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1 Introduction

I always liked to visualise various things. For example, when listening to a story I always tried to make a
picture in my mind.
Sometimes, I have the same with mathematics. In the course Topology and Geometry, for example, we
learned that the annulus is homotopy equivalent to a circle and I was fascinated by the fact that we can
visualise this in our mind.
An example of a theorem which is possible to visualise is the following.

Theorem 1.1 (Hairy Ball Theorem, [5], p. 435). There does not exist a vectorfield which is non-zero on all
S2.

We can say that this theorem states that you can not comb the hair on a hairy ball without leaving bald
spots.
Therefore, I was really excited when my supervisor prof. dr. Marius Crainic proposed the Poincaré-Hopf
theorem as a subject of my bachelor thesis. It is namely a generalisation of the Hairy Ball theorem.

Theorem 1.2 (Poincaré-Hopf Theorem, [7], p. 134). Let M be a compact oriented smooth manifold. Let ~v
be a smooth vectorfield on M with finitely many zero’s. Let {xi ∈M | i ∈ I ⊂ Z} be the set of zero’s of the
vectorfield ~v. Then the global sum of the indices of ~v equals the Euler characteristic of M . In other words∑

i∈I
indxi

(~v) = χ(M),

where indxi(~v) denotes the index of ~v at its zero xi and χ(M) denotes the Euler characteristic of M .

The general goal of this thesis is to compare two different ways of proving the Poincaré-Hopf theorem. One
of them includes Morse theory and the other does not.
Of course, we must first understand the statement of 1.2 and therefore we start with a chapter containing
preliminary definitions, for example that of smooth manifolds. To understand the Euler characteristic
properly we shall discuss homology theory and De Rham cohomology. In the chapter that follows we will
see that various definitions of the Euler characteristic are, in fact, equivalent. Then there remains only
one thing, naimly the index of a vector field. What follows is our first proof of the Poincaré-Hopf theorem
without Morse theory. Once we have done that we will turn to Morse theory and eventually give a second
proof using Morse theory. Finally, we end the thesis with a conclusion where we will also discuss the Hairy
Ball theorem.
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2 Preliminaries

We shall start with a few definitions and basic results in differential topology, which we will use throughout
the thesis. This chapter is mainly based on Introduction to Smooth Manifolds [5] by John. M. Lee and
Topology from the Differential Viewpoint [4] by John M. Lee. Let us start with manifolds.

2.1 Manifolds

Definition 2.1. Let M be a topological space. Then M is a topological m-dimensional manifold without
boundary if

1. M is Hausdorff

2. M is second countable

3. M is locally Euclidean of dimension m.

Definition 2.2. The topological space M is a topological m-dimensional manifold with boundary if

1. M is Hausdorff

2. M is second countable

3. M is locally homeomorphic to an open subset of Rm or Hm,

where Hm ⊂ Rm is the closed m-dimensional upper half-space.

Remark 2.3. We will mostly use manifolds without boundary, so when we talk about just manifolds we
actually mean manifolds without manifolds unless otherwise stated.

Remark 2.4. The Poincaré-Hopf theorem can be slightly adapted such that it also holds for manifolds with
boundary, but we won’t consider that in this thesis.

Definition 2.5. Let U ′ ⊆ Rn and V ′ ⊆ Rm be open sets. We say that the function f : U ′ → V ′ is smooth
if all of its component functions have continuous partial derivatives in all orders. If F has the additional
properties that it is bijective and has a smooth inverse, we say that F is a diffeomorphism.

Definition 2.6. With a chart (U,ϕ) on M we mean a pair which consists of an open set U ⊆ M and a
homeomorphism ϕ : U → U ′ where U ′ ⊆ Rm is an open set. We say that two charts (U,ϕ) and (V, ψ) on M
are smoothly compatible if either U ∩ V is empty or ψ ◦ ϕ−1 : ϕ(U ∩ V )→ ψ(U ∩ V ) is a diffeomorphism.

Definition 2.7. An atlas A for M is a collection of charts, such that the domains of the charts cover M .
We will call A a smooth atlas if all of its charts are smoothly compatible with each other. If a smooth atlas
on M is maximal we say that it is a smooth structure on M and any chart in it is called a smooth chart.

Now using these definition we can finally define smooth manifolds, which are the main objects in this thesis.

Definition 2.8. A smooth manifold is a pair (M,A) which consists of a topological manifold and a smooth
structure.

Remark 2.9. To ease notation we will leave the smooth structure out. Furthermore, we will only talk about
smooth manifolds from now on, so by saying ’M is a manifold’ we actually mean ’M is a smooth manifold’.

Remark 2.10. Note that for smooth manifolds, the homeomorphism ϕ in (U,ϕ) is, in particular, a diffeo-
morphism.

2.2 Smooth maps

In this section we shall discuss definitions and results regarding smooth maps between manifolds. By now
we have only defined smooth maps between open sets in Rn, so consider the following definition.

Definition 2.11. Let M,N be manifolds. We say that F : M → N is a smooth map if for all p ∈M there
exists smooth charts (U,ϕ) with p ∈ U and (V, ψ) with F (p) ∈ V such that

1. F (U) ⊆ V

2. ψ ◦ F ◦ ϕ−1 : ϕ(U)→ ψ(V ) is smooth as in definition 2.5.
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We will denote the set of smooth maps from M to R with C∞(M).

Definition 2.12. Let p ∈M , where M is a manifold. A derivation at p is a linear map v : C∞ → R which

1. is linear

2. satisfies v(fg)f(p)vg + g(p)vf for all f, g ∈ C∞(M).

We will denote the set of all derivations of C∞(M) at p by TpM , the tangent space to M at p. Each element
in the tangent space is called a tangent vector at p.

Remark 2.13. The tangent space TpM of an m-dimensional manifold is an m-dimensional vectorspace.

These definitions help us to define the differential of a smooth map.

Definition 2.14. Let M,N be manifolds and let F : M → N be a smooth map. Then we define differential
dFp : TpM → TF (p)N of F at p ∈M as follows. Let v ∈ TpM and let f ∈ C∞(N), then

dFp(v)(f) = v(f ◦ F ).

.

2.3 Homotopy

In this section we shall recall some notions about homotopy theory.

Definition 2.15. Let X,Y be topological spaces and let f0, f1 : X → Y be continuous map. We define a
homotopy from f0 to f1 to be a continuous map H : X × I → Y , where I is the closed interval [0, 1] ⊂ R,
such that

H(x, 0) = f0(x)

H(x, 1) = f1(x),

for all x ∈ X. If such a homotopy exists, we say that f0 and f1 are homotopic to each other and we will
denote this by f0 ∼ f1.

Definition 2.16. Let X,Y be topological spaces and let f : X → Y be a continuous map. We say that f
is a homotopy equivalence if there exists another continuous map g : Y → X such that

f ◦ g = idY

g ◦ f = idX .

We say that X and Y are homotopy equivalent if there exists such a homotopy equivalence.

2.4 Vectorfields

Definition 2.17. Let M be a manifold. A smooth vector field ~v on M is a smooth map which assigns a
tangent vector vp to each point p ∈ M . These tangent vectors are elements of the tangent space TpM . We
define the tangent bundle TM to be the disjoint union of all tangent spaces. So

TM :=
⊔
p∈M

TpM.

We can see ~v as a map from M to TM .

Remark 2.18. We will only discuss smooth vectorfields, so to ease notation, we will leave the word ’smooth’
out.

Now we consider the following simplified version of proposition 3.18 of Introduction to Smooth Manifolds [5]
on tangent bundles. A proof can be found on pages 66-67.

Theorem 2.19. Let M be a n-dimensional manifold. Then the tangen bundle TM can be seen as a 2n-
dimensional manifold.

Proposition 2.20. Let M be an m-dimensional manifold with ~v a vectorfield on it. Let (U,ϕ) be a chart
for M . We know that U is diffeomorphic to ϕ(U) ⊆ Rm, so let {x1, . . . , xm} be the local coordinates on U .
Then we can write

vp =

m∑
i

vi(p)
∂

∂xi

∣∣∣
p
,

for all p ∈M .
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3 Homology

To understand the Euler characteristic it is important to know what homology groups are. Therefore we
shall recall some concepts in homology theory. For that we will largely follow Algebraic Topology [1] by A.
Hatcher.
Singular homology is the main topic of this chapter, but we start with simpicial homology, because it is more
intuitive. Therefore, readers who want to directly see the definition of singular homology groups can skip
the section about simplicial homology. However, the last remark in this section about simplicial homology
is of quite importance. After singular homology, we shall conclude with cellular homology.

3.1 Simplicial Homology

Consider the following definitions.

Definition 3.1. We define the set ∆n ⊂ Rn as follows

∆n :=

{
x = (x1, . . . , xn) ∈ Rn |

n∑
i=1

xi ≤ 1, xi ≥ 0

}
.

This set is called a standard n-simplex.

Definition 3.2. Let j ∈ N such that 1 ≤ j ≤ n. Then we define the faces of ∆n to be the following sets

fj∆
n :=

{
x = (x1, . . . , xn) ∈ Rn |

n∑
i=1

xi ≤ 1, xi ≥ 0, xj = 0

}

f0∆n :=

{
x = (x1, . . . , xn) ∈ Rn |

n∑
i=1

xi = 1, xi ≥ 0

}
.

Definition 3.3. A k-dimensional simplicial complex is a topological space X together with a collection of
maps ϕni : ∆n → X. Here n ≤ k and i ∈ In where In is an index set for each n. These maps must satisfy
the following two conditions

1. For all m ∈ {0, . . . n} there is an l ∈ In−1 such that ϕni (fm∆n) = ϕn−1
l (∆n−1)

2. Let i, j ∈ In. If the intersection of ϕi(∆
n) and ϕj(∆

n) is non-empty, then it must be equal to a
common face of ϕi(∆

n) and ϕj(∆
n).

We will call each ϕni (∆n) an n-simplex of X. Due to the second condition each n-simplex of X is uniquely
determined by its boundary. The boundary consists of faces which are (n− 1)-simplices, because of the first
condition. Inductively each n-simplex can be represented with a unique set of vertices. For example, we can
write a 1-simplex like ϕ1

i (∆
1) = [v0, v1], where v0 and v1 are vertices. To take orientation into account we

say that [v0, v1] is equal to −[v1, v0]. Similarly we can write each n-simplex as [v1, . . . , vn], with vi vertices.

Definition 3.4. Let X be a k-dimensional simplicial complex. Then we define the chain set ∆n(X) to be
the vector space with the n-simplices of X as its basis. If we indicate each n-simplex of X with ϕni (∆n) we
get that each element of ∆n(X) will be of the form

∑
i aiϕ

n
i (∆n) where ai ∈ R and i ∈ In. These elements

in ∆n(X) are called n-chains.

Now we want to define the so called boundary map ∂n on the chain set, but first we will define it for n-chains
in the basis pf ∆n(X).

∂n : ∆n(X)→ ∆n−1(X)

: [v0, . . . , vn] 7→
∑
i

(−1)i[v0, . . . , v̂i, . . . , vn].,

where the hat above vi stands for deleting this vertex. We define this map to be linear, from which it follows
that it is well defined for the entirety of ∆n.

Lemma 3.5 ([1], 2.1). As a result of this definition we get that ∂n−1∂n = 0, where 0 stands for the zero-map.

