
Using an evolutionary algorithm
to create human-like techno

music

Bachelor Thesis - 7,5 ECTS
15-1-2021

Under supervision of:
Gerard Vreeswijk &
Lasha Abzianidze

Eli Stolwijk
Student number: 6000738

Bachelor Artificial Intelligence
Faculty of Humanities

Utrecht University
Netherlands

Contents

1 Introduction 2
1.1 Computational Creativity 2
1.2 Problems of Machine Learning 3
1.3 Evolutionary Music 3
1.4 Research Question 4

2 Design 5
2.1 An Evolutionary Algorithms 7
2.2 The ETM Algorithm 8
2.3 Operators and Parameters 9
2.4 Decoding the Chromosome 10

3 Method 12
3.1 The Experiment . 12
3.2 Performing a Musical Turing test 13

4 Results 15

5 Discussion 16
5.1 The limits set by NetLogo 17
5.2 The limits set by the Evaluator 18
5.3 ETM Parameters and Operators 18
5.4 Validity of a Turing test 18
5.5 The Participants . 19

6 Conclusion 19

1

1 Introduction

It goes without saying that music is an important part of everyday
life. Music can make us feel certain emotions, highlight special oc-
casions or evoke special memories. Listening to, playing and sharing
certain types of music can become a big part of someones identity.
Besides playing a big role in the personal space of people, music also
plays a big part in our social lives. Every song we play in company
or share through some other type of medium is a way to express
ourselves to others (O’Hara and Brown, 2006).

Artificial intelligence is a field of computer research that aims to
use intelligent computer systems to solve all kinds of problems. The
range of problems the A.I. field tackles is very wide. This range,
for example, includes self-driving cars, job scheduling, speech recog-
nition, classification problems, and creating human like computer
entities. Can such a seemingly limitless field of computer science be
of use in the seemingly limitless creative space that is music?

1.1 Computational Creativity

An up and coming field in computer science is the field of com-
putational creativity. The last 20 years, computational creativity
has grown a lot however not without issues. A big issue that com-
putational creativity faces is the definition of creativity. After all,
what would be considered creative and what not? Artificial intelli-
gence has a very similar problem: what would be considered intel-
ligent and what not? Something that would have been considered
intelligent 100 years ago would not be today. Because of the sim-
ilarities, Toivonen and Gross (2015) proposed that computational
creativity can be characterized in a manner parallel to artificial in-
telligence: Where artificial intelligence studies how to perform tasks
which would be deemed intelligent if performed by a human, com-
putational creativity studies performances which would be deemed
creative if performed by a human. It would therefore not be a sur-
prise that the computational creativity field is dominated by A.I.
heavy research. Multiple A.I. systems have been proposed and used
in the computational creativity field but for computational music
creation most of the research has been done on machine learning.

2

1.2 Problems of Machine Learning

For an example of machine learning used for music generation I
would like to refer to the work of Malik and Ek (2017). In short, a
machine learning algorithm analyses a large data set (in this case a
data set consisting of existing music) and then uses that data to learn
how to play similar kinds of music (Huang and Raymond, 2016).
The reason machine learning is so suitable for music generation is
because of its generality (Briot and Pachet, 2018). Because of its
generality it can automatically adapt itself to every style or genre
from an arbitrary corpus. More benefits of machine learning systems
are the fact that they can handle applications that are way more
complex than traditional methods can and the way they learn from
data makes them very adept to widely varying inputs (Fiebrink and
Caramiaux, 2016).

The problem with machine learning however is that such a sys-
tem needs a very large training set in order to produce anything
meaningful. This very large training set has to consist of existing
real world data, which in the case of computational creativity has
to consist of the works created by human artists. Humans who
copy works that were originally made by other artists are generally
frowned upon, so why should a computer be applauded for it? As
reported by Forbes, in 2020 a research group used machine learning
to learn the voice of a popular rapper named Jay-Z. With this algo-
rithm they made a little video in which the algorithm spoke some
lyrics the researchers had programmed with the voice of Jay-Z. The
rapper then sued the researchers for using his voice for the algorithm
without having his permission. (Hochberg, 2020). The rapper ac-
tually lost the lawsuit, but this example makes it clear that using
artist material to use as training data might not be the most eth-
ical way to go. An approach that circumvents potentially stealing
other peoples work and intuitively feels more like a creative process
instead of a process of mimicking, is the field of evolutionary music.

