

1√
f 2(s)/f 2(s0)− 1

. (3.23)

In these terms, the quark-antiquark potential E can be rewritten as:

E(L) = f(s0)L+ 2

∫ s1

s0

ds
g(s)

f(s)

√
f 2(s)− f 2(s0). (3.24)

For large L, the second term becomes sub-leading and the quark anti-quark
potential behaves like E(L) = σL, with σ a constant. This is what we want
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for confinement, so we study the conditions for L→∞.

To find out how this is achieved for the metric given by Eq. 3.13, we first
transform to conformal coordinates (where the coordinate r is related to
u by dr = exp(−A)du) and work in the string frame (which is given by
(gS)µν = e4φ/(D−2)gµν [22] where D describes the dimension of the string
theory). The metric is then given by:

ds2 = e2As(r)
(
dr2 + ηµνdx

µdxν
)
. (3.25)

In turn, we find that f(r) and g(r) are given by:

f 2(r) = − exp(4As(r))

g2(r) = − exp(4As(r))
(3.26)

Therefore,

L = 2

∫ rF

0

dr
1√

exp(2As(r)− 2As(r0))− 1
(3.27)

If we Taylor expand the exponential around rF , we find that:

L = 2

∫ rF

0

dr
1√

4(A′s(r)− A′(rF )) +O(r − rF )2
. (3.28)

For L → ∞ to be satisfied, As should therefore have a minimum and we
can conclude that the conditions of quark confinement correspond with the
condition that there exists a minimum in As(r). In [20], it is shown that
this condition is satisfied if the potential V (φ) scales with e4Φ/3 in the limit
u→ u0. Furthermore, A(r) and Φ(r) should satisfy dφ

3dA
= −1

2
in this limit.

For the boundary conditions for u → −∞ on the other hand, one can
derive an expression for A(r) from the fact that the metric should resem-
ble AdS5. Furthermore, the behaviour of φ(r) and V (φ) in this limit can
be derived from the perturbative beta-function of the SU(Nc) gauge theory.

After choosing the boundary conditions such that is all satisfied, the fields
A(r) and Φ(r) can be numerically solved.

3.4 Mass Spectrum

With all the relevant fields determined, all that is left is the extraction of
the glueball spectrum from this information. For this, finite energy fluctu-
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ations are considered around the gravitational background. These fluctua-
tions should be normalizable near the boundary u→ −∞ and at the origin
u = u0.

For the rest of this section, we consider conformal coordinates. The bound-
ary and origin are here given by r = 0 and r →∞ respectively. Assuming
the fluctuations are diffeomorphism invariant, the quadratic part of the
action describing them is given by:

S[ξ] =

∫
drd4x e2B(r)

(
(∂rξ)

2 + (∂iξ)
2 +M2ξ2

)
. (3.29)

After writing ξ(x, r) = ξ(r)ξ(4)(x), we are interested in the mass eigenstates
�ξ = m2ξ. Varying the action with respect to ξ gives:

ξ′′(r) + 2B′(r)ξ′(r) +m2ξ −M2ξ = 0. (3.30)

For 2++ glueballs, B(r) and M2 are given by B(r) = 3/2A(r), M2(r) = 0.
The other glueballs we consider, 0++ glueballs, satisfy B(r) = 3/2A(r) +
log|X|,M2 = 0 [20, 23].

As mentioned before, the fields describing these fluctuations should be nor-
malizable near the boundary r → 0 as well as when r → ∞. Near the
boundary, we find that A(r) → −log(r) and X ′(r) → 0. Therefore, the
equation of motion is given by

ξ′′(r)− 3

r
ξ′(r) +m2ξ(r) = 0 (3.31)

in this region. This is solved by:

ξ(r) = c1r
2J2(mr) + c2r

2Y2(mr),

where J2(r) denotes the Bessel function of first kind and Y2(r) denotes the
Bessel function of second kind. As r → 0, J2(r) ∝ r2 and Y2(r) ∝ r−2.
Therefore, ξ(r) behaves like:

ξ(r) = c1d1r
4 + c2d2,

in the limit r → 0, where d1, d2 are constants depending om m.
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To make sure the energy of the fluctuation ξ is finite, we rewrite Eq. 3.30
such that it resembles a Schrödinger equation. After defining the potential

Vs(r) = B′′(r) +B′(r)2 (3.32)

and writing ξ(r) as
ξ = ψ(r)e−B(r), (3.33)

we find that Eq. 3.30 now reads

−ψ′′(r) + Vs(r)ψ(r) = m2ψ(r). (3.34)

In this form, we can now easily see that for the energy of the fluctuation ξ
to be finite, the square-integrability condition in the Schrödinger equation
should be satisfied. In other words, we must have:∫

|ψ(r)|2<∞,

where ξ(r) = e−B(r)ψ(r).

As r → 0, we find that ψ(r) → ξ(r)r−3/2 = c1r
5/2 + c2r

−3/2. Since the
second term has a negative power of r, normalizability near the boundary
r = 0 demands c2 = 0. Therefore, ξ(r) ∝ r4 as r → 0. Furthermore,
as Eq. 3.30 is linear in ξ, the proportionality constant in ξ(r) ∝ r4 only
affects the scale of ξ, but has no effects on normalizability. We can there-
fore choose this constant to equal one and have ξ(r) = r4 near the boundary.

With the behaviour of ξ near the boundary determined, we still need to
make sure that the energy fluctuation is finite as r → ∞. This is exactly
the case for the values of m2 at which an extra node appears in the wave
function ψ(r). By varying the parameter m2 until such an extra node
appears, the masses are determined. Afterwards, the masses are rescaled
such that the lowest lying masses from this calculation correspond with
the ones obtained from the lattice calculations in [12]. This approach has
already been done in [20] for which the results are shown in Table 3.2. As
can be seen, there is a good match between both approaches.
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JPC 0++ (Lattice) 0++(ihQCD) ++ (Lattice) 2++ (ihQCD)
n=0 1475 MeV 1475 MeV 2150 MeV 2055 MeV
n=1 2755 MeV 2753 MeV 2880 MeV 2991 MeV
n=2 3370 MeV 3561 MeV
n=3 3990 MeV 4253 MeV

Table 3.2: Spectra for glueballs with Jpc = 0++ and Jpc = 2++ from both
the lattice-QCD and ihQCD calculations, taken from [20, 12].

