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Abstract

In the last couple of years spintronics gained much attention as a research area. The reason for
this is that spintronics signal processing devices could replace conventional electronic devices. As of
lately, spin waves carrying spin currents in magnetic insulators like yttrium iron garnet (YIG) have
been studied. For example, there has been research on a YIG film with an external magnetic field and
motivated by the results we will verify it. Furthermore we will consider holes in the film to obtain new
results. In our thesis we will use the Holstein-Primakoff transformation to find the dispersion relation
of a Hamiltonian, considering the exchange and dipole-dipole interaction. We will do this via numerical
simulations. To lower the computational time we will use the Ewald summation for the dipole-dipole
interaction. Furthermore, we shall give a motivation on why the Ewald summation gives reliable results
and why it lowers the computational time. Our results show that there are bandgaps in our dispersion
relation, which were also found experimentally in Wang et al. If we neglect the exchange interaction we
found a similar shape as well. The results we obtained could be used to develop ways to control spin
waves in magnetic insulators.
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1 Introduction

As time progresses computers become more important in our lives. One problem that computers have, is
that they need a lot of power and the solution to this problem might lie in the field of spintronics [1]. Instead
of using electrons, one could use spin waves as information carriers [2], which could solve the power problem.
The reason why is that there will not be any Joule heating as a result of moving electrons. To understand
what spin waves are, we consider a lattice consisting of magnetic moments. If we apply a strong enough
external magnetic field, all these magnetic moments will align along the direction of the magnetic field. A
disturbance of one of these magnetic moments will cause a disturbance to its neighbours, because the spins
are linked to each other due to the exchange and dipole-dipole interaction. As a result a wave propagates
through the lattice which is visualized in Figure 1. This wave is called a spin wave.

Figure 1: A spin wave from two perspectives. The top one shows the front view of a spin wave and the bottom one shows the
perspective from above. The arrows represent the spin vectors and the drawn wave goes through the end of those spin vectors.
Copyright: Ivan S. Maksymov, Mikhail Kostylev (2015) [3].

In our research we consider the easily tunable YIG film as our lattice. Another reason why we consider YIG
is the fact that it has an almost perfect cubic symmetry [4]. In this thesis we investigate the role of the
geometry of a YIG film on the dispersion relation of the spin waves. We will do this by comparing a lattice
without holes to a lattice with holes. The comparison shall be done using numerical simulations. The reason
why we add holes is because we expect bandgaps comparable to the electronic band structure of a solid. The
theory on bandgaps in the electronic band structure of a solid is important to understand solid state devices
such as transistors. In our case the bandgaps might be used to manipulate the spin wave transport in the
future. More information on this can be found in Chumak et al. [5]. The dispersion relation of spin waves in
a YIG film without holes has already been determined by Kreisel et al. [6]. We will study their method and
adapt it to the case of a YIG film with holes. We expect to find bandgaps in our dispersion relation which
have been observed experimentally by Wang et al. [7]. We will show how to reproduce this in Chapter 3. We
begin this thesis with studying the methods of Ref. [6] in Chapter 2. Moreover, will adjust their theory to
fit in the new situation of a lattice with holes. We end this chapter on how to obtain the dispersion relation.
To lower the computation time of finding the dispersion relation we use the Ewald summation. In Chapter
3 we show that the Ewald summation indeed lowers the computation time and additionally we present the
dispersion relation of both a YIG film with and without holes. Also, we consider the dispersion relation
where we neglect the exchange interaction. The results will be discussed in Chapter 4 and we we will draw
conclusions in the final chapter.
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2 Theory

As mentioned in the introduction we intend to find the dispersion relation of spin waves on a normal cubic
lattice and that of a lattice with holes. Before we can do that we shall discuss some theory about the
Hamiltonian in both situations. In the first section, which is about the Hamiltonian in the case of a lattice
without holes, we will mainly follow the work by Kreisel et al. [6]. What we will do first is determine the
Hamiltonian and apply the Holstein-Primakoff transformation. Thereafter we apply a Fourier transformation
such that we can numerically diagonalize the Hamiltonian. In the second section we will do the same but in
the situation of a lattice with holes.

2.1 Hamiltonian

Let us first describe the situation. We consider a cubic lattice made out of YIG with a lattice constant equal
to a = 12.376 Å [4]. Our lattice has an infinite length, a width w and a height d = Na as we can see in
Figure 2. Furthermore, we add an external magnetic field He along the z-direction.

Figure 2: Schematic visualisation of the system. Here w is the width and d = aN the height. The magnetic field He is in
the z direction and the wavevector k is in the y, z-plane. In our research we will only consider the wavevector to be in the
z-direction. Copyright: Kreisel et al. (2009) [6].

As discussed in Ref. [6] we can describe this situation as a quantum Heisenberg ferromagnet with effective
spin S where we consider the exchange energy, the Zeeman energy and the energy as the result of the
dipole-dipole interactions. The corresponding Hamiltonian is then given by:

Ĥ = −1

2

∑
ij

JijSi · Sj − µHe ·
∑
i

Si −
1

2

∑
ij,i 6=j

µ2

|Rij |3
[
3(Si · R̂ij)(Sj · R̂ij)− Si · Sj

]
, (1)

where
∑
ij indicates the double sum over the lattice sites. Here Jij is the exchange energy which is equal to

J if i and j are nearest neighbours and equal to 0 otherwise. Furthermore, µ = gµB , where g is the effective
g-factor and µB the Bohr magneton. Finally, we define Ri to be the position vector of site i. Then Rij is

the difference vector Ri −Rj and R̂ij is the unit vector of Rij .

Let us define Dαβ
ij in the following way,

Dαβ
ij = (1− δij)

µ2

|Rij |3
[
3R̂αijR̂

β
ij − δ

αβ
]
,

where α and β are the x, y or z-direction. Then we write our Hamiltonian as

Ĥ = −1

2

∑
ij

∑
αβ

[
Jijδ

αβ +Dαβ
ij

]
Sαi S

β
j − h

∑
i

Szi , (2)

where h = µ|He|, which is the Zeeman energy. We use the Holstein-Primakoff transformation to replace the
spin operator with other operators which we will specify later. According to Ref. [6] the effective spin is so
large that we only need to consider the Hamiltonian up to quadratic order in the new operators. To apply
the Holstein-Primakoff transformation we introduce, as in Ref. [8], S+

i and S−i such that

Sxi =
S+
i + S−i

2
,

and

Syi =
S+
i − S

−
i

2i
.
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Applying the Holstein-Primakoff transformation gives,

S+
i =

√
2S

√
1− a†iai

2S
ai;

S−i =
√

2S a†i

√
1− a†iai

2S
,

where ai and a†i are bosonic creation and annihilation operators with the property that

[ai, a
†
i ] = 1.

