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Abstract 

Improvement of vigilance measurement and data analysis is needed to make vigilance 

classification more applicable in real-world situations. This study aims to evaluate whether non-

invasive continuous infrared thermography can be used as a vigilance measurement,  whether 

machine learning models can improve data analysis and whether adding Time Series Analysis 

can improve vigilance classification. A 10-minute psychomotor vigilance task was conducted 

with 29 participants. The baseline Generalized Linear Model was compared to a Support Vector 

Machine model with Radial Basis Function and a Long-Term Short Memory neural network 

model. Three distal-to-proximal temperature gradients measured by iButtons and an infrared 

camera were used as predictors to classify vigilance. The Hanley and McNeil test showed no 

difference between the models and different model predictors. All models classified vigilance 

around chance level. Future research should include a more distributed participant group and 

more statistical features.  

Keywords: Infrared Thermography, Machine Learning, Thermoregulation, Time Series 

Analysis, Vigilance Classification  

 

Introduction 

Vigilance is a vital physiological signal and is usually defined as 'the ability to sustain attention 

to a task for a period of time' (Oken et al., 2006; Parasuraman et al., 1998). Any loss of vigilance 

during vigilance demanding tasks can have dramatic consequences, such as accidents. Around 

10-20 percent of the fatal accidents on the road are ascribed to drivers with a diminished 

vigilance level caused by fatigue (Aarts et al., 2016; Bergasa et al., 2006). Not only driving, but 

various occupations with safety-related operations such as air traffic control, rail services, and 

medical services require continuous sustained high vigilance (Donald, 2008; Masoudian & 
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Razavi, 2019; Zheng & Lu, 2017). Investigations in industrial operations and transportation 

have shown that diminished vigilance contributed to serious incidents and accidents (Dinges, 

1995). Therefore, detection and prediction of real time vigilance levels is important to provide 

a safe working environment.  

It is difficult to accurately estimate vigilance during vigilance demanding processes. 

The main reason is that vigilance states are intrinsic mental states that involve temporal 

evolution rather than a time point (Zheng & Lu, 2017). Furthermore, it is difficult to evaluate 

mental states without using an intrusive stimulus or behaviour probe. In order to improve 

vigilance assessment and make detection and prediction more applicable in real-world 

situations it requires continuous non-invasive measurement with high temporal resolution and 

a machine learning model data analysis (Davidson et al., 2007; Zhang et al.,2016a; Zheng & 

Lu, 2017).  

Multiple physiological parameters have been indicated to assess vigilance, of which 

electro-encephalography (EEG) is the most commonly used measurement (Dinges, 1995; Oken 

et al., 2006; Oudonesom, 2001). A detailed overview of EEG and other physiological 

measurements to capture vigilance can be found in Oudonesom (2001). The key metrics and 

their strengths and weaknesses are summarized below. 

EEG is the golden standard for vigilance detection because it can directly reflect human 

brain activity (Zheng & Lu, 2017). It has a high temporal resolution and low-cost non-invasive 

properties (Zhang et al., 2016b). However, when making EEG user applicable and feasible in, 

e.g. cars, problems arise. Most data collection requires skin preparation and conductive gel 

application to secure the sensors to the human skin. This is time consuming, uncomfortable and 

can be painful for the driver (Lin et al., 2014; Oudonesom, 2001). Wireless and wearable EEG 

systems reduce these problems by using flexible dry electrodes (Zhang et al., 2016b). However, 
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it should still be properly attached to the skin and therefore true unobtrusiveness remains a 

challenge. 

There are other continuous physiological parameters that have been shown to correlate 

with vigilance such as thermoregulation. The thermoregulation system alters skin blood flow 

which changes heat loss through convection and radiation of the skin (Ghahramani et al., 2016; 

Kräuchi & Wirz-Justice, 1994; Hasselberg et al., 2013). Heat loss mainly takes place in distal 

skin locations, such as the hands and feet, because of the high density of arteriovenous 

anastomoses (AVA) (Charkoudian, 2003; Walløe, 2016). Contrarily, proximal skin locations, 

relative to the core of the body, have less or no AVA’s. For a detailed overview of AVAs and 

their role in thermoregulation see Walløe (2016).  

Multiple studies have shown that spontaneous induced fluctuation in skin temperature 

support an association with vigilance (Kräuchi et al., 1999; Romeijn et al., 2012). According to 

Kräuchi et al. (2000) the best predictor to measure vigilance is the gradient between distal to 

proximal skin temperature (DPG). However, these studies used sensors to measure the skin 

temperature of the participants, which are invasive.  

