
Autonomous Lane Merging: A Comparison
Between Reinforcement Learning Algorithms

Abstract

Despite the advancements of self-driving cars, autonomous on-ramp merging on highways still

proposes difficulties. To solve this merge problem a simulation was set up in the Unity game

engine and an agent was trained using two state of the art reinforcement learning algorithms,

Proximal Policy Optimization (PPO) and Soft Actor-Critic (SAC), utilizing the Unity Learning

Agents Toolkit ML-Agents. The two algorithms are compared to each other with respects to

training speed, performance, stability and success rate. The robustness of the algorithms were

tested by having the traffic (1) vary in speed, (2) vary in starting positions and (3) switch lanes.

The agent had a similar performance with a success rate of 95% when employing either PPO

or SAC. Both algorithms showed their advantages and disadvantages. PPO had a more stable

performance and less variability in mean reward, while SAC was more sample efficient.

Results show that reinforcement learning is an avenue worth pursuing to reach fully

autonomous driving. Improvements to the results could still be made through hyperparameter

tuning, more complex neural network setup and a more realistic simulation, further proving the

advantage of reinforcement learning.

Key words: reinforcement learning; Proximal Policy Optimization; Soft Actor-Critic;

autonomous car; lane merging; Unity

Pieter El Sharouni (5930499)

Supervisor: Natasha A. Alechina

Bachelor Thesis Artificial Intelligence

Department of Humanities, University Utrecht

AUTONOMOUS LANE MERGING: A COMPARISON BETWEEN REINFORCMENT LEARNING ALGORITHMS

2

Introduction

In late August 2018, Apple’s automated driving project experienced a public-road collision for

the first time. A vehicle rear-ended the automated vehicle when it came to a near-stop while

waiting for an opportunity to merge onto a multi-lane highway (Dollar & Vahidi, 2019).

Merging is a complex and challenging problem for driver assistance. Despite the advancement

of automation levels, the implementation of autonomous driving for highway on-ramp merge

still presents considerable challenges (Wang & Chan, 2017). In the near future, it is almost

certain that self-driving cars will become part of everyday traffic. It is therefore pertinent that

this merge-problem is solved and to eventually implement fully autonomous vehicles, which

will presumably result in fewer collisions or other traffic issues.

Several modelling methods have been suggested to solve the autonomous on-ramp

merging problem. One method was a slot-based merging algorithm, which defined a slot

occupancy status, either free or occupied, based on the agents’ speed, position, and driving

behaviour in terms of acceleration and deceleration (Marinescu et al., 2012). A theory about

driving rules and gap acceptance was modelled for a decision-making process for the merge

problem on an urban expressway (Wang & Chan, 2017). These rule-based models are able to

handle the merge-problem in theory but lack the flexibility necessary to adapt to new situations.

Their ability to merge can only be successful in predefined rules and states, and may therefore

fail when confronted with unforeseen scenarios.

Contrary to rule-based models, machine learning models can have the potential to deal

with the complex situations of traffic without resorting to predefined rules or models.

Particularly, reinforcement learning can learn optimal actions by itself through trail and error.

A reinforcement agent observes its environment, interacts with it by predefined actions, and is

rewarded or punished for these actions according to the goal state (Lin, 1993). By maximizing

the reward, the agent will find the optimal policy to achieve its goal, and will therefore

AUTONOMOUS LANE MERGING: A COMPARISON BETWEEN REINFORCMENT LEARNING ALGORITHMS

3

successfully merge. Reinforcement learning algorithms already have had some success in this

merge problem using deep Q-learning (Wang & Chan, 2017; P. Wang & Chan, 2018).

In the current study two modern reinforcement learning algorithms will be utilized. The

reason for this is twofold, to evaluate the ability of reinforcement learning algorithms to solve

the merge problem and to compare the two algorithms. The first algorithm is Proximal Policy

Optimization (PPO), which was introduced by the OpenAI team in 2017 and has had huge

success in very complex environments such as the MOBA Dota2, one of the most complex and

popular E-sport games to date (Proximal Policy Optimization, 2017; Schulman et al., 2017).

This algorithm will be compared to the Soft Actor-Critic (SAC), an off-policy actor-critic deep

reinforcement learning algorithm based on the maximum entropy reinforcement learning

framework. With the SAC algorithm the agent aims to maximize expected reward while also

acting as randomly as possible. (Haarnoja et al., 2018). PPO and SAC were chosen because the

problem consists of continuous action and decision space. Compared to other on-policy

reinforcement learning algorithms, PPO seems to be easier to implement and is at least on par

or outperforms similar reinforcement learning algorithms (Schulman et al., 2017; Wang et al.,

2020). While SAC is not as easily implemented, by combining off-policy updates with a stable

stochastic actor-critic formulation, it could outperform other on-policy and off-policy methods

(Haarnoja et al., 2018).