Proof. We have the following situation

∆n(X)
∂n−−−→ ∆n−1(X)

∂n−1−−−→ ∆n−2(X).
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It holds that

∂n−1

(∑
i

(−1)i[v0, . . . , v̂i, . . . , vn]

)
=

n∑
i=0

i−1∑
j=0

(−1)i+j [v0, . . . , v̂j , . . . , v̂i, . . . , vn]

+

n∑
i=0

n∑
j=i+1

(−1)i+j+1[v0, . . . , v̂i, . . . , v̂j , . . . , vn]

=

n∑
i=0

i−1∑
j=0

(−1)i+j [v0, . . . , v̂j , . . . , v̂i, . . . , vn]

+

n∑
i=0

i−1∑
j=0

(−1)i+j+1[v0, . . . , v̂j , . . . , v̂i, . . . , vn]

= 0

So indeed, we have that ∂n−1∂n = 0.

We define ∂0 : ∆0(X)→ 0 to be the map which sends everything in ∆0(X) to identity element. A consequence
is that Im∂n+1 ⊆ Ker∂n for all non-negative n ∈ Z. What follows is the sequence below

· · ·∆n+1(X)
∂n+1−−−→ ∆n(X)

∂n−−−→ ∆n−1(X) −−−→ · · · −−−→ ∆1(X)
∂1−−−→ ∆0(X)

∂0−−−→ 0.

This is called the chain complex of X.

Definition 3.6. The nth simplicial homology group with real coefficients of this chain complex is defined to
be H∆

n (X;R) := Ker∂n / Im∂n+1.

Consider the following examples.

Example 3.7. In this example we will discuss the simplicial homology of S1. A circle can be represented
by three vertices a, b, c and three edges X,Y, Z as in figure 1.

a c

b

Z

YX

There are no n-simplices with n ≥ 2, so Ker∂n ∼= 0 for n ≥ 2. This implies that H∆
n (S1;R) ∼= 0 for n ≥ 2.

We have three 0-simplices, so ∆0(S1) = 〈a, b, c〉 ' R3. Then Ker∂0
∼= ∆0(S1) ∼= R3, because ∂0 is the

zero-map. We have 3 edges, so ∆1(S1) = 〈X,Y, Z〉. Each edge can be represented by vertices. This gives us
X = [a, b], Y = [b, c] and Z = [c, a]. Then it holds that Im∂1

∼= ∂1∆1(S1) = 〈[b]− [a], [c]− [b], [a]− [c]〉 ∼= R2.
We conclude that H∆

0 (S1;R) ∼= R.
What is left is H∆

1 (S1;R). It equals Ker∂1, because Im∂2 = 0. The kernel of ∂1 is 〈X + Y + Z〉, so it is
isomorphic to R. We conclude that H∆

1 (S1;R) ∼= R.

Example 3.8. Now we will compute H∆
n (Sn;R). An n-sphere can be constructed by two copies of the

standards n-simplex and identifying the boundaries of each of them together. Call the n-simplices A and B,
and we know that these have the same boundary. It follows that Ker∂n = 〈A − B〉 and we conclude that
H∆
n (Sn;R) ∼= R for all n ∈ N.

Remark 3.9 ([1], p. 153). The simplicial homology groups defined in Algebraic Topology [1] are with integer
coefficients in contrast with what we defined using real coefficients. This, however, is not a problem, because
most results remain roughly the same. This also holds for singular and cellular homology in the following
sections.
The reason why we use real coefficients is the fact that we will not have to deal with torsion, which we would
have if we used integer coefficients. This gets more clear after definition 3.24 in the next section.
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3.2 Singular Homology

While studying homology theory I used various sources, among which the online videos by prof. Pierre
Albin. A quote by him during one of his lectures [17] goes as follows:

[. . . ] generally speaking singular homology is wonderful when you want to prove things and the
homology associated with ∆-complex structures is wonderful when you want to compute things.

(Pierre Albin, l.c. minute 30:57).

Therefore, we shall discuss singular homology in this section.

Definition 3.10. Let X be a topological space and let σ : ∆n → X be a continuous map. The set σ(∆n)
is called a topological n-simplex.

We define Cn(X) to be the real vector space, with the topological n-simplices as basis. The boundary maps
∂n : Cn(X) → Cn−1(X) are defined in the same way as for simplicial n-simplices. We then have again
∂n+1∂n = 0, from which it follows that Im∂n+1 ⊆ Ker∂n. We obtain the following chain complex

· · ·Cn+1(X)
∂n+1−−−→ Cn(X)

∂n−−−→ Cn−1(X) −−−→ · · · −−−→ C1(X)
∂1−−−→ C0(X)

∂0−−−→ 0.

The nth-singular homology group with real coefficients of this chain comples is defined to be Hn(X,R) :=
Ker∂n / Im∂n+1.
What follows from singular homology are the following few definitions and results, which we will use later.

Definition 3.11. Consider the following situation

· · ·Xn+1
hn+1−−−→ Xn

hn−−−→ Xn−1 −−−→ · · ·

where Xi are vector spaces and hi are linear maps. We say that a sequence of linear maps is an exact
sequence if Kerhn = Imhn+1. This implies that this is a chain complex.

Definition 3.12. Consider the following situation

0
h3−−−→ X

h2−−−→ Y
h1−−−→ Z

h0−−−→ 0, (1)

where X,Y, Z are vector spaces and h3, h2, h1, h0 are linear maps. If this sequence is exact we say that this
is a short exact sequence.

Lemma 3.13. The sequence described in equation (1) is exact if and only if

1. the linear map h2 : X → Y is injective;

2. and the linear map h1 : Y → Z is surjective;

3. and the Ker(h1) = Im(h2).

Proof. Let us prove the statement from right to left first. Consider the linear map h3 : 0 → X : 0 7→ 0X ,
where 0X is the zero-element of X. Then we see that Im(h3) = {0X} ⊂ X. Consider now h2 : X → Y . It
is given that h2 is injective and due to the fact that h1 is a linear map, we see that Ker(h2) = {0X}. So
indeed Im(h3) = Ker(h2).
Furthermore, we already have that Ker(h1) = Im(h2).
Consider h0 : Z → 0. We know that Ker(h0) = Z, because h0 is a linear map. We also know that h1 : Y → Z
is surjective, and thus we see that Im(h1) = Z = Ker(h0). Our conclusion is that the sequence is exact.
Now we will prove the statement from left to right. It holds that Im(h3) = Ker(h2). So Ker(h2) = {0X},
from which it follows that h2 is injective.
Moreover, we already have Im(h2) = Ker(h1).
Finally, the trivial group has only one element and thus Ker(h0) = Z. Using Im(h1) = Ker(h0) it follows
that h1 is surjective, which completes our prove.

Definition 3.14. Let X be a topological space and let A ⊆ X. Then we define Cn(X,A) := Cn(X)/Cn(A).
For the boundary maps we have

∂n : Cn(X)→ Cn−1(X)

∂n : Cn(A)→ Cn−1(A).
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So we get a well-defined sequence of boundary maps

· · · ∂n+1−−−→ Cn(X,A)
∂n−−−→ Cn−1(X,A)

∂n−1−−−→ · · · ,

which is a chain complex. Again we have that ∂n+1∂n = 0. Then we define the nth relative homology group
with real coefficients Hn(X,A;R) of the chain complex to be Ker∂n/Im∂n+1

Remark 3.15. We can define the nth relative simplicial homology group with real coefficients H∆
n (X,A;R)

in a similar way.

Using these definitions we can give the relation between simplicial and singular homology in the following
theorem. This theorem is a simplified version of theorem 2.27 in Algebraic Topology [1], for which a proof
can be found on pages 128-130.

Theorem 3.16 ([1], 2.27). Let X and A be a simplicial complexes such that A ⊆ X. Then the vectorspaces
H∆
n (X,A;R) and Hn(X,A;R) are isomorphic to each other for all n.

For later use we will introduce a slightly simplified version of the Excision theorem without proof. A proof
can be found in Algebraic Topology [1] at page 219.

Theorem 3.17 (Excision Theorem, [1], 2.20). Let Z ⊆ A ⊆ X be topological spaces. Suppose that the
closure of Z is a subset of the interior of A. Then we have that

Hn(X − Z,A− Z;R)→ Hn(X,A;R).

We conclude with a lemma which turns out to be useful in lemma’s 8.24 and 8.25 for which a verification
can be found in Algebraic Topology [1] on page 118.

Lemma 3.18. Let X,Y, Z be topological spaces such that Z ⊆ Y ⊆ X. Then the sequence

· · ·Hn(Y,Z) −−−→ Hn(X,Z) −−−→ Hn(X,Y ) −−−→ Hn−1(Y,Z) · · ·

is exact.

3.3 Cellular Homology

In this section we shall define CW -complexes so that we can define the Euler characteristic.

Definition 3.19. We define a CW-complex X inductively.

1. We start with a set X0 of points, which we will call the 0-skeleton.

2. Let Dnα denote an n-disk with α ∈ I an element of an index set. Furthermore, let ϕα : ∂Dnα → Xn−1

be continuous maps. Then we define the n-skeleton Xn to be the following quotient space:

Xn := (Xn−1 tα∈I Dnα)
/

(ϕα(x) ∼ x),

for all α ∈ I and x ∈ Dnα. We call these attached n-disks Dnα n-cells.

3. Then the CW-complex X would be the end result of this possibly infinite procedure.

Cellular homology theory is the theory about homology groups of CW -complexes. CW -complexes consist
of n-cells, and thus we define CCWn (X) to be the vector space with the n-cells as basis. Following pages
137-139 of Algebraic Topology [1] we can define a boundary map ∂CW such that ∂CWn−1∂

CW
n = 0 This gives

us the cellular chain complex of X, from which we can deduce the cellular homology groups of X, which are
denoted by HCW

n (X,R).

Remark 3.20. It holds that CCWn (X) ∼= Hn(Xn, Xn−1;R) as stated in lemma 2.34 in Algebraic Topology
[1].

An important property of cellular homology groups of X is stated in the following theorem for which a proof
can be found in Algebraic Topology [1] on page 140.

Theorem 3.21. Let X be a CW -complex. Then we have that HCW
n (X) is isomorphic to Hn(X).

Now let us define the Euler characteristic.
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Definition 3.22. For a compact CW -complex X, we define the Euler characteristic to be

χ(X) =
∑
n

(−1)ncn,

where cn is the number of n-cells of the CW -complex.

Example 3.23. Consider the 2-sphere S2. The CW -complex structure of a 2-sphere can be described by
a point p and a 2-disk, where we identify the boundary of the 2-disk with the point p. The point p is a
0-cell, and the 2-disk is a 2-cell. For the rest, there are no n-cells with n unequal to 0 or 2. Then the Euler
characteristic will be

χ(S2) = 1− 0 + 1 = 2.

Actually, the Euler characteristic can be stated such that it only depends on the homology groups of X,
which gets clear in theorem 3.26. But before that consider the following definition.

Definition 3.24. Let X be a topological space. Then we define the nth Betti number bn(X) of X to be
equal to dim(Hn(X;R)).

Remark 3.25. As we said earlier, in Algebraic Topology singular homology groups with integer coefficients
were used instead of with real coefficients. As a result the singular homology groups will consist of a free
part and a torsion part. The betti numbers will then be defined as the dimension of the free part. To bypass
this all we used singular homology with real coefficients. We refer to Algebraic Topology by A. Hatcher if
the reader is interested in torsion.

Theorem 3.26 ([1], 2.44). Let X be a compact CW -complex, and let χ denote the Euler characteristic.
Then we have that

χ(X) =
∑
k

(−1)kbk(X).

Before we prove this theorem, we present a lemma.

Lemma 3.27. Let X,Y, Z be vectorspaces, and let h0, h1, h2 and h3 be linear maps. Suppose that the
following sequence is a short exact sequence.

0
h3−−−→ X

h2−−−→ Y
h1−−−→ Z

h0−−−→ 0

Then we have that dim(Y ) = dim(X) + dim(Z).

Proof. With help of the rank-nullity theorem we can see that

dim(X) = dim(Im(h2)) + dim(Ker(h2))

= dim(Ker(h1))

dim(Y ) = dim(Im(h1)) + dim(Ker(h1))

= dim(Z) + dim(X),

which is the desired result.