1.3 Evolutionary Music

Evolutionary music uses evolutionary algorithms rather than ma-
chine learning to generate music pieces (Dostál, 2013). An evolu-
tionary algorithm is an algorithm that uses the Darwinian evolu-
tionary principles to efficiently search through large search spaces

3

(Goldberg and Holland, 1988). There have already been multiple
successful projects that have generated music using evolutionary al-
gorithms. These projects mostly produced classical and jazz music.
The most notable project is the Lamus project. Lamus is a project
created by a research group at the University of Màlaga. Lamus
uses an evolutionary algorithm to generate pieces of classical sheet
music (Diaz-Jerez, 2011). One of the main performances Lamus cre-
ated, named ”Opus one”, was claimed to be ”the first major work
composed by a computer that was performed by a full orchestra”
by the New Scientist (NewScientist, 2012).

In this paper it will be investigate whether computational cre-
ativity can maybe thrive better in a musical field that intuitively
would fit it better: electronic music, and more specific techno. An
issue with the Lamus algorithm is the fact that it can not play the
music it generates. Lamus can generate the sheet music but it lacks
the ability to play the sheet music like the instrument players of
an orchestra can. Techno music uses computational methods like
synthesizers to create its sounds which opens up the possibility of
an evolutionary algorithm that can both play and generate its own
techno music.

Although the origins of electronic music lie in the late 19th cen-
tury, it really started growing in the 1960s as synthesizers became
more accessible to the average musician. In the 1980s multiple sub-
genres of electronic music started to form, including the techno sub-
genre. The techno genre is characterized by a four on the floor beat
(Julien and Levaux, 2018). This is a steady beat that occurs in 4/4
time or in other words, the bass drum (also know as the kick) is
hit on every beat. The beats per minute (BPM) of a techno song
lies between 120 and 150 and artists use electronical instruments
like synthesizers, digital audio workstations or a combination of the
two to create it. Because techno music is made on a computer, an
algorithm that generates techno music does not need an orchestra
to perform the music it creates as is the case for projects like Lamus.
It can create and play its generated music all on its own.

1.4 Research Question

This paper will research the feasibility of techno music generation
with an evolutionary algorithm to lay a foundation for potentially

4

more elaborate further research. In order to do so the following
research question will be investigated: Can an evolutionary al-
gorithm called the ETM algorithm (Evolutionary Techno
Machine) generate an 8-beat loop that when looped cre-
ates a small piece of techno music of about 15 seconds that
is indistinguishable from man made techno music?. In order
to answer this question the research is split into two parts. The first
part consists of generating a small piece of music with the ETM al-
gorithm. The second part consists of performing an alternative form
of the Turing test, a Musical Turing test, to determine whether a
group of participants can distinguish the generated piece of music
from music made by artists.

2 Design

This chapter will cover the design of the algorithm and all its com-
ponents. The ETM algorithm can be split into two sub-algorithms:
the algorithm that is responsible for the evolutionary processes and
the algorithm that is responsible for decoding the chromosomes into
sound. From now on the term chromosome will be used to describe
the internal representation of a piece of music. In other words, a
chromosome in an evolutionary algorithm is a string of characters
that represents one specific combination of properties out of all pos-
sible combinations, just like the chromosomes of DNA do in biology.
How the chromosomes used in the ETM algorithm are build up and
how they are decoded into sound is explained further in section 2.3
but for now it suffices to know that the chromosome is the internal
representation for one 8-beat loop that the algorithm uses to execute
the evolutionary processes on.

Both the sub-algorithms were programmed in NetLogo and were
linked to each other by an intuitive interface that is optimized for
efficient evaluation. NetLogo is a programming language that was
created for educational purposes. It involves agents called turtles
that are able to manipulate their environment. Despite being for
educational purposes, NetLogo is a Turing complete language that
has an easy to use build in sound library. The library consists of
around 200 sound samples of many different instruments that can
be individually manipulated in duration, pitch and velocity. This
library and the way the sounds can easily be manipulated without

5

additional sound manipulation algorithms makes NetLogo an ideal
programming language for decoding the chromosomes. The decision
to also make the evolutionary part of the algorithm in NetLogo was
made due to the fact that NetLogo also provides an easy to use
interface that can link the two algorithms seamlessly. From this
sound library the algorithm will choose two hat instruments (Hat1
Hat2), two percussion instruments (Percussion1 Percussion2) and
one melody instrument (Melody). When these five instruments are
played and at what pitch is determined by the chromosomes present
in the population.

