
Learning Constrained Shape Spaces for Mesh Design

by

George Augusto Lorenzetti

A thesis submitted in partial fulfillment of the requirements for the degree of

Master in Game and Media Technology

Department of Information and Computing Sciences
Utrecht University

© George Augusto Lorenzetti, 2021

Abstract

Designing free-form structures in architecture is a difficult process, as constraints

required for different building scenarios can be complex and typically require many

design iterations involving multiple parties. Generating constrained three dimensional

meshes through the use of neural networks provides an opportunity to simplify this

process. In this paper we looked at generating constrained meshes using an autoen-

coder framework. Previous work had addressed methods for constraining free form

quad meshes numerically, and more structured objects through the use of generative

neural networks but generating free form constrained meshes has not been achieved

thus far. In this work we present an autoencoder framework for generating quad

meshes with constraints that fix vertices to specified points or planes. Results of

mesh generation are limited to moderate, however emergent in our methodology is an

additional contribution of creating an integration network that performs integrations

converting quad meshes from edge length and dihedral angle representation to vertex

coordinates. The performance of the integration network provides a number of ben-

efits over numerical optimisation methods of integration, and also allows for smooth

interpolation between meshes based on edge lengths and dihedral angles.

ii

Table of Contents

1 Introduction 1

2 Literature Review 3

2.1 Previous Work . 3

2.1.1 Architectural Geometry . 3

2.1.2 Constrained Shape Spaces in 3D Modelling and Animation . . 6

2.1.3 Machine Learning for Shape Spaces 7

2.2 StructureNet . 8

2.2.1 Continuous Geometry Generation 8

2.2.2 Latent Space Interpolation . 9

2.2.3 Encoding Unannotated Images and Models 11

2.2.4 Latent Space Dimensionality 11

3 Background 13

3.1 Constraint Spaces . 13

3.2 Autoencoders . 14

4 Methodology 16

4.1 Creating Training Data . 16

4.1.1 Calculating the Laplacian . 17

4.1.2 Deforming Using Eigenvectors 18

4.2 Mesh Representation . 19

4.2.1 Edge Lengths and Dihedral Angles 19

iii

4.2.2 Consequences for Data Generation 22

4.3 Integration Network . 22

4.4 Generating Constrained Meshes . 23

5 Experimentation 26

5.1 Integration Network . 26

5.2 Constrained Mesh Generation . 28

6 Results 29

6.1 Integration Network . 29

6.2 Fixed Point/Plane Constraints . 36

7 Discussion 46

7.1 Integration Network . 47

7.2 Constraints . 48

7.2.1 Constraints - Single Fixed Point 49

7.2.2 Constraints - Two Fixed Points 50

7.2.3 Constraints - Fixed Plane . 50

7.3 Summary . 51

8 Conclusion 53

iv

Chapter 1

Introduction

Designing free-form structures in architecture is not a straight forward process. Struc-

tures are constrained in shape based on a number of factors such as structural in-

tegrity, panel manufacturability and building cost. For an architect, designing a

free-form structure that adheres to construction constraints involves a costly and

time consuming cycle of designing and fitting the design to constraints. Research

into constraint spaces for polyhedral meshes has useful application in architecture,

allowing for the development of tools which architects can use to explore shapes and

designs directly in the defined constraint space of a mesh. The aim of such tools is

ultimately to streamline the design process for architects, reducing the total cost and

time investment required in designing free-form structures.

Previous work on constrained meshes for free-form architecture have involved compu-

tational models which are able to provide local approximations of a mesh’s constraint

space. Thus far, these methods have been computationally expensive and generally

have large margins of error for large mesh deformations. Efforts have been made to

reduce errors and achieve real-time computations, however these methods generally

reduce the design freedom for the architect. Recently a number of works have used

machine learning to accurately generate complex 3D objects such as furniture, and

map soft body object deformations into a latent space using autoencoders. Thus far

1

however, machine learning has not been explored in generating constrained meshes

for architecture.

The first contribution of our work is the creation of an integration network which can

perform integrations converting meshes from edge length and dihedral angle form, to

a list of vertex coordinates. Vertex coordinates are required when rendering a mesh

but do not capture the geometry of a mesh as well as edge lengths and dihedral angles

do. By working in edge length and dihedral angle form and having a network which

integrates into vertex form, we are able to create an autoencoder that is better at

capturing constraints, while still outputting meshes in a renderable form. On top of

its importance in the problem of constraint generation, having an integration network

also allows for interpolation between meshes based on edge lengths and dihedral an-

gles. Interpolating using numerical optimisation algorithms is generally cumbersome,

requiring re-optimisation at every intermediate step. By using an integration network

for interpolation the process becomes much simpler, requiring only a single forward

pass through the network at each step.

