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This work proposes ARMouse with the aim of providing a precise and reliable solution for desk-
oriented AR interaction. ARMouse is a novel interaction paradigm that uses the mouse as the main
interaction device for both desktop computing and plane based mobile AR 3D object translation,
providing a seamless transition between AR and virtual spaces. In a within-subjects study featuring a
selection and translation task ARMouse outperformed a touch based method in terms of perceived
comfort, translation speed and translation accuracy. Furthermore, ARMouse unexpectedly also
elicited higher levels of immersion among participants. This work shows the potential of a mouse
based AR interaction paradigm and provides an initial step towards a universal interaction paradigm
that supports hybrid AR desktop environments.



Figure 1. ARMouse setup featuring the cursor, selection line, transition
line (the grey line on the desk surface spanning the with of the screen),
and spheres to interact with, viewed from the perspective of the smart-
phone.
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INTRODUCTION
Augmented Reality (AR) allows us to place virtual objects
and information into our real surroundings, thus enabling us
to utilize the vast space of the virtual world from the comfort
of the more familiar real world. However, as more use cases
for AR are discovered it becomes apparent that not all inter-
action should take place in AR. Users may need to be able to
utilize both AR and purely virtual tools at the same time [27].
As such, more research is being conducted on systems that
feature both an AR environment and a virtual environment:
hybrid systems. In the context of this work, hybrid desktop
AR refers to a hybrid system that can display content either
on the desktop screen or in AR space, with a seamless transi-
tion and desktop computing at its core. Finding an interaction
method that effectively supports a system essentially featuring
two environments is however a non-trivial task. One would
either have to switch interaction methods in order to switch
environments, thus limiting the seamless transition, or a single
interaction method that optimally supports both environments
would need to be constructed. Furthermore, current AR inter-
action methods are unsuited for seated scenarios or prolonged
use, making them less optimal for a desktop-oriented system
[28]. Therefore, the aim of this work is to propose and evalu-
ate a potential foundation for a hybrid desktop AR universal
interaction paradigm. What is understood by a universal inter-
action paradigm is the goal of keeping the interaction device
and paradigm constant, regardless of the device that is used
for viewing the AR content. Given this definition, a set of

principles is defined that enables the findings of this study to
be generalized to other AR devices.

Existing research suggests that in the context defined in this
work mouse based interaction offers various advantages (Sec-
tion 2). Therefore, we propose using the mouse as a basis
for this interaction paradigm, naming the first prototype AR-
Mouse, which is implemented using smartphone based mobile
AR. To verify the suggested effectiveness of a mouse based
AR interaction paradigm the research goal is defined more
concretely as: "Does ARMouse outperform a well-established
mobile AR interaction method in a selection and a translation
task?"

RELATED WORK
Recently, more research is conducted on leveraging the in-
creased immersion and space AR offers to improve the un-
derstanding of three dimensional data. However, as not all
interaction should happen in 3D space, hybrid systems emerge
[4]. One such research is DatAR, which aims to support neu-
roscientists conducting literature research by providing a 3D
representation of linked data in AR [22]. Another is an ob-
servational study that found "physicists to appreciate a hybrid
data exploration setup with an interactive AR extension to
improve their understanding of particle collision events" [27].

The mouse is a remarkably effective input device that is still
able to outperform various newer inventions. Berard et al
compared the mouse to 3D input devices in a 3D placement
task and found the mouse to be preferred when high accuracy
is required and that its higher accuracy and lower levels of
induced stress compensate for the need to break down 3D
operations into multiple 2D operations [3]. In The evaluation
of tangible desktop AR UIs, Dunser et al concluded the mouse
to be able to reach a high accuracy faster than the other pro-
posed input devices. However, the authors argued that the
2D manipulation tasks performed during the experiment are
similar to regular desktop interaction, therefore explaining the
mouse’s success [7]. Teather as well as Wang also found the
mouse to outperform a 3 degrees of freedom (DOF) tracker in
a 3D object manipulation task [23, 26]. Johnsgard compared
a VR glove to the mouse with regard to Fitts’s Law via a se-
lection task. He found that glove users tended to undershoot
and mouse users tended to overshoot. Nonetheless, the mouse
proved to be faster and, unlike the glove, adding gain to the
mouse did not decrease the performance. Johnsgard argues the
results of his findings may be explained by the mouse being
operated while resting on a stable surface [11]. Schultheis
et al compared a 6+6 DOF two-handed interface to a 6 DOF
wand interface and a 2 DOF mouse interface for 3D operations.
The authors found the two-handed interface to perform best,
especially due to the task requiring many object and viewport
manipulations, but argue the mouse to be efficient when fine
control or interaction with various other types of content such
as menus, dialogs and text inputs is required [21]. In contrast,
Masliah et al found users performing a docking task with 6
DOF devices to break down the operation into multiple 3 DOF
operations, suggesting 6 DOF operations not to be as intuitive
to perform as they seem [14].



The effectiveness of hand gesture recognition is limited by
arm fatigue and the preciseness of the human motor system [2,
16, 15], although strides to mitigate this effect are being made
[9]. Still, the hand remains a big and awkward pointing device
that easily obscures smaller objects [19].

METHODOLOGY

ARMouse design
The goal of ARMouse is to unify the interface between desktop
computing, AR and the user. As a result it aims so satisfy a
few distinct requirements: fluent and intuitive transitioning
between environments to streamline the hybrid nature of the
system; optimal interaction in both environments; comfortable
interaction during prolonged use.

The mouse is proven to be a good candidate for the role of
input device due to its high precision compared to other input
devices/methods; its ability to retain comfort during prolonged
use and it already being the established interaction device for
desktop computing. Therefore, being intuitive for virtually
all potential users. Furthermore, the mouse also fits the desk-
oriented setup of a professional environment well. Thus, use
of the mouse already satisfies a considerable portion of the
requirements.

Main concept
The main concept of ARMouse is founded on three princi-
ples. The first is using plane based interaction to unify the
environments: both the screen and the desk represent planes
on which a cursor can travel. This constrains the movement
enough to allow for high accuracy and ease-of-use, and limits
the available AR space to fit the need of a desk-oriented setup.
The planes defined by the screen and the desk are extended
and the intersection between these planes defines where the
cursor can transition between the purely virtual space (on the
computer screen) and AR space (Figure 1). This allows for
a fluent and intuitive transition between the spaces: as the
cursor crosses the bottom of the screen it transitions to AR
space and is placed at the intersection point on the desk. Con-
versely, as the cursor crosses the intersection line in AR space
it transitions to virtual space on screen. This complements
the notion of multiple systems and environments forming a
coherent whole.

