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Abstract
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1 Introduction

1.1 Natural language processing

Quite often, Natural Language Processing (NLP)
requires semantic information about lexical items
and text segments. For example, a spam mail
detection system might be better at detecting all
sorts of spam mails by knowing their contents’
semantics. (Schütze, 1993) Furthermore, by
understanding the meaning of an instruction given
by a human, a digital assistant may be enabled to
infer complex constraints, as it can derive the full
semantics of a sentence (Albreshne and Pasquier,
2010).

1.2 Semantic Composition

In natural language, words can be combined.
Baroni et al., 2014 described this principle by
Frege as “(...) the meaning of a complex
expression is a function of the meaning of
its constituent parts and the mode of their
combination.” In other words, compared to their
components, combined words represent a different
meaning. For example, the words green and car
can be combined into green car. Semantically,
green car is different from green and car, as a green
car is more than just green; it is also a car. Given
the difference in meaning, a word vector (1.3)
representing green car is likely to have different
characteristics than vectors for green or car.

1.3 Word Vectors

In vector semantics, in an attempt to capture
the meaning of words and word compositions
in a given corpus, the meanings of words and
word composition are represented by a collection
of real numbers. Established by analysing the
corpus, each studied word or word composition is
assigned a collection of the same size, representing
their characteristics relative to the data (Bollegala
et al., 2016). Numeric collections for word
representation are commonly known as word
vectors.

Accurate vectors can only be derived from
words or word compositions that occur frequently
in a corpus. (Bullinaria and Levy, 2007).
Moreover, with the vast amount of possible
word compositions, not every combination may
frequently occur in a corpus. Therefore, as
some do not occur frequently enough, not every
possible composition can be studied. Instead,
using semantic composition functions based on
common mathematical notions (1.4), the vector of
the word combination can be estimated (Baroni et
al., 2014).

An advantage of using a well-known data
representation such as vectors, is that composition
functions (1.2) can be defined using standard
mathematical notions. Some notions are discussed
in (1.4).

1.4 Composition Models

A series of composition functions are defined using
a composition model. As listed by Dima et al.,
2019c (2 - Previous work in composition models),
there exists a plethora of composition models.
To provide background on composition models
and their mathematical notions, these models are
paraphrased below.

input - output Given two 1-dimensional word
input tensors u(n),v(n) of size n ∈ N, the models
derive an output vector p(n).

1.4.1 Composition by Addition

Proposed by Mitchell and Lapata, 2010, the
output p is derived by adding tensors u and
v. Regular Addition, SAddition and VAddition
are variations on this notion by using different
weighting complexities.

Vector Addition Each element of output
tensor p is the result of adding two elements of
the two one-dimensional input tensors u and v.
In other words, p is derived such that

p = u + v

⇔
∀k∈N(0 ≤ k < n→
pk = uk + vk)

However, this regular form of addition does not
take into account word order. Moreover, a
different order of the same pair of words may
lead to different meanings, e.g. car factory versus
factory car. To compensate, SAddition weighs u,v
differently.

Scalar Weighting With SAddition, to apply
different weighting, u and v are respectively
multiplied by two different scalars α, β. Moreover,
before adding u,v, SAddition multiplies each
element of tensor u with α, and each element of v
with β. In other words, p is derived such that

p = αu + βv

⇔
∀k∈N(0 ≤ k < n→
pk = αuk + βvk)
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Vector Weighting Word vectors may depict
complex corpus-wide characteristics. Therefore,
with SAddition, multiplying a constant with each
element in an input tensor may not be complex
enough. To increase complexity, VAddition
uses component-wise multiplication. Moreover,
two different 1-dimensional tensors a(n), b(n) are
multiplied respectively by a, b. In other words, p
is derived such that

p = au + bu

⇔
∀k∈N(0 ≤ k < n→
pk = akuk + bkvk)

1.4.2 Matrix

The addition models weigh each input word
tensor u,v, disregarding any possible relationships
between characteristics across both input tensors.
To compensate, as proposed by Socher et al.,
2010, the matrix composition model applies
a set of transformation weights across both
inputs. To do so, u,v are merged into a single
one-dimensional input vector. Then, the input
vector is transformed by multiplying the vector
with a transformation matrix and by adding a
bias vector afterwards. Finally, to derive p, a
non-linearity function g is used.