20



Chapter 4

The Holographic Model

4.1 Action and Equations of Motion

With a basic understanding of the isotropic scenario of improved holo-
graphic QCD, we now introduce an external magnetic field to the theory.
This is done by adding a non-minimal coupling between the scalar dilaton
and the electromagnetic field tensor described by Fµν = ∂µAν − ∂νAµ. The
action is now given by:

S = − 1

16πG

∫
d5x
√
−g
(
R− 4

3
(∇Φ)2 − V (Φ)− Z(Φ)FµνF

µν
)
. (4.1)

We only consider the influence of magnetic fields. Specifically, one with
a constant magnetic field strength B pointing in the ~x3-direction. The
magnetic vector potential Aµ corresponding to this is given by:

Aµ = (0,−yB/2, xB/2, 0, 0). (4.2)

We also need to take the fact into account that with an external magnetic
field pointing in the ~x3-direction, we cannot assume anymore that the space
is spherically symmetric. Therefore, we modify the metric by introducing
an factor exp(2W (r)) to break the isotropy. Furthermore, to introduce
a finite temperature, we make this metric similar to a black-hole metric
by including a blackening factor f(u). Later on, we derive the conditions
of f(u) for which this model is in the ground state. As we will show,
multiplying the blackening factor with exp(2W ) ensures that the ground
state exactly corresponds with f(r) = 1. As this simplifies the calculations,
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this is also what we choose here for the metric. Therefore, we now have:

ds2 =
du2

f(u)e2W (u)
+ e2A(u)(−dt2f(u)e2W (u) + e2W (u)dx2

3 + dR2
2). (4.3)

To make the calculations simpler, we introduce a new function g which sat-
isfies f = exp(g). Direct calculation gives the following Einstein equations:

A′′ − A′W ′ − 1

3
g′W ′ − 2

3
W ′2 +

4

9
φ′

2
+

2

3
B2Ze−4A−g−2W = 0 (4.4)

g′′ + g′ (4A′ + 3W ′ + g′) = 0 (4.5)

4A′W ′ − 2B2Ze−4A−g−2W + g′W ′ +W ′′ + 3 (W ′)
2

= 0 (4.6)

The fields A,W, g have a linear constrain:

3A′g′ + 12A′W ′ + 12 (A′)
2

+ 2B2Ze−4A−g−2W + g′W ′

+V e−g−2W + 2 (W ′)
2 − 4 (φ′)2

3
= 0.

(4.7)

And the dilaton equation of motion is given by:

4A′φ′ − 3

4
B2Z ′e−4A−g−2W + g′φ′ − 3

8
e−g−2WV ′ + 3W ′φ′ + φ′′ = 0. (4.8)

There is still some freedom left in the solutions to these equations. A closer
look shows that they are invariant under the following transformations:

u→ u+ a

u→ eb/2u, g → g + b

g → g + c,W → W − c

2
.

(4.9)

To remove this ambiguity and to simplify the equations to first order dif-
ferential equations, we introduce the following scalars:

X =
φ′

3A′
(4.10)

Y =
g′

4A′
(4.11)

U =
W ′

A′
(4.12)
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H =
1

A′
e−2A−W−g/2. (4.13)

As can be easily checked, these scalars are invariant under the transforma-
tions given in Eq. 4.9. The equations of motion can be rewritten in terms
of these scalars by dividing through A′(r)2 and rearranging the terms. For
example, for X(φ) we can derive the following relation:

dX

dφ
=
d
(

φ′(r)
3A′(r)

)
dr

dr

dφ
=

(
φ′′(r)

3A′(r)
− φ′(r)A′′(r)

3A′(r)2

)
1

φ′(r)

=
1

3X

(
φ′′(r)

3A′(r)2
−X A′′(r)

A′(r)2

) (4.14)

Using the equations of motion, the terms φ′′(r)
A′(r)2

and A′′(r)
A′(r)2

can be rewritten

in terms of the scalars and the functions V (φ) and Z(φ). This leaves an
expression for dX

dφ
which fully consists of X, Y, U and H and the functions

V (φ), Z(φ). After following this procedure for X, Y, U and H we get the
following expressions:

dX

dΦ
= −4

3

(
1 +

3

8X

d log V

dΦ

)(
1 +

U2

6
+
UY

3
+ U −X2 + Y − B2H2Z

6

)
+
B2H2Z

12X

(
d logZ

dΦ
− 2

d log V

dΦ

)
(4.15)

dY

dΦ
= − 4Y

3X

(
1 +

U2

6
+
UY

3
+ U −X2 + Y − B2H2Z

6

)
(4.16)

dU

dΦ
= − 4U

3X

(
1 +

U2

6
+
UY

3
+ U −X2 + Y − B2H2Z

6

(
1 +

3

U

))
(4.17)

dH

dΦ
= −2H

3X

(
1 +

U2

3
+

2UY

3
+ U − 2X2 + Y − B2H2Z

3

)
. (4.18)

Boundary conditions

With the equations of motion for the scalars determined, all that is left
is to find proper boundary conditions. For this, we take a look at their
behaviour near the event horizon. We know that at the event horizon, f(u)
must satisfy f(u) = exp(g(u)) = 0. As a result, we find that according
to Eq. [4.11,4.13], Y = g′

4A′
= f ′

4fA′
and H = 1

A′
exp(−2A −W − g/2) =
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1
A′
√
f

exp(−2A − W ) diverge. We do not, however expect the scalars X
and U to diverge near the horizon. To make sure this does not happen,
we expand the scalars near the horizon in terms of φ and ensure that the
equations of motion remain consistent here.