The second contribution we make provides only limited results, but involves creating

a method for generating constrained meshes through the use of an autoencoder. The

constraint scope of the work focuses on constraints that fix a point or set of points in

a mesh to a specific plane or points. Part of this work involves using the integration

network to convert an input mesh from a nonlinear representation of edge lengths

and dihedral angles, to a list of vertex coordinates. The edge length and dihedral

angle representation is used as it captures geometry associated with constraints such

as planarity and the fixed point constraints that we focus on. Vertex representation

is also needed for rendering the output meshes. A span of different quad meshes is

encoded into the latent space of our autoencoder framework, and exploration of the

constraint space is done by optimising within the latent space.

2

Chapter 2

Literature Review

2.1 Previous Work

2.1.1 Architectural Geometry

Research and Development in the field of architectural geometry aims to create tools

which allow users to freely manipulate and explore the constraint space of architec-

tural meshes. Early work in the field defined a mesh as a manifold with non-linear

constraints represented as equality functions [Yan+11]. The constraint space was

then defined as the intersection of the constraints in the manifold space. They then

make a first order approximation of the constraint space using the manifold’s tangent

space, and a second order approximation using its oscilant. The constraint space can

be explored by sampling along the oscilant, however direct manipulation and defor-

mation of meshes is not supported. This work provided a solid foundation of research

however it was computationally slow, meaning that sampling can not be done in real-

time. On top of its computational time, the oscilant proves to be a useful estimate

only for small deformation of the mesh, with larger deformations moving further away

from the actual constraint space and increasing the degree of error.

In 2012 two works were produced, which aimed to improve application of the previ-

ous work as a design assistance tool [HK12; YPM12]. Yong et al. took the second

order oscilant approximation and introduced the ability to directly deform meshes.

3

In this approach users define curves on the mesh as anchors and are then able to

deform around these anchor curves. While successfully improving application, this

work still suffers from the same slow computational time. Habbecke and Kobbelt

took a different approach, providing a solver for co-linear mesh constraints using an

iterative method inspired by inverse kinematics. The solver runs in real-time and en-

forces constraints exactly, however it is very limited in that it only supports co-linear

constraints and provides only a single ’best’ solution with no functionality for design

space exploration.

Also in 2012, Vaxman [Vax12] took the mesh manifold and constraint representations

from Yang et al’s 2011 work and introduced a method of deforming, using per-face

affine maps to preserve planarity constraints on a mesh perfectly. While this method

provided contributions in both error reduction and application of design assistance

tools, shape space exploration was still unavailable in real time. Error reduction was

achieved regarding planarity only and errors remain comparable to the second order

approximation for other constraints such as fairness and concyclity thresholds. Later

in 2014, Vaxman [Vax14] also introduced a novel approach which works in the pro-

jected space for constraints, using multi-resolution mesh editing. While this method

performed relatively well compared with the state of the art at the time and intro-

duced a new approach to the problem, it is not robust to large meshes and has a

limited ability to deal with applications that require explicit transformations of vec-

tors.

Deng et al. [Den+13] built upon the first order tangent space approximation of a

mesh’s constraint space and introduced a numerical method for mesh optimisation

that is able to preserve constraints for larger deformations. As with the previous ef-

forts, this work also supports both manual deformation and shape space exploration,

both of which work in real time. This work was a strong step forward, achieving a

4

combination of the benefits of previous works. In this achievement, two new goals

for the state of the art were introduced- the ability to support inequality constraints,

and the prevention of self intersections of meshes in the solution space. Further work

was able to build upon this framework by introducing support for inequality con-

straints however this came at the expense of support for constraint space exploration

[Tan+15].

In 2015, an improved numerical solver was implemented which introduced the con-

cept of hard and soft constraints in the exploration of the constraint space [Den+15].

These types of constraints are analogous to equality and inequality constraints. This

same year, another method was introduced which generates and deforms polyhedral

meshes using topology maps [PCG15]. While these works were a marked step forward

in their previous state of the art, they highlight that the state of the art had moved

away from the goal of defining a global constrained shape space, towards numerical

solvers and optimisation in order to improve computation time for local approxima-

tions.