Note that we take the square root of operators, so we need a Taylor approximation, which we will do later.
Using

[S+
i , S

−
j ] = 2Szi δij ,

we can determine Szi in the following way,

Szi =
1

2
[S+
i , S

−
i ]

=
1

2

√2S

√
1− a†iai

2S
ai ·
√

2S a†i

√
1− a†iai

2S
−
√

2S a†i

√
1− a†iai

2S
·
√

2S

√
1− a†iai

2S
ai


= S

√1− a†iai
2S

aia
†
i

√
1− a†iai

2S
− a†i

(
1− a†iai

2S

)
ai


= S

√1− a†iai
2S

(1 + a†iai)

√
1− a†iai

2S
− a†iai +

a†ia
†
iaiai
2S


= S

(
1− a†iai

2S
+ a†iai −

a†iaia
†
iai

2S
− a†iai +

a†ia
†
iaiai
2S

)

= S

(
1− a†iai

2S
+ a†iai −

a†iaia
†
iai

2S
− a†iai +

a†i (−1 + aia
†
i )ai

2S

)

= S

(
1− a†iai

S

)
= S − a†iai.

For the effective spin we have S ≈ 14.2 [6]. So, we can approximate S+
i and S−i by a first order Taylor

approximation which results in

S+
i =

√
2Sai;

S−i =
√

2Sa†i ,

which leads to

Sxi =

√
2Sai +

√
2Sa†i

2
;

Syi =

√
2Sai −

√
2Sa†i

2i
.

Then we can write our Hamiltonian in the following way,

Ĥ =

∞∑
n

Ĥn,

where Ĥn are the terms which are of n-th order in bosonic operators. Because of the fact that S is relatively
large, we may neglect terms equal and larger than n = 3. The linear contribution Ĥ1 vanishes in the ground
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state, such that we only need to focus on Ĥ2 to find the dispersion relation. We write the quadratic term as

Ĥ2 =
∑
ij

[
Aija

†
iaj +

Bij
2
aiaj +

B∗ij
2
a†ia
†
j

]
(3)

from equation (2). Here we have

Aij = δijh+ S(δij
∑
n

Jin − Jij)

+ S

[
δij
∑
n

Dzz
in −

Dxx
ij +Dyy

ij

2

]

and

Bij = −S
2

[
Dxx
ij − 2iDxy

ij −D
yy
ij

]
,

which are called the amplitude factors. To derive equation (3) we start with equation (2) and apply the

Holstein-Primakoff transformation. For that we determine Sαi S
β
j for only the α and β which contribute to

the quadratic part of the Hamiltonian. Note that Sxi and Syi are linear in ai and a†i and that Szi has a
constant and a quadratic term. We then see that we only need to calculate terms with Sxi S

x
j , Sxi S

y
j , Syi S

x
j ,

Syi S
y
j and Szi S

z
j , which are given below.

−1

2

∑
ij

[
Jijδ

xx +Dxx
ij

]
Sxi S

x
j =

∑
ij

−S
4

[
Jij +Dxx

ij

] (
aiaj + a†iaj + aia

†
j + a†ia

†
j

)
=
∑
ij

−S
2

[
Jij +Dxx

ij

]
a†iaj +

∑
ij

−S
4

[
Jij +Dxx

ij

] (
aiaj + a†ia

†
j

)
;

−1

2

∑
ij

[
Jijδ

yy +Dxx
ij

]
Syi S

y
j =

∑
ij

−S
4

[
Jij +Dyy

ij

] (
−aiaj + a†iaj + aia

†
j − a

†
ia
†
j

)
=
∑
ij

−S
2

[
Jij +Dyy

ij

]
a†iaj +

∑
ij

S

4

[
Jij +Dyy

ij

] (
aiaj + a†ia

†
j

)
;

−1

2

∑
ij

[
Jijδ

xy +Dxy
ij

]
Sxi S

y
j =

∑
ij

−Si
4
Dxy
ij

(
−aiaj − a†iaj + aia

†
j + a†ia

†
j

)
;

−1

2

∑
ij

[
Jijδ

yx +Dyx
ij

]
Syi S

x
j =

∑
ij

−Si
4
Dyx
ij

(
−aiaj + a†iaj − aia

†
j + a†ia

†
j

)
=
∑
ij

−Si
4
Dxy
ij

(
−aiaj + a†iaj − aia

†
j + a†ia

†
j

)
;

−1

2

∑
ij

[
Jijδ

zz +Dzz
ij

]
Szi S

z
j = −1

2

∑
ij

[
Jijδ

zz +Dzz
ij

] (
S2 − Sa†iai − Sa

†
jaj + a†iaia

†
jaj

)
=
∑
ij

S

2

[
Jij +Dzz

ij

]
(a†iai + a†jaj)

=
∑
ij

S
[
Jij +Dzz

ij

]
a†iai

=
∑
in

S [Jin +Dzz
in ] a†iai

=
∑
ijn

Sδij [Jin +Dzz
in ] a†iaj ,

where where we have neglected all constant and linear terms. Furthermore, we have

h
∑
i

Szi = h
∑
i

(S − a†iai)

= h
∑
ij

δij(S − a†iai).
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Adding these terms to each other result in equation (3). Let our attention go back to the lattice again. We
want to take w so large, that it is practically infinite with respect to the height N . We do this so that our
lattice becomes basically invariant under translations in the y and z direction. To simplify the situation we
may then perform a Fourier transformation. Our Hamiltonian then becomes

Ĥ2 =
∑
k

∑
xi,xj

[
Ak(xij)a

†
k(xi)ak(xj) +

Bk(xij)

2
ak(xi)a−k(xj) +

B∗k(xij)

2
a†k(xi)a

†
−k(xj)

]
, (4)

where the Fourier transform of the creation and annihalation operators ak(xi) and a†k(xi) satisfy

ai =
1√
NyNz

∑
k

eik·riak(xi);

a†i =
1√
NyNz

∑
k

e−ik·ria†k(xi).

In equation (4) we have

Ak(xij) =
∑
r

e−ik·rAr0
ij ,

where the lower indices in Ar0
ij indicate the layers and the upper indices indicate the position within the

layer. Here r is the position in layer i and 0 is the position in layer j. The expression Ak(xij) is, in fact, the
Fourier transform of Ar0

ij . We can write Ar0
ij as

Ak(xij) =
∑
r

e−ik·r

[
δr0ij h+ Sδr0ij

∑
r′,n

Jrr′

in − SJr0
ij

+ Sδr0ij
∑
r′,n

Dzz,rr′

in − S

2

(
Dxx,r0
ij +Dyy,r0

ij

)]
= δijh+ Sδij

∑
r′,n

Jr′0
in − S

∑
r

e−ik·rJr0
ij

+ Sδij
∑
r′,n

Dzz,r′0
in − S

2

∑
r

e−ik·r
(
Dxx,r0
ij +Dxx,r0

ij

)
= δijh+ SδijJ (6− δ1j − δNj)− SJ

[
δij
(
e−kya + eikya + e−kza + eikza

)
+ δij+1 + δij−1

]
+ Sδij

∑
n

Dzz
0 (xin)− S

2
[Dxx

k (xij) +Dyy
k (xij)]