Infrared thermography (IRT), on the other hand, operates in the infrared band in the 

electromagnetic spectrum (Abdelrahman et al., 2017). It records the radiating energy that is 

released from the body which is directly related to skin temperature (Fernández-Cuevas et al., 

2015; Ioannou et al., 2014). The advantage of IRT is that these recordings are contact-free. It 

ensures the isolation of unsystematic data variation such as the user's bias due to their awareness 

of being monitored, the movement of the sensors or the stressful attachments of sensors to the 

user's body (Abdelrahman et al., 2017). IRT is therefore non-invasive and more user-friendly 

than EEG and other thermoregulation measurements.  
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Thermal imaging has been linked to related cognitive and affective processes such as 

cognitive (work)load (Abdelrahman et al., 2017; Reyes et al., 2009; Stemberger et al., 2010), 

driving performance (Reyes et al., 2009), fatigue (Aryal et al., 2017) and stress (Puri et al., 

2005), but it is currently unknown if IRT is able to predict vigilance. 

Apart from non-invasive data acquisition, further improvement in vigilance assessment 

could possibly be made in its analysis. Currently, research of thermography on vigilance 

assessment has focused on finding a trend in thermography on vigilance assessment by using 

linear regression (Fronczek et al., 2008; Raymann & van Someren, 2007; Romeijn et al., 2012). 

Their goal was to find a relationship between thermography and vigilance rather than to detect 

and predict real-time vigilance estimation. This study, however, wants to find a workable and 

reproducible model to monitor, and possibly warn for, a drop in vigilance. The model needs to 

automatically detect meaningful patterns in the data, which can be achieved by machine 

learning (Shalev-Schwarts & Ben-David, 2014). Machine learning is one area of artificial 

intelligence that attempts to emulate human behaviour. It involves building a model that applies 

learning methods to find correlations in the data. It can either tackle classification problems or 

regression problems (Zhao et al., 2008).  

This research focuses on a practical application of probable loss detection in vigilance, 

which is more of a classification problem than a regression analyses. Although linear regression 

equations can be used for classification (Neapolitan & Jiang, 2018), it cannot predict values 

perfectly (Gravetter & Wallnau, 2013). Moreover, nonlinearities are often crucial in finding 

aspects of physiological functions (Marmarelis, 1997), such as skin temperature (Kitney, 1975). 

Therefore a linear function may be too limiting to capture the relationship between 

thermoregulation and vigilance. 

Support vector machines (SVM) can overcome this problem by using the kernel trick. 

SVM is a learning model that creates a linear separating hyperplane, but can embed the data 
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into a higher-dimensional space. Data that is not linearly separable in the original input space 

can then be easily separable in the higher dimensional space. It creates a non-linear original 

space and can be seen as an expansion to the linear regression (Russel & Norvig, 2016, pp. 744-

748 ; Shalev-Schwartz & Ben-David, 2014, pp 167-177). 

Some researchers have used SVM algorithms to predict vigilance (Armanfard et al., 

2016; Lin et al., 2014; Wei & Lu, 2012; Zhang et al., 2016a). Armanfard et al., (2016) 

conducted a vigilance classification experiment by a psychomotor vigilance task (PVT). Using 

EEG signals extracted from a brain-sensing Muse headband and a SVM with linear kernel 

function to identify vigilance lapses. It achieved a classification accuracy of 94.6%. These 

studies used EEG signals as input features to predict and detect vigilance levels. However, it is 

currently unknown whether machine learning techniques can be used with thermography to 

classify vigilance. 

Lastly, further improvement of vigilance assessment can be made by incorporating the 

temporal structure of the data. According to Zhang et al. (2016a) the above named studies 

ignore the time dependency of the vigilance changing process. The studies treat the subject’s 

mental states as independent points and discard the temporal dependency information. The use 

of independent points tends to be too variable to observe rapid temporary lapses (Davidson et 

al., 2007). Therefore continuous task performance and psychophysiological measures over time 

should be analysed instead (van Orden et al., 2000).  

This temporal detection can be tackled by time series classification, where the goal is to 

find a function of an object and time which can detect scenarios of a given class from past and 

present input values only (Geurts, 2001). Several types of time series classification algorithms 

have been developed of which Recurrent Neural Networks (RNN) is one of them. 
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RNN is a kind of artificial neural network which is motivated to compute parallel to the 

human brain (Hassoun et al., 1995). It is based on a collection of connected units called artificial 

neurons (Schnupp et al., 2010). In RNN, these connections between units form a cycle which 

makes it suitable to process continuous data sequences (Sano et al., 2018; Zhang et al., 2016a). 

RNNs are trained using stochastic gradient descent, which calculates the prediction error and 

uses this error gradient to update the network weights. A limitation to RNN models is that the 

model slows down learning or even stops when the gradient signal becomes too small (Sano et 

al., 2018).   

 In order to control this gradient, Long Short Time Memory (LSTM) neural networks, 

a type of RNN, can be incorporated (Hanin, 2018). LSTM is capable of learning long-term 

dependencies and does not employ fixed memory representations (Davidson et al., 2007). It 

contains hidden layers with memory cells and an input, output and forget gate. For each input, 

the function determines to remember or forget the value and when to output the value (Sano et 

al., 2018; Zhang et al., 2016a). As a result, it can store states over long periods of time and 

obtain temporal sequence tasks such as machine translation (Sutskever et al., 2014) and speech 

recognition (Sundermeyer et al., 2012). 

