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Bioelectrochemical cells utilize bacteria in order to extract electricity from organic
compounds, for example found in wastewater streams. This process occurs within
a thin layer of bacterial cells, the biofilm, on either the anode or cathode. Using a
physics based modelling approach, four main processes in the (anode) biofilm are
considered; ionic transport coupled to acid-base reactions, biochemical conversion
of acetate species, electron transfer to a network of conductive pili, and charge trans-
port through the pili towards the electrode. Results obtained by De Lichtervelde et
al. [Physical Review Applied, vol. 12, no. 1, p. 014 018, 2019] are replicated, showing a
reproducibility of the model. These results indicate that an accumulation of protons
within the biofilm limits the current that can be extracted from the bioelectrochemi-
cal cell. Based on the electric potential profile within the biofilm, the question arises
if the local electroneutrality condition can be used within these kinds of systems. To
investigate this, a first attempt in adding the Poisson equation to the system is made.
Based on length-scale considerations, the results obtained from using the local elec-
troneutrality condition seem reliable, but the potential profile should be interpreted
with caution.
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1. Introduction

In 2015, the United Nations created 17 Sustainable Development Goals as a universal
agenda for sustainable development [1]. These ‘global goals’ identify areas of critical
importance for the world in the next 15 years. Two goals are providing clean energy
and clean water for all. A promising technology that can contribute to both these
goals is that of bioelectrochemical systems. These systems can use wastewater as
input for producing electricity, while cleaning the water simultaneously [2].

In recent years, research on bioelectrochemical systems has increased and these
systems have potential to be used in various applications, ranging from electricity
production, creation of chemicals such as hydrogen and nitrogen gas, and waste-
water treatment [3]–[6]. However, for these systems to be implemented on a large
scale, more developments must first be made [3], [7].

In general, an electrochemical system consists of two electrodes, an anode and
a cathode, seperated by a medium. At the anode, an excess of electrons is created,
which is transported through an external circuit to the cathode, where the electrons
can be used in various ways (e.g. to produce certain chemicals or their electric en-
ergy is used directly). Specifically, a bioelectrochemical system utilizes microorgan-
isms either on the anode or cathode in order to catalyze certain reactions [8], [9].
This happens within a layer that is present on either (or both) electrode(s), which
is called the biofilm. In section 2, more detailed information will be given on the
(bio)electrochemical system and its various applications.

The focus of this thesis is analyzing the biofilm of the anode from a physics per-
spective. This modeling approach was taken by De Lichtervelde et al. [9] and will
be taken as a starting point for further developments. The main goal is to investi-
gate whether the local electroneutrality condition that is used in the original model
is consistent with the results that were obtained. This will be done in several steps.
Firstly, in section 2, relevant background information will be discussed. Thereafter,
the model of De Lichtervelde et al. [9] will be discussed in section 3. In section 4, an
alteration of the original model, in which the local electroneutrality condition is re-
moved, is presented. Lastly, in section 5, the conclusions of this thesis are discussed
and suggestions for improvements are made.
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2. Background Information

In this section, we will discuss all relevant background information needed to model
a typical bioelectrochemical system. First, we will look at the various components of
the (bio)electrochemical cell and its applications. Next, we will focus on the biofilm
and describe the main processes that take place. This section will contain the main
theoretical considerations upon which this thesis is built.

2.1 The electrochemical cell

In general, an electrochemical cell is a system which can either extract electric energy
from chemical reactions or use electric energy to drive otherwise non-spontaneous
chemical reactions [10]. The first class can be further split up into two types of cells,
the voltaic cell and the fuel cell, while the second class is called the electrolytic cell.
We will discuss all three types in more detail.

Firstly, the voltaic cell extracts electric energy from a system through sponta-
neous reactions taking place. It is a closed system, consisting of two different elec-
trodes immersed in electrolytes, which are connected through an external circuit
[10]. These two electrodes are called the anode, which attracts negative ions, and
the cathode, which attracts positive ions. Within the system there is a membrane or
bridge which allows certain ionic species, depending on the type of reactions taking
place, to flow from one electrode to the other. The entire system can be seen in figure
2.1a, in which the anode is taken to be zinc and the cathode to be copper.

The process through which the voltaic cell releases electric energy is based on
chemical reactions [10]. On the anode, spontaneous chemical reactions take place,
which create an excess of electrons. These electrons are transported through the
external circuit to the cathode, where they are used in another chemical reaction. In
the external circuit, the electric energy from the electrons can be used. If the species
involved in the chemical reactions run out, then no more excess electrons can be
extracted and the voltaic cell does not produce electricity anymore.

In contrast to the voltaic cell, a fuel cell can continuously produce electric energy
[10], [13]. This is due to an inflow and outflow of species, ensuring that chemicals do
not run out and that excess chemicals are transported away. Its set-up is shown in
figure 2.1b, in which one can see two electrodes within an electrolyte connected by
an external circuit, and an in- and outflow of species on either side of the electrodes.
In the figure, an example of a fuel cell using hydrogen and oxygen is given.

Lastly, the electrolytic cell works in the opposite way, using electric energy to
drive chemical reactions [14]. The set-up of an electrolytic cell is the same as a voltaic
cell, except that the external circuit is connected to a power source such that electric
energy goes into the system. The reactions happening within the electrolytic cell are
non-spontaneous reactions, which only occur due to the electric energy going into
the system. This system is for instance used to produce hydrogen [14].
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(A) An overview of the voltaic cell consist-
ing of two electrodes, a zinc anode and a cop-
per cathode, each submerged in electrolyte, an
external circuit through which electrons flow,
and a salt bridge though which ions flow. [11]

(B) An overview of the fuel cell consisting
of two electrodes within an electrolyte, con-
nected by an external circuit with a fuel inflow
of hydrogen and oxygen and a fuel outflow of

excess species. [12]

FIGURE 2.1: An overview of the voltaic cell (2.1a) and the fuel cell
(2.1b).

2.1.1 The bioelectrochemical cell

In the electrochemical systems discussed so far, there is no biological aspect in-
volved; the reactions occur spontaneously or are driven by an external power source.
In a bioelectrochemical system, some reactions are catalyzed by microorganisms
[9]. This is done in a so called biofilm, which is a layer of microorganisms on an
electrode. Chemical species within the electrolyte will be transported through the
biofilm, so that the microorganisms can catalyze reactions involving these species.
The biofilm can be present on either the anode or the cathode (or both), resulting in
a bioanode or biocathode [9].

The biofilm that is considered in this thesis consists of three main parts; the bacte-
rial cells, the extracellular space, and the pili. The bacteria are of the Geobacter type,
which have the property of creating a conductive network outside of the bacterial
cell, the pili [15]–[17]. This can be seen in figure 2.2, where an image of the bacteria
along with its network of conductive pili can be seen. The wires can transport charge
towards the electrode, resulting in thicker biofilms and more electricity production
as opposed to biofilms without pili, where electron transfer only takes place at the
electrode. A typical thickness of the biofilm can be of the order of 100 µm [18].

A model of the biofilm used in this thesis can be seen in figure 2.3 [9]. Note that
this is a focus on the anode only; the cathode and electrolyte are not depicted, but
are also present in the system. Four main processes (denoted by A, B, C, and D)
occurring in the biofilm are identified. Firstly, there is transport of species through
the aqueous phase outside of the bacteria. Secondly, the bacteria catalyze reactions
involving acetate (Ac− or CH3COO−), which we define to be the substrate. Thirdly,
through various biochemical reactions within the bacterial cell, an excess of electrons
is created, which is transferred to the pili. Lastly, charge flows through the pili to the
electrode. In the next section, we will discuss all background information required
to model these four processes.
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FIGURE 2.2: The Geobacter type bacterial cell with its network of con-
ductive pili (the dark lines outside of the bacterial cell) [19].

FIGURE 2.3: Overview of the anode biofilm in contact with a dilute
bulk solution with four main processes; (A), ion transport through the
biofilm, with Ji the flux of species i (mol m−2 s−1); (B), bacterial reac-
tions involving Ac− or HAc, grouped together as Actot; (C), electron
transfer from the bacterial cell to a network of conductive pili; (D),
transport of the charge to the electrode, with Jch the current density

(A m−2) [9].



Chapter 2. Background Information 5

2.2 Physical processes within the biofilm

In this section we will present the physics needed to describe the biofilm. This will
be done in four parts; ionic transport processes, the Poisson equation, (bio)chemical
reactions, and electrochemical reactions.

2.2.1 Ionic transport processes1

When describing a system involving ionic species, one must understand how such
species behave in solution. In any system, there are various forces acting upon parti-
cles, such as collisions with other particles or electrostatic forces. In order to describe
the effect of these forces, we define the mobility µ (s kg−1) as the velocity v (m s−1)
that a particle acquires when acted upon by a unit force F (N);

µ =
v
F

. (2.1)

As a first approximation in describing ion transport, let us first ignore electrostatic
forces. Therefore, we only look at diffusion, with a force acting upon particles due
to an osmotic pressure difference. Consider a cylinder with area A and width dx.
Particles of species i feel a diffusion force Adpi, due to the difference in osmotic
pressure dpi measured over the interval dx. Note that the force on the particles is in
the opposite direction as the difference in osmotic pressure. The number of particles
in the slice is given by ciNA Adx, with ci the concentration of species i (mol m−3) and
NA Avogradro’s number (mol−1). Combining this, we find that the force per particle
F is given by

F = − Adpi

AciNAdx
= − 1

NAci

dpi

dx
. (2.2)

Using equation 2.1, we thus find that the velocity of each particle of species i is given
by

vi = −µi
1

NAci

dpi

dx
, (2.3)

with µi the mobility of species i.
We can now translate the velocity of each particle to the total flux Ji (mol m−2 s−1)

of species i by multiplying the velocity of each particle vi with the concentration ci
of species i, Ji = vici. Using the ideal gas law (pi = cikBTNA), we find

Ji = −µikBT
dci

dx
, (2.4)

with kB Boltzmann’s constant (J K−1) and T the temperature (K). Note that by using
the ideal gas law, this equation holds in the dilute solution limit.

Equation 2.4 describes transport of particles behaving as an ideal gas by diffu-
sion, which is also given by Fick’s law,

Ji = −Di
dci

dx
, (2.5)

with Di the diffusion coefficient (m2 s−1). By using equations 2.4 and 2.5, we can
relate the mobility µi to the diffusion coefficient Di as Di = µikBT, which is used
more commonly and can be measured experimentally.