To find out how Y behaves with respect to φ in this region, we perform a
Taylor expansion of f(u),Φ(u) near the horizon uh. This gives:

f(u) = f ′(uh)(u− uh) +O
(
(u− uh)2

)
φ(u) = φh + φ′(uh)(u− uh) +O

(
(u− uh)2

)
,

where φh ≡ φ(uh). This allows us to write Y (u) as

Y =
1

4

f ′(uh) +O (u− uh)
(f ′(uh)(u− uh) +O ((u− uh)2))A′(u)

in this limit. Using the expansion of φ, we can write u− uh as:

u− uh =
φ− φh
φ′h

+O
(
(φ− φh)2

)
.

Substituting this expression in Y (u) then gives

Y =
1

4

f ′(uh) +O (φ− φh)(
f ′(uh)

(φ−φh)
φ′(uh)

+O ((φ− φh)2)
)

(A′(uh) +O(φ− φh))

=
1

4

f ′(uh)

f ′(uh)
(φ−φh)
φ′(uh)

A′(uh)
=

1

4

φ′(uh)

(φ− φh)A′(uh)
=

3

4

Xh

φ− φh
.

Because X is finite near the horizon, we find that Y (φ) behaves like Y ∼
1

φ−φh
as φ → φh. Furthermore, assuming that A′(u), A(u),W (u) do not

diverge as u→ uh, we find that H ∼ 1√
f
∼ 1√

Φ−Φh
.

As a result, we choose the following expansions for the scalars in this limit:

X = Xh +X1(φ− φh) +O
(
(φ− φh)2

)
(4.19)

Y =
Yh

φ− φh
+ Y1 +O

(
φ− φh

)
(4.20)

U = Uh + U1(φ− φh) +O
(
(φ− φh)2

)
(4.21)
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H2 =
H2
h

φ− φh
+H2

1 +O
(
φ− φh

)
. (4.22)

By substituting these expansions in Eqs. [4.15-4.18] we find that Xh, Yh,
Uh and H2

h satisfy the following relations:

XH = lim
φ→φH

(
−3

8

d log V

dφ
+
UH
8

(
d logZ

dφ
− 2

d log V

dφ

))
YH =

3XH

4

B2H2
HZH = 2UHYH . (4.23)

This leaves the value of Uh undetermined. To be certain Uh is not fixed by
second order conditions, we also expand Equations [4.15-4.18] up to second
order in φ. This fixes X1, Y1, U1 and H1 as:

X1 =
UH
16

(
d2 logZ

dφ2

∣∣∣∣
φH

− 2
d2 log V

dφ2

∣∣∣∣
φH

+
2U1

UH

(
d logZ

dφ

∣∣∣∣
φH

− 2
d log V

dφ

∣∣∣∣
φH

))
− 3

16

d2 log V

dφ2

∣∣∣∣
φH

Y1 =
3

8
X1−

3

2

1

(3− UH)

(
1− U2

H

6
+

2UH
3

+
U1XH

4
−X2

H −
1

4
UHXH

d logZ

dφ

∣∣∣∣
φH

)

U1 =
1

2

(
1 + UH

3

)
UH

d logZ

dφ

∣∣∣∣
φH

− 2UH
3XH

(
1 +

2UH
3
− 2X2

H

)

B2H2
1ZH = 2UHY1−

UH
3− UH

(
U2
H +

3

2
XH

(
U1 − 4XH − UH

d logZ

dφ

∣∣∣∣
φH

))
,

(4.24)
but leaves UH invariant. In summary, we find that XH converges to a value
depending on d log V

dφ
, d logZ

dφ
and UH . Y diverges as YH

φ−φh
with YH given by

YH = 3XH
4

. B2H2Z(φ) behaves like 2UY near the horizon and U converges
to a value UH that is yet to be determined.

4.2 Ground State Solutions

For our research, we are interested in the glueball spectra in the ground
state. To make sure we are working in the ground state in our model, we
must set the entropy S = 0. The entropy is given by the area of the horizon
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divided by 4 times the gravitational constant. For the metric given in Eq.
4.3, this is given by:

S =
exp(3Ah +Wh)

4G
, (4.25)

where Ah and Wh are the values of A and W at the event horizon.

Furthermore, the temperature of the solution is obtained by requiring the
absence of a conical singularity in the Euclidean solution at the event hori-
zon. This fixes the temperature as:

T = − 1

4π

d (f exp(2W ))

dr

∣∣∣∣
r=rh

= − 1

4π

d (f exp(2W ))

du
exp(−A)

∣∣∣∣
u=uh

(4.26)

The equation of motion Eq. 4.5 can be rewritten as:

(g′ exp(4A+ 3W + g))
′
= 0 (4.27)

Therefore, we must have

(g′ exp(4A+ 3W + g)) = f ′ exp(4A+ 3W ) = C

f ′ = C exp(−4A− 3W )

f = fb + C

∫ uh

−∞
exp(−4A− 3W ),

(4.28)

where fb gives the value of f as u→ −∞. Since our model resembles AdS5

at the boundary u → −∞, we must have fb = 0. Furthermore, we require
f(uh) = 0.

We can now obtain the value of C by combining Eqs. 4.25,4.26 and 4.28
and using the fact that f(uh) = 0. This gives:

C = −16πGTS. (4.29)

Therefore, in the ground state where S = 0, we find that C = 0 and thus
that f is constant and equal to 1. As a consequence, we find that Y = 0.
Since U is finite at the horizon, and B2H2Z(φ) behaves as B2H2Z(φ) ∼
2UY near the horizon we conclude that B2H2Z → 0 as φ→ φh. This does
not assure that B2H2Z(φ) equals 0 for all u, however. For now though, to
simplify the equations, we consider the case where B2H2Z(φ) is negligible
compared to the other terms in Equations [4.15-4.18]. In this case, the
scalar equations of motion reduce to:
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dX

dΦ
= −4

3

(
1 +

3

8X

d log V

dΦ

)(
1 + U +

U2

6
−X2

)
(4.30)

dU

dΦ
= − 4U

3X

(
1 + U +

U2

6
−X2

)
. (4.31)

To determine X in terms of U , we combine these two equations and get the
differential equation:

dX

dU
=
X

U

(
1 +

3

8X

d log V

dΦ

)
. (4.32)

If we assume V (Φ) behaves as an exponential in the IR-limit and use the
ansatz V (Φ) = exp(ρφ), we find:

dX

dU
=
X

U

(
1 +

3ρ

8X

)
.