The second principle is that as a zero-dimensional selection
tool (the tip of the cursor selecting a 2D object) supports a two-
dimensional environment, a one-dimensional selection tool (a
selection ray cast from the cursor into 3D space) supports a
three-dimensional environment. Therefore, ARMouse features
a line emerging upwards from the cursor with which objects
can be selected. In raycast based selection this is implicitly
realized, but the decoupling of perspectives (as explained in
the next paragraph) warrants a more explicit visualization of
this principle as potential selection targets are not as easily
apparent to the user.

The third principle is leveraging the increased immersion AR
offers to allow the cursor to detach from the camera plane
(the plane that is always perpendicular to the direction the
camera is looking) and be constrained to a horizontal plane in
instead (i.e. the desk), increasing the effectiveness of mouse

Figure 2. The selection line pointing upwards from the cursor and three
spheres in the hover state (left), leading to the secondary selection state
during which occluded objects can be more easily selected (right).

based interaction. Constraining the cursor to a plane in world
space decouples the camera’s perspective from the cursor’s
perspective. As seen in Figure 2, this means that an object
(assuming it is not enclosed by another object) is always visible
to either the cursor or the user. To clarify, in a regular setup
the cursor and the camera share the same perspective because
the cursor traverses the camera plane, but if the cursor were
to traverse a plane in world space its perspective is decoupled
from that of the camera. Only a high level of understanding
of the three dimensional space as offered by AR may have
the potential to enable the use of this particular configuration.
This principle is henceforth referred to as the decoupling of
perspectives.

Object selection
Object selection is performed with the help of the selection
line and the hover feature. The selection line facilitates the
selection of objects that are positioned in the space above
the desk. The hover feature highlights every object that is
intersected by the selection line, providing feedback to the
user on which objects are in this position selectable by the
cursor. As shown in Figure 2, when multiple objects are
intersected by the selection line all will be hovered and the
user can move the mouse up and down to switch between
the hovered objects and more deliberately select the correct
object with a button click. This extra step is here referred to
as secondary selection and is similar to the operation found
in virtual 3D applications to aid in selection, usually done via
a list of objects that appears as the user attempts to select an
occluded object (e.g. by holding down the left mouse button).
However, due to the decoupling of perspectives possible in
AR the user can more directly and intuitively select the correct
object when cursor occlusions occur, as these objects are from
the user’s perspective not occluded.



Object translation
Object translation on the horizontal plane is performed by
dragging the selected object with the mouse. Vertical trans-
lation is performed by holding the right mouse button and
moving the mouse up or down. This allows vertical translation
to be of an equal movement scale and precision as horizontal
translation. Translating an object horizontally and vertically
at the same time is not possible.

Implementation
The prototype for ARMouse is built using the AR Founda-
tion framework [24] within the Unity engine [25]. A video
showcasing this prototype can be found at the following url:
https://youtu.be/ibtDSi5Pseo. Mouse input is handled by Mir-
ror [18], which sends the raw mouse data and button states
over the network to the smartphone. To reduce any noticeable
latency, cursor update methods run on a higher frequency than
the rest of the code and any visible stuttering is reduced by
linearly interpolating the updated cursor position by a con-
stant value. This also masks any lag introduced by a drop in
the frames per second. To increase immersion, shadows and
materials of virtual objects react on the lighting direction and
intensity. This allows the objects to better blend into the real
world, and does not negatively affect their visibility, given
enough daylight.

3DTouch
To evaluate the effectiveness of ARMouse, it is compared to
the most common smartphone AR interaction method that is
applicable to the context of this research. For object selec-
tion this is obviously touch based raycasting (the user taps
the object on the screen, causing a ray to be cast from that
position into the 3D space), but for object translation various
options exist. The most recent and promising object manipula-
tion methods that fit the requirements of this study’s setup are
3DTouch and HOMER-S [17]. HOMER-S is a 6 DOF interac-
tion method that features simultaneous rotation and translation
by directly mapping the smartphone’s pose onto the object.
HOMER-S was however rejected in favor of 3DTouch because
6 DOF operations are not needed and even undesired [14], and
3DTouch is expected to be more accurate overall as the ob-
ject can only be translated on one axis at a time. Objects are
translated with 3DTouch by dragging the finger vertically or
horizontally over the smartphone’s screen. This movement
translates the object along the horizontal x axis and vertical y
axis when the smartphone is held more vertically, or along the
horizontal x and z axes when the smartphone is held more hor-
izontally (camera pointing downwards). The border between
a vertical and horizontal device orientation is denoted by a 45
degree angle. Objects are selected and deselected by tapping
them on the screen. For this study two elements of 3DTouch
are modified. Firstly, each line representing a translation axis
is made transparent when translation along its axis is not possi-
ble given the current device orientation. This provides the user
with feedback on which axes are active at any given moment.
Secondly, gain is added to the translation speed defined by the
speed of the finger dragging across the screen. This change
allows users have more control over the precision and speed
of object translation. With a fast swipe over the screen an
object is translated much further than the projected distance

of the swipe, allowing for quick but imprecise translation over
further distances. By slowly dragging the finger across the
screen the object is translated over a shorter distance than the
projected swipe distance, allowing for more precise object
positioning. By controlling their swipe speed users are with
this feature able to position an object more accurately, even
over longer distances, without having to lift their finger off the
screen.

Hypotheses
H1 Research suggests that the mouse offers a higher precision

than various other input methods or devices. Therefore,
ARMouse is expected to have a higher accuracy than touch
based raycasting in an object selection task.

H2 Research suggests that the mouse offers a higher precision
than various other input methods or devices. Therefore, AR-
Mouse is expected to have a higher accuracy than 3DTouch
in an object translation task.

H3 Due to the mouse’s 2 DOF movement and its expected
higher precision resulting in fewer adjustments, ARMouse
is expected to position an object in an object translation task
in a shorter time than 3DTouch.

H4 Participants using 3DTouch are expected to move the smart-
phone around more in order to select and translate objects.
Also they are expected to keep both arms up at all times
during the task. Because mouse users can in contrast remain
seated in a more relaxed position ARMouse is expected to
be more comfortable during an object translation task.

