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Abstract 

Despite the advancements of self-driving cars, autonomous on-ramp merging on highways still 

proposes difficulties. To solve this merge problem a simulation was set up in the Unity game 

engine and an agent was trained using two state of the art reinforcement learning algorithms, 

Proximal Policy Optimization (PPO) and Soft Actor-Critic (SAC), utilizing the Unity Learning 

Agents Toolkit ML-Agents. The two algorithms are compared to each other with respects to 

training speed, performance, stability and success rate. The robustness of the algorithms were 

tested by having the traffic (1) vary in speed, (2) vary in starting positions and (3) switch lanes. 

The agent had a similar performance with a success rate of 95% when employing either PPO 

or SAC. Both algorithms showed their advantages and disadvantages. PPO had a more stable 

performance and less variability in mean reward, while SAC was more sample efficient. 

Results show that reinforcement learning is an avenue worth pursuing to reach fully 

autonomous driving. Improvements to the results could still be made through hyperparameter 

tuning, more complex neural network setup and a more realistic simulation, further proving the 

advantage of reinforcement learning. 
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Introduction 

In late August 2018, Apple’s automated driving project experienced a public-road collision for 

the first time. A vehicle rear-ended the automated vehicle when it came to a near-stop while 

waiting for an opportunity to merge onto a multi-lane highway (Dollar & Vahidi, 2019). 

Merging is a complex and challenging problem for driver assistance. Despite the advancement 

of automation levels, the implementation of autonomous driving for highway on-ramp merge 

still presents considerable challenges (Wang & Chan, 2017). In the near future, it is almost 

certain that self-driving cars will become part of everyday traffic. It is therefore pertinent that 

this merge-problem is solved and to eventually implement fully autonomous vehicles, which 

will presumably result in fewer collisions or other traffic issues. 

Several modelling methods have been suggested to solve the autonomous on-ramp 

merging problem. One method was a slot-based merging algorithm, which defined a slot 

occupancy status, either free or occupied, based on the agents’ speed, position, and  driving 

behaviour in terms of acceleration and deceleration (Marinescu et al., 2012). A theory about 

driving rules and gap acceptance was modelled for a decision-making process for the merge 

problem on an urban expressway (Wang & Chan, 2017). These rule-based models are able to 

handle the merge-problem in theory but lack the flexibility necessary to adapt to new situations. 

Their ability to merge can only be successful in predefined rules and states, and may therefore 

fail when confronted with unforeseen scenarios.  

Contrary to rule-based models, machine learning models can have the potential to deal 

with the complex situations of traffic without resorting to predefined rules or models. 

Particularly, reinforcement learning can learn optimal actions by itself through trail and error. 

A reinforcement agent observes its environment, interacts with it by predefined actions, and is 

rewarded or punished for these actions according to the goal state (Lin, 1993). By maximizing 

the reward, the agent will find the optimal policy to achieve its goal, and will therefore 
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successfully merge. Reinforcement learning algorithms already have had some success in this 

merge problem using deep Q-learning (Wang & Chan, 2017; P. Wang & Chan, 2018). 

In the current study two modern reinforcement learning algorithms will be utilized. The 

reason for this is twofold, to evaluate the ability of reinforcement learning algorithms to solve 

the merge problem and to compare the two algorithms. The first algorithm is Proximal Policy 

Optimization (PPO), which was introduced by the OpenAI team in 2017 and has had huge 

success in very complex environments such as the MOBA Dota2, one of the most complex and 

popular E-sport games to date (Proximal Policy Optimization, 2017; Schulman et al., 2017). 

This algorithm will be compared to the Soft Actor-Critic (SAC), an off-policy actor-critic deep 

reinforcement learning algorithm based on the maximum entropy reinforcement learning 

framework. With the SAC algorithm the agent aims to maximize expected reward while also 

acting as randomly as possible. (Haarnoja et al., 2018). PPO and SAC were chosen because the 

problem consists of continuous action and decision space. Compared to other on-policy 

reinforcement learning algorithms, PPO seems to be easier to implement and is at least on par 

or outperforms similar reinforcement learning algorithms (Schulman et al., 2017; Wang et al., 

2020). While SAC is not as easily implemented, by combining off-policy updates with a stable 

stochastic actor-critic formulation, it could outperform other on-policy and off-policy methods 

(Haarnoja et al., 2018). 

