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Abstract
In previous research, frameworks have been constructed that can rea-
son about the probabilistic locations of objects through different time
instances. With these frameworks, certain work has been done on belief
revision and consistency checking. The expressivity of these frameworks
was very limited; they only contained these so-called ‘Probabilistic Spatio-
Temporal atoms’ (PST atoms). In this thesis, a new framework that can
reason more extensively with PST atoms is proposed. This is done in 3
different steps. In the first step, a framework is proposed that can only
reason about the locations of objects. This is done by combining sim-
plified PST atoms with propositional logic. In the second step, temporal
operators are added to the first framework. For this framework, axiomati-
zation has been done and soundness and completeness of the axioms have
been proven. In the final step, probabilities were added to the temporal
framework. For each framework, syntax, semantics and the satisfiabil-
ity relation have been defined in a clear way. With these frameworks,
more extensive reasoning is possible about PST atoms than in any of the
frameworks that were defined in earlier research.
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1 Introduction
Symbolic Artificial Intelligence (AI) is the field in AI research which is concerned
with attempting to represent human level knowledge on a symbolic level, by us-
ing facts and rules. Symbolic AI is sometimes called Good Old Fashioned AI,
since it was the first dominant approach to AI. An example of a symbolic AI
is the General Problem Solver. The General Problem Solver was a computer
program that was intended to work as a universal problem solver machine.1 The
way that the General Problem Solver worked was by applying axioms and rules
on a well-formed problem to find a solution. An example of a problem that the
General Problem Solver was able to solve was the Towers of Hanoi.
A popular application of symbolic AI were Expert Systems. The idea behind
Expert Systems is that expertise is transferred from a human to a computer.
This knowledge will then be stored in the computer and will be shared by the
computer to users of the system.2

In recent years, some of the work on symbolic AI has been to create certain
logical frameworks that allow computers to reason in that framework. One ex-
ample that will be looked at in this thesis is the paper An AGM-Style belief
revision mechanism for probabilistic spatio-temporal logics by Grant et al.3 In
this paper, Grant et al. introduce a specific framework for reasoning about the
location of objects in time instances. On top of that, they also introduce some
measure of uncertainty about the location of said object, giving it the name
Probabilistic Spatio-Temporal Knowledge Base(PST KB). In this paper, Grant
et al. looked at belief revision strategies for when new knowledge is conflicting
with what is already in the knowledge base.
The authors of the paper give some examples when one would like to reason
about certain probabilistic-spatio temporal atoms. For example, with GPS
tracking: GPS tracking can give some idea where an object might be, but it
will never be 100% accurate. Another application where reasoning about the
probabilistic locations of objects throughout different time instances could be
useful is with drones scouting for survivors in a city after disaster has struck. We
know where certain objects used to be, but with certain buildings collapsed, we
cannot know for certain that the objects are still in the same locations as before.

The PST KBs as proposed by Grant et al. are very basic Knowledge Bases
that only contained facts about the locations of objects. This thesis aims to
extend the amount of reasoning that can be done with Probabilistic Spatio-
Temporal atoms. In the paper by Grant et al., the authors focussed on belief

1. A Newell and JC Shaw, “A variety op intelligent learning in a general problem solver,”
RAND Report P-1742, dated July 6 (1959).

2. Shu-Hsien Liao, “Expert system methodologies and applications - a decade review from
1995 to 2004,” Expert Syst. Appl. 28, no. 1 (2005): 93–103, doi:10.1016/j.eswa.2004.08.003,
https://doi.org/10.1016/j.eswa.2004.08.003.

3. John Grant et al., “An AGM-style belief revision mechanism for probabilistic spatio-
temporal logics,” Artif. Intell. 174, no. 1 (2010): 72–104, doi:10.1016/j.artint.2009.10.002,
https://doi.org/10.1016/j.artint.2009.10.002.
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revision strategies, which is something that this thesis will not look at. This
thesis aims to create a logic that can reason about the same atoms that Grant
et al. used in their paper. The logic will be more expressive, and therefore will
allow for richer reasoning. The logic will be based on Linear Temporal Logic,
a logic which was first proposed by Pnueli.4 A full axiomatization of the new
logic also follows, which is useful since this means that formally reasoning with
this logic is possible.
With this logical framework, it becomes possible to express sentences like “I am
at this location until you arrive at that location.” Because it is a very general
framework that will be proposed, it can easily be altered to restrict certain other
properties. For example, it is easy to create a system that imposes a rule in
which every location can only hold one object. The locations can also be used
to represent certain intersections in a city, making it possible to reason about
the way cars move through a city.

The research question is as follows: “How can existing temporal and proba-
bilistic logics be added to extend the amount of reasoning that can be done
on probabilistic spatio-temporal atoms?” We will go through several steps to
answer this research question.

In section 2, the related research will be discussed. The paper by Grant et
al. will be discussed in a bit more detail, as well as some papers that were
important before the paper by Grant et al. and some other papers that will be
useful to achieve our goal of defininig a new logic.
In section 3, the first steps in creating our framework will be taken. The atoms
of the PST KB will be integrated in a standard propositional logic. For this
logic, only syntax, semantics and the satisfiability relation will be given.
In that section we will also introduce the Reachability Definition, which is useful
when talking about objects in multiple different time instances. In propositional
logic, objects cannot really move. However, if you move through time, then it
becomes possible for objects to move between locations as well. The Reachabil-
ity Definition can be used to restrict the ability of how far objects are allowed
to move in one instance of time.

In section 4 the Spatio-Temporal Framework is defined. The first part of this
section is similar to the first part of section 3. Syntax, semantics and the sat-
isfiability relation are defined for this logic. In the second part of the section,
axiomatization of the logic will be done. This will be done in 3 different parts:
first of all, the axioms for the logic are presented and explained shortly. Then,
soundness of the axioms will be proven. Finally, a completeness proof of the
axiomatic system will be given. Because of the proof of soundness, we can
say that it is impossible to prove anything that’s wrong. Because of the proof

4. Amir Pnueli, “The Temporal Logic of Programs,” in 18th Annual Symposium on Foun-
dations of Computer Science, Providence, Rhode Island, USA, 31 October - 1 November 1977
(IEEE Computer Society, 1977), 46–57, doi:10.1109/SFCS.1977.32, https://doi.org/10.
1109/SFCS.1977.32.
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of completeness, we can say that it is possible to prove anything which is correct.

In section 5, the Probabilistic Spatio-Temporal Framework shall be introduced
shortly, with the syntax, semantics and satisfiability relation defined.

The final section is the Discussion section. The limitations of this thesis will be
discussed, as well as some proposals for future research. Things to consider are
for example branching time logics, or logics that are able to look towards the
past, as Linear Temporal Logic is a very basic temporal logic that can only look
at states in the future, and is (as its name might already suggest) a linear logic
instead of a branching time logic. In the conclusion, all the work that has been
done will also be shortly summarized and an answer to the research question
shall be given.
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2 Related Research
In A Logical Formulation of Probabilistic Spatial Databases,5 a SPOT-database
is introduced (Spatial PrObabilistic Temporal), which consists of elements that
express statements of the form ‘object O is in region R at time t with a prob-
ability within the interval [L,U ].’ The goal of the authors was to create a
probabilistic spatial temporal database that could be reasoned with to make
predictions about the locations of objects at moments in time.
With SPOT-databases, it becomes possible to make some predictions about the
locations of vehicles in the future, as well as the uncertainty of vehicles at this
point in time or in the past. They also propose an algorithm that makes it pos-
sible for the SPOT-database to find objects within a certain region at a certain
time instance with a certain probability interval. A SPOT-database is defined
as a finite set of SPOT atoms. These SPOT atoms are four-tuples, which are
used to indicate the object it’s referring to, the region this object is in, the time
instance and the probability interval.