Reinforcement learning

In a reinforcement learning problem, an agent generates its own training data by interacting

with the environment based on its current policy. Therefore the data distributions of the

observations and rewards are constantly changing as the agent learns, which can cause

instability in the learning process (Lin, 1993). The environment is typically stated in the form

of a Markov Decision Problem (MDP) with a set of agent states in the environment, S; a set of

AUTONOMOUS LANE MERGING: A COMPARISON BETWEEN REINFORCMENT LEARNING ALGORITHMS

4

actions of the agent, A; the probability of a transition at time t from state s to s’ under action a,

Pr(𝑠𝑡+1 = 𝑠′|𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎) and the immediate reward after the transition from s to s’ with

action a, 𝑅𝑎(𝑠, 𝑠′). The goal of the reinforcement learning agent is to learn a policy 𝜋 ∶ 𝐴 x 𝑆 →

[0,1], 𝜋(𝑎, 𝑠) = Pr (𝑎𝑡 = 𝑎|𝑠𝑡 = 𝑠), which maximizes the expected cumulative reward.

However, in the more complex environment of the simulation there are no discrete states

actions or immediate rewards, therefore a Markov Decision Problem is too simplistic and deep

reinforcement learning has to be used (Denardo, 1973).

In deep reinforcement learning, the observations collected by the agent are fed into a

neural network, which outputs an action based on its current policy. At the end of an episode,

the agent earns a reward based on its actions and states which acts as a feedback mechanism to

the neural network, which will either increase of decrease the likelihood of the actions given a

certain state. Reinforcement learning does suffer from high sensitivity to hyperparameter

tuning such as the learning rate and initialization. If the learning rate is too high, the current

policy will be updated with the possibility of pushing the policy network into a region of the

parameter space where its next batch of data is collected under suboptimal policy, creating

fewer possibilities of recovery. PPO deals with these problems by being easy to implementation

and is easily tuned. PPO is an on-policy gradient method, meaning that unlike popular Q-

learning methods such as Deep Q-Networks that learn from stored offline data, PPO learns

directly from the experiences it gathers in its environment. Contrary to this, SAC is an off-

policy method, meaning its agent learns from stored data the agent encountered in past episodes

that are stored in a buffer. Therefore SAC utilizes the experience from previous episodes, while

in on-policy methods the agent is limited to the current batch of experience. Before the

performance of the algorithms are compared, both algorithms will first be explained to give an

idea how they work and how they differ. First the PPO algorithm will be explained, which is

defined by two parts, the policy gradient loss and the trust region.

AUTONOMOUS LANE MERGING: A COMPARISON BETWEEN REINFORCMENT LEARNING ALGORITHMS

5

Policy Gradient Methods

In Proximal Policy Optimization methods the policy gradient loss (1) is defined first, which

allows the increase of actions that yield a positive result and the decrease the actions that yield

a negative reward.

𝐿𝑃𝐺(𝜃) = Ê𝑡[log 𝜋𝜃(𝛼𝑡|𝑠𝑡)Â𝑡]

Here, 𝜋𝜃(𝛼𝑡|𝑠𝑡) is the action 𝛼𝑡 taken by the current policy 𝜋𝜃 at time 𝑡, given state 𝑠𝑡 with

policy parameters 𝜃. The loss function 𝐿𝑃𝐺(𝜃) is the estimate reward of the action at time 𝑡,

Ê𝑡, and a second term, the advantage function Â𝑡 which estimates the relative value of the

selected action at time 𝑡. The advantage function consist in two parts, the discounted sum of

rewards and the baseline estimate. The discounted sum of rewards (2) is a weighted sum of all

the rewards the agent receives during each timestep in the current episode.

∑ 𝛾𝑘

∞

𝑘=0

𝑟𝑡+𝑘

The discount factor 𝛾, often between 0.9 and 0.99, indicates the prioritization of rewards in

close proximity above rewards set further ahead. The sum of all the rewards from time 𝑡 until

𝑡 + ∞ is calculated. The rewards are multiplied by the discount factor that corresponds with

the amount of timesteps ahead. All the rewards are known due to the fact that the advantage

function is calculated after the episode sequence is collected from the environment.

The second part of the advantage function is the baseline function, which is a neural

network. The baseline function calculates an estimate of the discounted return from its current

position. It estimates the expected reward at the end of the episode, based on previous

(1)

(2)

AUTONOMOUS LANE MERGING: A COMPARISON BETWEEN REINFORCMENT LEARNING ALGORITHMS

6

experiences. The input of the neural network are the states and the output of the neural network

is the predicted discounted sum of rewards. Because the discounted sum of rewards is

calculated at the end, the prediction from the baseline function can be compared to the actual

discounted sum of rewards. The neural network is adjusted to correspond to the actual reward,

creating a supervised learning problem. The advantage function is calculated by subtracting the

baseline estimate from the actual discounted reward. The final optimization objective is

calculated by multiplying the probability of the policy actions with this advantage function. If

the actions taken by the agent resulted in a higher than average return, the probability of the

actions are increased in the future.

Trust Region Methods

One of the problems of gradient descent is that the parameters can be updated excessively,

creating a suboptimal policy from which the agent will gather suboptimal data. Trust Region

Policy Optimization (TRPO) ensures that when updating the policy, it does not stray too far

from the old policy.