1This section is largely based on [20] and [21].
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We can also include the effect of an electric field on the transport of ionic species.
The electric force Fel acting upon a single ion in an electric field E = − dψ

dx (with ψ the
electric potential (V)), is given by

Fel = −zie
dψ

dx
, (2.6)

with zi the valency and e the elementary (proton) charge (C). Using equation 2.1,
we find that the velocity of each particle due to the electric force vi,el is given by
vi,el = −µizie

dψ
dx . The flux Ji,el due to this electric force is given by

Ji,el = vi,elci = −µizieci
dψ

dx
. (2.7)

Combining equation 2.4 and 2.7, we find the total flux of ionic species i due to os-
motic pressure and an electric field to be

Ji = −µi

(
kBT

dci

dx
+ zieci

dψ

dx

)
= −Di

(
dci

dx
+ zici

e
kBT

dψ

dx

)
,

(2.8)

where in the second line we have substituted the expression for the diffusion coeffi-
cient. Note that the derivation of this equation is done in one dimension, but can be
generalized to hold in all three spatial dimensions.

Equation 2.8 is known as the Nernst-Planck equation and is used to describe
transport of ionic species in dilute solutions. It consists of a diffusion term and a
conduction term. A convection term can also be added when considering an overall
fluid flow. The Nernst-Planck equation will be used throughout this thesis.

2.2.2 The Poisson Equation2

A system in which electric charges are present is affected by the electric potential.
For example, if an electric field is imposed in a conductor of free charge carriers, all
positive charges will tend to move with the electric field, while negative charges will
tend to move opposite to the electric field. An electric field E is the negative spatial
derivative of the electric potential ψ,

E = −∇ψ. (2.9)

Therefore, it is important to accurately describe the potential within a system. The
relation between the (local) electric charge in a system and the electric potential is
given by the Poisson equation,

∇2ψ = −ρ

ε
, (2.10)

with ρ (C m−3) the charge density and ε (F m−1) the permittivity, which is a material
dependent property.

One important consequence of the Poisson equation in an electrolyte is the for-
mation of electric double layers. These are layers of ions near a charged surface that
screen the potential at this surface. Consider a system consisting of two monovalent
pointlike species of ions of charge ±e in contact with a charged surface at z = 0 with
surface charge density eσ (C m−2). Far away from the surface, the particles have a

2This section is largely based on [20]
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total bulk salt concentration of 2ρs (m−3). The Poisson equation in this geometry is
given by

d2ψ

dz2 = − e
ε
(ρ+(z)− ρ−(z)), (2.11)

with ρ+, ρ− (m−3) the number density of the cations and anions, respectively. Using
mean-field Boltzmann distributions, the cation and anion density is given by

ρ±(z) = ρse
∓ eψ(z)

kBT = ρse∓φ(z), (2.12)

with ρs the bulk salt concentration (m−3) and where we have defined the dimension-
less electric potential φ = eψ

kBT . In this Boltzmann distribution, the energy of an ion
with charge ±e is approximated by its electric energy ±eψ.

In order to solve equation 2.11, we need two boundary conditions. The first
boundary condition is given by the potential far away from the surface, which must
approach zero,

lim
z→∞

ψ(z) = 0. (2.13)

The second boundary condition is given by total charge neutrality; the total charge
density in the system must be opposite to the total charge density imposed on the
surface. This condition is given by

σ = −
∫ ∞

0
dz(ρ+(z)− ρ−(z))

=
ε

e

∫ ∞

0
dz

d2ψ(z)
dz2

= −ε

e
dψ(0)

dz
,

(2.14)

where we have used equation 2.11 in the second line, and 2.13 in the last line. Rec-
ognizing the sin hyperbolic, we can rewrite this system as

d2φ(z)
dz2 = λ−2

D sinh(φ(z))

φ(z→ ∞) = 0
dφ

dz
(0) = −4πλBσ,

(2.15)

where we have defined two length scales, the Debye length λD (m) and the Bjerrum
length λB (m), given by

λD =

(
εkBT
2e2ρs

)1/2

λB =
e2

4πεkBT
.

(2.16)

These two length scales are characteristic length scales of the system. The Bjerrum
length is a property of the solvent and it gives the distance over which the Coulomb
interaction between two unit charges is equal to kBT. The Debye length is a function
of the salt concentration and gives the length scale on which charge imbalance per-
sists. At distances from the surface much larger than the Debye length, there is an
approximate charge balance within the system.
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FIGURE 2.4: The dimensionless potential profile φ(z) (left) and the
dimensionless concentration profiles of the cation ρ+(z)/ρs and anion
ρ−(z)/ρs (right) as function of distance in units of Debye length for

y = 1.

The Debye length can be visualized by looking at the electrostatic potential and
density profiles. The potential can be obtained by solving the Poisson-Boltzmann
equation, equation 2.15, giving

φ(z) = 2 ln
1 + γe−z/λD

1− γe−z/λD
, (2.17)

with γ an integration constant determined from

dφ

dz
(0) =

−4γλ−1
D

1− γ2 = −4πλBσ. (2.18)

Defining the dimensionless surface charge y = 4πλBλDσ, we find

γ =

√
1 + (y/2)2 − 1

y/2
. (2.19)

We can see that λD gives the characteristic length scale for decay of the potential
from its surface value by looking at the far-field solution (z/λD � 1), given by

φ(z) ≈ 4γe−z/λD , (2.20)

where we can clearly see the exponential decay with length scale λD.
The potential profile φ(z) can be used to describe the concentration profiles,

ρ±(z) = ρs

(
1∓ γe−z/λD

1± γe−z/λD

)2

, (2.21)

where again the characteristic length scale λD can be observed.
In figure 2.4, the potential and concentration profiles can be seen for y = 1. It can

clearly be observed that the Debye length gives a measure of the distance at which
charge imbalance is present within the system. This so called electric double layer
thus acts as a screening layer for the charge density that is present on the surface.
Any charged surface in contact with an electrolyte will be screened through this
mechanism. This will be used to describe the biofilm model in section 4.
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FIGURE 2.5: Energy of the steps in a reaction chain where reactants
are separated from the products, with an energy difference ∆E, by an
energy barrier with an activation energy Ea. The reaction coordinate

indicates the state of the reaction. [22]

2.2.3 Reaction kinetics3

When working on a system involving reactions, the rate at which a reaction takes
place is of importance. For a general reaction aA + bB → cC + dD, the reaction rate
r (mol m−3 s−1), defined as r ≡ − 1

a
d[A]

dt , with [A] the concentration of species A (mol
m−3) and t the time (s), can be described by

r = k[A]a[B]b, (2.22)

where k is the rate constant (dimension depends on specific reaction). More (or less)
factors can be included if more (or less) reactants are involved in the reaction. The
value of a and b indicate the order of the reaction.

For a first-order reaction, take for example A → B, we can integrate the rate
equation r = − d[A]

dt = k[A] to obtain

[A] = [A]0e−kt, (2.23)

which describes how the concentration of species A decreases over time starting
from an initial concentration [A]0. The rate constant k can for instance be determined
experimentally, but its temperature dependence is often described by the Arrhenius
equation,

k = Ce−Ea/kBT. (2.24)

In this equation, C is an exponential prefactor with the same dimension as the rate
constant, Ea is the activation energy (J), kB the Boltzmann constant (J K−1) and T the
temperature (K). The key part of this equation is that there is some energy barrier
which needs to be overcome for the reaction to take place. This can be seen in figure
2.5, where an energy barrier Ea separates the reaction products from the reactants.
Even though the final energy of the products is lower than the energy of the reac-
tants, represented by ∆E, the activation energy must be overcome. The prefactor C
can be interpreted as the frequency of collisions in the correct orientation, with the
exponential describing the probability of the reaction occurring given such a perfect
collision.

In equilibrium, where both a forward and a backward reaction takes place, in-
stead of using the two separate rate constant for each reaction, one often simply

3This section is largely based on [22].
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takes one equilibrium constant. This is because often the two rate constants them-
selves cannot be determined experimentally, only their ratio. Suppose we have the
system

aA + bB
k1−⇀↽−
k−1

cC (2.25)

with k1 the rate constant for the forward reaction and k−1 for the backward reaction.
Assuming that the coefficients a, b, and c represent the order of the reaction, the
production rate ri for each species i is given by

rA = rB = k−1[C]c

rC = k1[A]a[B]b.
(2.26)

Since both the forward and backward reaction occur simultaneously, the rate con-
stants cannot simply be determined experimentally. However, in equilibrium, we
know that there is no net production of any species, so by setting rA = rC, we find

K ≡ k−1

k1
=

[A]a[B]b

[C]c
, (2.27)

where K is defined as the equilibrium constant, with dimension mol m−3 for a = b =
c = 1 . As equation 2.27 must hold in equilibrium, we can determine the value of the
equilibrium constant by measuring the equilibrium concentrations. However, since
equation 2.27 contains three unknown concentrations, it cannot be used to solve for
equilibrium concentrations. Therefore, often more information about the system is
needed, such as the total concentration of two species (e.g. [A] + [C] = constant).

In literature, sometimes instead of the value of K, the value of pK is given, with
k = 10−pK. By comparing the order of the concentrations of the species with the pK
value, one can estimate which reaction is dominant in an out-of-equilibrium situa-
tion. For example, if the order of concentration of the products is much higher than
the pK, the backward reaction will be dominant.

Biochemical systems

In biochemical systems, an enzyme is often included in a reaction sequence. Often,
the substrate (S) binds with the enzyme (E) forming an enzyme-substrate complex
(ES), after which the enzyme is released together with a product (P). This is described
by

E + S
k1−⇀↽−
k−1

ES
k2−⇀↽−
k−2

E + P (2.28)

with k1 and k2 the rate constants for the forward reactions and k−1 and k−2 the rate
constants for the backward reactions. It is of interest to find the rate at which the
product is formed, which is now not simply dependent on one rate constant. In most
cases, the concentration of the product is low and the backward reactions from the
product can be neglected. Therefore, we set k−2 = 0, making the system irreversible.
In steady state, there will be no net creation of the enzyme-substrate complex, so we
can say that the production of ES must be equal to the decomposition of ES,

k1[E][S] = k−1[ES] + k2[ES], (2.29)

where [..] indicates the concentration of the species within the brackets (mol m−3).
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FIGURE 2.6: Reaction rate rp as function of substrate concentration
[S], where the Michaelis-Menten constant Km indicates at which sub-
strate concentration the reaction rate is half of its maximum value

(adapted from [23]).