This has a simple solution of the form:

X = kU − 3ρ

8
,

where k is an integration constant.

4.3 Confinement Conditions

From here on, we will often consider the model in terms of the conformal
coordinates (r, t, x). The equations of motion Eqs. [4.4-4.8] are rewritten
below in terms of these coordinates:

A′′ − A′2 − A′W ′ − 2

3
W ′2 +

4

9
φ′

2
+

2

3
B2Ze−2A−2W = 0 (4.33)

3A′W ′ − 2B2Ze−2A−2W +W ′′ + 3W ′2 = 0 (4.34)

12A′W ′ + 12A′
2

+ 2B2Ze−2A−2W

+V e2A−2W + 2W ′2 − 4φ′2

3
= 0.

(4.35)

3A′φ′ − 3

4
B2Z ′e−2A−2W − 3

8
e2A−2WV ′ + 3W ′φ′ + φ′′ = 0. (4.36)
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To determine UH , we consider some further restrictions to our model caused
by quark confinement. As mentioned in Section 3.3, we need the distance
L between a quark-antiquark pair, which is given by Eq. 3.23 to diverge.

If we consider the metric given by Eq. 4.3 in the ground state scenario,
consider conformal coordinates work in the string frame, we obtain:

ds2 = e2AS
(
e−2Wdr2 − e2Wdt2 + e2Wdx2

3 + dR2
2

)
, (4.37)

where AS ≡ A+ 2
3
φ. By using Eq. 3.20, we find that if we consider a Wilson

Loop in the direction parallel to x3, the f(r) and g(r) are given by:

f 2(r) = exp(4AS(r) + 4W (r))

g2(r) = exp(4AS(r))
(4.38)

Therefore, L is given by:

L = 2

∫ rF

rB

dr e−2W (r) 1√
exp(4AS(r) + 4W (r)− 4AS(rF )− 4W (rF ))− 1

(4.39)
Expanding the integrand around rF gives:

e−2W (r) 1√
exp(4AS(r) + 4W (r)− 4AS(rF )− 4W (rF ))− 1

=

exp(−2W (rF ))
1√

4(A′S(rF ) +W ′(rF ))(r − rF ) + 2(A′′S(rF ) +W ′′
S (rF ))(r − rF )2

(4.40)

For L to diverge, the integrand needs to at least diverge as 1
|r−rF |

, so we

need AS(r) +W (r) to have a minimum at rF .

We can do a similar analysis for Wilson Loops in a space transverse to the
x3-direction. For these Loops, we have:

f 2(r) = exp(4AS(r) + 2W (r))

g2(r) = exp(4AS(r))
(4.41)

L = 2

∫ rF

rB

dr e−W (r) 1√
exp(4AS(r) + 2W (r)− 4AS(rF )− 2W (rF ))− 1

.

(4.42)
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After expanding the integrand around rF , we find that for L to diverge,
2As(r) +W (r) must have a minimum at rF .

In conclusion, quark confinement in the direction parallel to the magnetic
field requires for As(r) +W to have a minimum at a certain point rF , while
quark confinement in the direction transverse to the magnetic field requires
for 2As(r) +W (r) to have a minimum.

4.4 Boundary Conditions

4.4.1 IR Limit

With the requirement that AS + W and 2AS + W have a minimum, we
get an extra restriction for the scalars. As we will show later in Section
4.4.2, A′S +W ′ and 2A′s +W ′ are negative near the UV boundary. To have
a minimum in AS + W and 2AS + W , we therefore require A′S + W ′ and
A′s + 2W ′ to be positive in the IR-limit.

Before, we have shown that in the case that B2H2Z(φ) is negligible in the
IR-limit, X(φ) and U(φ) are related by X(φ) = kU(φ)− 3ρ

8
, where k is an

integration constant and ρ = d log V
dφ

.

Substituting this expression for X in Equation 4.31, gives:

dU

dφ
=

−4U

3(kU − 3
8
ρ)

(
1 + U +

U2

6
− (kU − 3

8
ρ)2

)
(4.43)

Integration then shows that:

φ− φ0 =

∫ U

U0

3
(
kU − 3

8
ρ
)

−4U
(
1 + U + U2

6
− (kU − 3

8
ρ)2
) dU = f(U)− f(U0)

(4.44)

With

f(U) =
3

64− 9ρ2

(
3ρ
(
log(U2)− log(γ2)/2

)
− 6

16k + 3ρ

δ
log

((
1 + σ

1− σ

)2
))

(4.45)
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and

σ ≡ −12− 24U + 24k2U − 9kρ

δ

γ ≡ 192− 32
(
6k2 − 1

)
U2 − 27ρ2 + 48U(4 + 3kρ)

δ ≡
√

48 + 576k2 + 216kρ+
27

2
ρ2 (4.46)

From Equation 4.33, X(φ) can also be determined separately. If we divide
by A(r)2 and set Y and B2H2Z(φ) to zero, we find that:

Ä

(Ȧ)2
− 1− U − 2U2

3
+ 4X2 = 0.

Since X is assumed to be negative for all φ, we finally obtain:

X = −1

2

√
1 + U + 2U2/3− Ä

(Ȧ)2
. (4.47)

For A(r) in the IR-limit, we choose the following ansatz:

A(r) = −crα, (4.48)

where α and c are positive constants. This allows us to rewrite Ä(r)

Ȧ(r)2
as

Ä

(Ȧ)2
=
α− 1

α

1

−crα
(4.49)

and we find that in as r → ∞, Ä
(Ȧ)2

converges to 0. By using Eq. 4.47 we

find that X therefore converges to

Xh =
−1

2

√
1 + Uh + 2U2

h/3 (4.50)

as r →∞.