Experiment Design
This user study has a within-subjects design to maximize the
amount of data generated by each participant, minimize noise,
and to provide fuel for a potential open discussion. At the
beginning of a session the participant fills out a consent form
that explains the reasons for the session and informs the partic-
ipant of the potential risks. After which a training phase starts
to allow the participant to get accustomed to both implementa-
tions, which concluded once the participant feels comfortable
performing all operations offered by the interaction method,
never lasting longer than 5 minutes. After the training phase
the participant performs a selection task and subsequently a
translation task with each interaction method, resulting in a
total of four tasks. In turn, each of these tasks consists of
several rounds. Participants with an uneven participant num-
ber start with ARMouse and those with an even participant
number start with (3D)Touch. This results in each participant
completing four tasks total. The total duration of a session
ranged from 30 minutes to an hour, mostly dependent on the
duration of discussions.

To minimize the scope of this research the only implemented
object manipulation operation is translation, as it is the most
common of the three base operations.

Because this study is conducted during the Covid-19 pandemic
the number of participants is limited and standard Covid-19
safety protocols have been followed.

https://youtu.be/ibtDSi5Pseo


Figure 3. Selection task configuration, hovering over the target sphere.

Participants
Ten participants are selected for this study, two female and
eight male, ages 22 to 26. These participants are chosen
based on a few parameters: they have to be familiar with
mouse interaction as well as touch interaction and they need
to be considered average in their experience with 3D virtual
environments. In practice, highly experienced participants
could not be found and potential participants who did not
have any experience with 3D environments were declined.
Given these parameters a lower variance between participants
is expected.

Setup
The setup of the experiment consists of a desk and chair, lap-
top (Microsoft Surface Laptop 2, 8th gen i5 and UHD 620),
mouse (Corsair Sabre), Android smartphone (Oneplus 5T),
and a strong internet connection (15 ms ping, 75 mbps upload-
/download), see Figure 1.

Selection task
The selection task (Figure 3) consists of two sets of eleven
rounds and a contained area on the desk of roughly 12 by 48
centimeters, positioned at roughly 50 centimeters away from
the face of the participant. These values were chosen to limit
the reach of participants should they want to move the smart-
phone up close to the objects and to keep the entire virtual
area in view of the smartphone camera when the participant is
in a relaxed seated position. This space is subdivided into four
boxes of equal size, among which 20 spheres of 3 centime-
ters in diameter are equally distributed. Within each box the
five spheres are in turn randomly distributed. One of the 20
spheres is colored green, designating it as the selection target.
Participants are asked to select the target as quickly and as
accurately as they could. Once the target object is selected the
round is completed and the spheres are redistributed to start
the next round. In between sets participants are granted a five

second break. A set is made up of eleven rounds, the first of
which is not used to collect data but rather to set the initial
configuration to be used for the time and distance measure-
ments. This results in 20 samples per variable per participant.
Objective data gathered during the task includes:

• Distance: the measured distance in millimeters between the
previous selection target and the current selection target.

• Time: the time in seconds measured from the start of the
round to the moment the current selection target is selected.

• Speed: the speed in millimeters per second as calculated
from the measured distance and time.

• Errors: the number of failed selection attempts during a
round (whenever a selection attempt (tap on the screen or
left mouse click) did not cause the correct object to be
selected).

• Device distance: the distance in centimeters between the
smartphone and the selection target at the moment of se-
lection. This variable tells us when the participant is no
longer in a relaxed seated position and shows whether the
participant had to move closer to the object in order to select
it.

After the task is completed using both interaction methods
participants are asked to provide two advantages or strengths
of the used interaction method for this specific task they no-
ticed while performing the task. Participants could either note
these down themselves or communicate these verbally and
they would be transcribed afterwards. After this, potential
follow-up questions are asked aimed at discovering any rea-
soning missing from the aforementioned notes, potentially also
leading up to a brief open discussion. Any other questions,
remarks or discussion items are also noted.

Translation task
The setup of the translation task is similar to that of the se-
lection task. The difference here is that only two spheres are
randomly spawned at the start of each round: one white and
one green in color, each in a different box. Participants are
tasked with positioning the white sphere such that it overlaps
with the green sphere, a configuration signified by z-fighting,
a position at which the two spheres seemingly form one that
is half green and half white. To confirm the placement of the
white sphere participants are given a button within thumb’s
reach on the smartphone, which can be tapped quickly and
comfortably during one-handed use. Participants are asked to
perform this task as quickly and as accurately as they could.
Gathered data includes:

• Distance: the distance in millimeters measured from the
initial position of the white sphere to the target sphere (dis-
tance between the origin of the objects).

• Time: the time in seconds measured from the start of the
round to the moment the confirm button is tapped on the
smartphone.

• Speed: the speed in millimeters per second as calculated
from the measured distance and time.



• Target distance: the distance in millimeters measured from
the white sphere to the target sphere (distance between the
origin of the objects).

• Device distance: the distance in centimeters between the
smartphone and the target sphere at the moment of confir-
mation.

After participants complete each translation task they answer
a NASA Task load Index (NASA-TLX) form [1]. This assess-
ment tool allows for the quantification and comparison of the
subjective task load. This tool, alongside participant remarks
and the measured device distance, helps in uncovering the dif-
ferences in influence on the perceived workload between the
interaction methods. During this study an unweighted version
is used because the relatively short duration of tasks negatively
affects the reliability of weights chosen by the participants.
When the task is completed using both interaction methods
and all forms have been filled in participants are asked the
same questions as after the selection task and the same pro-
tocol for communicating these is followed. This once again
may result in a brief open discussion. At the end of the session
participants can provide any final remarks or ask any final
questions.

RESULTS

Performance
Automatically collected objective data is analyzed via a com-
parison of mean values and a two-factor ANOVA with replica-
tion (95% confidence interval).

Selection accuracy
The selection accuracy of interaction methods is defined by the
number of errors. The use of ARMouse has resulted in fewer
selection errors on average than touch based raycasting (30 vs
45), but the difference is not significant (F1,371 = 0.344, p =
0.558).

Translation accuracy
The translation accuracy of interaction methods is defined
by the distance between the selected object and the target
object at the moment of confirmation. During the translation
task the use of ARMouse accounted for a significantly higher
accuracy (F1,371 = 7.543, p= 0.006). On average a distance of
4 millimeters was measured between the objects for ARMouse,
and 6 millimeters for 3DTouch respectively.