 

Reinforcement learning 

In a reinforcement learning problem, an agent generates its own training data by interacting 

with the environment based on its current policy. Therefore the data distributions of the 

observations and rewards are constantly changing as the agent learns, which can cause 

instability in the learning process (Lin, 1993). The environment is typically stated in the form 

of a Markov Decision Problem (MDP) with a set of agent states in the environment, S; a set of 
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actions of the agent, A; the probability of a transition at time t from state s to s’ under action a, 

Pr(𝑠𝑡+1 = 𝑠′|𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎) and the immediate reward after the transition from s to s’ with 

action a, 𝑅𝑎(𝑠, 𝑠′). The goal of the reinforcement learning agent is to learn a policy 𝜋 ∶ 𝐴 x 𝑆 →

[0,1], 𝜋(𝑎, 𝑠) = Pr (𝑎𝑡 = 𝑎|𝑠𝑡 = 𝑠), which maximizes the expected cumulative reward. 

However, in the more complex environment of the simulation there are no discrete states 

actions or immediate rewards, therefore a Markov Decision Problem is too simplistic and deep 

reinforcement learning has to be used (Denardo, 1973). 

In deep reinforcement learning, the observations collected by the agent are fed into a 

neural network, which outputs an action based on its current policy. At the end of an episode, 

the agent earns a reward based on its actions and states which acts as a feedback mechanism to 

the neural network, which will either increase of decrease the likelihood of the actions given a 

certain state. Reinforcement learning does suffer from high sensitivity to hyperparameter 

tuning such as the learning rate and initialization. If the learning rate is too high, the current 

policy will be updated  with the possibility of pushing the policy network into a region of the 

parameter space where its next batch of data is collected under suboptimal policy, creating 

fewer possibilities of recovery. PPO deals with these problems by being easy to implementation 

and is easily tuned. PPO is an on-policy gradient method, meaning that unlike popular Q-

learning methods such as Deep Q-Networks that learn from stored offline data, PPO learns 

directly from the experiences it gathers in its environment. Contrary to this, SAC is an off-

policy method, meaning its agent learns from stored data the agent encountered in past episodes 

that are stored in a buffer. Therefore SAC utilizes the experience from previous episodes, while 

in on-policy methods the agent is limited to the current batch of experience. Before the 

performance of the algorithms are compared, both algorithms will first be explained to give an 

idea how they work and how they differ. First the PPO algorithm will be explained, which is 

defined by two parts, the policy gradient loss and the trust region. 
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Policy Gradient Methods 

In Proximal Policy Optimization methods the policy gradient loss (1) is defined first, which 

allows the increase of actions that yield a positive result and the decrease the actions that yield 

a negative reward. 

 

𝐿𝑃𝐺(𝜃) =  Ê𝑡[log 𝜋𝜃(𝛼𝑡|𝑠𝑡)Â𝑡] 

 

Here, 𝜋𝜃(𝛼𝑡|𝑠𝑡) is the action 𝛼𝑡 taken by the current policy 𝜋𝜃 at time 𝑡, given state 𝑠𝑡 with 

policy parameters 𝜃. The loss function 𝐿𝑃𝐺(𝜃) is the estimate reward of the action at time 𝑡, 

Ê𝑡, and a second term, the advantage function Â𝑡 which estimates the relative value of the 

selected action at time 𝑡. The advantage function consist in two parts, the discounted sum of 

rewards and the baseline estimate. The discounted sum of rewards (2) is a weighted sum of all 

the rewards the agent receives during each timestep in the current episode. 

 

∑ 𝛾𝑘

∞

𝑘=0

𝑟𝑡+𝑘 

 

The discount factor 𝛾, often between 0.9 and 0.99, indicates the prioritization of rewards in 

close proximity above rewards set further ahead. The sum of all the rewards from time 𝑡 until 

𝑡 + ∞ is calculated. The rewards are multiplied by the discount factor that corresponds with 

the amount of timesteps ahead. All the rewards are known due to the fact that the advantage 

function is calculated after the episode sequence is collected from the environment.  

The second part of the advantage function is the baseline function, which is a neural 

network. The baseline function calculates an estimate of the discounted return from its current 

position. It estimates the expected reward at the end of the episode, based on previous 

(1) 

(2) 
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experiences. The input of the neural network are the states and the output of the neural network 

is the predicted discounted sum of rewards. Because the discounted sum of rewards is 

calculated at the end, the prediction from the baseline function can be compared to the actual 

discounted sum of rewards. The neural network is adjusted to correspond to the actual reward, 

creating a supervised learning problem. The advantage function is calculated by subtracting the 

baseline estimate from the actual discounted reward. The final optimization objective is 

calculated by multiplying the probability of the policy actions with this advantage function. If 

the actions taken by the agent resulted in a higher than average return, the probability of the 

actions are increased in the future. 