We do not know the concentration of either the enzyme or the enzyme-substrate
complex, but often we do know the total concentration of the enzyme [E]t ≡ [E] +
[ES], which does not change throughout the reaction. Substituting [E] = [E]t − [ES]
in equation 2.29, we can find that the enzyme-substrate complex concentration in
equilibrium must be

[ES] =
k1[E]t[S]

k−1 + k2 + k1[S]
. (2.30)

We can use this concentration to find the production rate of the product rp as in
reaction 2.28, which is given by

rp = k2[ES] =
k1k2[E]t[S]

k−1 + k2 + k1[S]
. (2.31)

Defining the Michaelis-Menten constant Km ≡ k−1+k2
k1

, we arrive at

rp =
k2[E]t[S]
Km + [S]

≈
{

k2[E]t
Km

[S] for [S]� Km
k2[E]t

Km
for [S]� Km

(2.32)

We can understand what the Michaelis-Menten constant describes by looking at the
behaviour of rp for various substrate concentrations, which is plotted in figure 2.6.
It can be seen that for low substrate concentrations ([S] � Km), we have a linear
dependence of the reaction rate on the substrate concentration (rp ∝ [S]), indicat-
ing a first order reaction. At high substrate concentrations ([S]� Km), we have no
dependence of the reaction rate on the substrate concentration (rp ∝ k2[E]t

Km
, indicat-

ing a zeroth order reaction. At the point where the substrate concentration is equal
to the Michaelis-Menten constant, the reaction rate is half of its maximum value,
rp = 1

2
k2[E]t

Km
. Therefore, the Michaelis-Menten constant gives the concentration of the

substrate for which the production rate of P is half of its maximum value.
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2.2.4 Electrochemical reactions4

All reactions that involve the transfer of charge (electrons) to or from an electrode
are called electrochemical reactions. The energy needed to add one electron to a
metal, also called the Fermi level, is dependent on the potential, so by controlling
the electrode potential, the electron energy within the electrode can be altered. By
doing so, the direction of the electrochemical reaction can be altered. If the electron
energy is lowered (i.e. a higher electrode potential), electrons are ‘more eager’ to
move to the electrode and the reaction is driven in the direction where free electrons
are created. To look at this process in more detail, let us consider a general reaction
where n electrons are created:

Re
k1−⇀↽−
k−1

Ox + ne− (2.33)

with Re being the reduced states, Ox the oxidized states, n the number of electrons
transferred to the electrode, e− the electron, k1 the forward reaction rate, and k−1 the
backward reaction rate.

We are interested in determining at what rate electrons are transferred to the
electrode, which is given by the current density i (A m−2). Note that the current
density is more interesting than the current itself, since the electrochemical reaction
(reaction 2.33) occurs everywhere on the surface of the electrode, which means that
a doubling of the electrode surface area results in a doubling of the current. In each
reaction, n electrons are created, so the current density i is given by

i = −ner, (2.34)

with r the reaction rate per unit area (s−1 m−2) and e the elementary charge (C).
Note that the minus sign is needed for a correct sign of the current; if the reaction
rate is positive, electrons are transferred to the electrode, so the current flows into
the electrolyte (negative). This reaction rate is the net reaction rate, which is given by
the difference between the forward and the backward reaction rate. Using equation
2.22, we find

r = k1[Re]− k−1[Ox]

= C1[Re]e−Ea,Re/kBT − C−1[Ox]e−Ea,Ox/kBT (2.35)

with [Re] and [Ox] the surface concentration of the reduced and oxidized states re-
spectively and where in the second line we have used the Arrhenius equation (eqa-
tion 2.24) to show the exponential dependence of the rate constants (C1 and C−1
are the exponential prefactors, and Ea,Re and Ea,Ox the activation energy (J) of the
forward and backward reaction, respectively).

The activation energy of the forward and backward reaction is initially not the
same, as can be understood from figure 2.5. For the forward reaction, the activation
energy is given by Ea,Re = Ea, while the activation energy for the backward reaction
is given by Ea,Ox = Ea + ∆E. However, in an electrochemical reaction, there will be
a built-up of charge, due to the electrons being in the electrode while the oxidized
state remains in the electrolyte. This will result in a potential gradient over the elec-
trode interface. This potential gradient will slow down the forward reaction until
the forward and backward reaction are in balance; we obtained steady-state.

4This section is largely based on [13], [24], and [25].
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FIGURE 2.7: In equilibrium, the chemical energy difference between
the oxidized and reduced state (part a) is counteracted by the electric
energy difference (part b) resulting in an equal energy barrier ∆E∗

(part c) and thus a net zero reaction rate (adapted from [13]).
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In figure 2.7, the difference in chemical energy and electric energy is presented.
In part a, it can be seen that the oxidized state represents a lower chemical energy,
resulting in a lower activation energy for the forward reaction (the barrier as ap-
proached from the left) than for the backward reaction (the barrier as approached
from the right). However, as can be seen in part b, this results in a potential gra-
dient, due to an accumulation of electrons in the electrode, which balances the ac-
tivation energy difference, resulting in a net equal activation energy ∆E∗ as can be
seen in part c. Note that on the horizontal axis, the distance from the interface is
presented, which is of the order of nanometers. The potential drop happens right at
the electrode-electrolyte interface.

Since the potential alters the activation energy, the current density can be affected
by altering the electrode potential. By doing so, one can obtain a net current through
the electrode. This can be described by looking at the energy of three distinct states,
the reduced state (ERe), the oxidized state (EOx), and the transition state (ET). All
three states have a chemical energy (J), indicated by URe, UOx, and UT respectively,
which is independent of the potential. In addition, all three states have an electric en-
ergy (J), given by the charge multiplied by the electric potential ψ. The charge of the
reduced state is denoted by qRe (C) and the charge of the oxidized state (excluding
the n electrons in the electrode) is denoted by qOx. Note that by charge conservation
we have qRe = qOx − ne, with e the elementary charge (C).

We can now describe the total energy of the reduced and oxidized state, which is
given by

ERe = URe + qReψ

EOx = UOx + qOxψ− neψe,
(2.36)

with ψe the electric potential in the electrode (V). Note that the electric energy from
the electrons is determined with the electrode potential, since the electrons are lo-
cated in the electrode. Also note that the potential ψ is the potential a few nanometer
in the electrolyte, see figure 2.7.

Using the Butler-Volmer assumption, the electric energy of the transition state is
given by an α-weighted average over the electric energy of the oxidized and reduced
states. This α is called the transfer coefficient or symmetry factor, with a value be-
tween 0 and 1 (typically around 0.5). It describes how much of the electric energy of
the transition state comes from the reduced state. Using this, the total energy of the
transition state is given by

ET = UT + αqReψ + (1− α)(qOxψ− neψe). (2.37)

We can now substitute the activation energies in equation 2.35 using Ea,Re = ET −
ERe = UT −URe − ne(1− α)(ψe − ψ) and Ea,Ox = ET − EOx = UT −UOx + αne(ψe −
ψ), which gives

r = C1[Re]e(−UT+URe+ne(1−α)(ψe−ψ))/kBT − C−1[Ox]e(−UT+UOx−αne(ψe−ψ))/kBT. (2.38)

Since there is no dependence on the electric potential in the chemical energies, we
can absorb the exponential factor into the definition of the exponential prefactors C1
and C−1. Defining C∗1 ≡ C1e(−UT+URe)/kBT, C∗−1 ≡ C−1e(−UT+UOx)/kBT, and defining
the difference in electrode potential and the potential in the electrolyte as ∆ψ ≡
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ψe − ψ, we obtain

r = C∗1 [Re]ene(1−α)∆ψ/kBT − C∗−1[Ox]e−αne∆ψ/kBT. (2.39)

In equilibrium, a potential difference ∆ψeq will ensure that the net reaction rate per
unit area is zero. Solving r = 0 in equation 2.39 for ∆ψeq, we obtain

∆ψeq =
kBT
ne

ln
[

C∗−1[Ox]
C∗1 [Re]

]
. (2.40)

When one controls the electrode potential, one actually controls the difference in
potential as compared to the equilibrium potential, Therefore, more commonly the
overpotential η ≡ ∆ψ − ∆ψeq is used instead of the potential itself. We can now
describe the current density i as a function of the overpotential η. Starting from
equation 2.34 and substituting equations 2.39, 2.40, and ∆ψ = η + ∆ψeq, we obtain

i = ne(C∗−1[Ox]e−αne(η+∆ψeq)/kBT − C∗1 [Re]ene(1−α)(η+∆ψeq)/kBT)

= ne(C∗−1[Ox]
(

C∗−1[Ox]
C∗1 [Re]

)−α

e−αneη/kBT − C∗1 [Re]
(

C∗−1[Ox]
C∗1 [Re]

)1−α

e(1−α)neη/kBT

= ne(C∗−1[Ox])1−α(C∗1 [Re])α
[
e−αneη/kBT − e(1−α)neη/kBT

]
.

(2.41)
We can absorb all prefactors into the definition of the exchange current density
i0 = ne(C∗−1[Ox])1−α(C∗1 [Re])α, which can by measured experimentally for a spe-
cific reaction. Using this definition we obtain the Butler-Volmer equation, which
describes the current density of a certain reaction as a function of overpotential;

i = i0
[
e−αneη/kBT − e(1−α)neη/kBT

]
(2.42)

One can obtain the total current I = iA (A) by multiplying the current density i with
the area of the electrode A.

To understand the behaviour of the Butler-Volmer equation, we can look at the
two limits; |η| � kBT/e (the low overpotential region) and |η| � kBT/e (the high
overpotential region). For the low overpotential region, we can use a Taylor expan-
sion of the exponential to obtain

i = −i0
neη

kBT
. (2.43)

We recognize a linear response for low overpotential, following Ohm’s law.
For the high overpotential region, one exponential becomes negligible, depend-

ing on a negative or positive overpotential, giving

i =
{
−i0e(1−α)neη/kBT, η � kBT/e
i0e−αneη/kBT, η � −kBT/e.