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒𝜃 Ê𝑡 [
𝜋𝜃(𝛼𝑡|𝑠𝑡)

𝜋𝜃𝑜𝑙𝑑(𝛼𝑡|𝑠𝑡)
] Â𝑡

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 Ê𝑡[𝐾𝐿[𝜋𝜃𝑜𝑙𝑑(. |𝑠𝑡), 𝜋𝜃(. |𝑠𝑡)]] ≤ 𝛿

Because the policy is stochastic and not deterministic, the actions chosen by the policy are

denoted as 𝜋𝜃(. |𝑠𝑡). To ensure the policy is not updated excessively, a KL constraint is added

to the optimization objective, limiting the amount of alteration to the policy. However, the KL

constraint does add limitations to the optimization process and can sometimes result in

(3)

AUTONOMOUS LANE MERGING: A COMPARISON BETWEEN REINFORCMENT LEARNING ALGORITHMS

7

undesirable training behavior. PPO includes this extra constraint directly in the optimization

objective to alleviate this issue (Schulman et al., 2017).

PPO

Let 𝑟𝑡(𝜃) determine the ratio between the new updated policy and the previous old policy. This

ratio will be greater than 1 if the action is more likely now than under the old policy. For more

readability this ratio 𝑟𝑡(𝜃) can be multiplied with the advantage function (4).

𝐿𝐶𝑃𝐼(𝜃) = Ê𝑡 [
𝜋𝜃(𝛼𝑡|𝑠𝑡)

𝜋𝜃𝑜𝑙𝑑(𝛼𝑡|𝑠𝑡)
Â𝑡] = Ê𝑡[𝑟𝑡(𝜃)Â𝑡]

Without a constraint, maximizing 𝐿𝐶𝑃𝐼(𝜃) would lead to excessively large policy updates.

Hence the objective function can be modified (5), to penalize changes to the policy that move

𝑟𝑡(𝜃) away from 1,

𝐿𝐶𝐿𝐼𝑃(𝜃) = Ê𝑡 [min(𝑟𝑡(𝜃)Â𝑡, clip(𝑟𝑡(𝜃), 1 − 휀, 1 + 휀) Â𝑡)]

where 휀 is a hyperparameter, say 휀 = 0.2. The objective function that PPO optimizes is an

expectation operator, Ê𝑡, computed over batches of experiences. This expectation operator is

taken over the minimum of two terms. The first of these terms is 𝑟𝑡(𝜃)Â𝑡, which ensure the

policy takes actions that yield a high positive advantage over the baseline. The second term,

clip(𝑟𝑡(𝜃), 1 − 휀, 1 + 휀)Â𝑡)] modifies the objective by clipping the probability ratio, which

removes the possibility for 𝑟𝑡 to move away from the interval [1 − 휀, 1 + 휀]. The advantage

estimate can be both positive and negative, which changes the effect of the min operator. As

seen in Figure 1, the probability ratio is clipped whether the advantage is positive or negative.

(4)

(5)

AUTONOMOUS LANE MERGING: A COMPARISON BETWEEN REINFORCMENT LEARNING ALGORITHMS

8

Figure 1. the effect of the advantage function on the clipping functionality, taken from Schulman et al. (2017).

The pseudocode for the PPO algorithm is shown in Figure 2. Each iteration, each of the

N agents, in this case only 1, collects T timesteps of experience data. These experiences are

collected and gradient descent is run on the policy network for each batch of experience for K

epochs, using the clipped PPO objective, updating the policy (Schulman et al., 2017).

Algorithm 1 PPO

1. for iteration = 1, 2,…. do

2. for actor = 1, 2,…, N do

3. Run policy 𝜋𝜃𝑜𝑙𝑑 in environment for T timesteps

4. Compute advantage estimates Ã1,…,Ã𝑇

5. end for

6. Optimize surrogate L wrt 𝜃, with K epochs and minibatch size M ≤ NT

7. 𝜃𝑜𝑙𝑑 ← 𝜃

8. end for

Figure 2. The pseudocode of the PPO algorithm (Schulman et al., 2017).

Soft Actor-Critic

Soft Actor-Critic is an off-policy algorithm with a central feature in entropy regularization. The

SAC policy tries to maximize the balance between the expected return and entropy, a measure

of randomness in the policy. This is similar to the exploration-exploitation trade-off, which

may increase learning rate later on, but may also prevent the policy from converging earlier.

AUTONOMOUS LANE MERGING: A COMPARISON BETWEEN REINFORCMENT LEARNING ALGORITHMS

9

To explain Soft Actor-Critic, the entropy-regularized reinforcement learning setting is

introduced first.

 Entropy can be seen as the amount of randomness of a variable. If 𝑥 is a random variable

then 𝑃 is the probability function. The entropy 𝐻 of 𝑥 is calculated from this distribution 𝑃 (6).

𝐻(𝑃) = E
𝑥~𝑃

[− log 𝑃(𝑥)]

In entropy-regularized reinforcement learning, the agent is awarded a bonus every timestep in

in line with the entropy of the policy at the corresponding timestep, changing the reinforcement

learning problem (7)

𝜋∗ = arg max
𝜋

E
𝜏~𝜋

[∑ 𝛾𝑡 (𝑅(𝑠𝑡, 𝑎𝑡, 𝑠𝑡+1) + 𝛼𝐻(𝜋(. |𝑠𝑡)))]

∞

𝑡=0

where 𝜏 is the trajectory sampled from policy 𝜋, 𝛼 > 0 is the temperature parameter that controls

the relative importance of the entropy term versus the reward, and thus controls the

stochasticity of the optimal policy 𝜋∗. The discount factor 𝛾 is introduced to ensure that the

expected sum of rewards is discounted by how far off in the future the rewards are obtained.