Speed
Figure 4 shows the recorded speeds of both interaction meth-
ods during both tasks. Touch based raycasting was sig-
nificantly faster than ARMouse during the selection task
(F1,371 = 77.274, p = 0.000). In contrast, ARMouse was sig-
nificantly faster than 3DTouch during the translation task
(F1,371 = 14.924, p = 0.000).

Device distance
As shown in Figure 5, ARMouse device distance was higher
during both tasks. This difference was significant both during
the selection (F1,371 = 98.676, p = 0.000) and the translation
task (F1,371 = 173.430, p = 0.000).
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Figure 4. Average selection and translation speeds (higher is better, error
bars: 95% confidence interval).
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Figure 5. Average distance between the smartphone and the target ob-
ject at the moment of selection/confirmation (error bars: 95% confi-
dence interval).

Task load
NASA-TLX
Table 1 shows the average NASA-TLX scores. ARMouse
scores lower than 3DTouch in every category. By conduct-
ing a two-factor ANOVA without replication (95% confi-
dence interval) this difference is concluded to be significant
(F1,5 = 17.910, p = 0.008), meaning that the perceived task
load is lower when using ARMouse as compared to when
using 3DTouch.

Qualitative analysis
Firstly, participants reported both interaction methods to be
intuitive and comfortable to use. Other comments include
the mouse to be more comfortable, likely even more notice-
able during prolonged use. The mouse felt more precise and
participants reported feeling more confident when selecting
objects, especially due to the hover and secondary selection



Mental demand Physical demand Temporal demand Performance Effort Frustration
ARMouse 3.4 3.8 4.9 2.1 3.2 1.7
Touch 4 5.8 5.8 4.1 6 5.4

Table 1. Average NASA-TLX scores, on a scale of 1 to 10 (lower is better).

features. Furthermore, participants reported not to notice any
input lag when using ARMouse and the transition line (as seen
in Figure 1) to be an intuitive mechanic for switching the cur-
sor between environments.Touch selection was reported to be
simpler and faster. Regarding object manipulation, ARMouse
was perceived to be faster, more precise and more comfortable.
Participants tended to overshoot when using 3DTouch, result-
ing in having to readjust the position of the object multiple
times. Participants also reported that the translation task be-
came tedious halfway through the task when using 3DTouch.

Half of the participants reported increased immersion when
using ARMouse: participants were more inclined to move
the phone around the environment when using touch based
interaction in order to keep the 3D illusion alive, explaining
that otherwise the AR world felt two dimensional. In contrast,
these participants reported this not to be an issue when using
ARMouse. Two participants reported quickly developing the
habit of moving the cursor and objects without pointing the
smartphone at them during the translation task; translating the
objects just by feel, allowing themselves to shift their gaze
instead on the target position.

DISCUSSION
Results show that no significant difference was found between
the selection accuracy of the interaction methods. Therefore,
H1 is rejected. This finding may be explained by touch based
raycasting being more intuitive and the steeper learning curve
of ARMouse, causing participants to get stuck in the secondary
selection step, as a consequence they selected the wrong ob-
ject and lost momentum, further increasing the observed speed
difference during the selection task. It can be argued that mak-
ing the spheres increasingly smaller could better differentiate
the interaction methods’ selection accuracy. ARMouse does
show a significantly higher translation accuracy during the
translation task, meaning hypothesis H2 is accepted. This
result could be explained by the mouse’s high resolution and
the stable surface on which it rests, as supported by prior work
[11, 23]. It can be argued that the high level of proficiency
participants already have with the device also contributed.
The shortcoming of touch based translation as observed here
may also be explained. Participants tended to overshoot their
target when small movements were required, possibly as a
result of subconsciously applying more force on the screen
than necessary, causing their finger to have more inertia than
anticipated.

As expected, touch based raycasting, most likely due to its
simplicity and ease-of-use, proved significantly faster during
the selection task. However, given the requirements of AR-
Mouse the trade-off between selection speed and comfort is a
trade-off worthwhile of making. During the translation task
ARMouse was found to be significantly faster. Therefore, H3
is accepted. Likely this is the case because initial positioning

over the xz plane is fast and intuitive with ARMouse, after
which the participant only has to move up, using the selection
line as a guide. This results in fewer operations necessary to
complete the task, when compared to 3DTouch. Moreover,
the increased precision ARMouse offers prevents readjusting
moves.

By collecting data on the distance between the smartphone and
the target object, whether it be during selection or translation,
the distance is found to be significantly lower during touch
based interaction. Furthermore, mouse use elicited signifi-
cantly lower NASA-TLX scores, especially lower perceived
physical demand (Table 1). Adding to this the remarks of
five participants stating they effectively performed all tasks
with ARMouse without moving around as much as with touch
based interaction, hypothesis H4 is accepted.

An unexpected result was the higher immersion ARMouse
elicited, as reported by half of the participants. This is also
somewhat supported by the found larger device distance, mean-
ing participants barely moved from their initial position (Fig-
ure 5). This opposes the findings of prior work. Georgiou et
al compared mouse interaction to a tangible user interface and
a gesture recognition system in AR, concluding the mouse to
have the lowest immersion [8]. Therefore, it could be possible
that mouse based AR interaction is situated somewhere in be-
tween hand gesture recognition and touch based interaction on
the immersion spectrum. Another explanation, as supported by
Choi et al, is that the particular implementation of ARMouse
yields a higher level of usability, in turn contributing to the
higher level of immersion [5]. Some participants explained
the higher immersion to be due to the mouse being a physical
object directly controlling a world-space virtual object: the
cursor, or the spheres during translation. Perhaps solely the im-
plementation of a world-space cursor instead of a screen-space
cursor causes the increased immersion compared to other AR
mouse interaction implementations. To summarize, it remains
unclear why exactly a considerable number of participants
experienced this, but future research may provide an answer.
For example, the framework of context immersion in mobile
AR may be used [12].

The evaluation of ARMouse shows it being able to elicit a re-
markably high level of immersion with a seemingly unintuitive
AR interaction device and a simple and relatively inexpensive
setup. As Wang et al explains, the novelty factor of using a
device like the Microsoft Hololens might introduce bias as par-
ticipants are easily excited by devices breathing technological
advancement [27]. By having participants use devices they
were already accustomed to: the smartphone, mouse and lap-
top, such bias was avoided. Furthermore, this implementation
showed no noticeable input lag and participants were able to
use it effectively within a short period of time, problems often
plaguing AR research prototypes.