(2.44)

These equations are known as the Tafel equations [26] and are more commonly writ-
ten as

η = a + b log i, (2.45)
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FIGURE 2.8: The current density i as a function of the overpotential η
for various values of α with n = 1, T = 298 K, and i0 = 10−6 A/cm2

[26].

with a and b the Tafel equation constants, whose values depend on whether a ca-
thodic or anodic reaction is considered. For a large negative overpotential, the con-
stants are given by

a =
ln(10)kBT

enα
log i0 b = − ln(10)kBT

enα
. (2.46)

In figure 2.8, the current density is given for various values of α as a function of
the overpotential η. Both the linear response around the origin and the exponential
behaviour for large η can be observed. The Butler-Volmer model will be further used
throughout this thesis.
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3. The Biofilm Model

In this section, the biofilm model of De Lichtervelde et al. [9] will be presented and
discussed. By recreating the model, its results can be checked and new adaptations
can be made. These adaptations will be discussed in section 4.

3.1 Model set-up

An overview of the (anode) biofilm was presented in figure 2.3 and is shown again
here in figure 3.1. We assume a planar geometry and can therefore use a one-
dimensional model to describe the system in terms of a single spatial variable x.
The biofilm of thickness L consists of two phases; the bacterial cells and an aqueous
phase outside of these cells. The ratio of the volume of the aqueous phase to the
total volume of the biofilm is defined as the porosity ε (m3 aqueous phase (AP)/m3

biofilm (BF)), while the ratio of the average transport distance inside the aqueous
phase to the total displacement in the biofilm is defined as the tortuosity τ (m aque-
ous phase (AP)/m biofilm (BF)). These characteristics are biofilm dependent.

The ionic species that are taken into account in this model represent a typical
wastewater stream [9] and can be categorized in roughly two groups; organic matter,
consisting of Ac−1, HAc, HCO−3 , H2CO3, HPO2−

4 , H2PO−4 , and H3PO4, and inorganic
matter, consisting of H+, OH−, and Na+. Note that more ionic species are present in
the actual bulk solution, but these are grouped together within Na+ as they are non-
reactive and only the positive charge is important within the model. The driving
ionic species are acetate (Ac− or CH3COO− in its chemical formula) and acetic acid
(HAc or CH3COOH in its chemical formula). These species are at the beginning of
the chain of reactions that will create an excess of electrons.

The main processes happening inside the biofilm will now be discussed in detail.

FIGURE 3.1: Overview of the anode biofilm in contact with a dilute
bulk solution with four main processes; (A), ion transport through the
biofilm, with Ji the flux of species i (mol m−2 s−1); (B), bacterial reac-
tions involving Ac− or HAc, grouped together as Actot; (C), electron
transfer from the bacterial cell to a network of conductive pili; (D),
transport of the charge to the electrode, with Jch the current density

(A m−2) [9].
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3.1.1 Ion transport through the biofilm

In the aqueous phase of the biofilm, the flux Ji of ionic species i can be described by
the Nernst-Planck equation,

Ji = −Di,e

(
∂ci

∂x
+ zici

∂φ

∂x

)
, (3.1)

with Di,e (m2 s−1) the effective diffusion coefficient and where we have defined the
dimensionless potential φ = ψ

VT
= e

kBT ψ, with VT = kBT
e the thermal voltage (V). The

effective diffusion coefficient describes how the transport of ionic species is affected
by the bacterial cells. It is given by Di,e = DrDi, with Dr = ε/τ the relative diffusion
coefficient and Di (m2 s−1) the diffusion coefficient in free solution.

Within the biofilm, there are two type of reactions taking place; biochemical re-
actions due to the bacterial cells, and acid-base reactions. Taking these two sources
into account, we can set up a mass balance equation for each ionic species

ε
∂ci

∂t
= −∂Ji

∂x
+ ri + γi, (3.2)

with ri (mol m−3 s−1) the formation rate of species i due to biochemical reactions (see
section 3.1.2), and γi (mol m−3 s−1) the formation rate of species i due to acid-base
reactions. Note that the concentration ci is given in mol per unit biofilm volume,
while the ionic species are only present in the aqueous phase. Therefore, we need to
include the factor ε to obtain the dimension mol per unit aqueous phase volume.

It is important to understand the difference between the biochemical reactions
and the acid-base reactions. The biochemical reactions occur only when the bacterial
cells are present, while the acid-base reactions occur spontaneously and at a much
faster rate [27]. The following acid-base reactions are included in this model:

HAc 
 Ac− + H+

H2CO3 
 HCO−3 + H+

H3PO4 
 H2PO−4 + H+

H2PO−4 
 HPO2−
4 + H+

H2O 
 H+ + OH−.

(3.3)

Note that the acid-base reaction of bicarbonate to carbonate (HCO−3 
 CO2−
3 + H+)

and the acid-base reaction of hydrogen phosphate to phosphate (HPO2−
4 
 PO3−

4 +
H+) are not included. This is because the pK values of the equilibrium constants
(10.34 and 12.34 respectively [28]) are much higher than the pH considered in this
system (maximum of pH 7), resulting in an equilibrium that is on the far left side of
the reactions. The ionic species on the right hand side of the acid-base reactions only
have significant concentrations when the pH of the solution is around or below the
pK value of the specific acid-base reaction. Therefore, no significant concentration
of carbonate and phosphate will be present in the system and these ionic species do
not need to be considered.

We can group the ionic species together in such a way that the acid-base reactions
only occur within a group. Therefore, we consider the group consisting of acetate
(Ac−) and acetic acid (HAc); the group consisting of bicarbonate (HCO−3 ) and car-
bonic acid (H2CO3); the group consisting of phosphate species (HPO2−

4 , H2PO−4 , and
H3PO4); the group consisting of protons (H+) and hydroxyl ions (OH−); and lastly
any additional unreactive ions which is described by using Na+. Note that for the
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first three groups, all γi sum to zero. This is because for any ion that is formed, an-
other ion within the group is consumed. For the group consisting of protons and
hydroxyl ions, this is not the case, since protons are involved in every acid-base
reaction. Lastly, note that Na+ is not present in any acid-base reaction.

For each acid-base reaction, an equilibrium condition can be created (as in equa-
tion 2.27). If we assume that the acid-base reactions are much faster than the bio-
chemical reactions or ionic transport, which is a valid assumption [27], we can as-
sume that the equilibrium conditions always hold. Therefore, if we know one ionic
species in a group, we can directly calculate each ionic species in that group using
the equilibrium conditions and the pH. Thus, we only need to consider one ‘master
species’ per group in our model. The equilibrium conditions are given by

KHAc =
[Ac−][H+]

[HAc]

KH2CO3 =
[HCO−3 ][H+]

[H2CO3]

KH3PO4 =
[H2PO−4 ][H+]

[H3PO4]

KH2PO4 =
[HPO2−

4 ][H+]

[H2PO−4 ]
KW =

[
OH−

]
[H+] ,

(3.4)

with Ki the equilibrium constant of the reaction involving species i and with KW
the equilibrium constant for the water self ionization reaction (the acid-base reaction
involving H2O).

Since Na+ is not present in any reaction, its mass balance equation is given by

ε
∂[Na+]

∂t
= −∂JNa+

∂x
, (3.5)

with [Na+] (mol m−3) the concentration of Na+ (cNa+ in equation 3.2). From now
on, [i] indicates the concentration of species i.

For the first three groups, we define [Ac]tot, [HC]tot, and [H2P]tot to be the total
concentration of species within the acetate group, the bicarbonate group, and the
phosphate group respectively, given by

[Ac]tot = [HAc] +
[
Ac−

]
[HC]tot = [H2CO3] +

[
HCO−3

]
[H2P]tot = [H3PO4] +

[
H2PO−4

]
+
[
HPO2−

4

]
.

(3.6)

We can now set up a total mass balance equation by summing the individual mass
balance equations per ionic species. Since the γi terms cancel, we are left with

ε
∂

∂t
[Ac]tot = −

∂

∂x
(JAc− + JHAc) + rActot

ε
∂

∂t
[HC]tot = −

∂

∂x

(
JHCO−3

+ JH2CO3

)
+ rHCtot

ε
∂

∂t
[H2P]tot = −

∂

∂x

(
JH3PO4 + JH2PO−4

+ JHPO2−
4

)
+ rH2Ptot ,

(3.7)

with rActot , rHCtot , and rH2Ptot (mol m−3 s−1) the total production rate of acetate species,
bicarbonate species, and phosphate species respectively, to be discussed in detail in
section 3.1.2.
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For the group involving protons and hydroxyl ions, summing the individual
mass balance equations does not get rid of the γi. Therefore, we need another equa-
tion to fully describe the system. We consider charge conservation. At each position,
the divergence of the ionic current must be equal to the rate of charge going from
solution to the pili, −rch (mol m−3 s−1),

∑
i

(
zi

∂Ji

∂x

)
= −rch, (3.8)

where i runs over all ionic species considered in the model. By using this equation,
we do not need to consider the mass balance for the protons and hydroxyl ions,
which simplifies the numerical method as the involvement of the protons in all acid-
base reactions does not have to be included. However, the production of protons or
hydroxyl ions is still calculated correctly.

Next to each master species per group, there is one more unknown in the sys-
tem; the (dimensionless) electric potential in solution φ. Therefore, we need one
more equation to fully describe the system. In principle, this could be the Poisson
equation, but here we start off with the simpler case of local electroneutrality; at any
position in the biofilm, we have zero charge,

∑
i

zici = 0, (3.9)

where i runs over all ionic species. This assumption would not hold on a smaller
length-scale (on the order of nm) near the electrode, since a charged electrode would
result in charge buildup near the electrode. This so called electric double layer would
result in a screening of the electric potential at the electrode. However, in this model
a larger length-scale (on the order of microns) is considered where local electroneu-
trality is assumed to hold.

We now have a system of six equations (four mass balance equations (equations
3.7), charge balance (equation 3.8), and local electroneutrality (equation 3.9)) for a
total of six unknowns (five master species for each ionic group and the electric po-
tential). Assuming the reaction rates are known (which will be described in section
3.1.2), we would only need appropriate boundary conditions to fully describe the
ionic species in the biofilm. Firstly, at the bulk interface (x = 0), we take all concen-
trations to be given by the bulk value,

ci(x = 0) = cB,i, (3.10)

with cB,i (mol m−3) the bulk concentration value of species i. With this boundary
condition, we assume that no (charged) membrane is present at the biofilm-bulk
interface. We also gauge the potential to be zero at the bulk boundary,

φ(x = 0) = 0, (3.11)

which can be done once in the system.
Secondly, within each group, there can be no net flux at the electrode boundary.