= SJk(xij) + δij

[
h+ S

∑
n

Dzz
0 (xin)

]
+
S

2
[Dxx

k (xij) +Dyy
k (xij)] ,

where

Jk(xij) = J [δij{6− δ1j − δNj − 2(cos(kya) + cos(kza))} − δij+1 − δij−1],

which we will call the exchange matrx. Before we continue we shall derive equation (4). We start with
equation (3) and apply the Fourier transformation of the creation and annihilation opperator. We get

Ĥ2 =
1

NyNz

∑
ij

∑
kk′

[
Aije

−ik·rieik
′·rja†k(xi)ak′(xj)

+
Bij
2
eik·rie−ik

′·rjak(xi)a−k′(xj) +
B∗ij
2
e−ik·rieik

′·rja†k(xi)a
†
−k′(xj)

]
=

1

NyNz

∑
ij

∑
k

[
Aije

ik·(rj−ri)a†k(xi)a
†
k(xj)

+
Bij
2
eik·(ri−rj)ak(xi)a−k(xj) +

B∗ij
2
eik·(rj−ri)a†k(xi)a

†
−k(xj)

]
=
∑
xi,xj

∑
k

[
Ak(xij)a

†
k(xi)ak(xj) +

Bk(xij)

2
ak(xi)a−k(xj) +

B∗k(xij)

2
a†k(xi)a

†
−k(xj)

]
,
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where have used the orthogonality relation in the third and fourth line. We conclude that equation (4)
indeed holds which is in line with Ref. [6]. Now we consider the dipole terms in the amplitude factors. Per
definition of the Fourier transformation we have

Dαβ
k (xij) =

∑
rij

′
e−ik·rijDαβ

ij

= −µ2
∑
yij ,zij

′
e−i(kyyij+kzzij)

 δαβ(
x2ij + y2ij + z2ij

)3/2 − 3rαijr
β
ij(

x2ij + y2ij + z2ij
)5/2

 . (5)

It is necessary to use the Ewald summation for these dipole sums to simulate the situation numerically. We
will also verify this in the next chapter which is about the numerical approach of the experiment. To make
use of the Ewald summation let us first define

Ik = µ2
∑
yijzij

e−i(kyyij+kzzij)(
x2ij + y2ij + z2ij

)5/2 .
Then we have that

Dxx
k =

[
∂2

∂k2y
+

∂2

∂k2z
+ 2(xij)

2

]
Ik(xij); (6)

Dyy
k =

[
∂2

∂k2z
− 2

∂2

∂k2y
− (xij)

2

]
Ik(xij);

Dzz
k =

[
∂2

∂k2y
− 2

∂2

∂k2z
− (xij)

2

]
Ik(xij);

Dxy
k = 3ixij

∂

∂ky
Ik(xij).

Now we will use the identity

4

3

√
ε5

π

∫ ∞
0

dt t3/2e−εαt = α5/2,

where α = x2ij + y2ij + z2ij and ε a variable, to get

Ik(xij) =
∑
yij ,zij

4µ2

3

√
ε5

π

∫ ∞
0

dt t3/2e−x
2
ijεte−(y2ij+z

2
ij)εte−i(kyyij+kzzij).

On the interval [0, 1] in t we will use∑
r

e−εt|r|
2

e−ik·r =
π

a2εt

∑
g

e−
|k+g|
4εt ,

which is the Ewald summation. Here g represents the reciprocal lattice vectors and a is the lattice constant.
The a2 represents the area of the primitive cell of our lattice. We then get

Ik(xij) =
4µ2

3

√
ε3π

a2

∫ 1

0

dt
∑
g

t1/2e−
|k+g|
4εt −x

2
ijεt

+
∑
yij ,zij

4µ2

3

√
ε5

π

∫ ∞
1

dt t3/2 · e−(x2
ij+y

2
ij+z

2
ij)εt · e−i(kyyij+kzzij).

From now on we will for simplicity refer to the first sum as the reciprocal sum and to the second sum as the
real sum. Let us continue by considering the Misra function

ψν(x) =

∫ ∞
1

dt tνe−xt.

For ν = 3/2 we can write this as

ψ3/2(x) = e−x
3 + 2x

2x2
+

3
√
πErfc(

√
x)

4x5/2
, (7)
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where Erfc(x) is the complementary error function. By using this in the real sum we get

Ik(xij) =
4µ2

3

[√
ε3π

a2

∫ 1

0

dt
∑
g

t1/2e−
|k+g|
4εt −x

2
ijεt

+

√
ε5

π

∑
yij ,zij

ψ3/2

(
|rij |2ε

)
e−i(kyyij+kzzij)

]
,

where |rij |2 = x2ij + y2ij + z2ij . The integral in the reciprocal sum can be evaluated as∫ 1

0

dt t1/2e−
|k+g|
4εt −x

2
ijεt = −e

−p2−q2

q2
+

√
π

4q3
[
e−2pq(1 + 2pq)Erfc(p− q) + e2pq(−1 + 2pq)Erfc(p+ q)

]
,

where q = xij
√
ε and p = |k+g|

2
√
ε

. By some calculation using equation (6) we then get

Dxx
k (xij) =

πµ2

a2

∑
g

[
8
√
ε

3
√
π
e−p

2−q2 − |k + g|f(p, q)

]

− 4µ2

3

√
ε5

π

∑
yij ,zij

(
|rij |2 − 3x2ij

)
cos(kyyij) cos(kzzij)ψ3/2

(
|rij |2ε

)
,

which is the final result of the Ewald summation. Here we defined

f(p, q) = e−2pqErfc(p− q) + e2pqErfc(p+ q).

Similarly we get

Dyy
k (xij) =

πµ2

a2

∑
g

[
8
√
ε

3
√
π
e−p

2−q2 − (ky + gy)2

|k + g|
f(p, q)

]

− 4µ2

3

√
ε5

π

∑
yij ,zij

(
|rij |2 − 3x2ij

)
cos(kyyij) cos(kzzij)ψ3/2

(
|rij |2ε

)
;

Dzz
k (xij) =

πµ2

a2

∑
g

[
8
√
ε

3
√
π
e−p

2−q2 − (kz + gz)
2

|k + g|
f(p, q)

]

− 4µ2

3

√
ε5

π

∑
yij ,zij

(
|rij |2 − 3x2ij

)
cos(kyyij) cos(kzzij)ψ3/2

(
|rij |2ε

)
;

Dxy
k (xij) = i

πµ2

a2
sig(xij)

∑
g

(ky + gy)f(p, q)

+ 4iµ2

√
ε5

π
xij

∑
yij ,zij

yij sin(kyyij) cos(kzzij)ψ3/2

(
|rij |2ε

)
.
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2.2 Hamiltonian of the new lattice

Now we will find the Hamiltonian for a different situaton. We take the amout of layers in the x-direction
to be equal to 1. Moreover, we take out strips of infinite length in the y-direction and length La in the
z-direction every three sites in the z-direction. The situation is also given in Figure 3.