 

Trust Region Methods 

One of the problems of gradient descent is that the parameters can be updated excessively, 

creating a suboptimal policy from which the agent will gather suboptimal data. Trust Region 

Policy Optimization (TRPO) ensures that when updating the policy, it does not stray too far 

from the old policy. 

 

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒𝜃 Ê𝑡 [
𝜋𝜃(𝛼𝑡|𝑠𝑡)

𝜋𝜃𝑜𝑙𝑑(𝛼𝑡|𝑠𝑡)
] Â𝑡 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 Ê𝑡[𝐾𝐿[𝜋𝜃𝑜𝑙𝑑(. |𝑠𝑡), 𝜋𝜃(. |𝑠𝑡)]] ≤ 𝛿 

 

Because the policy is stochastic and not deterministic, the actions chosen by the policy are 

denoted as 𝜋𝜃(. |𝑠𝑡). To ensure the policy is not updated excessively, a KL constraint is added 

to the optimization objective, limiting the amount of alteration to the policy. However, the KL 

constraint does add limitations to the optimization process and can sometimes result in 

(3) 
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undesirable training behavior. PPO includes this extra constraint directly in the optimization 

objective to alleviate this issue (Schulman et al., 2017). 

 

PPO 

Let 𝑟𝑡(𝜃) determine the ratio between the new updated policy and the previous old policy. This 

ratio will be greater than 1 if the action is more likely now than under the old policy. For more 

readability this ratio 𝑟𝑡(𝜃) can be multiplied with the advantage function (4). 

 

𝐿𝐶𝑃𝐼(𝜃) = Ê𝑡 [
𝜋𝜃(𝛼𝑡|𝑠𝑡)

𝜋𝜃𝑜𝑙𝑑(𝛼𝑡|𝑠𝑡)
Â𝑡] =  Ê𝑡[𝑟𝑡(𝜃)Â𝑡] 

 

Without a constraint, maximizing 𝐿𝐶𝑃𝐼(𝜃) would lead to excessively large policy updates. 

Hence the objective function can be modified (5), to penalize changes to the policy that move 

𝑟𝑡(𝜃) away from 1,  

 

𝐿𝐶𝐿𝐼𝑃(𝜃) = Ê𝑡 [min(𝑟𝑡(𝜃)Â𝑡, clip(𝑟𝑡(𝜃), 1 − 휀, 1 +  휀) Â𝑡)]  

 

where 휀 is a hyperparameter, say 휀 = 0.2. The objective function that PPO optimizes is an 

expectation operator, Ê𝑡, computed over batches of experiences. This expectation operator is 

taken over the minimum of two terms. The first of these terms is 𝑟𝑡(𝜃)Â𝑡, which ensure the 

policy takes actions that yield a high positive advantage over the baseline. The second term, 

clip(𝑟𝑡(𝜃), 1 − 휀, 1 + 휀)Â𝑡)]  modifies the objective by clipping the probability ratio, which 

removes the possibility for 𝑟𝑡 to move away from the interval [1 − 휀, 1 +  휀]. The advantage 

estimate can be both positive and negative, which changes the effect of the min operator. As 

seen in Figure 1, the probability ratio is clipped whether the advantage is positive or negative.  

(4) 

(5) 
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Figure 1. the effect of the advantage function on the clipping functionality, taken from Schulman et al. (2017). 

The pseudocode for the PPO algorithm is shown in Figure 2. Each iteration, each of the 

N agents, in this case only 1, collects T timesteps of experience data. These experiences are 

collected and gradient descent is run on the policy network for each batch of experience for K 

epochs, using the clipped PPO objective, updating the policy (Schulman et al., 2017). 

Algorithm 1 PPO 

1. for iteration = 1, 2,…. do  

2.  for actor = 1, 2,…, N do 

3.   Run policy 𝜋𝜃𝑜𝑙𝑑 in environment for T timesteps 

4.   Compute advantage estimates Ã1,…,Ã𝑇 

5.  end for 

6.  Optimize surrogate L wrt 𝜃, with K epochs and minibatch size M ≤ NT 

7.  𝜃𝑜𝑙𝑑 ←  𝜃 

8. end for 

Figure 2. The pseudocode of the PPO algorithm (Schulman et al., 2017). 

