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Abstract

In this thesis we will look into the configuration of microservices. Over the years
the software landscape has evolved from monolithic applications to microservice
architectures. For these microservice architectures that configuration has be-
come increasingly important. As the microservice architectures grew larger the
amount of configuration has also increased which causes the developers to not
fully grasp the mesh they are developing. This service mesh configuration allows
the developer to automatically scale the application when demand increases.
This configuration can also handle cases where a part of the network becomes
unavailable or unreliable. By not exactly knowing how the network functions
and what a small change can cause further down the network, errors can easily
be introduced. We are investigating a way to give the developer more insight
into the consequences of his changes. In a world where the software landscape
is becoming increasingly important and large this can help developers to se-
riously improve the quality of their configurations. We looked into data from
the configuration files for the service mesh and the logging that is produced by
the service mesh. We found that with the information it is possible to create
realistic simulations. Under the right circumstances it is even possible to make
good predictions about the traffic and load within a service mesh after a change.
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1 Introduction

Software and the infrastructure on which they run have become larger and
more complex over the years. As a result the servers that have to provide
the computational power for these applications have also become larger and
more powerful. At first it was feasible to add more hardware to these systems
to make them more powerful; this is called vertical scaling or scaling up [20].
But with these ever growing systems just adding more hardware does not scale
anymore, as this has limitations on the maximum power for a single server and
causes downtime during the upgrade. When a single server is not sufficient
to run an application multiple servers are required; this is called horizontal
scaling. This does require the application to run on multiple servers, this has
a lot of caveats. The data for the application has to be replicated over all
servers, incoming requests have to be balanced and the application has to be
changed in order to support running on multiple servers. The splitting of a
single application over multiple servers (or instances) has been brought to the
next level by microservices.

With microservices each piece of the application is placed within a different
server. These servers operate and scale independently of each other, this allows
the application to scale specific parts as the demand for them grows. This has
many advantages beyond just allowing the application to scale to an increased
load. It also allows developers to test new versions of their application for a
small percentage of their users and deploy new versions without ever having to
bring the system down.

These features do come with a cost: configuration. All these services need
to work together in a coordinated fashion which requires a serious amount of
configuration which grows with the size of the network. For small networks the
developers may still have an overview of all the services and how they work
together, for larger networks this becomes a near impossible task. For these
larger networks it is beneficial to make the microservice architecture into a
service mesh. Within a service mesh some of these functions, like load balancing
and resiliency, are taken over. The developer can configure thresholds for the
application and the service mesh will scale the microservices within the service
mesh to meet these thresholds. This behavior causes the service mesh to be
very dynamic, but also hard to understand.

InfoSupport [30] is a company that builds software solutions for their cus-
tomers. Within their customers they see the increase in use of microservices
and the configuration complexity that comes with this. This research has been
conducted to build a tool that helps developers with building these large scale
applications. We want to do this by increasing the developers understanding
of the microservice network by analysing the configuration and creating a visu-
alisation of the network. By doing this we hope that the developer can make
better choices and quickly see the consequences of changes he makes in the con-
figuration files. By gaining more insight into the service mesh, the developers
can prevent simple mistakes that can cause huge outages. Configuration errors
are quickly made as seen by one of the recent outages at Google [18]. These

4



outages show the importance of good understanding and testing of service mesh
configuration. This is also important for the clients of InfoSupport.

1.1 Research questions

For our research we want to look into preventing errors that developers can
make while they are working on service meshes. The use of service meshes is
increasing with the more agile way of working that has been introduced over the
years. Because of the amount of configuration that is involved with structuring
these meshes the complexity has also increased which has caused problems as
shown by the Google outage [18]. The current tools allow for visualisation of
meshes that are in production but do not allow the developer to look into the
workings of the mesh without it having been deployed. This can be an issue for
larger meshes where the developer might not have a full understanding of all
mesh components and has to find out if there will be errors while deploying the
service mesh. Analyzing the service mesh before it is deployed also implies that
there are only three sources of information which can be used: the configuration
files for the service mesh (the YAML files), the source code of the application,
and developer knowledge.

The research questions are as follows:

Research Question 1: Is it possible to construct an accurate simulation of a
service mesh with just the static configuration files for that network?

Research Question 1.1: Which information is required to create an accu-
rate simulation of a service mesh?

Research Question 1.2: Which information is missing from the configura-
tion files for the service mesh?

Research Question 2: Can we increase the performance of a simulation by
adding dynamic information, such as log data?

Research Question 3: What is the accuracy of the simulation of the real
service mesh?

1.1.1 Structure of Thesis

We first go into service meshes, what are they made of and how do they operate.
We then look at the model that is used for the simulation of a service mesh.
After that we look into the analysis of log files that are produced by a real service
mesh, and how this logging is stored in our model. Then we look into how the
simulation tool is built. We also see how the simulation and the real service
mesh compare. Finally we draw conclusions from the conducted research.
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2 Related work

2.1 Configuration as code

Application behavior used to be dominated by the application logic, but as the
application is shifting from a monolithic application to a microservice archi-
tecture the configuration starts to have a bigger influence on the application
behavior. Within a microservice architecture there are options to scale the
application based on load. Traffic within a microservice architecture is load
balanced (traffic is routed to parts of the network that are available). These
properties make a microservice architecture dynamic in nature. But being dy-
namic also means that there are a lot of different states that can be derived from
the microservice configuration. Because the configuration has such an influence
on the application behavior this configuration should also be managed in the
same way that code is. This includes versioning and, most importantly, testing.

2.1.1 The importance of testing

There is no doubt that testing of a code-base is important [11]. Nowadays it is
hard to imagine to ship a product without it ever being tested. Especially since
large teams of developers are working on a piece of software, which makes it
harder to be sure that the internal components are fully compatible with each
other. That the configuration of the system should also be tested became clear
during the outage of Google [18] where a misconfiguration led to a large piece
of the network failing. This shows that the configuration of the network should
also be tested before being deployed just like the code-base. But for applications
that expect a serious load this can be very hard as there is no good way yet to
test how a network will handle a large load without deploying it first.

Cohen et al. [5] showed that configuration can greatly affect the outcome of
a test. When software is tested with a certain configuration and is found to be
working it does not guarantee that the software will function without errors in
another configuration. They showed that depending on the configuration used,
the code coverage can vary greatly and thus that which configuration is used
for testing is a serious concern. With more configuration options the number of
potential configurations (and thus test cases) increases rapidly. This combined
with the earlier mentioned configuration dependent code coverage allows for
bugs to go undiscovered during testing only to show themselves when a user
configures the application in an untested way. This concept of configuration
dependent testing is also shown by Dongpu et al. [12]. Those papers focused on
the inner configuration of an application (e.g. the behavior that a browser has
when opening on a new tab, should it go to a certain web page or open a blank
tab). We will focus on the way that microservices within a service mesh interact
with each other instead of configuration within a microservice itself. But these
papers do show the importance of testing a configuration before deploying it.
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2.1.2 Quality metrics

Code quality metrics can say a lot about the general quality of a piece of code.
They do not guarantee its correctness in any way but does give an indication
of how well the code was written. It can also be used to point towards pieces
of code that possibly contain mistakes as shown by Jiang et al. [8]. The
importance of quality metrics is also shown by Oliveira et al. [9]. They looked
into code quality metrics specifically for the embedded software industry. They
felt that the current software quality metrics do not suffice for the embedded
software as they usually favor a lower resource footprint over easier and more
maintainable code. The authors also showed that the use of code quality metrics
improved the quality of the code significantly and decreased the time to market.

The amount of literature on code quality metrics show its importance in
software development. Yet there are currently no ways to measure the quality
of your microservice configuration or service mesh.

2.1.3 Language expressiveness

To reason about different languages and what they can do it is important to
know how expressive these languages are. A framework for reasoning about
the expressiveness of a programming language is given in ”On the Expressive
Power of Programming Languages” by Matthias Felleisen [2]. We will use this
to reason about the complexity of the configuration files that are used to deter-
mine the behavior of the microservices. The complexity that is possible within
configuration greatly determines the number of configuration options and thus
the amount of testing that has to be done to cover all scenarios.

2.1.4 Information incompleteness

A lot of information can be gathered from the YAML files that are used to
configure the microservice. But it is not always possible to extract all required
information from just the static files. For this information we will need ad-
ditional information which can come from an already running system. Using
additional dynamic information has a lot of advantages as stated in ”Recover-
ing High-Level Views of Object-Oriented Applications from Static and Dynamic
Information” [3]. In our case the static information will come from the YAML
files that are used to configure the network. The dynamic information will come
from the logging that is generated by the service mesh. The service mesh al-
lows for distributed tracing which show the path that a request makes through
the network. This combined with the static information about the instances
that are available can provide valuable insight into the operation of an already
running network.

2.2 Visualisation

The relationship between microservices within a microservice architecture can
be best described as a graph. The graph can also be used to show potential
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connections that receive a high load or connections that will be established or
broken when a new version of the configuration is applied. We want to visualize
this graph to the developer. The graph used by Istio has already been shown
in figure 9.

The visualisation of the network will be very important as this will be the
main way to inform the developer about the state of the network. As the network
grows larger this will become increasingly difficult especially because when large
graphs with lots of nodes and edges are being viewed, it is important that edges
do not overlap too often. Excessive edge crossing make the display cluttered and
therefore make it hard to read and interpret the graph. In ”Geometry-Based
Edge Clustering for Graph Visualization” [7] the authors looked into a way of
clustering the edges in such a way that the graph is easier to read.

There is also the dilemma of being able to read both the global structure of
the network and also be able to view the local details. The authors of Node-
trix [6] looked into a way to show different levels of information through a
hybrid view of the network. They combined node-link diagrams with adjacency
matrices to make large graphs easier to read.

Figure 1: The resulting visualisation of Nodetrix [6]

2.3 Graph analysis

One of the ways that you can look at a computer network is like a flow network.
The data flowing through the connections of the microservice architecture is
something that should be going without any trouble. Because of this, it is
relevant to look at the amount of flow that is possible in any given network [1].
This can be done for different configurations of the network to see which one
provides sufficient or even optimal flow. It will also help to test if a node is (still)
reachable through the use of graph connectivity. The reachability problem has
also been investigated by Xie et al. [4]. They looked into different segments of
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an IP network to provide information on situations where a network would be
cut loose from other networks. This was done for corporate networks that were
accessed through a virtual private network (VPN) connection but it translates
very well to containers within a service mesh.
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3 Preliminaries

The software landscape has moved from single large monolithic applications to
more scalable and modular architectures. These architectures consist of small
independent services (microservices) which work together. The environment in
which such a microservice runs is called a container. Each of these microservices
runs in its own container.

3.1 Webscale architectures

3.1.1 The problem solved by microservices

As computer usage grew different kinds of architectures were invented to pro-
vide the infrastructure for this growing demand. One of the architectures that
was developed is the microservice architecture. The microservice architecture
replaced the existing monolithic architecture which was just not suitable for
the large scale web applications of today [33]. Tools like Istio, which will be
explained in more depth later, became available to help manage the load of
microservices for an application. New and diverse usages of applications also
require more flexibility in scaling specific parts of the application [14]. Each
type of user (mobile, desktop, API) may require a different frontend to work
with while the application logic might be the same for all users. Having to
scale up the application logic because there are a lot of API requests does not
mean that there have to be more instances of the desktop frontend. And an
update to one of the frontends does not have to cause the application logic to be
re-deployed. By moving to the much more modular microservice architecture
these components can be scaled and updated individually.

Due to the ability to scale services individually a higher uptime can also be
achieved. By deploying the same service multiple times the network is more
resilient to failure, if a service fails another instance of that service can take
over. This flexibility also allows developers to quickly release new versions of
an application without having to go down to do the upgrade [16].