Considering Eq. 4.44 once more, we find that as φ → ∞ the right-hand
side should diverge to +∞. This only happens if U → ±∞, U → 0 (in
which case U = 0 for all φ) or if U converges to a constant ck,ρ where ck,ρ
either satisfies γ = 0 or σ = ±1.
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In the case U → −∞, we find that W (r) grows much faster than A(r)
decreases. As a result the entropy which behaves like exp(3A(r) + W (r))
diverges. Therefore, U → −∞ is not an option.

For U →∞, we also get complications. As we mentioned before A′s+W
′ and

2A′s +W ′ should be positive in the IR-limit is we want to have quark con-
finement. However, after rewriting A′s +W ′ as A′s +W ′ = A′ (1 + 2X + U)
and using that X → −1

2

√
1 + Uh + 2U2

h/3 in the IR-limit, we find A′s+W
′ ∼

A′
(

1−
√

1 + Uh + 2U2
h/3 + Uh

)
as r → ∞. After sending Uh → ∞, this

approximates (−
√

2/3Uh + Uh)A
′ which is negative. Therefore, U → ∞

contradicts the requirement of quark confinement. This only leaves:

1. U → ck,ρ as (φ→∞)

2. U → 0 as (φ→∞)

We will now discuss both cases seperately.

Case U → ck,ρ

As mentioned before, ck,ρ must satisfy either γ = 0, 1 + σ = 0 or 1− σ = 0.
Furthermore, we can also use Eq. 4.50 to find the relation kck,ρ − 3ρ/8 =

−1
2

√
1 + ck,ρ + 2c2

k,ρ/3. Solving these requirements leaves only one possible

value for ck,ρ, namely:

ck,ρ = −1. (4.51)

From the relation kck,ρ − 3ρ/8 = −1
2

√
1 + ck,ρ + 2c2

k,ρ/3, we then find that

k is given by k = 1√
6
− 3ρ

8
.

Furthermore, the requirement that B2H2Z(φ) → 0 in the IR-limit gives a
restriction to the value of ρ. To show this, we start from the definition of
B2H2Z(φ) to rewrite:

lim
φ→∞

B2H2Z = lim
φ→∞

B2Z0 exp(σφ− 2A− 2W )

Ȧ2

= lim
φ→∞

B2Z0 exp((3Xσ − 2− 2U)A

Ȧ2
= lim

φ→∞

B2Z0 exp(− 3√
6
σA)

Ȧ2
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This only goes to zero if σ ≤ 0. Through the boundary Xh = −3
8
ρ+ Uh

8
(σ−

2ρ) we find that this implies that ρ ≥ 4
√

2/3.

We can refine this condition further by showing that ρ > 4
√

2/3 is not an
option. To do this, we substitute k = 1√

6
− 3ρ

8
in the solution for φ(U). This

gives:

φ(U) =
9ρ

64− 9ρ2
log(U2) +

1

2(ρ− 4
√

2/3)
log((1 + U)2)

+
9

2

(9− 4
√

2/3 + 4
√

2/9)(9− 4
√

2/3− 4
√

2/9)

(9ρ2 − 64)(ρ− 4
√

2/3)
log((64− 9ρ2 + 8

√
6Uρ− 9Uρ2)2).

For ρ > 4
√

2/3, we find that the prefactor of log((1 + U)2) is positive,
therefore φ(−1) → −∞ while we want φ(−1) → ∞. This only leaves
ρ = 4

√
2/3 as a solution for ρ, so the potential is now given by:

V (φ) = V0 exp(4
√

2/3φ) (4.52)

in the IR-limit.

With ρ determined as ρ = 4
√

2/3, σ and k are fixed as σ = 0 and k = 1√
6
−√

3/2. Substituting these values directly into the solution φ(U), returns
a singularity. However, if we substitute these values first in Eq. 4.31 and
solve it afterwards, we find: φ(U)− φ0 = f(U)− f(U0) with

f(U) = − 1

4
√

2/3

(
2

1 + U
+ 3 log(U2)− 3 log((1 + U)2)

)
For φ� 1, we can now approximate U(φ) with U(φ) ≈ −1 + 1√

8/3

1
φ
.

To determine how U(φ) converges to −1, we expand W (r) as W (r) =
−A(r) +W1 log|A(r)|. U(r) is now given by U = −1 + W1

A(r)
, where W1 is a

constant yet to be determined. This can be done by dividing the equation
of motion Eq. 4.34 by A′(r)2 and substitute the expressions for W (r) and
A(r). This gives:

W ′′(r)

A′(r)2
+ 3U(1 + U) +B2H2Z =

−A′′(r) +W1(A
′′(r)
A′(r)

− 1)

A′(r)2
− 3(−1 +

W1

A(r)
)
W1

A(r)
= 0

and is solved by requiring W1 = −1
3
α−1
α

. Therefore, U ∼ −1− 1
3
α−1
α

1
A(r)

.
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With the behaviour of U(r) now known, we can substitute this expression
of U in Eq.4.50. This then returns:

X(r)→ −1√
6

+
1

3

√
2

3

α− 1

α

1

A(r)
.

From the definitions of the scalars, φ′(r) and W ′(r) can be written in terms
of A(r). Integration then gives:

φ(r) = φh +
−3√

6
A(r) +

√
2

3

α− 1

α
log|A(r)|

W (r) = Wh − A(r) +
1

3
log|A(r)|.