Alongside these 5 instruments there will be two fixed instruments
playing at fixed intervals: a kick every one beat and a clap every
two beats. As described in the first chapter, the kick every beat is
a requirement of the techno genre. Because of the inability to use
custom sound files in the algorithm, the bass drum instrument from
NetLogo is used as a dummy to emulate a real kick sound during the
evaluation process. A good kick sound consists of a short relatively
high pitch slap sound and a longer much lower pitched bass sound.
Unfortunately, there are no sounds available in the sound library
that posses these properties. The reason the kick is so important
is that it does not only carry the rhythm, it also sets the overall
mood and tone of the song. The kick is a defining feature of every
techno song which is why it is essential to use a good kick sound
in this experiment. The base drum instrument that the NetLogo
sound library provides is not a suitable sound for a techno kick but
it is the sound that comes closest. For this reason it is used to
emulate a kick sound during the evaluation process. When the final
winning chromosome is chosen the base drum sound is replaced with
a custom sound file of a custom made basic kick sound. The clap
every other beat is not a requirement of the genre but is a very
common addition which is why it is chosen to be a fixed instrument
as well. As described in chapter 1 the range of beats per minute for
the techno genre lies between 120 and 150. For this experiment a
beats per minute of 130 is used because it lies within the range and
it is considered as an average beats per minute for the techno genre.

6

2.1 An Evolutionary Algorithms

For this research a fairly standard Evolutionary algorithm is used.
As mentioned before, an evolutionary algorithm is an algorithm that
uses Darwinian principles to achieve its results. Darwinian princi-
ples are the principles of biological evolution as described by Darwin
(1859). This set of principles consists of how the fitness of individu-
als determines which properties are preserved in a population, how
new individuals of that population are generated and how new prop-
erties can be introduced into a population through mutation.

The fitness value of an individual is a value determined by some
fitness function. In biology the fitness function is an extremely com-
plex function between the properties the individual possess and the
properties its environment possesses. In evolutionary computing
this fitness function can be a function of arbitrary complexity. The
general idea is that an individual with a high fitness thrives better in
its environment than one with low fitness. Therefore, an individual
with high fitness has a better chance of producing offspring (gener-
ating a new individual) and thus has a higher chance of passing its
properties along to the next generation.

Because individuals with beneficial properties (high fitness) are
more likely to generate more new individuals than individuals that
have harmful properties, the idea is that every generation will consist
of individuals with more beneficial properties then the last gener-
ation and will therefore be better adept to the environment than
the previous one. In evolutionary computing this is an important
concept because a population will become better every generation
with respect to some predetermined fitness function. In biology,
individuals can have multiple offspring and can live on after repro-
ducing. Evolutionary computing does this different and works per
generation. A generation works as follows: parents with beneficial
fitness are chosen from the population, then the whole population
gets deleted, then the chosen parents create their offspring to fill the
population back up and with this new population a new generation
has been generated and the cycle is closed. This cycle can be re-
peated an arbitrary amount or until a predetermined fitness value
of one or more individuals is reached. Lastly, the mutation concept
enables the possibility for new properties to enter a population. A
mutation means that some, usually very small, part of the chromo-
some is changed so that it now decodes for a different property than

7

before the mutation. Whether this new property is more beneficial
than the previous one is not of concern to the mutation principle
since it works at random.

2.2 The ETM Algorithm

For the basics of the inner workings of evolutionary algorithms the
work of Goldberg and Holland (1988) can be consulted. The basics
of the ETM algorithm follow the guidelines set by Goldberg and his
colleague with two alterations; the selection process and because of
that also the crossover operator.

Goldberg describes multiple methods to select what chromosomes
will get to produce offspring for the next generation that usually
use some form of probability, tournament selection for example. A
selection method like tournament selection results in a new pop-
ulation that consists of the winners from randomly chosen fitness
comparisons. A method like tournament selection preserves a lot
more variation than the method used in this research which is why
the crossover operator was changed slightly in order to compensate
for this. Tournament selection leaves the possibility open to have
chromosomes with lower fitness to still produce offspring if they
randomly get matched against chromosomes that have even lower
fitness values. Lower fitness values do not mean that all their prop-
erties necessarily have to be bad, they can posses one very important
property and still have a low fitness if all the rest of its properties
are bad. This is why evolution generally wants to have at least
some level of variation in the chromosomes of its population. Be-
cause our selection method only picks the two chromosomes with
the highest fitness, a lot of variation in the population gets lost.
This is why the crossover operator is changed slightly to create a
little more variation than the standard crossover operator. In this
research only two chromosomes are chosen to produce offspring for
the next generation. In order to maintain a population size of 10,
both these chromosomes are cloned five times. It is clear that this
method includes a lot less variation than a method like tournament
selection. To prevent the crossover operator from crossing over two
clones with each other and thus resulting in no change (and thus
less variation) a clone from chromosome 1 can only be crossed over
with a clone of chromosome 2. Otherwise the one-point and two-