Proof of Theorem 3.26. Recall that Cn(X) = Hn(Xn, Xn−1,R) is the vectorspace with the n-cells of X as
basis. The dimension of Cn is the amount of n-cells, so we have that cn is equal to dimension of Cn(X).
Note that X is a compact CW -complex. This implies that X has finitely many cells. So there exists a
k ≥ 0, such that for all n > k we have that Cn(X) = Hn(Xn, Xn−1,R) = 0. We then get the following chain
complex

· · · 0 ∂k+1−−−→ Ck(X)
∂k−−−→ Ck−1 −−−→ · · · −−−→ C1

∂1−−−→ C0
∂0−−−→ 0.

Consider the following sequence

0 −−−→ Ker(∂n)
ι−−−→ Cn

∂n−−−→ Im(∂n) −−−→ 0,

where ι is the injective inclusion map. We have that ∂n : Cn → Im(∂n) is surjective and that Ker(∂n) = Im(ι),
and thus we can conclude that this sequence is a short exact sequence.
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Moreover, consider

0 −−−→ Im(∂n+1)
ι−−−→ Ker(∂n)

π−−−→ Ker(∂n)/Im(∂n+1) = Hn(X,R) −−−→ 0,

where ι denotes the injective inclusion map, because Im(∂n+1) ⊆ Ker∂n. Here π denotes the surjective
projection map and we have that Ker(π) = Im(ι), from which we can conclude that this sequence is also a
short exact sequence.
Now using Lemma 3.27 we obtain the following

χ(X) =
∑
n

(−1)ncn

=
∑
n

(−1)ndim(Cn)

=
∑
n

(−1)ndim(Ker(∂n)) + dim(Im(∂n))

=
∑
n

(−1)ndim(Im(∂n+1)) + dim(Hn(X,R)) + dim(Im(∂n))

=
∑
n

(−1)ndim(Hn(X,R)),

which completes the proof.

Definition 3.28. The definition of the Euler characteristic can be extended, because we can define the
singular homology groups also on topological spaces and not just CW -complexes. So let X be a topological
space. Then we define the Euler characteristic of X to be

χ(X) =
∑
n

(−1)n dimHn(X,R).
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4 De Rham Cohomology

The goal of this chapter is to specify the Euler characteristic for manifolds and we will do that using so called
De Rham cohomology groups. For that we will follow the lecture notes [15] of M. Crainic and Introduction
to Smooth Manifolds [5] by J. M. Lee.

4.1 Definition

In this section we will define the De Rham cohomology groups of a manifold, but first we start with an other
definition.

Definition 4.1. Let V be a vector space and let n ∈ Z≥0. Consider the following map

η : V × V × · · · × V︸ ︷︷ ︸
n copies

→ R.

We say that it is a linear n-form on V if η is linear in each argument and if

η(x1, . . . , xn) = sign(σ)η(xσ(1), . . . , xσ(n)),

where x1, . . . , xn ∈ X and σ is a permutation. The vector space containing all such linear n-forms is denoted
by ΛnX∗.

Now we want to define n-forms on manifolds.

Definition 4.2. Let M be an m-dimensional manifold. A set theoretical n-form is a map ω such that

ω : M → ΛnT ∗pM

: p 7→ ω(p).

To ease the notation we will use ωp instead of ω(p) from now on.

Definition 4.3. A set theoretical n-form is called a differential n-form if it is smooth with respect to the
charts. The vector space containing all such differential n-forms is denoted by Ωn(M).

These definition give rise to the following theorem, which is a slightly simplified version of theorem 14.24 in
Introduction to Smooth Manifolds [5]. A proof can be found there at pages 365-366.

Theorem 4.4 ([5], 14.24). Let M be a manifold. For all n ∈ Z≥0 there exist unique operators dn : Ωn(M)→
Ωn+1(M) with the following properties:

1. dn is linear with real coeficients for all n ∈ Z≥0

2. dn+1 ◦ dn = 0

3. For f ∈ Ω0(M) we have that df is the differential of f

We call dn the exterior derivative.

Corollary 4.5. If df = 0 for f ∈ Ω0(M) and M connected, then f is constant, because df is the differential
of f .

The first two properties of theorem 4.4 make it possible for us to define the De Rham cohomology groups.

Definition 4.6. Let n ∈ Z≥0. We define the nth De Rham cohomology group Hn
dR(M) to be the following

vector space:

Hn
dR(M) = Ker(dn)/Im(dn−1).

To ease the notation we define Zn(M) := Ker(dn) and Bn(M) := Im(dn−1) and thus we get

Hn
dR(M) = Zn(M)/Bn(M).

Remark 4.7. We can extend the definition for n to the entirety of Z, so also the negative integers, by
defining Hn

dR(M) = {0} for negative n ∈ Z.

12



4.2 Homotopy Invariance

This section is dedicated to theorem 4.8 and is based on Introduction to Smooth Manifolds by [5] John M.
Lee and on the lecture notes of Marius Crainic [15].

Theorem 4.8 ([5], 17.11). Let M,N be manifolds which are homotopy equivalent with each other. Then for
all n ∈ N it holds that Hn

dR(M) ∼= Hn
dR(N).

Before we prove this theorem, we need the Whitney Approximation theorem and a lemma for which we will
not provide a proof.

Theorem 4.9 ([5], 9.27 Whitney Approximation Theorem). Let f0 : M → N be a continuous map between
the manifolds M and N . Then there exists a smooth map f1 : M → N such that f0 and f1 are homotopic
to each other.

Before we procede to the lemma, consider the following definition.

Definition 4.10. Let M and N be manifolds and let f : M → N be a smooth map between them. Let
p ∈ M and let X1

p , . . . X
n
p ∈ TpM . For ω ∈ Ωn(N) we define the pull-back of ω by f denoted by f∗ω in the

following way:

(f∗ω)p(X
1
p , . . . , X

n
p ) := ωf(p)((df)p(X

1
p), . . . , (df)p(X

n
p )).

We observe that

f∗ : Ωk(N)→ Ωk(M).

Remark 4.11. A property of the pull-back of ω by f is that it commutes with dn : Ωn(M)→ Ωn+1(M) for
all n ∈ N. Furthermore if M ⊆ N and f is the inclusion map between them, we have that the pull-back of
ω by f is just the restriction of ω on M .
Proving these results is not the goal of the thesis. One could find a proof of the first statement in Introduction
to Smooth Manifolds [5] at page 366.

Definition 4.12. Consider the situation as in definition 4.10. Let ω ∈ Zn(N) ⊆ Ωn(N). Then it holds that

dn(f∗ω) = f∗(dnω) = f∗(0) = 0.

So it holds that f∗ maps Zn(N) into Zn(M). Now let ω ∈ Bn(N) ⊆ Ωn(N). Then there exists a φ ∈ Ωn(N)
such that ω = dφ. Then we have that

f∗ω = f∗(dφ) = d(f∗φ).

It follows that f∗ω ∈ Bn(M). This induces a map between Hn
dR(N) and Hn

dR(M), which we still indicate
with f∗. This map is called the induced cohomology map of f .

Using these the previous notions we can state the following lemma, for which one can find a proof in
Introduction to Smooth Manifolds [5] at page 445.

Lemma 4.13 ([5], 17.10). Let f, g : M → N be smooth maps between the manifolds M and N and suppose
they are homotopic to each other. Then for all n ∈ N it holds that the induced cohomology maps f∗, g∗ :
Hn
dR(N)→ Hn

dR(M) coincide.

Now we can move on to the proof of theorem 4.8.

Proof of theorem 4.8. It is given that the manifolds M and N are homotopy equivalent to each other. So
there exists a continuous map f0 : M → N which is a homotopy equivalence. Let the homotopy inverse be
g0 : M → N . By the Whitney Approximation theorem we know that there exist maps f1 : M → N and
g1 : N →M which are smooth and homotopic to respectively f0 : M → N and g0 : N →M . Then we have
that

f1 ◦ g1 ∼ f0 ◦ g0 ∼ IdN

g1 ◦ f1 ∼ g0 ◦ f0 ∼ IdM .

We conclude that f1 and g1 are each others homotopy inverses. By Lemma 4.13 we know that the induced
cohomology maps of f1 ◦ g1 and IdN are equal. The same holds for g1 ◦ f1 and IdM . So now for all n ∈ N we
have a map between Hn

dR(N) and Hn
dR(M) namely f∗1 which is linear and has an inverse. This means that

it is an isomorphism and we conclude that Hn
dR(N) ∼= Hn

dR(M).
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The pull-backs we introduced gives us a few result which we will use later.

Lemma 4.14 ([5], 17.5). Suppose that {Mj} is a countable collection of n-dimensional manifolds and let
M be the disjoint union of all those Mj. Then for all p we have that Hp

dR(M) ∼=
⊕

iH
p
dR(Mj).

Proof. Consider the inclusion maps ιj : Mj → M . The pull-back maps ι∗j : Ωp(M) → Ωp(Mj) induce an
isomorphism between Ωp(M) and

⊕
j Ωp(Mj) in the following way⊕

j

ι∗j : Ωp(M)→
⊕
j

Ωp(Mj)

: ω 7→ (ι∗1ω, ι
∗
2ω, . . . ).

From remark 4.11 we see that (ι∗1ω, ι
∗
2ω, . . . ) = (ω

∣∣
M1
, ω
∣∣
M2
, . . . ). If ω|Mj

is zero for all j, then it holds that

ω = 0. So the kernel is trivial, which means that
⊕

j ι
∗
j is injective. Surjectivity follows from the fact that

we can define a p-form in M by defining it on all of its disjoint components. Our conclusion is that
⊕

j ι
∗
j is

an isomorphism.

Lemma 4.15 ([5], 17.6). Let M be a connected manifold. Then H0
dR(M) ∼= R.

Proof. Recall that H0
dR(M) = Z0(M)/B0(M) as in definition 4.6. We have that B0(M) is zero, because

there are no (−1)-forms. Furthermore, Zn(M) consists of the 0-forms ω which satisfy dω = 0. So the
differential of ω is zero, which implies that ω : M → R is a constant map. Each constant map can be
indicated by a constant in R. So we indeed have that H0

dR(M) ∼= R.

Corollary 4.16 ([5], 17.7). From lemma’s 4.14 and 4.15 and from the rank-nullity theorem, it follows that
H0
dR({p}) ∼= R and Hn

dR({p}) = 0, for all n ≥ 1 and p a point.

4.3 Mayer-Vietoris Theorem

Now we shall introduce the Mayer-Vietoris theorem which we won’t prove. The Mayer-Vietor theorem is
important, because of the applications of it, which we will discuss in the next section. In this section and
the next one we will follow Introduction to Smooth Manifolds [5] and the lecture notes [15] of M. Crainic.
We start by giving a sketch of the situation of the Mayer-Vietoris theorem.
Let M be a manifold, and let U, V be open in M such that their union is M again. Consider the following
diagram:

U

U ∩ V M

V

ki

j l

,

where i, j, k, l are inclusion maps. These maps are smooth maps and hence we can define for all n ∈ N the
pull-backs by these inclusion maps to obtain the following diagrams:
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ΩnU)

Ωn(M) Ωn(U ∩ V )

Ωn(V )

i∗nk∗n

l∗n j∗n

.

In fact, the pull-backs are the restriction maps.

Theorem 4.17 (Mayer-Vietoris). Consider the situation as sketched above. Then for all n ∈ N, there exists
a linear map δn : Hn

dR(U ∩ V )→ Hn+1
dR (M) such that the following sequence is exact:

· · · δn−1−−−→ Hn
dR(M)

k∗n⊕l
∗
n−−−→ Hn

dR(U)⊕Hn
dR(V )

i∗n−j
∗
n−−−→ Hn

dR(U ∩ V )
δn−−−→ Hn+1

dR (M)
k∗n+1⊕l

∗
n+1−−−→ · · · .