A single species might be involved in a surface reaction, but this flux must always
be accompanied by an opposite flux of a species within the same group, resulting in
a zero net flux;

∑
j

Jj(x = L) = 0, (3.12)
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FIGURE 3.2: Overview of the chain of reactions in which acetate
species (Actot) form an enzymatic complex (X) with NAD+ (a species
found in all living cells capable of accepting electrons) after which
NADH can be formed together with bicarbonate species (HCtot).
NADH can reduce a cytochrome, after which the reduced cytochrome

can transfer an electron to the network of pili. [9]

where j runs over all species within a group. Note that this boundary condition for
the group of protons and hydroxyl ions does not need to be included. Instead, we
also include that the total ionic current at the electrode boundary must be zero; no
ionic current can leave the system through the electrode,

∑
i

zi Ji(x = L) = 0, (3.13)

where i runs over all ionic species. This boundary condition implies that only elec-
trons can be transported through the anode; ionic species cannot go through the
external circuit.

With these equations and boundary conditions, the system of ionic species is
fully determined, once the production rates are all known.

3.1.2 Biochemical reactions

Next to the ionic species present in the aqueous phase, there are bacterial species
present within the bacterial cell. The bacterial species present in this model represent
a simplified chain of reactions, which results in the creation of excess electrons. This
chain can be seen in figure 3.2 and its four reactions will be discussed separately
below.

The first biochemical reaction that occurs is the formation of an enzymatic com-
plex, X, consisting of NAD+ and an acetate species (Ac− or HAc, grouped as Actot).
NAD+ is a common biological molecule, present in all cells [29]. In its reduced form,
NADH, it acts as an electron carrier in all kinds of biological processes. The reaction
through which this process is modelled is given by

Actot + 4NAD+ ra

 4X, (3.14)

with ra (mol m−3 s−1) the rate at which association of X takes place. Note that this
reaction does not show exactly which constituent is used. It is only important to
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know that for each acetate species that is involved in the reaction, four enzymatic
complexes X are formed. By grouping together acetate and acetic acid, we do not
need to make assumptions about which molecule is used and since they are linked
through an acid-base reaction, the two species are always in equilibrium.

The rate of association is given by a combination of both the forward and back-
ward reaction. Using first-order kinetics, we find

ra = ka[Ac]tot
[
NAD+

]
− kd[X], (3.15)

with ka (m3 mol−1 s−1) the rate constant for the association reaction (forward) and
kd (s−1) the rate constant for the dissociation reaction (backward).

The second reaction in the reaction chain is the dissociation of X into HCtot and
NADH. This reaction is given by

4X
rX−→ 2HCtot + 4NADH, (3.16)

with rX the rate at which X is dissociated. Note that in this model, it is assumed that
the backward reaction rate is small compared to the forward reaction and thus can
be ignored, rendering the reaction irreversible. This assumption holds if only small
concentrations of either HCtot or NADH are present. Using first-order kinetics, rX is
given by

rX = kX[X], (3.17)

with kX (s−1) the rate constant for the dissociation of X.
Reactions 3.14 and 3.16 together form a system in which an enzyme binds to a

substrate, after which it is released together with a product. This system has been
described in section 2.2.3 and we can define the Michaelis-Menten constant KM (mol
m−3) for the current model, which is given by

KM =
kd + kX

ka
. (3.18)

The two reactions described above provide the connection to the ionic species and
give the input for equations 3.7. Therefore, we can now set

rActot = −ra

rHCtot = rX

rH2Ptot = 0.
(3.19)

The next step in the reaction chain is the conversion of transfer of electrons to the
cytochromes, which have to go from the oxidized to the reduced form. The actual
mechanism by which this happens consists of a number of complex steps involving
various proteins, but since we are interested in the physical implications of this re-
action, all we need to take into account is that as NADH carries two electrons, two
cytochromes can be reduced with one NADH molecule. Therefore, we obtain the
following reaction

NADH + 2Cox + H+
rcyt

 NAD+ + 2Cred, (3.20)

with rcyt (mol m−3 s−1) the reaction rate. Note that the proton within this reaction
is present within the bacterial cell and is therefore different from the ionic species
discussed before. Since living organisms keep a constant internal environment, we
assume the internal proton concentration [H+

i ] (mol m−3) to be at a constant value
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of 10−4 mol m−3 (pH 7). Within the De Lichtervelde model, it is hypothesized that
this reaction occurs at a much faster rate than reaction 3.16, which produces NADH
and we can therefore assume equilibrium, given by

KNAD =

[
NAD+

]
[Cred]

2

[NADH] [Cox]
2 [H+

i

] , (3.21)

with KNAD (m3 mol−1) the equilibrium constant.
In the last reaction, charge accumulated within the cytochromes must be trans-

ferred to the network of conductive pili. This is described by the Faradaic equation

Cox + e− + H+
rch

 Cred, (3.22)

with rch (mol m−3 s−1) the reaction rate. The rate at which electrons move from
the bacteria to the pili is given by -rch. In this reaction an electron is present, so we
cannot use first-order reaction kinetics to describe the reaction rate, but must instead
use a Butler-Volmer equation to take into account the potential in both the pili and
the solution. Therefore, the charge transfer rate rch is given by

rch = kred[C]ox
[
H+
]

e−α∆φ − kox[C]rede(1−α)∆φ, (3.23)

with kred (m3 mol−1 s−1) the rate constant of the reduction, kox (s−1) the rate constant
of the oxidation, α (dimensionless) the transfer coefficient, and ∆φ = φpili(x)− φ(x),
with φpili the dimensionless electric potential in the network of pili.

Having described four reactions (reactions 3.14, 3.16, 3.20, and 3.22), we can now
set up the dynamics of the five bacterial species. First of all, we note that the total
concentration of the NAD-complex, [NAD]tot (consisting of NAD+, X, and NADH),
and the total concentration of the cytochromes, [C]tot (consisting of Cox and Cred),
are constant and given by

[NAD]tot =
[
NAD+

]
+ [NADH] + [X]

[C]tot = [C]red + [C]ox.
(3.24)

Therefore, we need only three equations to describe the dynamics of the bacterial
species. Looking at all four reactions, we find

∂[X]
∂t

= 4ra − 4rX

∂
[
NAD+

]
∂t

= −4ra + rcyt

∂[C]ox

∂t
= −2rcyt − rch.

(3.25)

Since we take reaction 3.20 to be in equilibrium, we do not know the expression
for rcyt. However, when we look at steady state, where all time derivatives are set
to zero, we find that rcyt is actually a dummy variable, which can be removed by
a linear combination of the last two equations. Therefore, in steady state, we have
a system of five equations (two equations describing the total concentration of the
bacterial groups (equations 3.24), two equations from the dynamics of the system
(equations 3.25, with a linear combination of the last two), and the equilibrium equa-
tion 3.21) and five unknowns, the bacterial species, providing us with a system that
can be solved numerically.
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3.1.3 Charge transport to the electrode

The final part of the model consists of charge transport through the conductive pili
towards the electrode. To describe the current density Jch (A m−2) within the pili, we
use Ohm’s law, which states that the current density is proportional to the biofilm’s
electronic conductivity σbf (S m−1) and the gradient of the electric potential within
the pili φpili (dimensionless);

Jch = −σbfVT
∂φpili

∂x
. (3.26)

Assuming no charge buildup inside the pili, we know that the charge transfer rate
must be equal to the divergence of the current density,

∂Jch

∂x
= rchF, (3.27)

with F (C mol−1) Faraday’s constant, which is needed to obtain the correct dimen-
sions. Combining these two equations we find

σbfVT
∂2φpili

∂x2 = −rchF, (3.28)

which describes the pili-potential throughout the biofilm. Since this is a second or-
der differential equation, we must also have two boundary conditions. The first
boundary condition is that the potential at the electrode (x = L) is given by the an-
ode overpotential η (V),

φpili(x = L) =
η

VT
. (3.29)

The second boundary condition is given by

∂φpili

∂x
(x = 0) = 0, (3.30)

which states that no current can go into the bulk (Jch = 0).
Even though the system is fully described by the above model, one more inter-

esting quantity can be obtained, which is the current density at the anode I (A m−2).
Since each electron that is transferred to the pili goes to the anode, we can obtain the
current density by integrating the charge transfer rate rch over the biofilm,

I = −F
∫ L

0
rch(x)dx. (3.31)

This concludes the set-up of the model. In the next section, the numerical methods
involved in solving this model are discussed.

3.2 Numerical Methods

In this section, we will discuss how the model can be solved using numerical meth-
ods. Within this thesis, MATLAB was used, but the methods can be applied to other
types of programming languages as well. The set-up of the program can be roughly
divided in four parts, of which three are conducted in an iterative manner. Note that
we are interested in steady-state solutions and therefore all time derivatives are set
to zero. The dynamics of the system are not described by the current set-up.
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The first part of the program contains the initialization. All constant and vari-
ables must be defined, a grid must be created, and initial conditions must be imple-
mented. For the current set-up, an equidistant grid suffices, since the scale of interest
is the same throughout the biofilm. For the initial conditions, we take constant fields
throughout the biofilm. For the ionic species, the boundary conditions can be used,
while for the bacterial species, a guess must be made.

After the initialization is complete, an iterative process is created, in which all
concentrations and potentials are updated based on the values of the previous iter-
ation. This consists of three main parts; the ionic species and potential, the bacterial
species, and the pili potential. For the ionic species and the potential, all biochemi-
cal reaction rates (rch, ra, and rX) are determined using the previous iteration. Next,
we can use equations 3.7 together with boundary conditions 3.12, to determine the
profile of the total flux of each group (JActot = JAc− + JHAc, JHCtot = JHCO−3

+ JH2CO3 ,
and JH2Ptot = JH3PO4 + JH2PO−4

+ JHPO2−
4

), since this is given by a first order ordinary
differential equation with one boundary conditions (note that the time derivative is
set to zero). This can also be done for the ionic current profile Iion = ∑i zi Ji, where i
runs over all ionic species (equation 3.8 together with B.C. 3.13).