A survey on the research field of architectural geometry was done in 2015 by Pottman,

Eigensatz, Vaxman and Wallner [Pot+15]. This survey covered previous research on

the topics of constrained meshes and design assistance tools, and noted a number

of directions that research can take from the current state of the art. The survey

noted that previous efforts have primarily focused on local approximations of a con-

straint space, leaving a gap in research into global approximations. This research

intends to fill this gap, using machine learning to find a more global approximation

of constrained shapes spaces.

5

2.1.2 Constrained Shape Spaces in 3D Modelling and Ani-
mation

A number of notable works involving constrained shape spaces have also come out of

the research fields of 3D modelling and animation. Two works in particular [Bok+12;

Sch+17] take an approach to constrained 3D CAD model design for engineering. In

these works, design is less free-form than in architectural geometry examples, and

constraints are defined as functions in the models and parameterised. This approach

allows for perfect adherence to constraints and low computational cost. Exploration

of the design space is done parametrically and for Bokeloh et al. is also done through

directly altering constraint axes. While these approaches are effective for their spe-

cific applications, for architectural meshes a more general constraint space needs to

be defined to allow for more free-form design.

Schultz et al. [Sch+14], von Radziewsky et al. [Rad+16] and Heeren et al. [Hee+16;

Hee+18] all take an approach to soft body deformation which build constrained shape

spaces by using a sample dataset and building a constraint space from samples and

defined constraints. Schultz et al. use partial keyframes as constraints which denote

information such as average vertex velocity at a point in time, while von Radziewsky

et al. use elasticity and other deformation factors as constraints. Heeren et al. focus

on a method of interpolating within the constraint space, first using splines [Hee+16]

and subsequently using Principal Geodesic Analysis [Hee+18]. While each of these

approaches are able to produce high quality deformations, they are not generalised

approaches and each rely on having sample data for the specific models to be de-

formed. These approaches are analogous to the work in this paper in that they are

able to construct a shape space using a sample dataset, however through the use

machine learning we aim to be able to create a more general constraint space for

meshes.

6

2.1.3 Machine Learning for Shape Spaces

A recently emerging avenue of research is the use of machine learning to find shape

spaces for different types of 3D objects. Thus far no work has been done specifically

on constrained shape spaces for architectural meshes, however there are a number of

approaches with different applications that can provide a basis for our work. Struc-

tureNet [Mo+19] is a framework which has heavily inspired our work, and as such

will be discussed in detail in the next section. StructureNet is based primarily on

two previous works, GRASS by li et al. [Li+17] and PointNet by Qi et al. [Qi+17].

GRASS is a machine learning framework that uses a Generative Adversarial Network

for generating shapes for structured objects such as furniture. StructureNet takes a

different approach to the same problem, however is more effective than GRASS in

its ability to handle large data sets. PointNet is a Deep Neural Network architecture

that is able to classify the shape geometry of point clouds. This architecture is then

adapted by StructureNet for the generation of point cloud geometry for individual

object parts.

Luo et al. [Luo+18] and Fulton et al. [Ful+19] have done work in using machine

learning to create physical deformations of 3D soft bodies. Both approaches were

able to produce high quality deformations for soft bodies input into the architecture.

Fulton et al’s work is particularly relevant to our work as they were able to create

deformations by encoding a latent space using an autoencoder.

Masci et al. [Mas+15] have also produced relevant work in the form of Geodesic

Convolutional Neural Networks. In this work they were able to devise a way of

performing convolutions on a 3D mesh, which are effective for applications such as

invariant descriptors, shape correspondence and shape retrieval. While this is not di-

rectly related to constrained shape spaces, it provides a basis for working on meshes

7

with neural networks.

2.2 StructureNet

StructureNet [Mo+19] has served as the primary inspiration for the work in this

project. It is a state of the art example of geometry generation using Variational Au-

toencoders, capable of producing high quality models using a discrete object structure

with continuous part geometry. Models used in tests were generally different types

of furniture, however StructureNet can be trained to generate models for any struc-

tured object. StructureNet is of particular interest as its approach to using VAEs

to generate objects from the latent space can be applied to constrained architectural

meshes. I have experimented with an implementation of StructureNet in order to gain

a hands on understanding of the framework’s applications and limitations, specifically

focusing on what parts of the work may be applicable for this project.