Such a sequence is called a Mayer-Vietoris sequence.

4.4 Applications Mayer-Vietoris Theorem

Now we will discuss some applications of the Mayer-Vietoris theorem. One of them is that we can now
compute the De Rham cohomology groups of various manifolds. Another is that we can prove that the
dimensions of the De Rham cohomology groups are finite. This namely makes it possible to define the Euler
characteristic of a manifold using De Rham cohomology gropus. This section follows the lecture notes of
Marius crainic and Introduction to Smooth Manifolds by John. M. Lee [5].

Theorem 4.18 ([5], 17.21). For all n ∈ N we have that

Hn
dR(Sn) ∼= R.

Proof. We will prove this by induction in n. For n = 1 we have the circle S1. Define U to be S1\{S} and V
to be S1\{N}, where S is the south pole and N the north pole. Consider the first part of the Mayer-Vietoris
sequence of S1:

0
h1−−−→ H0

dR(S1)
h2−−−→ H0

dR(U)⊕H0
dR(V )

h3−−−→ H0
dR(U ∩ V )

h4−−−→ H1
dR(S1)

h5−−−→ H1
dR(U)⊕H1

dR(V ).

It holds that U and V are homotopy equivalent to a point and from theorem 4.8 we know that the De
Rham cohomology groups of U and V are isomorphic to that of a point. The intersection between U and
V is homotopy equivalent with a disjoint union of two points. From lemma’s 4.14 and 4.15 we then get the
following:

H0
dR(S1) ∼= R

H0
dR(U)⊕H0(V ) ∼= R⊕ R

H0
dR(U ∩ V ) ∼= R⊕ R.

Due to the fact that U is homotopy equivalent with a point p, it holds that H1
dR(U) ∼= H1

dR({p}). From
corollary 4.16 it then follows that H1

dR(U) ∼= 0. The Mayer-Vietoris sequence then becomes the following:

0
h1−−−→ R h2−−−→ R⊕ R h3−−−→ R⊕ R h4−−−→ H1

dR(S1)
h5−−−→ 0.

Theorem 4.17 (Mayer-Vietoris) tells us that this sequence is exact, so Imhi = Kerhi+1. This implies that
dim(Im(hi)) = dim(Ker(hi+1)). Using the exactness of the sequence and the rank-nullity theorem we get
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the following:

dim(Ker(h2)) = dim(Im(h1)) (Exactness)

= 0

dim(Im(h2)) = dim(R)− dim(Ker(h2)) (Rank-Nullity)

= 1

dim(Ker(h3)) = dim(Im(h2)) (Exactness)

= 1

dim(Im(h3)) = dim(R⊕ R)− dim(Ker(h3)) (Rank-Nullity)

= 1

dim(Ker(h4)) = dim Im(h3) (Exactness)

= 1

dim(Im(h4)) = dim(R⊕ R)− dim(Ker(h4)) (Rank-Nullity)

= 1

dim(Ker(h5)) = dim(Im(h4)) (Exactness)

= 1.

We know that Ker(h5) ∼= H1
dR(S1), so H1

dR(S1) ∼= R, and thus the induction start has been settled.
Now suppose that the theorem holds for n from 1 until m−1, where m ≥ 2. We shall prove that the theorem
then also holds for n = m. So consider Sm and let U be Sm\{N} and V be Sm\{S}, where N is the north
pole and S the south pole. Also consider the following part of the Mayer-Vietoris sequence of Sm:

Hm−1
dR (U)⊕Hm−1

dR (V ) −−−→ Hm−1
dR (U ∩ V ) −−−→ Hm

dR(Sm) −−−→ Hm
dR(U)⊕Hm

dR(V ).

It holds that U and V are homotopy equivalent with a point. From corollary 4.16 it then follows that the
most left and right spaces in the sequence are trivial. Using the exactness of the sequence and the rank-
nullity theorem again we get that Hm−1

dR (U ∩ V ) ∼= Hm
dR(Sm). It holds that U ∩ V is homotopy equivalent

to Sm−1 and thus we conclude that Hm
dR(Sm) ∼= Hm−1

dR (Sm−1) ∼= R.

Now we move on to the second application, but before that we need the following definition.

Definition 4.19. Let M be a manifold and let U be an open cover of M . The open cover is called a good
open cover if for any finite subset {U1, . . . , Un} ⊆ U the intersection

⋂n
i Ui is either empty or diffeomorphic

to Rm.

Using this definition we can formulate the following lemma which we will not prove. A proof can be found
in for example Manifolds and Differential Geometry by Jeffrey. M. Lee at page 455.

Lemma 4.20. Let M be a compact smooth manifold. Then M admits a finite good open cover.

Theorem 4.21. Let M admit a finite good open cover. Then it holds that the De Rham cohomology groups
Hn
dR(M) are finite dimensional for all n ∈ N.

Proof. For this proof we will use mathematical induction. Our induction start is the following: Suppose
that M admits a finite good open cover which only contains one open set. This set must be M itself. Then
it holds that M is either empty or diffeomorphic to Rm. If M is empty we are done, so suppose that M
is diffeomorphic to Rm. We know that Rm is homotopy equivalent with a point {p} ⊂ R.The De Rham
cohomology groups of a point are finite dimensional, and using theorem 4.8 we conclude that the De Rham
cohomology groups of M are finite dimensional.
Now suppose that the theorem is true for finite good open covers containing k − 1 open sets. Assume that
M admits a finite open good cover U = {U1, . . . , Uk}. We define U, V ⊆ U in the following way:

U =

k−1⋃
i

Ui

V = Uk.

Then it holds that U ∩ V admits a finite good open cover namely {U1 ∩ Uk, . . . , Uk−1 ∩ Uk}, because U is a
finite good open cover. By the induction hypothesis we know that U, V and U ∩ V have finite dimensional
De Rham cohomology groups.
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By theorem 4.17 (Mayer-Vietoris) we know that the following sequence is exact:

· · · −−−→ Hn−1
dR (U ∩ V )

δn−1−−−→ Hn
dR(M)

fn−−−→ Hn
dR(U)⊕Hn

dR(V ) −−−→ · · · .

Due to the fact that Im(fn) ⊆ Hn
dR(U)⊕Hn

dR(V ), it holds that

dim(Im(fn)) ≤ dim(Hn
dR(U)⊕Hn

dR(V )),

and by the exactness of the sequence and the rank-nullity theorem it follows that

dim(Ker(fn)) = dim(Im(δn−1)) ≤ dim(Hn−1
dR (U ∩ V )).

Knowing that the dimension of Hn
dR(U)⊕Hn

dR(V ) and Hn−1
dR (U ∩ V ) is finite, it follows by the rank-nullity

theorem that the dimension of Hn
dR(M) is also finite for all l ∈ N.

As a consequence we are now able to state the desired definition of the Euler characteristic for compact
manifolds in terms of De Rham cohomology groups. It is possible, because now we know that the De Rham
cohomology groups of a compact manifold are finite dimensional.

Definition 4.22. Let M be a compact manifold. We define the Euler characteristic χ(M) of M to be

χ(M) =
∑
j

(−1)j dim(Hj
dR(M)).
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5 Equivalent Euler Characteristics

Now we will show the relation between the Euler characteristic defined in terms of singular homology groups
as in theorem 3.26 and the Euler characteristic defined in terms of De Rham cohomology groups as in
definition 4.22. We start by discussing singular cohomology, which will turn out to be a bridge between the
singular homology groups and De Rham cohomology groups.
The idea to link these in this way is mine, but the individual definition, lemma’s and theorems are the work
of others.

We begin with a few definitions from Algebraic Topology [1].

Definition 5.1 ([1], p. 191). Let X be a topological space and let Cn(X) be the vector space with the
topological n-simplices as basis. Consider the following chain complex of vector spaces

· · ·Cn+1(X)
∂n+1−−−→ Cn(X)

∂n−−−→ Cn−1(X) −−−→ · · · .

We define the cochain set C∗n(X) to be the set of linear maps from Cn to R which is also known as L(Cn,R).

Definition 5.2 ([1], p.191). We define the coboundary map ∂∗ as follows

∂∗n−1 : C∗n−1 → C∗n

: ϕ 7→ ϕ ◦ ∂n−1.

We again have that ∂∗n∂
∗
n−1 = 0. This leads us to the following definition.

Definition 5.3 ([1], p.191). The nth singular cohomology group with real coefficients is defined to be
Ker∂∗n/Im∂

∗
n−1 and it is denoted by Hn(X;R).

Let us recall the definition of a dual space.

Definition 5.4. Let V be a vector space. The dual space V ∗ is the vector space consisting of the linear
maps L : V → R.

Remark 5.5. The singular cohomology groups are the dual space of the singular homology groups.

This remark points out the usefulness of the following theorem for which a proof can be found in Introduction
to Smooth Manifolds [5].

Theorem 5.6 ([5], 11.1). Let V ∗ be the dual space of a finite dimensional vector space V . Then

dim(V ∗) = dim(V ).

From this theorem can conclude that

dim(Hn(X;R)) = dim(Hn(X;R)),

for all n. This implies that

χ(X) =
∑
n

(−1)n dimHn(X,R)

=
∑
n

(−1)n dimHn(X,R),

and the Euler characteristic in terms of singular cohomology groups has been established. Now we shall
link the cohomology groups of a manifold to the De Rham cohomology groups of that manifold. We will do
that using the De Rham theorem for which a proof and explanation can be found in Introduction to Smooth
Manifolds chapter 18.

Theorem 5.7 (De Rham Theorem,[5] ,18.14). Let M be a manifold. Then we have that

Hn
dR(M) ∼= Hn(M ;R),

for all n ∈ Z≥0.

Remark 5.8. This is a slight simplification of how the theorem is stated in Introduction to Smooth Manifolds.

Due to the fact that dimension is a topological invariant, we see that

dim(Hn
dR(M)) = dim(Hn(M,R)),

for all n ∈ Z≥0. We conclude that∑
n

(−1)n dimHn(M,R) =
∑
n

(−1)n dimHn
dR(M),

which ensures the equivalence of definitions of the Euler characteristic on a manifold M .
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6 Index of a Vector Field

Now we can move on to the next thing in the statement of the Poincaré-Hopf theorem, namely the index.
The goal of this chapter is to understand what the index of vectorfield at a zero is. Furthermore, we
shall prove that the sum of the indices of a vectorfield at its zeros is independent of vectorfield. Moreover,
we shall discuss lemma 6.13 which will be important for the proof of the Poincaré-Hopf theorem. In this
chapter we will mainly follow Topology from the Differential Viewpoint [4] with some help of Introduction
to Smooth Manifolds [5] and Topology and Geometry by G. E. Bredon. We also used the papers The Euler
Characteristic, Poincare-Hopf Theorem, and Applications by J. Libgober and The Index of a Vectorfield as
an Invariant by V. Popa.

We start with a few definitions.

Definition 6.1. Let V be an n-dimensional vectorspace. Consider the ordered bases (E1, . . . , En) and
(Ẽ1, . . . , Ẽn) and suppose they are related by

Ei =
∑
j

BijẼj ,

where (Bij) is the transition matrix. We say that the two ordered bases are consistently ordered if the
determinant det((Bij)) of the transition matrix is strictly postive. Two bases being consistently ordered is
an equivalence relation and there are two equivalence classes. An orientation on V is such an equivalence
class.

Example 6.2. Consider now Rn and its standard basis (e1, . . . , en). The standard orientation is the equiv-
alence class containing standard basis.

Using the standard orientation of Rn, we can now define the orientation on manifolds.