8

point crossover operators used in this research work as described by
Goldberg. On initialisation (so at generation 0), 10 chromosomes
are filled randomly. The 10 chromosomes then become available to
be decoded into sound by the decoding algorithm with the click of
a button. After listening to all 10 chromosomes the evaluator can
select the two chromosomes he values the highest and decide to let
the algorithm generate the next generation. The two chosen chro-
mosomes are then duplicated five times and the crossover operator
is applied to all the (parent 1 clone, parent 2 clone) pairs. After
the crossover operator has been applied to all five pairs, every bit in
every chromosome is looked at by the mutation operator and with
a certain chance it randomly assigns that bit with a new random
value. Note that this value can be the same as the previous assign-
ment allowing the possibility for a bit to stay the same through a
mutation.

2.3 Operators and Parameters

The mutation operator used for the experiment will be the random
mutation operator as described by Goldberg. This operator uses
one parameter called the mutation factor. This parameter deter-
mines the chance of mutation. A mutation factor of 0,01 means
that every gene has a 0,01% chance to be mutated. Which crossover
operator and what mutation factor used for the experiment will
be determined by an optimisation test. Prior to the experiment
the algorithm will be tested with two crossover operators and mul-
tiple mutation factors to determine which parameter combination
works best. Because the actual fitness function of the experiment is
too complex to efficiently perform multiple optimization tests with,
these optimization tests will be conducted with a less complex fitness
function: the sum of all gene values. Every parameter combination
will be tested 10 times, and the average will be calculated and anal-
ysed. Every test will be conducted on the same fixed two parents,
both with a starting fitness of 328 and an optimal fitness of 659. The
two crossover operators that will be tested are the two most basic
crossover operators described by Goldberg: the one-point crossover
operator and the two-point crossover operator. The mutation fac-
tors that will be tested begin with 0,01 as suggested by Goldberg
and then in increasing increments of 0,01 to 0,15. The combination

9

Table 1: Overview of the functions per gene of the chromosome.
Bit num-
ber

Alphabet Description

1 - 2 0 - 1
Codes for the number between 0 - 3 that determines
which instrument is used for Hat1

3 - 5 0 - 1
Codes for the number between 0 - 7 that determines
which instrument is used for Hat2

6 - 8 0 - 1
Codes for the number between 0 - 7 that determines
which instrument is used for Percussion1

9 - 12 0 - 1
Codes for the number between 0 - 15 that determines
which instrument is used for the melody

13 - 15 0 - 1
Codes for the number between 0 - 7 that determines
which instrument is used for Percussion2

16 - 23 0 - 1
Determines whether Hat1 is played for every 1/2 beat
(1 = yes, 0 = no)

24 - 39 0 - 1
Determines whether Hat2 is played for every 1/4 beat
(1 = yes, 0 = no)

40 - 43 0 - 1
Codes for the number between 0 - 16 that determines
when Percussion2 is played every 4 beats

44 - 51 0 - 1
Determines whether Percussion2 is played every 1/2
beat (1 = yes, 0 = no)

52 - 83 0 - 1
Determines whether the melody instrument is played
every 1/4 (1 = yes, 0 = no)

84 - 147 0 - 9
Determines the pitch of the corresponding melody
note in pairs with the next bit number

of cross-over operator and mutation factor that performs the best
will be used for the actual experiment.

2.4 Decoding the Chromosome

The chromosomes used by the ETM algorithm are composed of 147
individual numbers (genes). The first 83 bits have a binary alphabet
(values of either 0 or 1). The last 64 bits have a value coded alphabet
(values between 0 and 9). Value coding is a method that is used to
encode more complex information into one gene compared to using
a binary alphabet (Bessaou and Siarry, 2001). The reason value
coding is used is because, as discussed later in this sub-chapter,
each melody note must be assigned its own pitch value. This is a
value between 0 and 99. Encoding numbers up to 99 would mean we
need 7 bits per melody note. With 32 notes it would mean we had
to triple the size of the chromosome. Value coding this part makes

10

it possible to reduce the number of bits coding for the melody pitch
significantly from around 2/3 of the chromosome to close to ¼ making
the chromosome a lot more balanced. Earlier work suggests that this
can lead to a better overall performance (Janikow and Michalewicz,
1991). Table 1 gives an overview of the individual functions of every
individual gene of the chromosome.