The use of microservice architectures also allows for easier use of polyglot
programming. As each component is a self managing piece of the application
that uses APIs to expose its data to other parts of the application there is also
a new opportunity to choose different languages or programming techniques for
different services. Polyglot programming is possible in a large monolithic ap-
plication, but it will require a lot of effort to couple the individual components
to each other. With the microservice architecture the components just need to
implement the same API protocol which will allow for inter service communi-
cation. By making it easier to use different languages it becomes easier to use
the right tool for the job, which reduces the overall project complexity [13].

3.1.2 Problems caused by microservice architectures

Although microservice architectures have a lot of advantages they also come
with some drawbacks. This was demonstrated by an outage at Google on the
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2nd of June in 2019 [18]. A configuration change that was only intended for
a small group of servers was accidentally applied to a large group of servers.
This caused the network to only use half its capacity which led to a significant
reduction in overall traffic. This misapplication of configuration showed that a
change in configuration can have a big effect on the operation of a network. In
a system where the entire application is deployed as a monolith there was no
need to worry about configuration for inter service communication. By splitting
the application into tiny bits and pieces the headache of maintaining all this
configuration (and other complexities that come with a distributed system)
becomes a bigger challenge [39]. This switch is usually only viable for larger
applications as illustrated by figure 2.

Figure 2: It is only viable to switch to a microservice architecture for large
complex applications [39]

The possibility of using polyglot programming is both a strength and a
weakness. By using a lot of different languages and paradigms a lot of knowledge
is needed within the team to maintain the system, as all these languages and
paradigms have to be known in order for the developer to maintain the entire
system [32]. It might seem tempting to implement a specific component in a
language that might be slightly more efficient, but this will cost more time in

11



the long term as the maintainers will also need to invest the time and energy
into learning that language.

By splitting up the application into different components the difficulty of
handling errors also increases significantly. When a service fails it should not
cause the entire network to go down and the data in the network should also not
be corrupted. Guidi et al. [10] looked into ways of handling errors in Service
Oriented Computing (SOC). By deploying the microservices within a service
mesh it is also possible to monitor errors within the network communication
closely. In the Kiali dashboard it quickly becomes clear when an application
instance is malfunctioning.

Microservices need to work tightly together to provide a useful application.
This need for communication creates dependencies on other microservices. Hav-
ing dependencies introduces a series of risks and therefore it is important to
manage these dependencies as shown by Esparrachiari et al. [17]. One of the
main risks is cyclic dependencies: this is where an application breaks because a
series of services depend on each other to function. Other risks involve perfor-
mance and security issues, where an issue in a single service might cause trouble
for all services that depend on that service. Tools like Istio have proven to be
a useful tool to mitigate many of these basic security issues. This is done by
injecting a piece of code into the microservice which functions as a proxy. This
injected piece of code is called a sidecar and can handle things like authorization,
authentication, and encryption.

3.1.3 Communication patterns

Communication is key for microservices as each microservice only does a small
part of the bigger task. This communication can take place in different forms
and protocols as described by an article on Reflectoring [38]. One of these
forms is a synchronous call, where microservice A connects to microservice B,
requests some data, waits for it and then returns with that data to microservice
A. This form of communication does introduce strong coupling as microservice
A has to wait for microservice B to finish. If microservice B does not finish
on time it might cause a timeout for microservice A. In order for this to work
the microservices also need to know of each others existence. This can be done
through service discovery which makes this very easy. When a new service
is created it will register itself to a central registry, after that has been done
other services can easily find the service by simply doing a DNS lookup for that
service.

A better option is the one of simple messaging, which is also described by
Microsoft [22]. When using this pattern service A fires a message to a message
broker and continues working on something else. Service B will see the message if
it is subscribed to the topic that service A published the message in. The services
do not need to be connected to each other, just to the message broker. If service
B is not available it can still receive the message when it becomes available again
and service A does not need to worry about having to retry later as this is done
by the service broker. This does add a dependency on the message broker, if
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the message broker is not available the two services are unable to communicate.
Another potential drawback is the message structure. If the application changes
and introduces a new message structure then all applications that listen to that
type of message will have to be made to understand this new type of message,
which works against the idea of independent service deployment.

As any call to a remote service can fail it is important to cope with these
failures, Microsoft published an article regarding the design for inter service
communication [22]. One way of coping with these failures is by retrying the
request after a short time. If the service is unavailable due to a reboot it might
not respond for a while and this retry might fail as well. When retrying it is
important to have some kind of circuit breaker in place to prevent the network
from being flooded by these retries. The tools provided by a service mesh can
also help to implement systems like the circuit breaker as the proxy in the
sidecar can see the requests and find badly behaving instances of a service.

3.1.4 Single responsibility

The idea behind splitting up a large (monolithic) application into multiple
smaller components is the idea that each component can focus on a single
task [14]. The microservice should be self-contained (it needs to have all the
data and logic that is required for its task) so that it does not have to depend on
other services. This makes it easy for the microservice to be scaled and deployed
independently of other microservices. The microservice can be developed inde-
pendently of other microservices as long as it still fulfills its specification. As
stated by the authors the process of splitting an application into microservices
is a daunting task which requires a certain intuition to determine where to draw
the line between different microservices. There are a few patterns that can be
used to split an application into microservices as described on DZone [21].

The first option is to decompose by business capability. A business capability
is something that a business does in order to generate values (for an insurance
company capabilities include processing claims or billing) [21]. This decompo-
sition using the business capabilities is a good start but the authors point out
that there will still be some ”God Classes” which will be too large and have
to be decomposed further. For these cases Domain-Driven design (DDD) can
solve the problem. For example, the ”Order” class is a domain which can be
divided into subdomains and each subdomain will have a model. The scope of
this model is called the bounded context and a microservice is developed around
such a bounded context. The final division will usually result in something
that is very modular which also allows for a great way to scale the application.
Each individual component can be scaled depending on the demand for that
component.

3.2 Containers and Docker

Containers have enabled developers to focus more on the development of the
code instead of having to worry about the environment where the code will

13



be deployed. A container is essentially the environment that the code is going
to run in, this is provided by Docker [24]. Something similar to containers is
virtualization, where multiple operating systems run virtually on a single host.
Figure 3 shows the difference between a host with multiple virtual machines and
a host with multiple Docker containers. Because the Docker containers share
the OS and where applicable binaries and libraries, the resource footprint of a
container is a lot smaller than the resource footprint of a virtual machine. This
allows for quicker deployment and better resource utilization of a single host.

Figure 3: The difference between Docker and a virtual machine (VM) [29]

A Docker environment is defined through a dockerfile. In a dockerfile all
commands that are needed to build the image for a container are specified.
The image is an immutable file which is essentially a snapshot of a container.
When you run an image you get an instance of that image which is called a
container. These containers can be build from a simple lightweight text file
which makes them very portable: it is easy to move a container one from ma-
chine to another as only the dockerfile has to be executed to build an identical
container on the other machine. This has the added benefit that it is sim-
ple to create identical development and production environments (when both
run the same docker containers). This greatly reduces the amount of problems
while deploying new applications as there is no sudden missing dependency, or
a leftover from a previous version that could cause an error. An example of a
dockerfile taken from https://docs.docker.com/develop/develop-images/

dockerfile_best-practices/ can be seen below.

1 FROM ubuntu:18.04

2 COPY . /app

3 RUN make /app

4 CMD python /app/app.py
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This file builds further on the Ubuntu image, copies files from the current direc-
tory to the ’app’ directory, builds the application and then runs the application.
This freshly created image can be saved in the Docker Hub so that other de-
velopers can use it. A lot of images already exist in the Docker Hub (images
for MySQL, NGINX, Apache, etc.), developers can easily take these images and
use them for their applications.

3.3 Docker compose

Even a simple website will require multiple containers. For a PHP website you
will need a container with Apache or NGINX and a container with MySQL.
PHP and MySQL can be placed in a single container, but a best practice is
to split this over different containers. By splitting applications over different
containers you allow them to be scaled and deployed individually. If the PHP
and MySQL application were in the same container you will always have to
scale them together. When they run in individual containers and your appli-
cation starts to get more traffic you can easily deploy multiple PHP containers
(which do the heavy work) which communicate with a single MySQL container.
You can start those two containers manually which will work fine for only two
containers. But as you add more containers this will take more time and can
result in errors (you could for example forget to spin up a container). This
problem is tackled by using docker compose, which allows you to define a set of
containers that have to be started simultaneously. A part of a docker compose
file taken from https://github.com/nanoninja/docker-nginx-php-mysql/

blob/master/docker-compose.yml can be seen in figure 4.
This compose file will start two containers, a container called ”web” (line

3) and a container called ”mysqldb” (line 21). The ”web” container is based
on the nginx:alpine build, which is the source image as can be seen on line 4.
On line 6 and 7 the volumes are mounted: this allows the container to access
data from the host system (in this case the HTML files for the site and the
SSL certificates). After that two ports are exposed. Port 80 and 443 on the
container are bound to port 8000 and 3000 on the host (line 9 and 10), which
makes the server accessible to the outside world. On line 11-15 the health check
is defined. Every 90 seconds Docker will run the command on line 12 to see if
the server is online. If it does not respond within 10 seconds three times in a
row the container will be killed and a new container will be started. On line 16
the environment variable ”NGINX HOST” is set. The restart policy is set to
”always” on line 17, which will cause the container to start if it is terminated for
whatever reason. Finally on line 20 it is configured that this container depends
on the ”mysqldb” container, so that container has to go up before this container
can start. By issuing the command ”docker-compose up” in the same folder as
the Docker compose file both the NGINX and MySQL container will be started.

One of the features of Docker is that the containers can easily connect with
each other using their given names (mysqldb and web). When a container is
started it registers itself with Docker using the given name, Docker will register
that name with the IP address of the container in its own DNS server. Whenever
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1 version: '3'

2 services:

3 web:

4 image: nginx:alpine

5 volumes:

6 - "./etc/ssl:/etc/ssl"

7 - "./web:/var/www/html"

8 ports:

9 - "8000:80"

10 - "3000:443"

11 healthcheck:

12 test: curl --fail -s http://localhost:5000/ || exit 1

13 interval: 1m30s

14 timeout: 10s

15 retries: 3

16 environment:

17 - NGINX_HOST=${NGINX_HOST}

18 restart: always

19 depends_on:

20 - mysqldb

21 mysqldb:

22 image: mysql:${MYSQL_VERSION}

23 container_name: ${MYSQL_HOST}

24 restart: always

25 env_file:

26 - ".env"

27 environment:

28 - MYSQL_DATABASE=${MYSQL_DATABASE}

29 - MYSQL_ROOT_PASSWORD=${MYSQL_ROOT_PASSWORD}

30 - MYSQL_USER=${MYSQL_USER}

31 - MYSQL_PASSWORD=${MYSQL_PASSWORD}

32 ports:

33 - "8989:3306"

34 volumes:

35 - "./data/db/mysql:/var/lib/mysql"

Figure 4: An example of a Docker Compose file.
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another container uses the given name Docker will resolve the name to the IP
address of the container. This has the advantage that IP addresses do not have
to be hardcoded into the application and thus do not have to be updated.

3.4 Kubernetes

Docker compose is useful for managing a few containers, but once you get to
large scale networks Docker compose does not suffice as it only manages a single
host. For larger applications it might be necessary to have containers on multiple
hosts, which also allows for more resiliency. Google has one and a half decade of
experience [15] in running large applications and has developed a tool for this,
Kubernetes [35]. Kubernetes is an alternative to Dockers own implementation
(Docker Swarm [25], which is easier to use but also has less functionality).