Soft Actor-Critic 

Soft Actor-Critic is an off-policy algorithm with a central feature in entropy regularization. The 

SAC policy tries to maximize the balance between the expected return and entropy, a measure 

of randomness in the policy. This is similar to the exploration-exploitation trade-off, which 

may increase learning rate later on, but may also prevent the policy from converging earlier. 
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To explain Soft Actor-Critic, the entropy-regularized reinforcement learning setting is 

introduced first. 

 Entropy can be seen as the amount of randomness of a variable. If 𝑥 is a random variable 

then 𝑃 is the probability function. The entropy 𝐻 of 𝑥 is calculated from this distribution 𝑃 (6).  

 

𝐻(𝑃) = E
𝑥~𝑃

[− log 𝑃(𝑥)] 

 

In entropy-regularized reinforcement learning, the agent is awarded a bonus every timestep in 

in line with the entropy of the policy at the corresponding timestep, changing the reinforcement 

learning problem (7) 

 

𝜋∗ = arg max
𝜋

E
𝜏~𝜋

[∑ 𝛾𝑡 (𝑅(𝑠𝑡, 𝑎𝑡, 𝑠𝑡+1) +  𝛼𝐻(𝜋(. |𝑠𝑡)))]

∞

𝑡=0

 

 

where 𝜏 is the trajectory sampled from policy 𝜋, 𝛼 > 0 is the temperature parameter that controls 

the relative importance of the entropy term versus the reward, and thus controls the 

stochasticity of the optimal policy 𝜋∗. The discount factor 𝛾 is introduced to ensure that the 

expected sum of rewards is discounted by how far off in the future the rewards are obtained. 

The optimal policy can be calculated by maximizing the expected reward of the policy. The 

expected reward is the sum of the discount factors at time 𝑡 multiplied by the reward of the 

transition from 𝑠𝑡 to 𝑠𝑡+1 given action 𝑎𝑡, in addition to the entropy. With this the value 

functions that determine the expected return of a policy given a state or a state-action pair can 

be defined. 𝑉𝜋 (8) gives the expected return given starting position 𝑠 and policy 𝜋, which 

includes the entropy bonus from every timestep. 

 

(6) 

(7) 
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𝑉𝜋(𝑠) =  E
𝜏~𝜋

[∑ 𝛾𝑡 (𝑅(𝑠𝑡, 𝑎𝑡, 𝑠𝑡+1) +  𝛼𝐻(𝜋(. |𝑠𝑡))) |𝑠0 = 𝑠].

∞

𝑡=0

 

 

𝑄𝜋 (9) gives the expected return if the starting position is 𝑠, an arbitrary action 𝑎 is taken, but 

then all actions taken are according to policy 𝜋. In addition to this, the entropy bonuses are 

added from every timestep except the first. 

 

𝑄𝜋(𝑠, 𝑎) =  E
𝜏~𝜋

[∑ 𝛾𝑡 (𝑅(𝑠𝑡, 𝑎𝑡, 𝑠𝑡+1) +  𝛼 ∑ 𝛾𝑡

∞

𝑡=1

𝐻(𝜋(. |𝑠𝑡))) |𝑠0 = 𝑠, 𝑎0 = 𝑎]

∞

𝑡=0

 

 

Given these definitions, 𝑉𝜋and 𝑄𝜋 can be joined (10). 

 

𝑉𝜋(𝑠) =  E
𝑎~𝜋

[𝑄𝜋(𝑠, 𝑎)] + 𝛼𝐻(𝜋(. |𝑠)) 

 

The Bellman equation (11) for 𝑄𝜋 writes the value of a decision problem at a certain point in 

time in terms of the payoff from some initial choice in addition to the value of the remaining 

decision problem that results from those initial choices. 

 

𝑄𝜋(𝑠, 𝑎) =  E
𝑠′~𝑃
𝑎′~𝜋

[𝑅(𝑠, 𝑎, 𝑠′) +  𝛾 (𝑄𝜋(𝑠′, 𝑎′) +  𝛼𝐻(𝜋(. |𝑠′)))] 

            = E
𝑠′~𝑃

[𝑅(𝑠, 𝑎, 𝑠′) +  𝛾𝑉𝜋(𝑠′)].  