Zhang et al. (2016a) incorporated a LSTM model as a temporal encoder to estimate 

vigilance by EEG and forehead Electrooculogram (EOG). They found that incorporating LSTM 

models in the data analysis can improve vigilance estimation over SVM models. It is currently 

unknown if time series classification can be applied for thermography. 

Since practical vigilance assessment is of crucial importance to monitor, and possibly 

warn for, a drop in vigilance, the current study will assess the practical application on non-

invasive continuous measurement to detect and predict vigilance levels. The main objectives 

are to assess if thermoregulatory changes measured by IRT could be used as a continuous non-
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invasive measurement, if machine learning models can improve data analysis and whether 

adding time series can improve vigilance classification.  

 

Methods 

Experimental setup 

This study used a dataset of skin temperature responses collected during a sustained 

attention reaction time task. This data was processed to train and test multiple machine learning 

algorithms to classify vigilance. All procedures complied with the guidelines set out in the 

Declaration of Helsinki.   

Participants 

Twenty-nine voluntary participants (four male, Median 21, range: 19-29 years) were 

recruited within the University of Utrecht and the observers’ social network. All participants 

were informed about the experiment of the study beforehand and provided written informed 

consent. None of them had any known history of concentration-related disorders and none of 

them smoked. Since caffeine has shown to affect vigilance (Gilbert et al., 2000) and skin 

temperature (Quinlan et al., 2000), caffeine intake was prohibited from 3 hours prior to the 

experiment onward. 

Experimental procedure 

The procedure took place between 13:00 and 15:00 o’clock, for both skin temperature 

and vigilance tend to fluctuate most during this time of day (van Marken Lichtenbelt et al., 

2006). The experiment was performed in a light intensity (75 ± 1 lux) and temperature (21.6 ± 

1.5 °C) controlled room, in which no-one except the participant was present during the task.  
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The participants were asked to remain seated during the whole experiment to minimize 

the effect of physical movement and changes in body posture on skin temperature regulation. 

To minimize the effect of prior physical exercise before arrival at the lab, it was ensured that 

the participants were seated at least 30 minutes prior to the start of the vigilance task. During 

this acclimatization period, temperature loggers were attached to the participant, as described 

below. Furthermore, multiple questionnaires were given, of which none were used for data 

analysis. 

The participants seated in front of a computer and faced a thermographic camera placed 

on a tripod. Their face was mounted in a chinrest to guarantee minimal movement during the 

camera recordings. They were presented with a 10-minute vigilance task, described below. This 

task was rehearsed 1 minute by every participant before the start of the task. Prior and after the 

task, the participants rated their subjective sleepiness on the Stanford Sleepiness Scale (Hoddes, 

1973). 

Vigilance assessment 

Vigilance was assessed using the 10-minute PVT. The PVT is a simple reaction time 

task that monitors vigilance, which is described in more detail in Dorrian et al. (2005). In brief, 

the participants were presented a black screen with a red box in the middle of the screen. A cue, 

the appearing of a millisecond (ms) counter inside the box, occurred at inter-stimulus interval 

(ISI), varying random between 1000 − 9000 ms. Participants were instructed to press the 

spacebar of a keyboard with their dominant hand as fast as possible whenever the cue appeared. 

When pressed, the ms counter would stop and remain visible for 1 second, after which the next 

ISI commenced. Each PVT lasted 10 minutes and consisted of ~ 94 stimuli.  
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Temperature assessment 

Skin temperature were 1). continuously measured from 4 regions of interest (ROI) on 

the skin by wireless temperature loggers and 2). recorded from the infrared spectrum using 

camera-based thermal imaging. 

 

Figure 1 

Skin temperature measurement location of the iButtons and Region of Interest (ROI) of the 

thermographic camera  

 

Note. The skin temperature measurement locations on the body (a) and the face (b). The orange 

points are the proximal locations on the infraclavicular area below the clavicle (a) and the 

forehead above the eyebrow (b). The blue points are the distal locations on the dorsal side of 

the proximal phalange of the middle finger (a), the side of the nose (b) and the tip of the nose 

(b). The DPG is measured between the 2 closest distal-to-proximal locations, the finger-clavicle 

gradient and the nose-forehead gradient. The circles are the locations measured by the iButtons. 

The squares are the regions of interest recorded by the thermal camera.   
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The participants skin temperature was logged by 4 iButtons (type DS1922L, Maxim 

integrated, San Jose, USA), with samples of 30-sec intervals and a resolution of .0625 °C. This 

method has been validated and described in detail by van Marken Lichtenbelt et al. (2006). The 

iButtons were attached on two proximal positions, one placed on the infraclavicular area below 

the clavicle and one on the forehead above the eyebrow (Figure 1). iButtons were also attached 

on two distal locations, one on the dorsal side of the proximal phalange of the middle finger 

and one on the side of the nostril (Figure 1). They were attached on the non-dominant side of 

the body with tape (Fixomull stretch, BSN medical GmbH, Hamburg, Germany) to ensure 

minimal movement during the task. During the measurement, the clavicle was covered by a 

sweater to ensure equal conditions between participants.  