Figure 5: The setup of a Kubernetes network [36]

A Kubernetes setup consists of several elements managed by the master [37]:
cluster(s), nodes, pods and containers as seen in figure 5. A cluster is a set of
worker machines grouped together. We refer to one of these worker machines as
a node. The node needs to have a kubelet (a process which is responsible for the
communication with the master) and a container runtime (e.g. Docker, which
is responsible for pulling the container image and running the container). On a
single node one or more pods can run. A pod is a Kubernetes abstraction that
represents a group of one or more containers and contains resources like storage,
networking, and the information about how to run each container. Containers
that run within one pod should be tightly coupled (they share the storage and
networking) and will always be deployed together. Containers that run within a
pod will be the same as the earlier explained Docker container. An illustration
of such a pod can be seen in figure 6.
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Figure 6: The setup of a Kubernetes pod [42]

Because of the way that Kubernetes manages the full stack from cluster to
container it also enables developers to easily scale the application to multiple
instances quickly. Kubernetes also detects if a pod goes down or crashes and
will start a new pod with the same containers to replace the faulty one. Kuber-
netes also has the option to run containers on different nodes, which increases
resiliency. If a node crashes due to a hardware error (a blown up power supply
unit for example) Kubernetes will detect this and will send all traffic to pods
that are available. By doing this the uptime of an application can be increased.
Kubernetes also offers a horizontal pod autoscaler [28], which can automatically
scale up the number of pods when it detects that the current pods cannot han-
dle the load. It does this by keeping track of CPU usage for each pod and
comparing this to the level set by the developer. If the mean CPU usage of the
pods is higher than what is set by the developer Kubernetes will add extra pods
(for example, if the current load is 200 and the desired load is 100, the amount
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of pods will be doubled as 200 / 100 = 2). If the CPU usage drops below the
threshold Kubernetes will stop pods one by one with 5 minute intervals.

3.5 Service mesh

A service mesh builds on top of a container orchestrator (like Kubernetes) to
allow for even more control over the network. The service mesh will also take
care of interservice communications, monitoring and security-related items. The
service mesh does this by adding a sidecar to a pod which is used as a proxy,
all ingress and egress traffic will be routed through this proxy. This proxy can
then monitor all traffic to provide insights and allow for better load balancing.
The proxy also enables easier use of encryption as a public key infrastructure
(PKI) is set up to distribute the encryption keys to all of the sidecar proxies.
The service mesh also handles the dynamic scaling of the instances when load
increases or decreases. When the service mesh notices that an instance of type
A has a very high load, it will create more instances of type A to distribute
the load. When the load drops and instances start to idle the service mesh will
terminate those instances to free up system resources. Due to this dynamic
behavior service discovery is needed. When a microservice within the service
needs to communicate with another microservice it does know what their IP
address is. This is handled by the sidecar proxy. The instance communicates
with the proxy and the proxy finds an available instance to communicate with.

Figure 7: The setup of a service mesh [43]

The service mesh is divided into two main components the control plane and
the data plane. The data plane of a service mesh is the part that manages the
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network traffic between pods. The control plane on the other hand generates
and deploys the configuration that determines the behavior of the data plane.
In figure 7 an example of a service mesh can be seen. The combination of the
”Instance” and ”Sidecar Proxy” will go into one pod in a Kubernetes based
system.

3.6 Istio

There are multiple implementations of a service mesh, Consul, Linkerd and Istio
all fulfill the role of a service mesh. However, Istio offers the most flexibility (and
thus complexity). Istio is easy to add to an existing microservice architecture as
it only requires the deployment of the sidecar in each of the Kubernetes pods.
From that moment onward Istio provides a dashboard which allows for detailed
logging and fine-grained control over the traffic in the network. This includes
fault injection which can be used to see the response of the application to faulty
instances. All further sections in this document will use Istio as their base.

3.6.1 Sidecars

The Istio sidecar is extremely easy to install. It can be added to any existing
service mesh without any problems as it is configured to allow network com-
munication to all other instances on the network. This allows you to add it
easily and then narrow down the configuration for added security. The im-
mediate benefit is the monitoring of all traffic and the injection of errors into
the network. The sidecar can be injected using the existing yaml files for the
Kubernetes configuration with a single command:

1 istioctl kube-inject -f

2 samples/sleep/sleep.yaml | kubectl apply -f -

After injection all the benefits of using a service mesh will be available immedi-
ately and the instance can be seen and managed in the Istio dashboard.

3.6.2 Envoy

So far the sidecar proxies have been mentioned several times but there have been
no specifics on how this is achieved. In the Istio sidecar there is an instance with
Envoy. Envoy is a proxy which can also be deployed in a sidecar. Envoy is able
to function as a proxy for any TCP protocol and can handle SSL certificates for
all connections within the service mesh. This ensures that connection between
different nodes of the service mesh are secure. Envoy also records the statistics
for network traffic and offers distributed tracing [26]. This is done partially by
Istio as all the traffic for that instance is routed through the Envoy proxy but it
does require some setup. The ability to utilize the distributed tracing is a tool
which can be very helpful. Distributed tracing allows the developer to see the
flow of a request throughout the network, even if that request ’hits’ multiple
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different services. This is done by adding a unique ID to all requests as they
flow through the mesh.

3.6.3 Logging

The logs which are collected by Envoy contain a lot of information. From the
configuration of an individual pod it is not clear which other pods on the network
are accessed, but the logging can provide more information on this. Istio keeps
track of all connections that are established between pods and can optionally
log them. By doing this for an already existing network we can exactly see
how the traffic within the network is organized. In the example piece of logging
below you can see which kind of data can be extracted from the network log.
The ”source” and ”destination” are the most important to us as they show how
the traffic is routed within the network.

1 {"level":"warn", "time":"2018-09-15T20:46:36.009801Z",

"instance":"newlog.xxxxx.istio-system",

"destination":"details", "latency":"13.601485ms",

"responseCode":200, "responseSize":178,

"source":"productpage", "user":"unknown"}

↪→

↪→

↪→

↪→

2 {"level":"warn", "time":"2018-09-15T20:46:36.026993Z",

"instance":"newlog.xxxxx.istio-system",

"destination":"reviews", "latency":"919.482857ms",

"responseCode":200, "responseSize":295,

"source":"productpage", "user":"unknown"}

↪→

↪→

↪→

↪→

3 {"level":"warn", "time":"2018-09-15T20:46:35.982761Z",

"instance":"newlog.xxxxx.istio-system",

"destination":"productpage", "latency":"968.030256ms",

"responseCode":200, "responseSize":4415,

"source":"istio-ingressgateway", "user":"unknown"}

↪→

↪→

↪→

↪→

One of the drawbacks of logging is that it can only be collected after the
fact. This requires a network to be run as the log files cannot be generated
statically by Istio.

3.6.4 Distributed tracing

As stated earlier distributed tracing can greatly help a developer to better un-
derstand an application. Istio does this by attaching a header to each request
that comes in (if it does not have a header yet). When a request passes through
the proxy without any of the following headers, they are attached so the request
can be tracked: x-request-id, x-b3-traceid, x-b3-spanId, x-b3-parentspanid, x-
b3-sampled, x-b3-flags, b3 [23]. Important to note is that a single request gets a
x-request-id, x-b3-trace-id, x-b3-spanId and a x-b3-parentspanid. Having mul-
tiple of them might seem unnecessary at first but you also have to consider the
situation where a single incoming request in a service leads to multiple requests
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being sent to other services. By generating new spanid’s for the outgoing re-
quest but sharing a single parentid the service mesh is able to track exactly
where the request branched into multiple requests.

There is one important implementation detail which is necessary in order
for the tracing to work correctly. The application that receives the request,
processes it, and sends the response, has to handle the HTTP headers as well.
This usually leads to the application extracting the headers before it begins
processing the request and appending them back to the response (or outgoing
requests to other services) after it has processed the request. This is required
because there is no implicit way to correlate the incoming requests of a service
to the outgoing requests or responses of that service (as a service might receive
multiple requests at the same time, which can all trigger different responses to
different services).

3.6.5 Desired state configuration

A big advantage of Kubernetes and Istio is the ease of creating environments for
your code to run in. It is very easy to create a new container to deploy your code
in initially, or even scale them up whenever the application is experiencing more
load. You might also want to change some parameters of your container while
the application is running, but all this without the application going down. In
Kubernetes there is a solution for this, rolling updates. The only requirement
for this is that the application has been set up so that it can be scaled (as
Kubernetes will need to scale pods in order to prevent downtime). By default
Kubernetes will add one extra pod with the new configuration to the cluster,
wait until that pod comes online and finally remove the old pod from the cluster.
This will be repeated until the entire set of pods runs with the new configuration.

An extension of the system above is canary releasing. When a new release
of the application is available you might not always want to fully switch over
immediately. Instead you might want to only allow a small percentage of your
traffic to interact with the new version. By doing this you can test whether the
new version is stable and without errors before launching it to everyone. The
process of doing such a canary release can be seen in figure 8, but it comes down
to three steps. At first the application only receives load on the old version of
the application, then one or more pods with the new version are created and
a part of the traffic is directed to these new pods. If the new pods work as
expected all traffic is routed to the new pods and the old ones are removed.
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Figure 8: The process of a canary release [19]

3.6.6 Existing visualisation using Kiali

One the useful tools that Istio offers is the ability to visualize your service mesh
through Kiali [34]. Going through the logging is useful to get a general idea of
what the mesh is doing, but having a visualisation is better as it allows you to
quickly see everything that you need to know about the network. In figure 9 an
example of such a visualisation as produced by Kiali can be seen. The white
squares represent pods and the elements within them are containers. Each line
represents a connection between containers. The color of the line can show
whether the connection is good (or if errors occur) and can show the traffic flow
over that connection. This visualisation can be really helpful when deploying a
new version of an application as it is also possible to set the amount of traffic
that flow to the canary version of the application. This gives the user a way of
comprehending all information regarding the service mesh.
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Figure 9: The visualisation provided by Kiali. [31]

3.7 YAML configuration

To setup and configure the network in Istio a set of elements is required. First
of all a deployment is needed. A deployment is similar to a pod in a Kubernetes
cluster. A deployment is a scalable group of containers that does the actual
work in a service mesh. When the traffic is routed through the network it ends
up at a deployment where it will be processed and the appropriate response
will be made. Each deployment has an IP address. Deployments are dynamic,
they can be created and destroyed depending on the number of request. The
combination of these two things makes it hard to reach the deployments. To
overcome this challenge a service is used, the service manages the deployments
that it matches to (how this matching happens is explained in section 5.3).
Applications within the Istio service mesh can connect to the service which will
route the traffic to one of the deployments.

Thus far only simple routing of traffic is possible, but sometimes you might
want to have more complicated scenarios. With a destination rule it is possible
to create specific subsets of deployments within all deployments. These subsets
allow for more specific routing of traffic within the service mesh. The destination
rule is also used to configure a circuit breaker within the service mesh. Finally
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a virtual service is used to configure the traffic routing to the specific subsets as
defined by the destination rule. The virtual service can split traffic over different
subsets to allow for canary releasing or mirror traffic to different deployments.
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4 Context

This research is conducted within the company InfoSupport [30]. InfoSupport
deals with a lot of customers. Because of this they also deal with a lot of prob-
lems while developing software for their customers. These problems can be quite
complex or require further investigation, this gives students the opportunity to
pick one of these problems and conduct the required research.

4.1 The organization

InfoSupport [30] describe themselves on their website as: ”InfoSupport is a
specialist in tailor made software, data solutions, management and training and
is mainly active in the agrifood, energy, fintech, mobility, pension and care.
InfoSupport has more than 400 employees with offices in Veenendaal (NL) and
Mechelen (BE). The way of working that characterises InfoSupport is build upon
four core principles: solidity, integrity, craftsmanship, and passion.”