Definition 6.3. An oriented m-dimensional manifold is a m-dimensional manifold M where for all p ∈M
there is a chosen orientation on the vector space TpM . This orientation must satisfy the following: For all
p ∈M we have a chart (U,ϕ : U → V ⊆ Rm) which is orientation preserving. That is that for all x ∈ U the
map dϕx : TxM → Tϕ(x)Rm maps the orientation on TpM to the standard orientation on Tϕ(y)Rm ∼= Rm.

Definition 6.4. Let f : M → N be a smooth map between the manifolds M and N and let p ∈ M . Then
we say that p is a regular point of f if

dfp : TpM → Tf(p)N

is surjective. We will call the point f(p) then a regular value of f . Similarly, we call a point p a critical point
if dfp is not surjective and f(p) the critical value.

Using these definition we consider the following theorem for which a proof can be found in Introduction to
Smooth Manifolds [5] at pages 129-131.

Theorem 6.5 (Sard’s Theorem). Let F : M → N be a smooth function between two manifolds M and N .
Then the set of critical values of f has measure zero in N .

Remark 6.6. The exact definition of having measure zero in a set is not important for now. Important
is that this implies that the complement of the set of critical values is dense in N , by proposition 6.8 in
[5]. So, the set of regular values is dense in N , which means that there always exists a regular value if N is
non-empty.

Now consider the following theorem in which we will also define the degree of a function. This theorem is a
simplified version of theorem 17.35 in Introduction to Smooth Manifolds [5], for which a proof can be found
in page 458.

Theorem 6.7 ([5], 17.35). Let M and N be n-dimensional manifolds which are compact, connected and
oriented and let F : M → N be a smooth map. Then there exists an integer which we will call deg(F ) such
that:

deg(F ) :=
∑

x∈F−1(y)

sign(x),

where y is a regular value of F and sign(x) is defined in the following way

sign(x) =

{
+1 if dFx is orientation preserving
−1 if dFx is orientation reversing

.

Furthermore, this integer deg(F ) is unique.
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Remark 6.8. Being unique, means that deg(F ) is independent of regular value.

Now we have the tools to define the index of a vectorfield at its zero on an open set U ′ ∈ Rn.

Definition 6.9. Let U ′ ⊆ Rn and let ~v a vectorfield on it. Suppose that z is an isolated zero. Consider a
small enough sphere with z as middle point, such that

ϕ : Sn−1 → Sn−1

: x 7→ ~v(x)

||~v(x)||

maps the sphere into the unit sphere. The index of ~v at a zero z is defined to be the degree of the map ϕ
and it is denoted by indz(~v).

We want to extend our definition of the index to vectorfields on manifolds. We will do that using the following
lemma for which a proof can be found in Topology from the Differential Viewpoint on pages 34-35.

Lemma 6.10 ([4], p. 33). Again, let U ′ ⊆ Rn and let ~v a vectorfield on it. Suppose that f : U ′ → V ′ is a
diffeomorphism. Furhtermore suppose that ~v is a vector field on U ′ and ~v′ is a vector field on V ′ such that

~v′ = df ◦ v ◦ f−1.

Then the index of ~v′ at f(z) is the same as the index of ~v at its isolated zero z.

Definition 6.11. Let (U,ϕ) be a chart around z, which is an isolated zero of the vector field ~v on M . Then
we define the index of ~v at z to be the index of

dϕ ◦ ~v ◦ ϕ−1

at ϕ(z). We will denote it by indz(~v)

Now consider the Whitney Embedding theorem, for which a proof can be found on pages 134-135 in Intro-
duction to Smooth Manifolds [5].

Theorem 6.12 (Whitney Embedding Theorem, [5], 6.15). Any m-dimensional manifold M can be embedded
in R2m+1.

Using this theorem we are allowed to write M ⊆ Rk, for k big enough. Consider a vectorfield ~v on M with
z ∈M a zero of ~v. Then we can see that ~v as a map from M to Rk, for big enough k and hence we can define
the differential dvz : TzM → T~v(z)Rk ∼= Rk of ~v. Now consider the following theorem for which a proof can
be found in Topology from the Differential Viewpoint [4] on pages 37-38. This theorem will be usefull for the
second proof of the Poincaré-Hopf theorem where we will use Morse theory.

Lemma 6.13 ([4], p. 37). Consider the situation as described above. Then the differential dvz can be
considered as a linear map from TzM to TzM . If the determinant of dvz is strictly positive, we have that
the index of ~v at z is +1 and if the determinant of dvz is negative we have that the index of ~v is −1.

This lemma gives rise to the following definition.

Definition 6.14. Let M be a manifold and let ~v be a vector field on it. We say that the zero z is non-
degenerate if its derivative dvz is non-singular, i.e if the derivative is invertible.

As we said earlier, a goal of this chapter is to prove that the sum of the indices of a vectorfield at its zeros
is independent of vectorfield. It turns out to be we need an additional requirement on the vectorfields,
namely that its zeros are all non-degenerate. But first we need some preliminary theorems which we will
use to prove theorem 6.19. The proof theorem 6.19 namely comes in handy later when we want to prove the
Poincaré-Hopf theorem using Morse theory. The proofs of the following two preliminary theorems can be
found in Topology from the Differential Viewpoint [4] at page 28.

Theorem 6.15 ([4], p. 28). Let X be a manifold with boundary and let N be a manifold. Let M be the
boundary of X with an orientation that is in line with the orientation on X. Suppose that a smooth map
F : M → N is an extension of the map f : ∂M → N . Then we have that deg(f) = 0.

Theorem 6.16 ([4], p. 28). Let M,N be oriented manifolds. Let f : M → N and g : M → N be smooth
maps which are homotopic to each other. Then it holds that

deg(g) = deg(f).
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To state theorem 6.19 we need one more definition.

Definition 6.17. Consider a compact m-dimensional manifold X ⊂ Rm with boundary. Then we define
the Gauss mapping

g : ∂X → Sm−1,

which for each point in ∂X a unit vector which is orthogonal to X.

Remark 6.18. A Möbius band does not satisfy the requirement for this definition. It namely can not be
embedded in R2 while being a 2-dimension manifold with boundary.
A solid ball in R3 does satisfy this requirement. It is namely a 3-dimensional manifold which we can embed
in R3.

Theorem 6.19. Let M ⊂ Rm be an m-dimensional manifold with boundary and let ~v be a vectorfield on
it with the properties that it points outward on the boundary and that it has only non-degenerate isolated
zeros. Then we have that the sum of the indices of ~v at its zeros is equal to the degree of the Gauss map
g : ∂M → Sm−1.

Proof. First, we use Hausdorffness to find an ε-ball around each zero of ~v, such that it contains no other
zero of ~v. By removing these ε-balls we end up with, again, a manifold with boundary which we will call N .
Define the smooth map F in the following way:

F : N → Sn−1

: x 7→ ~v(x)

||~v(x)||
.

When we restrict F to ∂N , we can extend it smoothly to F defined on the entirety of N . Using theorem 6.15
this implies that deg(F

∣∣
∂N

) equals zero. It follows that the degree of F restricted to the outer boundary
∂M plus the degrees of F restricted to the inner boundaries is zero.
The vectorfield points outward on ∂M , so F restricted to ∂M is homotopic to the Gauss map g. As a result
of theorem 6.16 we get that the degree of F restricted to ∂M is equal to deg(g).
Now we need to calculate the sum of the degrees of F restricted to the inner boundary. Note that when we
do this the orientation is the opposite as when we determine the index of these zeros. So per definition of
the index of ~v at its zero we see that the sum of the degrees of F restricted to the inner boundary equals
−
∑

indxi~v, where xi denote the zeros of ~v. We conclude that

deg(g) =
∑

indxi
~v,

which is the desired result.

Now we want to state a slightly similar theorem, but for general m-dimensional manifolds without boundary.
A proof can be found in Topology from the Differential Viewpoint [4] on page 36.

Theorem 6.20 ([4], p. 36). Let M ⊂ Rk be an m dimensional manifold without boundary and let ~v be a
vector field on it with the property that it only has non-degenerate zeros. Define Nε in the following way

Nε := {x ∈ Rk : ||x− y|| < ε, for some y ∈M}.

Then ∑
~v(x)=0

indx~v = deg(g : ∂Nε → Sk−1),

where g denotes the Gauss map.

Corollary 6.21. Using the fact that the Gauss mapping is independent of vectorfield we indeed see that the
sum of the indices of a vector field at its zeros is the same for any other vectorfield on a manifold M without
boundary. A requirement, though, is that ~v has only non-degenerate zeros.
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7 Proof Poincaré-Hopf Theorem I

In this chapter we will prove the Poincaré-Hopf theorem after introducing Lefschetz fixed point theory.
This chapter is mainly based on Differential Topology [7] and Differential Topology and the Poincaré-Hopf
Theorem [13].

7.1 Lefschetz Fixed Point Theory

Consider a smooth map f : M → M where M is a compact oriented manifold. In Lefschetz fixed point
theory, we are interested in the fixed points of f , i.e. the points p ∈M such that f(p) = p. The goal of this
section is to find a relation between the Euler characteristic and the index of a vectorfield. Let us start with
a few definitions.

Definition 7.1. Let U ′ ⊆ Rn and let f : U ′ → Rn be a smooth map. Suppose that f only has one fixed
point namely the origin 0 and consider a sphere Sn−1 with 0 as the middle point. Then we define the local
Lefschetz number of f at the fixed point 0 to be the degree of the following map:

F : Sn−1 → Sn−1

: z 7→ f(z)− z
|f(z)− z|

.

We will denote it by L0(f).

We can extend this definition to maps on manifolds in the following way.

Definition 7.2. Let M be a manifold and let f : M → M a smooth map. Suppose that z ∈ M is a fixed
point of f . Let (U,ϕ) be a chart around z and without loss of generality assume that ϕ(z) = 0. Then we
define the local Lefschetz number Lz(f) of f at its fixed point z to be

Lz(f) = L0(ϕ ◦ f ◦ ϕ−1).

Definition 7.3. Let M be a compact manifold. Let f : M → M be a smooth map. Consider the induced
linear maps fn∗ : Hn(M ;R)→ Hn(M ;R) between the nth homology groups.
The Lefschetz number Λf of f is then defined to be

Λf =
∑
n

(−1)ntr(fn∗ ).

Remark 7.4. This sum is finite, because there exists a k ≥ 0, such that for all n > k it holds that
Hn(X;R) = 0. This is true, due to the fact that X is a compact manifold. In the chapter about Morse
theory we will see in theorem 8.26 that compact manifolds are homotopic to CW -complexes. Due to the
fact that singular homology groups are homotopy invariant, it follows indeed that the sum is finite.

Corollary 7.5. Using the fact that singular homology groups are homotopy invariant, it follows that the
Lefschetz number is equal for homotopic maps.

Consider the following theorem in which a relation between the previous two definitions gets clear. A proof
can be found in Differential Topology [7] at page 130.

Theorem 7.6 ([7] p. 130). Let M be a compact manifold and let f : M → M be a smooth map. Suppose
that f has finitely many fixed points. Then it holds that

Λ(f) =
∑

f(x)=x

Lx(f),

where Λ denotes the Lefschetz number and Lx the local Lefschetz number at a fixed point.

The Lefschetz number relates to the Euler characteristic in the following way.

Lemma 7.7. Let M be a compact manifold. Then we have that

Λid = χ(M).
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Proof. Let id : M →M be the identity map and let the induced linear maps be denoted by idn∗ : Hn(M ;R)→
Hn(M ;R). These are identity maps between vectorspaces. So their trace is equal to their rank. We then see
that

Λid =
∑
n

(−1)ntr(idn∗ )

=
∑
n

(−1)nrankHn(M ;R)

= χ(M),

which tells us that the Lefschetz number of the identity is indeed equal to the Euler Characteristic.