Since we found for Z(φ) = exp(σφ) the value σ = 0, we consider Equation
4.33 once more to find a φ-dependent expression for Z. For now, we as-
sume Z(φ) to be a given by a power law Z(φ) = Z0φ

ε. Substituting the
expressions for A(r), φ(r) and W (r) into Eq. 4.33 gives:

A′′(r)− 1− A′(r)W ′(r)− 2

3
W ′(r)2 +

4

9
φ′(r)2 +

2

3
B2Z(φ) exp(−2A(r)− 2W (r))

=
2(α− 1)2

9r2
+

2

3
B2Z0φ

ε|A(r)|
2(α−1)

3α = 0

(4.53)

Because A(r) and φ(r) are of order rα, we find that for the second term to
be of order r−2, ε should be given by ε = −2

3
α+2
α

. Therefore, Z(φ) is given
by:

Z(φ) = Z0φ
− 2

3
α+2
α . (4.54)

We now have an expression for all the fields and potentials in the IR-limit
in the case that U converges to a value ck,ρ 6= 0. However, we should note
that the potential V (φ) behaves differently in the IR-limit than in the case
B = 0. To show this, we note that in the case B = 0, the model reduces to
the model described in Section 3.2. As shown in [20], V (φ) behaves in this
model as V (φ)→ exp(4φ/3) as r →∞. Since we do not want the potential
V to be dependent on B, we consider the case U → 0 as r →∞ instead.
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Case U → 0

For A = −cr−α and U = 0, we find that

X = −1

2

√
1− Ä

(Ȧ)2
≈ −1

2
+

Ä

4(Ȧ)2
=
−1

2
+

1

4

α− 1

α

1

A(r)

By making use of the definitions of the scalars, we find φ′(r) = 3XA′(r) =
−3A′(r)

2
+ 3

4
α−1
α

A′(r)
A(r)

and W ′(r) = 0. Therefore:

φ(r) =
−3

2
A(r) +

3

4

α− 1

α
log(A(r))

W (r) = Wh,

as r →∞, with Wh a constant. However, if both U = 0 and B2H2Z(φ) = 0
in the IR limit, Eq. 4.17 shows that this is the case for the whole domain
of Φ. However, this removes all dependency on the magnetic field in our
model, which is not what we want.

As a solution to this problem, we consider instead of a negligible value of
B2H2Z(φ) a function which converges to 0 in the IR-limit, but is relevant
in the equations of motion.

From Eq. 4.34 we already obtain a relation between U and B2H2Z(φ).
Since U � 1 in the IR-limit, we find that the leading order term 3A′(r)W ′(r)
can only be cancelled by the term 2B2e−2A−2W . This implies that U is of
the same order as B2H2Z(φ) in the IR-limit. In particular, we find the
relation B2H2Z(φ) = 3

2
U(φ).

To find an expression for X(φ), U(φ) and B2H2Z(φ) in the IR-limit, we sub-
stitute the ansatz X(φ) = −1

2
+ X0

φ
+ X1

φ2
, U(φ) = U0

φ
+ U1

φ2
and B2H2Z(φ) =

λ0
φ

+ λ1
φ2

in the scalar equations of motion. For the potential V (φ) we allow

a correction in the form of a power law, such that V (φ) is now given by
V (φ) = V0 exp(4φ/3)φV1 . Lastly, to aqcuire an expression for Z(φ) we first
consider the definition of B2H2Z(φ). Because

B2H2Z(φ) = B2Z0
exp(σφ− 2A− 2W )

(A′)2
∼ B2Z0

exp((3Xσ − 2)A

(A′)2
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and X converges to −1
2

. We find that B2H2Z(φ) behaves like

B2Z0
exp(−(−3σ/2− 2)crα

(A′)2

in the IR-limit. Since we want to be able to write B2H2Z in terms of order
φ−1 and order φ−2, it should not converge like e−cr with c 6= 0. The only
value of σ for which this is the case is σ = −4/3. Also here, we allow a
correction in the form of a power law for Z, which results in the following
ansatz:

Z(φ) = Z0 exp(−4φ/3)φZ1 .

Substituting all these definitions in Eqs. 4.15-4.18 and setting the left-
hand side equal to the right-hand side of the equations gives the following
solution:

X(φ) = −1

2
− 3

16φ
+

(
−X0

2
− λ1

3

)
1

φ2

U(φ) =
2λ1

3φ2

B2H(φ)2Z(φ) =
λ1

φ2

V (φ) = V0 exp(4φ/3)φ−8X0/3

Z(φ) = Z0 exp 4φφ8X0/3,

(4.55)

where X0 is given by X0 = −3
8
α−1
α

. Indeed, we find that B2H2Z(φ) ∼
3
2
U(φ) in the IR-limit.

Substituting these solutions in Eq. 4.33 and using A(r) = −crα then gives:

φ(r) = φh +
3

2
crα +

3

4
log(rα−1) + 7O(r−α)

W (r) = Wh +
8λ1

27

1

crα
+Or−2α

(4.56)

With the results for A(r), φ(r) and W (r) now determined, we can check if
there are extra restrictions cause by confinement. Direct calculations shows
that:

A′s+W
′ = −cαrα−1+cαrα−1+

(α− 1)

2r
−8αλ1

27

1

cra+1
=

(α− 1)

2r
−8αλ1

27

1

cra+1
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2A′s+W
′ = −2cαrα−1+2cαrα−1+

(α− 1)

r
−8αλ1

27

1

cra+1
=

(α− 1)

2r
−8αλ1

27

1

cra+1

So for confinement, we need α ≥ 1. This is the same restriction as was
obtained in the case without an external magnetic field as shown in [20].

For B = 1 and λ1 = −0.18152, the results to the scalar equations with these
boundary conditions in the IR-limit are shown in Figure 4.1. We find that
X(φ) indeed approaches −1

2
from below and that U and B2H2Z(φ) quickly

converge to zero.

4.4.2 UV Limit

In the UV limit, the leading term of A(r) is given by A(r) = − log(r) to
ensure the metric resembles AdS5 in this region. Using this as a starting
point, we expand Z(φ) as Z(φ) = Z0 +Z1φ+O(φ2) and consider Eq. 4.34.
This gives:

W ′′(r)−3
W ′(r)

r
+3W ′(r)2−2B2r2(Z0 +Z1φ(r)) exp(−2W (r)) = 0 (4.57)

The leading order terms of this equation are given by:

W ′′(r)− 3
W ′(r)

r
− 2B2r2Z0 exp(−2W (r)) +O(r4) = 0. (4.58)

After solving this differential equation, we find that W (r) approximates:

W (r) = Wcr
4 log(r) +O(r4)

with

Wc =
B2Z0

2
.