InfoSupport has five business units that focus on different parts of the mar-
ket. Each of them has their own unit manager. The IT services, professional
development center, and knowledge center cross the boundaries of the business
units and provide support for hardware and knowledge. The structure of the
company can bee seen in figure 10. This thesis is written for the business unit
finance.

Figure 10: The organization chart of InfoSupport
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4.2 The technology stack

There are a few different service mesh providers. The largest three are Istio,
Linkerd, and Consul of which Istio is the most well known and has the most
features. Furthermore there are two large container orchestrators, Kubernetes
and Docker Swarm. Kubernetes offers more functionality and is more suitable
for large networks and is used most often because of this.

To prevent a big time investment in setting up an environment where the
service mesh analysis tool can be tested the Pitstop demo application [40] is
being used. The Pitstop application has been designed to illustrate the software-
architecture concepts of microservices, CQRS, event sourcing, Domain Driven
Design, and eventual consistency. It also illustrates the usage of technologies
like Docker, Kubernetes, Istio, and Linkerd. The application is written in a
combination of HTML, CSS, and C#. We will be using the Pitstop version
which uses the Istio service mesh.

The architecture diagram can be seen in figure 11. The main interaction
with the application is through the Pitstop Web app where the user can man-
age customers, vehicles, and the planning for the workshop. The frontend com-
municates with the three services that have an API and does not have any
knowledge of the other services. The customer management service and vehi-
cle management service allow for the creation and retrieval of customers and
vehicles respectively.

Figure 11: The architecture of the Pitstop application [41]

The workshop management service is slightly more complex. It consists of
two parts. The first is an API that allows to schedule maintenance jobs and
retrieve vehicle and customer data (in case one of these two services goes down).
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The second part is an event-handler that handles incoming events and creates a
read-model that is used by the API. The event handler receives this information
from the message-broker. By building a read-model of all customer and vehicle
information the workshop management service is able to schedule new jobs even
when the customer of vehicle service is not available.

The notification service and invoice service listen to events from the message-
broker and send notifications and invoices respectively. These two services do
not offer an API and only act on the events that are received from the message
broker. The time service is there to notify the other services through the message
broker that a certain time has passed. And finally the auditlog service stores all
the events that are published on the message broker for later reference.

Each service is deployed in its own pod on a Kubernetes cluster and the Istio
serivce mesh is used to observe and manage the network traffic.
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5 Model construction

In this chapter the extracted data from the YAML, the way that data is stored,
and how that data is processed is explained. The model is the layer in between
the YAML files which are used to start the service mesh and the simulation of
that service mesh. The model contains only the relevant information from the
YAML files and has been adjusted throughout the development of the simulation
when extra information was required. To illustrate some of the components
parts of YAML files are shown; these are taken from the Pitstop project [40].

5.1 Kubernetes object

1 apiVersion: extensions/v1beta1

2 kind: Deployment

3 metadata:

4 labels:

5 system: pitstop

6 app: workshopmanagementapi

7 version: "1.0"

8 name: workshopmanagementapi

9 namespace: pitstop

10 spec:

11 ...

Figure 12: An example of the shared variables for all Kubernetes objects.

The Kubernetes object is a class which is not defined by Kubernetes or Istio
itself but rather a class that is used as a parent for the deployment, service,
destination rule, gateway, and virtual service. The Kubernetes object contains
all parameters that each of these child objects have. This group of parameters
can be further divided into two subsets, one that contains parameters which are
defined in the YAML file of the object and a group of parameters that is used
for internal bookkeeping.

The YAML parameters consist of the kind and metadata. The kind is defined
on line 2 of figure 12. In this example the kind is a Deployment but it can also be
a Service, virtual service or any other type of Kubernetes object. The metadata
that is defined on lines 3 till 9 has two important parameters, the first is the
name (line 8) which is used to identify a Kubernetes Object. When Kubernetes
Objects need to interact with each other (for example when sending network
traffic) this is the identifier that is used to determine where the traffic has to
be routed to. The second parameter is the set of labels that a Kubernetes
object has. These labels are used to distinguish between different versions of a
Kubernetes object; this will be explained in more detail later. The metadata

29



1 ...

2 spec:

3 replicas: 1

4 template:

5 metadata:

6 labels:

7 system: pitstop

8 app: workshopmanagementapi

9 version: "1.0"

10 spec:

11 containers:

12 - env:

13 - name: ASPNETCORE_ENVIRONMENT

14 value: Production

15 image: pitstop/workshopmanagementapi:1.0

16 imagePullPolicy: IfNotPresent

17 name: workshopmanagementapi

18 ports:

19 - containerPort: 5200

20 restartPolicy: Always

Figure 13: An example of the specification for a Deployment.

also has a namespace which is used to group Kubernetes objects together, but
as the projects that are used only consist of one namespace we will disregard it.

The parameters that are kept for internal bookkeeping consist of the links
that a Kubernetes object has. These are used to connect related Kubernetes
objects together (e.g. a Service and its corresponding Deployment). In a Kuber-
netes object subsets that apply to that object are also stored (see section 5.4).
The maximum traffic that a single instance of a Kubernetes object is allowed
to have is also stored along with further traffic data (see section 5.7). Finally
each Kubernetes object gets a unique id.

The spec part of the YAML file (line 10) is different for each of the different
Kubernetes objects and will be explained in the following sections.

5.2 Deployment

An example of the YAML for a Deployment can be seen in figure 13. There
are a few interesting parameters in this YAML file. The first is the number
of replicas as can be seen on line 3. This defines the number of instances
of this deployment. The ports parameter as defined on line 18 and 19 tell
which ports of the deployment can be connected to. Finally the restartPolicy
is used to determine what has to be done when an instance of the deployment
crashes. Information like the environment variables (line 12), image (line 15),
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1 ...

2 spec:

3 type: NodePort

4 ports:

5 - name: "http-5200"

6 port: 5200

7 targetPort: 5201

8 nodePort: 30007

9 selector:

10 system: pitstop

11 app: workshopmanagementapi

12 version: "1.0"

Figure 14: An example of the specification for a Service.

and imagePullPolicy (line 16) could be interesting for additional information in
future versions of the model but are currently not used.

5.3 Service

We now look into the YAML of a service, see figure 14. The YAML of the
service has two pieces of important information, the ports (lines 4-8) and the
selector (lines 9-12). A service can have multiple exposed ports and each of
them can have a name, port, targetPort, and nodePort. The name is just for
convenience but is kept in the model so that it can be used for communication to
the end user (e.g. ”There is a misconfiguration in the targetPort of http-5200”).
The port is the port on which the service is exposed within the Kubernetes
cluster (that is, for other containers on the cluster). The targetPort is the
port to which the traffic is forwarded, e.g., if the Service receives traffic on
port 5200 from another container it will forward this traffic to port 5201 of the
Deployment that matches the selection criteria. The service can also be reached
from outside the Kubernetes cluster on the nodePort. The selector parameter
defines to which deployments the Service applies. This is done by matching
the labels of the selector (lines 10-12) with the labels that are defined in the
metadata of the deployments. This data is stored in the model to link services
to their respective deployments.

5.4 Destination rule

The destination rule is simple but important part of the model. The desti-
nation rule in the model is used for two things. First of all the subsets define
subsets within deployments. In the example (figure 15) a subset ”V1” is de-
fined on lines 5-7. The labels of subset are matched against the labels of a
deployment. If the labels of the subset match the labels of the deployment, the
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1 ...

2 spec:

3 host: customermanagementapi

4 subsets:

5 - name: v1

6 labels:

7 version: "1.0"

8 - name: v2

9 labels:

10 version: "2.0"

11 trafficPolicy:

12 connectionPool:

13 tcp:

14 maxConnections: 1

15 http:

16 http1MaxPendingRequests: 1

17 maxRequestsPerConnection: 1

18 outlierDetection:

19 consecutiveErrors: 1

20 interval: 1s

21 baseEjectionTime: 3m

22 maxEjectionPercent: 100

Figure 15: An example of the specification for a destination rule.
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1 ...

2 spec:

3 hosts:

4 - customermanagementapi

5 http:

6 - route:

7 - destination:

8 host: customermanagementapi

9 subset: v1

10 weight: 75

11 - destination:

12 host: customermanagementapi

13 subset: v2

14 weight: 25

Figure 16: An example of the specification for a virtual service.

subset is added to the deployment. Other deployments can specify a subset
which they want to use, in this case the ”V1” subset. Second, the trafficPol-
icy (lines 11-22) is used to define complex traffic management systems like the
circuit breaker. The trafficPolicy consists of two elements; the connectionPool
(lines 12-17) which controls the volume of connections to an upstream service
(e.g. a deployment) and the outlierDetection which is used to remove unhealthy
containers from the load balancing pool.

5.5 Virtual service

To make use of the subsets that are defined by the destination rule in section
5.4, the example YAML in figure 16 allows for canary releasing. All traffic for
the host defined on line 4 is routed to the destinations on lines 7-14. In this
example 75% of traffic is sent to V1 of customermanagementapi and 25% is sent
to the V2 of customermanagementapi.

5.6 Gateway

Request that come into the network need to have an origin. To simulate this,
a gateway has been added to the model. The gateway does not come from
a YAML file, but is a self created object that allows the end user to specify
initial requests. The object does not have any extra parameters, but instead
the already existing trafficData is used. The end user can specify different sets
of traffic as explained in section 5.7.

5.7 Traffic data
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1 - name: Gateway

2 maxTraffic: 0

3 requestsPerSecond: 1

4 secondsPerRequest: 1

5 updateRequestsPerSecond:

6 2: 5

7 updateSecondsPerRequest:

8 2: 3

9 trafficSets:

10 - probability: 100

11 traffic:

12 logserver: -1

13 vehiclemanagementapi: -1

14 webapp: 1

15 ...

Figure 17: An example of the specification for Traffic data.

The traffic data does not inherit from the Kubernetes object, it is a param-
eter of the Kubernetes object. After all Kubernetes objects have been created
and linked to each other, the end user can generate the YAML file for the traf-
fic data, e.g. something like the YAML file in figure 17. In this example the
Gateway has been configured. First of all maxTraffic is set to 0, which means
that there is no limit to the amount of traffic that this instance can receive. It
can also be set to any non-zero value which would limit the amount of traffic
such an instance is allowed to receive to the given number. Furthermore the
Gateway has one trafficSet defined (lines 9-14). A trafficSet has a probability
(on a 0 to 100 scale) which determines the chance that this trafficSet is cho-
sen. If this trafficSet is chosen it will send one packet to the webapp (line 14).
The trafficSet also defines how many packets a deployment can handle, and
how long it takes for a packet to be handled. The ”requestsPerSecond” (line 3)
determines the number of packets that a deployment can handle each second.
The ”secondsPerRequest” (line 4) determines how many seconds it takes for
the deployment to handle 1 packet. Finally it is also possible to change the
”requestsPerSecond” and ”secondsPerRequest” based on the time (lines 5-8).
This allows us to change the speed of a deployment at runtime. This is all the
data we need for defining the traffic within the simulation.
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6 Log analysis

An important part of the simulation tool is the log analysis. The log analysis is
used to determine how much traffic is sent within the service mesh and also to
construct traffic sets from this logging. This data is used to determine the traffic
within the simulation of the service mesh. First we explain the differences in
logging between the real service mesh and the simulation, after which we explain
how this information is used to create the traffic sets and statistics.

6.1 Real service mesh

The real service mesh has log entries that look like figure 18.