The first 15 bits encode for the specific instruments used for the
general instrument groups. As mentioned before the sound library
that was available consisted of many different instruments. From
this library a set of possible candidates is selected for every instru-
ment group, so the algorithm can choose one instrument for every
instrument group out of the corresponding set of instruments. In
other words, a small set of instruments that are suitable for the
specific role that instrument group should play is selected for ev-
ery instrument group. The different combinations of instruments
the algorithm can choose are encoded by the first 15 bits. Instru-
ments that are suitable for the role the Hat instrument groups should
play are short high pitched instruments like a high hat or a cym-
bal. Instruments that are suitable for the role that the percussion
instruments should play are more general and more low pitched in-
struments like a low tom or a cow bell. The set of instruments
in the melody instrument group consists of both acoustic (piano,
violin, etc.) and electronic (synthesizers) instruments.

The Percussion1 instrument only plays once every 4 beats which
is why only 4 bits are sufficient to determine when to play the sound.
Hat1 can be played every 1/2 beat and is looped every 4 beats
meaning it only needs 8 bits to determine when to play. Hat2 and
Percussion2 can be played every 1/4 beat and are looped every 4
beats meaning they both need 16 bits. The melody can be played
every 1/4 beat and is looped every 8 beats meaning it needs 32 bits
to determine when it is played. The value coded bits 84 to 147 work
in pairs. Bit 84 and 85 determine the pitch of the first melody note
together, if bit 84 has value 4 and bit 85 has value 8 than the first
melody note plays at pitch 48. Bit 86 and 87 determine the pitch of
the second melody note, bit 88 and 89 the third, etc.

11

3 Method

This chapter will explain how the process of the actual experiment
will be executed and how the outcome will be tested on a small
group of around 40 participants.

3.1 The Experiment

The experiment is the part where the algorithm is supposed to tra-
verse the space of possible chromosomes helped by the feedback of
the evaluator. The process of evaluating the individuals of every
generation is done in 30 minute intervals for two reasons. The first
reason is described by Spector et al. (2005) as the long-term garbage
exposure problem. Spector and his colleagues describe how the evo-
lutionary operators will mostly produce garbage because they are
random operators. Sorting through all this garbage to find the trea-
sures is a difficult task that becomes progressively harder as the ear
gets more numbed with every piece of garbage it hears.

The second reason is the problem of similarity in later gener-
ations. As the generations progress the population will start to
become more and more similar to each other. This means that es-
pecially in the later generations each chromosome will sound very
similar to the previous one you listened to and the next one you
will listen to. This leads to two problems. One is that when you
hear one sound over and over again a change in this repetition will
automatically sound strange regardless of whether it sounds better
or worse, this can negatively impact the quality of the evaluation.
A second problem is that it can become annoying to hear the same
piece of music over and over again. This can cause a decrease in
motivation for the evaluator and therefore decrease the evaluation
quality. To minimize the fore mentioned problems the evaluator will
be allowed to evaluate for 30 minutes after which he has to take a
break of at least 30 minutes. The time needed for the evaluation of
one generation is expected to be around 2 minutes. Meaning that
the evaluator can generate about 15 generations before he has to
take a break.

For this research the number of generations before the final result
will be 100 generations. The evaluator stays the same throughout all
generations to make sure evaluation criteria stay the same through-
out all the generations. The evaluation criteria are the following:

12

• The rhythm of percussive elements is pleasant.

• The melody is pleasant.

• Overall listening pleasure.

The evaluator uses these 3 criteria to create a mental ranking of the
10 chromosomes in order to pick the two he thinks sounds the best.

3.2 Performing a Musical Turing test

When making the Turing test, Alan Turing intended the test to be
an assessment of intelligence in computers, not for the assessment
of computational creativity. But as described in chapter one, com-
putational creativity can be characterized in a manner parallel to
computational intelligence. This is why inspiration was taken from
the classical Turing test to create a musical variation, the Musi-
cal Turing test. A classical Turing test consists of two entities (a
computer and a human) and an interrogator. The interrogator can
interact with both entities and has the task to distinguish which
entity is which (Turing, 1950). The main difference of the Musical
Turing test compared to the classical Turing test is the interaction
part. Where the interrogator is able to interact with the entities
through own formulated questions in the classical Turing test, the
interrogator is only able to interact with the entities through con-
suming the art pieces produced by them in the Musical Turing test.
In other words, instead of classifying the answers to some queries
as human or computer, the interrogator is now asked to classify art
works as either made by a human or made by a computer (Cham-
berlain et al., 2015). To eliminate the 50% correct guess chance
the classic Turing test has the decision was made to let the par-
ticipants compare the computer generated music fragment to three
artist-created music fragments instead of one.

