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1 Introduction

As the title already suggests, in this paper we will prove that the theory of
real closed fields admits quantifier elimination. This is an important result in
model theory, especially when it comes to proving results in real algebraic ge-
ometry. Model-theoretic proofs of theorems such as ”Hilbert’s 17th Problem”
and the ”Real Nullstellensatz” are much shorter than proofs using geometrical
techniques.

In order to understand the results mentioned above, we will first determine
what rings, fields and especially real closed fields are, from a model-theoretic
point of view(Section 2). Then in section 3, we will introduce the compactness
theorem and explain its name with the help of what are called ”types”. After
this, as an aside, we will look at the space of types over algebraically closed
fields(section 4) and study some properties of the theory of algebraically closed
fields(section 5.1). This in order to become familiar with the application of
model theory to fields.

In section 5.2 some properties of the theory of real closed fields will be dis-
cussed, including the ”Tarski-Seidenberg Theorem”, which will be proven in
section 6. We will continue with a number of simple corollaries of this theorem
in section 7, one of which is ”Hilbert’s 17th Problem”, and section 8 will give
a proof the ”Real Nullstellensatz”. Lastly, we will see in section 9 an example
of how model theory and quantifier elimination can be applied to real algebraic
geometry when we talk about ”semi-algebraic” functions, which are known as
”definable” functions in model theory.

For the research on the subject of this paper in general, I mainly have made use
of two publications that give a good introduction to model theory and the model
theory of fields: ”A Course in Model Theory” by Martin Ziegler and Katrin Tent
[6] and ”Model Theory of Fields” by David Marker, Margit Messner and Anand
Pillay [3]. For basic notions I also have used ”Sets, Models and Proofs” by Ieke
Moerdijk and Jaap van Oosten [4]. Furthermore, ”Real Algebraic Geometry”
by Jacek Bochnak, Michel Coste and Marie-Francoise [2] and the lecture notes
”Rings and Galois Theory” by Frits Beukers [1] were a useful resource of infor-
mation for section 2 and 9, respectively. Similarly, the notes of a seminar by
Victoria Noquez [5] were of good use in section 6. For the historical background
of the ”Tarski-Seidenberg” theorem, I used an article by Lou van den Dries [7].

This thesis is written for readers who have a mathematical background and al-
ready are familiar with basic concepts in Model Theory such as for example log-
ical sentences and theories. However, I tried to make the thesis as self-contained
as possible, without affecting the readability too much. I hope readers will get
a good picture of how model theory, and in specific quantifier elimination, can
be used in order to prove algebraic results.
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2 Theories of rings

In this section I will shortly introduce the concept of rings, fields and ideals and
their corresponding theories. If you are already familiar with this, you can skip
this section.
Firstly, let LR be the language of rings, consisting of the constants 1 and 0, and
the two-place function symbols + and ·. Then the LR-theory of commutative
rings, Trings, consists of axioms saying that R is an Abelian group under adding
(1-4), that multiplication is associative (5) and distributive (6-7) and that there
is a unit for multiplication (8). Furthermore, we have that multiplication is
commutative (9). This results in te following LR-sentences:

1. ∀xy(x+ y = y + x)

2. ∀xyz(x+ (y + z) = (x+ y) + z)

3. ∀x(0 + x) = (x+ 0)

4. ∀x∃y(x+ y = y + x = 0)

5. ∀xyz(x(yz) = (xy)z)

6. ∀xyz(x(y + z) = xy + xz)

7. ∀xyz((y + z)x = yx+ zx)

8. ∀x(1 · x = x · 1 = x)

9. ∀xy(xy = yx)

There exist rings for which (9) is not true. These are called non-commutative.
However, in this thesis I will not study these rings. Therefore, from now on,
when I write Trings I mean the theory of commutative rings.

Definition 2.1. A ring is a model of Trings.

Secondly, a ring F is called a field if it is a model of Tfields, which is equal
to Trings together with two axioms that state that 0 is not equal to 1 and that
every non-zero element of F has an multiplicative inverse:

1. ¬(1 = 0)

2. ∀x(¬(x = 0)→ ∃y(x · y = 1))

A special kind of field are the algebraically closed fields. In such a field F, ev-
ery polynomial with coefficients from F has a root in F. Therefore, the theory
of algebraic closed fields, TACF , is given by Tfields, enriched with the axioms
∀a0 · · · an−1∃x(xn + an−1x

n−1 + · · · + a0 = 0) for every n ∈ N. An example of
an algebraically closed field is C.

In addition to that, we have real closed fields. These fields have characteris-
tic 0 and are ordered. Furthermore, every polynomial of odd order has a root.
In mathematical notation, this means that TRCF is equal to Tfields extended
by:
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1. ∀xyz(y = x2 ∧ y + z2 = 0→ y = 0)

2. ∀y(∃x(y = x2) ∨ ∃z(y + z2 = 0))

3. ∀xyz(x2 + y2 + z2 = 0→ x = y = z = 0)

4. for every odd n the sentence:∀a0 · · · an−1∃x(xn+an−1x
n−1 + · · ·+a0 = 0)

Also, with regard to the remainder of this thesis it is useful to introduce the
notion of an ideal. An ideal I is a subset of a ring R that has the following
properties:

1. 0 ∈ I

2. ∀x, y ∈ I, x− y ∈ I

3. ∀r ∈ R,∀x ∈ I, xr ∈ I

I is called a prime ideal if furthermore ¬(I = R) and ∀x, y ∈ I, xy ∈ I =⇒ x ∈
I or y ∈ I.

For ideals of polynomial rings, we have some interesting notions and theorems,
that we will use in other sections of this thesis:

Theorem 1 (Hilbert’s Basis Theorem). For a field R, let R[X1, . . . , Xn] denote
the ring of polynomials in n variables with coefficients in R. Its ideals are finitely
generated.

Definition 2.2. Let R be a ring. For an ideal I ⊆ R[X1, . . . , Xn], by Z(I) we
denote the zero set of I, i.e. the set of elements x on which all functions f of I
are zero. In addition, the ideal that consists of the functions f that are zero on
Z(I), is denoted by I(Z(I)).

Definition 2.3. Let R be a ring and I ⊆ R an ideal. Then its radical
√
I is

defined to be the set: {a ∈ R|an ∈ I for some n ∈ Z+}

Theorem 2 (Nullstellensatz for algebraically closed fields). Let A be an alge-
braically closed field. Also, let I be an ideal of A[X1, . . . , Xn]. Then I(Z(I)) =√
I

Furthermore, we will make use of some other field-theoretical terminology:

Definition 2.4. Field-theoretically, an element a is algebraic over a field K, if
there exists a polynomial p(x) in K[X] such that p(a) = 0.