2.2.1 Continuous Geometry Generation

One of the key requirements of generating constrained shape space meshes is that the

VAE must have the ability to generate continuous geometry for the mesh. The Struc-

tureNet framework consists of two encoder decoder pairs- the first of which is used for

continuous object part geometry generation while the second is used for structuring

each generated part in a discrete hierarchy. The approach taken for the first encoder

could be adapted for mesh generation, as there are certain implicit constraints asso-

ciated with the shape of each different object part.

With respect to constrained shape space meshes, StructureNet is limited in that

the framework contains geometry encoders and decoders only for bounding box and

point cloud shape representation (Figure 2.1). A main goal for this research is to pro-

vide output in a form that can be used directly by architects and 3D artists. Neither

of StructureNet’s shape representations are suitable for this goal, as bounding boxes

8

cannot accurately represent surface meshes and point clouds cannot represent surface

meshes in a way which can be easily manipulated by architects while designing. As

such, a new way to encode and decode surface meshes in a more usable form such as

a three dimensional model will need to be used.

Figure 2.1: StructureNet supports two formats of object geometry representations. Bound-
ing Box (left) and Point Cloud (right). Each representation uses a different geometry
encoder and decoder with different architectures.

2.2.2 Latent Space Interpolation

The second point of interest that StructureNet presents in relation to our research is

interpolation. One of the main goals in this project is to provide a framework which

architects can use to experiment with shapes within the constraints of their design.

An important part of this experimentation is the ability to interpolate between shapes

such that intermediate results are also of high quality and remain within the constraint

space. Interpolation within a learned latent space is an inherent advantage of using

VAEs, however StuctureNet boasts more structurally aware interpolation between

two objects within the latent space than previous related work. Intermediate results

between interpolation in StructureNet are of particularly high quality, producing ob-

jects which would be feasible in real life (See Figure 2.2). Learning a latent space for

9

Figure 2.2: An example for each object type of interpolation within StructureNet’s learned
latent space. A number of high quality intermediate objects are generated while interpo-
lating between the first and last outputs.

constrained shape meshes which can be interpolated in to produce a spectrum of high

quality meshes, is an important goal for this project. While StructureNet does a good

job with interpolation, it is limited in that it does not produce a continuous spec-

trum of high quality objects. Due to the nature of the structured objects that it can

generate, interpolating between objects in the latent space produces many low qual-

ity, broken looking objects in between the intermediate high quality interpolations.

Figure 2.3 shows two examples of these broken objects. For generating constrained

shape space meshes and the intended applications, it is important to find a way to

10

Figure 2.3: Interpolation between two chairs generated with random feature parameters.
Broken or low quality intermediate generated objects were chosen to highlight how interpo-
lating within the latent space does not produce a continuous spectrum of quality objects.

avoid such a limitation

2.2.3 Encoding Unannotated Images and Models

Another feature that StructureNet provides is the ability to take unannotated images,

shapes or point cloud representations of objects and encode them into a common

latent space. This is particularly interesting as an application for constrained shape

space mesh generation as a feature such as this would allow architects and artists

to provide mock up images or models as input to the system, and then be able to

experiment with different shapes using the mock ups as a starting point. How useful

StructureNet’s method for this will be when applied to constrained architectural

meshes is unclear though, as an object such as a chair is semantically very different

to a continuous mesh surface. It is a promising concept however and is something the

framework of this project can definitely benefit from.

2.2.4 Latent Space Dimensionality

A limitation of StructureNet with respect to this project is the dimensionality of the

latent space. In generating constrained shape space meshes, this project aims to cre-

ate a framework with which architects are able to explore different possible surface

shapes within a set of given constraints. In order to effectively achieve this goal the

number of features for each vector within the latent space should be relatively low,

11

and features should be semantically meaningful. StructureNet’s learned latent space

has 256 dimensions, which is too many for users to be able to experiment with in

a meaningful way beyond trial and error. How applicable this limitation will be to

this project is hard to predict however, as the output of StructureNet is very com-

plex. The StructureNet framework requires the structural hierarchy of objects to be

encoded, as well as the specific geometry of each part in the object. Output for gen-

erated constrained shape space meshes is likely to be less complex and as such could

be effectively encoded in a latent space with much lower dimensionality.