Non-linearity According to Glorot et al., 2011,
introducing non-linearity by using a rectifier
function on the nodes in a neural network improves
the performance of the network. The composition
models Matrix, FullLex (1.4.3) and TransWeight
(1.5) make use of such functions to derive p. For
example, as introduced by Hahnloser et al., 2000,
the paper of Dima et al., 2019c mentions the
function g = ReLu = λx.max(0, x). However,
when tested, Dima et al., 2019c mention to have
found no significant differences when compared to
using g = identity = λx.x. This is in contrast with
Glorot et al., 2011, as using g = identity leaves the
nodes untouched, which is equivalent to using no
rectifier function at all. Given the contradiction,
when explaining the mathematical notions of the
models, the non-linearity is defined as g and is
specified as such for further interpretation.

Concatenation Input tensors are combined
into a single one-dimensional input tensors by
concatenating both tensors along the same axes.
In other words, all elements of v are appended to
u, increasing its size from n to 2n. In other words,
for 0 ≤ i < 2n,

[u;v]i =

{
ui i < n

vi−n otherwise

Transformation Weighting Taking into
account relationships between characteristics
across both input tensors u,v, to match output
tensor p’s size n, [u;v] is contracted with a
two-dimensional weights vector W (n×2n), and is
subsequently added by bias tensor B(n).

Contraction By contracting weights vector
W (n×2n) with [u;v], values on the second axis
of W are multiplied with the values on the first
and only axis of [u;v]. Essentially, to derive the
output p with one axis, the contraction reduces the
number of axes of W (n×2n) from two to one. In
other words, with g being a non-linearity function
(1.4.2), p is derived such that

p = g(W [u;v] + B)

⇔

∀k∈N(0 ≤ k < n→

pk = g(

2n−1∑
i=0

Wk,i[u;v]i + Bk))

1.4.3 FullLex

Proposed by Socher et al., 2012, FullLex builds
on the notions of the Matrix model by capturing
word-specific interactions. Once found the
interactions of one tensor, it is multiplied with the
other input tensor. FullLex further increases the
complexity of the matrix model.

With FullLex, word-specific interactions are
caught using a trainable tensor A(|V |×n×n), where
|V | is the size of the corpus’ vocabulary size;
ensuring entries for each word in the corpus.
Then, input tensors u,v are transformed by
cross-contracting with each other’s trained tensor
Av and Au and are concatenated to function
as input for the matrix model. Subsequently,
the input is transformed by using it to contract
transformation matrix W , which then is added by
a bias vector B. Like Matrix, b is derived using
a non-linearity function. In other words, with g
being a non-linearity function, p is derived such
that

p = g(W [Avu;Auv] + B)

⇔

∀k∈N(0 ≤ k < n→

pk = g(

2n−1∑
i=0

Wk,i(

n−1∑
j=0

[Av
i,juj ;A

u
i,jvj ])i + Bk))
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1.5 TransWeight

The article of Dima et al., 2019c introduces a
model called TransWeight. It states that FullLex
is essentially treating each word as in island by
disregarding lexical meanings. In an attempt
to eliminate this deficit, TransWeight introduces
transformation weighting, which will be further
discussed in 1.5.1. Opposed to the other models
discussed in 1.4, instead of using one layer,
TransWeight uses two layers of tensor operations
to derive p. Following the article, TransWeight
turned out to be most accurate.

1.5.1 Transformation weighting

Compared to FullLex (1.4.3), like Matrix (1.4.2),
TransWeight refrains from weighting u,v before
concatenation. Given the concatenated input,
TransWeight uses two layers of operations to
derive p, which will be discussed below in 1.5.2
and 1.5.3.

1.5.2 Applying Transformations

The concatenation of the input tensors [u;v](2n)

is expanded using a transformation tensor
T (t×2n×n). Then, a transformation bias Bt

(t×n) is added to the result. Subsequently, a
non-linearity function, such as g = ReLu =
λx.max(0, x) (Hahnloser et al., 2000) is applied
to the resulting (t× n)-tensor.