Definition 2.5. An extension of a field K is called algebraic if all its elements
are algebraic over K

Definition 2.6. An algebraic extension field of K that is real closed, is called
a real closure of K.
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For the rational numbers Q we have for example that a real closure is the
field of real numbers R. In fact, with the ordering < on Q, we see that R is the
only real closure, up to isomorphism:

Theorem 3. Every ordered field has a real closure. Moreover, it is unique up
to isomorphism.

Lastly, for the proof of the Tarski-Seidenberg Theorem, we will consider the
quotient field of a ring. Intuitively, this means:

Definition 2.7. The quotient field is the smallest field into which a ring can
be embedded.

Its elements are the equivalence classes defined by for example the relation
R: a

bR
c
d ⇔ ad = bc. So for instance, the quotient field of the ring of natural

numbers N is Q.
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3 Types

With regard to the subject of types, it is useful to make the following clear. In a
language L, formulas can have free variables and bounded variables. There is an
exact definition of what it means if a variable is free, but this definition involves
a whole list of other definitions(see for example [4]). So I will explain what it
means intuitively. For example, let the language L contain a two-place function
symbol f . Then consider the L-formula ∀xf(x, y) = 0. Here we have that the
variable x is bounded and that the variable y is free. The idea behind it, is that
the formula does not say anything about x. In fact, we could replace the x′s
by z and the formula would have the same meaning. However, for the variable
y, this is different. The formula ∀xf(x, y) = 0 may be true if we substitute y
for one element, but may be false if we substitute it with another. So in a way,
the formula states a property of y. A formula in which all variables are bound
is called a sentence.

With this in mind, we consider the following definitions:

Definition 3.1. Let L be a language and M an L-structure. Then elements
a1, . . . , an ∈M are said to satisfy an L-formula φ(x1, . . . , xn) ifM |= φ(a1, . . . , an).

Additionally:

Definition 3.2. Let L be a language and M an L-structure. We say that
elements a1, . . . , an of M realise a set q of L-formules in the free variables
x1, . . . , xn, if every φ(x1, . . . , xn) ∈ q, is satified by a1, . . . , an. This is sometimes
denoted as M |= q(a1, . . . , an).

And lastly:

Definition 3.3. Let L be a language and M an L-structure. A set of L-formulas
q is called finitely satisfiable if for every finite subset r of q we have elements
a1, . . . , an ∈M such that M |= r(a1, . . . , an).

Then, in the definition of an n− type, we have (amongst other criteria) that
a set of formulas in n free variables has to be finitely satisfied by an n-tuple of
elements from M :

Definition 3.4. For a language L, let M be a model of an L-theory T . An n-
type over a model M is a set p of L-formulas in the free variables x1, . . . , xn that
is maximal with respect to the property: for every finite subset φ1, . . . , φk of p,
there exist a1, . . . , an ∈M such that M |= φ1(a1, . . . , an)∧ . . .∧ φk(a1, . . . , an).

As I will show later in this section, the space of n-types over a model M ,
written Sn(M), has interesting properties if we endow it with a topology. For
this purpose, first I define [φ] to be the set of types that contain the L-formula
φ(x1, . . . , xn). Then the collection of these sets is basis of a topology on Sn(M).
This follows from the facts that [φ1 ∨ φ2] = [φ1] ∪ [φ2] ; [φ1 ∧ φ2] = [φ1] ∩ [φ2] ;
∅ = [⊥] ; Sn(M) = [>]. Additionally, note that [φ]c = [¬φ], so the complements
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of these sets are also open. Now with the help of the following fundamental
theorem, it can be shown that Sn(M) is compact with this topology. But first
define:

Definition 3.5. Let L be a language. An L-theory T is called consistent, if
there is an L-structure M such that all these sentences are true in M . M is
called a model of T . Moreover, let T ′ be an set of the form T ∪ q, in which q
denotes a set of L-formulas in the free variables x1, . . . , xn. Then T ′ is called
consistent if there is a a model M of T such that there are a1, . . . , an ∈M such
that M |= q(a1, . . . , an).

Theorem 4 (Compactness Theorem). If every finite subset of a theory T is
consistent, then so is T.

Before I show that Sn(M) is compact, consider the following Lemma:

Lemma 1. Let L be a language, T an L-theory and M a model of T . In
addition, let p be a set of L-formulas in the free variables x1, . . . , xn. Then
p ∈ Sn(M) if and only if p is a maximal set with respect to the property that
T ∪ p is consistent.

Proof. Let p be a set of L-formulas in x1, . . . , xn that is maximal with respect
to the property that T ′ = T ∪ p is consistent. Because T ′ consistent, there is a
model M of T in which a1, . . . , an can be found such that M |= p(a1, . . . , an).
Hence p is finitely satisfied in M . Moreover, p is maximal with respect to this
last property, for suppose there is a set q of L-formulas in the free variables
x1, . . . , xn, such that q is finitely satisfied in M and p ⊆ q, p 6= q. Then every
finite subset of T ∪ q is consistent. So by the Compactness Theorem, T ∪ q
must be consistent. However, this contradicts our assumption that p was al-
ready maximal with respect to that property. Therefore p is maximal finitely
satisfiable in M , so p ∈ Sn(M).

For the implication in the other direction, let p ∈ Sn(M). Then p is maxi-
mal finitely satisfiable in M . Since M is a model of T , it then follows that
every subset of T ∪ p is consistent. Therefore by the Compactness Theorem,
T ∪ p is consistent. Furthermore, p is maximal. For suppose not. Then there
is a maximal set q of L-formulas in x1, . . . , xn such that T ∪ q is consistent and
p ⊆ q, p 6= q. But then it follows from the last paragraph that q ∈ Sn(M). This
contradicts the assumption that p was already a type over M . We conclude
from this that p is a maximal set such that T ∪ p is consistent.

To show compactness, suppose ∪i∈I [φi] = Sn(M) for some index set I. Then
{[φi]|i ∈ I} is an open covering of Sn(M). Now note that ∅ = (∪i∈I [φi])c =
∩i∈I([φi])c = ∩i∈I [¬φi]. Therefore, there is no type p such that {¬φi|i ∈ I} ⊆ p.
This means that T ∪ {¬φi|i ∈ I} is inconsistent. For suppose it would be con-
sistent, then by Lemma 1, {¬φi|i ∈ I} cannot be maximal with respect to this
property. There would be a maximal set p of L-formulas such that T ∪ p is
consistent and {¬φi|i ∈ I} ⊆ p, {¬φi|i ∈ I} 6= p. By Lemma 1 p must be a
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type, contradiciton. So T ∪ {¬φi|i ∈ I} is inconsistent.

Now, because of Theorem 4, the finite subset T∗ ∪ {¬φi|i ∈ J} is inconsis-
tent as well, for some finite T∗ ⊆ T and finite J ⊆ I. It follows by Lemma
1 that there is no type q with {¬φi|i ∈ J} ⊆ q. Hence ∩i∈J [¬φi] = ∅. Thus
Sn(T ) = ∅c = (∩i∈J [¬φi])c = ∪i∈J [φi]. Since J is finite, we conclude that
Sn(M) is compact.