Future work
Future research on ARMouse may include adding rotation and
scale to the list of transformations and extend the functionality
of the current implementation. In addition, given the three
principles on which this interaction method is based (section
3), other AR enabled devices can also be supported. Head-
Mounted Displays (HMDs), which are considered to be the
most comfortable [6] and the best candidate for professional
applications [13], can in theory easily be supported without
violating any of the defined principles. Future research could
explore these options. Note that the three principles allow
for other configurations, potentially increasing the cursor’s
traversable space to more surfaces reachable by the cursor
when upholding the first principle. It would be interesting to
see whether the principles for mouse based AR interaction as
defined here provide any guarantee for the success of different
possible setups. This would also require further research.

Future work may also include a comparison between AR-
Mouse and virtual mouse interaction to assess whether the
theoretical advantage of the decoupling of perspectives proves
to be an advantage in practice too. Potential directions may
also include multiple users remotely interacting in the same
AR space, similar to the system proposed by Hartmann et al
[10].

Limitations
Limitations include the number of participants and ratio of
male to female participants. While there is no indication of
there being a difference between male and female participants,
an equal distribution would have been preferred. In addition,
device distance is measured at the moment of selection or con-
firmation. This variable would be more accurately measured
if it were sampled more often.

To detect the position of the desk AR Foundation’s plane detec-
tion algorithm was used. This resulted in occasional tracking
issues due to close proximity of the smartphone and the desk.
Image tracking was also considered, but AR Foundation’s im-
age tracking solution also proved suboptimal. Using a robust
image tracking solution as offered by Vuforia [20] would have
been preferable.

CONCLUSION
During this research the prototype for ARMouse is proposed:
the foundation for a universal interaction paradigm for hybrid
AR environments on desktops. ARMouse is found to outper-
form an established mobile AR interaction method in an object
selection and object translation task, given the context of a
desk-oriented setup. Furthermore, ARMouse may provide sup-
port for other AR enabled devices such as HMDs, providing
interesting topics for future research. However, the most unex-
pected observation among these findings is ARMouse causing
an increase in the level of immersion among participants. This
observation combined with the decoupling of perspectives to
better handle occlusions allows future users to confidently use
ARMouse to interact with a hybrid AR desktop environment.
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APPENDIX

DATA

NASA Task Load Index
Participants filled out a NASA-TLX [1] form after each trans-
lation task. Table 2 shows the results for ARMouse. Table 3
shows the results for 3DTouch. Table 4 shows the two-factor
ANOVA without replication results.

Objective data ANOVA results
Tables 5 through 10 show the results for the two-factor
ANOVA with replication results. Note that these show the
ANOVA results regarding the interaction methods, partici-
pants and the interaction between these two groups. In this
study only the interaction method ANOVA results were used,
but the other results may be useful for future studies.

Participant remarks
The major remarks made by each participant are listed below:

P1 Selection task: during ARMouse use I felt more relaxed
and my posture was better, also I was able to more con-
fidently select objects due to the hover function. Touch
selection was easier and faster, but possibly also more
fatiguing as I was moving the phone more. It was also
more stressful and I did not feel as confident because I
had no feedback.
Translation task: with ARMouse I was able to translate
the object more precisely, I also felt more relaxed during
the task, both physically and mentally. Using 3DTouch
my performance suffered from overshoot and the task
was fatiguing. I also think the movement was too con-
strained and tilting the phone to control the z axis was
uncomfortable as I had to lean over, putting strain on my
back.

P2 Selection task: regarding ARMouse it is pleasant to be
able to rest my hand on the desk and selection with it
feels more comfortable and less fatiguing. I also think
the hover function would be advantageous for contextual
data when hovering over objects in e.g. a 3D graph. If
the object is out of screen I have to move both the mouse
and the smartphone. Touch selection is more intuitive for
a selection task and is easier for beginners.
Translation task: ARMouse feels more precise and also
faster as I’am not making as many mistakes. There is less
overshoot and when it does happen, it is easier to correct.
I feel confident when translating objects using ARMouse.
I noticed myself moving the object always over the desk
first, and then upwards. I also kept the phone relatively
still during the task when using ARMouse, which might
reduce immersion, but adds comfort. translating objects
using 3DTouch may be easier when moving them over
longer distances, imprecise translation also felt easier
with this interaction method. I was however constantly
readjusting.
Other remarks: The transition line feels intuitive, the
tasks were fun to do.

P3 Selection task: ARMouse feels more precise, especially
when objects are close together because I can use the

hover function. Due to controlling the cursor in AR I
feel more in touch with the AR world; better immersion.
Touch is faster and simpler
Translation task: translating objects using ARMouse
feels simpler, faster, and more precise. Again, better
immersion likely due to controlling an AR object directly
with the mouse.
Other remarks: The concept of planes in AR for mouse
movement is intuitive. The mouse was just as intuitive
in AR as it is in 2D and due to my experience with the
mouse, touch was not necessarily more intuitive.

P4 Selection task: Due to the selection line the position of
the mouse is easily known, I have no trouble selecting
the correct sphere without moving the phone, even when
occlusions occur. Touch is faster as I so not have to
physically move the pointer. Moving the phone itself
when using touch does not feel intuitive yet, but might
be advantageous during prolonged use. I think touch is
better for this task although it may be less accurate.
Translation task: when using ARMouse, the selection
line helps with aligning the objects. It also required less
physical work as I did not have to move the phone around
as much as with touch. Moving the object over a plane
feels faster, more accurate and reduces frustration. When
using 3DTouch I have to check each axis independently,
this might result in a higher accuracy, although sometimes
I forgot to check all axes.

P5 Selection task: I am already very adept with the mouse,
so selection is incredibly fast. The secondary selection
function allows for high precision. Touch is very intuitive,
it’s nice to be able to move around the space with the
phone and simply tap it.
Translation task: dragging an object is more intuitive
than moving over axes. When using ARMouse, I started
dragging objects from off-screen, which felt very natural.
It also was not strenuous and felt very fast. ARMouse
felt immersive because even when I was not moving the
phone, moving the mouse in 3D also moved the object
in 3D. I get less disoriented when physical movement is
matched to virtual movement (just like motion sickness).
When using 3DTouch it was very clear to see where the
object is moving towards as it is constrained to one axis.
I needed to keep moving a lot to keep the feeling of 3D. I
did have a very clear feeling if the overlap was perfect or
not.