Once the total flux profiles and ionic current profile are known throughout the
biofilm, we can determine the concentration of all ionic species. Firstly note that the
Na+ profile can be solved analytically, since we know that for steady state we have
JNa+ = 0. Using the Nernst-Planck equation (equation 3.1), we then find

[Na](x) = [Na](0)e−φ(x), (3.32)

showing that the Na+ profile is known once the potential throughout the biofilm is
known.

To solve for the other ionic species, we substitute the Nernst-Planck equation
(equation 3.1) in the total flux and ionic current equations. These equations can be
discritized using a central-difference scheme, after which the acid-base equilibria
(equations 3.4) can be substituted. Through this substitution, it might appear that
we have five unknowns (Ac−, HCO−3 , HPO2−

4 , H+, and φ), but since we had to
discritize first order derivatives, we need to know the concentration at two separate
grid points, giving us a total of ten unknowns. Note that for simplicity it is important
to first discritize the equations before substituting the acid-base equilibria. These
four equations in addition to the local electroneutrality condition (equation 3.9) form
one system.

The system of equations can be solved by realizing that for the first grid point,
all values are already known due to the boundary conditions (equations 3.10 and
3.11). Therefore, at the second grid point, we only have five unknowns, since we
can use the values on the first grid point in our system of equations, resulting in a
system of five equations with five unknowns. Therefore, the system can be solved
grid point by grid point by using a numerical solver. Once all concentration profiles
and the potential are known, we can use the acid-base equilibria and equation 3.32
to determine the concentration profile of all remaining ionic species.

The second main part of the iteration loop focuses on the profiles of the five bacte-
rial species; [NAD+], [NADH], [X], [Cox], and [Cred]. These are also linked together
in one system. Firstly, we have two equations describing the total concentration
within each group (equations 3.24). Secondly, we have the equilibrium condition
given by equation 3.21. Thirdly, equations 3.25 with time derivatives set to zero pro-
vide two independent equations (the last two equations can be combined to remove
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the dummy variable rcyt). In these last two equations, the expressions for ra, rX, and
rch can be substituted. We obtain the following system of equations

[NAD]tot =
[
NAD+

]
+ [NADH] + [X]

[C]tot = [C]red + [C]ox

KNAD =

[
NAD+

]
[Cred]

2

[NADH] [Cox]
2 [H+

i

]
ka[Actot][NAD]− kd[X] = kX[X]

8ka[Actot][NAD]− 8kd[X] = −kred[COx][H]e−α∆φ + kox[Cred]e(1−α)∆φ,

(3.33)

where the values of ionic species of the previous step can be used and the value of
the pili potential from the previous iteration. This system of five equations and five
unknowns can then be solved for each grid point.

The last step of the iteration loop focuses on the last unknown, the pili potential.
Since we are left with one second order ordinary differential equation (equation 3.28)
with two boundary conditions (equations 3.29 and 3.30), this system can be solved
in a straightforward manner, where the charge transfer rate rch from the previous
iteration can be used.

This process is iterated until the solution is converged. For this, a condition can
be created when the solution can be considered converged. In our case, we have
looked at the average charge transfer rate rch over the entire biofilm, since the charge
transfer rate is directly related to the current density I, a property we are interested
in. Once the iteration process is finished, this property can be calculated using equa-
tion 3.31.

3.3 Results and Discussion

In this section, results obtained from the model described above will be presented.
Since this model is a replica from De Lichtervelde et al. [9], results can be compared.
Firstly, we will look at the current density profile as a function of overpotential,
the so-called polarization curves. Secondly, we will present the profile of all ionic
species, bacterial species, and both the potential and pili potential at certain fixed
parameters. The parameters that are used in each figure can be seen in table 3.1.

In figure 3.3, two polarization curves can be seen. The parameters for these
curves were chosen to replicate the two polarization curves of De Lichtervelde et
al. [9] so that a direct comparison can be made. De Lichtervelde et al. [9] have cho-
sen these parameters so that a fit was made with a specific dataset. It must be noted
that the curves match the results of De Lichtervelde et al. [9] only if kox is changed
by a factor of 10−1. We believe that this was a typographic error. Note that the po-
larization curves do not go towards the origin. This is because we are specifically
looking at an anode, due to reaction 3.16 being irreversible. The backward chain
of reactions cannot be followed, making the polarization curve asymmetric. If one
would impose a negative overpotential, the curve would simply go to zero current
density.

The second type of results are the profiles of each variable for a constant over-
potential. This gives insight in what the limiting factor for current production can
be within the biofilm. For example, if the number of reduced cytochromes is very
high, this is a signal that transfer of electrons to the pili is rate limiting, while if the
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TABLE 3.1: The values of all parameters used in the figures (adapted
from [9]).

Biofilm parameters
L Thickness 501,2 / 1003 µm
ε Mean porosity 0.9 m3 AP m−3 BF
τ Mean tortuosity 2.3 m AP m−1 BF
KM Michaelis-Menten constant 2.2 mol m−3

kd Rate constant for dissociation 0.1 s−1

kX Rate constant for dissociation of X 0.0801 / 0.0672 / 0.0933 s−1

KNAD Equilibrium constant for reaction 3.20 50001,3 / 5002 m3 mol−1

[NAD]tot Total concentration of NAD/NADH components 1 mol m−3

[C]tot Total concentration of cytochromes 0.8 mol m−3

kred Electron transfer constant for reduction 3.11,3 / 4.32 m3 mol−1 s−1

kox Electron transfer constant for oxidation 0.0801,3 / 0.0592,4 s−1

α Transfer coefficient 0.5 -
σbf Biofilm conductivity 0.5 S m−1

η Overpotential variable1,2 / 0.43 V

Diffusion coefficients in free solution (10−9 m2 s−1)
DAc− Acetate 1.09
DHAc Acetic acid 1.30
DHCO−3

Bicarbonate 1.18
DH2CO3 Carbonic acid 1.30
DHPO2−

4
Hydrogen phosphate 0.69

DH2PO−4
Dihydrogen phosphate 0.85

DH3PO4 Phosporic acid 1.10
DH+ Protons 9.31
DOH− Hydroxide 5.27
DNa+ Sodium 1.33

Acid-Base equilibrium constants
pKHAc HAc 
 Ac− + H+ 4.75 mol m−3

pKH2CO3 H2CO3 
 HCO−3 + H+ 6.35 mol m−3

pKH3PO4 H3PO4 
 H2PO−4 + H+ 2.15 mol m−3

pKH2PO−4
H2PO−4 
 HPO2−

4 + H+ 7.2 mol m−3

pKW H2O 
 H+ + OH− 14 mol2 m−6

Bulk concentrations (mol m−3)
[Ac]tot Total acetate 201,2 / 53

[HC]tot Total carbonate 51,2 / 23

[H2P]tot Total phosphate 201,2 / 53

pH 7

1 Used in figure 3.3.A.
2 Used in figure 3.3.B.
3 Used in figures 3.4, 3.5, 3.6, and 3.7
4 In [9] a value of 0.59 s−1 was given. However, results could only be reproduced for a value of 0.059 s−1.

We believe this was a typographic error.
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FIGURE 3.3: The current density profile I as a function of overpoten-
tial η for two sets of input parameters as given in table 3.1.

pH drops significantly, this is a signal that an accumulation of protons is the limiting
factor in the current density that can be extracted from the system. The parameters
were chosen such that the bulk solution represents domestic wastewater. In figure
3.4, the steady-state concentration profiles of sodium and the total concentration pro-
file of the acetate, bicarbonate, and phosphate species can be seen. Note that sodium
actually represents a group of unreactive ions.

A few observations can be made. Firstly, note that these are steady-state concen-
tration profiles, but not necessarily zero flux profiles. For example, acetate species
are continuously used in the chain of reactions, so a constant transport of acetate
species is needed to obtain a steady state. However, for sodium, there is no trans-
port since sodium ions are not involved in any reaction. Secondly, observe that even
though acetate species are used in the reaction chain, a build-up of acetate is ob-
served at the electrode. Migrational forces thus play an important role within the
biofilm. As was concluded by De Lichtervelde et al. [9], this shows that mass trans-
fer does not limit the availability of acetate species throughout the biofilm, thus not
limiting the current production.

In figure 3.5, the concentration profile of the separate ionic species can be seen.
The effect of the acid-base reactions can clearly be seen in these figures, as concen-
trations start changing rapidly when the pH is at the order of the pKi value of the
acid-base reaction involving species i. For example, we know pKH2CO3 = 6.35 mol
m−3 and when the pH is around that value (x≈ 20 µm), the concentrations of HCO−3
and H2CO3 change most rapidly. Also note that the concentration of H3PO4 remains
close to zero, which can be explained because pKH3PO4 is equal to 2.15 mol m−3 and
the pH does not reach that value.

As can be seen in figure 3.5, the pH drops significantly throughout the biofilm.
Within this model, it was assumed that the biological chain of reactions was not af-
fected by the pH. However, in literature it has been shown that current production
by a certain type of Geobacter bacteria drops significantly at pH 6 and can com-
pletely stop at pH 5 [9]. Therefore, De Lichtervelde et al. [9] concluded that proton
accumulation can inhibit the current production in thick biofilms.

Based on figures 3.3, 3.4, and 3.5, we can conclude that our results are in line with
the results from De Lichtervelde et al. [9]. Only a small numerical discrepancy can
be observed, which could be the result of slightly different numerical methods. To
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FIGURE 3.4: The steady-state concentration profiles of the acetate
(Actot), bicarbonate (HCtot), and phosphate (H2Ptot) groups together

with the sodium (Na+) profile throughout the biofilm.

FIGURE 3.5: The steady-state concentration profiles of acetate, bicar-
bonate, and phosphate species together with the pH profile through-

out the biofilm.
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FIGURE 3.6: The steady-state concentration profiles of the NAD-
species and cytochromes throughout the biofilm.

get a more thorough overview, we have also included two additional type of figures;
the concentration profiles of the bacterial species and the profiles of the potentials.

The concentration profiles of the bacterial species can be seen in figure 3.6. We
can see that the concentration of NADH is close to zero, rendering the assumption
of irreversibility of reaction 3.16 valid. The low concentration of NADH can be ex-
plained from equation 3.21, with KNAD being 5000 m3 mol−1. Since the internal
concentration of protons is fixed at 10−4 mol m−3, we can immediately see that the
equilibrium position of reaction 3.20 is to the far right. In other words, any NADH
molecule that is created is almost immediately converted into NAD+.