(L+ 1)aa

a

y

z

Figure 3: Simple visualisation of the lattice in the new situation. Every three sites there are L sites removed in the z-direction.
The distance between two sites without a hole in between is still a = 12.376 Å. This drawing is not to scale.

We still only consider the following quadratic part of the Hamiltonian

Ĥ2 =
∑
ij

[
Aija

†
iaj +

Bij
2
aiaj +

B∗ij
2
a†ia
†
j

]
. (8)

The difference lies in the fact that we do not have the same translational symmetry in the yz-plane as earlier.
Let us define the primive cell as in Figure 4.

1 2 3

Ma

a

y

z

Figure 4: Simple visualisation of the lattice in the new situation. The primitive cell is indicated by the red dashed line. Each
cell is Ma long in the z-direction and a long in the y-direction. Each site in a cell is indicated by a number. Again this drawing
is not to scale.

On the level of cells, however, the lattice does have translational symmetry. Therefore we can apply a Fourier
transformation on these cells. As in Figure 4, we have indicated each site in the cell with either 1, 2 or 3.
Then we can rewrite the Hamiltonian in the following way,

10



Ĥ2 =
∑
ij

∑
nn′

[
Ann

′

ij (ani )†an
′

j +
Bnn

′

ij

2
ani a

n′

j +
Bnn

′∗
ij

2
(ani )†(an

′

j )†

]
,

where
∑
ij now sums over the cells and

∑
nn′ sums over the sites within the cell. Using the Fourier trans-

formed annihilation and creation operators we can perform the Fourier transformation in the following way,

Ĥ2 =
1

N2

∑
ij

∑
nn′

∑
kk′

[
Ann

′

ij (ank)†an
′

k′ +
Bnn

′

ij

2
an−ka

n′

k′ +
Bnn

′∗
ij

2
(ank)†(an

′

−k′)†

]
e−ikr

n
i eik

′rn
′
j

=
1

N

∑
ij

∑
nn′

∑
k

[
Ann

′

ij (ank)†an
′

k +
Bnn

′

ij

2
an−ka

n′

k +
Bnn

′∗
ij

2
(ank)†(an

′

−k)†

]
e
ik

(
rn

′
j −r

n
i

)

=
∑
nn′

∑
k

[
Ann

′

k (ank)†an
′

k +
Bnn

′

k

2
an−ka

n′

k +
Bnn

′∗
k

2
(ank)†(an

′

−k)†

]
,

where we have used the orthogonality relation of the discrete Fourier transform in the second line. As we
can see this is similar to equation (4), where we sum over the layers instead of the different kind of particles
in our cell. The similarity could be explained with the fact that we do not perform a Fourier transformation
within the cell and that in (4) we do not perform a Fourier transformation over the layers in the x-direction.
For the amplitude factors we get

Ann
′

k =
∑
r

e−ik·rAnn
′

r0

=
∑
r

e−ik·r

[
hδnn

′

r0 + S

(
δnn

′

r0

∑
m,α

Jnαr,m − Jnn
′

r0

)

+ S

(
δnn

′

r0

∑
m,α

Dzz,nα
rm − Dxx,nn′

r0 +Dyy,nn′

r0

2

)]
.

where
∑

r sums over the cells. Explicitly for A11
k we see that

A11
k =

∑
r

e−ik·r

[
hδr0 + S

(
δr0
∑
m,α

J1α
r,m − J11

r0

)

+ S

(
δr0
∑
m,α

Dzz,1α
rm − Dxx,11

r0 +Dyy,11
r0

2

)]
= h+ S

∑
m,α

J1α
0m − S

∑
r

e−ik·rJ11
r0

+ S
∑
m,α

Dzz,1α
0m − S

∑
r

e−ik·r

(
Dxx,11

r0 +Dxx,11
r0

2

)

= h+ 4SJ − SJ11
k + S

∑
α

Dzz,1α
0 − S

2

(
Dxx,11

k +Dyy,11
k

)
.

11



Similarly, we have

A12
k = −JS − S

2

(
Dxx,12

k +Dyy,12
k

)
;

A13
k = −e−ikya − S

2

(
Dxx,13

k +Dyy,13
k

)
;

A21
k = −JS − S

2

(
Dxx,21

k +Dyy,21
k

)
;

A22
k = h+ 3SJ − SJ22

k + S
∑
α

Dzz,2α
0 − S

2

(
Dxx,22

k +Dyy,22
k

)
;

A23
k = −S

2

(
Dxx,13

k +Dyy,13
k

)
;

A31
k = −eikya − S

2

(
Dxx,31

k +Dyy,31
k

)
;

A32
k = −S

2

(
Dxx,13

k +Dyy,13
k

)
;

A33
k = h+ 3SJ − SJ22

k + S
∑
α

Dzz,2α
0 − S

2

(
Dxx,22

k +Dyy,22
k

)
,

and,

Bnn
′

k = −S
2

[
Dxx,nn′

k − 2iDxy,nn′

k −Dxx,nn′

k

]
.

What remains to be evaluated are the exchange terms Jnn
′

k and dipole terms Dαβ,nn′

k in Ann
′

k and Bnn
′

k . It

holds that Jnn
′

k is the Fourier transform of Jnn
′

ij , so we have that

Jnn
′

k =
1

N

∑
ij

Jnn
′

ij e
−ik·

(
rni −r

n′
j

)

=
∑
i

Jnn
′

i0 e
−ik·

(
rni −r

n′
0

)
,

where i indicates the cells and 0 indicate the origin cell. For example we have

J11
k =

∑
i

J11
i0 e
−ik·(r1i−r

1
0).

Note that a pair of particles of type 1 are only nearest neighbors if they are situated in neighbouring cells in
the y-direction. Then k ·

(
r1i − r10

)
will be equal to ±kya, which results in the following

J11
k = J

(
eikya + e−ikya

)
= 2J cos(kya).

In a similar way we get the following matrix

J̄k =

J11
k J12

k J13
k

J21
k J22

k J23
k

J31
k J32

k J33
k

 =

2J cos(kya) J Je−ikzMa

J 2J cos(kya) 0
JeikzMa 0 2J cos(kya)

 .

And now the dipole terms. Let us first consider Dxx,nn′

k :

Dxx,nn′

k =
∑
rij

′
e−ik·rijDxx,nn′

ij (9)

= −µ2
∑
yij ,zij

′
e−i(kyyij+kzzij)

 1((
xnn

′
ij

)2
+
(
ynn

′
ij

)2
+
(
znn

′
ij

)2)3/2 − 3xnn
′

ij xnn
′

ij((
xnn

′
ij

)2
+
(
ynn

′
ij

)2
+
(
znn

′
ij

)2)5/2
 .

(10)

The xnn
′

ij is not necessary, but we leave it as it is, because then we can follow our reasoning of the previous
case more easily. Let us define

Inn
′

k := µ2
∑
yijzij

e−i(kyyij+kzzij)((
xnn

′
ij

)2
+
(
ynn

′
ij

)2
+
(
znn

′
ij

)2)5/2
12



such that

Dxx,nn′

k =

[
∂2

∂k2y
+

∂2

∂k2z
+ 2

(
xnn

′

ij

)2]
Inn

′

k .