The optimal policy can be calculated by maximizing the expected reward of the policy. The

expected reward is the sum of the discount factors at time 𝑡 multiplied by the reward of the

transition from 𝑠𝑡 to 𝑠𝑡+1 given action 𝑎𝑡, in addition to the entropy. With this the value

functions that determine the expected return of a policy given a state or a state-action pair can

be defined. 𝑉𝜋 (8) gives the expected return given starting position 𝑠 and policy 𝜋, which

includes the entropy bonus from every timestep.

(6)

(7)

AUTONOMOUS LANE MERGING: A COMPARISON BETWEEN REINFORCMENT LEARNING ALGORITHMS

10

𝑉𝜋(𝑠) = E
𝜏~𝜋

[∑ 𝛾𝑡 (𝑅(𝑠𝑡, 𝑎𝑡, 𝑠𝑡+1) + 𝛼𝐻(𝜋(. |𝑠𝑡))) |𝑠0 = 𝑠].

∞

𝑡=0

𝑄𝜋 (9) gives the expected return if the starting position is 𝑠, an arbitrary action 𝑎 is taken, but

then all actions taken are according to policy 𝜋. In addition to this, the entropy bonuses are

added from every timestep except the first.

𝑄𝜋(𝑠, 𝑎) = E
𝜏~𝜋

[∑ 𝛾𝑡 (𝑅(𝑠𝑡, 𝑎𝑡, 𝑠𝑡+1) + 𝛼 ∑ 𝛾𝑡

∞

𝑡=1

𝐻(𝜋(. |𝑠𝑡))) |𝑠0 = 𝑠, 𝑎0 = 𝑎]

∞

𝑡=0

Given these definitions, 𝑉𝜋and 𝑄𝜋 can be joined (10).

𝑉𝜋(𝑠) = E
𝑎~𝜋

[𝑄𝜋(𝑠, 𝑎)] + 𝛼𝐻(𝜋(. |𝑠))

The Bellman equation (11) for 𝑄𝜋 writes the value of a decision problem at a certain point in

time in terms of the payoff from some initial choice in addition to the value of the remaining

decision problem that results from those initial choices.

𝑄𝜋(𝑠, 𝑎) = E
𝑠′~𝑃
𝑎′~𝜋

[𝑅(𝑠, 𝑎, 𝑠′) + 𝛾 (𝑄𝜋(𝑠′, 𝑎′) + 𝛼𝐻(𝜋(. |𝑠′)))]

 = E
𝑠′~𝑃

[𝑅(𝑠, 𝑎, 𝑠′) + 𝛾𝑉𝜋(𝑠′)].

Here 𝑠′~𝑃 is shorthand for 𝑠′~𝑃(. |𝑠, 𝑎), indicating that the next state 𝑠′ is sampled from the

environment’s transition rules. 𝑎~𝜋 is shorthand for 𝑎~𝜋(. |𝑠), meaning that the action is

(8)

(9)

(10)

(11)

AUTONOMOUS LANE MERGING: A COMPARISON BETWEEN REINFORCMENT LEARNING ALGORITHMS

11

sampled from the policy rules. Therefore the Bellman equation is the expected reward of a state

transition plus the value of the state transitioned towards.

Soft actor-critic learns both a policy and two Q-functions, 𝑄𝜙1 and 𝑄𝜙2, at the same

time. Q-functions are approximators for the optimal action-value function. With the definition

of entropy, the Bellman equation can be rewritten (12).

𝑄𝜋(𝑠, 𝑎) = E
𝑠′~𝑃
𝑎′~𝜋

[𝑅(𝑠, 𝑎, 𝑠′) + 𝛾(𝑄𝜋(𝑠′, 𝑎′) + 𝛼 log 𝜋 (𝑎′|𝑠′))]

Because 𝑄𝜋 is an expectation over future states which comes from the replay buffer and future

actions, it can be approximated with samples and rewritten (13).

𝑄𝜋(𝑠, 𝑎) ≈ 𝑟 + 𝛾(𝑄𝜋(𝑠′, 𝑎′)) − 𝛼 log 𝜋(ã′|𝑠′)), ã′ ~ 𝜋(. |𝑠′)

Instead of 𝑎′, ã’ is used to indicate that the next actions have to be sampled ‘fresh’ from the

policy, whereas 𝑟 and 𝑠′ come from the replay buffer. This replay buffer should ensure that

SAC is more sample efficient compared to PPO, as more experiences can be saved in the buffer.

Sample efficiency entails how much experience the agent needs in order to reach a certain level

of performance. The Mean Squared Bellman Error (14) is calculated to indicate how close a

Q-function comes to satisfying the Bellman equation. SAC utilizes a clipped double-Q method,

and takes the minimum Q-value between the two Q approximators.

𝐿(𝜃𝑖, 𝐷) = E
(𝑠,𝑎,𝑟,𝑠′,𝑑)~𝐷

[(𝑄𝜃𝑖(𝑠, 𝑎) − 𝑦(𝑟, 𝑠′, 𝑑))
2

]

Here D is the replay buffer and d the done signal with a target function (15).