With the knowledge that W (r) = O(r4) in the UV-limit, we find that the
leading terms of Eq. 4.36 are now given by:

φ′′(r) + 3φ′(r)A(r) +
3

8
V ′(φ(r)) = 0. (4.59)

After expanding V (φ) as V (φ) = V0− m2

2
φ2 in this region, we find that this

equation is solved by:

φ(r) = c1r
2(1+
√

1− 3
32
m2) + c2r

2(1−
√

1− 3
32
m2). (4.60)
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Figure 4.1: The scalars X(φ), U(φ) and the function B2H(φ)2Z(φ) as a
function of φ in the case B = 1 and λ1 = 0.1815.
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For the scaling dimension of φ, this gives the following relation:

3

8
m2 = ∆(4−∆), (4.61)

where m is the mass of the dilaton.

For now we choose ∆ = 3, which gives m2 = 8 and we find that V (φ) is
given by:

V (φ) = V0 − 4φ(r)2.

Substituting these expressions in Eq. 4.35 shows that V0 = −12 in order to
let the terms scaling with 1

r2
cancel. As the scaling dimension is given by

∆ = 3, φ(r) satisfies:
φ(r) = φ0r + φ1r

3, (4.62)

in the UV-limit, where φ0 and φ1 are constants.

To find a more precise description of A(r) near the boundary, we also include
a term scaling with r2. In other words, we assume A(r) = − log(r) +A2r

2.
Eqs. 4.33 and 4.35 now return:(

6A2 +
4

9
φ2

0

)
+O(r2) = 0 (4.63)

(
−72A2 −

16

3
φ2

0

)
+O(r2) = 0 (4.64)

Therefore, we find that A2 = − 2
27
φ2

0.

Lastly, we include terms proportional to r4 to the expression of A(r) to also
cancel the leading order terms involving W (r). For this, we consider the
ansatz A(r) = − log(r)− 2

27
φ2

0r
2 + A3r

4 + A4 log(r)r4.

Substituting the expressions for A(r), φ(r) and W (r) in Eq. 4.33 gives:

(
20A4 + 2B2Z0

)
log(r)r2+

(
20A3 + 9A4 −

16

729
φ4

0 +
8

3
φ0φ1 +

7

6
B2Z0

)
r2 = 0,

(4.65)

which results in A4 = −B2Z0

10
and A3 = 4

3645
φ4

0 − 2
15
φ0φ1 − B2Z0

75
.
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In summary, we obtained to following expressions:

A(r) = − log(r)− 2

27
φ2

0r
2 +

(
4

3645
φ4

0 −
2

15
φ0φ1 −

B2Z0

75

)
r4 − B2Z0

10
log(r)r4

W (r) =
B2Z0

2
log(r)r4

φ(r) = φ0r + φ1r
3

(4.66)

With the UV and IR behaviour of V (φ) determined, we can construct an
expression for V (φ) which satisfies both these boundary conditions. In our
calculations, we consider the case α = 2. Here, V (φ) is proportional to
exp(4φ/3)

√
φ in the IR limit. To determine V (φ) fully, we start from the

ansatz:
V (φ) = α exp(γφ) + β exp(4φ/3)

√
1 + φ,

expand it around φ = 0 and demand that this expansion satisfies V (φ) =
−12− 4φ2 for low φ. This fixes the values of α, β and γ as:

α = − 2904

163 +
√

17857

β =
−12
√

17857 + 948

163 +
√

17857

and

γ = −
√

17857− 79

132
(4.67)

Lastly, as we had no clear restriction for Z(φ) in the UV-limit, we use the
IR dynamics of Z(φ) and let Z(φ) be given by:

Z(φ) = Z0

√
1 + φe−4φ/3. (4.68)

4.5 Solving to the Equations of Motion

From the solutions of the scalar fields in terms of φ we can calculate the
fields A(r), φ(r) and W (r). To do this, we divide Eq. 4.33 by A′(r)2 and
replace the fields with the scalars where possible. This leaves:

A′′(r)

A′(r)2
− 1− U − 2U2

3
+ 4X2 +

2

3
B2H2Z(φ) = 0. (4.69)
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The term A′′(r)
A′(r)2

can be rewritten as A′′(r)
A′(r)2

=
d log( dA

dr
(φ)

dφ
3X(φ). Therefore, we

find that:

d log(dA
dr

(φ)

dφ
=

1 + U + 2U2

3
− 4X2 − 2

3
B2H2Z(φ)

3X
. (4.70)

By solving this equation, we obtain dA
dr

as a function of φ. Then, by using

the definition of X, we can then write dφ
dr

as a function of φ. After solving
this, we get an expression for φ(r). With φ(r) known, dA

dr
can be determined

in terms of r by substituting the expression of φ(r) and we obtain A(r) by
a simple integration. Lastly, we can obtain W (r) through the definition

U = W ′(r)
A′(r)

and the newly found expressions of A(r) and φ(r).

One thing we should however make sure is that in the IR limit, the scalar
value of B2H2Z(φ) corresponds with B2Z(φ(r)) exp(−2A(r)−2W (r))

A′(r)2
. For this,

we use the fact that λ1 is still a free parameter and vary this parameter
until both expressions of B2H2Z(φ) match.

For B = 1, B = 2, B = 3 and B = 4 the results are shown Figs. ??-
??. We find that the absolute value of A(r) and φ(r) both decrease as B.
Furthermore, W (r) increases for increasing B. For A(r) we also seperately
plotted the UV behaviour together with the function − log(r). As can be
seen, the results of A(r) match this function perfectly in the UV-limit.
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Figure 4.2: Plot of φ(r) for various values of B.
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Figure 4.3: Plot of A(r) for various values of B. In the inset, A(r) is plotted
for various values of B, together with the function − log(r). As can be seen
here, there is a good overlap between this function and A(r) in this limit
for all the values of B we consider.