P6 Selection task: I already have much experience with the
mouse so movement feels intuitive. Touch feels simpler
and faster.
Translation task: ARMouse has a steeper learning
curve, but the translation of objects felt more fluent as I
did not have to move the phone around. Also movement
and translation was more precise. when using 3DTouch I
can’t develop RSI. When doing this task for a full day I
expect ARMouse to be the best ineraction method, espe-
cially when using an AR hmd for example.
Other remarks: I feel more connected to the AR world
when using ARMouse, it feels like I am interacting with
the AR world and not with a screen. I like that I was
able to transition between virtual and AR spaces when



Participant number Mental demand Physical demand Temporal demand Performance Effort Frustration
1 2 3 2 2 2 1
2 2 2 4 2 3 2
3 3 5 3 2 3 1
4 2 3 6 1 4 3
5 4 2 8 2 4 2
6 7 7 4 1 2 1
7 3 1 7 8 3 1
8 1 5 3 1 2 2
9 6 6 5 1 4 1
10 4 4 7 1 5 3

Average 3.4 3.8 4.9 2.1 3.2 1.7
Table 2. ARMouse NASA-TLX scores.

Participant number Mental demand Physical demand Temporal demand Performance Effort Frustration
1 6 8 4 7 7 7
2 3 2 6 2 5 5
3 4 5 3 3 4 3
4 3 7 9 1 7 6
5 7 8 8 7 7 8
6 2 3 1 2 4 3
7 2 3 9 10 8 10
8 3 8 7 2 6 5
9 7 7 3 4 7 4
10 3 7 8 3 5 3

Average 4 5.8 5.8 4.1 6 5.4
Table 3. 3DTouch NASA-TLX scores.

using ARMouse, this seems beneficial when for example
storing documents in the AR world.

P7 Selection task: the mouse is intuitive for manipulating
digital spaces and offers more control than a fingertip on
a screen. I felt more confident when using the mouse
and selecting objects. When using touch I was more
inclined to move around, also just tapping the screen is
very simple and understandable, also moving the phone
closer helped me make less mistakes.
Translation task: 3DTouch feels a bit easier to look
around with, but is horrendous when translating objects,
being forced to move one axis at a time is disheartening.
Other remarks: ARMouse offered free control of the
object and works well as a tool. Furthermore, having
multiple buttons is also very useful.

P8 Selection task: when using ARMouse the hover func-
tion helped in confidently selecting the correct object and
moving around the scene is easier when you don’t have
to move around as much physically. When using touch
zooming in on the object helps with confidently selecting
it and I felt more inclined to explore. Touch feels more
accurate but ARMouse feels faster.
Translation task: ARMouse feels faster and more accu-
rate and I feel more in control when small movements
are required. 3DTouch can be used with one hand.

P9 Selection task: due to the 2D feel of touch interaction I
am less likely to look around and am therefore faster.
Translation task: ARMouse was faster and initial place-
ment was easier. It was also more comfortable and had a
higher precision. I also did not need to move the phone

around as much to accurately place the object. When
using 3DTouch I could more easily gauge the position of
an object above the desk with the help of the visible axis
lines.
Other remarks: Higher immersion when using AR-
Mouse, because of this I was more inclined to look around
and the interaction felt more interesting. I could also eas-
ily feel where the mouse was even though I was not
looking at it. The transition line was intuitive and added
to my immersion due to how it connects the two spaces.
ARMouse is cool for now, but perhaps it is hard to imag-
ine use cases today. However, I see potential for the
future.

P10 Selection task: ARMouse felt intuitive, faster and more
precise because mouse movement is unconstrained to
movement of the smartphone. Subconsciously I used the
secondary selection function already when the target ob-
ject was heavily occluded. Touch selection requires only
one hand and felt more familiar because I was handling a
smartphone.
Translation task: when using ARMouse it was fast and
intuitive to move the object horizontally first and then
vertically. It was also more precise and had no overshoot.
The visible axes of 3DTouch aided in accurate placement,
but switching between x and z translation was sometimes
frustrating.

ADDING OBJECT MANIPULATION FUNCTIONALITY
Rotation and scale transformations would form a likely ad-
dition to ARMouse in the future. Therefore, some thought
was already given to how these manipulation types could be



Source of Variation SS df MS F P-value F crit
Interaction methods 12 1 12 17.91044776 0.008231882158 6.607890969

Category 7.446666667 5 1.489333333 2.222885572 0.2005985092 5.050329058
Error 3.35 5 0.67
Total 22.79666667 11

Table 4. Two-factor ANOVA without replication NASA-TLX results.

Source of Variation SS df MS F P-value F crit
Interaction methods 0.16 1 0.16 0.343697004 0.5580510395 3.866045953

participants 19.26 9 2.14 4.596947428 0.000008868384065 1.904537733
Interaction 11.59 9 1.287777778 2.766283525 0.00380147223 1.904537733

Within 176.9 380 0.4655263158
Total 207.91 399

Table 5. Two-factor ANOVA with replication selection accuracy results.

implemented. The (assumed) requirements for DatAR provide
the context for these recommendations.

For quick and imprecise rotation a simple script can be used.
This translates the mouse’s x and y movement to rotation
values:

transform.Rotate(new Vector3(Input.GetAxis("
Mouse Y"), Input.GetAxis("Mouse X"), 0) *
Time.deltaTime * rotationSpeed);

Uniform scaling can be added by mapping the mouse’s y
movement value to a scale factor. Dependent on the context,
objects that have been scaled up can be repositioned to sit on
top of the desk again to prevent them from clipping through.

Transitioning between manipulation types can for example be
realized by using the middle mouse button, either via clicking
or scrolling. The left mouse button can then be held down
to perform the manipulation, keeping rotation and scale func-
tionality consistent with translation. Feedback to the user on
which manipulation type is currently in use can be realized
by a brief (or persistent) dialog on the smartphone’s display
as the user switches manipulation types, or a more immersive
type of user feedback would for example be a different cursor
or selection line color based on the current manipulation type.

DOCUMENTATION
Note this documentation does not include evaluation and
3DTouch code.

Frameworks and Libraries
• Unity version 2019.4.0f1 LTS

• Packages

– AR Foundation preview.3 4.0.0
AR foundation is an abstraction layer on top of
ARKit and ARCore built to be able to support both
iOS and Android more easily.

– AR Subsystems preview.3 4.0.0
– ARCore XR Plugin preview.3 4.0.0

Android’s AR framework.
– ARKit XR Plugin preview.3 4.0.0

iOS’ AR framework.
– ARKit Face Tracking preview.3 4.0.0

• Assets
– Mirror version 16.9.0

Mirror handles client/server communication.
– Low-Poly Simple Nature Pack version 1.1
– LeanTween version 2.5.0

Library used for linear interpolation of various
gameobject properties.