(12)

(13)

(14)

AUTONOMOUS LANE MERGING: A COMPARISON BETWEEN REINFORCMENT LEARNING ALGORITHMS

12

𝑦(𝑟, 𝑠′, 𝑑) = 𝑟 + 𝛾(1 − 𝑑)(min
𝑗=1,2

𝑄𝜙𝑡𝑎𝑟𝑔,𝑗 (𝑠′, ã′) − 𝛼 log 𝜋𝜃(ã′|𝑠′)), ã′ ~ 𝜋𝜃(. |𝑠′)

In each state the policy will try to maximize the expected future return in addition to the

expected future entropy, therefore maximizing 𝑉𝜋 (16).

𝑉𝜋(𝑠) = E
𝑎~𝜋

[𝑄𝜋(𝑠, 𝑎)] + 𝛼𝐻(𝜋(. |𝑠))

 = E
𝑎~𝜋

[𝑄𝜋(𝑠, 𝑎) + 𝛼 log 𝜋(𝑎|𝑠)]

SAC utilizes entropy regularization to train a stochastic policy and while exploring in an on-

policy way. The exploration-exploitation balance is regularized through coefficient 𝛼. A higher

𝛼 corresponds with more exploration, and a lower coefficient corresponds to more exploitation.

The pseudocode for the Soft Actor-Critic algorithm can be seen in Figure 3.

Both SAC and PPO implement a Long Short-Term Memory (LSTM). A LSTM is a

Recurrent Neural Network (RNN) that is capable of learning order dependency in sequence

prediction problems. However, a problem does occur in RNN’s due to the scalar weight

recurrence between each of its recurrently connected blocks. It will eventually become either

infinite if the scalar weight is greater than 1 or becomes 0 if the scalar weight is smaller than

1. LSTM deals with the exploding or imploding scalar weight by replacing the hidden units

with a LSTM memory cell and adding another connection from every cell called the cell state

(Hochreiter & Schmidhuber, 1997). A LSTM layer consists of a set of recurrently connected

blocks, known as memory blocks. These memory blocks contain one or more recurrently

connected memory cells and three gates, an input gate, which determines if the cell is updated,

an output gate which determines if the memory of the cell is erased and a forget gate, which

(15)

(16)

AUTONOMOUS LANE MERGING: A COMPARISON BETWEEN REINFORCMENT LEARNING ALGORITHMS

13

determines if the information of the current cell state is made visible. These gates provide

continuous directions to read, write or reset the memory cell (Graves & Schmidhuber, 2005).

Algorithm 2 Soft Actor-Critic

1. Input: initial policy parameters 𝜃, Q-function parameters 𝜙1, 𝜙2, empty replay buffer D

2. Set target parameters equal to main parameters 𝜙𝑡𝑎𝑟𝑔,1 ← 𝜙1, 𝜙𝑡𝑎𝑟𝑔,2 ← 𝜙2

3. repeat

4. Observe state s and select action 𝑎 ~ 𝜋𝜃(. |𝑠)

5. Execute 𝑎 in the environment

6. Observe next state s’, reward r, and done signal d to indicate whether s’ is terminal

7. Store (s, a, r, s’, d) in replay buffer D

8. If s’ is terminal, reset environment state

9. if it’s time to update then

10. for j in range(number of updates) do

11. Randomly sample a batch of transitions, B = {(s, a, r, s’, d)} from D

12. Compute targets for the Q-functions:

𝑦(𝑟, 𝑠′, 𝑑) = 𝑟 + 𝛾(1 − 𝑑) (min
𝑖=1,2

𝑄𝜙𝑡𝑎𝑟𝑔,𝑖 (𝑠′, ã′) − 𝛼 log 𝜋𝜃 (ã′|𝑠′)) , ã′~𝜋𝜃(. |𝑠′)

13. Update Q-functions by one step of gradient descent using:

∇𝜙𝑖
1

|𝐵|
∑ (𝑄𝜃𝑖(𝑠,𝑎,𝑟,𝑠′,𝑑)∈𝐵 (𝑠, 𝑎) − 𝑦(𝑟, 𝑠′, 𝑑))2 for I = 1, 2

14. Update policy by one step of gradient descent using

∇𝜙𝑖
1

|𝐵|
∑ (min

𝑖=1,2
𝑄𝜃𝑖𝑠∈𝐵 (𝑠, ã𝜃(𝑠)) − 𝛼 log 𝜋𝜃 (ã𝜃(𝑠)|𝑠)),

Where ã𝜃(𝑠) is a sample from 𝜋𝜃(. |𝑠) which is differentiable wrt 𝜃

via the reparameterization trick.

15. Update target networks with

𝜙𝑡𝑎𝑟𝑔,𝑖 ← 𝜌𝜙𝑡𝑎𝑟𝑔,𝑖 + (1 − 𝜌)𝜙𝑖 for i = 1, 2

16. end for

17. end for

18. until convergence

Figure 3. The pseudocode for the SAC algorithm, taken from https://spinningup.openai.com/en/latest/algorithms/sac.html.