Moreover, Sn(M) is Hausdorff. To see this, let p and q be different types. Then
there is an L−formula φ1 such that it is contained in only one of these types.
Without loss of generality, assume φ1 ∈ p. Then p ∈ [φ1]. Since q is a maximal
subset, ¬φ1 ∈ q, so q ∈ [¬φ1]. Note that [φ1] and [¬φ1] are disjunct, for suppose
the opposite is true. Then there is a type r such that φ1 ∈ r and ¬φ1 ∈ r. Be-
cause r is a type over M , both M |= φ1(a1, . . . , an) and M |= ¬φ1(a1, . . . , an).
This leads to a contradiction. So Sn(M) is Hausdorff.
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4 The space of types over Algebraically Closed
Fields

In a way, types are related to the ideals of a field. There is a bijection between
the space of n-types over an agebraically closed field K and the space of prime
ideals of K[X1, . . . , Xn]. Moreover this bijection is continuous in one direction,
as we will see in this section. But first define:

Definition 4.1. By Spec(R) we denote the set of prime ideals of a commutative
ring R.

We endow this space by a topology such that sets of the form:
VI = {P ∈ Spec(R)|I ⊆ P} are closed, where I is an ideal of R.

Let K be an algebraically closed field. First, let us look at what the elements
of the prime ideals in Spec(K[X1, . . . , Xn]) are. As a result of the Nullstellen-
satz, we have that I(Z(P )) =

√
P for a prime ideal P ∈ Spec(K[X1, . . . , Xn]).

Moreover, note that
√
P = P because of the properties of a prime ideal. So

I(Z(P )) = P . This means that the elements of P are polynomials that have at
least one common zero. It also means that if one such common zero is a and
f(a) = 0 for a polynomial f , we have that f ∈ P .

With this in mind, we define the function h : Sn(K) → Spec(K[X1, . . . , Xn])
in the following way: to each type p, we assign the ideal I that consists of the
functions f for which the LR-formula f(v1, . . . , vn) = 0 is contained in p.

It can be shown that this map is bijective. For suppose we have an ideal
I ∈ Spec(K[X1, . . . , Xn]). Then there are v1, . . . , vn such that
f(v1, . . . , vn) = 0 for every f ∈ I. Then consider the type p that consists
of consequences of the formulas ”f(v1, . . . , vn) = 0” for all the f ∈ I and
”¬(f(v1, . . . , vn) = 0” for all the f /∈ I. This is a type because firstly, every
finite subset is obviously satisfied. Secondly, it is maximal because it contains
the consequences of all satisfiable atomic formulas and satisfiable negations of
atomic formulas. Since TACF has quantifier elimination, this means that all
satisfiable formulas are in p. This will become clear in later sections. For now,
note that h(p) = I. This means that h is surjective. Moreover, p is uniquely
determined from I. For let there be another type q that contains all formulas
from p. Then because types are maximal, q must be equal to p. So h is injective.

Lastly, assume we have a closed subset V of Spec(K[X1, . . . , Xn]). Then each
ideal P in this subset determines a type p = h−1(P ). Then for an f ∈ P , the
formula φP := f(v1, . . . , vn) = 0 is an element of p. Therefore, p ∈ [φP ]. This
means that h−1(V ) can be written as the union

⋃
P∈V [φP ], which is closed.

This leads to the conclusion that h is continuous.

The results above have some interesting corollaries. For example, we see now
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that Spec(K[X1, . . . , Xn]) is also compact, which can be of importance in the
study of algebraic geometry. Furthermore, the fact that
|Sn(K)| = |Spec(K[X1, . . . , Xn])| will be useful in the next chapter.
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5 Properties of TACF and TRCF

5.1 TACF

Definition 5.1. Let L be a language. An L-theory T is said to admit quantifier
elimination, if for every L-formula φ in the free variables x1, . . . , xn, there exists
a quantifier free L-formula ψ in at most the free variables x1, . . . , xn that is
equivalent to φ, modulo T . Equivalent modulo T means that
T |= ∀x1, . . . , xn(φ↔ ψ) holds.

Theorem 5 (Tarski). The theory of algebraically closed fields admits quantifier
elimination.

This theorem has important implications. But first we define:

Definition 5.2. Let L be a language. An L-theory T is called model complete
if for every two models of T , with the property that one model is a substructure
of the other, the former model is an elementary substructure of the latter.

Definition 5.3. Let L be a language. An L-theory T is called complete if for
every L-sentence ψ, we have that either T |= ψ or T |= ¬ψ.

Equivalently, we have:

Proposition 1. Let L be a language and T an L-theory. Then T is complete
if in all models the same L-sentences are true.

As a result of quantifier elimination, TACF is model complete. For suppose
we have two models M1 and M2 such that M1 is a substructure of M2. M1 is
an elementary substructure of M2, if for all LR-formulas φ in the free variables
x1, . . . , xn we have the following: for elements a1, . . . , an of M1,
M1 |= φ(a1, . . . , an) ⇐⇒ M2 |= φ(a1, . . . , an). Since quantifier free formulas do
not change meaning under substructure, this is true for quantifier free formulas.
Now as a result of quantifier elimination, it then holds for all formulas. So M1

is an elementary substructure of M2.

However, TACF is not complete. Namely, if one takes a pair of models, they do
not necessarily satisfy the same LR-sentences. To see this, consider the charac-
teristic of fields. The characteristic is the number of times one has to add 1 to
get 0. So if the characteristic of a field is three, the LR-sentence 1 + 1 + 1 = 0
is true for this field. The characteristic is not the same for every algebraically
closed field, since it is not determined by TACF . Therefore, for a pair of models
there may be an LR-sentence that is true in only one of them.

Nevertheless, we can define theories that determine the characteristic:

Definition 5.4. By T 0
ACF and T pACF , we denote the theories that consist of

TACF with infinitely many extra LR-sentences that together say that the char-
acteristic is 0 (not 1, not 2, etc.) or one extra LR-sentence that states that the
characteristic is a prime number p, respectively.
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We can prove that these theories are complete by analysing the L-sentences.
Shortly saying, for a language L every L-sentence is ”built” from other sentences,
called atomic sentences. As a result, properties of the latter sentences give us
information about all sentences. More formally we write:

Definition 5.5. An atomic formula is an L-sentence of the form s1 = s2,
R(s1, . . . , sn) or ⊥.

We will demonstrate that T pACF is complete. We want to show that for every
LR-sentence ψ either T pACF |= ψ or T pACF |= ¬ψ. Since TACF has quantifier
elimination, T pACF has. As a result, we only have to look at the quantifier free
LR-sentences to determine whether T pACF is complete. These quantifier free
sentences, are conjunctions, disjunctions, implications and negations of atomic
sentences. Therefore, it is sufficient to look only at the atomic sentences.