 

Here 𝑠′~𝑃 is shorthand for 𝑠′~𝑃(. |𝑠, 𝑎), indicating that the next state 𝑠′ is sampled from the 

environment’s transition rules. 𝑎~𝜋 is shorthand for 𝑎~𝜋(. |𝑠), meaning that the action is 

(8) 

(9) 

(10) 

(11) 
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sampled from the policy rules. Therefore the Bellman equation is the expected reward of a state 

transition plus the value of the state transitioned towards. 

Soft actor-critic learns both a policy and two Q-functions, 𝑄𝜙1 and 𝑄𝜙2, at the same 

time. Q-functions are approximators for the optimal action-value function. With the definition 

of entropy, the Bellman equation can be rewritten (12). 

 

𝑄𝜋(𝑠, 𝑎) =  E
𝑠′~𝑃
𝑎′~𝜋

[𝑅(𝑠, 𝑎, 𝑠′) +  𝛾(𝑄𝜋(𝑠′, 𝑎′) +  𝛼 log 𝜋 (𝑎′|𝑠′))] 

 

Because 𝑄𝜋 is an expectation over future states which comes from the replay buffer and future 

actions, it can be approximated with samples and rewritten (13). 

 

𝑄𝜋(𝑠, 𝑎) ≈  𝑟 +  𝛾(𝑄𝜋(𝑠′, 𝑎′)) − 𝛼 log 𝜋(ã′|𝑠′)),    ã′ ~ 𝜋(. |𝑠′) 

 

Instead of 𝑎′, ã’ is used to indicate that the next actions have to be sampled ‘fresh’ from the 

policy, whereas 𝑟 and 𝑠′ come from the replay buffer. This replay buffer should ensure that 

SAC is more sample efficient compared to PPO, as more experiences can be saved in the buffer. 

Sample efficiency entails how much experience the agent needs in order to reach a certain level 

of performance. The Mean Squared Bellman Error (14) is calculated to indicate how close a 

Q-function comes to satisfying the Bellman equation. SAC utilizes a clipped double-Q method, 

and takes the minimum Q-value between the two Q approximators.  

 

𝐿(𝜃𝑖, 𝐷) =  E
(𝑠,𝑎,𝑟,𝑠′,𝑑)~𝐷

[ (𝑄𝜃𝑖(𝑠, 𝑎) − 𝑦(𝑟, 𝑠′, 𝑑))
2

] 

 

Here D is the replay buffer and d the done signal with a target function (15). 

(12) 

(13) 

(14) 



AUTONOMOUS LANE MERGING: A COMPARISON BETWEEN REINFORCMENT LEARNING ALGORITHMS 

12 
 

 

𝑦(𝑟, 𝑠′, 𝑑) = 𝑟 +  𝛾(1 − 𝑑)(min
𝑗=1,2

𝑄𝜙𝑡𝑎𝑟𝑔,𝑗 (𝑠′, ã′) − 𝛼 log 𝜋𝜃(ã′|𝑠′)),   ã′ ~ 𝜋𝜃(. |𝑠′) 

 

In each state the policy will try to maximize the expected future return in addition to the 

expected future entropy, therefore maximizing 𝑉𝜋 (16).  

 

𝑉𝜋(𝑠) = E
𝑎~𝜋

[𝑄𝜋(𝑠, 𝑎)] + 𝛼𝐻(𝜋(. |𝑠)) 

              = E
𝑎~𝜋

[𝑄𝜋(𝑠, 𝑎) + 𝛼 log 𝜋(𝑎|𝑠)] 

 

SAC utilizes entropy regularization to train a stochastic policy and while exploring in an on-

policy way. The exploration-exploitation balance is regularized through coefficient 𝛼. A higher 

𝛼 corresponds with more exploration, and a lower coefficient corresponds to more exploitation. 

The pseudocode for the Soft Actor-Critic algorithm can be seen in Figure 3. 

Both SAC and PPO implement a Long Short-Term Memory (LSTM). A LSTM is a 

Recurrent Neural Network (RNN) that is capable of learning order dependency in sequence 

prediction problems. However, a problem does occur in RNN’s due to the scalar weight 

recurrence between each of its recurrently connected blocks. It will eventually become either 

infinite if the scalar weight is greater than 1 or becomes 0 if the scalar weight is smaller than 

1. LSTM deals with the exploding or imploding scalar weight by replacing the hidden units 

with a LSTM memory cell and adding another connection from every cell called the cell state 

(Hochreiter & Schmidhuber, 1997). A LSTM layer consists of a set of recurrently connected 

blocks, known as memory blocks. These memory blocks contain one or more recurrently 

connected memory cells and three gates, an input gate, which determines if the cell is updated, 

an output gate which determines if the memory of the cell is erased and a forget gate, which 

(15) 

(16) 
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determines if the information of the current cell state is made visible. These gates provide 

continuous directions to read, write or reset the memory cell (Graves & Schmidhuber, 2005).  