Similarly we get that

Dyy,nn′

k =

[
∂2

∂k2z
− 2

∂2

∂k2y
−
(
xnn

′

ij

)2]
Inn

′

k ;

Dzz,nn′

k =

[
∂2

∂k2y
− 2

∂2

∂k2z
−
(
xnn

′

ij

)2]
Inn

′

k .

For nn′ = 11 it holds that x11ij = xij , y
11
ij = yij and z11ij = zij , because the distance between two particles of

type 1 is the same as the distance between the cells where they are situated in. This implies that

Dxx,11
k =

∑
rij

′
e−ik·rijDxx,11

ij

= −µ2
∑
yij ,zij

′
e−i(kyyij+kzzij)

 1(
x2ij + y2ij + z2ij

)3/2 − 3xijxij(
x2ij + y2ij + z2ij

)5/2
 ,

which is the same as equation (5) but for a lattice with a ay = a and az = Ma. We then may conclude that

Dxx,11
k =

πµ2

Ma2

∑
g

[
8
√
ε

3
√
π
e−p

2−q2 − |k + g|f(p, q)

]

− 4µ2

3

√
ε5

π

∑
yij ,zij

(
|rij |2 − 3x2ij

)
cos(kyyij) cos(kzzij)ψ3/2

(
|rij |2ε

)
.

With the same reasoning we can see that

Dxx,11
k = Dxx,22

k = Dxx,33
k .

Now we consider

Dxx,12
k =

∑
rij

′
e−ik·rijDxx,12

ij

= −µ2
∑
yij ,zij

′
e−i(kyyij+kzzij)

 1((
x12ij
)2

+
(
y12ij
)2

+
(
z12ij
)2)3/2 − 3x12ij x

12
ij((

x12ij
)2

+
(
y12ij
)2

+
(
z12ij
)2)5/2

 .
Note that x12ij = xij and y12ij = yij , but z12ij = zij +a. Due to this we need to change the procedure regarding
the Ewald summation a little. We already found that

Dxx,12
k =

[
∂2

∂k2y
+

∂2

∂k2z
+ 2

(
x12ij
)2]

I12k ,

where

I12k = µ2
∑
yij ,zij

e−i(kyyij+kzzij)((
x12ij
)2

+
(
y12ij
)2

+
(
z12ij
)2)5/2 .

We then get that

I12k = µ2
∑
yij ,zij

e−i(kyyij+kzzij)(
x2ij + y2ij + (zij + a)

2
)5/2 .

Similarly as in the normal case we can write I12k as follows

I12k =
∑
yij ,zij

4µ2

3

√
ε5

π

∫ ∞
0

dt t3/2e−x
2
ijεte−(y2ij+(zij+a)

2)εte−i(kyyij+kzzij).
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Next we apply the Ewald summation∑
r

e−εt|r+a|2e−ik·r =
π

Ma2εt

∑
g

e−
|k+g|
4εt eig·a,

on the interval [0, 1] in t, but this time we take the shift a = (0, 0, a)T into account. This results in

I12k =
4µ2

3

[√
ε3π

a2

∫ 1

0

dt
∑
g

t1/2e−
|k+g|
4εt −x

2
ijεteig·a

+

√
ε5

π

∑
yij ,zij

ψ3/2

(
|rij + a|2ε

)
e−i(kyyij+kzzij)

]
.

By calculating the derivatives we then get that

Dxx,12
k =

πµ2

Ma2

∑
g

eig·a
[

8
√
ε

3
√
π
e−p

2−q2 − |k + g|f(p, q)

]

− 4µ2

3

√
ε5

π

∑
yij ,zij

(
|rij |2 − 3x2ij

)
cos(kyyij) cos(kzzij)ψ3/2

(
|rij + a|2ε

)
. (11)

For the other Dxx,nn′

k we just get a different shift which are given in Table 1. For Dyy,nn′

k and Dzz,nn′

k we
get

Dyy,nn′

k =
πµ2

Ma2

∑
g

eig·a
[

4
√
ε

3
√
π
e−p

2−q2 − (ky + gy)2

|k + g|
f(p, q)

]

− 4µ2

3

√
ε5

π

∑
yij ,zij

(
|rij |2 − 3y2ij

)
cos(kyyij) cos(kzzij)ψ3/2

(
|rij + a|2ε

)
;

Dzz,nn′

k =
πµ2

Ma2

∑
g

eig·a
[

4
√
ε

3
√
π
e−p

2−q2 − (kz + gz)
2

|k + g|
f(p, q)

]

− 4µ2

3

√
ε5

π

∑
yij ,zij

(
|rij |2 − 3z2ij

)
cos(kyyij) cos(kzzij)ψ3/2

(
|rij + a|2ε

)
,

where we take the shift a also according to Table 1. Now we set xnn
′

ij to zero, as we consider only one layer in

the x-direction. Because of this the Dxy,nn′

k will vanish. In the following chapter we will discuss the validity
of the Ewald summation and we will discuss on how to numerically diagonalize the Hamiltonians.

Table 1: The shift a for each nn′ in Dαβ,nn′

k . Here we have a = 12.376 Å.

nn′ a
11 (0, 0, 0)T

12 (0, 0, a)T

13 (0, 0,−a)T

21 (0, 0,−a)T

22 (0, 0, 0)T

23 (0, 0,−2a)T

31 (0, 0, a)T

32 (0, 0, 2a)T

33 (0, 0, 0)T
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2.3 Diagonalization

In this section we will discuss how we will find the eigenvalues of our Hamiltonian in both cases of the lattice
with and without holes. We mainly follow Ref. [9] for this. What we will do, is first writing our Hamiltonian
in matrix form, wherafter we perform a basis transformation. Eventually this gives us an eigenvalue problem
which we are able to solve, and because of the fact that eigenvalues are invariant under a change of basis we
get our dispersion relation. First, we consider the case of the lattice without holes. As we said in Section
2.1 we will only focus on the quadratic part of the Hamiltonian

Ĥ2 =
∑
xi,xj

∑
k

[
Ak(xij)a

†
k(xi)ak(xj) +

Bk(xij)

2
ak(xi)a−k(xj) +

B∗k(xij)

2
a†k(xi)a

†
−k(xj)

]
.

We can also write this as

Ĥ2 =
∑
k

∑
xi,xj

[
Ak(xij)

2
a†k(xi)ak(xj) +

Ak(xij)

2
a−k(xi)a

†
−k(xj)

+
Bk(xij)

2
ak(xi)a−k(xj) +

B∗k(xij)

2
a†k(xi)a

†
−k(xj)

]
=
∑
k

Ĥk
2 ,

where we defined

Ĥk
2 =

∑
xi,xj

[
Ak(xij)

2
a†k(xi)ak(xj) +

Ak(xij)

2
a−k(xi)a

†
−k(xj)

+
Bk(xij)

2
ak(xi)a−k(xj) +

B∗k(xij)

2
a†k(xi)a

†
−k(xj)

]
.