In a later paper, the authors of this paper improved their own SPOT-databases.
They proposed certain ways that the set of constraints could be made smaller.
This way the database was a lot more efficient when doing a selection query(to
find any object that will ever be in a certain region, for example).6 None of
these proposed improvements, however, did anything to change either the syn-
tax, semantics or expressivity of SPOT-databases, and they were mainly used
to improve the efficiency when implementing a SPOT-database in a computer
program.

In An AGM-style belief revision mechanism for probabilistic spatio-temporal log-
ics, Grant et al. use a different approach to also state things like ’an object o is
somewhere in region r at time t with a probability between ` and u(inclusive)’,7
which is the same sentence that SPOT-databases could reason about. However,
the goal of this paper was to examine belief revision strategies. PST KBs were
defined in a different way than how SPOT-frameworks were defined. What they
both reasoned about was essentially the same, but the PST KBs shall be con-
sidered the starting point for this paper.

As opposed to SPOT-atoms, Grant et al. chose to use id-atoms, which are
of the form loc(id, r, t), where id is the object, r the region, and t the time
instance. The probabilities are added on top of the id-atoms, which differs from
the SPOT-atoms, where the probabilty interval is part of the tuple. The PST

5. Austin Parker, V. S. Subrahmanian, and John Grant, “A Logical Formulation of Prob-
abilistic Spatial Databases,” IEEE Trans. Knowl. Data Eng. 19, no. 11 (2007): 1541–1556,
doi:10.1109/TKDE.2007.190631, https://doi.org/10.1109/TKDE.2007.190631.

6. Austin Parker et al., “SPOT Databases: Efficient Consistency Checking and Optimistic
Selection in Probabilistic Spatial Databases,” IEEE Trans. Knowl. Data Eng. 21, no. 1 (2009):
92–107, doi:10.1109/TKDE.2008.93, https://doi.org/10.1109/TKDE.2008.93.

7. Grant et al., “An AGM-style belief revision mechanism for probabilistic spatio-temporal
logics,” p.73.
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framework also adds in a Reachability Definition, which is defined as a func-
tion which restricts where objects can be in consecutive time instances. In the
papers where the SPOT-framework was defined, the authors considered it to
be possible for an object to move from any region to any region in one single
time instance. However, there are certain velocity constraints. It does not make
sense for a vehicle to be able to move to a region that is 50 kilometers away in
the same time it takes for the vehicle to be able to reach a region that is only 1
kilometer away. There are also differences between different objects. For exam-
ple, a car is able to move further in one time instance than a bicycle (assuming
that the time instances are at least of a certain measurable length).

In Grant et al. the Reachability Definition consists of reachability atoms, which
are of the form reachableid(p1, p2), where id is an object and p1 and p2 are lo-
cations. While the id-atoms use regions to refer to the location of an object, the
Reachability Definition is only concerned with the movement between specific
locations. In a later subsection, a more formal definition of the Reachability
Definition is given, which will be used in the frameworks where movement of
objects is possible (every framework that uses temporal operators).

The goal of this thesis is to extend the amount of reasoning that can be done
about the locations of objects in differen time instances by adding Linear Tem-
poral Logic and probabilistic logic to the framework that was created by Grant
et al. In Gabbay et al.,8 Propositional Linear Temporal Logic was first intro-
duced. The authors provided axioms for the logic and also gave both soundness
and completeness proofs. Mark Reynolds9 later on did axiomatization of Full
Computation Tree Logic, of which Linear Temporal Logic is a subset of. Both
of these papers will serve as the starting point for the way that Linear Temporal
Logic will be incorporated in the PST framework. Linear Temporal Logic also
uses some extra operators. For the definitions of these operators, a chapter from
the book Principles of model checking shall be used.10

Fagin et al. have written an article called A Logic for Reasoning about Proba-
bilities, in which a probabilistic propositional logic was defined.11 In previous
research, Linear Temporal Logic and probabilistic logic have already been com-
bined to create a new logic that could reason about uncertainty in different time

8. Dov M. Gabbay et al., “On the Temporal Basis of Fairness,” in Conference Record of
the Seventh Annual ACM Symposium on Principles of Programming Languages, Las Vegas,
Nevada, USA, January 1980, ed. Paul W. Abrahams, Richard J. Lipton, and Stephen R.
Bourne (ACM Press, 1980), 163–173, doi:10.1145/567446.567462.

9. Mark Reynolds, “An Axiomatization of Full Computation Tree Logic,” J. Symb. Log.
66, no. 3 (2001): 1011–1057, doi:10.2307/2695091, https://doi.org/10.2307/2695091.
10. Christel Baier and Joost-Pieter Katoen, Principles of model checking (MIT press, 2008),

Chapter 5.
11. Ronald Fagin, Joseph Y. Halpern, and Nimrod Megiddo, “A Logic for Reasoning about

Probabilities,” Inf. Comput. 87, nos. 1/2 (1990): 78–128, doi:10.1016/0890-5401(90)90060-U,
https://doi.org/10.1016/0890-5401(90)90060-U.

7



instances.12 This paper is useful when we start to look at ways to incorporate
a probabilistic logic in our Spatio-Temporal logic.

John Grant also has worked on a different paper in which the authors axioma-
tized and extended the logic13 as presented in the original paper by Grant et al.
This thesis is a bit different from that paper, since the focus of that paper was
to add probabilistic logic to the PST KBs that were first introduced by Grant
et al., not really changing the way that the atomic formula looks like, while this
thesis will deviate a lot more from the original paper by Grant et al.

12. Dragan Doder and Zoran Ognjanovic, “A Probabilistic Logic for Reasoning about Un-
certain Temporal Information,” in Proceedings of the Thirty-First Conference on Uncertainty
in Artificial Intelligence, UAI 2015, July 12-16, 2015, Amsterdam, The Netherlands, ed.
Marina Meila and Tom Heskes (AUAI Press, 2015), 248–257, http://auai.org/uai2015/
proceedings/papers/258.pdf.
13. Dragan Doder, John Grant, and Zoran Ognjanovic, “Probabilistic logics for objects lo-

cated in space and time,” J. Log. Comput. 23, no. 3 (2013): 487–515, doi:10.1093/logcom/
exs054, https://doi.org/10.1093/logcom/exs054.
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3 Introduction to the Logic
Before we can start talking about logical frameworks that can use temporal
operators and probabilities, we first need to define a more ‘base level logic’.
This will be done in the current section. Before we can create our most ba-
sic framework, sometimes referred to as the propositional framework, we first
need to define the input that is necessary for our logic to function. Defining
this basic framework is very useful when we want to define the more complex
Spatio-Temporal Framework and the Probabilistic Spatio-Temporal Framework.

The input for all of the logical frameworks that will be discussed in the en-
tire paper is the same for each framework. First of all, there needs to be a set of
objects, which is denoted O, and there needs to be a set of locations, L. Objects
are usually referred to with o, or with oi with i ≥ 0, if there are multiple random
objects. From the set of locations we can create regions, which are subsets of
L. Regions are usually indicated with the variable r.