Expansion [u;v] is expanded using
transformation tensor T . Moreover, the values
along the axis of [u;v] are multiplied by the values
along the second axis T . By doing so, in the next
layer, the number of axis of the input is equal the
number of axes of T minus the number of axes
of [u;v]. As a result, the number of axis is equal
to two, which is an increment of the number of
axes of the previous input [u;v], which was one.
In other words, the transformation layer H is
defined such that

H = g(T [u;v] + B)

⇔

∀s∈N∀j∈N(0 ≤ s < t ∧ 0 ≤ j < n→

Hs,j = g(

2n−1∑
i=0

Ts,i,j [u;v]i + Bt
s,j)

1.5.3 Weighting the Transformations

Using tensor H(t×n), TransWeight derives
p by double contracting H(t×n) with a
three-dimensional weight tensor W (t×n×n), added
by bias tensor Bw (n). In other words, the model
outputs a tensor p(n), such that

p = W : H + B

⇔

(∀k∈N(0 ≤ k < n→

pk =

t−1∑
s=0

n−1∑
j=0

Hs,jWs,j,k + Bw
k

1.5.4 Evaluation Method

To evaluate the model of TransWeight to the
other models. The article of Dima et al.,
2019c introduces a modified interpretation of the
evaluation model of Baroni and Zamparelli, 2010,
of which its implementation will be discussed
in 2.2. Moreover, according to Baroni and
Zamparelli, 2010, based on the assumption that
word vectors look like plausible representations of
semantic composition, it is to be expected that
the closer the estimated vectors are to their target
in a corpus, the better they perform in any task
that requires access to the composite meaning,
e.g. spam detection (1.1). Therefore, as proposed
by Baroni and Zamparelli, 2010, to measure the
accuracy of such predictions, the distance of the
estimation to its target p̃ is compared to the
distance of all other estimations of other targets to
p̃. Ranked by distance, an estimation is deemed
accurate if it is at most the fifth closest vector to
the target. This method is elaborated in 2.2.

1.5.5 Successful Model

Using transformations t = 100, compared to
existing composition models, TransWeight was
found to have the highest accuracy on nearly all
corpora used for the experiment (Dima et al.,
2019c).

1.6 Investigation:
Improving TransWeight

As discussed in 1.5, TransWeight consists of two
layers. In summary, it uses an interpretation
of the Matrix model as its first layer (1.5.2),
and adds a second layer of operations to its
model by doubly contracting the output of
the first layer with a three-dimensional weights
vector (1.5.3). From a high-level perspective,
TransWeight differs from its predecessors by using
two layers of operations instead of one, which
essentially increases model complexity. For this
thesis, it is investigated if further increasing the
complexity of the TransWeight model improves
its accuracy towards composition word vector
estimation. Moreover, the difference in accuracy
is investigated by increasing complexity in two
different ways. Namely, in the first experiment,
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a new layer is added to the TransWeight model
(1.6.1). And, in the second experiment, the
number of transformations t is increased to more
extreme values (1.6.2).

1.6.1 Adding a third layer

To add a new layer to TransWeight, the layer
needs to be able to fit between a pair of existing
connected layers. The new layer will be added at
the end of the network. Specifically, the layer will
contract a new weighting tensor V (n×n×n) to the
output of the second layer. To ensure providing
the model with enough complexity, V consists
of three dimensions of size n. Subsequently, the
output layer p(n) is derived by adding the result
of the operation by a new two-dimensional bias
tensor B′ (n×n).