This will be the expression we want to diagonalize. Calculating the eigenvalues as a function of the wavevector
k gives us the dispersion relation. Now let us define

~ak :=


ak(x1)
ak(x2)

...
ak(xN )

 ,

and,

Āk :=


Ak(x11) Ak(x12) . . . Ak(x1N )
Ak(x21) Ak(x22) . . . Ak(x2N )

...
...

. . .
...

Ak(xN1) Ak(xN2) . . . Ak(xNN )

 ;

B̄k :=


Bk(x11) Bk(x12) . . . Bk(x1N )
Bk(x21) Bk(x22) . . . Bk(x2N )

...
...

. . .
...

Bk(xN1) Bk(xN2) . . . Bk(xNN )

 .

Then we write Ĥk
2 as follows,

Ĥk
2 =

(
~a†k ~a−k

)(Āk B̄k

B̄†k Āk

)(
~ak
~a†−k

)
, (12)

where B̄†k stands for the transposed complex conjugate of B̄k. For convenience we define

D :=

(
Āk B̄k

B̄†k Āk

)
.

According to Ref. [9] there exists a transformation T̂ such that (T̂ †)−1DT̂−1 is a diagonal matrix. This
transformation has the additional property that

T̂ †σ̂ = σ̂T̂−1, (13)
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where

σ̂ = diag(1, . . . , 1︸ ︷︷ ︸
N

,−1, . . . ,−1︸ ︷︷ ︸
N

).

Equivalently to equation (12) we then have

Ĥ2 =
(
~a†k ~a−k

)
T̂ †(T̂ †)−1DT̂−1T̂

(
~ak
~a†−k

)
;

=
(
~c†k ~c−k

)
(T̂ †)−1DT̂−1

(
~ck
~c†−k

)
,

with (
~c†k ~c−k

)
=
(
~a†k ~a−k

)
T̂ †;(

~ck
~c†−k

)
= T̂

(
~ak
~a†−k

)
. (14)

These newly defined operators are still bosonic annihalation and creation operators. So in principle this is
just a change of basis. For reasons that become apparent later we define λ1, . . . , λ2N and Λ such that

(T̂ †)−1DT̂−1 = diag(λ1, . . . , λN ,−λN+1, . . . ,−λ2N )

= σ̂Λ.

It then follows that

DT̂−1 = T̂ †σ̂Λ

= σ̂T̂−1Λ.

We define the N -vectors up and vp such that

T̂−1 =

(
u1 . . . u2N
v1 . . . v2N

)
.

For all p ∈ {1, .., 2N} we then have the following eigenvalue problem,(
Āk B̄k

B̄†k Āk

)(
up
vp

)
= λp σ̂

(
up
vp

)
.

As we said earlier, these eigenvalues are what we were looking for. To find these we must diagonalize the
matrix D. In our numerical research we used the Cholesky decomposition to diagonalize D. The results are
given in the next chapter. For the case of the lattice with holes we also only consider the quadratic part of
the hamiltonian

Ĥ2 =
∑
nn′

∑
k

[
Ann

′

k (ank)†an
′

k +Ann
′

k an−ka
n′†
−k +

Bnn
′

k

2
anka

n′

−k +
Bnn

′∗
k

2
(ank)†(an

′

−k)†

]
=
∑
k

Ĥk
2 .

We define

~ak :=

a1ka2k
a3k

 ;

Āk :=

A11
k A12

k A13
k

A21
k A22

k A23
k

A31
k A32

k A33
k

 ;

B̄k :=

B11
k B12

k B13
k

B21
k B22

k B23
k

B31
k B32

k B33
k

 ,

so that we then get

Ĥ2 =
(
~a†k ~a−k

)(Āk B̄k

B̄†k Āk

)(
~ak
~a†−k

)
,

which is the same as equation (12). We then repeat the same procedure to find the eigenvalues of the system.
These results are also given in the next chapter.
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3 Numerical method and results

In this chapter we discuss the numerical results of our research. We start by discussing the Ewald summation
and afterwards we explain how we diagonalized the Hamiltonians. Finally, we show the dispersion relations.
For our simulations we used the programming language Julia.

3.1 Ewald summation

In this section we show that using the Ewald summation makes our simulations more efficient. We will do
this for both situations, for the lattice with and without holes.

3.1.1 Comparison in the old case

Let us start where we finished Section 2.1, with the dipole term Dxx
k (xij) where we used the Ewald summation

which is given by

Dxx
k (xij) =

πµ2

a2

∑
g

[
8
√
ε

3
√
π
e−p

2−q2 − |k + g|f(p, q)

]

− 4µ2

3

√
ε5

π

∑
yij ,zij

(
|rij |2 − 3x2ij

)
cos(kyyij) cos(kzzij)ψ3/2

(
|rij |2ε

)
.

The original dipole term Dxx
k (xij) is given by

Dxx
k (xij) = −µ2

∑
yij ,zij

′
e−i(kyyij+kzzij)

 1(
x2ij + y2ij + z2ij

)3/2 − 3x2ij(
x2ij + y2ij + z2ij

)5/2
 .

From now on we call these the Ewald dipole term and the explicit dipole term respectively. We consider
the lattice without holes with only one layer. Therefore the only possibility for the variable xij is xij = 0.
Furthermore, we only consider spin waves in the z-direction. For µ we have µ = gµB and here we take g = 2
and µB to be the Bohr magneton like in Ref. [6]. We are free to choose the parameter ε, so we choose
it to be equal to a−2, because this gives us the best results. The reason that this gives the best results is
because of the Misra function. As we could see in equation (7) there is an exponential in the Misra function
and without considering the ε the exponent is in the order of a2. Computers find it hard to evaluate large
or small exponents. That is why we choose ε = a−2, such that the exponent is in the order of 1. It is
numerically impossible to simulate a lattice of infinite length in the y- and z-direction, so that is why we
only consider finite lengths. Note that the expression inside the sum of the explicit dipole terms goes as r−3,
where r is the distance of a site to the origin. This means that the sum converges to a certain value as the
size of the lattice increases. So we have that both dipole terms of a finite lattice are an approximation of the
explicit dipole term of the infinite lattice and the approximation gets better if we consider a larger lattice.
For simplicity we will only look at a square lattice, so we define N such that

2N + 1 := Ny = Nz. (15)