3.1 Propositional Framework
The input that now has been determined is necessary to create well-formed for-
mulas in our logical frameworks. In this section, we shall apply this input to
the most basic level of logic possible: a propositional framework. This frame-
work is quite similar to normal propositional logic, with some small exceptions.
Contrary to the more complex frameworks that will be introduced later, the
propositional framework is the only framework that does not allow any tempo-
ral operators. Therefore, a model in this logic only looks at one point in time,
and completely disregards everything that happened prior to this time instance
and everything that will happen afterwards.

When describing a logical framework there are three things to consider: syntax,
semantics and satisfiability relation. The syntax is what formulas in the logical
framework have to look like. Semantics is what models of the logical framework
should look like (this can also be interpreted as what sentences mean), and fi-
nally the satisfiability relation is the way in which a model satisfies a formula
(the way syntax and semantics are connected).

3.1.1 Syntax

While in the SPOT-frameworks the atomic formulas were of the form loc(id, r, t)
for any id ∈ ID, r ∈ L, ∀t ≥ 0, in this logical framework the formulas will look
a bit different. For any o ∈ O, r ∈ L, id(o, r) is an atomic formula. We do
not have to use a variable to indicate the time instance this formula holds in,
since we will have temporal operators to reason about that in the more complex
frameworks.

9



Definition 1. The set of formulas in the propositional framework, called FORMS,
is defined as the smallest set with the following properties:

1. id(o, r) ∈ FORMS, where o ∈ O and r is a subset of L.
2. ϕ ∈ FORMS → ¬ϕ ∈ FORMS

3. ϕ,ψ ∈ FORMS → ϕ ∧ ψ ∈ FORMS

While the logical connectives ¬ and ∧ are sufficient to express every sentence
in propositional logic, it is more convenient to use certain abbreviations. These
abbreviations are usually ways to write down more complex sentences with fewer
variables and connectives, and will be used everywhere else, instead of using the
most formal definition of the syntax. The following abbreviations can be used
in every well-formed formula:

• ⊥ is an abbreviation for any contradiction like ϕ ∧ ¬ϕ. This is used as a
way to express falseness.

• > is the opposite, an abbreviation for general truths. It can be read as
¬⊥ or ϕ ∨ ¬ϕ.

• ϕ ∨ ψ means ϕ or ψ and is an abbreviation of ¬(¬ϕ ∧ ¬ψ).
• ϕ→ ψ is an abbreviation of ¬ϕ∨ψ. The arrow is to be understood as an

implication: if ϕ holds, then ψ must hold as well.
• ϕ ↔ ψ is an abbreviation for (ϕ → ψ) ∧ (ψ → ϕ). This is called a

biconditional, which means ϕ holds if and only if ψ holds.

3.1.2 Semantics

In the previous section the syntax of the propositional framework has been de-
scribed. With these definitions it has become possible to create well-formed
formulas. However, we still need to have a way to assign meaning to mod-
els. This is done through the semantics of a logical framework. Models in the
propositional framework shall be named frames, since the models of proposi-
tional framework can be understood as a picture that has been taken, ‘locking’
the objects in place.

Definition 2. A frame is a mapping of F : O → L(Objects mapped to loca-
tions). Every element in O is mapped to exactly one element of L.

In short, we can create a frame in this propositional framework by mapping
every object to exactly one location. One thing to note is that this does not
exclude the fact that an object can be in multiple regions in the same time
instance, it merely states that an object can be in exactly one location, but this
location can be part of many different regions.

10



3.1.3 Satisfiability Relation

Now that both syntax and semantics have been defined, there needs to be a way
to connect formulas to frames. This is done through the satisfiability relation.
If we know that a formula ϕ is satisfied by a random frame F , we write down
F |=S ϕ. What this means is that the formula ϕ is not only a valid formula,
but the formula also is true according to the model. For example, let’s say that
ϕ is the formula id(o, r). If F would satisfy this formula, then o must be in a
location that is part of region r. However, it could be the case that in another
frame, a, this does not hold.
Definition 3. The satisfiability relation for the propositional framework
• F |=S id(o, r) if and only if F(o) ∈ r
• F |=S ¬ϕ if and only if F 6|=S ϕ

• F |=S ϕ ∧ ψ if and only if F |=S ϕ and F |=S ψ

With this the propositional framework is fully defined. With this framework
we can reason about objects in spaces. For example, we can say something like
this: ‘Object o1 is in region r or in region q.’, which we would be able to write
like this: id(o1, r) ∨ id(o1, q).

3.2 Reachability Definition
Besides the sets of objects and locations, there is one final piece of information
that needs to be provided; the Reachability Definition. A Reachability Defini-
tion consists of a finite set of reachability atoms. Grant et al. write the following
about reachability atoms: ‘Intuitively, the reachability atom reachableid(p1, p2)
says that it is possible for the object id to reach location p2 from location p1
in one unit of time.”14 This explanation is very clear and will therefore be also
adapted in our definition for the Reachability Definition, albeit with slightly
different names for variables.
Definition 4. A reachability atom is of the form reachableo(l1, l2) and is used
to indicate that o can move from location l1 to l2 in one time instance.

Every element of O (every object in our ‘input’) gets its own Reachability
Definition. Per Grant et al., we also allow reachableo(l, l) for any o ∈ O and
any l ∈ L. This means that any object can reach the same location it is in
within one time instance.15 As stated before, it would not make much sense
to let objects move between two regions that are very far apart, but not be
able to move to regions adjacent to the region it is in right now. However, for
the sake of generality, it is not a rule that is enforced by the definition of the
Reachability Definition. Of course, it is possible to impose this rule by creating
the Reachability Definition in such a way that it is possible for objects to move
between adjacent locations.
14. Grant et al., “An AGM-style belief revision mechanism for probabilistic spatio-temporal

logics,” p.75.
15. Ibid.
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Definition 5. A Reachability Definition is the set of all reachability atoms of
all elements of O.

In the figure below, one possible interpretation of the Reachability Definition
is given.

l0 l1 l2

l3 l4 l5

l6 l7 l8

The set of all blue arrows is the Reachability Definition for some object, and
the red arrows is the Reachability Definition for another object. The set of all
arrows is the complete Reachability Definition.

Note that in this case, the Reachability Definition is a symmterical relation.
This means that if reachableo(l1, l2), then reachableo(l2, l1). This is not an
enforced property, but in many cases it makes sense to have this property in
place. Note that the reflexive relations for every object and location haven’t
been drawn, to keep the image as clear as possible. Also, note that there is not
necessarily a reachability atom from every location to another location. Imagine
that the blue arrows are the reachability atoms for a very large truck, and that
the locations are streets in a city. l1 could be a very narrow alley, which the
truck would not be able to enter. Of course, if the truck would already be in
the alley, the truck would be stuck there, since the alley is too narrow for the
truck to leave.

12



4 The Spatio-Temporal Framework
In the previous section, the foundation was laid for the other logical frame-
works that will be defined in the rest of the paper. The first step in creating
a Probabilistic Spatio-Temporal Framework was developing the propositional
framework. The next step is adding the temporal element. This is done by
using Linear Temporal Logic, and combine that with the basic Propositional
Framework. This means that we get new syntax, semantics and a new satisfi-
ability relation. After these elements have been defined, we move on to more
complex things, like axiomatization of our new Spatio-Temporal Framework and
doing a soundness and completeness proof, which can be used to show that all
our axioms are both valid and complete.