When looking at the concentration profile of the cytochromes, it can clearly be
seen that almost all cytochromes are in the oxidized state. From equation 3.23 it can
be seen that if the potential difference between the pili and the solution is large, the
charge transfer rate rch becomes negative and reaction 3.22 will go in the backward
direction, thus producing an excess of electrons and cytochromes in the oxidized
state. Therefore, the large concentration of oxidized cytochromes can be explained
by a large potential difference between the pili and the solution. For this we can look
at figure 3.7. Note that due to the difference in scale, the two potentials are plotted
separately. From this, it is clear that this large potential difference drives reaction
3.22 to the left.

From figure 3.7 a few questions arise that are not immediately clear. Firstly, the
curvature of the potential would suggest charge is present within the system. This
can be seen from Poisson’s equation, which was discussed in section 2.2.2. For a
charge neutral system, the Poisson equation has a straight line as solution. One
of the conditions that was imposed in the system is that of local electroneutrality,
which would imply a straight line in the potential. This discrepancy between local
electroneutrality and the Poisson equation cannot be explained straightforwardly.
Secondly, at the electrode, the potential in solution is still very small, while the elec-
trode potential was set at 0.4V (roughly 15.8 in units of the thermal voltage). Lastly,
since the potential in bulk was set to zero, there is a non-zero slope of the potential
at the bulk interface; dφ

dx (0) 6= 0. This would mean charge is present somewhere on
the boundary.

The open questions that arise from the potential can only be answered if the
local electroneutrality condition is removed and by adding the Poisson equation.
By doing so, it can be investigated if an electric double layer has the effect on the
potential as is observed in figure 3.7. If there is not a quick drop at the electrode
interface, the local electroneutrality condition might not be a valid assumption to
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FIGURE 3.7: The steady-state potential and pili potential profiles
throughout the biofilm.

work with in systems like the one used here. Therefore, we will make an adaptation
to the current model by removing the local electroneutrality condition. This will be
discussed in detail in section 4.
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4. Releasing the Local Electroneutrality Condition

In this section, we will remove the local electroneutrality condition by instead im-
posing the one-dimensional Poisson equation, given by

d2φ

dx2 = − ρ

εVT
, (4.1)

with ρ (C m−3) the local charge density, ε the permittivity (F m−1), given by ε = εrε0,
with εr (-) the material dependent relative permittivity and ε0 (F m−1) the vacuum
permittivity, and the thermal voltage VT (V). The Poisson equation is accompanied
by two Dirichlet boundary conditions;

φ(0) = 0

φ(L) =
η

VT
,

(4.2)

with η (V) the overpotential imposed at the electrode. This equation appears to be
quite straightforward, but complicates the overall model significantly. Therefore,
an additional assumption can be made. Based on figure 3.7, we assume that a con-
stant pili potential accurately describes the system; the network of pili can be seen
as a perfect conductor. This has two advantages. Firstly, it simplifies the model, as
equation 3.28 does not have to be included. Secondly, we know that no charge ac-
cumulates in a perfect conductor, so the only charge that needs to be included in the
charge density of equation 4.1 is the ionic charge. Any electron is assumed to leave
the system immediately.

In practice, an electric double layer will form on both the electrode and the net-
work of pili. However, since the model considered here is one-dimensional, creating
an electric double layer on the network of pili is not possible. Therefore, we only
model the electric double layer at the electrode and make the assumption that the
potential drop at the pili due to the electric double layer is of the same order of mag-
nitude as at the electrode. Therefore, we do not need to consider the electric double
layer at the pili, ensuring that we can still work in a one-dimensional system.

By adding the Poisson equation, multiple length and time scales must be incor-
porated. These issues will be discussed in section 4.1. In the next section, section 4.2,
the numerical methods needed to solve the system will be discussed. Lastly, some
preliminary results will be discussed in section 4.3.

4.1 Length and time scale considerations

By adding the Poisson equation to the system, we expect an electric double layer to
appear at the electrode boundary. Since we do not consider a (charged) membrane
at the bulk interface, we do not expect an electric double layer at this boundary. The
length scale of an electric double layer is a few orders of magnitude smaller than the
dominant length scale of the rest of the system, which is on the order of microns.



Chapter 4. Releasing the Local Electroneutrality Condition 33

We can estimate the length scale of the electric double layer by looking at the De-
bye length λD (m), which was obtained from Poisson-Boltzmann theory as discussed
in section 2.2.2. For a general electrolyte, the Debye length is given by

λD =

(
εkBT

e2NA ∑i cb,iz2
i

)1/2

, (4.3)

with cb,i (mol m−3) the bulk concentration of species i and where i runs over all
ionic species [30]. Note that Avogadro’s constant NA was added to convert molar
density into particle density. If we take the bulk concentrations as given in table 3.1,
assume each group has a valency of -1, and take the permittivity of water at room
temperature (εr,water = 80), we obtain a Debye length of approximately 3 nm. Note
that this is an approximation, since we have taken a valency of -1 within each group,
while also charge neutral ions are present.

The Debye length is the length scale on which concentrations will decay to their
bulk concentrations. Therefore, a nanometer length scale is important within the
electric double layer. Within our system, we need a grid that is on the micron scale
throughout the biofilm, while it is on the nanometer scale in the electric double layer
(roughly the last tens of nanometers). This will pose challenges in solving the Pois-
son equation, which will be discussed in section 4.2.

In order to find relevant time scales in the system, we need to find a length
squared divided by the diffusion coefficient. The first time scale we consider is the
time it takes for an ion to diffuse through the system TD (s), given by

TD =
L2

De
, (4.4)

with De the effective diffusion coefficient, for which we take a value of roughly 5 ·
10−10 m2 s−1. We then find this diffusion time scale to be in the order of 20 s.

The second time scale we consider is the time it takes for an ion to move through
the electric double layer TEDL (s), given by

TEDL =
λ2

D
De

, (4.5)

which is in the order of 10−9 s. The difference in these two time scales has implica-
tions for the kind of numerical methods that can be used. This will be discussed in
detail in section 4.2.

4.2 Numerical Methods

In this section, the numerical methods needed to solve the system including the
Poisson equation will be discussed. The advantages and disadvantages of various
approaches will be explained and a recommendation will be made for which method
to use.

4.2.1 Solving the one-dimensional Poisson equation

Let us first consider how to solve the one-dimensional Poisson equation. One method
is by using matrix inversion [31]. Firstly, the Poisson equation is discretized on an
equidistant grid with step size h and N grid points;

φi−1 − 2φi + φi+1 = h2 fi, i = 1, 2, · · · , N, (4.6)
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with fi = f (xi) ≡ − ρ(xi)
εVT

, and Dirichlet boundary conditions given at φ0 = φ(x = 0)
and φN+1 = φ(x = L). Each grid point contributes one equation, giving a system of
N equations, which can be written in matrix form;



−2 1 0 0 0 · · · · · · 0
1 −2 1 0 0 · · · · · · 0
0 1 −2 1 0 · · · · · · 0

0 0 1 −2 1
. . . · · · 0

0 0 0 1 −2
. . . . . .

...
...

...
...

. . . . . . . . . . . . 0

0 0 0 0
. . . . . . . . . 1

0 0 0 0 0 0 1 −2


︸ ︷︷ ︸

≡A

×



φ1
φ2
φ3
φ4
φ5
...

φN−1
φN


︸ ︷︷ ︸

≡Φ

=



h2 f1 − φ0
h2 f2
h2 f3
h2 f4
h2 f5

...
h2 fN−1

h2 fN − φN+1


︸ ︷︷ ︸

≡F

,

(4.7)
where we haved defined the matrix A and the vectors Φ and F. Note that the bound-
ary conditions appear within vector F. If matrix A can be inverted, we only need to
know F and use simple matrix multiplication to obtain the potential at each grid
point, Φ = A−1F. It turns out that matrix A can indeed be inverted and its inverse
A−1 is given by [31]

A−1 =

−1
N + 1



N (N − 1) (N − 2) · · · N − (j− 1) · · · 3 2 1
(N − 1) 2(N − 1) 2(N − 2) · · · 2[N − (j− 1)] · · · 6 4 2
(N − 2) 2(N − 2) 3(N − 2) · · · 3[N − (j− 1)] · · · 9 6 3

...
...

...
. . .

...
...

...
...

...
[N − (i− 1)] 2[N − (i− 1)] 3[N − (i− 1)] · · · i[N − (i− 1)] · · · 3i 2i i

...
...

...
...

...
. . .

...
...

...
3 6 9 · · · 3j · · · 3(N − 2) 2(N − 2) (N − 2)
2 4 6 · · · 2j · · · 2(N − 2) 2(N − 1) (N − 1)
1 2 3 · · · j · · · (N − 2) (N − 1) N


.

(4.8)

The elements (a−1)ij of matrix A−1 are given by

(a−1)ij =

{
−j [N−(i−1)]

N+1 , i ≥ j
−i [N−(j−1)]

N+1 , i < j.
(4.9)

Now that we know the inverse, we can simply solve for the potential at each grid
point, which is given by

φi = (a−1)ijFj =
−h2

N + 1

[
i

∑
j=1

j(N − (i− 1)) f j − (N − (i− 1))
φ0

h2 +

N

∑
j=i+1

i(N − (j− 1)) f j − i
φN+1

h2

]
.

(4.10)

We can use equation 4.10 to determine the potential at each point for a given charge
distribution and using an equidistant grid. However, as indicated in section 4.1,
in our system, we have two relevant length scales. At the electrode we need a nm
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sized grid, while throughout the rest of the biofilm, we need a µm sized grid. A
few methods were investigated to solve the Poisson equation on a non-equidistant
grid, of which one gives accurate results. The few methods that did not give reliable
results are briefly discussed in appendix A. Below, the method that gives accurate
results is presented.

Based on the analysis of appendix A, we cannot use two separate grid sizes in
our system. Therefore, we must use an equidistant grid on the nm scale throughout
the entire biofilm. However, calculating all variables at each grid point takes too
long for any practical application. This is the main reason for needing two grids.
The solution to obtain a nm sized grid at the edge whereas having a µm sized grid
in the biofilm, while still having an equidistant grid to be able to solve the Poisson
equation is by defining a nm sized grid throughout the entire system on which the
Poisson equation can be solved, but only calculating the ionic species every 1000
grid points. For every grid point in between, one can solve the Poisson equation in
which the charge density for each point is determined by taking a linear function
connecting the charge densities at the points where the ionic species are calculated.
Since the potential can be calculated using simple multiplication, this does not slow
down the program significantly, making this both a fast and accurate approach in
solving the one-dimensional Poisson equation.