1 {

2 "downstream_remote_address": "10.1.5.77:45134",

3 "authority": "vehiclemanagementapi:5000",

4 "path": "/api/vehicles",

5 "protocol": "HTTP/1.1",

6 "upstream_service_time": "11",

7 "upstream_local_address": "10.1.5.77:54684",

8 "duration": "11",

9 "upstream_transport_failure_reason": "-",

10 "route_name": "default",

11 "downstream_local_address": "10.104.30.166:5000",

12 "user_agent": "-",

13 "response_code": "200",

14 "response_flags": "-",

15 "start_time": "2021-01-02T11:40:09.046Z",

16 "method": "GET",

17 "request_id": "bbb20802-f5cc-908a-9da2-e3f86ffdaf8e",

18 "upstream_host": "10.1.5.75:5000",

19 "x_forwarded_for": "-",

20 "requested_server_name": "-",

21 "bytes_received": "0",

22 "istio_policy_status": "-",

23 "bytes_sent": "2",

24 "upstream_cluster":

"outbound|5000||vehiclemanagementapi.pitstop.svc.cluster.local"↪→

25 }

Figure 18: A log entry from the real service mesh.

The log entry contains a lot of information but only a part of it is used. To
determine how much traffic is sent within the service mesh we need to know a
few things:
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1. When a request is sent

2. By whom the request is sent

3. To whom the request is sent

Sadly, only the first two pieces of information are directly present in the log
entry. We know when the request is sent by looking at the ”start time” and
we know where the request is going by looking at the ”authority” and the
”downstream local address”.

When only one replica of a deployment is used the ”authority” suffices, but
when there are multiple replicas of a deployment we can not see the difference
as the ”authority” field will be the same for all of them. If multiple replicas
of the same deployment are present, the ”downstream local address” is used
to distinguish between them. A dictionary is constructed with the address for
each the deployments and a unique identifier is added to the authority based on
their address so we can later see the difference in the authority field. A piece of
pseudo code for this can bee seen in figure 19.

1 LogEntry log;

2 Dictionary<IP, int> unique_id;

3 string authority;

4

5 // This is true when there are multiple replicas

6 if (authority_not_unique)

7 IP downsteam_local_address = log.downsteam_local_address;

8 int ID = unique_id[downsteam_local_address]

9 authority += ID;

10 return authority;

11 else

12 return authority;

Figure 19: A piece of pseudo code to distinguish between multiple replicas of a
deployment.

The final piece of information is derived from the file name of the log file.
The script that extracts the log data from all the pods in the service mesh
names the log file after the pod where the log data comes from. We use this
information to determine the source of the request.

The log file also contains a lot of log entries that contain information that
we do not want to use. Sometimes a pod sends data to itself, or sends data
to the service mesh control plane. These entries are filtered by removing log
entries that have no ”method” set on them.

The log file also contains some log lines that contain information about the
state of the pod. These lines are formatted differently (these lines are normal
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text instead of JSON) and are filtered by removing all lines that are no JSON.
The resulting log entries are converted into log entries that only contain the
”authority” (with the unique identifier), ”start time”, and ”source” fields.

6.2 Simulation

For the log entries of the simulation it is easier to extract the right information.
When a request is sent within the simulation the source, destination, and time
are recorded. This data is written to a log file which is used for the analysis
later on.

6.3 Analysis

As we will see later on in section 8 there are three types of statistics that we
generate from the log information:

1. Number of requests within a given block of time.

2. Total number of request from and to any of the services within the service
mesh.

3. Average number of request per second from and to any of the services
within the service mesh.

The third item (the average number of requests per second) is used to create
the traffic data.

First of all, the log entries are filtered. This is done by checking if the source
and authority of the log entry are known within the simulation. If a log entry
has a source or authority that is not known within the YAML files, we assume
that it is not part of the simulation and discard the log entry. The log entries
are then sorted by their start time to put them in chronological order.

A first sweep over all the log entries is made. This sweep takes note of the
start time of the log entries and counts how many log entries there are within
seconds 0 to 5 of the log entries. Then we skip one second and look for all
the log entries within seconds 1 to 6 and we repeat this process until we get to
seconds 55 to 60. This creates the first set of statistics, the number of requests
within a given block of time.

Then we do a second sweep over all the log entries and we count how many
requests are sent from any source to any given destination. This is done by
using a nested dictionary. This is seen in part 1 of figure 20.

Finally we also want to know how many requests are sent on average per
second. To calculate this we loop over the dictionary. For each of the entries we
divide the total number of request by the number of seconds between the first
and last log entry. This is seen in part 2 of figure 20.

All these statistics are saved to files which are later imported into a spread-
sheet to analyse them.
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1 LogEntry[] logs;

2 Dictionary<string, Dictionary<string, int> counter;

3 int runtime = logs.last().start_time - logs.first().start_time;

4

5 // 1. Counting the number of requests in total

6 foreach (LogEntry log in logs)

7 counter[log.source][log.destination]++;

8

9 // 2. Determining the number of requests per second

10 foreach (keyValuePair total_requests in counter)

11 requests_per_second = total_requests / runtime;

Figure 20: A piece of pseudo code to count the number of requests.
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7 Tool implementation

To get a good idea of how the simulation tool works it is also important to know
what information is fed into the tool and where that information comes from.
Therefore the system that we use to provide data for the simulation tool will
be discussed first, whereafter the simulation tool is discussed. The developed
simulation tool is used to make predictions about the service mesh. For example,
when a developer wants to create a new endpoint the simulation can be used to
predict how the traffic will influence the entire service mesh.

7.1 The example program, Pitstop

7.1.1 Data gathering

It has already been mentioned earlier that the Pitstop [40] application is used
as the example application for the simulation tool. Pitstop is a fully working
web application that is build using the Istio service mesh. Pitstop is solely
configured using YAML files, all required configuration is specified within these
files. These YAML files are written before the network is started and all have to
be correct in order for the service mesh to function properly. This is also where
the problem comes in, a mistake is easily made in one of the many files and only
one mistake can cause the entire application to be slow or malfunction.

When Pitstop is running it generates log entries. These log entries are anal-
ysed and used as input for the simulation tool. Later on the log entries of the
simulation are compared to the log entries of Pitstop. When the Pitstop ap-
plication is running the pods make requests to other pods over HTTP. These
requests are routed through the sidecars that are injected by the Istio service
mesh. These HTTP requests are logged by Envoy. This logging information,
combined with the YAML files that are used to start the network, provide
enough information for the simulation tool to reconstruct the service mesh and
create a simulation.

7.2 The simulation tool

The simulation tool will take the YAML files that are used to start a service
mesh (in this specific example the Pitstop application) and the logging files that
are generated by the service mesh to create a simulation of that service mesh.
This simulation allows developers to test new configuration without having to
set-up and run an entire network or alter an existing one.

To use the tool, first of all the YAML files that are used to start the service
mesh have to be loaded into the tool. These files are kept in memory and will
later on be used to construct the pods of the service mesh. The logging files
that are generated by the real service mesh can also be loaded; these files are
analysed as specified in section 6. After the log analysis, traffic sets are created
and added to the information for each of the pods. If for whatever reason there
are no log files you can also manually create these traffic sets for each of the
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pods. The downside of this manual creation is the immense amount of work
that it takes to correctly configure each of the traffic sets. Manually creating the
traffic sets can also result in an inaccurate simulation when the entered traffic
information is incorrect.

These first information loading steps can also been seen in figure 21.

Figure 21: A flow chart for the creation and comparison of the simulation and
the real service mesh.

When the YAML are loaded there is a Kubernetes object for each of the
services or deployments and one for the gateway (the gateway is used to initiate
traffic to the service mesh). All of these Kubernetes objects have the settings
from the YAML files and trafficsets that are generated from the logging or
entered manually. The developer can start the simulation with the information
that is entered into the simulation.

When the simulation starts for each of the Kubernetes objects a simulation
instance is made. These instances are there just for the simulation and only
contain the information that is needed for a simulation. Each of the Kubernetes
objects gets at least one simulation instance. In case of a service and deployment
pair, a simulation instance is made for the service first. After that, a simulation
instance is made for each of the replicas of the deployment. All the simulation
instances that are made for the replicas of the deployment are linked to the
simulation instance of the service. At this point all simulation instances are
made and have all the information required to start the simulation.

Within the simulation there is a DNS like system for looking up the services
and deployments. All traffic for a deployment has to be routed through the
accompanying service. This is implemented by keeping a central dictionary with
the name of a simulation instance (for example “vehiclemanagementapi”) as the
index and the corresponding simulation instance of the service as the value. By
doing this, any of the simulation instances can do a lookup of the name that it
wants to connect to and receive the simulation instance to which the traffic has
to be sent. This DNS like discovery system used by all the simulation instances
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within the simulation.
When the simulation starts, a random trafficSet is chosen from the gateway,

the traffic in this trafficset is sent to the respective simulation instances. This is
always a service (as a deployment is not directly exposed to the other simulation
instances). The service will then propagate the traffic to one of the Deployments
that are attached to it. This also allows the service to choose which deployment
the traffic is being sent to, enabling load distribution within the simulation of
the service mesh. The service also keeps track of the circuit breaker of the
deployments, if a deployment has a circuit breaker active it won’t receive traffic
from the service. After the gateway has sent its data all the deployments in the
simulation are visited and get the chance to send traffic if they have pending
requests.

Any traffic that is being sent from the service to a deployment is added to
the “incoming traffic” of that deployment. This is done to separate the incoming
traffic from the traffic that was already queued in the deployment. If the traffic
was directly added to the traffic of the deployment it could occur that the traffic
would go from the service to a deployment and would be handled immediately
when the deployment got the chance to handle and sent traffic. This would
cause one piece of traffic to be handled twice within one tick of the simulation
which is not correct.

Whenever traffic is sent from the gateway to a deployment or from a deploy-
ment to another deployment a log entry is made. All these log entries are saved
and are used to generate statistics for the simulation. These statistics are used
later on to verify and validate the simulation of the service mesh to the real
service mesh.

At the end of a simulation tick a snapshot is taken with the distribution of
traffic within the simulation. This data is saved to a JSON file and opened in a
browser for the user to view. This view essentially gives a visualisation to the
simulation of the service mesh.
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8 Verifying the simulation

Before doing anything else with the simulation of the service mesh, it is im-
portant to know how accurate the simulation is. For this we developed a tool
that uses the logging of the service mesh or the service mesh simulation and
generates some statistics about the network traffic that took place within the
service mesh. Given the logging of the service mesh the tool will output three
statistics:

1. The number of requests within a given block of time

2. The total number of request from and to any of the services within the
service mesh

3. The average number of request per second from and to any of the services
within the service mesh

By running experiments on different kinds of service meshes we see how the
simulation performs under varying circumstances. The experiments will vary
in the amount that is put on the service mesh or by the configuration of the
service mesh itself. For example, the number of deployments or the number of
replicas of a deployment is varied. The configuration of the real service mesh
will be copied into the simulation and the same load is applied. By doing this we
create the same environment within the simulation and the real service mesh.
Afterwards we compare the log output and see if the real service mesh and the
simulation behaved in the same way. The log output of the real service mesh are
used as the ground truth, the log output of the simulation are verified against
it.

By varying the load and number of deployments we replicate a wide range of
conditions that are possible in the real world. In the real world we see a variety
of load and configurations which we mimic in these experiments.

We first explain how the metrics are calculated whereafter we show the
results of the experiments.