Modifying the second layer To derive output
tensor p, any tensor to contract with V (n×n×n)

must have at least two dimensions of length n
to contract with. However, in TransWeight, the
second layer is contracted to p(n), which, for
further operations, comes short on dimensions to
contract with. Therefore, instead of p(n), by
removing one contraction, the second layer of
TransWeight is modified to have output tensor H ′
(n×n), such that

H ′ = HW

⇔

∀j∈N∀k∈N(0 ≤ j < n ∧ 0 ≤ k < n→

H ′
j,k =

t−1∑
s=0

Hs,jWs,j,k (1)

Applying the third layer The new layer will
derive one-dimensional output tensor p(n) based
on the result of the second layer. In detail, p is
derived by contracting the new three-dimensional
weights tensor V (n×n×n) with H ′ (n×n) from
equation 1.6.1, added by the new two-dimensional
bias tensor B′ (n×n), such that

p = H ′ : V

⇔

∀k∈N(0 ≤ k < n→

pk =

n−1∑
j=0

n−1∑
l=0

H ′
j,kVj,k,l (2)

1.6.2 Increasing Transformations

By increasing the complexity of the network,
Dima et al., 2019c mention to have found t =
100 to be empirically most successful towards
achieving high accuracy compared to values for
t between 20 and 500. Increasing t would
increase the number of calculations in the model.
Therefore, next to adding a third layer, by
increasing TransWeight’s complexity by increasing
t, TransWeight’s results may improve. In an
attempt to gain more information on the effects
of increasing the number of transformations t
in the second experiment, different values for
t: 100, 200, 500, 1000, 10000, 50000 are tested and
compared.

1.6.3 Evaluating results

Conforming to the method of evaluation used
by Dima et al., 2019c, results for experiments
described by 1.6.1 and 1.6.2 are based on the
evaluation method further described in 2.2.

2 Method

2.1 Data

For training and testing, the same data is used as
referred to by Dima et al., 2019c. The data contain
a total of eight corpora.

Data characteristics For both German and
English, the data contain unique corpora for pairs
of adjectives with nouns, adverbs with adjectives
and nouns with nouns. For Dutch, the data
contain two unique corpora for pairs of adverbs
with adjectives and nouns with nouns. The lengths
of the corpora and their origins are illustrated
using table 1 below. For reference, the data sets

are available from the data resource hosted by the
Tübingen Archive of Language Resources (Dima
et al., 2019b).

Using the data When a model is trained, it is
trained once for every corpus using the training
subset of the corpus. During the development
of a model, the implementation can be tested
by training a model and then verifying it by
evaluation using the development subset of the
corpus. Finally, to compare its accuracy within
a corpus compared to other trained models, the
testing subset is used for evaluation across all
models.
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Corpus Training Testing Dev Total Extracted from (Dima et al., 2019b)
German

Nominal Compounds 22591 6442 3213 54759 GermaNet, version 9.0 (TübingenUniversity, 2018a)
Adjective-Noun Phrases 83603 23887 11944 119434 TüBa-D/DP (TübingenUniversity, 2018b)
Adverb-Adjective Phrases 16441 4701 2346 23488 TüBa-D/DP (TübingenUniversity, 2018b)

English
Nominal Compounds 11824 3481 1673 16978 Existing Compound Data Set (Tratz, 2011)
Adjective-Noun Phrases 167292 47803 23880 238975 ENCOW16AX (Schäfer and Bildhauer, 2012)
Adverb-Adjective Phrases 16222 4618 2308 23148 ENCOW16AX (Schäfer and Bildhauer, 2012)

Dutch
Adjective-Noun Phrases 58347 16669 8376 83392 Lassy Large (Van Noord et al., 2013)
Adverb-Adjective Phrases 3183 907 450 4540 Lassy Large (Van Noord et al., 2013)

Table 1: Corpora used for training. For each corpus, the total number of data points, split into the
number of points for training, testing and development is displayed next to the original resource of the
corpus.

2.2 Evaluation Methods

As introduced in 1.5.4, similar to the article of
Dima et al., 2019c, the evaluation method is
based on their interpretation of a ranking system
inspired by Baroni and Zamparelli, 2010.

Ranking the Stars Given a model, for each
tested pair of words in a corpus, using cosine
similarity to calculate distance between tensors,
the distance between output tensor p(n) of the
model and each existing word tensor in the
vocabulary is calculated. Sorted by closest
distance, p(n) is considered to be correctly
estimated by the model if and only if target word
tensor p̃ is at most at rank five of closest word
vectors to p. As an example, consider a vector
domain as illustrated by figure 1 below. Let p̃
be the target word vector, with p as its estimated
vector. Furthermore, let the two other vectors r, q
be the results of different estimation targets. In
this case, p would be of rank 3, as cos(r, p̃) <
cos(q, p̃) < cos(p, p̃).