4.1 Introduction of the Spatio-Temporal Framework
Linear Temporal Logic is a basic form of temporal logic, and has already been
defined and axiomatized before.16 These rules and axioms were defined around
propositional Linear Temporal Logic. In this framework, we are not concerned
with propositional logic, but rather with extending the spatial framework. This
means that instead of propositions, we have id-atoms to reason about. Instead
of having propositions that express validity or truth, our id-atoms express infor-
mation about the locations of objects. This does not change the way formulas
are formulated and behave, but merely changes the way formulas are to be un-
derstood. This means that the syntax of the new Spatio-Temporal Framework
will be similar to the syntax of Linear Temporal Logic in Reynolds, and also that
the satisfiability relation is still somewhat similar. Only the semantics differ a
lot from the work of Reynolds.

4.1.1 Syntax

Definition 6. The set of formulas in the Spatio-Temporal Framework, called
FORMST , is defined as the smallest set with thet following properties:

1. id(o, r) ∈ FORMST , where o ∈ O and r is a subset of L.
2. ϕ ∈ FORMST → ¬ϕ ∈ FORMST

3. ϕ,ψ ∈ FORMST → ϕ ∧ ψ ∈ FORMST

4. ϕ ∈ FORMST →©ϕ ∈ FORMST

5. ϕ,ψ ∈ FORMST → ϕUψ ∈ FORMST

©ϕ is to be interpreted as: ‘ϕ holds at the next point in time.’ ϕUψ can be
interpreted as: ‘ϕ holds until ψ holds.’ Like in the previous discussed framework,
these are the only connectives that are necessary to form any well-formed for-
mula, but there are certain abbreviations that we can use to make the sentences
easier to read:
16. Reynolds, “An Axiomatization of Full Computation Tree Logic.”
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• All the connectives that were abbreviations in the previous basic frame-
work, can also be used in the Spatio-Temporal Framework (⊥,>,∨,→,↔).

• ♦ϕ is short for >Uϕ, eventually ϕ will hold.

• �ϕ is short for ¬♦¬ϕ. (ϕ holds at each point in time)

• ϕWψ is short for (ϕUψ)∨�ϕ (ϕ holds until ψ holds, or ϕ holds at every
time instance).

• ϕRψ is short for ¬(¬ϕU¬ψ)17

4.1.2 Semantics

Now that there are temporal operators, our models do not talk about a single
point in time. The models now become a bit more dynamic, since there are
multiple different instances of time in which objects are at different locations.

Definition 7. A model σ is a path of the form σ = s0, s1, s2..., where every si ∈
σ can be interpreted as a propositional frame (A mapping of O → L). Addition-
ally the following must hold as well: ∀o ∈ O∀i ≥ 0 : reachableo(si(o), si+1(o)).
The set of all Spatio-Temporal Models is called Σ.

In other words, every object o ∈ O, at moment si at location l1 can only be
at l2 at si+1 if reachableo(l1, l2).

If you want to indicate that you have moved through time, we need to indi-
cate that we are no longer at the first time instance, s0, but si for some i. To
refer to the new model that uses si as the first time instance, we use σ≥i, which
is a subpath of σ.

4.1.3 Satisfiability Relation

The satisfiability relation works a bit different on the Spatio-Temporal Frame-
work than it did on the basic framework. This is caused by large differences in
the semantics. Since the meaning of models is so different, the way the models
are linked to formulas is also entirely different. If we want to indicate that a
temporal model σ models a formula ϕ, we write down σ |=ST ϕ, instead of
σ |=S ϕ (this would be an incorrect formula to write down).

Definition 8. The satisfiability relation for the Spatio-Temporal Framework:

• σ |=ST id(o, r) if and only if s0 |=S id(o, r)
• σ |=ST ¬ϕ if and only if σ 6|=ST ϕ

• σ |=ST ϕ ∧ ψ if and only if σ |=ST ϕ and σ |=ST ψ

• σ |=ST ©ϕ if and only if σ≥1 |=ST ϕ

17. Baier and Katoen, Principles of model checking, Chapter 5.
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• σ |=ST ϕUψ if and only if there exists a si with i ≥ 0 such that σ≥i |=ST ψ
and that for all k : 0 ≤ k < i : σ≥k |=ST ϕ

With the satisfiability relation we now know how formulas are satisfied in
models.

Definition 9. Consider a set of statements Γ. We say that a formula A is a
semantic consequence of Γ, denoted Γ |=ST A if and only if there exists no model
M in which Γ holds and A does not hold. If |=ST A, then the set of formulas
A must hold on any model.

In other words, whenever Γ holds in some model, A must hold too. We say
that Γ satisfies A.

4.2 Axiomatization of the Spatio-Temporal Framework
In the previous section the syntax, semantics and the satisfiability relation of
the Spatio-Temporal Framework has been defined. In the following subsection,
axiomatization of this framework shall be done. This includes giving the ax-
iomatic system, inference rules for the axiomatic system and both soundness
and completeness proofs.

Definition 10. Consider a set of statements Γ. We say that A is a syntactic
consequence of Γ, denoted Γ `ST A if and only if A is provable from Γ in a
deductive system. If `ST A, then the set of formulas A must hold on any model.

In other words, we can make derivations from the formulas that make up Γ
to find formula A. We say that A is derivable from Γ.

4.2.1 Axiomatic System

The axioms of a logic are certain logical formulas that are universally valid.
These rules can be applied to any instance of any random model, and will al-
ways hold. Propositional Linear Temporal Logic already has been axiomatized
before, for example in Reynolds.18 These axioms are valid on every single Linear
Temporal Logic, so it makes sense for these formulas to also hold in our new
Spatio-Temporal Framework, since it is the same as a propositional logic, but
with id-atoms instead of propositions. Hence, there need to be extra axioms
introduced that can state things about the id-operators to capture new semantic
properties.

In addition to the axioms, there are inference rules. With these inference rules,
you can derive other formulas from theorems and axioms.

Definition 11. The two inference rules are as follows:

Modus Ponens: ϕ,ϕ→ ψ

ψ
Generalization Rule: ϕ

�ϕ
18. Reynolds, “An Axiomatization of Full Computation Tree Logic.”
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Modus Ponens states that if ϕ holds and ϕ implies ψ, then ψ must hold as
well. Generalization states that, if ϕ can be derived from the axioms, then �ϕ
can be derived from the axioms, too.

Definition 12. The axioms for the Spatio-Temporal Framework are all substi-
tution instances of the following:

0. Any Propositional tautology (ϕ ∨ ¬ϕ)
1. ♦ϕ↔ ♦¬¬ϕ
2. �(ϕ→ ψ)→ (�ϕ→ �ψ)
3. �ϕ→ (ϕ ∧©ϕ ∧©(�ϕ))
4. ©¬ϕ↔ ¬© ϕ

5. ©(ϕ→ ψ)→ (©ϕ→©ψ)
6. �(ϕ→©ϕ)→ (ϕ→ �ϕ)
7. (ϕUψ)↔ (ψ ∨ (ϕ ∧©(ϕUψ)))
8. (ϕUψ)→ ♦ψ

9. ¬(id(o, r)∧©id(o, s)), where o ∈ O, r, s ⊆ L and (r× s)∩ reachableo = ∅
10. ¬(id(o, r) ∧ id(o, s)), where r, s ⊆ L, o ∈ O and r ∩ s = ∅
11. id(o, L)
12. id(o, r ∪ s)↔ (id(o, r) ∨ id(o, s)), where o ∈ O and r, s ⊆ L

The combination of the inference rules and the axioms, give us axiomatic
system ST.
Axioms 0-8 are the same axiom substitutions used by Reynolds. He claimed
that it was proven in Gabbay et al. that these axioms are sound and complete
for Propositional Linear Temporal Logic.19 Axioms 9-12 are axioms that have
been introduced specifically for this logic. Axiom 9 states that it is not possible
for o to be at r and at the next point in time at s, whenever none of the locations
in r and s are paired in the Reachability Definition for o. Axiom 10 states that
it is impossible for an object o to be in both region r and s at the same time,
whenever r and s have no shared locations. Axiom 11 states that object o is
always in region L, the set of all locations. Axiom 12 states that an object o is
in the intersection of 2 different regions if and only if it is in either one of the
regions.