In order to determine whether the piece of music generated by the
ETM algorithm can be distinguished from man made music, 39 par-
ticipants between the ages of 18 and 65 from the Netherlands will be
questioned through an online survey. In the survey the participants
are first given a short explanation about the aim of the survey. It is
made clear to the participants that they are contributing to a bach-
elor thesis and that they are going to have to distinguish between

13

artist-created music and computer generated music. It is also men-
tioned that the three other comparison songs are respected songs
released around 15 years ago to establish a baseline for what they
can expect from the songs and to prevent participants from thinking
the comparison songs were deliberately chosen to be bad or unlike-
able as will be explained further in this sub-chapter, they were not.
They are then shown a playlist of four music fragments that are
about 15 seconds long. They can play all of the songs separately as
many times as they want. While they are able to play the songs,
they are first asked whether they are already familiar with one or
more of the options. If they indicate that they are familiar with one
or more options the result will not be counted. They then are asked
to choose which fragment they think was made by a computer.

The three other songs that the participants will have to compare
the ETM created piece of music to are the following and will from
now on be referred to as Option x for the corresponding song (with
Option 1 being the ETM generated music fragment):

• Option 2 - THEO PARRISH Falling up - CARL CRAIG remix
(2005)

• Option 3 - Ricardo Villalobos – Hireklon (2004)

• Option 4 - Audion - Mouth to Mouth (Original Mix) (2006)

These songs were chosen via the most wanted record list of their re-
spective release year in the techno category on Discogs.com. Discogs.com
is the worlds leading online marketplace for vinyl records with a
userbase of over half a million users as of 2021. A record being
in the most wanted list of its genre should be a good indication
that it is a well-respected song. As mentioned before, the sound li-
brary the algorithm uses was made in 2004 so the comparison songs
have to be produced around the same time. Besides the ranking on
Discogs.com and the release year, the instruments, beats per minute
and overall sound have to somewhat be comparable with each other
and the sound library. With these constraints in mind Option 2 was
chosen because it was the second most wanted record in its release
year, Option 3 was the second most wanted and Option 4 was the
fifth most wanted in its release year.

14

4 Results

0 50 100 150 200 250 300
320

370

420

470

520

570

620

Generations

F
it
n
es
s
b
es
t
p
a
re
n
t

One-point crossover
Two-point crossover

Figure 1: Crossover operator comparison with mutation factor 0,12.

For both crossover operators a mutation factor of 0,12 turned out
to perform the best. Both crossover operators had the steepest slope
in the first 150 generations with that parameter. Lower mutation
factors sometimes lead to a faster ultimate solution, but not within
a realistic number of generations for the purpose of this research
(the fastest still only found a solution in an average of 1000+ gener-
ations). A mutation factor of 0,12 performed the best in the range
of realistic numbers of generations which is why this parameter was
chosen. In Figure 1 the comparison between the two crossover op-
erators is shown. Both crossover operators performed similarly well
but because the two-point crossover operator performed slightly bet-
ter, the decision was made to use the two-point crossover with a
mutation factor of 0,12 for the ETM algorithm for the rest of the
experiment.

After the generation of the piece of music, 39 participants were
asked to fill in the online survey. Because three of them were already
familiar with at least one of the three comparison songs their data
was removed from further analysis. The data set analysed from
here consists of 36 entries. The percentage of votes for computer
generated per option are displayed in Figure 2. Apparently Option 4

15

Option 1

19.4%

Option 2

27.8%

Option 3

52.8%

Option 4 0%

Figure 2: Percentage of participants that choose the option to be the computer
generated one.

was so easily distinguishable as man made that it did not get a single
vote but with 19.4% of the votes the ETM generated music fragment,
Option 1, came in second to last. Meaning that the participants
considered Option 2 and 3 to be more likely to be computer made
than option 1.

5 Discussion

This research set out to investigate the feasibility of techno music
creation by an evolutionary algorithm. We have seen that the small
piece of music the ETM algorithm has generated got 7 out of 36
votes e.g. it was indicated as being made by a computer as opposed
to made by a human by 7 out of the 36 participants. We have the
following null hypothesis: most participants recognise Option 1 as
being made by a computer e.g. 18 or more out of 36 participants
indicated Option 1 is computer made. The probability that 7 out of
36 participants indicate Option 1 as computer made given the null
hypothesis is P = 0 because not more than 18 participants correctly
identified Option 1 as computer made, in fact only 7 did. Because of
this the null hypothesis can not be true. With a P = 0 is smaller than
0,05 the null hypothesis gets rejected and the alternative hypothesis

16

gets accepted: Most participants can not recognise Option 1 as being
made by a computer.