Thermal images were recorded by a thermographic camera (FLIR E53 24°, FLIR 

Systems Inc., Wilsonville, U.S.A.) with an infrared resolution of 240 x 180 pixels, thermal 

sensitivity below 0.04 °C, and an accuracy of ± 2°C. The camera measured facial skin 

temperature with 0.033-sec sample interval and image frequency of 30 Hz.   

Data analysis 

All data was processed and analysed by using R-4.0.3.  

Pre-processing. After the thermographic camera recordings, commercial software 

(Flirtools+, FLIR Systems Inc., Wilsonville, U.S.A.) was used to manually locate two ROIs on 

the face for data extraction, shown in figure 1. One proximal position located on the forehead 

above the eye pupil (~20 pixels upward) on the opposite side of the forehead of the iButton. 

One distal position located on the nose tip parallel to the located iButton on the nose (~10 pixels 

vertical shift). The tip of the nose was chosen instead of the side of the nose to minimize the 

effects from infrared radiation reflected by the cheek and avoiding the iButton sensor. Skin 

temperature values were defined by taking the mean temperature of each ROI (61 pixels area) 
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per frame. The pre-processed IRT data was split into temporal windows, each starting 2 seconds 

prior to the participants behavioural response per PVT stimuli.  

Feature extraction. The DPGs were calculated over each stimuli or temporal window 

per participant. As mentioned, the DPG provides a reliable estimate of thermoregulatory 

changes and is therefore seen as the best predictor of vigilance levels (Kräuchi et al., 2000). A 

gradient could be calculated for a distal area minus a corresponding nearby proximal skin area 

(DPG) (Romeijn et al., 2012). For this study, three separate DPG were calculated. The first, 

iButton middle body DPG (DPG_iBmid) was calculated by the iButton between the measured 

DPG of the finger and the clavicle (Figure 1). This gradient has been validated by Raymann 

and van Someren (2007). The second, iButton face DPG (DPG_iBface), was calculated by the 

iButton between the measured DPG of the nose and the forehead (Figure 1). The third, IRT face 

DPG (DPG_IRT), was calculated by the infrared camera between the measured DPG of the 

nose and the forehead (Figure 1). The DPGs between the nose and forehead have not been 

validated in previous studies. However, the study of Bergersen (1993) has recognised the 

difference in the amount of AVA’s between these locations. Bergersen found AVA’s in the tip 

of the nose, suggesting a distal location, and no AVA’s in the forehead, suggesting a proximal 

location. Furthermore, the face is often exposed, making it more easily to observe with IRT and 

is therefore used as a potential DPG. 

All DPG data was restricted to the behavioural response belonging to the stimuli 

presented during the trial. The DPG features corresponded to the last measured temperature 

readouts per stimuli response, or presented a sequence of 2-sec interval prior to this response.  

Data processing. An overview of the data processing is shown in Figure 2. The DPG 

data was normalized to zero mean and unit variance within participant in order to avoid 

overfitting, account for normality and human error. The DPG_IRT data was manually extracted 

from the thermographic camera recordings, which could have resulted in potential human error. 



 

13 

Therefore, observations which exceeded ± 2 standard deviation from the zero mean were 

determined as outliers and deleted from the dataset. Furthermore the DPG_IRT data was 

checked for stationarity because of the assumption that time series are stationary. 

 

Figure 2 

An overview of the data processing, machine learning model and model evaluation. 

Note. DPG_iBmid: iButton finger-clavicle gradient, DPG_iBface: iButton nose-forehead 

gradient. DPG_IRT: infrared camera nose-forehead gradient, GLM: Generalized Linear Model, 

SVM RBF: Support Vector Machine with Radial Basis Function, LSTM: Long Short-Term 

Memory model.  

 

Per trial the level of vigilance was categorized in 2 states, either a lapse, loss in 

vigilance, or no-lapse, vigilant. Lapses were defined as omissions, reactions times (RTs) 

exceeding the 90th percentile of the distribution of the recorded RTs per participant (Dinges et 

al., 1997). In the dataset the number of no-lapses was far greater than the number of lapses, 
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causing a highly unbalanced dataset. This imbalance could impair the predictive ability of the 

algorithm because it pursues the overall classification accuracy (Liang et al., 2020). Meaning 

that it pays more attention to finding a no-lapse than a lapse. To overcome this problem, 

synthetic minority over-sampling technique (SMOTE) with 5 kernels was applied on the 

training set (Chawla et al., 2002). SMOTE is an over-sampling method in which the minority 

class, the lapses, is oversampled by creating artificial synthetic examples with k-nearest 

neighbours rather than normal replacement over-sampling (Ganganwar, 2012). 

The data was split into a train and test set, where test data was withheld from training 

and otherwise. The train set contained the first 8 minutes of the PVT task per participant and 

the test set contained the last 2 minutes. In this way, the model could learn from the participants 

input. Five-fold cross validation was used to subsample validation data during training 

equivalent to the data evaluation of Zhang et al. (2016a). 