Figure 1: Example of a set of vectors, containing
word vectors p̃,p, r, q s.t. cos(r, p̃) < cos(q, p̃) <
cos(p, p̃).

Reporting Results Given the model, all
ranked tests of a corpus are listed and sorted
by rank. Given this list, three quartiles and an
average accuracy are reported. Moreover, the

second quartile is the median of the entirety of
the list, the first quartile is the median of the
first half of the list and the third is the median
of the second half of the list. The accuracy rate
of a model represents the percentage of correctly
evaluated (rank ≤ 5) word estimations compared
to its total number of estimations on the corpus.

2.3 Software Implementation

To reproduce and compare testing results of
TransWeight, the other existing models (1.4)
and the new model, the same code is used
as is published by Dima et al., 2019c in their
open-source GitHub repository (Dima et al.,
2019a). Moreover, the TransWeight code contains
all models described in 1.4 and an implementation
of the TransWeight model. Furthermore, by
modifying the import variables, any new model
can be implemented. To perform the experiments,
the code is forked to a new GitHub repository,
with the new model inserted (van Soest, 2020).
According to the references in the article of Dima
et al., 2019c, the repository contains the same code
used in the experiments of the article. Continuing
on its foundations, for the first experiment, a new
layer is inserted to a copy of TransWeight.

2.3.1 Python and TensorFlow

The code provided by Dima et al., 2019c
consists of an implementation of the Python
TensorFlow libraries (GoogleBrainTeam, 2020a).
Using Python, with required packages TensorFlow,
Gensim and Keras, given required parameters, the
code enables any model to be developed, trained
and evaluated.

2.3.2 Computing device specifications

The code is executed on a personal computer with
the specifications as described below.
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Operating System Windows 10 Pro 64-bit
CPU Intel Core i5 6600K @ 3.50GHz
RAM 16,0GB Dual-Channel @ 1466MHz
Motherboard ASUSTeK Z170 PRO GAMING
Graphics 4095MB NVIDIA GeForce GTX 1070
Storage 465GB Samsung SSD 850 EVO 500GB

2.3.3 TensorFlow GPU

As depicted in 2.3.2, the experiment is run on
a system with an NVIDIA GTX 1070 Graphics
Card. To accelerate the training process, the
code is run on this GPU. Therefore, instead of
using the regular tensorflow=1.13.1 package for
python 2.7, the package tensorflow-gpu=1.13.1 by
GoogleBrainTeam, 2020b is used in combination
with required graphic card libraries CUDA 10.0
by NVidiaCorporation, 2020a and NVidia cuDNN
by NVidiaCorporation, 2020b.

2.3.4 Training utilities

The code contains the script training.py, which
provides windows cmd instructions to train a given
model. To improve ease of use, in the new forked
version (van Soest, 2020), path parameters start
from the root of the source folder of the training.

2.3.5 Evaluation utilities

The code contains the script evaluation.py, which
provides windows cmd instructions for outputting
the required evaluation results.

2.4 Experiment 1: Adding a Layer

By inserting a copy of the existing TransWeight
model in the code, using TensorFlow operations
to insert a new layer, the new model for the first
experiment is added.

TensorFlow Operations To add a new layer to
the model, an understanding of how to implement
the mathematical notions of 1.4 - 1.5 is required.
TensorFlow provides syntactic sugar to ease up
this process, such as tf.einsum (GoogleBrainTeam,
2020c) and tf.tensordot (GoogleBrainTeam,
2020d).

2.5 Experiment 2: Increasing t

With the code, training TransWeight with a
higher amount of transformations can be done by
changing the training parameters, which will be
discussed in 2.6.1.

2.6 Training the models

Using training.py, combined with the provided
data sets by Dima et al., 2019b (2.1), all existing
models in the code and the new model are trained
on each corpus. For the second experiment, on
each corpus, the model of TransWeight is trained
five times, using t = 100, 200, 500, 1000, 10000
transformations respectively.

2.6.1 Parameters

For the first experiment, for every model, all
parameters are set to their defaults specified by
the code, which are displayed in table 2 below.