Classes and Functions
Mouse Controller
Description

The mouse controller is where all mouse input is handled;
objects are spawned, selected and manipulated; and all com-
munication between the client and the server takes place (after
initialization). This script is attached to the mouse prefab itself
and becomes active as soon as the client/server connection is
established.

Due to the use of the networking library Mirror, all server and
client code is contained in this script. This also means that all
code is automatically run by both the server and the client. As
such, different keywords can be used to differentiate between
client and server code:

• [Server]
The server tag indicates that this function is only executed
on the server.

• [Client]
The client tag indicates that this function is only executed
on the server.

• [Command]
The command tag indicates that this function is executed
on the server, but can only be called by the client.

• [ClientRpc]
the clientRpc tag indicates that this function is executed
on the client, but can only be called by the server.

The mouse controller changes operation based on the given
context:

• Initialization: no mouse input is handled.
• Interaction: mouse position is updated and mouse clicks

are handled.



Source of Variation SS df MS F P-value F crit
interaction methods 0.0003385507765 1 0.0003385507765 7.543321283 0.0063098277 3.866045953

Participants 0.007065865082 9 0.0007850961203 17.4928923 0 1.904537733
Interaction 0.0004137224652 9 0.0000459691628 1.024248615 0.4197678461 1.904537733

Within 0.01705472832 380 0.00004488086399
Total 0.02487286664 399

Table 6. Two-factor ANOVA with replication translation accuracy results.

Source of Variation SS df MS F P-value F crit
Interaction methods 0.1487811046 1 0.1487811046 77.2738994 0 3.866045953

Participants 0.04428788886 9 0.004920876539 2.555803842 0.007323952881 1.904537733
Interaction 0.04440951852 9 0.004934390946 2.562822952 0.007167133935 1.904537733

Within 0.7316418632 380 0.001925373324
Total 0.9691203752 399

Table 7. Two-factor ANOVA with replication selection speed results.

• Selection: multiple interactable objects can are hit in the
hover function, so in this context the user can select the
correct object.

• Manipulation: x and y interactable object manipulation.
• ManipulationZ: z interactable object manipulation.

Note that Mirror considers the mouse prefab to be the Player
object, meaning that it represents the client and is automati-
cally instantiated once the client/server connection is estab-
lished. Functions

1. Start
void Start()

Description
Instantiates the mouse and its components, removes any
gameobject that is tagged with the "serverOnly" tag on
the client.

2. Initialize
public void Initialize(GameObject p,

Vector3 pos)

Description
Because we do not want the cursor to be visible until a
valid plane is designated the initialization of the mouse
cursor is split up into the Start and Initialization function.
Here, the cursor is actually made visible and placed on
the plane.
Parameters
GameObject p: the plane gameobject.
Vector3 pos: the position on the plane where we want the
cursor to spawn.

3. SetCursorPos
[Command]
public static extern bool SetCursorPos(

int X, int Y);

Description
External function (Windows only) that sets the system
cursor position, this function is called when the cursor

transitions from AR space to virtual space.
Parameters
int x: x screen coordinate.
int y: y screen coordinate.
Returns
Whether the function was successful in placing the cursor.

4. GetCursorPos
[Command]
public static extern bool GetCursorPos(

out Point pos);

Description
External function (Windows only) that gets the position
of the system cursor, this function is called when the cur-
sor transitions from virtual space to AR space.
Parameters
out Point pos: point containing the x and y screen coordi-
nate of the mouse cursor.
Returns
Whether the function was successful in getting the cursor
position.

5. CmdDestroyObject
[Command]
public void CmdDestroyObject(string name)

Description
Destroys gameobjects on the server and can only be called
from the client.
Parameters
string name: the name of the gameobject.

6. ServerCursorUpdate
[Server]
void ServerCursorUpdate()

Description
This function takes the mouse input on the server and
sends it to the client. Note that this function runs more
frequently than the regular update methods.

7. RpcSpawnObject



Source of Variation SS df MS F P-value F crit
Interaction methods 0.002961668136 1 0.002961668136 14.92419065 0.0001315539692 3.866045953

Participants 0.01724576263 9 0.001916195848 9.655934039 0 1.904537733
Interaction 0.00229889295 9 0.00025543255 1.287154367 0.241995003 1.904537733

Within 0.07541004519 380 0.0001984474873
Total 0.0979163689 399

Table 8. Two-factor ANOVA with replication translation speed results.

Source of Variation SS df MS F P-value F crit
Interaction methods 0.5075438451 1 0.5075438451 98.65621771 0 3.866045953

Participants 1.308903839 9 0.1454337599 28.26936987 0 1.904537733
Interaction 0.9762518257 9 0.1084724251 21.08483688 0 1.904537733

Within 1.954936705 380 0.005144570275
Total 4.747636215 399

Table 9. Two-factor ANOVA with replication selection device distance results.

[ClientRpc]
public void RpcSpawnObject(string

objectName , Vector3 pos, Vector3
scale)

Description
This function can spawn objects by name, to spawn an
object its prefab must be located in the resources folder.
Parameters
string objectName: the gameobject name.
Vector3 pos: the position at which the gameobject will
be places.
Vector3 scale: the scale of the gameobject.

8. RpcCursorUpdate
[ClientRpc]
void RpcCursorUpdate(float x, float y)

Description
This function receives the mouse input from the server
and updates the cursor Note that this function runs more
frequently than the regular update methods.
Parameters
float x: the x component of the mouse input.
float y: the y component of the mouse input.
Note that these values are not coordinates, but directional
vectors relative to the mouse position in the previous
frame.

9. FixedUpdate
private void FixedUpdate()

Description
Updates the rest of the mouse controller at the standard
frame rate.

10. RpcMouseDownLeft
[ClientRpc]
void RpcMouseDownLeft()

Description
Handles left mouse button holds. Used for object transla-
tion.

11. RpcMouseUpLeft
[ClientRpc]
void RpcMouseUpLeft()

Description
Called when the user has released the left mouse button,
used for debouncing and object selection.

12. RpcMouseDownRight
[ClientRpc]
void RpcMouseDownRight()

Description
Handles right mouse button holds. Used for object trans-
lation.