In conclusion, the results suggest the ETM algorithm has suc-
cessfully created a music fragment that is indistinguishable from
artist-created music fragments. This means it is feasible to use an
evolutionary algorithm to generated short pieces of techno music.
One of the benefits of generating techno music compared to clas-
sical sheet music like we have seen established projects like Lamus
do is that the algorithm that generates the piece of techno music
can also be equipped to play that music. The purpose of this paper
was to investigate the feasibility and in doing so lay a foundation
for further research on techno music generation with evolutionary
algorithms. For this purpose there are multiple points that can be
improved on to further validate the capability of music creation by
evolutionary algorithms.

5.1 The limits set by NetLogo

NetLogo has been a good programming language to conduct this
research in, but its limited capabilities put strong constraints on
the sort of music fragments you can make. This research focused on
small pieces of music between 10 and 15 seconds. This short amount
can be achieved by looping the same 8-beat loop for about three or
four times. In techno, the looping of the same loop is common but it
goes without saying that an actual song has more dynamic elements
than just one loop that loops over and over for 6 minutes straight.
The lack of dynamic pitch manipulation (changing the pitch of a long
note while its playing), dynamic velocity manipulation (changing the
loudness of a note while its playing) along with other problems like
the inability to add custom sound samples or the inability to apply
common sound filters like reverb or echos make NetLogo unsuitable
for the creation of any music pieces larger than one loop.

The inability to add custom sound samples is a problem for larger
pieces of music but already posed its challenges when creating the 8-
beat loop. The standard sound library provides all the basic sounds
a techno song needs but nothing more than the absolute basics.
When making songs, artist generally have huge sound libraries that
they can choose from and if they don’t find that specific thing they
want they can make their own samples. The very basic sound library

17

therefore limits the musical expressiveness of the songs generated.
The research tried to compensate this by using comparison songs
that originated from a similar age as the library. The limited library
however also lead to the use of a dummy sound for the kick in order
to emulate the end result as best as possible. This may have had a
negative influence on the evaluation process.

5.2 The limits set by the Evaluator

As described in chapter 3.1 the process of chromosome evaluation
brings a lot of challenges. For this research a limit of 100 generations
was set to accommodate for these problems that especially the later
generations bring. From the tests that were performed to determine
the operators and parameters described in chapter 2.2 we know that
after 100 generations the optimal solution has not been reached. At
generation 100 the 2-point crossover operator with mutation factor
0,12 had achieved an average fitness of 582,1 out of a possible 659.
This means that at generation 100 there is still a lot of progress to
be made. The average time that optimal solution was found however
took a little over 2000 generations. With 30 generations evaluated
per hour, it is obvious that this is not a realistic goal in the setting
of this research and should be a consideration for further research.

5.3 ETM Parameters and Operators

As described in chapter 2 the ETM operator used a standard two-
point crossover and a standard random mutation operator. It is
possible that more complex operators or different parameters would
have worked better. The reason these operators were chosen was by
testing them on a less complex fitness function (the sum of all bit
values). There is no guarantee that the performances on this less
complex fitness function transfer over to a more complex one. In
other words, the fact that the operators worked well for summing
up the bit values does not mean they will perform well for producing
good sounding pieces of music.

5.4 Validity of a Turing test

Despite the influence it has had, the Turing test has been a much
debated topic for many years now. Most A.I. researchers see the Tur-

18

ing test as a distraction from the main goal of A.I. They see passing
the Turing test as using trickery to pretend to achieve a goal instead
of actually achieving that goal (Pease and Colton, 2011). Whether
this is true or not is beyond this paper but it is worth mention-
ing that many of the philosophical arguments against the Turing
test do not apply to the Musical Turing test that was performed in
this research. According to Turing a computer has achieved intel-
ligence when it is indistinguishable from a human. It is the use of
the concept intelligence where most of the critique is about (Saygin
et al., 2003). However, in this research this concept of intelligence
is removed from the equation and the Turing test was only used as
inspiration to establish whether the ETM algorithm could generate
a short piece of music that was indistinguishable from man made
music.

5.5 The Participants

Lastly, it is worth mentioning that because of the way the partic-
ipants were reached out to, most of the participants were younger
than 25 years old (28 out of 36) and most of the participants re-
ported listening to techno music at least once a month (22 out of
36). However, the data suggests these characteristics have little to
no influence on the results. The percentages between participants
that never listen to techno and listen to it at least once a month
only differed 2 % at most. Though beyond the scope of this paper
this is an interesting observation for future research.