Model 

An overview of the three different types of models and their model evaluation is shown 

in Figure 2. The data analyses was split into Single Frame Analyses (SFA) and Time Series 

Analyses (TSA). The input of the SFA were the DPG_mid, DPG_iBface and DPG_IRT which 

correspond to the measured temperature readouts per stimuli response. The input of the TSA 

was the 2-second temporal window frame of the DPG_IRT. This input formed a time series 

sequence of 60 frames. In this study a time series was defined as a sequence of temperature data 

per trial per participant which did not overlap temperature data from other trials. Each PVT trial 

lasted 2 seconds or more depending on the ISI. No time series was used for the temperature 

data collected by the iButtons, because the 30-sec sampling interval could not be estimated 

inside the temporal window of interest.  
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Generalized Linear Model. A generalized linear model (GLM) was used to classify 

vigilance by SFA and TSA. A GLM was chosen because it is the standard data analysis in 

vigilance detection by DPG which was used in Romeijn et al., 2012. Therefore, this model was 

used as a baseline for vigilance classification and to differentiate between the iButtons and 

potential IRT estimation of vigilance in SFA. Although not commonly applied, some 

researchers have shown that with high temporal resolution data GLM could be used for TSA 

(Kristenen et al., 2017). The DPG used for TSA is measured by IRT (DPG_IRT) and considered 

to be of high temporal resolution. Therefore, the GLM model was also used for TSA vigilance 

classification. 

Support Vector Machine with Radial Basis Function. A SVM with Radial Basis 

Function (RBF) was used to classify vigilance by SFA and TSA. The SVM applies a kernel 

function which extends the linear decision function to a non-linear high dimensional feature 

space function. A RBF kernels was chosen because it judges the similarity of two inputs by 

their Euclidian distance. It can detect anomalies in a window of sequences that are similar for 

other window frames. Therefore it can be promising for TSA (Rüping, 2001).  

Long Short Time Memory. A LSTM neural network model was used to classify 

vigilance by TSA. In the research of Zhang et al. (2016a), LSTM models improved vigilance 

estimation compared to SVM RBF. Therefore, this study replicated the 3 stacked hidden layer 

LSTM model structure with tanh activation and sigmoid output by Zhang. Zhang designed two 

LSTM models who used EEG and EOG as input features. This research had one input feature 

and could therefore only adopt the model of Zhang which merged the EEG and EOG at feature 

level, the S-LSTM. A detailed description of the S-LSTM can be found in Zhang et al. (2016a). 

Different to Zhang et al. (2016a) was that no early stopping strategy was applied. Training 

stopped after 20 epochs and a batch-size of 10 sequences were given as input. Moreover, in 
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training, the RMSProp method with a fixed learning rate of 0.01 was used to optimize the binary 

cross entropy loss function.  

Model evaluation. The Area Under The Receiver Operating Characteristics Curve (AUC-

ROC) was used as a performance metrics during training of all models. The AUC-ROC is a 

performance measurement for classification problems and evaluates how good a model can 

distinguish between a lapse and no-lapse during training. The AUC-ROC was also used to 

evaluate models during testing. There was, however, a chance that the imbalanced test data 

could result in more optimistic and misleading AUC-ROC interpretation. Therefore the 

Precision-Recall Area Under Curve (PR-AUC) was also used for model evaluation. The 

Precision Recall (PR) curve has a strong relationship with the Receiver Operating 

Characteristics (ROC) curve (Davis & Goadrich, 2006) and focusses on the minority class, the 

lapses (Branco et al.,2015). It is therefore seen as an effective model evaluation for imbalanced 

binary classification models. In order to compare the models the Hanley and McNeil method 

was used to compare the AUC-ROC (Hanley & McNeil, 1982). 

 

Results 

Sample selection 

The data contained 2719 samples of 29 participants. 45 outliers were deleted and the 

data per participant was split into training (2142 samples) and test-data (532 samples). Both 

lapse (224 + 1100%, 2464 samples) and no-lapse (1918 +28.5%, 2464 samples) data was 

increased by SMOTE oversampling in the training data. 
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Table 1  

Single frame model performance of Generalized Linear Model and Support Vector Machine 

with Radial Basis Function on training and test data per temperature gradient 

 
GLM SVM RBF 

 
Train Test Train Test 

 
ROC (SD) PR (SD) ROC [CI] PR ROC (SD) PR (SD) ROC [CI] PR 

DPG_iBmid .62 (.02) .64 (.01) .58 [.51-.64] .13 .75 (.02) .72 (.02) .56 [.49-.64] .10 

DPG_iBface .58 (.02) .60 (.01) .50 [.43-.58] .11 .70 (.02) .68 (.02) .52 [.44-.60] .12 

DPG_IRT .60 (.03) .61 (.01) .56 [.48-.63] .14 .71 (.01) .68 (.02) .56 [.48-.64] .15 

Note. AUC-ROC (ROC) and PR-AUC (PR) per model and per temperature gradient (DPG). 