4.2.2 Soundness

Definition 13. A logical system is sound if and only if every theorem is a valid
formula. We denote this by `ST ϕ→|=ST ϕ.

19. Reynolds, “An Axiomatization of Full Computation Tree Logic,” p.1016.
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A theorem is any formula that needs no premises except axioms to be proven.
To prove that our axiomatic system ST is sound, we need to prove that |=ST ϕ
for every axiom as ϕ, and that inference rules preserve validity.

Claim. Axiomatic System ST is sound.

The soundness of axioms 0-8 and the inference rules have already been
proven,20 and will therefore not be proven here. This means that the soundness
proofs only have to be done for axioms 9-12.
The easiest way to prove that every axiom is sound is to prove that the axiom
holds in a random model. If we choose a random model with constraints that
are also imposed by the axiom. In that case, it must be the case that the ax-
iom holds in that model. Since the model was chosen arbitrarily, we know that
the axiom must hold in any model with those constraints. And whenever the
constraints are not met, the axiom holds as well, thus proving that our axiom
holds in any model.

Axiom 9:

¬(id(o, r) ∧©id(o, s)) where r, s ⊆ L, o ∈ O and (r × s) ∩ reachableo = ∅

To Prove: |=ST ¬(id(o, r) ∧©id(o, s))

Proof. Consider a random model σ with object o and regions r and s such
that (r × s) ∩ reachableo = ∅. According to the satisfiability relation σ |=ST

¬(id(o, r) ∧©id(o, s)) if and only if σ 6|=ST id(o, r) ∧©id(o, s). This can only
be the case if id(o, r) does not hold and ©id(o, s) does hold, when id(o, r) does
hold and©id(o, s) does not hold or when neither of them hold. It is sufficient to
prove that when id(o, r) holds,©id(o, s) does not hold, since, if we assume that
id(o, r) does not hold, it automatically follows that σ 6|=ST id(o, r) ∧©id(o, s).

We now assume that id(o, r) holds and that (r × s) ∩ reachableo = ∅. Ac-
cording to the definition of semantics, σ is a path of the form s0, s1, s2... where
every si can be interpreted as a propositional frame. It also must hold that for
all objects o reachableo(si(o), si+1(o)) for every i ≥ 0.

We have defined r and s in such a way that (r × s) ∩ reachableo = ∅, where
(r× s) is the Carthesian Product of r and s. This means that (r× s) is a set of
all the locations of r paired to all the locations of s once. reachableo is the set
of all locations that are reachable by o in one time instance.

Because of the way that σ is defined, it must be the case that©id(o, s) can only
hold if and only if σ≥1 |=ST id(o, s). But we know that it is not possible, since
none of the pairs of locations in r and s are part of the Reachability Definition
of o.
20. Gabbay et al., “On the Temporal Basis of Fairness.”
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We then proved that 6|=ST id(o, r)∧¬id(o, s), and that therefore |=ST ¬(id(o, r)∧
©id(o, s)).

Axiom 10:

¬(id(o, r) ∧ id(o, s)), where r, s ⊆ L, o ∈ O and r ∩ s = ∅

To Prove |=ST ¬(id(o, r) ∧ id(o, s))

Proof. Consider a random model σ with object o and regions r and s such that
r ∩ s = ∅. According to the satisfiability relation, |=ST ¬(id(o, r) ∧ id(o, s)) if
and only if 6|=ST id(o, r) ∧ id(o, s).

We assume that id(o, r) holds, and shall prove that therefore id(o, s) can-
not hold. If we assume that id(o, r) does not hold, we already know that
σ 6|=ST id(o, r) ∧ id(o, s), and that therefore σ |=ST ¬(id(o, r) ∧ id(o, s)).
Since we know that id(o, r) holds, we know that, according to the satisfiability
relation of σ, that on the first frame of σ, s0, s0(o) ∈ r. According to the satisfi-
ability relation, we know that σ |=ST id(o, s) if and only if s0 |=S id(o, s), which
is the case if and only if s0(o) ∈ s. If it would be the case that σ |=ST id(o, r)
and σ |=ST id(o, s), then s0(o) ∈ r ∩ s. But we have assumed that r ∩ s = ∅.
But s0(o) 6∈ ∅, so therefore it must be the case that σ 6|=ST id(o, r) ∧ id(o, s),
which means that σ |=ST ¬(id(o, r) ∧ id(o, s)).

Axiom 11:

id(o, L)

To Prove: |=ST id(o, L)

Proof. Consider a random model σ with object o. According to the satisfiability
relation of σ, σ |=ST id(o, L) if and only if s0 |=S id(o, L). s0 |=S id(o, L) if and
only if s0(o) ∈ L. According to the semantical definition, a frame is a mapping
of objects to a location. Since every element of O maps to at least one element
of L, we know that s0(o) ∈ L.

Axiom 12:

id(o, r ∪ s)↔ (id(o, r) ∨ id(o, s))

To Prove: |=ST id(o, r ∪ s)↔ (id(o, r) ∨ id(o, s))

Proof. Consider a random model σ with object o and subregions r and s such
that σ |=ST id(o, r∪s). According to the satisfiability relation if σ |=ST id(o, r∪
s) then it must be the case s0(o) ∈ r ∪ s. According to the definition of union,
s0(o) ∈ r ∪ s if and only if s0(o) ∈ r or s0(o) ∈ s. From the satisfiability
relation, we know that s0(o) ∈ r ∨ s0(o) ∈ s if and only if s0 |=S id(o, r) or
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s0 |=S id(o, s). From this we can deduce that it then must be the case that
s0 |=S id(o, r) ∨ id(o, s). We know that s0 |=S id(o, r) ∨ id(o, s) if and only if
σ |=ST id(o, r) ∨ id(o, s). From this we can conclude that σ |=ST id(o, r ∪ s)↔
id(o, r) ∨ id(o, s), which proves our axiom.

Since we have proven the axioms 9-12, and we know that axioms 0-8 and
the inference rules already have been proven to be sound, we can say that our
claim, that axiomatic system ST is sound, has been proven to be the case.

4.2.3 Completeness

Definition 14. A logical system is complete if and only if every formula that
is logically valid with respect to the semantics of the system, can be proved.
In other words whenever there is a semantic consequence, there is a syntactic
consequence; |=ST ϕ⇒`ST ϕ.

Definition 15. A set of formulas Γ is consistent if it is impossible to derive a
contradiction from Γ.

Definition 16. Γ is called a maximal consistent set of formulas if for any
A 6∈ Γ, Γ ∪ {A} is not consistent.

If Γ is a maximal consistent set, then either A ∈ Γ or ¬A ∈ Γ.