12

Chapter 3

Background

3.1 Constraint Spaces

Constraints on physical objects are ubiquitous and appear in many forms- Movement

of a pendulum is constrained along a semicircle of fixed radius, machinery socket

joints are constrained in their degrees of freedom and tools such as wrenches are

constrained in how they must be shaped. In free-form architecture, curved surfaces

are modelled as meshes which have various constraints such as vertex position, face

planarity, shape regularity, and size. Constraints are typically defined as functions

of the form C(x) = 0, where x is the input object or system, and the constraint is

adhered to perfectly if and only if the result is zero.

In this work, we focus on fixed point constraints on quad meshes. This is a sim-

ple starting point for generating constrained meshes, but implementation is done

with the possibility in mind to extend the framework to different types of constraints.

A quad mesh can formally be described as a set of vertices and faces of degree 4.

Sets of meshes that share an identical connectivity defined as just their set of vertices

v ∈ R3. To define a shape space for a set of meshes with shared connectivity, a mesh

is modelled as a manifold p ∈ RD where p = {v0, v1, v2...vn} consisting of each of the

n vertices in the mesh, and D = 3n. When imposing constraints on quad meshes to

form a constrained shape space M , the set of meshes that lie within the intersection

13

of all m constraints Ei(p) = 0, i = 1...m form the constrained shape space. This

intersection of m constraints in RD is formally defined as Γi = { p ∈ RD |Ei(p) = 0 },

i = 1...m. This work uses an autoencoder framework to encode Γi into a latent space

that can be explored during the process of designing free-form architectural surfaces.

3.2 Autoencoders

Autoencoders are a type of neural network architecture that, once trained on a specific

data set, are able to generate new examples of similar data. Autoencoders consist of

two separate neural networks, an encoder and a decoder. The function of the encoder

is to take a data sample as an input vector and encode it as a feature vector in a

lower dimension space called the latent space. The decoder has the opposite function,

it takes a sample from the latent space as input and outputs the corresponding data

sample. Since the goal of an autoencoder is to encode data into a latent space and

accurately decode samples from the latent space, error is measured by how accurately

a sample can be encoded and then reconstructed with the decoder. If the functions

e(x) and d(x) represent the encoder and decoder respectively, then the error of an

autoencoder is measured by accuracy of the approximation x ≈ d(e(x)) where x is an

input sample of training data (Figure 3.1).

We take advantage of the generative capabilities of autoencoders to generate our

constrained meshes. We train an autoencoder that encodes a latent space of de-

formed meshes with consistent size and connectivity, and generate meshes from the

latent space which adhere to our prescribed constraints. Autoencoders however, are

limited in their generative ability, since the distribution of their latent space reflects

the distribution of the sample data that they are trained on. In the likely scenario

that the training dataset is not distributed regularly, the latent space will not be

regularly distributed and as such, sampling and decoding random points within the

latent space is not likely to generate good quality new data.

14

Figure 3.1: Autoencoder architecture consisting of two networks, the encoder and the de-
coder.[Roc19]

There are a number of ways around this, so that sampling can be done of the latent

space with an autoencoder. The option that we choose is through optimisations. If

the latent space is sufficiently smooth, sampling can be done by interpolating between

known encoded latent vectors. This interpolation can just be a linear interpolation

or in the case of generating constrained meshes, interpolating with an optimisation

algorithm can be done to find meshes which fit constrainst. In the case of latent

space optimisation, an initial guess and a cost function are provided to the optimizer.

The cost function defines the desired constraints and the optimizer will iteratively

converge onto a solution in the latent space which best fits the constraints.

15

Chapter 4

Methodology

In this chapter will cover the implementation details for how the final mesh generation

framework was implemented. Details and justification of all stages of development

from training data creation all the way up to actual mesh generation are covered.

4.1 Creating Training Data

Since the method for generating constrained meshes was to be done using an au-

toencoder, the first consideration that needed to be made was what the data set for

network training should look like. For the sake of simplicity, we decided that to begin

with, the focus should be on generating meshes with constant connectivity. As such,

a data set for training the network should consist of different deformations of a single

starting mesh. With this approach, the generated meshes would all be deformations

of the starting mesh, generated specifically to adhere to the prescribed constraints.

The starting point for each training data set was a single quad mesh in the shape

of a square plane. We then planned to create different data sets consisting of differ-

ent sized meshes, used for different sets of experiments. Each mesh in the training

data set was deformed using a set of eigenvectors calculated using the laplacian of

16

the starting mesh. This method was chosen because we wanted our autoencoder to

generate smooth shapes that could feasibly be used in architecture. This eigenvector

method of deformation produces smooth deformations, and hence a network trained

on these meshes should retain this property when generating new meshes.

