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Abstract

Anomaly detection is a topic in data science that is receiving more and more atten-
tion. Not only for its benefits in the business world, but in all sorts of different areas
(e.g. cybersecurity, health care, behaviour etc.). The purpose of this thesis is to
answer whether isolation forest (a machine learning anomaly detection algorithm)
is accurate in classifying these anomalies and what the effects in a particular area
(internet traffic) can be. The way to achieve this, is by taking a labelled data set
and applying the algorithm to it, to see if it can find all the labelled anomalies. For
the effects of misclassification, this paper will be looking at a specific area/data set
and discuss all possible outcomes with its chances of happening. Isolation forest
proves to be a valuable algorithm that can minimize risk and maximize benefits.
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Chapter 1

Introduction

"Information is the oil of the 21st century, and
analytics is the combustion engine"

Peter Sondergaard, Senior Vice President, Gartner

To state that a data point is an anomaly, some requirements are needed. First of
all, anomalies only arise sporadically in data. Second, the properties are notably
different from the normal data. Typically, anomalies in data will be translated
into some kind of issue depending on the data set. Issues like medical illness[14],
credit card fraud[2] or even network traffic patterns that could indicate unauthorised
access[6]. For all of this to work, anomaly detection systems need algorithms with a
high detection rate, low misclassification rate and a fast execution.

Most other existing approaches to anomaly detection are based on a modeled
data set and start with building a profile of what a normal data point should look
like. Then it identifies the points that do not fit these criteria. Next a ranking
system is formed and rates which data points are most likely to be anomalies and
which are not. The distance and density of the data points are the most commonly
used forms of basic ranking. Many different methods, such as Local outlier Factor[5],
classification-based methods[1] and clustering-based methods[9], have been created
with these properties in mind. Two significant disadvantages of these methods are
that they are optimized on finding perfect normal data points instead of focusing
on the optimisation of finding anomalies, and that most algorithms can only handle
low dimensional data, because of their high computational complexity.

This thesis, however, presents a different kind of model-based method that is
focused on isolating anomalies rather than creating these normal data profiles. To
accomplish this, the idea is to capitalize on the two properties anomalies have, which
have been mentioned before. With this method and these properties we should be
able to isolate them rather quickly from other data points. In this paper it will
be explained that a tree structure can be built effectively and efficiently while the
leaves of the tree are all the data points. The closer they are to the root of the tree,
the quicker they are isolated from the rest, meaning that the normal data points
will be deeper at the end of the tree. This isolation property the tree has, will form
our foundation of the method we will use to detect anomalies. In the rest of the
paper this tree will be called Isolation tree or iTree.

Isolation forest or iForest, the method we will investigate in this thesis, can be
built from multiple iTrees from the same data set. The data points that have the
shortest average path length are the anomalies we are looking for. Which leads me
to my research question: "What is the accuracy of isolation forest and what are the
effects of misclassified anomalies?".
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1.1 Artificial intelligence and societal relevance
While other already existing methods for anomaly detection only focus on which
points can be considered normal and not divergent, this machine learning based
algorithm is actually more efficient and can operate in higher complexities making
it more useful and applicable to more sorts of data sets. These data sets can contain
all sorts of data, making it advantageous in all different sectors.

1.2 Structure of this thesis
In Chapter 2, the data from the data set and the reason why this particular data
set was chosen will be explained. In Chapter 3, the algorithm will be explained and
discussed. In Chapter 4 the results of the algorithm will be applied to the data sets.
Chapter 5 will discuss the effects of the misclassification of anomalies. Chapter 6
analyzes the results and Chapter 7 will be used to reflect upon the utility of isolation
forest and whether it should or should not be used more often, while considering
the risk of its effects.



Chapter 2

Data

The data sets we use come from a bigger data set: "KDDCUP99", from the UCI
machine learning repository[8]. The subsets we use are called Http (KDDCUP99)
and Smtp (KDDCUP99)[12]. These are constructed by splitting the original data
set using the service attribute, the four of which are: service, duration, src_bytes
and dst_bytes. The service attribute is then divided into http, smtp, ftp, ftp_data
and others subsets of which http and smtp are used. Both data sets have an X_file
and a y_file, in which the X_file is a list of multi-dimensional points of data and
the y_file labels the data points as either either 1 or 0, respectively an outlier or an
inlier.