4.2.2 Set-up of the model

Having a method of solving the one-dimensional Poisson equation, we can now
change our model set-up. Two main changes must be made. Firstly, the last part of
the iterative loop, as described in section 3.2, in which the pili potential is calculated
can be removed. As explained before, we assume a perfect conducting network of
pili, thus having no pili potential drop over the biofilm. Instead, the pili potential is
equal to the anode overpotential throughout the entire biofilm.

Secondly, the potential must be calculated separately from the ionic species. In
the original model, we obtained one system of equations containing all ionic species
and the potential. However, we must now use the Poisson equation to obtain the
potential throughout the biofilm. Therefore, we first determine the concentration
profile of all ionic species using the system of equations from the original model
without the local electroneutrality condition and using the potential from the pre-
vious iteration. From these concentration profiles, the charge density profile is cal-
culated, which can be used to solve for the potential using the Poisson equation. If
needed, we can iterate the process of calculating the profiles of the ionic species and
the potential until both profiles are converged.

There are still two different methods of solving the model, a stationary-state
method, as done with the original model, or a time-dependent method. In the time-
dependent set-up, all time-derivatives have to be discritized as well. This makes the
iteration process a time evolution of the system. The advantage of using the time-
dependent method is that the charge density changes slowly, giving a more stable
behaviour of the potential. In order to assess the viability of this method, we can look
at the time scales that we identified. The time it takes for an ion to move through the
Debye length is roughly 10−9 s. This is the step size that must be taken in order to
have a stable time-evolution of the system. For larger time steps, the charge density
changes too rapidly, resulting in inaccurate potential profiles. However, the diffu-
sion time TD is approximately 20 s. Therefore, in order to have particles from the
bulk move through the system to add to the electric double layer, we need roughly
1010 iteration loops. This huge number of iterations results in a program which takes
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a very long time to reach a steady-state solution. Therefore, even though this method
would give accurate results, the program must run for too long to have any results,
rendering this method not useful.

We must use the stationary-state method to obtain any results for this model,
as was done with the original model. However, some caution in determining the
potential must be taken. Take for example a Poisson-Boltzmann distribution of the
ionic species. Ions with valency -1 will then have a concentration near the electrode,
where φ ≈ 15, that is e15 ≈ 106 times larger than their bulk concentration, while
sodium will have a concentration that is e−15 ≈ 10−7 times larger than its bulk con-
centration, giving a difference in concentration of approximately 106 mol m−3. This
corresponds to a charge density of ρ = eNA · 106 ≈ 1011 C m−3. Looking at equation
4.10, using a grid size of h = 1 nm and f = − ρ

εVT
≈ 1021 m−2, we can say that in

one grid point, the potential changes by roughly h2 f ≈ 103. Within one grid point,
the potential drops below zero. This shows that the system is unstable. Initial con-
ditions close to the expected result, an electric double layer of roughly 3 nm, might
prevent this from happening. Additionally, a mixing parameter β can be introduced,
which indicates how much of the new concentrations must be kept. For example, a
mixing parameter of 0.9 means that 90% of the calculated concentrations and 10% of
the concentrations from the previous iteration are combined. This results in a more
stable system, which needs more iterations to converge, however.

It is important to realize that the large concentrations do not appear in the phys-
ical system. The Nernst-Planck equation that is used only holds in the dilute limit,
making the results within the electric double layer questionable. However, we are
interested in the profile of the potential, which should be represented accurately.

4.3 Results and Discussion

Based on the numerical methods as discussed in the previous section, the created
program does not yet produce reliable results. Therefore, we cannot compare this
model to the original model. However, we have already learned more about the
system by investigating how the Poisson equation would need to be included. Based
on length scale considerations, we found that the electric double layer would only
be a few nm thick. A drop in the dimensionless potential to 0.3, as observed in
figure 3.7, could be achieved within roughly 10 nm. Outside of the electric double
layer, negative and positive charges will roughly be in balance, giving (local) charge
neutrality. Therefore, the results from the original model are not unreasonable, if one
simply assumes that an exponential tail is present at the end of the potential profile.

One must still be cautious with using the curve of the potential, figure 3.7. Even
though the sudden drop in potential at the electrode can be explained with the for-
mation of an electric double layer, the curvature of the potential would still indicate
charge being present in the system, while the local electroneutrality condition as-
sumes no charge in the system. Therefore, it is advised to not draw conclusions
based on the potential profile.
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5. Discussion and Conclusion

In this thesis, we have presented a model to describe the processes happening within
a biofilm. The main focus was on doing this from a physics perspective; transport
equations linked to (bio)chemical reactions were key in modelling the biofilm. In
section 3, we were able to recreate the results from De Lichtervelde et al. [9], showing
that this model can be reproduced. However, the potential profile appeared to be
inconsistent with the Poisson equation; no charge was present in the system, but
the potential was not a straight line. In addition, the potential did not approach the
overpotential near the electrode.

In section 4 we created an approach for adding the Poisson equation to the
model. This gave a first indication to the question raised in the introduction; is
the local electroneutrality condition consistent with the results that were obtained
from the original model? Even though results from the adapted model were not yet
reliable, an analysis of the Debye length for the system showed that the results from
the original model were not implausible. However, it still remains a question what
the potential throughout the biofilm looks like.

In order to learn more about the system, it is recommended that the model using
the Poisson equation is stabilized, giving results of the profiles in the electric double
layer. In addition, the model can be extended by including laminar flow of the bulk
system, thus recreating a more realistic wastewater stream. By making the model
two-dimensional, additional challenges arise, such as how the network of pili should
be described in a two-dimensional manner. Electric double layers on this network
of pili can even be included.

The model that is created here can also benefit from a more extensive biological
approach. In section 3, it was shown that the pH throughout the biofilm decreases
significantly, which has an impact on the functioning of the bacteria. However, if the
bacteria within the biofilm do not produce an excess of electrons, they also do not
produce additional protons. Therefore, if the decrease in functioning of the bacteria
due to a proton build up is taken into consideration, it might be that the accumula-
tion of protons decreases. It would be interesting to model this interplay.

In conclusion, the technology of bioelectrochemical systems has the potential to
be implemented on a large scale, once more improvements are made. Experimental
research can build upon the theoretical approach taken here in order to optimize
specific systems. In addition, the current work has provided a more fundamental
understanding of the physical processes within the biofilm.
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A. The one-dimensional Poisson equation

In this appendix, various unsuccessful approaches to solving the one-dimensional
Poisson equation on two separate grids are presented. On an equidistant grid, the
discretized Poisson equation is given by

φi−1 − 2φi + φi+1 = h2 fi, i = 1, 2, · · · , N, (A.1)

with fi = f (xi) ≡ − ρ(xi)
εVT

, and Dirichlet boundary conditions given at φ0 = φ(x = 0)
and φN+1 = φ(x = L). Next we consider how to extend this to a non-equidistant
grid.

Consider two grids with different grid sizes. For grid points 1, ..., N1 a grid size
h1 is used, whereas for grid points N1 + 1, ..., N1 + N2 = N a grid size h2 is used.
We have Dirichlet boundary conditions given at both edges (φ0 and φN), but not in
between the two grids. A first approach to solving the Poisson equation on these
grids, is by using grid point N1 + 1 as boundary condition for the first grid, and grid
point N1 as boundary condition for the second grid. The boundary condition for the
first grid would be given by

φN1+1 =
−h2

2
N2 + 1

[
N2 fN1+1 − N2

φN1

h2
2
+

N1+N2

∑
j=2

(N2 − (j− 1)) fN1+j −
φN

h2
2

]
, (A.2)

which still depends on φN1 . By substituting this into the expression for φN1 , one can
solve for φN1 . This value can then be used in equation A.2 to solve for φN1+1. We
would then have both intermediate boundary conditions and the rest of the system
can be solved. However, there is one issue with this approach, rendering results
wrong. Looking at equation 4.7, it becomes clear that the boundary conditions need
to be at distance h from the first/final grid point. For the second grid, this is the
case; intermediate boundary condition φN1 and right boundary condition φN are
both separated from the grid by a distance h2. However, for the first grid this is not
the case. The left boundary condition is at a distance h1 from grid point 1, whereas
the intermediate boundary condition φN1+1 is at a distance h2 from grid point N1.
This difference makes the use of equation 4.7 invalid, as factors of h1 and h2 would
need to be included in the last row of matrix A. This would make the inversion
impossible. In conclusion, we cannot use this approach.

A second approach would be to adapt the two grids in such a manner that
boundary conditions can be chosen which are located at the same distance as the
grid size. One method to achieve this is by having the second grid within the fi-
nal grid point of the first grid. The first grid consists of N1 grid points with grid
size h1. The second grid consists of N2 grid points with grid size h1/(N2 + 1). The
distance between grid point N1 and boundary condition φN would be exactly h1.
Therefore, we can still use both boundary conditions (φ0 and φN) to solve for the
Poisson equation on the first grid. We would instead need to adapt the value of fN1

to incorporate the charge density profile on the second grid. Two options are possi-
ble; taking the total charge density or the average charge density over grid points N1
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up to and including N1 + N2. Once the potential is known on the first grid, φN1 can
be used as boundary condition for solving the second grid. However, the results on
the first grid are unreliable. The multiplication scheme between the matrix elements
a−1

ij and f j as can be seen in equation 4.10 is lost by both manners of adapting fN1 .
This approach cannot be used.

A third approach is to consider the Poisson equation explicitly at the boundary
between the two grids. Using a central difference scheme, the Poisson equation at
the boundary is given by

1
h1 + h2

[
2φN1+1

h2
− 2(

1
h1

+
1
h2

)φN1 +
2φN1−1

h1

]
= fN1 . (A.3)

We can substitute equation A.2 into equation A.3 to get rid of φN1+1. However, we
cannot get rid of φN1−1 to be able to solve for φN1 , because we run into the same
problem; we do not have a well-defined right boundary condition for the first grid.
We cannot use this approach as well.

Any set-up with two grids eventually results in the same issue; no accurate inter-
mediate boundary conditions can be created. Therefore, we conclude that we must
solve the Poisson equation using an equidistant grid.
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