AUTONOMOUS LANE MERGING: A COMPARISON BETWEEN REINFORCMENT LEARNING ALGORITHMS

14

Methodology

The Agent

The goal of the agent is to merge with the ongoing traffic and reach its destination at the end

of the road as soon and as efficiently as possible. The criteria for a successful merge are (1) no

collision between the agent and the other vehicles or the side of the road; (2) no stopping at the

side line, although slowing down is acceptable; (3) reaching the end of the road at the top of

the screen. If a merge is successful, the agent is rewarded at the end of the episode. The agent

is also rewarded by going through checkpoints placed along its path and is rewarded

proportionally to its speed. If a merge is unsuccessful, the agent is punished. A small

punishment is also added for each decision the agent makes, to ensure it makes the most

efficient decisions possible, which should eventually lead to straight driving. Other studies

implementing algorithms for lane merging have had success rates between 90% and 100%,

with most achieving a success rate of around 95% (Hu et al., 2020; Triest et al., 2020).

Therefore, for the agent to be considered successful, at least 95% of the episodes need to be

completed successfully. Although this still seems low for a simple simulation, the setup and

methods used are also simple compared to other studies in terms of neural network and LSTM.

However, this allows the current study to focus on the comparison of the two algorithms rather

than the success rate.

While most technologically advanced cars use a plethora of sensors such as LiDAR,

camera’s, digital maps and Differential Global Positioning System to detect their surroundings

(Eckelmann et al., 2017), the agent in the simulation only has two sets or rays. One of these

sets of rays is for road detection, to indicate how far it is from the sides of the lane. The other

set of rays is to detect other traffic on the road, in indicate the distance to the other cars around

it. Additionally, the agent knows its own speed and direction, as this effect how the car controls,

so it can determine how to control the car depending on its speed.

AUTONOMOUS LANE MERGING: A COMPARISON BETWEEN REINFORCMENT LEARNING ALGORITHMS

15

Simulation setup

To solve the merge-problem, a simulation was set up for the reinforcement learning agent to

learn how to merge successfully into traffic with either SAC or PPO. The tapered acceleration

lane, as seen on the left in Figure 4, was utilized as this is assessed as the most difficult highway

merge situation (Hussain et al., 2018). The simulations are made in Unity, a game engine with

a built-in physics engine, which allows for realistic car controls such as wheel spinning and

collision with the terrain, wheel suspension, damper, slipping and more. The ML-Agents

package will be used to assist with the neural network, which enables the use of the TensorFlow

library, an open source library to develop and train machine learning models.

 The simulation was created in 3D, which allows the car to be subjected to gravity, drag

and wheel collision. The car has front-wheel driving, a weight of 1500 kg and a maximum

speed of 100 km/h as is the case for Dutch highways since 2020 (Rijkswaterstaat, 2020). To

determine the position of the car with regards to the road, 9 rays are used with a length of 20

meters. To determine the positions of the other cars, 15 rays are used with a length of 70 meters.

These, along with the current speed and direction of the car are the input vectors of the neural

network. The input vectors are stacked 3 times so the car can determine the change in position

of the other cars. A neural net of 3 layers each with 128 nodes was trained with a learning rate

of 0.0004. In addition to this a LSTM of 32 cells is utilized to assist in avoiding cars as this

Figure 4. The tapered highway example on the left taken from
Hussain et al. (2018) and the simulation on the right, made in Unity.

AUTONOMOUS LANE MERGING: A COMPARISON BETWEEN REINFORCMENT LEARNING ALGORITHMS

16

will process the sequences of data, which allows the agent to determine how fast the oncoming

cars are going and if the agent needs to accelerate or decelerate.

Comparison

The two algorithms are compared to each other in terms of performance, learning rate, and

driving efficiency. To compare the two algorithms, data is gathered by having the agents

complete 200 episodes. Performance is determined by the overall success rate of the agents

while the learning rate is determined by the total amount of hours and total amount of timesteps

it took for the agent to reach a certain level of performance. Efficiency is determined by both

the total amount of steering and average timesteps per episode. The total amount of steering

should indicate how much unnecessary actions the agent took and is calculated by adding the

absolute values of the steering input.

To test the robustness of both algorithms, the other vehicles have random starting

positions at the start of the highway and speeds varying between 90 and 110 km/h. Sensors are

added to all the vehicles to determine if there is a car next to them. If there isn’t, they have a

random chance to merge on to the empty lane. The cars also have sensors to indicate whether

or not a car is in front or behind them. If there is a car in front, the vehicle will slow down. If a

car is behind the vehicle, it will speed up. If there is a car both in front and behind, the vehicle

will ensure that equal distance is kept between the cars.

Results

The results show that both algorithms performed similarly, as can be seen in Table 1. The agent

is able to merge onto the highway with at least a success rate of 95%. If cars are close by when

the agent tries to merge it will either slow down or speed up, depending on how close the agent

is to the main highway and depending on the proximity to the other cars, which is desirable.

AUTONOMOUS LANE MERGING: A COMPARISON BETWEEN REINFORCMENT LEARNING ALGORITHMS

17

Both algorithms continued until they either performed 4 million timesteps or spent 24 hours

training.

The maximum reward for an episode is 62.4, therefore an average of 60 is considered

decent. While SAC needed fewer timesteps to have a decent performance compared to PPO,

about 750.000 steps compared to 1.2 million steps, it took about 10 hours compared to the 4

hours of training for PPO to reach a decent average reward. PPO had a more stable increase

per timestep than SAC and less variability in performance once a high success rate was

achieved, indicated by the sudden drop in performance at the 1.3 million timestep mark. While

the amount of timesteps per episode are similar for both algorithms, meaning both agents

completed the episode in comparably the same amount of actions, the SAC agent had almost

double the amount of steering per episode. The performances of both algorithms can be seen

in Figures 5 and 6.