Claim. Axiomatic System ST is complete

To Prove: |=ST ϕ⇒`ST ϕ

Proof. Let w0 be a derivable consistent well-formed formula. We will construct
a model σ which satisfies w0. Let S be the set of all maximal consistent sets of
our ST-logic. For some maximal consistent set ∆0 in S it must be the case that
w0 ∈ ∆0. We define the following relations + and < on S:

∆+ = {w| © w ∈ ∆}

∆ < Θ if and only if for all w,�w ∈ ∆→ w ∈ Θ

It can be shown that ∆+ ∈ S for every ∆ ∈ S and ∀x, y, z ∈ S(x < y ∧ x <
z ∧ y 6= z → y < z ∨ z < y).
The next step is to extend {w0} to a set of formulas Γ. Γ is closed under the
following properties:

a. ♦w ∈ Γ→ (©w ∈ Γ ∧©♦w ∈ Γ)
©w ∈ Γ→©¬w ∈ Γ
w1Uw2 ∈ Γ→ (♦w2 ∈ Γ ∧©w1 ∈ Γ ∧©w2 ∈ Γ ∧©(w1Uw2) ∈ Γ)

b. id(o, r) ∈ Γ for any o ∈ O and r ⊆ L.

c. Γ is closed under subformulas and boolean operators.
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Since O and L are finite sets, we know that Γ still is a finite set at this point.
We define S̄ = {∆ ∩ Γ|∆ ∈ S}. S̄ is a finite set.

We now define ρ+ and ρ< on S̄ as follows:

tρ+s if and only if for some ∆ ∈ S, t = ∆ ∩ Γ and s = ∆+ ∩ Γ

tρ<s if and only if for some ∆,Θ ∈ S,∆ < Θ and t = ∆ ∩ Γ, s = Θ ∩ Γ

ρ< is the transitive closure of ρ+. We now are ready to define the model σ. Let
s0 = ∆0 ∩ Γ, which is an element of S̄ containing w0. Let {Sn} be a sequence
of states from S̄ such that for any t ∈ S̄, if t = si for an infinite amount of
different states si, then every t′ such that tρ+t

′ also is in an infinite amount of
si. We use {Sn} to help form our final model σ. Up to this point, the proof is
the same as in Gabbay et al.,21 but this will change now.

Lemma 1. For every maximal consistent set relative to Γ sn and o ∈ O, there
is a unique l ∈ L such that id(o, {l}) ∈ sn

We will prove this lemma in two different steps: the first step is that there
cannot be 2 different l such that id(o, {l}) ∈ sn and the second step is that there
is at least one l such that id(o, {l}) ∈ sn.

Step 1: We have a random object o ∈ O and two different singleton sets
{l} and {l′}. We know that {l} ∩ {l′} = ∅. This means that axiom 10 must
hold here. Axiom 10 states that whenever r, s ⊆ L, o ∈ O and r ∩ s = ∅,
¬(id(o, r)∧ id(o, s)). Because we know that sn is consistent, we know that there
is at most one l ∈ L such that id(o, {l}) ∈ sn, which proves our first step.

Step 2: We assume that there can exist no l ∈ L such that id(o, {l}) ∈ sn.
This means that for every l ∈ L it must be the case that id(o, {l} 6∈ sn. Because
sn can be interpreted as a maximal consistent set relative to Γ, we can say
that this means that for every l ∈ L it is the case that ¬id(o, {l}) ∈ sn. This
means that ¬(id(o, {l1}))∧¬(id(o, {l2}))∧ ...∧¬(id(o, {ln}) ∈ sn, which would
be the same as ¬(id(o, {l1})∨ id(o, {l2})∨ ...∨ id(o, {ln})) ∈ sn according to De
Morgan’s Laws. Axiom 11 states that an object always is in the region of all
locations, id(o, L). Since it is an axiom, it holds in any model, so in that case
id(o, L) ∈ sn.
Now we split up L in 2 different subregions; {l1} and L − {l1}. According
to axiom 12, it must be the case that id(o, {l1} ∪ L − {l1}) → (id(o, {l1}) ∨
id(o, L − {l1})). We now split L − {l1} again in two different subregions, with
one of the subregions being a singleton region. We continue applying axiom
12 until we have split up L in singleton sets for every location l ∈ L. This
means that we can derive the formula (id(o, {l1})∨ id(o, {l2})∨ ...∨ id(o, {ln}))
from axioms 11 and 12. Because this is derived from 2 axioms, it must mean

21. Gabbay et al., “On the Temporal Basis of Fairness,” p.170-171.
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that (id(o, {l1}) ∨ id(o, {l2}) ∨ ... ∨ id(o, {ln})) ∈ sn. However, this means that
¬(id(o, {l1}) ∨ id(o, {l2}) ∨ ... ∨ id(o, {ln})) ∈ sn is not true, which implies that
there is at least one l such that id(o, {l}) ∈ sn.

This means that step 2 is also proven. We have proven that there is at most
one l ∈ L such that id(o, {l}) ∈ sn. We have also proven that there is at least
one l ∈ L such that id(o, {l}) ∈ sn. This means that there is exactly one unique
l ∈ L such that id(o, {l}) ∈ sn, thus proving our lemma.

We define function fn as a mapping fn : O → L such that fn(o) = l if and
only if id(o, {l}) ∈ sn. We know that this is correct because we have proven in
Lemma 1 that there is one unique l ∈ L such that id(o, {l}) ∈ sn. We use these
functions fn to define our model σ = f0, f1, f2...

Lemma 2. For all objects o ∈ O and ∀i ≥ 0 : reachableo(fi(o), fi+1(o))

We assume that there exists some object o such that for some i it is the case
that ¬reachableo(fi(o), fi+1(o)). From the definition defined before, we know
that fn(o) = l if and only if id(o, {l}) ∈ sn. We can use axiom 12 to extend this
to show that it also then holds that for any superset r ⊇ {l}, id(o, r) ∈ sn. This
means that there exists some id(o, r) ∈ si and some id(o, s) ∈ si+1. Because
of the way that {Sn} was defined, we know that siρ+si+1. si = ∆i ∩ Γ and
si+1 = ∆+

i ∩ Γ. ∆+
i = {w| © w ∈ ∆i}.

We know that id(o, s) ∈ si+1, so we can then deduce that ©id(o, s) ∈ si.
Because si can be interpreted as a maximal consistent set relative to Γ, it follows
that id(o, r) ∧©id(o, s) ∈ si.
Since we have assumed that ¬reachableo(fi(o), fi+1(o)), this means that (fi(o)×
fi+1(o)) ∩ reachableo = ∅. This means that we can apply axiom 10 here. This
means that ¬(id(o, r) ∧©id(o, s)) ∈ si. However, this is a direct contradiction
from before, which means that it cannot be the case that ¬reachableo(fi(o), fi+1(o)),
thus proving our lemma.

Lemma 3. For any formula ϕ ∈ Γ and any n, σ≥n |=ST ϕ if and only if ϕ ∈ sn.

In other words, a formula is true at time instance n if and only if that for-
mula is in the maximal consistent set sn. We shall prove this by induction on
complexity of a formula:

Base Case:
We shall choose a random atomic formula id(o, r). We shall prove that σ≥n |=ST

id(o, r) if and only if id(o, r) ∈ sn. According to the satisfiability relation
σ |=ST id(o, r) if and only if f0 |=S id(o, r) if and only if f0(o) ∈ r. We have
defined f0 in such a way that f0(o) = l if and only if id(o, {l}) ∈ sn. Therefore
we can conclude that {l} ⊆ r. By applying axiom 12 on all the elements of
r we can show that id(o, {l}) ∨ id(o, r − {l}) → id(o, r) ∈ sn. We know that
id(o, {l}) ∈ sn from lemma 1, and since sn is a maximal consistent set relative
to Γ, we know that id(o, r) ∈ sn.
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We have shown that σ≥n |=ST id(o, r) if and only if id(o, r) ∈ sn, thus proving
our base case.