The data sets Http and Smtp contain respectively 567,497 and 95,156 data points
of which 2211 (0.4%) and 30 (0.3%) are outliers. After the algorithm has been
completed the data points will be classified in four different groups: True positives
(TP), False positives (FP), True Negatives (TN) and False Negatives (FN). A data
point is a TP when the algorithm classifies the point as an outlier and it is in fact
an outlier. FP is when it is classified as an outlier, but it is actually not one. FN
are outliers that are not classified as such and TN are inliers classified as inliers[13].

Figure 2.1: Classification of data in P/N and T/F

With the data classified in these classes, we can calculate the Precision, Recall and
F-measure. They respectively mean the percentage TP of all the positive selected
data. The percentage TP of TP and FN combined, and F-measure is the harmonic
mean of the precision and recall. These measurements give us the possibility to
compare and look at the accuracy in general.
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Chapter 3

Algorithm

This chapter provides an overview about all the elements of isolation forest. How an
iForest is constructed (section 3.1), the iTrees it consists of (section 3.2), the path
length from the root to a datapoint ( section 3.3) and the way the anomaly score is
calculated (section 3.4). But first, what does it mean for a data point to be isolated?

A data point is isolated when it is separated from the other data points. Usually
there are only a few anomalies in a data set with different characteristics. This gives
them a higher chance to be isolated when recursively, uniform partitioned. This
process continues until all data points are isolated. So when an iTree is constructed
and all data points are secluded from the others in the tree, the data points with
the shortest path to the root of the tree are the ones which are most likely to be an
outlier. This is shown in figure 3.1.

Figure 3.1: Difference in amount of separation needed to be isolated
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Chapter 3. Algorithm 7

3.1 iForest

Figure 3.2: iForest algorithm[11]

To be able to use isolation forest and detect
anomalies, we first have to train the algo-
rithm. After training it, we can test it and
get a certain anomaly score (section 3.4) for
each data point. In figure 3.2 is the founda-
tion of the iForest algorithm in detail. On
input X, number of trees t, and sub-sampling
size ψ a set of t iTrees are formed. Input
X can be any multidimensional database.
The amount of iTrees needed to calculate
the average path length for each data point
is usually quite low, since it converges rather
quickly (appendix A.1). How the iTrees are
built is discussed in section 3.2. The union of all the iTrees that are made, is called
the iForest.

3.2 iTree

Figure 3.3: iTree build algorithm[11]

iForest generates t iTrees. The iTrees are
where the actual data is stored and divided.
As long as there are data points left that
are not isolated, it continues to divide the
data in two. It selects a random attribute in
the data set X, and splits the data set for a
random split point between the minimal and
maximal values of the attribute. When it
splits, it stores the one half in the left side of
the iTree and the other in the right half. For
both those sides it continues splitting when
not isolated. In figure 3.3 a more detailed
way is depicted. ExNode stands for nodes
that are isolated. InNode are nodes that are
not isolated yet. An iTree is a proper binary
tree, meaning that each node has either zero
daughters (in other words ExNode) or two
daughters (making it an InNode). With the iTree done, the only remaining part is
the task of detecting the anomalies itself. The way they are detected in iTrees is by
looking at their path lengths to the root in the iTree, or by looking at their anomaly
score. The anomalies are the ones at the top of the list. The next section 3.3 will
define and calculate the path length.
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3.3 Path Length

Figure 3.4: iForest algorithm[11]

The path length h(x) of a data point x is
calculated by the number of edges traveled,
from the root node of the iTree to the exter-
nal node x. As seen in figure 3.4, by using
recursion the algorithm finds its path from
the root down to node x based on the data
stored in x. The average path length for each
data point over t amount of iTrees will be
used to calculate the anomaly score , which
will be explained in section 3.4.