We relate the local Lefschetz number and the index of a vectorfield as follows.

Lemma 7.8 ([7], p. 135). Let U ′ ⊆ Rn and let ~v∗ be a vector field on U ′ and let f ′t : U ′ → Rn be a flow
which is tangent to ~v∗ at time t = 0 for all x ∈ U ′. Suppose that the vectorfield ~v∗ only vanishes at the
origin. Furthermore, suppose for all t 6= 0 that f ′t only fixes the origin. Then for all t 6= 0 we have that:

ind0(~v∗) = L0(f ′t),

where ind0(~v∗) is the index of ~v∗ at the origin and L0(f ′t) is the local Lefschetz number of f ′t at the origin.

Before we prove this lemma consider this other lemma for which a proof can be found in Differential Topology
[7] at page 135.

Lemma 7.9 ([7], p. 135). There exists a smooth function r(t) such that

f ′t(x) = f ′0(x) + tḟ ′0(x) + t2rt(x),

where ḟ ′0 denotes the time derivative of f ′t evaluated at t = 0.

Proof of lemma 7.8. Due to the fact that f ′t(x) is tangent to the vectorfield at time t = 0 we can also write
f ′t(x) as follows:

f ′t(x) = f ′0(x) + t~v∗(x) + t2rt(x).

From the previous lemma we get that

f ′t(x)− x = t~v∗(x) + t2rt(x).

Now consider f ′t on the n− 1 sphere inside U with the origin as its middle point. Then for t 6= 0 we have

f ′t(x)− x 6= 0,

because the origin is the only fixed point. Now we can safely state the following equation:

f ′t(x)− x
|f ′t(x)− x|

=
~v∗(x) + trt(x)

|~v∗(x) + trt(x)|
,

for x ∈ Sn−1 and t 6= 0. The degree of the left hand side is per definition 7.1 the local Lefschetz number

L0(ft)
′. Note that the map in right hand side is homotopic to the map ~v∗(x)

|~v∗(x)| . So the degree of the right

hand side is with help of theorem 6.16 equal to ind0(~v∗) per definition 6.9 and we get that

ind0(~v∗) = L0(f ′t),

which is the desired result.

We want a similar lemma for vectorfields on manifolds. Therefore, consider the following lemma.

Lemma 7.10. Let ~v be a vectorfield on the manifold M and let ft : M → M be a flow which is tangent to
~v at time t = 0. Suppose that z ∈ M is an isolated zero of ~v. Let (U,ϕ) be a chart such that for all t 6= 0,
ft only fixes z in U . Then for t 6= 0 we have

indz(~v) = Lz(ft).
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Proof. First assume that ϕ(z) = 0. Then by definition 6.11 we have

ind0(dϕ ◦ ~v ◦ ϕ−1) = indz(~v).

Furthermore, by definition 7.2 we have that

Lz(ft) = L0(ϕ ◦ ft ◦ ϕ−1).

So what is left to prove are the following three things:

1. ϕ ◦ ft ◦ ϕ−1 is tangent to dϕ ◦ ~v ◦ ϕ−1 at time t = 0 for all x ∈ ϕ(U).

2. dϕ ◦ ~v ◦ ϕ−1 vanishes at the origin.

3. for all t 6= 0 we have that ϕ ◦ ft ◦ ϕ−1 only fixes the origin.

We begin with the second one:

(dϕ ◦ ~v ◦ ϕ)0 = dϕϕ−1(0)(~vϕ−1(0))

= dϕz(~vz)

= dϕz(0)

= 0,

because dϕz is linear.
We procede with the third point so let t 6= 0. We know that ft only fixes z in U ⊆ M and due to the fact
that ϕ and ϕ−1 are diffeomorphisms it indeed follows that ϕ ◦ ft ◦ ϕ−1 only fixes the origin.
Now we will prove that ϕ ◦ ft ◦ ϕ−1 is tangent to dϕ ◦ ~v ◦ ϕ−1 at time t = 0:

∂

∂t
(ϕ ◦ ft ◦ ϕ−1(x))

∣∣∣
t=0

= dϕϕ−1(x)

(
∂

∂t
ft(ϕ

−1(x))
∣∣∣
t=0

)
= dϕϕ−1(x)(~vϕ−1(x))

= (dϕ ◦ ~v ◦ ϕ−1)x,

which is the desired result. We conclude that indz(~v) = Lz(ft).

In the next section we shall proof the Poincaré-Hopf theorem using, among others, theorem 7.6, lemma 7.7
and lemma 7.10.

7.2 Proof

Proof of 1.2. Let M be compact oriented manifold and let ~v be a vectorfield on it. The only thing that we
need to prove now is that there exists a flow (ft)t∈[0,1] with the following three properties:

1. At time t = 0 the flow (ft)t∈[0,1] is tangent to the vectorfield ~v.

2. At time t > 0 the fixed points of ft coincide with the zeros of ~v.

3. At time t = 0 we have that f0 is the identity map on M .

From lemma 7.8 and theorem 7.6 it would then follow that the sum of the indices of ~v at its zeros is equal to
the Lefschetz number Λ(ft) of ft. Due to the fact that f0 is the identity map we know that ft is homotopic
to the identity and by correlary 7.5 and lemma 7.7 it would then follow that∑

~v(x)=0

indx(~v) = χ(M),

which is the desired result. To prove that there exists such a flow, we will construct it using the following
theorem for which a proof can be found in both Lectures on Symplectic Geometry [10] by A. C. Da Silva and
Introduction to Smooth Manifolds [5]. This is not the entire theorem, but the only part we need.

Theorem 7.11 (ε-Neighborhood Theorem, [5], 6.24 ). Let M ⊂ Rk be a compact manifold and let N ε :=
{p ∈ Rk : d(p, q) < ε, for some q ∈M} be the set of all points in Rk that is not farther away than a distance
ε from M . For small enough ε we then have that for all p ∈ N ε there exists a unique nearest point q ∈M .

Remark 7.12. Because of the Whitney embedding theorem 6.12 we can always embed M in Rk.
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By this theorem we can define the projection map on N ε as follows

π : N ε →M

: p 7→ q,

where q is the unique nearest point of p. The projection has the property that π|M = idM .
Now we will construct the flow ft, but before that we note that for small t

x+ t~v(x) ∈ N ε

for all x ∈ M . Let the interval for which t is small enough be denoted by D. The above is true, because of
the compactness of M . Now we define ft as follows

ft : M →M

: x→ π(x+ t~v(x)).

For t = 0 we indeed have that f0 = idM , so the third property is satisfied. To verify the first property we
differentiate ft with respect to the time t for a fixed x ∈M . Using the chain rule we obtain

∂ft(x)

∂t

∣∣∣
t=0

= dπx ◦ ~v(x).

Recall that π is the identity on M , so dπx is also the identity on TxM . Because ~v ∈ TxM it follows that

∂ft(x)

∂t

∣∣∣
t=0

= ~v(x).

and hence (ft)t∈D is tangent to ~v(x) at time t = 0.
For t > 0 consider a fixed point x of ft. This implies that π(x+ t~v(x)) = x. This is only possible when t~v(x)
is perpendicular to M at x. So we have that t~v(x) ∈ (TxM)⊥, but per definition we also have ~v(x) ∈ TxM .
This can only happen when ~v(x) is the zero vector. The other way around also holds. If ~v(x) is zero,
then ft(x) = π(x) = x. We conclude that the second property also holds and thus we have proven the
Poincaré-Hopf theorem.
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8 Morse Theory

In this chapter we will discuss how Morse theory can help us to prove the Poincaré-Hopf theorem. It turns
out that we can prove that on a compact and oriented manifold, there exist a vectorfield ~v such that the sum
of the indices of ~v at its zeros equals the Euler characteristic χ(M) of M . This will be stated in theorem
8.34. In the next chapter we will use this result to prove it for all vectorfields, which yields the Poincaré-Hopf
theorem.
In the first section of this chapter we shall discuss some basic definitions. Afterwards we shall introduce and
prove the Morse lemma, which we will use to prove theorem 8.34. In the section following we shall discuss
the Morse inequalities to find a useful relation for the Euler characteristic. Finally, in the fourth section we
shall try and prove theorem 8.34.

8.1 Basics

We start with a few definition and we will follow chapter 1.2 in Morse Theory [2] by J. Milnor for that.
Recall the definition of a critical point. For real valued functions we have the following definition.

Definition 8.1. Let M a manifold with f : M → R a smooth function. Then p ∈ M is called a critical
point if

dfp : TpM → Tf(p)R

is the zero map. The critical value of p is then defined to be f(p) ∈ R.

Remark 8.2. The definitions of a critical point as in definitions 6.4 and 8.1 do not collide, because the only
non-surjective linear map dfp : TpM → R is the zero map.

Definition 8.3. Let p be a critical point of a smooth map f : M → R. Because M is a smooth manifold
there exists a chart (U,ϕ) with p ∈ U . It holds that U is diffeomorphic to Rm and let the coordinate system
of Rm be {x1, . . . , xm}. We will call the critical point p non-degenerate if the matrix(

∂2(f ◦ ϕ−1)(p)

∂xi∂xj

)
i,j

is non-singular where xi, xj ∈ {x1, . . . , xm}.

Remark 8.4. The non-degeneracy of a critical point is independent of which chart we choose.

These definitions give rise to the following important definition in Morse theory.

Definition 8.5. Let M a smooth manifold and let f : M → R be smooth function. We say that f is a
Morse function if all of its critical points are non-degenerate.

Definition 8.6. For p a critical point let v, w ∈ TpM and let ṽ, w̃ be two vectorfields such that ṽp = v and
w̃p = w. Then we define the Hessian of f at p to be the following map:

Hpf : TpM × TpM → R
: (v, w)→ ṽp(w̃(f)),

which is bilinear and symmetric in its domain.

The Hessian is well-defined, because it is independent of choice of vectorfields ṽ and w̃ as long as ṽp = v and
w̃p = w holds. If (U,ϕ) is a chart around p ∈ U with local coordinates (x1, . . . , xn) we can write v and w in
the following way

v =
∑
i

vi
∂

∂xi

∣∣
p

w =
∑
i

wi
∂

∂xi

∣∣
p
,

with vi, wi ∈ R as we have seen in proposition 2.20. Then w̃ :=
∑
i wi

∂
∂xi

with wi : U → R a constant
function sending every point in U to wi ∈ R satisfies w̃p = w. It follows that

Hpf(v, w) =
∑
i

∑
j

viwj
∂2f

∂xi∂xj
(p),

for p ∈ U .
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Definition 8.7. Let H : V ×V → R be a bilinear map. Define W to be the largest subspace of V such that

H(w1, w2) < 0

for all w1, w2 ∈W . Then we define the index of H on V to be the dimension of W .

Remark 8.8. Let p be a non-degenerate critical point of f again. Then the index of Hpf on TpM is the
amount of negative eigenvalues of Hpf .

Definition 8.9. The index of the function f at its critical point p is defined to be the index of Hpf on
TpM .

Remark 8.10. The index of a function at its critical point should not be confused with the index of a
vectorfield at its zero.

Definition 8.11. The number of critical points of f with index n is denoted by Ψf,n.

8.2 Morse Lemma

As we said earlier, we will state and prove the Morse lemma in this section. This section is largely based on
the theory discussed in Morse theory [2] and on the paper An Introductorary Treatment of Morse Theory on
Manifolds [14] by A. Hua.

Lemma 8.12 (Morse Lemma). Let M be a smooth manifold and let f : M → R be a smooth function.
Suppose p is a critical point of f which is non-degenerate. Then there exists a chart (U,ϕ) with p ∈ U such
that

(f ◦ ϕ−1)(x1, . . . , xn) = f(p)− x2
1 − · · · − x2

i + x2
i+1 + · · ·+ x2

n,

where {x1, . . . , xn} is the local coordinate system of U and i the index of f at p.