6 Conclusion

We have seen how the ETM algorithm was able to make an 8-beat
loop that when looped a couple times made a small piece of techno
music. When shown to a group of participants and asked to be
distinguished from man made music we saw that the participants
were unable to do so. This confirms the feasibility of techno music
generation by the ETM algorithm opening up the route for further
research on the generation of longer techno music fragments by evo-
lutionary algorithms.

For these longer fragments however, it is important to incorpo-
rate some form of dynamic sound manipulation and the ability to

19

use custom sounds into the algorithm. Another problem this re-
search ran into was the extremely limited evaluation capabilities
one evaluator brings, and this problem will only becoming bigger
when researching longer music fragments. There are some efforts
being made on the field of automatic music evaluation to solve this
issue, but this is still very much in its infancy Ren et al. (2020).
A maybe more accessible solution to the evaluation problem at this
time would be a system of multiple evaluators that all have to follow
the same specific evaluation criteria in a very disciplined manner to
optimize evaluation speed and minimize the evaluator differences.

References

Bessaou, M. and Siarry, P. (2001). A genetic algorithm with real-
value coding to optimize multimodal continuous functions. Struc-
tural and Multidisciplinary Optimization, 23:63–74.

Briot, J.-P. and Pachet, F. (2018). Deep learning for music gener-
ation: challenges and directions. Neural Computing and Applica-
tions, 32(4):981–993.

Chamberlain, R., Mullin, C., and Wagemans, J. (2015). The artistic
turing test: An exploration of perceptions of computer-generated
and man-made art. Journal of vision, 15:112.

Darwin, C. (1859). On the Origin of Species by Means of Natural
Selection. Murray, London. or the Preservation of Favored Races
in the Struggle for Life.

Diaz-Jerez, G. (2011). Composing with melomics: Delving into
the computational world for musical inspiration. Leonardo Mu-
sic Journal, 21:13–14.

Dostál, M. (2013). Evolutionary Music Composition, pages 935–964.
Springer Berlin Heidelberg, Berlin, Heidelberg.

Fiebrink, R. and Caramiaux, B. (2016). The machine learning al-
gorithm as creative musical tool.

Goldberg, D. E. and Holland, J. H. (1988). Genetic Algorithms and
machine learning.

20

Hochberg, B. (2020). Youtube won’t take down a deep-
fake of jay-z reading hamlet — to sue, or not to sue.
https://www.forbes.com/sites/williamhochberg/2020/05/18/to-
sue-or-not-to-sue—that-is-the-jay-zs-deepfake-
question/?sh=103225c8128b retrieved on 18-12-2020.

Huang, A. and Raymond, W. (2016). Deep learning for music. arXiv
preprint arXiv:1606.04930.

Janikow, C. Z. and Michalewicz, Z. (1991). An experimental com-
parison of binary and floating point represenation in genetic algo-
rithms. ICGA, 1991:31–36.

Julien, O. and Levaux, C. (2018). play it again (and again), sam.
Bloomsbury Academic, pages 1 – 10.

Malik, I. and Ek, C. H. (2017). Neural translation of musical style.

NewScientist (2012). Computer composer honours turing’s cen-
tenary. https://www.newscientist.com/article/mg21528724-300-
computer-composer-honours-turings-centenary/ Retrieved on 18-
12-2020.

O’Hara, K. and Brown, B. (2006). Consuming Music Together: So-
cial and Collaborative Aspects of Music Consumption Technolo-
gies, volume 35.

Pease, A. and Colton, S. (2011). On impact and evaluation in com-
putational creativity: A discussion of the turing test and an alter-
native proposal.

Ren, I., Volk, A., Swierstra, W., and Veltkamp, R. C. (2020). A
computational evaluation of musical pattern discovery algorithms.

Saygin, A. P., Cicekli, I., and Akman, V. (2003). Turing Test: 50
Years Later, pages 23–78. Springer Netherlands, Dordrecht.

Spector, L., Klein, J., and Harrington, K. (2005). Selection songs:
Evolutionary music computation. YLEM Journal, 25:24–26.

Toivonen, H. and Gross, O. (2015). Data mining and machine learn-
ing in computational creativity. Wiley Interdisciplinary Reviews:
Data Mining and Knowledge Discovery, 5(6).

Turing, A. M. (1950). Computing machinery and intelligence. Mind,
59(236):433–460.

21