The atomic sentences are of the form s = t in which the s and t are closed
terms. Since these terms are closed and we only have the constants 1 and 0 in
LR, s and t must be elements of Z. Then as a result of the characteristic p,
T pACF |= (t = s) if and only if the difference between t and s is a multiple of
p. And T pACF |= ¬(t = s) if and only if the difference between s and t is not a
multiple of p. It follows that T pACF is complete. In a similar way we have that
T 0
ACF is complete.

For complete theories we have the following notion:

Definition 5.6. If for any model M of a complete theory T , |Sn(M)| = |M |,
then T is called ω-stable.

It easily follows that the complete theories TACF with characteristic 0 or
prime p , T 0

ACF or T pACF , are ω-stable. On the one hand because of the fact
that by Hilbert’s basis theorem, for an algebraically closed field K the ideals
of K[X1, . . . , Xn] are finitely generated and therefore |Spec(K[X1, . . . , Xn])| =
|K[X1, . . . , Xn]|. And since polynomials are finitely generated as well, from the
coefficients of K, |K| = |K[X1, . . . , Xn]| = |Spec(K[X1, . . . , Xn])| On the other
hand because, as we saw, |Sn(K)| = |Spec(K[X1, . . . , Xn])|, so |Sn(K)| = |K|.

Finally, we have the concept of a strongly minimal theory. We first define:

Definition 5.7. Let L be a language. A subset A of a set B is definable, if
there exists an L-formula φ, such that A = {x ∈ B|B |= φ(x)}.

A strongly minimal theory then, is what we call a theory with the property
that for every definable subset A of a model B, either A is finite or B − A is
finite.
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Proposition 2. In LR, TACF is strongly minimal.

Proof. Let K be an algebraically field and φ(y) an LR-formula that defines a
subset A of K. Note that as a result of quantifier elimination, φ(y) must have
a quantifier free equivalent that is the finite disjunction of finite conjunctions of
atomic formulas. These formulas are of the form f(y) = 0 or ¬(f(y) = 0), since
the LR-terms with free variables must be polynomials(see also section 6). The
formula f(y) = 0 defines a finite subset, since a polynomial has a finite number
of roots. For the same reason, the set defined by ¬(f(y) = 0) is cofinite. So if
all conjunctions have a formula of the form f(y) = 0 in it, A must be finite. If
not, there is a conjunction that exists only of formulas of the form ¬(f(y) = 0),
in which case A is cofinite.

5.2 TRCF

First of all, TRCF is not ω-stable. For let R be the field of real algebraic numbers
over Q. This field is a model of TRCF . The elements of this field are the zeros
of polynomials with coefficients in Q. Since Q is countable, there are countably
many of such polynomials. Moreover, a polynomial has finitely many zeros. As
a result, R must be countable.
However, Sn(R) is uncountable. Namely, for a real number r ∈ R, consider the
type that contains: A := {q < x < p|q, p ∈ Q : q < r < p}(Note that where I
write a < b in LR-formulas, I mean that (∃z(z 6= 0 ∧ a+ z2 = b)); LR does not
have a relation symbol <). This type exists, because A is finitely satisfiable.
Moreover, for every real number r we have a different type of this kind. The set
of real numbers R is uncountable, so there are uncountably many of such types
over R. Therefore, Sn(R) is uncountable. So we see that |Sn(R)| > |R|

As opposed to TACF , TRCF does not have quantifier elimination in LR. For
assume by contradiction that it does. Let ψ(x) := ∃z(z 6= 0 ∧ x+ z2 = 2). The
formula ψ(x) must have a quantifier free equivalent φ(x). Every quantifier free
L-formula defines a finite or cofinite subset(this follows from the fact that these
formulas are a finite combination of atomic formulas and disjunctions, conjunc-
tions, negations and implications). So φ(x) must define a subset that is finite
or cofinite. The formula ψ(x) defines a subset that is neither finite nor cofinite,
since in for example R, there are infinitely many numbers bigger than 2 and
there are infinitely many smaller. But φ(x) and ψ(x) are equivalent, modulo
TACF . Contradiction.

So in LR, TRCF does not have quantifier elimination. In addition, the theory is
model complete, but not complete. But that is not all there is to it. It depends
on the language one uses. One can make a theory have quantifier elimination by
admitting an extra relation symbol R to the language LR for every LR-sentence
φ and expanding the theory by axioms saying: ∀x1, . . . , xn(R(x1, . . . , xn) ↔
φ(x1, . . . , xn)). This is called the Morleyisation of T. This theory is still not
complete however.
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Also, one can consider the theory of real closed fields when it is axiomated
in the language of ordered rings, LOR. This language has a two-place relation
symbol < for order. For this case, we have an important result:

Theorem 6 (Tarski-Seidenberg). The LOR-theory TRCF has quantifier elimi-
nation.

In the next section I will give a proof of this theorem and background in-
formation. Furthermore, I will show in section 7 that with the language LOR,
TRCF is model complete and complete.

For theories like TRCF , with a dense linear order < without end-points, there
is a similar notion to that of strong minimality for TACF , after we have defined
what an interval is:

Definition 5.8. Let L be a language with a relation symbol < for order. Let
T be an L-theory that contains L-sentences that state that < is a dense lineair
order without end-points. Furthermore, let M be a model of T . An interval in
M is a subset I of M such that for a, b ∈ I, a ≤ c ≤ b→ c ∈ I. An interval I is
called open, if there exist q ∈M and r ∈M , such that I consists of all elements
s ∈M that satisfy q < s < r.

Definition 5.9. Let L be a language with a relation symbol < for order. An
L-theory that contains L-sentences that state that < is a dense lineair order
without end-points, is o-minimal if in all models, every definable set can be
written as the finite union of points and open intervals.

Proposition 3. The LOR-theory TRCF is o-minimal.

Proof. Let J be a real closed field an B ⊆ J defined by ψ(x).TRCF has quantifier
elimination. Then in the same way as we did for a definable subset of an
algebraically closed field, we can write ψ in the form:
ψ(x) = ∨ni=1(∧mj=1fij(x) = 0∧∧pk=1gik(x) > 0). Formulas of the form fij(x) = 0
define a finite number of points, since the fij are polynomials. Formulas of the
form gik(x) > 0 define a finite number of open intervals, because of the fact that
polynomials are continuous. So ψ defines a finite union of finite intersections of
intervals and points. As a result, TRCF is o-minimal.
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6 Tarski-Seidenberg

In 1940 Tarski proved that the theory of real closed fields admits quantifier
elimination. Actually, he proved it twice. The second time he gave a proof
in ”A decision method for elementary algebra and geometry” in 1948. It was
Seidenberg however who made the theorem accessible to more mathematicians,
when he gave a different proof in 1954. Therefore, the theorem is widely known
as the Tarski-Seidenberg theorem. However, the name Tarski’s theorem is also
commonly found. To complicate things even more, an important consequence of
this theorem is regularly called the Tarski-Seidenberg Theorem as well. Namely
the fact that a projection of a semi-algebraic set is also semi-algebraic, which
will become clear in the next section. For now, we will concentrate on quantifier
elimination. First consider the following definitions and lemma:

Definition 6.1. A basic formula is an atomic formula or its negation.

and:

Definition 6.2. A formula of the form φ = ∃xβ(x) where β is a quantifier free
formula that is a conjunction of basic formulas, is named a primitive existential
formula.