Inductive Step:
In the base case we have shown that for any atomic formula it is the case that a
formula only is in a model if and only if it is true. We shall now use induction
on complexity of a formula to show that whenever it is the case for a subformula
that it only is in the model if and only if it is true, it also must be the case for
the more complex formula. We shall use α and β as subformulas, so we will
assume for any occurence of α and β that it is the case that σ≥n |=ST α if and
only if α ∈ sn and σ≥n |=ST β if and only if β ∈ sn.

Substitution of ϕ with ¬α:
We shall prove that σ≥n |=ST ¬α if and only if ¬α ∈ sn. From the satisfiabil-
ity relation, we know that σ≥n |=ST ¬α if and only if σ≥n 6|=ST α. From the
inductive hypothesis, we can conclude that α 6∈ sn. sn is a maximal consistent
set relative to Γ, so we can conclude that since α 6∈ sn, then ¬α ∈ sn.
This proves that σ≥n |=ST ¬α if and only if ¬α ∈ sn.

Substitution of ϕ with α ∧ β:
We shall prove that σ≥n |=ST α ∧ β if and only if α ∧ β ∈ sn. From the satisfi-
ability relation σ≥n |=ST α ∧ β if and only if σ≥n |=ST α and σ≥n |=ST β. We
know from the induction hypothesis that this holds if and only if α ∈ sn and
β ∈ sn. sn can be interpreted as a maximal consistent set relative to Γ. One
of the properties of maximal consistent sets is that it is closed under boolean
operators, so therefore we know that α ∧ β ∈ sn.
This proves that σ≥n |=ST α ∧ β if and only if α ∧ β ∈ sn.

Substitution of ϕ with ©α:
We shall prove that σ≥n |=ST ©α if and only if ©α ∈ sn. From the satisfiabil-
ity relation, we know that σ≥n |=ST ©α if and only if σ≥n+1 |=ST α. Because
of the induction hypothesis, we know that α ∈ sn+1. For the construction of
σ we used unique functions fn, each of which corresponded to an sn. Because
sn and sn+1 are subsequent maximal consistent sets, we know that snρ+sn+1.
sn = ∆n ∩Γ and sn+1 = ∆+

n ∩Γ for some maximal consistent set ∆n. We know
that ∆+

n = {w| © w ∈ ∆n}. We know that α ∈ sn+1, so it must be the case
that ©α ∈ ∆n. Since Γ is closed under all subformulas and boolean operators,
we know that ©α ∈ Γ, so therefore ©α ∈ ∆n ∩ Γ. We know that sn = ∆n ∩ Γ,
so ©α ∈ sn.
We can conclude that σ≥n |=ST ©α if and only if ©α ∈ sn.
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Substitution of ϕ with αUβ:
In the same way that it was proven for the operators above, it can also be shown
that σ≥n |=ST αUβ if and only if αUβ ∈ sn. It can be shown that this is correct
like in Gabbay et al., by using axioms 7 and 8 and use the ρ< relation.22

With this, we have now proven lemma 3. Since we have shown that lemma
3 holds for any random formula, we can say that for any well-formed formula
there exists a valuation in the model σ such that σ |=ST w0, thus proving our
completeness theorem.

Our claim (that axiomatic system ST is complete) has been proven by the proof
above.

22. Gabbay et al., “On the Temporal Basis of Fairness.”
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5 Introduction to the Probabilistic Spatio-
Temporal Framework

In this section the syntax, semantics and satisfiability relation of the Probabilis-
tic Spatio-Temporal Framework shall be defined.
All previous iterations of the SPOT-framework, mentioned in the related re-
search section,232425 modelled the probabilistic component of the framework
by utilizing prediction intervals. A prediction interval [0.6, 0.7], states that the
likelihood of an event is larger than 0.6, but smaller than 0.7. The authors
argued for using prediction intervals over a single prediction: “We are aware
of very few applications where the prediction is known to be 100 percent accu-
rate”.26 The authors provide some examples, like how political polls can state
that 49% of voters support a certain candidate with a margin of error of ±2%.
This actually means that the support for that candidate lies somewhere between
47 and 51 percent of voters. The argument for using probability intervals over
using single probabilities is that it is simply a more realistic way of representing
probabilities of events in real-world situations, which is why it also was used in
SPOT-frameworks.
In the new Probabilistic Spatio-Temporal Framework however, this shall not be
enforced. However, it still is very easy to model these probabilistic intervals in
our framework, but if this property is not enforced, the framework can also be
used for making more complex statements.

The Probabilistic Spatio-Temporal Framework will be based on the Spatio-
Temporal Framework that has been defined in the previous section. The dif-
ference is that there is a probabilistic component added to the formulas. In
Fagin et al.,27 a propositional probabilistic logic was defined and axiomatized.
The way that these probabilities were modelled was done in a way to allow for
reasoning about probabilities. This means that all formulas still are either true
or false, they do not have probabilistic truth values, the probabilities are only
used to show how likely a formula is to be true. The probabilities in Fagin et
al. are represented by linear inequalities. A formula like 3w(ϕ) ≥ 1 should be
understood as: the probability of ϕ is greater than or equal to 1

3 .

23. Parker, Subrahmanian, and Grant, “A Logical Formulation of Probabilistic Spatial
Databases.”
24. Parker et al., “SPOT Databases: Efficient Consistency Checking and Optimistic Selec-

tion in Probabilistic Spatial Databases.”
25. Grant et al., “An AGM-style belief revision mechanism for probabilistic spatio-temporal

logics.”
26. Parker, Subrahmanian, and Grant, “A Logical Formulation of Probabilistic Spatial

Databases,” p.1541.
27. Fagin, Halpern, and Megiddo, “A Logic for Reasoning about Probabilities.”
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5.1 Syntax
The first thing that we need is an infinite set of formulas. This set of formulas
is FORMST , the set of all formulas in the Spatial-Temporal Framework. A
primitive weight term is an expression of the form w(ϕ), for any ϕ ∈ FORMST .
The following definitions are adapted from Fagin et al.:

Definition 17. A weight term is an expression of the form a1w(ϕ1)+a2w(ϕ2)+
.....+akw(ϕk) for any ϕ ∈ FORMST , where a1, a2, ...ak are integers and k ≥ 1.

Definition 18. A basic weight formula is a statement of the form t ≥ c, where
t is any weight term.

Basic propositional connectives (¬,∧) can be applied on basic weight formu-
las to create more complex formulas, called weight formulas. Furthermore, all
the abbreviations we have seen in the propositional framework will also apply
to our weight formulas. In Fagin et al., the following abbreviations were already
defined:28

• w(ϕ)− w(ψ) ≥ a is short for w(ϕ) + (−1)w(ψ) ≥ a

• w(ϕ) ≥ w(ψ) is short for w(ϕ)− w(ψ) ≥ 0

• w(ϕ) ≤ c is short for ¬w(ϕ) ≥ ¬c

• w(ϕ) < c is short for ¬(w(ϕ) ≥ c)

• w(ϕ) = c is short for (w(ϕ) ≥ c) ∧ (w(ϕ) ≤ c)

• Finally, formulas like 3w(ϕ) ≥ 1 can be abbreviated to w(ϕ) ≥ 1
3

Notice that with this syntax we can make sentences like “In the future object o1
and object o2 will both be in region r with probability interval [0.25,0.5].” This
formula would look like this: 4w(♦(id(o1, r) ∧ id(o2, r))) ≥ 1 ∧ 2w(♦(id(o1, r) ∧
id(o2, r))) ≤ 1.