3.4 Anomaly score
An anomaly score is needed in every anomaly detection algorithm. It is used to rank
the data and based on that rank, the algorithm decides which data entries are most
likely to be anomalies compared to the others. The anomaly score computation is
based on the observation of the structure of iTrees, which resembles Binary Search
Trees(BST)[7]. When the path length to an external node terminates, this results
in an unsuccessful search in the BST and the following formula 3.1[11] is applied.

c(m) =


2H(m− 1)− 2(m−1)

n
for m > 2

1 for m = 2

0 otherwise
(3.1)

In the formula above n is the testing data size and m the size of the sample set. The
latter which can be of equal size when the same data set is used for training. H is the
harmonic number and can be calculated byH(i) = ln(i)+γ, where γ = 0.5772136649

(the Euler–Mascheroni constant[4]). As c(m) is the average of h(x) given m, we can
use this to normalise h(x). The anomaly score s of a data point x can be defined
with the following formula 3.2[11]:

s(x,m) = 2−
E(h(x))
c(m) (3.2)

E(h(x)) is the average of h(x) from a set of iTrees. With this formula, we can
conclude the following three points:

• When E(h(x)) approaches c(m), then s(x,m) = 2−
c(m)
c(m) . Resulting in

s approaching 0.5.

• When E(h(x)) approaches 0, meaning it is close to the root, it results in
s approaching 1.

• When E(h(x)) approachesm−1, the end of the tree, it results in s approaching
0.
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With these previous three points in mind, we can infer the following three as
well.

• If the data point has an anomaly score of s close to 1, it is very likely to be
an anomaly.

• If the data point has an anomaly score of s smaller than 0.5, it is very likely
to be an inlier.

• If all the data points return an anomaly score of around 0.5, then it is very
likely that there is no anomaly in the data.



Chapter 4

Results

At first the only data set researched was the HTTP data set. The first table made is
table A.2. Here, the only variable is contamination, which stands for the percentage
of anomalies expected in the data set. This can be preset before running the code,
functioning as a threshold. The data set contained labels saying whether each data
point is an outlier or inlier as well. With this information it is possible to check how
accurate isolation forest when applied to the data sets.

Figure 4.1: HTTP classification at different
contamination rates

Figure 4.1 is a graph made from
the data in appendix A.2. Fig-
ure 4.2 is zoomed in on the lower
5000 points of figure 4.1. Almost
99% of the anomalies were hidden
within the 1.3% and 1.4% contam-
ination frame. While the contam-
ination is only 0.4%, the algorithm
classifies too many inliers as out-
liers. What the cause is of this re-
sult will be further explained in chapter
5.

Figure 4.2: figure 4.1 zoomed in

With the result that all data labeled as
anomalies were very similar, the algo-
rithm was applied to a second data set
SMTP to determine whether the results
would be different. The results can be
found in table A.3, and the graphs in ap-
pendix A.6 and appendix A.7. On this
data set, isolation forest does not display
results as accurately as predicted. At a
contamination rate of 38%, all anomalies
were found. Lower contamination rates
resulted in at least three or more missed
anomalies. While the amount of anomalies
in SMTP is 0.3%.
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Chapter 5

Analysis

The inaccurate values that isolation forest returned are a problem. In the HTTP
data set 99% of the anomalies were clustered. This means that the values of the
attributes were close together. When plotted they were so close next to each other,
that it is hard for isolation forest to split these data. If an iTree were to return the
height of these values they would be lower in the tree than some inliers that happen
to be further off than most inliers. This results in the algorithm selecting inliers as
outliers and seeing the group of anomalies as inliers. See figure 5.1.