8.0.1 Number of requests within a give block of time

It is important to know how many requests per second are being sent within
the service mesh. If we only look at the total number of request within a given
time we won’t be able to see any spikes in traffic that could cause the service
mesh to be overwhelmed. Therefore we take a sliding window approach over
the requests that are sent within the network. The tool starts at the begin of
the logging and checks how many request are sent within a five second window.
This window slides over the full set of log entries and creates a graph from the
result, an example of such a graph can be seen in figure 26. From now on we
will refer to this graph as the ”traffic graph”.
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8.0.2 Total number of requests

It is also important to know how many request are sent in total in a given
amount of time. When comparing the simulation of the service mesh with a
real service mesh we will also take the total number of requests into account.
When we use table 1 as an example we see that the gateway sends 10 requests to
the webapp and that the webapp in turn sends 10 requests to the customerman-
agementapi (abbreviated as ”customer”) and the logserver. All of these values
have a standard deviation of 0, which is shown after the ”+-”. The items in
the left most column are the ”senders” and the items on the horizontal row are
the ”receivers”. In these tables the names of the senders and receivers of traffic
might be abbreviated to decrease the size of the table, below you find the list
of abbreviations:

• vehiclemanagementapi → vehicle

• vehiclemanagementapi0 → vehicle0

• vehiclemanagementapi1 → vehicle1

• customermanagementapi → customer

When looking at table 2 you see that there are also values between paren-
theses ”()”. These are the values of the simulation. In this table you see that
the webapp has send a total of 29,8 request to the logserver, with a standard
deviation of 0,4. The simulation has send 60 request to the logserver.

customer Gateway logserver webapp Total
customer 0 +- 0 0 +- 0 0 +- 0 0 +- 0 0 +- 0
Gateway 0 +- 0 0 +- 0 0 +- 0 10 +- 0 10 +- 0
logserver 0 +- 0 0 +- 0 0 +- 0 0 +- 0 0 +- 0
webapp 10 +- 0 0 +- 0 10 +- 0 0 +- 0 20 +- 0

Table 1: All requests for the first set of manually constructed log files.

logserver vehicle webapp Total
logserver 0 +- 0 (0) 0 +- 0 (0) 0 +- 0 (0) 0 +- 0 (0)
vehicle 30 +- 0 (59) 58,1 +- 0,3 (0) 0 +- 0 (0) 88,1 +- 0,3 (59)
webapp 29,8 +- 0,4 (60) 57,8 +- 0,6 (60) 0 +- 0 (0) 87,6 +- 0,66 (120)

Table 2: All requests for the first version of the low traffic verification.

8.0.3 Average number of requests

To get a good feeling of how much traffic is sent per second there is also a
representation similar to the previously explained trafficset. When looking at
figure 22 you see an example of this. For each of the deployments there is a
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specification that shows how many requests are sent to other deployments per
second. You also see that there are values between parentheses ”()”. These are
the values of the simulation. In this table you see that the webapp on average
sends 0,96 requests per second to the vehiclemanagementapi, with a standard
deviation of 0,01. The simulation sends 1 request on average from the webapp
to the vehiclemanagementapi.

1 webapp:

2 - vehiclemanagementapi: 0,96 +- 0,01 (1)

3 - logserver: 0,5 +- 0 (1)

4 vehiclemanagementapi:

5 - vehiclemanagementapi: 0,97 +- 0,01 (0)

6 - logserver: 0,5 +- 0 (1)

Figure 22: The average number of requests with standard deviation for the first
version of the low traffic verification.

8.1 Verifying the tool for verification

Before we use the aforementioned tool to verify the simulation of the service
mesh, we will first verify the tool itself. We do this by manually constructing
three sets of logging data with predictable outcomes and checking this with the
output of the tool. If the outputs of the tool match the expected output for
the logging we will assume that the tool is valid. In figure 23 a portion of the
first piece of manual logging data is shown. The logging shows the first four
seconds of network traffic. Every second The ”gateway” sends a request to the
”webapp” and then the ”webapp” sends a request to ”customermanagementapi”
and the ”logserver”. The full logging has a length of ten seconds so we expect
the ”gateway” to send ten requests, the ”webapp”, ”customermanagementapi”,
and ”logserver” to receive ten request and finally expect the ”webapp” to send
twenty requests. A small clarification on the contents of the log file: the ”source”
is the source of the request and the ”authority” is the target of the request.
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1 {..., "start_time":"2020-12-02T00:00:00+01:00",

"authority":"webapp", "source":"Gateway"}↪→

2 {..., "start_time":"2020-12-02T00:00:00+01:00",

"authority":"customermanagementapi", "source":"webapp"}↪→

3 {..., "start_time":"2020-12-02T00:00:00+01:00",

"authority":"logserver", "source":"webapp"}↪→

4 {..., "start_time":"2020-12-02T00:00:01+01:00",

"authority":"webapp", "source":"Gateway"}↪→

5 {..., "start_time":"2020-12-02T00:00:01+01:00",

"authority":"customermanagementapi", "source":"webapp"}↪→

6 {..., "start_time":"2020-12-02T00:00:01+01:00",

"authority":"logserver", "source":"webapp"}↪→

7 {..., "start_time":"2020-12-02T00:00:02+01:00",

"authority":"webapp", "source":"Gateway"}↪→

8 {..., "start_time":"2020-12-02T00:00:02+01:00",

"authority":"customermanagementapi", "source":"webapp"}↪→

9 {..., "start_time":"2020-12-02T00:00:02+01:00",

"authority":"logserver", "source":"webapp"}↪→

10 {..., "start_time":"2020-12-02T00:00:03+01:00",

"authority":"webapp", "source":"Gateway"}↪→

11 {..., "start_time":"2020-12-02T00:00:03+01:00",

"authority":"customermanagementapi", "source":"webapp"}↪→

12 {..., "start_time":"2020-12-02T00:00:03+01:00",

"authority":"logserver", "source":"webapp"}↪→

13 ...

Figure 23: A part of manually constructed logging data to verify the verification
tool.

The first set of log entries is an extension of figure 23. It has ten seconds
of request that are sent and we expect the output as described before. We will
verify this with the table output of the developed verification tool. The output
can be seen in Table 3. When looking at the table we see that it matches
the predicted output. The ”Gateway” sends ten requests to the ”webapp”
which in turn sends ten requests to both the ”customermanagementapi” and
the ”logserver”. In figure 24 the number of request with the sliding window is
seen. It shows that in the first set of logging, fifteen requests per five seconds are
sent. As there is only one dataset in this graph there is no standard deviation
and thus only the average line is plotted. Finally, in figure 25 the average
number of requests can be seen.

The second set of manually constructed log entries is very similar to the first
set, only the amount of traffic per second has been doubled. We thus expect the
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traffic in the table with all the traffic to be double of the first set of manually
constructed log entries. This can be seen in table 8.1. For the traffic graph
and the average number of requests we have used both the first and second set
of manually constructed log entries. For the traffic graph we expect to see the
average of 15 and 30 (which is 22,5) with a standard deviation of 7,5. This is
indeed what we see in figure 26. For the average number of request we expect
to see 1,5 requests with a standard deviation of 0,5 for all requests, which is
confirmed by figure 28.

For the third and final set we will only look at the total number of requests
and average number of requests (because the traffic graph will be exactly the
same as the one for the first set of log entries). For the third set of manually
constructed log entries we took the first set of constructed log entries and re-
versed the ”source” and ”authority”. The results can be seen in table 8.1 and
figure 8.1. The outputs of the verification tool meet the expected outputs.

customer Gateway logserver webapp Total
customer 0 +- 0 0 +- 0 0 +- 0 0 +- 0 0 +- 0
Gateway 0 +- 0 0 +- 0 0 +- 0 10 +- 0 10 +- 0
logserver 0 +- 0 0 +- 0 0 +- 0 0 +- 0 0 +- 0
webapp 10 +- 0 0 +- 0 10 +- 0 0 +- 0 20 +- 0

Table 3: All requests for the first set of manually constructed log files.

Figure 24: Requests per second for the first set of manually constructed log files.
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1 Gateway:

2 - webapp: 1 +- 0

3 webapp:

4 - customermanagementapi: 1 +- 0

5 - logserver: 1 +- 0

Figure 25: The average number of requests with standard deviation for the first
set of manually constructed log entries.

customer Gateway logserver webapp Total
customer 0 +- 0 0 +- 0 0 +- 0 0 +- 0 0 +- 0
Gateway 0 +- 0 0 +- 0 0 +- 0 20 +- 0 20 +- 0
logserver 0 +- 0 0 +- 0 0 +- 0 0 +- 0 0 +- 0
webapp 20 +- 0 0 +- 0 20 +- 0 0 +- 0 40 +- 0

Table 4: All requests for the second set of manually constructed log files.

Figure 26: Requests per second for the first and second set of manually con-
structed log files.
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1 Gateway:

2 - webapp: 1,5 +- 0,5

3 webapp:

4 - customermanagementapi: 1,5 +- 0,5

5 - logserver: 1,5 +- 0,5

Figure 27: The average number of requests with standard deviation for the first
and second set of manually constructed log entries.

customer Gateway logserver webapp Total
customer 0 +- 0 0 +- 0 0 +- 0 10 +- 0 10 +- 0
Gateway 0 +- 0 0 +- 0 0 +- 0 0 +- 0 0 +- 0
logserver 0 +- 0 0 +- 0 0 +- 0 10 +- 0 10 +- 0
webapp 0 +- 0 10 +- 0 0 +- 0 0 +- 0 10 +- 0

Table 5: All requests for the third set of manually constructed log files.

1 customermanagementapi:

2 - webapp: 1 +- 0

3 logserver:

4 - webapp: 1 +- 0

5 webapp:

6 - gateway: 1 +- 0

Figure 28: The average number of requests with standard deviation for the third
set of manually constructed log entries.

8.2 Verifying the simulation

All of the experiments are done by executing the following steps:

1. Determine what type of verification is needed.

2. Start the real service mesh with the necessary deployments, services, etc.

3. Start a script that saves the logging of all pods to separate files.

4. Use a load tester with a pre-configured amount of load to put load on the
service mesh for 60 seconds.

5. Stop the load test and script that saves the logging files.

The steps above are repeated 10 times. All the results are passed through the
log analyser and are then collected in a spreadsheet where the mean values and
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standard deviation are calculated. From the resulting average traffic data is
constructed by the simulation tool, which is used to start the simulation. The
logging from the simulation is also passed through the log analyser and placed in
the spreadsheet. This information is used to determine how good the simulation
matches the real service mesh.

8.2.1 Verification with low volume traffic V1

The first experiment is done on a simple service mesh. The service mesh consists
of a webapp which sends one request per second to the vehiclemanagementapi.
The vehiclemanagementapi handles the requests from the webapp and sends
some requests to the logserver. We immediately discover a problem with the
way that the simulation handles ”half requests”, which is seen in table 6 and
corresponding figure 30. In the 60 seconds that the service mesh received load, 30
requests are made from the webapp and vehiclemanagementapi to the logserver.
This comes down to 0,5 request per second, which is rounded to 1 request
per second by the simulation tool. As this is behavior that occurs in a lot
of simulations we have decided to help the tool with these cases and add two
trafficSets to the traffic data. One trafficSet sends 0 requests to the logserver
whereas the other set sends 1 request to the logserver. Both of these trafficSets
have a probability of 50% which results in an average of 0,5 request per second.