For the terms in the real sums we then have

yij ∈ {−N, . . . ,−1, 0, 1, . . . , N}
zij ∈ {−N, . . . ,−1, 0, 1, . . . , N},

as we take the origin in the middle of the film. Our initial thought would be that the dipole terms will be
more accurate if N increases. To verify this thought we plotted the explicit dipole terms as a function of N
in Figure 5(a) and Figure 6(a) for respectively

ky = 0 cm−1;

kz = 102 cm−1,

and

ky = 0 cm−1;

kz = 107 cm−1.
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Besides that we put the Ewald dipole terms next to it where we keep NEwald = 10 constant. We see that
for kz = 102 cm−1 the explicit dipole terms after N = 2000 are similar to a value which the Ewald dipole
term is already on. More precisely, the difference is in the order of 10−5 GHz while the dipole terms are
in the order of 10−2 GHz. This means that we get about the same result if we choose the explicit dipole
term with N larger than 2000 and the Ewald dipole term with NEwald = 10. In Figure 6 we see that the
explicit dipole terms after N = 600 are similar to the Ewald dipole term. Here the difference is in the order
of 10−7 GHz. while the dipole terms are in the order of 10−2 GHz. We observe that the explicit dipole terms
converge faster for large spin waves, but still, the Ewald dipole term only needs NEwald = 10. To exploit
this advantage we used the Ewald summation for a lattice of 21 by 21 sites in our research. We have plotted
Dyy

k and Dzz
k in the same figures with the same parameters. For these it also holds that the explicit dipole

term converges to the value of the Ewald dipole term. We did not plot Dxy
k as this term vanishes because

xij = 0.

3.1.2 Comparison in the new case

We finished Section 2.2 with

Dxx,nn′

k =
πµ2

Ma2

∑
g

eig·a
[

8
√
ε

3
√
π
e−p

2−q2 − |k + g|f(p, q)

]

− 4µ2

3

√
ε5

π

∑
yij ,zij

(
|rij |2 − 3x2ij

)
cos(kyyij) cos(kzzij)ψ3/2

(
|rij + a|2ε

)
,

which is the result of the Ewald summation applied on

Dxx,nn′

k =
∑
rij

′
e−ik·rijDxx,nn′

ij

= −µ2
∑
yij ,zij

′
e−i(kyyij+kzzij)

 1((
xnn

′
ij

)2
+
(
ynn

′
ij

)2
+
(
znn

′
ij

)2)3/2 − 3xnn
′

ij xnn
′

ij((
xnn

′
ij

)2
+
(
ynn

′
ij

)2
+
(
znn

′
ij

)2)5/2
 .

Now we take the length of the cell in the z-direction to be M = 10 and all other parameters the same as
earlier, but this time with a shift

a = (0, 0, a)T .

We can see in Figure 7(a) that for kz = 102 cm−1 the explicit dipole terms need an N of at least 1500 to be

similar to the Ewald dipole term with NEwald = 20 this time. This is also the case for Dyy,nn′

k and Dzz,nn′

k

in Figures 7(b) and 7(c). For Dzz,nn′

k we can see a difference between the graphs of the explicit and Ewald
dipole term. However, for N = 2000 this is a difference in the order of 10−8 GHz while the dipole terms
themselves are in the order 10−2 GHz. The differences for Dxx,nn′

and Dyy,nn′
are in the order of 10−6 GHz.

In Figure 8 we see that the explicit dipole terms now converge faster to the Ewald dipole term just as in the
old case compared to the dipole terms in Figure 7. For N larger than 400 the difference between the dipole

terms are in the order of 10−10 GHz for Dxx,nn′

k . To exploit the fact that NEwald = 20 we use the Ewald
dipole term with a lattice of 41 by 41 in our simulations next section.
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Figure 5: The relation between the explicit dipole term and N as defined in (15) for kz = 102 cm−1. The dashed blue lines
are the Ewald dipole terms with NEwald = 10. The upper one is Dxx

k , the middle one is Dyy
k and the lower one is Dzz

k indicated
by (a), (b) and (c) respectively. In this situation we consider only one layer.
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Figure 6: The relation between the explicit dipole term and N as defined in (15) for kz = 107 cm−1. The dashed blue lines
are the Ewald dipole terms with NEwald = 10. The upper one is Dxx

k , the middle one is Dyy
k and the lower one is Dzz

k indicated
by (a), (b) and (c) respectively. In this situation we consider only one layer.
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Figure 7: The relation between the shifted explicit dipole term and N as defined in (15) for kz = 102 cm−1 represented with

the red line. The blue dashed line is the shifted Ewald dipole term with NEwald = 20. The upper one is Dxx,nn′

k , the middle

one is Dyy,nn′

k and the lower one is Dzz,nn′

k indicated by (a), (b) and (c) respectively. The shift is chosen to be a = (0, 0, a)T .
In this situation we consider only one layer.
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Figure 8: The relation between the shifted explicit dipole term and N as defined in (15) for kz = 107 cm−1 represented with

the red line. The upper one is Dxx,nn′

k , the middle one is Dyy,nn′

k and the lower one is Dzz,nn′

k indicated by (a), (b) and (c)

respectively. The shift is chosen to be a = (0, 0, a)T . The dashed blue line is the shifted Ewald dipole term with NEwald = 20.
In this situation we consider only one layer.
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3.2 Results

In this section we present the results of our research. This includes the dispersion relation of the lattice with
and without holes. In Figure 9 the dispersion relation of a YIG film without holes is given. We used the
same parameters and theory as in Ref. [6] and, as expected, we obtained the same result. What we can see
is that the relation has a minimum around kz = 105 cm−1 for the lower eigenstates. Instead of 400 layers
we also plotted the same relation for one layer for wavevectors in the first four Brillouin zones which can
be seen in Figure 10. In this case we only have one eigenstate, because we have one layer. The behaviour
is as expected, because the dispersion relation is periodic with a period of 2π

a . The reason we show this,
is because we encountered a similar behaviour in the dispersion relation for a YIG film with holes where
we neglect the exchange interaction. This can be seen in Figure 12. The dispersion relation where we do
consider the exchange interaction is given in Figure 11.
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Figure 9: Dispersion relation for a YIG film without holes plotted on a logarithmic scale. The lattice has 400 layers and the
external magnetic field is 700 Oe. Only the bottom six eigenvalues have been plotted with respect to the wavevector and these
wavectors have been chosen in the z-direction.
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Figure 10: Dispersion relation for a YIG film without holes. The lattice has one layer and the external magnetic field is 700
Oe. The wavevectors are in the z-direction. The boundaries of the first four Brillouin zones are indicated by the vertical red
dashed lines. The boundary of the first Brillouin zone is at kz ≈ 2.5385 · 107 cm−1.

0.0 0.2 0.4 0.6 0.8 1.0
kz (cm 1) 1e7

0.2

0.4

0.6

0.8

1.0

E
(G

H
z)

1e6 10a
2
10a

3
10a

4
10a

Figure 11: Dispersion relation for a YIG film with holes. The lattice has 1 layer and the external magnetic field is 700
Oe. Here all three eigenstates are plotted with respect to the wavector which is in the z-direction. The boundaries of the
first four Brillouin zones are indicated by the vertical red dashed lines. The boundary of the first Brillouin zone is at kz ≈
2.5385 · 106 cm−1. (Note the y-scale)
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Figure 12: Dispersion relation for a YIG film with holes, but with the exchange interaction neglected. The lattice has one
layer and the external magnetic field is 700 Oe. Here all three eigenstates are plotted with respect to the wavector which is in
the z-direction. The boundaries of the first four Brillouin zones are indicated by the vertical red dashed lines. The boundary
of the first Brillouin zone is at kz ≈ 2.5385 · 106 cm−1.
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4 Discussion

In this chapter we will discuss the results of our research. In Chapter 3 we considered the effects of the
Ewald summation and the dispersion relation, so we will discuss these subjects.