Corollary 8.13. It holds that non-degenerate critical points are isolated. Furthermore, if M is compact,
then the Morse function f : M → R has a finite number of critical points.

Proof. Let p be a non-degenerate critical point of f . Then we can calculate the gradient of f ◦ ϕ−1 and we
get that it is zero only when xi is zero for all i. In an open neighborhood of p this can only happen at p, so
indeed all the non-degenerate critical points are isolated. Now we know that every critical point is isolated,
cover the compact manifold M with open sets such that each only contains at most one critical point. Due
to compactness we can extract a finite subcover, from which we may conclude that there are only a finite
number of critical points.

To prove the Morse lemma we need the following lemma, for which a proof can be found in Morse Theory
[2] by J. Milnor on page 5.

Lemma 8.14. Let V be a convex neighborhood of the origin in Rn and let f : V → R be a smooth real valued
function with f(0) = 0. Then we have that

f(x1, . . . , xn) =

n∑
i=1

xigi(x1, . . . , xn),

where gi : V → R are also smooth real valued functions on V . The gi have the additional property that

gi(0) =
∂f

∂xi
(0).

We also need the Inverse function theorem for the proof of the Morse lemma. A proof can be found in
Introduction to Smooth Manifolds [5] at page 657.

Theorem 8.15 (Inverse Function Theorem, [5], p. 657). Let F : U → V be a smooth function between to
open sets U, V ⊆ Rn. Suppose that DF (a) is invertible at a ∈ U . Then there exist connected sets U0 ⊆ U
and V0 ⊆ V containing respectively a and F (a) such that

FU0 : U0 → V0,

is a diffeomorphism.
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Proof of 8.12. We start by proving that i should be the index of f at p given the fact that we can write f
like in the lemma. So suppose

f ◦ ϕ−1(x1, . . . , xn) = f(p)− x2
1 − · · · − x2

i + x2
i+1 + · · ·+ x2

n.

We then see that

∂2(f ◦ ϕ−1)

∂xi∂xj
(p) =

 −2 if i = j ≤ i
2 if i = j ≥ i+ 1
0 if i 6= j

.

This implies the following diagonal matrix representation of Hpf :

−2
. . .

−2
2

. . .

2


,

with ∂
∂x1

∣∣
p
, . . . , ∂

∂xn

∣∣
p

the basis. It follows that i is indeed the index of f at p per definition . . . .

Now we only need to prove existence of a chart with local coordinate system such that

(f ◦ ϕ−1)(x1, . . . , xn) = f(p)± x2
1 ± · · · ± x2

n.

Note that this expression is slightly different, because we do not have to care about the signs anymore.
Without loss of generality we can assume that f(p) = 0, ϕ(p) = 0 ∈ Rn and that U is convex. Then we can
apply lemma 8.14 to obtain

(f ◦ ϕ−1)(x1, . . . , xn) =

n∑
i=1

xigi(x1, . . . , xn),

with gi(0) = ∂(f◦ϕ−1)
∂xi

(0) = 0, because p is a critical point of f . Now we have that gi also satisfy the condition
of lemma 8.14, so we can also write

gj(x1, . . . , xn) =

n∑
i=1

xihij(x1, . . . , xn),

where hij : U → R are smooth functions. It follows that

(f ◦ ϕ−1)(x1, . . . , xn) =

n∑
i=1

n∑
j=1

xixjhij(x1, . . . , xn).

Define Hij :=
hij+hji

2 from which we get that

(f ◦ ϕ−1)(x1, . . . , xn) =

n∑
i=1

n∑
j=1

xixjhij(x1, . . . , xn) =

n∑
i=1

n∑
j=1

xixjHij(x1, . . . , xn), (2)

but now with Hij = Hji. Using this property we see that

∂2(f ◦ ϕ−1)

∂xi∂xj
(0) = 2Hij(0).

We will finish the proof using an inductive argument. Our goal is to find a chart with coordinate system
(y1, . . . , yn) such that the lemma holds. Without loss of generality we can start with a coordinate system
(x1, . . . , xn) such that

∂2(f ◦ ϕ−1)

∂x2
1

(0) 6= 0.
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This implies that H11 6= 0. Because of the smoothness of H11, we know that there exists an open neighbor-
hood N0 such that H11 is not zero in N0. Then it holds that

G(x1, . . . , xn) =
√
|H11(x1, . . . , xn)|

is a smooth function on N0. Now we define the coordinate system (y1, . . . , yn) in the following way

yi =

{
G ·
(
x1 +

∑n
i=2 xi

Hi1

|H11|

)
if i = 1

xi if i 6= 1
. (3)

It holds that the determinant of the Jacobian of this transition between coordinate systems is non-zero and
thus by the inverse function theorem it is secured that (y1, . . . , yn) really is a local coordinate system within
a smaller neighborhood N ′0. From equation (3) it follows that

y2
1 = |H11|

(
x1 +

n∑
i=2

xi
Hi1

|H11|

)2

(4)

= ±H11x
2
1 ± 2

n∑
i=2

xix1Hi1 ±
(
∑n
i=2 xiHi1)

2

|H11|
(5)

And from equation (2) it then follows that

(f ◦ ϕ−1)(x1, . . . , xn) = ±y2
1 +

 n∑
i=2

n∑
j=2

xixjHij

− ∑n
i=2 xiH1i

H11
(6)

One could verify this by plugging the expression in (5) in equation (6) to obtain (2) again. We can rewrite
this to

(f ◦ ϕ−1)(x1, . . . , xn) = ±y2
1 +

n∑
i=2

n∑
j=2

xixjH
′
ij ,

with H ′ij a smooth function which is also symmetric in its indices. We can repeat this proces which gives us
the desired result.

8.3 Morse Inequalities

In this section we shall try to prove the Weak Morse Inequalities as in theorem 8.29. This will give us a
useful result about the Euler characteristic. We will primarily follow chapter 1.5 of Morse Theory [2], but
some parts are also based on An Introduction to Morse Theory [6] and the thesis Morse Theory and Witten’s
Proof of the Morse Inequalities [16] by D. A. P. Meza.
First, consider the following lemma which is a simplified version of theorem 2.20 in In Introduction to Morse
Theory [6] by Y. Matsumoto for which a proof can be found on page 53.

Lemma 8.16 (Existence of Morse Functions, [6], 2.20). Let M be a compact manifold. Then there exists a
smooth Morse function on it.

The next lemma is a simplified version of lemma 2.8 in Lectures on the h-Cobordism Theorem by J. Milnor
and a proof can be found on pages 17-18.

Lemma 8.17 ([3], 2.8). Let M be a compact manifold and let f : M → R a Morse function with critical
points p1, . . . , pk. Then there exists another Morse function g : M → R with the same critical point. The
function g has the additional property that critical value is unique for each critical point. In other words,
g(pi) 6= g(pj) for all i 6= j.

We will constantly use these results. Now consider the following definitions, which are necessary for the
Morse inequalities.

Definition 8.18. Let M a smooth manifold with f : M → R a smooth function and let a ∈ f(M). Then
we define

Ma = f−1((−∞, a]),

which is often referred to as a sublevel set.
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Definition 8.19. Let Z ⊆ Y ⊆ X be topological spaces and let S be a map that sends two topological
spaces to an integer. The map S is said to be subadditive when

S(X,Z) ≤ S(X,Y ) + S(Y, Z),

for all X,Y, Z with Z ⊆ Y ⊆ X. Furthermore, we say that S is additive when

S(X,Z) = S(X,Y ) + S(Y, Z),

for all X,Y, Z with Z ⊆ Y ⊆ X.

Definition 8.20. Recall definition 3.14 about relative homology groups and let B ⊆ A. Then we define the
nth relative Betti number bn(A,B) of the pair A and B to be dim(Hn(A,B;R)).

Remark 8.21. Note that bn(A, ∅) = bn(A) as in definition 3.24.

Definition 8.22. We define the relative Euler characteristic of the pair A and B to be∑
i

(−1)ibi(A,B),

which will be denoted by χ(A,B).

Remark 8.23. Similarly, we have that χ(A, ∅) = χ(A).

We need the following two lemma’s.

Lemma 8.24. The relative Betti numbers are subadditive for all n.

Proof. Let Z ⊆ Y ⊆ X be topologica spaces. Then by lemma 3.18 it follows that

· · ·Hn(Y, Z)
an−−−→ Hn(X,Z)

bn−−−→ Hn(X,Y )
cn−−−→ Hn−1(Y,Z) · · ·

is an exact sequence. By the Rank-Nullity theorem we see that

bn(Y,Z) = dim(Im(bn)) + dim(Ker(bn))

bn(X,Z) = dim(Im(cn)) + dim(Ker(cn))

bn(X,Y ) = dim(Im(dn)) + dim(Ker(dn)).

Using the exactness of the sequence, we get

bn(Y,Z) + bn(X,Y ) = dim(Im(bn)) + dim(Ker(bn)) + dim(Im(dn)) + dim(Ker(dn))

= dim(Ker(cn)) + dim(Ker(bn)) + dim(Im(dn)) + dim(Im(cn))

≥ bn(X,Z),

which proves the subadditivity of the relative Betti numbers.

Lemma 8.25. Let X,Y, Z be compact topological spaces such that Z ⊆ Y ⊆ X. Then

χ(X,Z) = χ(X,Y ) + χ(Y,Z)

In other words, the relative Euler characteristic is additive over compact sets.

Proof. By lemma 3.18 we have that

· · ·Hn(Y,Z)
an−−−→ Hn(X,Z)

bn−−−→ Hn(X,Y )
cn−−−→ Hn−1(Y,Z) · · ·

is an exact sequence. Now it holds that X,Y, Z are compact, so there exists a k ∈ N such that Hn(X,Z) =
Hn(X,Y ) = Hn(Y, Z) = 0 for all n > k. What we then have is a sequence

0 −−−→ Hk(Y, Z) −−−→ · · · −−−→ H0(X,Y ) −−−→ 0,

which is exact. By generalizing lemma 3.27 we get that

bk(Y,Z)− bk(X,Z) + bk(X,Y )− bk−1(Y, Z) + . . . (−1)kb0(X,Y ) = 0.

It follows that

χ(Y, Z)− χ(X,Z) + χ(X,Y ) = 0,

which is the desired result.
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We need two more theorems before we can state and prove the Weak Morse Inequalities 8.29. A proof of
the following theorem can be found in Morse Theory [2] at pages 23-24.

Theorem 8.26 ([2], 3.5). Let M be a smooth manifold and suppose that f : M → R is a smooth Morse
function such that each sublevel set Ma ⊆M is compact. Then it holds that M is homotopy equivalent to a
CW -complex with the property that it has an n-cell for each critical point of f with index n.

Remark 8.27. For compact manifolds the compactness of the sublevel sets is automatically satisfied.

The proof of the next theorem can be found in Morse Theory [2] at pages 14-19.

Theorem 8.28 ([2], 3.2). Let M be a smooth manifold with f : M → R a smooth function and let p ∈ Crit(f)
be non-degenerate with index n. Let f(p) = a and suppose that f−1([a − ε, a + ε]) is compact and contains
not other critical point of f . Then for small enough ε > 0 we have that Ma+ε is homotopy equivalent to
M c−ε, but with an n-cell attached to it.

Now we have gathered enough tools to state and prove the Weak Morse Inequalities

Theorem 8.29 (Weak Morse Inequalities, [2], 5.2). Let M be a compact manifold with f : M → R a Morse
function with k critical points. Then we have that

bn(M) ≤ Ψf,n,

and

χ(M) =
∑
j=1

(−1)jΨf,j ,

where bn denotes the nth Betti number and Ψf,n denotes the number of critical points with index n.