5.1 Possible Solutions

Figure 5.1: Clustered anomalies

To resolve this issue, the data points were
split into subsets. With a subset it might
be possible for the grouped anomalies to
be more divided when in subsets, having
a higher chance of being caught with iso-
lation forest. With these subsets, two dif-
ferent approaches were taken to determine
if the accuracy would increase: (1) train-
ing isolation forest on the original HTTP
data set and testing the subsets on this
trained version; represented in appendix
A.4. (2) training isolation forest on the
subsets and testing the subsets on this
specifically trained isolation forest version
appendix A.5. Unfortunately there is no
difference between these approaches and
the original trained data set.
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Chapter 6

Effects

In this chapter, the effects of misclassification are discussed. The scope is cyber
security. In section 6.1 incorrectly classifying too many data points as false positives
is discussed. Similar to section 6.1, section 6.2 will discuss the counterpart: false
negatives.

6.1 False Positives
For each data point classified as false positives, in context of the security of a website,
results in having to check in case of a breach. Confirming whether (1) the infor-
mation is disclosed to the intended recipient and is not available to outsiders, (2)
the information is correct and cannot be modified by outsiders and (3) the informa-
tion resources are always there to work with and cannot be blocked by outsiders[3].

Figure 6.1: Global average breach cost 2018-
2019[10]

If we assume that scanning for a breach
the same is as having a breach, but
without the cost repayment of the stolen
records, then we can presume, that with
help of the written report by IBM in
2019[10] and its data, that a breach con-
trol cost is estimated at an average of 84
thousand American dollars.

6.2 False Negatives
Data points that are classified as false neg-
atives, can be seen as a breaches in the website. These breaches can have numerous
effects. The costs to solve issues like these are on average 47 times as big opposed to
resolving a false positive. The estimated global average cost would be 3.92 million
American dollars, see figure 6.1. If we were to plot the costs for every different
contamination rate of table A.2. With a FP costing 84 thousand and a FN costing
3.92 million. The following graphs A.12 and A.13 would appear. The minimum of
the graph is at a contamination of 0.014 classifying 5749 FP and 23 FN.

In the end minimizing both would be perfect. However, it will always be the case
that FN are more costly. So if by increasing the contamination rate the amount of
FN can significantly be lowered but accepting the increase in FP, then that should
be prioritized.
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Chapter 7

Discussion & Conclusion

7.1 Discussion

General discussion: The algorithm & results

Although the algorithm was not as accurate on the two chosen data sets, there is a
possible issue that could be the cause. The algorithm does have a lot of potential
and further research into this algorithm might resolve this anomaly grouping issue.
Personally I thought with dividing the data in subsets and training it on the two
possible training sets could have solved this issue. Another strategy might be to
subset the data. Train the algorithm with the different subsets and then test with
the full dataset.

7.2 Conclusion
The question remains on how effective isolation forest can be. Not all data sets
contain grouped anomalies, because grouped data points usually means that they
are inliers. Alas, it did not seem to be the case with the data in this paper. If
it were to be explored on data sets outside of the KDDCUP99, it might deliver
better results. For what to prioritize in the algorithm however, would definitely be
to accept more false positives if it means preventing isolation forest from classifying
false negatives. Which can be accomplished by increasing the contamination rate.
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Appendix A

Appendix Graphs & Tables

Figure A.1: Average path lengths converge, with X0 as outlier and X1 as inlier[11]

Figure A.2: HTTP
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Figure A.3: SMTP

Figure A.4: HTTP divided into 30 subsets with Contamination = 0,035 trained on HTTP set
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Figure A.5: HTTP divided into 30 subsets with Contamination = 0,035 trained on the subset itself

Figure A.6: SMTP classification zoomed in
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Figure A.7: SMTP classification zoomed in

Figure A.8: HTTP performance

Figure A.9: HTTP performance zoomed in
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Figure A.10: SMTP performance

Figure A.11: SMTP performance zoomed in

Figure A.12: Cost vs Contamination
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Figure A.13: Cost vs Contamination (zoomed in at the bottom)



Appendix B

Appendix Code

Github with full Python code of the Isolation_Forest_Accuracy can be found at:
https://github.com/GoossensH/BachelorThesis

Sklearn isolation forest class can be found at:
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.IsolationForest.
html

Sklearn isolation forest algorithm in code can be found at:
https://github.com/scikit-learn/scikit-learn/blob/fd237278e/sklearn/ensemble/
_iforest.py#L27
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