The models consist of the Generalized Linear Model (GLM) and Support Vector Machine with 

Radial Basis Function (SVM RBF). The DPG’s consist of the iButtons (DPG_iBmid: finger-

clavicle gradient and DPG_iBface: nose-forehead gradient) and the infrared camera 

(DPG_IRT: nose-forehead gradient). The GLM was as follows: 𝐿𝑎𝑝𝑠𝑒 = 𝐷𝑃𝐺 ∗ 𝑡𝑖𝑚𝑒, where 

lapse is a loss in vigilance, DPG is the temperature gradient in °C and time is the trial moment 

of PVT task in ms. SVM RBF classifies lapses by DPG and time with 𝐶 = 10 and 𝜎 = .5.  

 

Temperature measurement 

Table 1 summarizes the model evaluation per DPG per SFA during training and testing. Both 

models used three types of DPG and time over task to classify lapses. For both models, the 

DPG between the finger and clavicle measured by the iButtons (DPG_iBmid) had an overall 

higher AUC-ROC compared to the DPG between the nose and forehead by the iButtons 

(DPG_iBface) and the infrared camera (DPG_IRT). The AUC-ROC suggested that the finger-
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clavicle DPG was a better vigilance predictor than the nose-forehead gradient. On the other 

hand, the DPG_IRT had a higher PR-AUC than the DPG measured by the iButtons during 

testing.     

 

Table 2 

 Difference between AUC-ROC of single frame GLM and SVM RBF per DPG  

  
GLM SVM RBF 

  
DPG_iBface DPG_IRT DPG_iBmid DPG_iBface DPG_IRT 

  
D (p) D (p) D (p) D (p) D (p) 

GLM DPG_iBmid 1.28 (.20) .48 (.63) .35 (.72) .91 (.36) .30 (.76) 

 
DPG_iBface 

 
-.78 (.44) -1.11 (.27) -.79 (.43) -.92 (.36) 

 
DPG_IRT 

  
-.18 (.86) .51 (.61) -.05 (.96) 

SVM RBF DPG_iBmid 
   

.69 (.49) .10 (.92) 

 
DPG_iBface 

    
-.68 (.50) 

Note. Hanley and McNeil test for AUC-ROC with bootstrap = 2000. The difference is defined 

as 𝐷 = (𝐴𝑈𝐶𝑅𝑂𝐶1 − 𝐴𝑈𝐶𝑅𝑂𝐶2)/𝑠, where s is the Standard Deviation of the bootstrap 

difference (Hanley & McNeil, 1982). 

 

To determine whether there was a true difference per model performance per DPG, the 

Hanley and McNeil test was used to compare the AUC-ROC during testing (Hanley & McNeil, 

1982). Table 2 shows the difference per model per DPG for SFA. No difference was found 

between using different DPG inputs for single frame model performances. These results 
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suggested that IRT classified vigilance as good as the validated finger-clavicle gradient 

measured by the iButtons. 

Single Frame Analysis 

 In order to find out whether machine learning can be applied for vigilance classification 

and even improve vigilance classification compared to standard linear classification, the 

standard linear analysis (GLM) was compared to non-linear machine learning analysis (SVM 

RBF) in SFA (Table 1). Overall, during the training the SVM RBF (𝑀 = .72𝑆𝐷 = .03𝐴𝑈𝐶 −

𝑅𝑂𝐶; 𝑀 = .69𝑆𝐷 = .02) outperformed the GLM (𝑀 = .61𝑆𝐷 = .03𝐴𝑈𝐶 − 𝑅𝑂𝐶; 𝑀 =

.62𝑆𝐷 = .02𝑃𝑅 − 𝐴𝑈𝐶) on lapse detection, which suggested that the SVM RBF was an 

acceptable discriminator between lapses (AUC-ROC > 0.7) and that it improved vigilance 

classification over standard linear analysis (GLM). However, as mentioned both models did not 

significantly differ from each other based on AUC-ROC performance during testing (Table 2). 

The AUC-ROC of the GLM with infrared temperature input (DPG_IRT) showed almost no 

difference with the SVM RBF with the same input variables (DPG_IRT), 𝐷 = −0.05, 𝑝 = .96.  

Thereby, during testing it was shown that both models were worse in classifying 

vigilance. In Figure 3 the best models of GLM and SVM RBF are shown, without taking into 

account the use of different DPG predictions. The GLM with the finger to clavicle gradient 

(DPG_iBmid) discriminated a lapse slightly above chance level of 0.5 (AUC-ROC [CI] = .58 

[.51-.64]) and the PR-AUC was also around chance level of 0.09 (PR-AUC = .13). The same 

was seen for the infrared temperature of the nose to forehead gradient (DPG_IRT) for SVM 

RBF (AUC-ROC[CI] = .56[.48-.64]; PR-AUC=.15). 
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Figure 3  

The PR curve and ROC curve of the Single Frame Analysis models with the highest AUC-ROC 

per  model, GLM and SVM RBF 

  

  

Note. Both plots show the Precision-Recall curve (black line) of a Single Frame Model, the 

dotted black line presents the PR curve change level. The inner plot shows Receiver Operating 

Characteristics curve (black line) of Single Frame Model, where the gray shape indicates the 

confidence interval of the AUC-ROC and the dotted red line presents the chance level. Left 

plot: SFA GLM DPG_iBmid; right plot: SFA SVM RBF DPG_IRT.    