42



0 2 4 6 8 10 12 14

0.00

0.05

0.10

0.15

0.20

0.25

0.30

r

W
(r
)

B=4

B=3

B=2

B=1

Figure 4.4: Plot of W (r) for various values of B.
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Chapter 5

Mass Spectrum

As discussed in Section 3.4, to find the mass spectrum, we need to solve
the fluctuation equation ξ′′(r) + 2B′(r)ξ′(r) + m2ξ(r) = 0. Just like there,
we use B(r) = 3

2
A(r) + log|X(φ(r))| to determine the JPC = 0++ glueballs

and B(r) = 3
2
A(r) to determine the JPC = 2++ glueballs. Furthermore,

we assume that ξ(r) behaves like ξ(r) = r4 in the UV-limit. Using the
procedure mentioned in Section 3.4, we obtained the glueball spectrum for
both these cases for various values of B. The results are shown in figure 5.1
and 5.2.

In contrast to what we know of Landau quantization, we find that the
masses of the glueballs decrease with increasing values of B. We should
take note however of the fact that Landau quantization is a theory for a
system with weak coupling, so the fact that the masses decrease if increas-
ing values of B can also be a result of the strong interactions. Furthermore,
unlike the charged particles considered in Landau quantization, the glue-
balls are color charge neutral.

To find out whether this result was a specific to ∆ = 3, we performed
the same calculations for ∆ = 5/2. Here, the boundary conditions in the
UV-limit were given by:

A(r) = − log(r)− φ2
0

12
r3 − B2Z0

10
r4 log(r)− 1

150

(
25φ0φ1 + 2B2Z0

)
φ(r) = φ0r

3/2 + φ1r
5/2

W (r) =
B2Z0

2
r4 log(r). (5.1)
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Figure 5.1: Spectrum for 2++ glueballs. The parameters used are ∆ = 3,
φ0 = 1.2, Z0 = −1 and φ1 = 1.

For the potential V we used:

V (φ) = α exp(γφ) + β
√

1 + φ exp(−4φ/3), (5.2)

with:

α = −169 +
√

19849

3

β =
133−

√
19849

3

γ =
73−

√
19849

132
(5.3)

However, we found a similar trend for this value of ∆; the spectra still de-
creases for increasing values of B.

To find out if we can understand this mathematically, we study the be-
haviour of the Schrödinger potential corresponding to the fluctuations given
by Eq. 3.32. The Schr̈odinger equation is slightly rewritten below:

ψ′′(r) = (Vs(r)−m2)ψ(r). (5.4)
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Figure 5.2: Spectrum for 0++ glueballs. Here, we used the parameters
∆ = 3, φ0 = 1.2, Z0 = −1 and φ1 = 1

From this, we see that ψ(r) oscillates when Vs(r) < m2. Therefore, if
the function Vs(r) becomes lower, then the values of m2 needed to ensure
oscillating behaviour is also lower. As a result, the value of m2 which is
needed to let another node appear in the wave function, also decreases. In
Fig. 5.3, the Schrödinger potential is shown for different values of B. As
can be seen, the potential decreases for increasing values of B, which would
explain the lowering of the spectra.

We can also confirm the decrease in the Schrödinger potential from the
equations of motion. From Eq. 3.32 we can determine the Schrödinger
potential in terms of B(r). We find that for both the 0++ glueballs and the
2++ glueballs that the Schrödinger potential becomes quickly dominated by
the term B′(r)2 = 9

4
A′(r)2 for large enough values of r. In our results this

happened when r ∼ 2. From Eq. 4.35, we find that :

12A′W ′ + 12A′
2

+ 2B2Ze−2A−2W + V e2A−2W + 2W ′2 − 4φ′2

3
= 0.

Using the fact that φ(r) ∼ 3
2
A(r) for large enough values of r, we can rewrite
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Figure 5.3: V (r) for various values of B for φ0 = 1.2, φ1 = 1 and ∆ = 3

this as:

9A′
2

= −12A′W ′ − 2B2Ze−2A−2W − V e2A−2W − 2W ′2

On the right-hand side, the term −V e2A−2W dominates and goes like r2.
As V (φ) ∼ V0

√
φ exp(4φ/3) (with V0 < 0) for large enough values of φ, the

term −V e2A−2W behaves as:

−V e2A−2W ∼ −V0

√
φ exp(4φ/3)e2A−2W ∼ −V0 exp(2W ),

since φ(r) ∼ 3
2
A(r). Because W increases with increasing values of B,

−V0 exp(2W ) decreases and thus |A′(r)| and Vs(r) both decrease for in-
creasing values of B. This in turn causes the spectra to shift to lower values.

Physically, the reason for a decrease in mass is still unclear. We suspect
however, that this has to do with the sea effect. This describes how the
presence of the magnetic field strength in the determininant of the QFT
gives a weighting to the different gauge formations [24]. The preference of
certain configurations caused by this mechanism, could result in a decrease
in the energy levels.
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Chapter 6

Conclusion

In this project, we studied the effect of an external magnetic field on the
glueball spectra. For this, we used improved holographic QCD to construct
a toy model for pure Yang-Mills theory based on an Einstein-Maxwell-
Dilaton action where the dilaton couples to a electromagnetic field tensor
through a exponential coupling term. During the construction of the model,
we ensured that quark-confinement is maintained, found a description for
the ground state of the model and calculated the UV-boundary conditions
for which the metric behaves like AdS5 near the boundary.

From these restriction and boundary conditions, we obtained the relevant
fields necessary to calculate the glueball spectra for various values of B.
Surprisingly, we find that for increasing values of B, the masses decrease.
This is in contrast with Landau levels, where the masses increase for in-
creasing values of B.

For future research, it would be interesting to see if this trend of decreasing
masses hold for different potentials V (φ) and different couplings Z(φ). It
would also be interesting to study the physics behind the decreasing masses
and find out how strong coupling plays a role in the decrease of masses.
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