4.1 Comparison of the dipole terms

Let us start with our observations during the comparison of the dipole terms in Section 3.1 in the old case
of a lattice without holes. As we have seen in Figures 5 and 6 there is hardly any difference between the
explicit dipole term and the Ewald dipole term after a certain N . For small wavevectors as in Figure 5 we
need at least N = 2000 and for large wavevectors as in Figure 6 we need at least N = 600. We conclude from
this that the choice of using the Ewald summation or not, should not give different results in the dispersion
relation, given the fact that we choose NEwald = 10 for the Ewald dipole terms and N ≥ 2000 for the explicit
dipole terms. As a result we chose to use the Ewald summation with N = 10. This means that we can choose
our our lattice to be a 21 by 21 lattice, without getting different results than taking N larger than 2000.
Due to this fact we need less computations which makes our simulations faster. This was also mentioned
in Kreisel et al. [6]. Now for the new case of a lattice with holes we observed a similar behaviour. To get
similar results for the explicit and ewald dipole terms we need an N of at least 2000 again. Now, however, we
needed NEwald = 20 for the Ewald dipole terms. So now we choose our lattice to be 41 by 41. Remarkable is
that the explicit dipole terms in the new case converge faster than the ones of the old case. An explanation
lies in the fact that the sites are more seperated in the new lattice. If we assume that the lattices in the old
and new case contain the same amount of sites, the lattice of the new case will take up more space due to
the holes in it. As we said in Section 3.1.1 the explicit dipole term with a finite sum converges to the explicit
dipole term with an infinite sum. The terms in the sum are the locations of the sites which are in general
larger than in the previous case, so indeed we would expect the explicit dipole term to converge faster.

4.2 Dispersion relation

In Ref. [6] we can see the dispersion relation of a YIG film without holes. We followed the same theory
and chose the same parameters and hence we got the same result which could be found in Figure 9. Instead
of 400 layer we also plotted the dispersion relation for 1 layer in a non-logarithmic scale. In this case the
boundary of the first Brillouin zone is at

kz =
π

a

≈ 2.5385 · 107 cm−1.

We expected a periodic behaviour, because our lattice is periodic and, indeed, we observe this. The reason
we showed this, was because we found a similar behaviour in the dispersion relation for a YIG film with holes
in it and where we neglected the exchange interaction. This could be found in Figure 12. What we expected
to find was something similar as in Wang et al [7]. There the dispersion relation had a periodic behaviour
and band gaps. In our dispersion relation we also see a periodic behaviour and band gaps, but the third
dispersion branch has a slight decrease. Also around the boundaries of the Brillouin zones their dispersion
relation has a maximum when we have a minimum and vise versa. Furthermore, the boundaries of the first
two odd Brillouin zones are not precisely located at a minimum. As we have mentioned earlier we have
neglected the exchange interaction in Figure 12. The reason was that the dispersion relation of a YIG film
with holes as in Figure 11 has energies in the order of 106 GHz, which is much larger than what was the case
in Figure 9 and in Wang et al [7]. Neglecting the exchange interaction circumvented this problem. A possible
explanation could be that the exchange matrix as in equation (9) is wrongfully determined. Neglecting the
exchange interaction can be justified, though, due to the fact that spin waves in the z-direction caused by
the exchange interaction can not escape the holes.

24



5 Conclusion

In this chapter we will draw a conclusion of our research. Before that we give an overview of this thesis.
Finally, we will give some ideas for future research.

5.1 Overview

Let us begin with an overview of our thesis. First we discussed the theory of our research. This included the
Hamiltonians of the lattices in both the cases with and without holes. In particular we studied the dipole-
dipole interaction and the use of the Ewald summation. Afterwards, we described how to find the dispersion
relation of the Hamiltonians. What followed were our numerical results. We found that the dipole terms
using the Ewald summation converged faster than the dipole terms without using the Ewald summation.
Hereafter, we presented the results of our research in the form of dispersion relations. Finally, we discussed
our results.

5.2 Conclusion of research

In our research we investigated the influence of holes in a YIG film. More precisely, we asked ourselves how
the dispersion relation would change if there were holes. As we can see in Figure 11 we can now see band
gaps, which were not there for the lattice without holes. The periodic behaviour is still there, but instead
of the smooth shape like a sine function it now has sharp peaks. Also there are maxima instead of minima
and vice-versa compared to what Wang et al. found. Note that we have neglected the exchange interaction
here, because the energies are very large otherwise. We also have obtained side results. We have seen that
we can use the Ewald summation for the dipole terms with a shift as in equation (11). We checked the
validity of these dipole terms in Figures 7 and 8. In fact the dipole terms in these figures are approximations
of the dipole term of the infinite lattice. We used the Fourier approximation which only holds for infinite
periodic lattices. But provided that we took our lattice large enough these dipole terms should be excellent
approximations. The dipole term using the Ewald summation converges fast which we used in our advantage
by only using the Ewald dipole terms in our simulation.

5.3 Outlook

The largest problem in our research was the exchange energy creating high energies in our dispersion relation.
Further theoretical and numerical research on this topic should be useful. Moreover we saw in Figure 12 that
the third dispersion branch slowly decreases, while we expect it to be periodic. So also here more research
should be useful. We wanted to investigate a lattice with holes as in Figure 3. What we could have changed,
are the sizes of the strips compared to the holes. For example we suggest taking the width of the holes to be
smaller than the width of the strip of sites. In this way we could obtain more insight into how the geometry
of the YIG film influences the dispersion relation of the spin waves. What also could have been done, is
adding a periodic array of spherical holes in our film. This has been investigated in Ref. [10] where they fill
these holes with iron. They have predicted that there will propagate chiral spin wave edge modes along the
boundary of the film which are the result of the topology of the crystal. Another interesting concept is the
fact that we saw bandgaps. A questions that arises is how these bandgaps emerge, so further research on
this is certainly possible. If there is a way to control the frequency of the spin waves using these bandgaps,
it might be possible to use spin waves as a information carriers. There is, however, a limiting factor which
is the spin wave damping [11]. This damping ensures that the decay lenth of the spin waves are in the
order of tens of micrometer [12]. One could imagine it being very profitable to study spin wave damping.
Other things we could have investigated were the angle and strength of the external magnetic field as in
Ref. [6]. Changing the angle of the external magnetic fielded causes the dipole terms to change, because the
direction of the spins will change. All these proposals for further investigations are to develop more ways to
manipulate spin waves for the long term goal of using spintronics in electronic devices.
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