It is known that a theory has quantifier elimination if every primitive exis-
tential formula ∃xβ(x) is equivalent to a quantifier free formula. In fact, for a
real closed field R in de language LOR, it is sufficient to prove that sentences
of the form: ∃x(∧mi=1fi(x) = 0 ∧kj=1 gj(x) > 0), with the fi and gj polynomials,
are equivalent to a quantifier free one.
To see this, first note that β(x) is of the form ∧sq=1γq(x) ∧tr=1 ¬δr(x), with γ
and δ atomic formulas. Since we only have the two-place relationsymbol < in
LOR, γq and δr are either of the form a = b or a < b. So the negations of the
δr are either ¬(a = b) ↔ (a < b ∨ b < a) or ¬(a < b) = (a = b ∨ b < a), in
which the a and b represent LOR-terms. Note that actually, these negations are
disjunctions of atomic formulas. As a result, β can be written as: ∨ge=1χe in
which the χe are conjuntions of atomic formulas.
It is easy to see that ∃xβ(x) ↔ ∃x ∨ge=1 χe(x) ↔ ∨ge=1(∃xχe(x)). Now, as
the χe(x) are atomic, they are of the form a(x) = b(x) ↔ a(x) − b(x) = 0
or a(x) < b(x) ↔ b(x) − a(x) > 0. In LOR, the terms a(x) and b(x) must
be polynomials. Therefore, we only have to prove that sentences of the form
∃x(∧mi=1fi(x) = 0 ∧kj=1 gj(x) > 0) have a quantifier free equivalent, in order to
show quantifier elimination.

We can show that a such formula has a quantifier-free equivalent, with the
use of the following Lemma:

Lemma 2. Let L be a language. For an L-theory T , a formula φ(x1, . . . , xn)
is equivalent to a quantifier free formula, if for every two models M1 and M2

that have a common substructure R, we have: M1 |= φ(a1, . . . , an) =⇒ M2 |=
φ(a1, . . . , an) for all a1, . . . , an ∈ R.
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Proof. Let T be an L-theory. Assume that we have a formula φ(x1, . . . , xn)
such that for any two models M1 and M1 with a common substructure R,
M1 |= φ(a1, . . . , an) =⇒ M2 |= φ(a1, . . . , an) holds for all a1, . . . , an ∈ R.

To start with, note that if φ(x) or ¬φ(x) is inconsistent with T , it is already
clear that φ(x) must be equivalent to a quantifier free formula. Because, if
T ` ∀x¬φ(x), it follows that T ` ∀x(φ(x) ↔ ¬(c = c)) for a constant c. In a
similar way, if T ` ∀xφ(x), T ` ∀x(φ(x)↔ (c = c)).

From now on, assume φ(x) and ¬φ(x) are consistent with T . Let Γ(x) be
the set of quantifier free formulas ψ(x) that follow from φ(x), modulo T . For
new constant symbols b1, . . . , bn, denote (b1, . . . , bn) = b, we will prove the claim
that T ∪Γ(b) ` φ(b), from which it will follow that φ(x) is equivalent to a quan-
tifier free formula. But first we will prove our claim:

Suppose by contradiction that not T ∪ Γ(b) ` φ(b). Then T ∪ Γ(b) ∪ {¬φ(b)} is
consistent and so there is a model M1.

Consider the substructure A of M1 that is generated by b and also consider
∆ = T ∪ Diag(A) ∪ {φ(b)}, where Diag(A) is the set of basic formulas for
elements from A, that are true in A. If ∆ by contradiction is not consistent,
Diag(A)∪{φ(b)}must be inconsistent, since φ(x) is consistent with T . It follows
from the compactness theorem then, that there are χ1(b), . . . , χk(b) ∈ Diag(A),
such that {χ1(b), . . . , χk(b)}∪{φ(b)} is inconsistent. So ∧ki=1χi(b) implies ¬φ(b),
modulo T . Now because b1, . . . , bn were newly added, they do not appear in T .
Therefore, this means that for all x, ∧ki=1χi(x) implies ¬φ(x). But then there is
a χ(x)i such that modulo T , for all x, φ(x)→ ¬χi(x). As a result, ¬χi(x) ∈ Γ.
Because ¬χi(x) is quantifier free and A a substructure of M1, also A |= ¬χi(b).
However, this contradicts the fact that χi(b) ∈ Diag(A). So ∆ is consistent.

Since ∆ is consistent and Diag(A) ⊂ ∆, there is a model M2 of ∆ such that
A is a substructure of M2. Now since both M1 and M2 are models of T with
a common substructure A, it follows with our assumption that M2 |= ¬φ(b),
because M1 |= ¬φ(b). This is a contradiction with the fact that M2 is a model
of ∆, so T ∪ Γ(b) ` φ(b).

Now since T ∪ Γ(b) ` φ(b), we have that T ∪ Γ(b) ∪ ¬φ(b) is inconsistent.
The formula ¬φ(x) is consistent with T , so in particular, Γ(b) ∪ φ(b) is incon-
sistent. By the compactness theorem and because A is generated by b, there
must be ψ1(b), . . . , ψn(b) ∈ Γ(b) that are inconsistent with ¬φ(b). As a result,
∧ni=1ψ(b)→ φ(b), modulo T . Because of the b1, . . . , bn being new constants, for
all x ∧ni=1ψ(x)→ φ(x), modulo T . Also note that all ψi(x) already follow from
φ(x). Therefore ∧ni=1ψ(x) and φ(x) are equivalent. Since all ψi(x) are quantifier
free, φ(x) is equivalent to a quantifier free formula, modulo T .

Now we can prove quantifier elimination for real closed fields:

16



Theorem 7 (Tarski-Seidenberg). The LOR-theory TRCF has quantifier elimi-
nation.

Proof. Let M1 and M2 be two models of TRCF with a common substructure
R. Let furthermore ψ(a1, . . . , an) := ∃bφ(b, a1, . . . , an) with a1, . . . , an ∈ R
be a primitive existential. As already pointed out, we need to prove that
χ(a1, . . . , an) := ∃b(∧mi=1fi(b) = 0 ∧kj=1 gj(b) > 0) is equivalent to a quanti-
fier free formula. As a consequence of lemma 2, we have to show that M2 |=
χ(a1, . . . , an) if M1 |= χ(a1, . . . , an).