Algorithm 2 Soft Actor-Critic 

1. Input: initial policy parameters 𝜃, Q-function parameters 𝜙1, 𝜙2, empty replay buffer D 

2. Set target parameters equal to main parameters 𝜙𝑡𝑎𝑟𝑔,1 ←  𝜙1, 𝜙𝑡𝑎𝑟𝑔,2 ←  𝜙2 

3. repeat 

4.   Observe state s and select action 𝑎 ~ 𝜋𝜃(. |𝑠) 

5.   Execute 𝑎 in the environment 

6.   Observe next state s’, reward r, and done signal d to indicate whether s’ is terminal 

7.   Store (s, a, r, s’, d) in replay buffer D 

8.   If s’ is terminal, reset environment state 

9.   if it’s time to update then 

10.    for j in range(number of updates) do 

11.     Randomly sample a batch of transitions, B = {(s, a, r, s’, d)} from D 

12.     Compute targets for the Q-functions: 

𝑦(𝑟, 𝑠′, 𝑑) = 𝑟 +  𝛾(1 − 𝑑) (min
𝑖=1,2

𝑄𝜙𝑡𝑎𝑟𝑔,𝑖 (𝑠′, ã′) − 𝛼 log 𝜋𝜃 (ã′|𝑠′)) , ã′~𝜋𝜃(. |𝑠′) 

13.     Update Q-functions by one step of gradient descent using: 

∇𝜙𝑖
1

|𝐵|
∑ (𝑄𝜃𝑖(𝑠,𝑎,𝑟,𝑠′,𝑑)∈𝐵 (𝑠, 𝑎) − 𝑦(𝑟, 𝑠′, 𝑑))2 for I = 1, 2 

14.     Update policy by one step of gradient descent using 

∇𝜙𝑖
1

|𝐵|
∑ (min

𝑖=1,2
𝑄𝜃𝑖𝑠∈𝐵 (𝑠, ã𝜃(𝑠)) − 𝛼 log 𝜋𝜃 (ã𝜃(𝑠)|𝑠)), 

Where ã𝜃(𝑠) is a sample from 𝜋𝜃(. |𝑠) which is differentiable wrt 𝜃   

via the reparameterization trick. 

15.     Update target networks with 

𝜙𝑡𝑎𝑟𝑔,𝑖 ←  𝜌𝜙𝑡𝑎𝑟𝑔,𝑖 + (1 − 𝜌)𝜙𝑖  for i = 1, 2 

16.    end for 

17.   end for 

18. until convergence 

Figure 3. The pseudocode for the SAC algorithm, taken from https://spinningup.openai.com/en/latest/algorithms/sac.html. 
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Methodology 

The Agent 

The goal of the agent is to merge with the ongoing traffic and reach its destination at the end 

of the road as soon and as efficiently as possible. The criteria for a successful merge are (1) no 

collision between the agent and the other vehicles or the side of the road; (2) no stopping at the 

side line, although slowing down is acceptable; (3) reaching the end of the road at the top of 

the screen. If a merge is successful, the agent is rewarded at the end of the episode. The agent 

is also rewarded by going through checkpoints placed along its path and is rewarded 

proportionally to its speed. If a merge is unsuccessful, the agent is punished. A small 

punishment is also added for each decision the agent makes, to ensure it makes the most 

efficient decisions possible, which should eventually lead to straight driving. Other studies 

implementing algorithms for lane merging have had success rates between 90% and 100%, 

with most achieving a success rate of around 95% (Hu et al., 2020; Triest et al., 2020). 

Therefore, for the agent to be considered successful, at least 95% of the episodes need to be 

completed successfully. Although this still seems low for a simple simulation, the setup and 

methods used are also simple compared to other studies in terms of neural network and LSTM. 

However, this allows the current study to focus on the comparison of the two algorithms rather 

than the success rate. 