4.1.1 Calculating the Laplacian

The method described here, used for calculating the laplacian of the starting mesh

was introduced by Alexa and Wardetzky [AW11], and is outlined in more detail in

their paper. The laplacian of a mesh consists of two parts, a stiffness matrix W and

a mass matrix M , both of dimension v × v, where v is the number of vertices in the

mesh. W and M are then used to solve the system Wϕ = Mϕλ, to produce v × l

matrix ϕ which consists of l eigenvectors as its columns, and a l × l diagonal matrix

λ of corresponding eigenvalues.

The stiffness matrix W takes the form W = dTM1d. Matrix d is a (2ei+eb)×(2ei+eb)

coboundary matrix, where ei and eb are the respective numbers of inner and boundary

edges in the mesh. Matrix M1 is a (2ei + eb) × v inner product matrix. In order to

calculate the laplacian and generate ϕ for mesh deforming, matrices M , d and M1

must be assembled. Matrix M is a diagonal matrix where each value Mpp contains a

mass value for vertex p and is calculated as follows:

Mpp =
∑︂
f∋p

|f |
kf

(4.1)

Where for each face f adjacent to vertex p, |f | is the largest signed area of projections

of f on to all orthogonal planes in R3. An intuitive illustration for |f | is shown in

Figure 4.1.

17

Matrix d is a sparse coboundary matrix indicating each edge in the mesh. Inner

edges are counted twice, once for each face they are a part of. Each entry dij cor-

responding to a directed edge eij takes the value dij = ±1 depending on the sign of

the edge. Constructing matrix M1 is more involved than M and d, and is outlined

in the algorithm below. In the algorithm, parameter λ takes a chosen value, for our

implementation λ = 2.

Algorithm 1 Assembling M1 Input:Polygonal face f , parameter λ, matrix d

1: for each face f in mesh do
2: B,E, Ē ∈ Rf×3

3: for each vertex xi in f do
4: E(i) = (xi+1 − xi)

T

5: B(i) = 1
2
(xi+1 + xi)

T

6: end for
7: A = ETB
8: M̃ =

√
2

||A||BBT

9: n̄ = normalized(−A23, A13,−A12)
T

10: for each vertex xi in f do
11: x̄i = xi − (xi · n̄)n̄
12: end for
13: for each vertex xi in f do
14: Ē(i) = (̄xi+1 − x̄i)

T

15: end for
16: C = orthonormal kernel of ĒT (using LU then SVD)
17: U = λId
18: Mf = M̃ + CUCT

19: end for
20: M1 = diagonal matrix where each Mf is assembled along the diagonal in position

of its corresponding face

4.1.2 Deforming Using Eigenvectors

After calculating the laplacian for the starting mesh, we obtained the eigenvectors ϕ

by solving the system Wϕ = Mϕλ using MATLAB’s eigs function. This function

takes W , M and the number of eigenvectors l to return. In creating our data sets we

chose to use 100 eigenvectors or, if the mesh size for the data set was too small for

eigs to produce 100 then we used the maximum number possible. Deformations of

18

Figure 4.1: An illustration of the maximal vector area |f | corresponding to face fabcd.
Illustration created by Alexa and Wardetzky [AW11]

the starting mesh were created by using linear combinations of the eigenvectors. Each

combination was created with random coefficients, but weighted to bias eigenvectors

corresponding to higher magnitude eigenvalues. As each eigenvector is of length v,

three linear combinations were created for each deformation, used to deform each

vertex’s corresponding x, y and z coordinates. Figure 4.2 gives a visual on the result

of deforming using this method.

4.2 Mesh Representation

4.2.1 Edge Lengths and Dihedral Angles

The most common way to represent a three dimensional mesh in a data set is

through a combination of vertex coordinates and connectivity information. This

representation is required for most graphical applications when visualising meshes

and hence, this representation was the starting point we used for experiments. We

did some initial experimentation in encoding three dimensional quad meshes into a

latent space, using vertex coordinates as network input. Input vectors took the form

[x1, y1, z1, x2, y2, z2 . . . xv, yv, zv] for a mesh containing v vertices, with connectivity

data provided as needed for loss calculation but not as network input. This initial

experimentation produced poor results and indicated that a more geometrically aware

19

Figure 4.2: Three examples of meshes deformed using the eigenvector method.

mesh representation was needed.