Table 1

Algorithm Performance

Note. PPO and SAC compared in terms of sample efficiency, learning rate and performance.

Algorithm PPO SAC
Success rate 97% 95%

Timesteps 4 million 1.5 million

Timesteps till 60 reward 1.2 million 750.000

Training hours 16 24

Time till 60 reward 4 hours 8 hours

Average timesteps per episode 154 165

Average steering per episode 47.3 91.6

AUTONOMOUS LANE MERGING: A COMPARISON BETWEEN REINFORCMENT LEARNING ALGORITHMS

18

 Timesteps (millions) →

Figure 5. The average episode reward for each algorithm against actions taken in timesteps for both PPO and SAC. Maximum

reward is 62.4

 Time (hours) →

Figure 6. The average episode rewards for each algorithm against time in h ours for both PPO and SAC. Maximum reward is

62.4

Discussion

In the current study the PPO and SAC algorithms are compared to each other by having an

agent learn how to merge onto a high traffic highway. In terms of overall performance, both

SAC and PPO performed similarly, having a success rate of 95% and 97% respectively. In

terms of learning rate, the SAC algorithm needed fewer timesteps and fewer episodes than PPO

to reach this success rate, indicative of its sample efficiency. However, it took SAC longer to

process those episodes than PPO, most likely due to the off-policy updates of SAC. With this

in mind, SAC should be utilized over PPO in problems where sample availability is limited as

it learns from all previous experiences. PPO does train faster but requires more data to be

successful.

PPO
SAC

PPO
SAC

 0 2 4 6 8 10 12 14 16 18 20 22 24

 70
 60
 50
 40
 30
 20
 10
 0

 0 0.5 1 1.5 2 2.5 3 3.5 4

 70
 60
 50
 40
 30
 20
 10
 0

AUTONOMOUS LANE MERGING: A COMPARISON BETWEEN REINFORCMENT LEARNING ALGORITHMS

19

 In terms of driving efficiency, the SAC agent took more timesteps to complete an

episode and had more total amount of steering. PPO took about 150 timesteps while SAC took

165 timesteps to successfully merge, indicating that SAC took more inefficient actions

compared to PPO. There was also a large difference between the total amount of steering done

by the agents. Thus the SAC agent took more unnecessary actions and worse actions on

average, making it suboptimal compared to PPO in this regard.

 As both algorithms are state of the art reinforcement learning algorithms, both

performed as expected. A high success rate was achieved by both even though a very simple

setup was utilized in terms of both the neural network and the Long Short-Term Memory. Both

algorithms have been used in more complex problems and therefore, with more processing

power, hyperparameter tuning and optimization, a higher success rate should be possible. The

sample efficiency of SAC is evident as expected while PPO has a more stable performance.

Both algorithms have their advantages and disadvantages which are expected when considering

their way of learning.

 However, the problem of overfitting does emerge with both SAC and PPO as this also

occurs in most machine learning problems. The agent might be able to merge the lane with a

high success rate, but this does not mean that the car is able to drive in many different scenarios.

The agent does not learn the rules of the road, it merely has sensors as input and estimates

which outputs will result in the highest reward. This can however be abetted by implementing

the agent in multiple environment in parallel. With parallel environments the agent is put in

different environments simultaneously, so it can learn how to drive in all scenarios. This should

enable the agent to be put in all environments separately and drive safely.

 When utilizing simulations to analyze ways to solve a problem such as the highway

merge problem, there are a few caveats. The simulation is an oversimplification compared to

the real world. A major problem in autonomous driving is computer vision, which is mostly

AUTONOMOUS LANE MERGING: A COMPARISON BETWEEN REINFORCMENT LEARNING ALGORITHMS

20

disregarded in this simulation. Weather conditions and damages to the road can make it

complicated for artificial intelligence to recognize their surroundings, while in the current

simulations these conditions are always perfect, which results in a much simpler problem to

solve. Future simulation studies should include these conditions such as weather and road

decay to simulate more realistic road conditions. Preferably a simulation would be set up where

these conditions are met, such as modern video games. Games such as Grand Theft Auto

simulate traffic in a more realistic way and have more realistic settings such as changing

weather conditions which could aid in analyzing how a real car would learn under such

conditions.

Conclusion

The current study shows that PPO and SAC can both be used in the merge problem with a

reasonably high success rate. While SAC showed more sample efficiency than PPO, SAC took

longer to process the same amount of data, performed less optimally and less stable compared

to PPO. Therefore SAC could be preferred over PPO when data availability is limited as SAC

will utilize all past data, while PPO will only train with the most recent batch of experiences.

The algorithms did not perform perfectly as they still had a small error in performance. This

lack of performance can be attributed to the lack of processing power and a more simplified

version of the learning process.

Nevertheless, the results show that PPO, SAC and reinforcement learning in general

can be used in the merge problem. Due to the flexibility of reinforcement learning algorithms

compared to rule-based methods, it is an approach worth pursuing that could eventually lead

to fully autonomous vehicles. Future studies training such algorithms should utilize more

realistic simulations for better representation and generalization of results, while also utilizing

parallel simulations, so the same agent can learn different driving and merging scenarios.