We also see another discrepancy, in the real service mesh the vehicleman-
agementapi sends data to itself, as is seen in figure 30. You see that the vehi-
clemanagementapi sends all requests that it receives to itself. This is due to the
fact that a pod consists of two parts: the service and the deployment. When
the service receives the request from the webapp the service will forward this
request to a deployment. This causes any request to the vehiclemanagementapi
or customermanagementapi to be logged twice, once when it is send to the ser-
vice and a second time when it is forwarded to the corresponding deployment.
The simulation only logs these requests once which causes the discrepancy. In
all the verification and validation experiment the size of this discrepancy will
be given and is accounted for. In the graph a line with the given discrepancy is
added for an easier visualisation. This line is called the ”simulation corrected”.

logserver vehicle webapp Total
logserver 0 +- 0 (0) 0 +- 0 (0) 0 +- 0 (0) 0 +- 0 (0)
vehicle 30 +- 0 (59) 58,1 +- 0,3 (0) 0 +- 0 (0) 88,1 +- 0,3 (59)
webapp 29,8 +- 0,4 (60) 57,8 +- 0,6 (60) 0 +- 0 (0) 87,6 +- 0,66 (120)

Table 6: All requests for the first version of the low traffic verification.
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Figure 29: Requests per second for the first version of the low traffic verification.

1 webapp:

2 - vehiclemanagementapi: 0,96 +- 0,01 (1)

3 - logserver: 0,5 +- 0 (1)

4 vehiclemanagementapi:

5 - vehiclemanagementapi: 0,97 +- 0,01 (0)

6 - logserver: 0,5 +- 0 (1)

Figure 30: The average number of requests with standard deviation for the first
version of the low traffic verification.

8.2.2 Verification with low volume traffic V2

The traffic and load in this experiment are identical to the previous one, except
for the change in traffic data (the two trafficSets that are added to account for
the ”half requests”). When we look at table 7 we see that the simulation is
nearly identical to the real service mesh.

When we look at figure 31 we also see that the simulation follows the trend
in increasing/decreasing traffic over time. Finally we also see that the traffic
data (figure 32) of the simulation is nearly identical to the real service mesh.
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logserver vehicle webapp Total
logserver 0 +- 0 (0) 0 +- 0 (0) 0 +- 0 (0) 0 +- 0 (0)
vehicle 30 +- 0 (29) 58,1 +- 0,3 (0) 0 +- 0 (0) 88,1 +- 0,3 (29)
webapp 29,8 +- 0,4 (29) 57,8 +- 0,6 (60) 0 +- 0 (0) 87,6 +- 0,66 (89)

Table 7: All requests for the second version of the low traffic verification.

Figure 31: Requests per second for the second version of the low traffic verifi-
cation.

1 webapp:

2 - vehiclemanagementapi: 0,96 +- 0,01 (1)

3 - logserver: 0,5 +- 0 (0,5)

4 vehiclemanagementapi:

5 - vehiclemanagementapi: 0,97 +- 0,01 (0)

6 - logserver: 0,5 +- 0 (0,5)

Figure 32: The average number of requests with standard deviation for the
second version of the low traffic verification.

8.2.3 Verification with medium traffic

For the second experiment we have increased the amount of requests that are
sent from the webapp to the vehiclemanagementapi. In the previous experiment
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1 request per second was sent, whereas in this experiment we send 5 requests
per second from the webapp to the vehiclemanagementapi. In figure 34 we see
that by putting a load of 5 requests per second on the webapp the service mesh
actually only sends 4 request per second. This has to do with the timing within
the script that puts the load on the service mesh, leading to a lower actual
amount of requests that are send. But because the simulation uses the logging
data of the real service mesh to create the traffic data, it also copies this lower
amount of requests per second.

When we take a look at figure 33 we see that that the requests per five
seconds is significantly lower for the simulation. This is due to the earlier
mentioned discrepancy. Because in this simulation 4 requests per second are
sent and the size of the sliding window is 5 we expect the traffic graph to
have a discrepancy of about 20. In this case the discrepancy is bigger, which
is explained by table 8. We see that the vehiclemanagementapi only sends 3
requests in the entire 60 second simulation. After reviewing the logs we found
that this was caused by randomness: the trafficSet where no requests to the
logserver are sent was chosen far more often than the set where a request to the
logserver was sent.

logserver vehicle webapp Total
logserver 0+-0 (0) 0+-0 (0) 0+-0 (0) 0+-0 (0)
vehicle 29,9+-0,3 (3) 250,5+-0,67 (0) 0+-0 (0) 280,4+-0,8 (3)
webapp 29,8+-0,4 (27) 250,4+-0,66 (240) 0+-0 (0) 280,2+-0,87 (267)

Table 8: All requests for the medium traffic verification.
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Figure 33: Requests per second for the medium traffic verification.

1 webapp:

2 - vehiclemanagementapi: 4,17 +- 0,01 (4)

3 - logserver: 0,5 +- 0,01 (0,45)

4 vehiclemanagementapi:

5 - vehiclemanagementapi: 4,18 +- 0,01 (0)

6 - logserver: 0,5 +- 0,01 (0,05)

Figure 34: The average number of requests with standard deviation for the
medium traffic verification.

8.2.4 Verification with high traffic

For this experiment the same network was used as in the previous experiments,
but this time the load was increased from 5 requests per second to 20 requests
per second. Similar to the last experiment we can see in figure 36 that not 20
requests per second are sent, but only 12. Just like the last time the simulation
uses these numbers and also sends only 12 requests per second. We also see that
the number of requests that the vehiclemanagementapi sends to the logserver is
a lot higher than the expected 0,5. This is caused by the way that the real service
mesh sends requests to the logserver. The real service mesh has code that sends
a request to the logserver every 2 seconds if the vehiclemanagementapi receives
traffic. Because the traffic data for the service mesh is set to a 50% chance
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for each of the incoming requests, and 12 requests per seconds are sent to the
vehiclemanagementapi, the simulation will send an average of about 6 requests
per second to the logserver. The current implementation of the simulation
does not allow for these time based requests to be sent and will thus have a
discrepancy.

When we take a look at traffic graph 35 we see that the discrepancy between
the simulation and the real service mesh is approximately 50, which matches
the expected 12 requests multiplied by the 5 second time window.

logserver vehicle webapp Total
logserver 0+-0 (0) 0+-0 (0) 0+-0 (0) 0+-0 (0)
vehicle 26,8+-0,4 (325) 656,8+-4,5 (0) 0+-0 (0) 683,6+-4,68 (325)
webapp 29,8+-0,4 (29) 730,2+-4,53 (720) 0+-0 (0) 760+-4,49 (732)

Table 9: All requests for the high traffic verification.

Figure 35: Requests per second for the high traffic verification.
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1 webapp:

2 - vehiclemanagementapi: 12,25 +- 0,08 (12)

3 - logserver: 0,5 +- 0,01 (0,45)

4 vehiclemanagementapi:

5 - vehiclemanagementapi: 10,95 +- 0,08 (0)

6 - logserver: 0,45 +- 0,01 (5,4)

Figure 36: The average number of requests with standard deviation for the high
traffic verification.

8.2.5 Verification with other deployments

In this experiment we will look at the behavior of the simulation with a differ-
ent deployment. In the previous experiments we looked at the vehiclemanage-
mentapi. To see if the simulation also works well with other deployments the
customermanagementapi is used for this experiment. The load on the service
mesh is 5 requests per second, which translates to an actual load of 4 requests
per second as seen in figure 38. We also see the same discrepancy with the
amount of requests that are sent to the logserver. On 50% of the requests to
the customermanagementapi a request to the logserver is sent which results in
an average of about 2 requests per second that are sent to the logserver.

The traffic graph in figure 37 does have a strange spike between seconds 33
and 53. Similarly to last time this was caused by the random function acting
strangely. In the first 30 seconds of the simulation only a few requests were
sent to the logserver, but in the last 30 seconds a lot of request were sent to the
logserver. If random function would have behaved as expected, then the spike
would be smoothed over the entire graph of the simulation, and the average
would correspond to the expected 38 requests per 5 seconds (with a discrepancy
of 5 seconds multiplied by 4 request).

customer logserver webapp Total
customer 249,9+-1,14 (0) 29,6+-0,49 (86) 0+-0 (0) 279,5+-1,02 (86)
logserver 0+-0 (0) 0+-0 (0) 0+-0 (0) 0+-0 (0)
webapp 249,6+-1,43 (240) 29,5+-0,5 (21) 0+-0 (0) 279,1+-1,3 (261)

Table 10: All requests for the alternative deployment verification.
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Figure 37: Requests per second for the alternative deployment verification.

1 webapp:

2 - customermanagementapi: 4,16 +- 0,02 (4)

3 - logserver: 0,49 +- 0,01 (0,35)

4 customermanagementapi:

5 - customermanagementapi: 4,17 +- 0,02 (0)

6 - logserver: 0,49 +- 0,01 (1,43)

Figure 38: The average number of requests with standard deviation for the
alternative deployment verification.

8.2.6 Verification with multiple replicas

In this experiment we look into how the simulation handles replicas. One of
the big advantages of a service mesh is the possibility to scale a deployment
to multiple replicas, adding resiliency and scalability. For this verification the
vehiclemanagementapi was used with 2 replicas. The load on the service mesh
was 5 requests per second which translates to the same actual 4 requests per
second as in the last experiments. When we take a look at figure 40 we see that
the simulation handles multiple replicas nicely. The traffic that the webapp
sends is spread evenly across the two replicas of the vehiclemanagementapi,
just like for the real service mesh. We also see that similar to the previous
experiments each of the vehiclemanagementapis sends one request per second
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to the logserver (each of the vehiclemanagementapis receives 2 requests, both
with a 50% chance to send a request to the logserver thus averaging to 1 request
per second).

When we take look at figure 39 we see that just like in the previous experi-
ments the random function seems to favor sending requests to the logserver in
the last 30 seconds of the simulation. The average of the simulation is 40 re-
quests per 5 seconds, which is what we would expect (60 requests per 5 seconds
minus the 5 seconds multiplied by the four requests per second).

logserver vehicle0 vehicle1 webapp Total
logserver 0+-0 (0) 0+-0 (0) 0+-0 (0) 0+-0 (0) 0+-0 (0)
vehicle0 29,6+-8,88 (59) 0+-0 (0) 0+-0 (0) 0+-0 (0) 0+-0 (0)
vehicle1 29,9+-0,3 (59) 0+-0 (0) 0+-0 (0) 0+-0 (0) 0+-0 (0)
webapp 29,7+-0,4 (36) 126,1+-37,88 (120) 125,5+-37,71 (120) 0+-0 (0) 281,3+-84,52 (276)

Table 11: All requests for the verification with multiple replicas of a deployment.

Figure 39: Requests per second for the verification with multiple replicas of a
deployment.
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1 webapp:

2 - vehiclemanagementapi0: 2,1 +- 0,63 (2)

3 - vehiclemanagementapi1: 2,09 +- 0,63 (2)

4 - logserver: 0,49 +- 0,01 (0,6)

5 vehiclemanagementapi0:

6 - customermanagementapi: 2,1 +- 0,02 (0)

7 - logserver: 0,5 +- 0,01 (0,98)

8 vehiclemanagementapi0:

9 - customermanagementapi: 4,17 +- 0,02 (0)

10 - logserver: 0,5 +- 0,01 (0,98)

Figure 40: The average number of requests with standard deviation for the
verification with multiple replicas of a deployment.

8.2.7 Visual verification

The simulation does not just offer the log output, it also has graphical output.
In this visual output the developer sees how the pods with the deployments
and services are connected to each other. The real service mesh has a similar
feature that shows how the pods are connected (and how traffic is sent) when
the service mesh is running. We use the real visualisation of the real service
mesh to determine whether the visualisation of the simulation is correct.

In figure figure 41 and figure 42 we see a simple network. The ”unknown”
(figure 41) and ”gateway” (figure 42) are the sources of traffic. We see that the
connections between the nodes of the real service mesh and the simulation are
identical.

Figure 41: The visual representation of a vehiclemanagementapi with the ac-
companying deployments in Kiali.
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Figure 42: The visual representation of a vehiclemanagementapi with the ac-
companying deployments in the simulation.