Assume M1 |= χ(a1, . . . , an) for a1, . . . , an ∈ R. As shown before, this means
there are functions fi and gj and a b in M1 such that ∧mi=1(fi(b) = 0) ∧
∧kj=1(gj(b) > 0) holds. Note that because R is a substructure of M1 and M2,
these functions have the same interpretation in R and M2 as in M1.

Firstly, if one of the fi(x), say fh(x), is not zero for all x in M2, b is a root
of fl. Then b is algebraic over R and its quotient field as well, so it is con-
tained in the real closure C of the latter. Note that by Theorem 3, this real
closure is unique because the quotient field is ordered. This means C ⊆M1 and
C ⊆M2. As a consequence of the fact that C ⊆M2, also b ∈M2 and therefore
M2 |= ∃b ∧mi=1 (fi(b) = 0) ∧ ∧kj=1(gj(b) > 0). So χ(a1, . . . , an) and therefore
ψ(a1, . . . , an) must be equivalent to a quantifier free formula.

Now assume that all fi(x) are zero for all x ∈ M2. Then χ(a1, . . . , an) re-
duces to ∃b ∧kj=1 (gj(b) > 0). Since C is real closed, polynomials of uneven
order have roots in C. So these gj(x) can be factorized in factors of the form
(x − q) and (x2 + rx + s), where the latter factor remains either positive or
negative for all x. It depends on the former kind of factors whether gj(x) > 0
or not. Note that the q in these factors are a root of the polynomial in C. Since
M1 |= ∃b∧kj=1 (gj(b) > 0), we can find α and β in terms of these roots, such that

∧kj=1(gj(c) > 0) for all α < c < β. Because α < α+β
2 < β and α+β

2 ∈ C ⊆ M2,
this means M2 |= χ(a1, . . . , an).
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7 Applications of quantifier elimination for real
closed fields

As I already mentioned, there is a well-known corollary of quantifier elimination
in real algebraic geometry, which is known as the Tarski-Seidenberg theorem as
well. Furthermore, we will see that TRCF is complete. In addition to this, there
are several theorems in real algebraic geometry that were hard to prove geo-
metrically, but are less complicated now we can use quantifier elimination. For
instance, we can give a proof of Hilbert’s 17th problem and of a nullstellensatz
for real closed fields. These applications will be discussed in this section and in
section 8, respectively.

In order to prove the first corollary define:

Definition 7.1. Let L be a language and T an L-theory. Then an L-structure
that is a substructure of all models of T is called a prime structure.

Corollary 1. The LOR-theory TRCF is complete.

Proof. As a consequence of quantifier elimination, all LOR-sentences are equiv-
alent to a quantifier free LOR-sentence, modulo TRCF . Since in a substructure
the same quantifier free sentences are true as in the structure of which it is a
substructure, we see that in TRCF , a substructure and a structure satisfy the
same LOR-sentences. Moreover, it can be shown that the set of rational num-
bers Q (up to isomorphism) together with the ordering < is a prime structure
for this theory. Hence all models of TRCF satisfy the same LOR-sentences. So
TRCF is complete.

We also see that, just like TACF , TRCF is model complete, as a direct con-
sequence of quantifier elimination. Additionally, we have a similar notion for
real closed fields to that of what are called constructible sets for algebraic closed
fields, which we call semi-algebraic sets.

Definition 7.2. A subset A of Rn, where R is real closed, is called semi-
algebraic, if it can be written as a combination of sets of the form {x|f(x) > 0}
for polynomials f with coefficients in R.

We can make a so-called projection of these subsets. A projection of a set
A ⊆ Rn+1 is a set Π(A) ⊆ Rn, such that for every n-tuple y in Π(A), there is
an x ∈ R such that the (n + 1)-tuple (x, y) is an element of A. In case n = 2,
you could compare it with the shadow that a cube casts on the wall.

Corollary 2. The projection of a semi-algebraic set is again a semi-algebraic
set.

Proof. First of all, note that every semi-algebraic set is defined by a quantifier
free formula and that every quantifier free formula defines a semi-algebraic set.
This is a fact, because the atomic formulas define sets of the form {x|0 < f(x)}
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and {x|0 = f(x)}. Then the conjunctions, disjunctions and negations of the
atomic formulas respectively translate into intersections, unions and comple-
ments of these sets. So the quantifier free formulas define the semi-algebraic
sets.
Assume we have such a semi-algebraic subset A ⊆ Rn that is defined by the
quantifier free formula φ(x), in which the x stands for the n-tuple x1, . . . , xn.
Then the formula ∃x1φ(x) defines the projection of A. As a consequence of
quantifier elimination, there is a quantifier free equivalent ψ(x2, . . . , xn) of this
formula. Since this ψ is quantifier free, it defines a semi-algebraic subset of
Rn−1. Because of the equivalence, this must be exactly the projection.

The next theorem, Hilbert’s 17th problem, is about rational, positive semi-
definite functions f . This means that f can be written as a fraction of poly-
nomials in R[X1, . . . , Xn], were R is a field, and that f(x1, . . . , xn) ≥ 0 for all
x1, . . . , xn in R, respectively. Abraham Robinson was the first to prove this
result using quantifier elimination, after Emil Artin had proved it with the help
of earlier techniques.

Theorem 8 (Hilbert’s 17th problem). Let R be a real closed field. Then every
rational positive semi-definite function f ∈ R(X1, . . . , Xn) can be written as
f = g21 + . . .+ g2k, where gi ∈ R(X1, . . . , Xn) for i ∈ {1, . . . , k}.

Proof. Assume that f is positive semi-definite and by contradiction that f
cannot be written as a sum of squares. Then there is an algebraic lemma
(see [3], 2.10) that says that there is a possible ordering > of the quotient
field R(X1, . . . , Xn) such that there is an element a := (a1, . . . , an) for which
f(x1, . . . , xn) < 0. Therefore, the LOR-sentence ∃a(f(a) < 0) is true in
(R(X1, . . . , Xn), <). Since every ordered field has a unique real closure by Theo-
rem 3, (R(X1, . . . , Xn), <) has one. Call it A.Then ∃a(f(a) < 0) holds in A. As
a result of completeness, this sentence (or at least a quantifier-free equivalent)
is true in R. However, f is positive semi-definite. We reach a contradiction and
therefore we conclude that f is a sum of squares.
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8 Real Nullstellensatz

The Real Nullstellensatz is another theorem that can be proven with the use
of quantifier elimination, instead of using geometrical techniques only. In order
to prove this result, we consider the following lemma’s and definitions from
algebraic geometry. I will not prove these lemma’s in this thesis, but for a
proof, see for example [5].

Definition 8.1. Let R be a ring. An ideal I ⊆ R is called real if for every sum
of squares

∑n
i=1 a

2
i ∈ I, a1, . . . , an ∈ I.