Frölich and Bostch [FB11] present a different way to represent a three dimensional

mesh, which they used for their work in generating soft-body mesh deformations.

They represent a mesh by its edge lengths and dihedral angles- measuring the stretch-

ing and bending of a mesh as deviations in these values. Based on Frölich and Bostch’s

success in deforming meshes using this representation and the fact that our data sets

contain meshes with a constant connectivity, we hypothesize that using edge lengths

and dihedral angles as input will allow an autoencoder to better capture the geometry

of a mesh.

When using edge length and dihedral angle representation, we include the lengths

of each edge between two vertices, the diagonals of each face, the long edges between

neighbouring neighbouring faces and the diagonals between neighbouring faces in the

20

Figure 4.3: Given two neighbouring quads Qabcd and Qcdef in a mesh, our representation
would include as edge lengths: edges |āb|, |b̄c|, |c̄d|, |d̄a|, |d̄e|, |ēf | |f̄ c|, face diagonals |āc|,
|b̄d|, |d̄f | |c̄e|, long edges between neighbours |āe| |b̄f |, and neighbour diagonals |āf | |b̄e|.

Figure 4.4: For the quad Qp1p2p3p4 , we calculate the dihedral angle θ. N1 and N2 are
normals to the triangles Tp1p2p3 and Tp1p2p4 respectively. [Cra18]

mesh. Each of these edge lengths is illustrated in Figure 4.3. We calculate dihedral

angles using a method outlined by Crane [Cra18]. For a quad shown in Figure 4.4,

the dihedral angle θ is calculated using:

θ = atan2(e · (N1×N2), N1 ·N2) (4.2)

Using this equation we calculate the dihedral angle for each face diagonal and each

neighbour diagonal in the mesh. Input for our autoencoder is formatted as a list of

all lengths, concatenated with a list of dihedral angles.

21

4.2.2 Consequences for Data Generation

Changing to representing training meshes as edge lengths and dihedral angles does

provide an issue in mesh generation that we address in our data generation process.

Edge lengths and dihedral angles do not provide any positioning information about

the mesh, and we anticipated that this could cause problems in preserving these prop-

erties when generating meshes, and converting to vertex form. In order to preserve

these properties, we add two extra steps to data generation. The idea behind these

steps is to create consistency between training meshes, that will be reflected in net-

work output.

The first step that we take is to address the problem of orientation. We do this

by performing PCA on the deformed mesh before converting from vertex form. From

this PCA we take the three principal component axes and rotate the mesh such that

they align with the x, y and z Cartesian axes. This is done for each mesh in the train-

ing data sets, and provides a consistency in orientation that is reflected in the neural

network output. The second step provides a similar consistency for translation. This

step involves translating each training mesh such that the average position of all its

vertices lies on the origin. After these steps are completed, the data is converted to

edge length and dihedral angle form and the data generation is complete.

4.3 Integration Network

Despite our shift from representing meshes by their vertex coordinates to edge lengths

and dihedral angles, we must still have a way to convert back to vertex coordinates so

that generated meshes can be rendered. Calculating edge lengths and dihedral angles

from a list of vertex coordinates with connectivity data is trivial, however converting

back to vertex coordinates is not so simple. Converting from edge lengths and dihe-

dral angles to vertex coordinates is an integration problem that would typically be

22

solved numerically using a non-linear least squares optimisation. Solving the integra-

tion numerically like this is too slow for an architecture design application however,

because the non linear least squares algorithm would need to be run each time a user

edits a mesh.

The need for a faster way to convert from edge lengths and dihedral angles, to vertex

coordinates gives rise to a secondary goal in our work. This secondary goal is to train

a neural network to solve the integration problem, instead of doing so numerically.

This is beneficial because converting to vertex coordinates using a single forward

pass through a network will be much faster than a numeric optimisation, and using a

network will also allow the conversion to be built directly into the autoencoder frame-

work. With this we present our integration network architecture, described in Figure

4.5. The integration network is a fully connected multi-layer perceptron consisting

of 8 hidden layers, each with dimension 128, using the ELU activation function. The

network takes the previously explained concatenated list of edge lengths and dihedral

angles as input, and outputs a list of vertex coordinates. The size of input and output

vectors for the integration network vary depending on the data set used for training,

as larger meshes will have larger input and output vectors.

4.4 Generating Constrained Meshes

To generate constrained three dimensional meshes, we use an autoencoder framework.