5.2 Semantics
With clearly defined syntax, we are now ready to move on to the semantics;
what does a model of our Probabilistic Spatio-Temporal Framework look like?
For this we look towards A Probabilistic Logic for Reasoning about Uncertain
Temporal Information, in which the authors combined Linear Temporal Logic
and probabilistic logic to create a new framework to reason about uncertain
temporal information.29 The first thing that we need to do is to define the
probability space.

28. Fagin, Halpern, and Megiddo, “A Logic for Reasoning about Probabilities,” p.83.
29. Doder and Ognjanovic, “A Probabilistic Logic for Reasoning about Uncertain Temporal

Information,” p.2-3.
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Definition 19. The probability space is a 3-tuple 〈W,H, µ〉 with the following
properties:

• W is a nonempty set of worlds.

• H is an algebra of subsets of W . This means that H is a set of subsets of
W , which contains the empty set and is closed under complementation:30

a. W ∈ H
b. if A,B ∈ H, then W \A ∈ H and A ∪B ∈ H.

• Function µ : H → [0, 1] is a probability measure with the following condi-
tions:

1. µ(X) ≥ 0 for all X ∈ H
2. µ(W ) = 1
3. µ(

⋃
i∈ω Ai) =

∑
i∈ω µ(Ai) whenever A,Ai ∈ H and Ai ∩ Aj = ∅ for

all i 6= j31

Now we have defined our probability space. With the probability space, we
can create models of a probabilistic logic. The trick now becomes to make sure
that our new models say something about our Spatio-Temporal Framework.
Recall that Σ was the set of all Spatio-Temporal Models.

Definition 20. A model of the Probabilistic Spatio-Temporal Framework, Ω, is
a 4-tuple 〈W,H, µ, π〉 such that:

• 〈W,H, µ〉 is a probability space

• π : W → Σ is a function that provides for each world w ∈ W a Spatio-
Temporal model: π(w) ∈ Σ.

• For any formula α, [α]Ω = {w ∈W |π(w) |=ST α} ∈ H

5.3 Satisfiability Relation
We now have defined the models of our framework. The final step is to give the
satisfiability relation, which can show us that a formula holds in a model.

Definition 21. Let Ω be a PST model. We define the satisfiability relation
|=P ST recursively as follows:

• Ω |=P ST r1w(α1)+r2w(α2)+ ....+rkw(αk) ≥ r if and only if r1µ([α1]Ω)+
r2µ([α2]Ω) + ...+ ...+ rkµ([αk]Ω) ≥ r
• Ω |=P ST ¬ϕ if and only if Ω 6|=P ST ϕ

• Ω |=P ST ϕ ∧ ψ if and only if Ω |=P ST ϕ and Ω |=P ST ψ

30. Doder and Ognjanovic, “A Probabilistic Logic for Reasoning about Uncertain Temporal
Information,” p.2.
31. Ibid.
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6 Discussion
6.1 Limitations
The biggest limitation of this study were the time constraints. With more avail-
able time it would have been possible to axiomatize the Probabilistic Spatio-
Temporal Framework. I opted to do axiomatization for the Spatio-Temporal
Framework, which I could have skipped instead. If I would have skipped this
step, I would have had more time to write a full section on the axiomatization
of Probabilistic Spatio-Temporal Framework, but I wanted to first prove sound-
ness and completeness of the Spatio-Temporal Framework before moving on to
the Probabilistic Spatio-Temporal Framework. Currently, it is not possible to
formally reason within the Probabilistic Spatio-Temporal Framework, however,
it is possible to create well-formed formulas, to create models, and to check
whether models satisfy certain formulas. This already is a lot more expressivity
than what was possible in the PST KBs by Grant et al.

6.2 Future Research
The first future research that can be conducted is doing axiomatization of the
Probabilistic Spatio-Temporal Framework that was defined in section 5. We
then also need to prove soundness and completeness for this framework, but
after this has been done, it becomes possible to formally reason within this
framework.

Instead of Linear Temporal Logic, topics that could be covered are looking
at some kind of branching time logic. Examples are computation tree logic32

or full computation tree logic.33 The idea behind computation tree logic is that
there is not one future, but many different ones that exist alongside one another.
This also creates interesting situations, since this feeds into the situation of the
uncertainty of the atomic formulas in Probabilistic Spatio-Temporal Formulas.
Another kind of Temporal Logic would be looking at incorporating first order
logic, which would create a new temporal logic called first order temporal logic,
of which we already know that it is both sound and complete.34 By introducing
these quantifiers, we can add even more expressivity to our logic.

Instead of changing the temporal logic that we use, one way of doing further
research on this topic could be looking towards practical application of our

32. E. Allen Emerson and Edmund M. Clarke, “Using Branching Time Temporal Logic
to Synthesize Synchronization Skeletons,” Sci. Comput. Program. 2, no. 3 (1982): 241–266,
doi:10.1016/0167-6423(83)90017-5, https://doi.org/10.1016/0167-6423(83)90017-5.
33. E. Allen Emerson and Joseph Y. Halpern, “Decision Procedures and Expressiveness

in the Temporal Logic of Branching Time,” J. Comput. Syst. Sci. 30, no. 1 (1985): 1–24,
doi:10.1016/0022-0000(85)90001-7, https://doi.org/10.1016/0022-0000(85)90001-7.
34. Andrzej Szalas, “A Complete Axiomatic Characterization of First-Order Temporal Logic

of Linear Time,” Theor. Comput. Sci. 54 (1987): 199–214, doi:10.1016/0304-3975(87)90129-
0, https://doi.org/10.1016/0304-3975(87)90129-0.
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framework. One way that this could happen is by, for example looking at a way
to create solvers for this logical framework. If there exist algorithms to help
solve problems in our logical framework, it would mean that it would also be
easy to implement this in GPS-based computer systems, like drones that can
scout for survivors, as was mentioned in the introduction.

6.3 Conclusion
The aim of this thesis was to extend the amount of reasoning that is possi-
ble with Probabilistic Spatio-Temporal atoms. The research question that was
asked was: “How can existing temporal and probabilistic logics be added to ex-
tend the amount of reasoning that can be done on probabilistic spatio-temporal
atoms?” To answer this question, the following steps were taken:

The atomic formulas that have been used in previous papers35 were changed
slightly, but the meaning of these atomic formulas is still the same, it still ex-
presses the locations of objects. Because of the temporal operators, there was
no longer a need to indicate the time instance in which an atomic formula would
hold, since it would be possible to indicate that an object o is in region r in
time instance 5 with the following formula: ©©©©©id(o, r). With these
atomic formulas, three logical frameworks have been introduced. The first one
was the basic Propositional Framework, which omitted temporal operators, and
was just concerned with the location of objects. These propositional frame-
works, sometimes also referred to as frames, were then used as the basis for
the Spatio-Temporal Framework. This Spatio-Temporal Framework consisted
of an infinitely long sequence of propositional frames, which could be navigated
through by applying temporal operators on formulas. For this framework full
axiomatization was done. Soundness and completeness were proven.
The final framework was defined, but we do not know yet whether this frame-
work is sound and complete, but even without the ability to formally reason
within this framework, with only the definitions that were given, we can al-
ready make more complex formulas than the formulas that were used in the
PST KBs in the paper by Grant et al.
Future research could focus on either trying to axiomatize the PST framework,
or on changing the temporal logic that was used for the frameworks. Other re-
search could also focus on the decidability of either the PST or Spatio-Temporal
Framework, which could then lead to integration in AI systems, for example
drones that could help locate people or objects in a city that has been struck
by a natural disaster.

35. Grant et al., “An AGM-style belief revision mechanism for probabilistic spatio-temporal
logics.”
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