Lemma 3. Let R be a real closed field. Let I be a real ideal of R[X1, . . . , Xn].
Then I can be written as the intersection of prime ideals P. Moreover, all of
these prime ideals P are real.

Definition 8.2. Let R be a real closed field and I ⊆ R[X1, . . . , Xn] an ideal.
By R[X1, . . . , Xn]/I we denote the quotient ring of which the elements are
equivalence classes determined by the following relation: aRb ⇐⇒ a − b ∈ I
for a, b ∈ R[X1, . . . , Xn].

Note that with definition 8.2, the elements of I form one equivalence class.
This class can be seen as the zero-element of the ring R[X1, . . . , Xn]/I. With
regard to this quotient ring, we need one other lemma:

Lemma 4. Let R be a real closed field. If P is a real prime ideal ofR[X1, . . . , Xn],
then the quotient ring R[X1, . . . , Xn]/P is a field and has an ordering.

Theorem 9 (Real Nullstellensatz). Let R be a real closed field. If an ideal I
of R[X1, . . . , Xn] is real, I(Z(I)) = I.

Proof. It is obvious that I ⊆ I(Z(I)). So assume f ∈ I(Z(I)). We will show
that f ∈ I. Since by Lemma 3 we have that I = ∩i∈LPi for some index set L
and real prime ideals Pi, it will be sufficient to show that f ∈ Pi for all i ∈ L.

Consider one such Pi, say Pk. We will prove that f ∈ Pk. To start with,
note that by Hilbert’s Basis Theorem, Pk is finitely generated. This means that
there are polynomials g1, . . . , gn for some n ∈ N, such that Pk = 〈g1, . . . , gn〉.
Suppose we have an x ∈ Rn, such that g1(x) = . . . = gn(x) = 0. It then follows
that x ∈ Z(I) because one of the elements of Pk must be in I = ∩i∈LPi. Oth-
erwise, I = ∅ and the result would follow immediately. Now since x ∈ Z(I), we
must have that f(x) = 0. Hence we see that:

R |= ∀x(g1(x) = . . . = gn(x) = 0→ f(x) = 0) (1)

Now consider the real closed extension R′ of R[X1, . . . , Xn]/Pk. By Lemma
4 and Theorem 3, this R′ exists. As a result of the completeness of TRCF (which
follows from quantifier elimination), we see that also:

R′ |= ∀x(g1(x) = . . . = gn(x) = 0→ f(x) = 0) (2)
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Note that there are elements a in R′n of the form (X1/PK , . . . , Xn/Pk). In
particular, we have that the image of these elements by polynomials h over R′

can be viewed of as equivalence classes of the form
h(a) = h(X1/PK , . . . , Xn/Pk) = h(X1, . . . , Xn)/Pk. Since g1, . . . , gn ∈ Pk, we
find that ∧nj=1gj(X1, . . . , Xn)/Pk = 0 and so ∧nj=1gj(X1/PK , . . . , Xn/Pk) = 0.
Then it follows by (2) that also
f(X1/Pk, . . . , Xn/Pk) = 0, which means that f(X1, . . . , Xn)/Pk = 0. There-
fore, we can conclude that f ∈ Pk.

It is clear that the same goes for all Pi, i ∈ L. As a result f ∈ I and there-
fore I(V (I)) ⊂ I. Together with the fact that I ⊆ I(V (I)) this leads to the
conclusion that I(V (I)) = I.
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9 Semi-algebraic sets and functions

As we saw in corollary 2, there is a connection between semi-algebraic subsets
and definable subsets of real closed fields. As a matter of fact, they are the same.
This fact enables us to reformulate definitions and results from real algebraic
geometry. For example, we have in real algebraic geometry:

Definition 9.1. Let R be a real closed field and let X ⊆ Rm and Y ⊆ Rn be
semi-algebraic subsets. A semi-algebraic function is a function f : X → Y , such
that its graph G = {(x, y) ∈ X × Y |f(x) = y} ⊆ Rm+n is semi-algebraic.

This becomes:

Definition 9.2. Let L be a language. Let R be a real closed field and X ⊆ Rm
and Y ⊆ Rn be definable subsets. A semi-algebraic function is a function
f : X → Y , such that there is an L-formula φ(x, y) that defines its graph
G = {(x, y) ∈ X × Y |f(x) = y} ⊆ Rm+n.

In other words, the graph of f has to be a definable set. That is why a semi-
algebraic function is called a definable function, from a model-theoretic point of
view. With this in mind, we can prove some interesting properties of definable
functions. For example:

Proposition 4. Let R be a real closed field and let X ⊆ Rm and Y ⊆ Rn be
semi-algebraic subsets.The image f(A) of a semi-algebraic subset A ⊆ X by a
definable mapping f : X → Y is semi-algebraic.

Proof. Let G be the image of f . Note that the image f(A) is the composition of
a finite number of projections of the set (A× Y ) ∩G, which is the intersection
of two semi-algebraic sets and hence semi-algebraic. By corollary 2, f(A) is
semi-algebraic.

In fact, we applied quantifier elimination here, by using corollary 2. We
could also have used quantifier elimination directly.

9.1 Continuity of semi-algebraic functions

Definition 9.3. Let R be a real closed field. Futhermore, for u ∈ Rn define
the opertation || by: |u| = a ≡ u21 + . . . + u2n = a2 ∧ (0 < a ∨ a = 0). Then a
function f : R→ R is called continuous at x if:

∀ε > 0∃δ > 0 ∀y(|x− y| < δ → |f(x)− f(y)| < ε).

Theorem 10. Let f be a definable mapping from R to R for a real closed field
R. Then every open U ⊆ R, contains an x such that f is continuous at x.

Proof. Since TRCF is complete in LOR, every two models satisfy the same LOR-
sentences. Since the result to be proven can be expressed in such a sentence, it
is sufficient to prove the result only for the real numbers R. Let U ⊆ R. We
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divide the proof in two cases:

First, assume there is an open subset V of U , such that f(V ) is finite. Then
there must be an open interval contained in V on which f is constant. Clearly,
in this case f is continuous at an x in this interval.

Now assume for all open subsets V ⊆ U , f(V ) is infinite. With opens Vi
contained in U , we can construct a chain V0 ⊇ V1 ⊇ . . . that has the following
properties:

1. Clos(Vn+1) ⊆ Vn

2. Vn+1 is an open subinterval of Vn ∩ f−1(a, b). Here (a, b) is an interval
contained in f(Vn) that has a length smaller than 1

n . Such an interval
exists, because by Proposition 4 f(Vn) is semi-algebraic and therefore de-
finable. Since TRCF is o-minimal, f(Vn) is a finite union of open intervals
and points. Moreover, f(Vn) is infinite, so it contains at least one open
interval. Within this interval, we can find an open subinterval (a, b) such
that b− a < 1

n .

Now let x ∈ ∩i∈NVi let 0 < ε ∈ R. Choose a natural number n, such that 1
n < ε.