13. RpcMouseUpRight
[ClientRpc]
void RpcMouseUpRight()

Description
Called when the user has released the right mouse button.

14. ServerTransitionLineCollision
[Server]
void ServerTransitionLineCollision()

Description
Called when the virtual cursor hits the bottom of the
screen, records the x component of the cursor position
and calls RpcEnableARMouse to transition the cursor to
AR space.

15. TransitionLineCollision
[Client]
void TransitionLineCollision()

Description
Called when the AR cursor crosses the screen line, stores
the x component of the cursor position and calls CmdDis-
ableARMouse to transition the cursor to virtual space.

16. PlaceSelectionLine



Source of Variation SS df MS F P-value F crit
Interaction methods 0.6638356256 1 0.6638356256 173.430497 0 3.866045953

Participants 1.316254743 9 0.146250527 38.20870799 0 1.904537733
Interaction 0.5857385068 9 0.06508205631 17.00302444 0 1.904537733

Within 1.454516606 380 0.003827675278
Total 4.020345481 399

Table 10. Two-factor ANOVA with replication translation device distance results.

void PlaceSelectionLine(Vector3 begin,
Vector3 end)

Description
Positions the selection line to span between two points.
Parameters
Vector3 begin: begin point of the selection line
Vector3 end: end point of the selection line

17. CmdDisableARMouse
[Command]
void CmdDisableARMouse(float mouseX)

Description
Server command that enables the virtual cursor and posi-
tions it at the designated x position at the bottom of the
screen.
Parameters
float mouseX: the normalized x component of the cursor
position.

18. RpcEnableARMouse
[ClientRpc]
void RpcEnableARMouse(float mouseX)

Description
Enables the AR cursor and positions it at the screen line
according to the normalized x component of the virtual
cursor position.
Parameters
float mouseX: the normalized x component of the cursor
position.

19. HoverCheck
[Client]
void HoverCheck(bool click = false)

Description
Performs raycasts from the cursor upwards to set hover
and selection states of interactable objects, also transi-
tions to the selection context if necessary.
Parameters
bool click: true if the left mouse button is pressed during
this frame to set interactable object states from hovered
to selected.

20. RpcDestroyAllObjects
[ClientRpc]
public void RpcDestroyAllObjects()

Description
Destroys all gameobjects with the "SpawnedObject tag".

21. CmdLog
[Command]
public void CmdLog(string s)

Description
Debug function allowing you to send strings to the
server’s command line from the client.

SetupHelper
Description The setup helper is attached to the AR Session
Origin and handles the instantiation of the mouse, mouse plane
and the screen line.
Functions

1. Start
void Start()

Description
Initialized the setup helper and the necessary managers.

2. Awake
private void Awake()

Description
Initializes other managers.

3. OnEnable
private void OnEnable()

Description
Here we can subscribe to manager’s events.

4. OnDisable
private void OnDisable()

Description
Here we can unsubscribe to manager’s events.

5. OnImageChanged
public void OnImageChanged(

ARTrackedImagesChangedEventArgs args)

Description
Called when images tracked by the tracked image man-
ager are updated, added or removed. As such, this is
where the screen line is instantiated.
Parameters



ARTrackedImagesChangedEventArgs args: all data con-
cerning the tracked images, provided by the tracked im-
age manager.

6. TryGetTouchPosition
bool TryGetTouchPosition(out Vector2

touchPos)

Description
Gets the touch position in screen coordinates.
Parameters
out Vector2 touchPos: the touch position in x and y screen
coordinates.
Returns
Whether the registration of the touch was successful.

7. Update
void Update()

Description
Primes the mouse controller once the cursor is placed and
the screen line is instantiated.

NetworkAutomation
Description

Since the system only has one server and one client the con-
nection process can be automated. With hardware defines
there can be distinguished between the client and the server
before this relationship is established by Mirror. If the code is
run in the Unity editor, on a Windows machine, or on a Mac
the server is started. If the code is run on any other device
(Android or iOS) the system will search for a server.
Functions

1. OnValidate
private void OnValidate()

Description
Sets the network discovery component when running in
the editor.

2. Start
void Start()

Description
Starts the server on Mac and PC.

3. Awake
void Awake()

Description
Starts server discovery on Android and iOS.

4. OnDiscoveredServer
public void OnDiscoveredServer(

ServerResponse info)

Description
Reports discovered servers. Starts client/server connec-
tion with the first server that it finds.
Parameters
ServerResponse info: properties of the newly discovered
server.

UIManager
Description

Handles UI events and calls corresponding mouse controller
methods.
Functions

1. ObjectSpawnButton
public void ObjectSpawnButton(GameObject

obj)

Description
Can be hooked up to buttons to spawn objects.
Parameters
Gameobject obj: reference to the gameobject.

2. SelectionTest
public void SelectionTest(GameObject obj)

Description
Spawns a series of interactable spheres to test selection
and manipulation.
Parameters
Gameobject obj: reference to the gameobject.

3. DestroyAllObjects
public void DestroyAllObjects()

Description
Destroys all objects with the tag "SpawnedObject" by
calling the equivalent method in the mouse controller.

InteractableObject
Description

Any gameobject that is be interactable (can be selected and
manipulated) has this script attached to it. Here, selection and
hover effects are generated and collision with the ceiling and
mouse plane is handled.
Functions

1. Start
void Start()

Description
Initializes colors and reference to the mouse controller.

2. LateUpdate
void LateUpdate()

Description
Animates changes in color based on the state of the
gameobject.



3. CheckPlaneIntersection
public void CheckPlaneIntersection()

Description
Handles collisions with the ceiling (50cm above the
mouse plane) and the mouse plane. Differentiates be-
tween objects with a center and bottom pivot.

4. SetHoverDone
void SetHoverDone()

Description
Sets hover boolean to true when the hover animation
completes.

5. SetHoverNotDone
void SetHoverNotDone()

Description
Sets hover boolean to false when the de-hover animation
completes.

6. SetSelectDone
void SetSelectDone()

Description
Sets selection boolean to true when the selection anima-
tion completes.

7. SetSelectNotDone
void SetSelectNotDone()

Description
Sets selection boolean to true when the deselect anima-
tion completes.

8. SetColor
void SetColor(Color c)

Description
Sets the color of the outline shader to the correct value as
the animation plays.

Settings
Description

Scriptable object that allows for easy editing of global values
and variables such as hover and selection color.

Known Issues
When starting the app the smartphone must be in line with the
z axis to set the world orientation.
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