Proof. Given is that f is a Morse function, so the critical points are automatically non-degenerate. From
corollary 8.13 it follows that they are isolated and that there is a finite number of them. Let {a0, a1, . . . , ak−1, ak}
be an ordered set in R with a0 < a1 < · · · < ak−1 < ak such that (ai, ai+1) ⊂ R contains one critical value
of f and Mak = M , which is secured by lemma 8.17. Then by lemma 8.24 we have

bn(M, ∅) ≤
k∑
i=1

bn(Mai ,Mai−1).

By theorem 8.28 we know that we get can get something homotopy equivalent to Mai by attaching an ni-cell
to it. Now we can use the excision theorem 3.17 to conclude that Hn(Mai ,Mai−1) and Hn(Dni , ∂Dni) are
isomorphic, where Dni is the ni-disk. The Betti numbers bn are topological invariants, so we get that

bn(Mai ,Mai−1) = bn(Dni , ∂Dni).

It holds that bn(Dni , ∂Dni) = δj,ni
, where δ stands for the Kronecker delta. We see that

χ(M) = χ(M, ∅)

=

k∑
i

χ(Mai ,Mai−1) (by lemma 8.25)

=

k∑
i

∑
j

(−1)jbj(M
ai ,Mai−1)

=
∑
j

(−1)j
k∑
i

bj(M
ai ,Mai−1)

=
∑
j

(−1)j
k∑
i

bn(Dni , ∂Dni)

=
∑
j

(−1)j
k∑
i

δj,ni .
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Note that
∑k
i δj,ni is the amount of j-cells. We were allowed to interchange summations because of the

compactness of M . It namely then follows that at the nth Betti numbers are equal to zero for big enough n.
Using theorem 8.26 we can see that

bn(M) = bn(M, ∅)

≤
k∑
i=1

bn(Mai ,Mai−1)

= λf,i,

and

χ(M) =
∑
j=1

(−1)jΨf,j ,

which are the desired results.

8.4 Vectorfields

We have reached the final section of this chapter, and the goal is to state and prove theorem 8.34. This section
is mainly based on Morse Theory [2], The Euler Characteristic, Poincare-Hopf Theorem, and Applications
[11] and An Introduction to Morse Theory [6]. But first we consider a few definitions.

Definition 8.30. Let M be a smooth manifold with (U,ϕ) a chart with local coordinate system (x1, . . . , xn).
Then we define the gradient vector field of f on U to be

∂f

∂x1

∂

∂x1
+ · · ·+ ∂f

∂xn

∂

∂xn
,

in local coordinates.

Remark 8.31. The gradient vector field of f is in fact the differential of f .

Definition 8.32. Let M be a smooth manifold with f : M → R a smooth Morse function. By the Morse
lemma 8.12 we know that for each critical point pi there exists a chart (Ui, ϕi) such that

(f ◦ ϕ−1
i )(x1, . . . , xn) = f(pi)− x2

1 − · · · − x2
i + x2

i+1 + · · ·+ x2
n,

in local coordinates and λi the index of pi. We call a vectorfield a semi gradient-like vectorfield if for all
critical points pi there exists a neighborhood Yi such that

X = −2x1
∂

∂x1
− · · · − 2xλ

∂

∂xλ
+ 2xλ+1

∂

∂xλ+1
+ · · ·+ 2xn

∂

∂xn
,

i.e. as the gradient vector field of f on Yi. Actually it should be X ◦ ϕ−1
i , but for simplicity we leave ϕ out.

Using these definitions we can state the following theorem.

Theorem 8.33 ([6], 2.30). Let M be a smooth manifold with f : M → R a smooth Morse function. Then
one can find a semi gradient-like vectorfield of f .

Proof. Let’s say that there are k critical points of f and we denote them by {p1, . . . , pk}. We know that
they are non-degenare, so by the Morse lemma 8.12 there exists charts (Ui, ϕi) corresponding to each pi,
such that

(f ◦ ϕ−1
i )(x1, . . . , xn) = f(pi)− x2

1 − · · · − x2
i + x2

i+1 + · · ·+ x2
n,

in its local coordinate system. Consider these Ui and add more open sets Uj such that U1, . . . , Um form an
open cover of M . Let pj be a critical point of f . Then

Xi :=
∂f

∂x1

∂

∂x1
+ · · ·+ ∂f

∂xn

∂

∂xn

is a gradient vector field of f on Ui in local coordinates. The idea is to construct a global vectorfield using
these local vectorfields. Therefore, consider hi : Ui → R with 0 ≤ hi ≤ 1. Suppose that it is a smooth
function defined to be equal to 1 in some neighborhood Vi of pi and 0 outside a compact set Li with

32



Vi ⊂ Li ⊂ Ui. We can extend hi to the entirety of M by just defining it to be zero outside Ui and we do this
for all i.
Now consider

hiXi.

This vectorfield is defined on Ui, but we can also extend it to M by defining it to be the zero vector outside
Ui. We define the global vectorfield X to be

X =

k∑
i=1

hiXi.

Consider a very small neighborhood Yi of pi which lies only in Ui and not in any other open set of the cover.
Without loss of generality we have that hi = 1 here. So in Yi we have that

X =

k∑
i=1

hiXi

= Xi.

By doing this for all critical points we get that X is a semi gradient-like vectorfield of f .

Now we have gathered enough machinery to prove the final theorem of this chapter.

Theorem 8.34. Let M be a compact smooth manifold. Then there exists a vector field such that the sum
of the indices of v at its zeros equals χ(M).

Proof. Let f : M → R be a Morse function. Then by the Morse lemma we have for every critical point pi a
chart (Ui, ϕi) with local coordinate system (x1, . . . , xn) such that

(f ◦ ϕ−1
i )(x1, . . . , xn) = f(pi)− x2

1 − · · · − x2
j + x2

j+1 + · · ·+ x2
n,

with j the index of f at pi. This critical point pi is also a zero of the semi gradient-like vectorfield ~v which
we can find by theorem 8.33. If j is odd, we have that the determinant of d~vp is negative and hence by
lemma 6.13 the index of ~v at pi must be −1. If it was even, we would have that indpi(~v) = +1. So we see
that

indpi(~v) = (−1)j .

Now by applying theorem 8.29 we obtain∑
i

indpi(~v) =
∑
j

(−1)jΨf,j

= χ(M),

which is the desired result.
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9 Proof Poincaré-Hopf Theorem II

Proof of 1.2. We split the situation in two cases. The first one is where ~v has only non-degenerate zeros and
the second where ~v happens to have a degenerate zero. Of course, we assume that ~v only has isolated zeros
in both cases.

We start with the first one, so suppose that ~v has only non-degenerate zeros on a manifold without boundary
M . Using theorem 8.34 we can find a vectorfield ~v′ such that the sum of the indices of ~v′ at its zeros is equal
to the Euler characteristic χ(M) of M . From corollary 6.21 we know that the sum of the indices of a ~v′ at
its zeros is the same as for ~v and hence the statement is true for vectorfields without degenerate zeros.

Now let U ⊆ Rn be an open set and suppose that ~v has degenerate zeros. The idea is to construct a
vectorfield ~v′ with only non-degenerate zeros and afterwards proving that the sum of the indices of ~v′ at its
zeros is the same as for ~v. First, we use Hausdorffness to find an ε > 0 such that a 2ε-ball B(z; 2ε) around a
degenerate zero z contains no other zero in it. Now we define a smooth function f : U → [0, 1] such that it
is one inside B(z; ε) and zero outside B(z; 2ε). Let us define the following vectorfield:

~v′(x) := ~v(x)− f(x)y,

where y is a regular value of ~v. Because v(x) has only one zero in B(z; 2ε), it holds that there exists a δ > 0
such that ||v(x)|| > δ for all x ∈ B(z; 2ε)\B(z; ε). The existence of y is secured by Sard’s theorem and by
the same theorem it is possible to find a y such that ||y|| < δ. As a result it holds that all the zeros of the
newly constructed vectorfield ~v′ are inside B(z; ε). Let z′ be a zero of ~v′. It follows that

0 = ~v(z)− y.

This means that z′ is a regular point of ~v per definition of the regular value. Due to the fact that f(x) in
B(z; ε), it follows that

d~v′x = d~vx,

for all x ∈ B(z, ε) and in particular for z′. As a result we have that z′ is also a regular point of ~v′. Our
conclusion is that this zero is non-degenerate. This holds for all zeros of ~v′, so ~v′ has only non-degenerate
zeros.
Now we will prove that the sum of the indices of the vectorfields ~v and ~v′ at their zero’s coincide. Consider
indz(v), where z is still a degenerate zero of ~v. Per definition 6.9 it is equal to the degree of the following
map:

F : ∂B(z; 2ε)→ Sn−1

: x 7→ v(x)

||v(x)||
.

Whe shall prove that

indz(~v) =
∑
z′

indz′(~v
′),

like in the proof of theorem 6.19. Again, we use Hausdorffness to find an ε′ > 0 such that B(z′; ε) around
z′ contains no other zero in it. Now we remove these ε-balls from B(z; 2ε) to obtain a set which we will call

N . We can extend ~v
∣∣′
∂N

to ~v′ : N → Sn−1. Likewise, we can do the same for F . Using theorem 6.15 we can
conclude that the degree of F on ∂N is zero. In a similar way as we have done in the proof of theorem 6.19
we get

indz(~v) =
∑
z′

indz′(~v
′),

which is the desired result. Using charts we can apply this also to manifolds instead of just U ⊆ Rn, which
finishes the proof.
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10 Conclusion

We start the conclusion by proving the Hairy Ball theorem.

Theorem 10.1 (Hairy Ball theorem, [5], p. 435). There does not exist a vectorfield which is non-zero on
all S2.

Proof. In example 3.23 we have seen that the Euler characteristic of S2 is equal to 2. Suppose the contrary,
that there exists a vectorfield which is non-zero on all S2. This implies that there are no zeros of the
vectorfield and hence that the sum of the indices of the vectorifield at its zeros is also zero. But this is a
contradiction and the desired result follows.

We begun this thesis by stating the Poincaré-Hopf theorem after which we have discussed the various
components of it. Thereafter, we have proved it without Morse theory and with Morse theory.

Now let us compare the two proofs of the Poincaré-Hopf theorem. In both proofs we skipped some proofs
of various theorems and lemmas. However, in the first proof we have skipped more than one would think in
the first place. The proof of theorem 7.6, which we did not do, involves namely intersection theory. More
information about intersection theory can be found in Differential Topology [7]. But besides that I found
the two proofs quite similar in difficulty.

One of the beautiful things about the Poincaré-Hopf theorem is that the equality is independent of vectorfield.
In the proof including Morse theory we explicitly prove that. We namely had found one vectorfield for which
the Poincaré-Hopf theorem holds. Thereafter, using a construction, we extended it for all vectorfields.

What I found remarkable is that the first proof also makes use of a construction. Unfortunately, I couldn’t
find more similarities between the two proofs. A follow-up research could be to find similarities, for example
similarities between Lefschetz fixed point theory and Morse theory.

My interest in Morse theory grew throughout writing the thesis. Especially after reading Morse Theory and
Witten’s Proof of the Morse Inequalities by D. A. P. Meza. Also while searching for study material I came
across an interesting paper by E. Witten named Supersymmetry and Morse Theory which will definitely
keep me busy for a while.

At last, I wanted to say that I really enjoyed writing this thesis. Furthermore, I want to thank my supervisor
prof. dr. Marius Crainic for his guidance in this bachelor thesis. I also want to thank the organisers and
students of the seminar about Morse theory for teaching me Morse theory and finally I want to thank my
friends and family for their support.
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