Then the length of the interval (a, b) is smaller then ε. Since x ∈ Vn ∩ f−1(a, b)
and f(Vn ∩ f−1(a, b)) ⊆ (a, b), we have that
∃δ > 0 ∀y(|x− y| < δ → |f(x)− f(y)| < ε). So f is continuous at x.

Corollary 3. Let R be a real closed field and let f : R → R be a definable
function. It is continuous at all but a finite number of points.

Proof. Suppose by contradiction that there are infinitely many points at which
f is not continuous. Then if we let φ(x) be the LOR-formula that describes
continuity of f at x, the set
C := {x ∈ R|¬φ(x)} is infinite. Note that C is definable. It then follows from
the o-minimality of TRCF that C contains an interval D. But by Theorem 10,
there is an x ∈ D ⊆ C such that f is continuous at x. Contradiction.

9.2 Curve Selection

With the help of Corollary 3, we can prove a result called ”Curve Selection”
for the real numbers. We first consider the following Theorem about definable
Skolem functions:

Theorem 11. In LOR, TRCF has definable Skolem functions. If we let R be
a real closed field, this means that for every definable subset A ⊆ Rn+m, there
exists a definable mapping f : Rn → Rm with the following property: for every
x ∈ Rn, if there exists an y ∈ Rm such that (x, y) ∈ A, then (x, f(x)) ∈ A.

Proof. To start with, assume m = 1. Suppose A is a definable subset of Rn+1.
Let x ∈ Rn. Then let Bx be the subset of R that contains all the y ∈ R for
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which (x, y) ∈ A. Note that, since A is definable, Bx is definable as well. As
a consequence of the o-minimality of real closed fields, Bx must be the finite
union of points and open intervals. Now we can divide the proof into 5 cases.
We define f(x) to be equal to:

1. 0 if Bx is empty or equal to R.

2. c if Bx has a least element c.

3. d− 2 if Bx has a leftmost interval (−∞, d).

4. d+ 2 if Bx has a leftmost interval (d,∞).

5. d+e
2 if Bx has a leftmost interval (d, e)

These values of f(x) can all be described by LOR-sentences and so its graph
can. Furthermore, f has the required property. Hence f is a definable Skolem
function.
Now note that we can find a Skolem function for all m ∈ N by induction. For
example, if m = 2, let B ⊆ Rn+2 be definable. Then there is a definable
Skolem function g : Rn+1 → R for B (note that this is not already the desired
function). Moreover, we have that the projection Π(B) ⊆ Rn+1 is definable and
so there is a definable Skolem function f : Rn → R for Π(B). Then the function
h : Rn → R2 defined by h(x) = (f(x), g(x, f(x))) is a definable Skolem function
for B.
This way, we can find definable Skolem functions for every m, so we can conclude
that TRCF has definable Skolem functions.

Definition 9.4. Let R be a real closed field. Also, let f : R→ Rn be a function.
Then a is called the limit of f when x goes to b if:

∀ε > 0∃δ > 0(|x− b| < δ → |f(x)− a| < ε)

.

Definition 9.5. Let R be a real closed field. The closure Clos(Y ) of a subset
Y ⊆ Rn is defined by: Clos(Y ) = {x ∈ Rn|∀δ > 0∃y ∈ Y |x− y| < δ}.

Theorem 12 (Curve Selection). Let R = R and Y ⊆ Rn be definable. In
addition, let an element c be contained in the closure of Y . Then there exist
an ε > 0 and a continuous function f : (0, ε) → Rn with the property that its
image is contained in Y and that its limit when x goes to 0 is c.

Proof. This can be proven with the help of Skolem functions. Consider the
definable subset A := {(δ, y) ∈ Rn+1|y ∈ Y and |y− c| < δ}. Then by Theorem
11, there is a definable function f : R 7→ Rn, such that for all δ ∈ R, if there
exists an y ∈ Rn for which (δ, y) ∈ A, (δ, f(δ)) ∈ A. Since c is in the closure
of Y , this y exists for every δ ∈ R, so there is an interval (0, β) ∈ R on which
|f(δ)−c| < δ. Therefore, the limit of f when x goes to 0, is equal to c. Moreover,
as a result of Corollary 3, there is an ε > 0 for which f is continuous on (0, ε).
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9.3 Extensions of Semi-algebraic Sets

Quantifier elimination allows us to say things about real closed extensions of real
closed fields, since quantifier elimination implies model completeness. Moreover,
we can talk about extensions of semi-algebraic sets:

Definition 9.6. Let R be a real closed field and K a real closed extension of R.
Let furthermore A be a semi-algebraic subset of R defined by the LOR-formula
φ(x). Then the subset AK of K defined by φ(x) is called the extension of A to
K.

Note that because it is definable, the extension AK is semi-algebraic as well.

Proposition 5. Let R be a real closed field and K a real closed extension of
R. For two semi-algebraic sets A ⊆ Rm and B ⊆ Rn, let
f : A → B be a definable function with graph G. Then GK is the graph of a
definable mapping fK : AK → BK .

Proof. Let φ(x) and ψ(y) be LOR-formulas that define A and B, respectively.
In addition, let χ(x, y) be the formula that defines G. Since G is a graph, the
following sentences are true in R:

1. ∀x(φ(x)↔ ∃yχ(x, y))

2. ∀x(∀y, χ(x, y)→ ψ(y))

3. ∀x(∀y∀y′(χ(x, y) ∧ χ(x, y′)→ y = y′))

As a result of quantifier elimination, these sentences hold in the real closed
extension K of R, as well. Only in K, φ(x), ψ(y) and χ(x, y) respectively define
AK , BK and GK . Therefore, the foregoing sentences now express the fact that
GK is the graph of a definable mapping fK from AK to BK .

The mapping fK is known as the extension of f to K. With the help of
quantifier elimination, we can show that fK has many of the properties that f
has. For instance, when it comes to injectivity:

Proposition 6. Let R be a real closed field and A ⊆ Rm and B ⊆ Rn semi-
algebraic. Let f : A→ B be a definable mapping. The mapping fK is injective
if and only if f is injective.

Proof. Let again φ(x) and ψ(y) be LOR-formulas that define A and B, respec-
tively. And let χ(x, y) be the formula that defines G. Injectivity of f or fK is
expressed by the LOR-sentence:

∀x∀x′∀y((φ(x) ∧ φ(x′) ∧ ψ(y))→ ((χ(x, y) ∧ χ(x′, y))→ x = x′)

By quantifier elimination, this sentence holds in both R and K if it is true in
one of both.
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Lastly, in a similar way it is possible to show for example that the extension
fK of a mapping f is continuous if and only if f is. The same goes for differ-
entiability. Simply by finding an LOR-sentence that expresses the property in
terms of φ(x), ψ(y) and χ(x, y). And then concluding that this sentence is true
in both R and K by quantifier elimination.
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