While most technologically advanced cars use a plethora of sensors such as LiDAR, 

camera’s, digital maps and Differential Global Positioning System to detect their surroundings 

(Eckelmann et al., 2017), the agent in the simulation only has two sets or rays. One of these 

sets of rays is for road detection, to indicate how far it is from the sides of the lane. The other 

set of rays is to detect other traffic on the road, in indicate the distance to the other cars around 

it. Additionally, the agent knows its own speed and direction, as this effect how the car controls, 

so it can determine how to control the car depending on its speed.  
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Simulation setup 

To solve the merge-problem, a simulation was set up for the reinforcement learning agent to 

learn how to merge successfully into traffic with either SAC or PPO. The tapered acceleration 

lane, as seen on the left in Figure 4, was utilized as this is assessed as the most difficult highway 

merge situation (Hussain et al., 2018). The simulations are made in Unity, a game engine with 

a built-in physics engine, which allows for realistic car controls such as wheel spinning and 

collision with the terrain, wheel suspension, damper, slipping and more. The ML-Agents 

package will be used to assist with the neural network, which enables the use of the TensorFlow 

library, an open source library to develop and train machine learning models. 

 The simulation was created in 3D, which allows the car to be subjected to gravity, drag 

and wheel collision. The car has front-wheel driving, a weight of 1500 kg and a maximum 

speed of 100 km/h as is the case for Dutch highways since 2020 (Rijkswaterstaat, 2020). To 

determine the position of the car with regards to the road, 9 rays are used with a length of 20 

meters. To determine the positions of the other cars, 15 rays are used with a length of 70 meters. 

These, along with the current speed and direction of the car are the input vectors of the neural 

network. The input vectors are stacked 3 times so the car can determine the change in position 

of the other cars. A neural net of 3 layers each with 128 nodes was trained with a learning rate 

of 0.0004. In addition to this a LSTM of 32 cells is utilized to assist in avoiding cars as this 

Figure 4. The tapered highway example on the left taken from 
Hussain et al. (2018) and the simulation on the right, made in Unity. 
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will process the sequences of data, which allows the agent to determine how fast the oncoming 

cars are going and if the agent needs to accelerate or decelerate.  

 

Comparison 

The two algorithms are compared to each other in terms of performance, learning rate, and 

driving efficiency. To compare the two algorithms, data is gathered by having the agents 

complete 200 episodes. Performance is determined by the overall success rate of the agents 

while the learning rate is determined by the total amount of hours and total amount of timesteps 

it took for the agent to reach a certain level of performance. Efficiency is determined by both 

the total amount of steering and average timesteps per episode. The total amount of steering 

should indicate how much unnecessary actions the agent took and is calculated by adding the 

absolute values of the steering input.  

To test the robustness of both algorithms, the other vehicles have random starting 

positions at the start of the highway and speeds varying between 90 and 110 km/h. Sensors are 

added to all the vehicles to determine if there is a car next to them. If there isn’t, they have a 

random chance to merge on to the empty lane. The cars also have sensors to indicate whether 

or not a car is in front or behind them. If there is a car in front, the vehicle will slow down. If a 

car is behind the vehicle, it will speed up. If there is a car both in front and behind, the vehicle 

will ensure that equal distance is kept between the cars.  

 

Results 

The results show that both algorithms performed similarly, as can be seen in Table 1. The agent 

is able to merge onto the highway with at least a success rate of 95%. If cars are close by when 

the agent tries to merge it will either slow down or speed up, depending on how close the agent 

is to the main highway and depending on the proximity to the other cars, which is desirable. 
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Both algorithms continued until they either performed 4 million timesteps or spent 24 hours 

training.  

The maximum reward for an episode is 62.4, therefore an average of 60 is considered 

decent. While SAC needed fewer timesteps to have a decent performance compared to PPO, 

about 750.000 steps compared to 1.2 million steps, it took about 10 hours compared to the 4 

hours of training for PPO to reach a decent average reward. PPO had a more stable increase 

per timestep than SAC and less variability in performance once a high success rate was 

achieved, indicated by the sudden drop in performance at the 1.3 million timestep mark. While 

the amount of timesteps per episode are similar for both algorithms, meaning both agents 

completed the episode in comparably the same amount of actions, the SAC agent had almost 

double the amount of steering per episode. The performances of both algorithms can be seen 

in Figures 5 and 6. 

 

Table 1 

Algorithm Performance 

 

Note. PPO and SAC compared in terms of sample efficiency, learning rate and performance. 