 

Time Series Analysis 

 Table 3 summarizes the model performance for TSA during training and testing. The 

GLM, SVM RBF and LSTM used a 2-second temporal window of the DPG_IRT as input data 

to classify lapses. This input met the time series assumption of stationarity (𝐷𝑖𝑐𝑘𝑒𝑦𝐹𝑢𝑙𝑙𝑒𝑟 =

−15.07, 𝑝 = .01) (Said & Dickey, 1984). Using DPG data over time (TSA) showed a higher 
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model performance during training for GLM and SVM RBF than SFA (Table 1). The SVM 

RBF showed promising results with a high AUC-ROC (AUC-ROC (SD) = .90(.01)) and PR-

AUC (PR-AUC (SD) = .84(.00)), suggesting it was excellent at discrimination. The LSTM 

neural network model had the worst time series model performance (ROC = .61 ; PR =.62) 

during training, which was not as expected.   

 

Table 3 

Time series model performance of GLM, SVM RBF and LSTM. Bold marking the best scores 

per classifier per metric  

 
GLM SVM RBF LSTM 

 
Train Test Train Test Train Test 

 
ROC (SD) 

PR (SD) 

ROC [CI] 

PR 

ROC (SD) 

PR (SD) 

ROC [CI] 

PR 

ROC (SD) 

PR (SD) 

ROC [CI] 

PR 

DPG_IRT .72 (.02) 

.71 (.00) 

.54 [.46-.61] 

.12 

.90 (.01) 

.84 (.00) 

.56  [.48-.64] 

.10 

.61 

.62 

.55  [.46-.63] 

.11 

Note. AUC-ROC (ROC) and PR-AUC (PR) scores per model; Generalized Linear Model 

(GLM), Support Vector Machine with Radial Basis Function (SVM RBF) and Long Short-

Term Memory (LSTM) neural networks model. The GLM was as follows: 𝐿𝑎𝑝𝑠𝑒 =

𝐷𝑃𝐺_𝐼𝑅𝑇𝑡=𝑡−0 + 𝐷𝑃𝐺_𝐼𝑅𝑇𝑡=𝑡−0.033 + 𝐷𝑃𝐺_𝐼𝑅𝑇𝑡=𝑡−0.066 + ⋯ + 𝐷𝑃𝐺_𝐼𝑅𝑇𝑡=𝑡−2, where lapse 

was a loss in vigilance, DPG_IRT was the infrared camera nose to forehead temperature 

gradient (°C) at time t, the trial moment of PVT task. The SVM RBF and LSTM classified 

lapses by 2-second temporal window of DPG prior to the behavioural response per PVT data 

input. SVM RBF with 𝐶 = 10 and 𝜎 = .5.  
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Figure 4 shows that the ROC curve and PR curve of the TSA models were around 

chance level, which matched their corresponding low AUC-ROC and PR-AUCs (Table 3). This 

was the same for the ROC curves and PR curves of the SFA (Figure 3), which was verified by 

the results in Table 4. No significant difference was found between the AUC-ROCs of the SFA 

and TSA, suggesting that time series did not improve vigilance classification.   

 

Table 4  

Difference between AUC-ROC per DPG_IRT model for Single Frame and Time Series Analysis 

  
Single frame analysis Time Series Analysis 

  
SVM RBF GLM SVM RBF LSTM 

  
D (p) D (p) D (p) D (p) 

Single frame analysis: GLM -.05 (.96) .32 (.75) .46 (.64) .16 (.87) 

 
SVM RBF 

 
.40 (.69) .52 (.60) .20 (.84) 

Time series analysis: GLM 
  

.18 (.86) -.18 (.86) 

 
SVM RBF 

   
-37 (.71) 

 Note. Hanley and Mcneil test for AUC-ROC with bootstrap = 2000. The difference is defined 

as 𝐷 = (𝐴𝑈𝐶𝑅𝑂𝐶1 − 𝐴𝑈𝐶𝑅𝑂𝐶2)/𝑠, where s is the Standard Deviation of the bootstrap 

difference (Hanley & McNeil, 1982). 
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Figure 4  

PR curve and ROC curve of the Time Series Analysis models (TSA). 

  

 

 

Note. Both plots show the Precision-Recall (PR) curve (black line) of a TSA, the dotted black 

line presents the PR curve change level. The inner plot shows Receiver Operating 

Characteristics curve (black line) of TSA, where the gray shape indicates the confidence 

interval of the AUC-ROC and the dotted red line presents the chance level. Upper left plot: 

GLM; upper right plot: SVM RBF; lower left plot: LSTM.    
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Discussion 

The aim of this study is to evaluate whether non-invasive continuous time-series measurements 

can detect and predict real-time vigilance levels.  