AUTONOMOUS LANE MERGING: A COMPARISON BETWEEN REINFORCMENT LEARNING ALGORITHMS

21

References

Denardo, E. V. (1973). A Markov Decision Problem. In T. C. Hu & S. M. Robinson (Eds.),

Mathematical Programming (pp. 33–68). Academic Press.

https://doi.org/10.1016/B978-0-12-358350-5.50005-1

Dollar, R. A., & Vahidi, A. (2019). Automated Vehicles in Hazardous Merging Traffic: A

Chance-Constrained Approach ⁎⁎This research was supported by an award from the

U.S. Department of Energy Vehicle Technologies Office (Project No. DE-

EE0008232). IFAC-PapersOnLine, 52(5), 218–223.

https://doi.org/10.1016/j.ifacol.2019.09.035

Eckelmann, S., Trautmann, T., Ußler, H., Reichelt, B., & Michler, O. (2017). V2V-

Communication, LiDAR System and Positioning Sensors for Future Fusion

Algorithms in Connected Vehicles. Transportation Research Procedia, 27, 69–76.

https://doi.org/10.1016/j.trpro.2017.12.032

Graves, A., & Schmidhuber, J. (2005). Framewise phoneme classification with bidirectional

LSTM networks. Proceedings. 2005 IEEE International Joint Conference on Neural

Networks, 2005., 4, 2047–2052. https://doi.org/10.1109/IJCNN.2005.1556215

Haarnoja, T., Zhou, A., Abbeel, P., & Levine, S. (2018). Soft Actor-Critic: Off-Policy

Maximum Entropy Deep Reinforcement Learning with a Stochastic Actor.

ArXiv:1801.01290 [Cs, Stat]. http://arxiv.org/abs/1801.01290

Hochreiter, S., & Schmidhuber, J. (1997). Long Short-term Memory. Neural Computation, 9,

1735–1780. https://doi.org/10.1162/neco.1997.9.8.1735

Hu, Y., Nakhaei, A., Tomizuka, M., & Fujimura, K. (2020). Interaction-aware Decision

Making with Adaptive Strategies under Merging Scenarios. ArXiv:1904.06025 [Cs,

Stat]. http://arxiv.org/abs/1904.06025

AUTONOMOUS LANE MERGING: A COMPARISON BETWEEN REINFORCMENT LEARNING ALGORITHMS

22

Hussain, S., Shahian Jahromi, B., Karakas, B., & Cetin, S. (2018). Highway Lane Merge for

Autonomous Vehicles Without an Acceleration Area using Optimal Model Predictive

Control. World Journal of Research and Review, 6.

https://doi.org/10.31871/WJRR.6.3.20

Lin, L.-J. (1993). Reinforcement Learning for Robots Using Neural Networks. 168.

Marinescu, D., Čurn, J., Bouroche, M., & Cahill, V. (2012). On-ramp traffic merging using

cooperative intelligent vehicles: A slot-based approach. 2012 15th International IEEE

Conference on Intelligent Transportation Systems, 900–906.

https://doi.org/10.1109/ITSC.2012.6338779

Proximal Policy Optimization. (2017, July 20). OpenAI. https://openai.com/blog/openai-

baselines-ppo/

Rijkswaterstaat, Rijkswaterstaat, & Rijkswaterstaat. (n.d.). Maximumsnelheid [Webpagina].

Retrieved December 1, 2020, from https://www.rijkswaterstaat.nl/wegen/wetten-

regels-en-vergunningen/verkeerswetten/maximumsnelheid/index.aspx

Schulman, J., Levine, S., Moritz, P., Jordan, M. I., & Abbeel, P. (2017). Trust Region Policy

Optimization. ArXiv:1502.05477 [Cs]. http://arxiv.org/abs/1502.05477

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., & Klimov, O. (2017). Proximal Policy

Optimization Algorithms. ArXiv:1707.06347 [Cs]. http://arxiv.org/abs/1707.06347

Triest, S., Villaflor, A., & Dolan, J. (n.d.). Learning Highway Ramp Merging Via

Reinforcement Learning with Temporally-Extended Actions. 6.

Wang, C., Zhang, Q., Tian, Q., Li, S., Wang, X., Lane, D., Petillot, Y., & Wang, S. (2020).

Learning Mobile Manipulation through Deep Reinforcement Learning. Sensors, 20,

939. https://doi.org/10.3390/s20030939

Wang, P., & Chan, C. (2017). Formulation of deep reinforcement learning architecture

toward autonomous driving for on-ramp merge. 2017 IEEE 20th International

AUTONOMOUS LANE MERGING: A COMPARISON BETWEEN REINFORCMENT LEARNING ALGORITHMS

23

Conference on Intelligent Transportation Systems (ITSC), 1–6.

https://doi.org/10.1109/ITSC.2017.8317735

Wang, Pin, & Chan, C.-Y. (2018). Autonomous Ramp Merge Maneuver Based on

Reinforcement Learning with Continuous Action Space. ArXiv:1803.09203 [Cs].

http://arxiv.org/abs/1803.09203