Just like with the other experiments we also use another type of deployment
here. You can see this in figure 43 and figure 44. Instead of the vehiclemanage-
mentapi we use the customermanagementapi, and again we see that the links
between the nodes are identical.

Figure 43: The visual representation of a customermanagementapi with the
accompanying deployments in Kiali.
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Figure 44: The visual representation of a customermanagementapi with the
accompanying deployments in the simulation.

We also take a look at some more complex service meshes in figure 45 and
figure 46. Here we use a network that has both the vehiclemanagementapi
and the customermanagementapi. Just like the previous two sets of images we
see that the links in the simulation are identical. In figure 45 we do see an
extra ”PassthroughCluster” which was used by the vehiclemanagementapi. A
passtrough cluster is added when requests are sent to an undefined service. This
can be caused by a missing Istio sidecar. This part was not simulated in the
simulation and is thus not visible in the visualisation.

Figure 45: The visual representation of a vehiclemanagementapi and a cus-
tomermanagementapi with the accompanying deployments in Kiali.
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Figure 46: The visual representation of a vehiclemanagementapi and a cus-
tomermanagementapi with the accompanying deployments in the simulation.

There is an interesting difference between how the amount of replicas is
displayed, which is seen in figure 47 and figure 48. In the real service mesh
visualisation the developer has to open the pod with the vehiclemanagementapi
to see how many replicas there are. In figure 47 you see that on the right there is
a small ”Pod status” with underneath it ”vehiclemanagementapi 2/2”. This tells
us that the vehiclemanagementapi has two replicas. In our own visualisation
you see that the vehiclemanagementapi service is connected to two deployments
of the vehiclemanagementapi. The developer does not have to click and search
for the information but it is immediately present.

Figure 47: The visual representation of a vehiclemanagementapi with two repli-
cas in Kiali.
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Figure 48: The visual representation of a vehiclemanagementapi with two repli-
cas and the accompanying deployments in the simulation.

8.2.8 Verification of circuit breaking

The final aspect of verification is the circuit breaker. The circuit breaker allows
the developer to specify limits for deployments to prevent them from being
overloaded. Due to difficulties with setting-up the circuit breaker in the Pitstop
project we opted to used a separate small application to test how the simulation
handles a circuit breaker. In table 12 the amount of requests that were either
accepted or rejected is shown. The circuit breaker was configured to allow
only one connection to the deployment, all other connections will be blocked
to prevent the deployment from being overloaded. This type of circuit breaker
is applied to components that execute heavy operations and can’t handle a lot
of concurrent requests. After starting the service mesh Fortio [27] was used to
send four concurrent request to the service mesh, until 200 request in total are
sent.

We see that the real service mesh allows more requests to come through,
whereas the simulation allows exactly 25%. This is explained by the nature of
the simulation. In the real service mesh requests can come in at any time, but
in the simulation all the request are executed in steps. In the real service mesh
the request sometimes come in slightly after each other which causes them to
be executed after each other instead of concurrently. In the simulation they are
all executed at exactly the same time, which causes 75% of the requests to be
rejected.
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Real Simulation
200 OK 503 Error 200 OK 503 Error

71 129 50 150
74 126 50 150
74 126 50 150
77 123 50 150
71 129 50 150
71 129 50 150
78 122 50 150
77 123 50 150
74 126 50 150
71 129 50 150

Average 73,8 126,2 50 150
Std. Dev. 2,638181 2,638181 0 0

Table 12: Overview of requests that are accepted or blocked by the circuit
breaker in a real service mesh and the simulation.
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9 Predictive Quality of the Simulation

The simulation tool was not just developed to make simulations of already
existing service meshes, but also to do predictions of how a service mesh will
behave after a change. We have performed two experiments both of which are
done by executing the following steps:

1. Start the real service mesh with the deployments, services, etc. that are
used for the basis of the simulation.

2. Record the data for this basis and use this for the simulation.

3. Add the modification to the simulation that we want to predict (e.g. in-
crease the amount of traffic).

4. Run the modified simulation and save the data.

5. Run the real service mesh with the same modification.

6. Compare the output of the modified simulation to the output of the real
service mesh that has been modified and see if they equal.

9.1 Increasing traffic

For the first experiment we based the simulation on a simple service mesh where
1 request per second is sent to the vehiclemanagementapi. The traffic was
modified to 500% resulting in 5 requests per second. We compare the modified
version of the simulation to the real service mesh with 5 requests per second.
Unlike the verification we see that in traffic graph figure 49 the requests per 5
seconds are higher than the real service mesh. We can see what causes this in
figure 50. The simulation scales the requests from the webapp to exactly 500%,
even though in the real service mesh we only see a 400% increase due to the
timing the script that puts load on the service mesh. We also see that the traffic
from the webapp to the logserver is also scaled by 500% whereas this does not
happen in the real service mesh.

logserver vehicle webapp Total
logserver 0+-0 (0) 0+-0 (0) 0+-0 (0) 0+-0 (0)
vehicle 29,9+-0,3 (183) 250,5+-0,67 (0) 0+-0 (0) 280,4+-0,8 (183)
webapp 29,8+-0,4 (186) 250,4+-0,66 (300) 0+-0 (0) 280,2+-0,87 (486)

Table 13: All requests for the simulation where the traffic is increased.
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Figure 49: Requests per second for the simulation where the traffic is increased.

1 webapp:

2 - vehiclemanagementapi: 4,17 +- 0,01 (5)

3 - logserver: 0,5 +- 0,01 (3,1)

4 vehiclemanagementapi:

5 - vehiclemanagementapi: 4,18 +- 0,01 (0)

6 - logserver: 0,5 +- 0,01 (3,05)

Figure 50: The average number of requests with standard deviation for the
simulation where the traffic is increased.

9.2 Adding endpoints

For the second experiment we base the simulation on the same simple service
mesh with just the vehiclemanagementapi, but this time 5 requests per second
are send. The simulation was modified to also have the customermanagemen-
tapi. We compare the modified version of the simulation to the real service
mesh with both the vehiclemanagementapi and the customermanagementapi.
In figure 52 we see that the simulation is nearly identical to the real service
mesh. It has the same discrepancy that we saw in the experiment where the
vehiclemanagementapi and customermanagementapi send 50% of the requests
they get to the logserver. Furthermore we see in figure 51 that the simulation
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on average has the expected discrepancy of 40 (the 5 second window multiplied
by the 4 requests per second multiplied by the two deployments).

customer logserver vehicle webapp Total
customer 248,5+-0,92 (0) 29,8+-0,4 (121) 0+-0 (0) 0+-0 (0) 278,3+-1 (121)
logserver 0+-0 (0) 0+-0 (0) 0+-0 (0) 0+-0 (0) 0+-0 (0)
vehicle 0+-0 (0) 29,7+-0,46 (121) 248,6+-1,02 (0) 0+-0 (0) 278,3+-1,27 (121)
webapp 248,5+-0,92 (240) 29,7+-0,46 (32) 248,1+-1,22 (240) 0+-0 (0) 526,3+-2,24 (512)

Table 14: All requests for the simulation where the customermanagementapi is
added.

Figure 51: Requests per second for the simulation where the customermanage-
mentapi is added.
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1 webapp:

2 - vehiclemanagementapi: 4,14 +- 0,02 (4)

3 - customermanagementapi: 4,14 +- 0,02 (4)

4 - logserver: 0,5 +- 0,01 (0,5)

5 customermanagementapi:

6 - vehiclemanagementapi: 0 +- 0 (0)

7 - customermanagementapi: 4,14 +- 0,02 (0)

8 - logserver: 0,5 +- 0,01 (2)

9 vehiclemanagementapi:

10 - vehiclemanagementapi: 4,14 +- 0,02 (0)

11 - customermanagementapi: 0 +- 0 (0)

12 - logserver: 0,5 +- 0,01 (2)

Figure 52: The average number of requests with standard deviation for the
simulation where the customermanagementapi is added.
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10 Conclusion

In this thesis we have looked into the workings of service meshes. How do they
work, how much traffic do they send, and whether we are able to simulate this
behavior or even make predictions about the effect that changes will have on
the service mesh. We go over the research questions and the answers to them,
discuss the validity of the work and lastly look into work that could be done to
improve upon the work.

10.1 Answers to Research Questions

Research Question 1: Is it possible to construct an accurate simulation of a
service mesh with just the static configuration files for that network?

Research Question 1.1: Which information is required to create an accu-
rate simulation of a service mesh?

Research Question 1.2: Which information is missing from the configura-
tion files for the service mesh?

To answer these questions we looked into the workings of a service mesh and
created a model with all the information that we require to make a simulation
of the service mesh. We determined that the static YAML files do not con-
tain enough information, as there is no data about the traffic within the service
mesh. The relation of services within the service mesh (whether they have a
connection) also can not be derived from the YAML files. We built log analysis
tools that extract this data from the service mesh logging and added this data to
the model. We found that with this added information, we can create accurate
simulations.

Research Question 2: Can we increase the performance of a simulation by
adding dynamic information, such as log data?

As shown in section 6, we were able to extract the traffic information and
relation between services from the log entries of the service mesh. With this in-
formation we have enhanced the model which allowed us to create a simulation
of the service mesh.

Research Question 3: What is the accuracy of the simulation of the real
service mesh?

As shown in sections 8 and 9 we can create simulations with varying levels of
accuracy. Predictable traffic is simulated accurately, but the current model does
not allow for enough parameters to do fully accurate simulations of a service
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mesh. When we looked at using the simulation to predict changes in the service
mesh we found similar results, when traffic is predictable we can make accurate
predictions about the working of the service mesh.

10.2 Discussion

In this section we discuss the quality of the work and possible threats to validity.

10.2.1 Randomness

As we have seen in sections 8 and 9 the randomness of the simulation did not
always seem random enough. There were a lot of simulations where trafficSets
have been chosen randomly but did not seem to be random enough. This can
be solved by running the simulation more often and taking the average of the
result. This will smooth out spikes within the individual runs.

10.2.2 Circuit breaker

The circuit breaker was not used within a larger service mesh but was instead
tested within an isolated component. It is better to incorporate the circuit
breaker in an actual working application and test how the circuit breaker func-
tions within such an application.

10.2.3 Pitstop

For the simulation of the service mesh we have only used the Pitstop [40] demo
application. Although the implementation of the log analysis tooling and simu-
lation are general enough to also work for other applications it is better to also
create simulations of other service meshes.

10.3 Future work

The current model and tooling can be improved in the following ways:

10.3.1 Half requests

Currently the log analysis tool is not able to create traffic sets with less than
one request per second. The tool should be adapted to generate multiple traffic
sets with probabilities in such a way that one requests per multiple seconds is
sent. This would increase the accuracy of the simulation and predictions.

10.3.2 Requests between the service and deployment

The line with the corrected values is added to each of the graphs. In a future
version of the simulation tool it is better to add the additional request from
the source to the service to the logging of the service mesh. This prevents the
manual correction that has to be done after the collection of the logs.
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10.3.3 Time based requests

Currently the tool can only send requests based on incoming requests. It would
be better to also add support for time based requests (like we have seen for
requests that are sent to the logserver). It will be challenging to find these time
based requests automatically, but if they are discovered manually it would be
nice if a developer could manually add them to the simulation. This would
further increase the accuracy of the simulation and predictions.

10.3.4 Missing requests

The tool only looks at the logs that are collected from the real service mesh and
extracts the traffic from them. If there are services within the network that did
not sent any traffic in the period that the logging was collected they will not
be noticed. In future versions of the simulation tool the developer has to be
informed if there are services that do not send traffic.
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