The first objective is whether IRT can be used as a continuous non-invasive measurement 

to assess vigilance. The results found no performance difference between the models when 

iButtons or IRT was used as a predictor. These findings would have suggested that the DPG 

between the nose and forehead can be used as vigilance classifier and that IRT can be used as 

a continuous non-invasive measurement to assess vigilance. However, the models which were 

used to compare the vigilance measurements classified vigilance around chance level. The 

small differences between the performance of the models could be caused by models itself 

rather than the vigilance measurement.  

Although not significant, the DPG_iBmid had a higher AUC-ROC and PR-AUC compared 

to the nose-forehead gradient. This could be caused by the difference in distal skin temperature. 

As mentioned, heat loss mainly takes place in distal skin locations because of the high density 

of AVA’s (Charkoudian, 2003; Walløe, 2016). According to Walløe (2016), the AVAs in the 

hand, feet and the limbs are most responsible for heat loss regulation because these skin surfaces 

make up about 50% of the body surface. The nose contains only a small part of the skin surface 

and could therefore be too small to expose major temperature fluctuations. Nonetheless, the 

DPG_IRT had a higher AUC-ROC and PR-AUC compared to the DPG_iBface. It is possible 

that these minor temperature fluctuations in the nose were detected by the infrared camera 

because it had a higher temporal resolution and it was non-invasive. The iButtons were attached 

with tape which could affect the local heat transfer, and therefore the local thermal regulation 

(Quesada et al., 2015). This could suggest that IRT is even better in detecting temperature 

fluctuations than iButtons. Due to the lack of a control variable of the IRT measurement on the 

finger-clavicle gradient and the lack of a good baseline model, the results could not provide 
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conclusions about whether IRT can be used as a vigilance measurement. Nevertheless, it 

provides a new insight in the relationship between thermography and vigilance.  

The second objective of this study is whether non-linear machine learning can improve 

vigilance classification. Results of the SFA showed that adding non-linearity (SVM RBF) did 

not improve classification over linear models (GLM), since no difference was found between 

models. Moreover, both models classified vigilance around chance level which was not as 

expected.  

As mentioned, the GLM was used as a baseline analysis which was expected to be able to 

classify vigilance. However, during the training of the model performance of the GLM was low 

which resulted in a poor discrimination during testing (Hosmer et al., 2013). A probable cause 

for the low model performance during training was that the linear regression function was too 

simple. All features collected from the questionnaires were left out after five-fold cross-

validation and only DPG and time were used as predictors to classify vigilance. A limitation to 

this research is that statistical features were not taken into account. These could have extended 

the formula leading to a better model performance. 

The SVM RBF, on the other hand, showed on average an acceptable model performance 

(>0.7). Which suggested that it was able to detect patterns in DPG to classify vigilance. The 

model, however, did not generalize well on the test data and classified vigilance around chance 

level. Although cross-validation and SMOTE was applied there could be a possibility that the 

model still overfitted the data.  

The third objective is whether TSA can improve vigilance classification. Results showed 

that model performance of GLM and SVM RBF improved when time series were added but did 

not generalize well on the test data. It is possible that adding time series was merely adding 
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more features than incorporating a TSA. Which could cause the models to overfit on the training 

data.  

According to Rüping (2001) a linear model (GLM) cannot incorporate time dependency 

because this complexity can only be added by incorporating high level reasoning and 

background knowledge into the analysis. Whereas SVM can incorporate this complexity by 

using kernels. However, according to Zhang et al. (2016a), this is not enough to incorporate 

TSA. As mentioned earlier, vigilance is a dynamic process which should remember the history 

of the whole sequence, not only a window time frame. Only the LSTM could incorporate these 

sequences (Zhang et al., 2016a). Unfortunately, the LSTM had a low model performance during 

which resulted in poor vigilance classification.  

Time is a very complex phenomena and very difficult to represent within the model. A 

reason for its complexity is that time can be presented in different representations (Rüping, 

2001). In this study we chose to collect a time window of two seconds to incorporate within the 

model. Other forms of time series, such as different window sizes or statistical features could 

have improved the model and should be taken into account when considering further research.  

 At this moment no conclusions can be drawn from the results, since the baseline model 

with the validated DPG measurement was not able to classify vigilance. Limitations in data 

processing could have led to overall low model performance but also methodological factors, 

such as the young age of the participant group, could have played a role in lapse classification. 

A lapse was defined as a reaction time exceeding the 90th percentile of the distribution of RTs 

for PVT. Young people have faster reaction times than older people (Blatter et al., 2006), thus 

the lapse could be too biased to define a real loss in vigilance. A more distributed participant 

group could result in a more generalizable model representation. 
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Overall, this study was not able to classify vigilance by thermography. Machine learning 

models had not shown to improve data analysis and TSA had not improved vigilance 

classification. Nevertheless it showed that IRT could be a promising non-invasive continuous 

measurement to classify vigilance. This research is still at an early stage and future research 

should include a more distributed participant group and collect more statistical features. Ideally 

this research could provide new thoughts and insights in novel Time Series vigilance 

classification models. Whereby it can contribute in real-life situations such as monitoring 

vigilance in truck driving. 
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