For the second experiment, TransWeight
is trained multiple times, respectively using
values 100, 200, 500, 1000, 10000 for parameter
transforms.

Default parameters
batch size 100
dropout 0.5
dropout2 0.5
patience 5
learning rate 0.01
seed 1
transforms 100
use weighting False
nonlinearity identity
selection func softmax
regularization 0.0
regularizer l1 regularizer
plot False
eval on test False
max rank 1000
eval batch size 500
use nn False

Table 2: list of all parameter values used for
training.py

3 Results

3.1 Experiment 1

As shown in table 3, the results of training
and evaluation on all corpora for the new model
(DeepWeight) are very close to the results of

TransWeight. As discussed below in (3.1.1) with
a t-test, there is no reason to assume both results
differ significantly.
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Comp. model / #transforms TransWeight DeepWeight
German

Noun Compounds [3.0, 8.0, 44.0], 41.56% [3.0, 8.0, 44.0], 41.42%
Adjective-Noun Phrases [1.0, 2.0, 8.0], 68.77% [1.0, 2.0, 8.0], 68.77%
Adverb-Adjective Phrases [1.0, 1.0, 5.0], 76.86% [1.0, 1.0, 5.0], 76.88%

English
Noun Compounds [1.0, 2.0, 9.0], 67.65% [1.0, 2.0, 9.0], 67.60%
Adjective-Noun Phrases [1.0, 2.0, 6.0], 74.37% [1.0, 2.0, 6.0], 74.37%
Adverb-Adjective Phrases [1.0, 1.0, 2.0], 91.45% [1.0, 1.0, 2.0], 91.60%

Dutch
Adjective-Noun Phrases [1.0, 2.0, 6.0], 75.00% [1.0, 2.0, 5.0], 75.06%
Adverb-Adjective Phrases [1.0, 1.0, 3.0], 81.37% [1.0, 1.0, 3.0], 81.70%

Table 3: Evaluation results of the TransWeight model and DeepWeight model for every corpus in the
data set.

3.1.1 Two-Sample T-Test

Given the evaluation results of the eight corpora as
illustrated in table 3, let A be the collection of all
estimated ranks over all corpora for TransWeight
and let B be the collection of all estimated
ranks over all corpora for DeepWeight. As
null-hypothesis, H0 states that both means of A

and B are equal. Let α = 0.05. We discard H0 if
the calculated p-value is lower than α. Conducting
a two-sided t-test over A and B results in (t ≈
−0.245, p ≈ 0.807). As p > α, the t-test concludes
that it fails to reject H0. Therefore, there is no
reason to assume both results differ significantly.

3.2 Experiment 2

As shown in tables 4 and 5, varying the number
of transformations t for TransWeight with values
100, 200, 500 and 1000 resulted in near equal
results in the performance. As shown in 5, values
t = 10000 and t = 50000 made the TensorFlow
library yield an out of memory error, as the

resulting amount of nodes by increasing to 10000
or more could not be allocated by the system. As
discussed below in (3.2.1), based on an analysis of
variance, there is no reason to assume the tested
results differ significantly.

t = 100 t = 200 t = 500
German

Noun Compounds [3.0, 8.0, 44.0], 41.56% [3.0, 8.0, 44.0], 41.42% [3.0, 8.0, 44.0], 41.51%
Adjective-Noun Phrases [1.0, 2.0, 8.0], 68.77% [1.0, 2.0, 8.0], 68.72% [1.0, 2.0, 8.0], 68.72%
Adverb-Adjective Phrases [1.0, 1.0, 5.0], 76.86% [1.0, 1.0, 5.0], 76.75% [1.0, 1.0, 5.0], 76.77%

English
Noun Compounds [1.0, 2.0, 9.0], 67.65% [1.0, 2.0, 9.0], 67.51% [1.0, 2.0, 9.0], 67.31%
Adjective-Noun Phrases [1.0, 2.0, 6.0], 74.37% [1.0, 2.0, 6.0], 74.34% [1.0, 2.0, 6.0], 74.36%
Adverb-Adjective Phrases [1.0, 1.0, 2.0], 91.45% [1.0, 1.0, 2.0], 91.21% [1.0, 1.0, 2.0], 91.29%