 

Algorithm PPO SAC 
Success rate 97% 95% 

Timesteps 4 million 1.5 million 

Timesteps till 60 reward 1.2 million 750.000 

Training hours 16 24 

Time till 60 reward 4 hours 8 hours 

Average timesteps per episode 154 165 

Average steering per episode 47.3 91.6 
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    Timesteps (millions) → 

Figure 5. The average episode reward for each algorithm against actions taken in timesteps for both PPO and SAC. Maximum 

reward is 62.4 

 

     Time (hours) → 

Figure 6. The average episode rewards for each algorithm against time in h ours for both PPO and SAC. Maximum reward is 

62.4 

Discussion 

In the current study the PPO and SAC algorithms are compared to each other by having an 

agent learn how to merge onto a high traffic highway. In terms of overall performance, both 

SAC and PPO performed similarly, having a success rate of 95% and 97% respectively. In 

terms of learning rate, the SAC algorithm needed fewer timesteps and fewer episodes than PPO 

to reach this success rate, indicative of its sample efficiency. However, it took SAC longer to 

process those episodes than PPO, most likely due to the off-policy updates of SAC. With this 

in mind, SAC should be utilized over PPO in problems where sample availability is limited as 

it learns from all previous experiences. PPO does train faster but requires more data to be 

successful. 
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 In terms of driving efficiency, the SAC agent took more timesteps to complete an 

episode and had more total amount of steering. PPO took about 150 timesteps while SAC took 

165 timesteps to successfully merge, indicating that SAC took more inefficient actions 

compared to PPO. There was also a large difference between the total amount of steering done 

by the agents. Thus the SAC agent took more unnecessary actions and worse actions on 

average, making it suboptimal compared to PPO in this regard. 

 As both algorithms are state of the art reinforcement learning algorithms, both 

performed as expected. A high success rate was achieved by both even though a very simple 

setup was utilized in terms of both the neural network and the Long Short-Term Memory. Both 

algorithms have been used in more complex problems and therefore, with more processing 

power, hyperparameter tuning and optimization, a higher success rate should be possible. The 

sample efficiency of SAC is evident as expected while PPO has a more stable performance. 

Both algorithms have their advantages and disadvantages which are expected when considering 

their way of learning. 

 However, the problem of overfitting does emerge with both SAC and PPO as this also 

occurs in most machine learning problems. The agent might be able to merge the lane with a 

high success rate, but this does not mean that the car is able to drive in many different scenarios. 

The agent does not learn the rules of the road, it merely has sensors as input and estimates 

which outputs will result in the highest reward. This can however be abetted by implementing 

the agent in multiple environment in parallel. With parallel environments the agent is put in 

different environments simultaneously, so it can learn how to drive in all scenarios. This should 

enable the agent to be put in all environments separately and drive safely. 

 When utilizing simulations to analyze ways to solve a problem such as the highway 

merge problem, there are a few caveats. The simulation is an oversimplification compared to 

the real world. A major problem in autonomous driving is computer vision, which is mostly 
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disregarded in this simulation. Weather conditions and damages to the road can make it 

complicated for artificial intelligence to recognize their surroundings, while in the current 

simulations these conditions are always perfect, which results in a much simpler problem to 

solve. Future simulation studies should include these conditions such as weather and road 

decay to simulate more realistic road conditions. Preferably a simulation would be set up where 

these conditions are met, such as modern video games. Games such as Grand Theft Auto 

simulate traffic in a more realistic way and have more realistic settings such as changing 

weather conditions which could aid in analyzing how a real car would learn under such 

conditions. 

 

Conclusion 

The current study shows that PPO and SAC can both be used in the merge problem with a 

reasonably high success rate. While SAC showed more sample efficiency than PPO, SAC took 

longer to process the same amount of data, performed less optimally and less stable compared 

to PPO. Therefore SAC could be preferred over PPO when data availability is limited as SAC 

will utilize all past data, while PPO will only train with the most recent batch of experiences. 

The algorithms did not perform perfectly as they still had a small error in performance. This 

lack of performance can be attributed to the lack of processing power and a more simplified 

version of the learning process.  

Nevertheless, the results show that PPO, SAC and reinforcement learning in general 

can be used in the merge problem. Due to the flexibility of reinforcement learning algorithms 

compared to rule-based methods, it is an approach worth pursuing that could eventually lead 

to fully autonomous vehicles. Future studies training such algorithms should utilize more 

realistic simulations for better representation and generalization of results, while also utilizing 

parallel simulations, so the same agent can learn different driving and merging scenarios. 
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