Dutch
Adjective-Noun Phrases [1.0, 2.0, 6.0], 75.00% [1.0, 2.0, 6.0], 74.94% [1.0, 2.0, 6.0], 74.89%
Adverb-Adjective Phrases [1.0, 1.0, 3.0], 81.37% [1.0, 1.0, 3.0], 81.15% [1.0, 1.0, 3.0], 81.15%

Table 4: Evaluation results of TransWeight over every corpus in the data set, with varying values of
t = 100, 200, 500 in each test.
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Comp. model / #transforms t = 1000 t = 10000 t = 50000
German

Noun Compounds [3.0, 8.0, 44.0], 41.51% Out of Memory (OOM) OOM
Adjective-Noun Phrases [1.0, 2.0, 8.0], 68.72% OOM OOM
Adverb-Adjective Phrases [1.0, 1.0, 5.0], 76.73% OOM OOM

English
Noun Compounds [1.0, 2.0, 9.0], 67.42% OOM OOM
Adjective-Noun Phrases [1.0, 2.0, 6.0], 74.34% OOM OOM
Adverb-Adjective Phrases [1.0, 1.0, 2.0], 91.21% OOM OOM

Dutch
Adjective-Noun Phrases [1.0, 2.0, 6.0], 74.88% [1.0, 2.0, 6.0], 74.31% [1.0, 2.0, 6.0], 74.28%
Adverb-Adjective Phrases [1.0, 1.0, 3.0], 81.26% [1.0, 1.0, 3.0], 82.00% [1.0, 1.0, 3.0], 81.11%

Table 5: Evaluation results of TransWeight over every corpus in the data set, with values for t =
1000, 10000, 50000 in each test.

3.2.1 Analysis of Variance

To test whether there is a significant difference
between the tested groups of corpora, an analysis
of variance (ANOVA) is conducted. Moreover,
let A be the collection of all estimated ranks
over all corpora for TransWeight with number of
transformations t = 100, let B consist out of
the corresponding evaluations for t = 200, C for
t = 500, D for t = 1000, E for t = 10000 and
F for t = 50000. As training and evaluating
TransWeight with t = 10000 and t = 50000

resulted in an Out of Memory Error in most cases,
sets E and F are excluded from the analysis. The
null-hypothesis H0 states that the means of A,
B, C and D are the same. Let α = 0.05, H0 is
rejected if the p-value is lower than α. The analysis
of variance between sets A, B, C, D resulted in
ANOV A(A,B,C,D) = (t ≈ 0.0744, p ≈ 0.974).
Since p > α, there is no evidence that H0 can be
rejected.

4 Conclusion

DeepWeight is established in an attempt to
further iterate on TransWeight’s performance at
composition word vector estimation. In summary,
TransWeight includes a second layer, which
increases overall model complexity. With this
research investigating possible improvements on
TransWeight’s success, further increasing overall
model complexity is speculated to attain that goal.
However, based on the results of the conducted
experiments, just increasing model complexity
may not be the solution, as no significant
improvements are observed.

4.1 Alternate approaches

TransWeight may already be complex enough,
suggesting that increasing complexity may be
trivial. However, such a conclusion may be drawn
too fast, as this research does not disprove that
with a different approach to increasing complexity,
better results may be achieved. Moreover,

potentially, using different composition functions
such as contracting over different axes of tensors,
adding a third or fourth layer, better results may
be achieved.

4.2 Further research: non-linearity

As discussed in 1.4.2, according to Glorot et al.,
2011, introducing non-linearity by using a rectifier
function on the nodes in a neural network improves
the performance of the network. Dima et al.,
2019c reported to find no significant improvements
for any model using non-linearity g = ReLu =
λx.max(0, x) (Hahnloser et al., 2000) or g = tanh.
This is in contrast with the findings of Glorot
et al., 2011. However, Dima et al., 2019c only
reported on comparing non-linearity functions
mentioned above. Therefore, in further research,
experiments with different rectifier functions can
be conducted to observe potentially more or less
accurate results.
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