The architecture of the framework is shown in Figure 4.6. The decoder and encoder

both consist of 5 hidden layers of dimension 512, with a latent space of dimension 256.

The latent space dimension remains constant regardless of the input size. The au-

toencoder uses the exact same architecture for the integration network as previously

described. Empirically, the autoencoder is able to encode a smooth latent space of

three dimensional meshes. This allows for linear interpolation between two encoded

meshes to generate meshes of consistent quality.

23

Figure 4.5: Architecture diagram of the integration network. For a mesh with n vertices,
the network takes the list of edge lengths and dihedral angles as input and outputs the
vertex positions of the mesh.

The scope of constraints that we focus on are constraints which fix a vertex or group

of vertices to a specific point, set of points or plane. In order to generate meshes which

adhere to these constraints, we utilise latent space optimisation to search the latent

space for meshes which fit the constraints. This optimisation is possible because of the

smooth latent space that our autoenncoder produces. For this optimisation we use

the Limited-Memory Broyden-Fletcher-Goldfarb-Shanno (LBFGS) algorithm, which

iteratively minimizes the following cost functions:

Cpoint = |l − l0|2 + w(
∑︂
v∈F

|v − v0|2) (4.3)

Cplane = |l − l0|2 + w(
∑︂
v∈F

|vp − v0p|2) (4.4)

Depending on whether vertices are being constrained to a point or a plane, either

Cpoint or Cplane is used as a cost function. In these functions, latent vector l is the

current guess for the output and is updated each iteration, latent vector l0 is the initial

guess provided to the algorithm, F is the set of vertices that are being constrained,

and v0 is the fixed point corresponding to each vertex v. When fixing to only a plane,

24

Figure 4.6: Autoencoder architecture.

vp is the x, y or z coordinate of v, depending on which plane is being fixed. To provide

a good quality initial guess to the L-BFGS, an example mesh from validation data

is encoded using the autoencoder framework. The encoded latent variable is then

provided to the optimisation algorithm as an initial guess for the interactive process.

25

Chapter 5

Experimentation

We split experiments into two separate sections- integration network, constrained

mesh generation. The first section looks at the performance of the integration network

in converting from the edge length and dihedral angle representation to vertex coordi-

nate representation. The performance of the integration network will be measured in

comparison with performance of a conventional non-linear least squares solution for

the integration. The second section then looks at how well the autoencoder performs

in generating new meshes that constrain certain vertices to fixed points and planes.

5.1 Integration Network

The first section of experiments focuses on the performance of the integration net-

work. Experiments will be performed three times, each time using an integration

network trained on a different data set. Each data set contains meshes of a different

size (4x4, 8x8 and 16x16). Each data set is split into 5800 training meshes and 200

validation meshes, for a total size of 6000 meshes. All meshes in a data set are defor-

mations of a single original mesh using the eigenvector deformation method described

in the previous chapter. Examples of training data can be seen in Figure 5.1.

For each dataset, training parameters were kept constant and are outlined as fol-

lows: 500 training epochs, batch size of 800, learning rate of 1e-3, Mean Squared

26

(a) 4x4 (b) 8x8 (c) 16x16

Figure 5.1: An deformed mesh example from each data set. Meshes are 4x4, 8x8 and 16x16
quads in size.

Error (Pytorch implementation) as a loss function and Adam as the optimizer.

The goal of the integration network is to convert a mesh from our edge length and

dihedral angle representation into a vertex coordinate representation. As this task

would typically be solved using a numerically we compared output from a non-linear

least squares algorithm with output from the network. A set of 200 validation meshes

was converted to vertex coordinate form using a MATLAB implementation of the

Levenberg-Marquardt algorithm, and then converted again using the integration net-

work. For each reconstruction, the mean squared error between the vertex positions

in the original mesh and reconstruction was calculated and the mean of these 200

values was used to compare the integration network with Levenberg-Marquardt.

In addition to experiments measuring the basic performance of the integration net-

work, we perform experiments to assess linear interpolation between two meshes in

edge length and dihedral angle format. Linear interpolation is identified as an ad-

ditional application of the integration network as it allows for interpolation without

having to re-optimise at each step, as is needed when interpolating numerically. To

examine how well linear interpolation works, we interpolate between two validation

meshes for each data set. We visualise each intermediate result and from this assess

the quality of the interpolation as a whole.

27

5.2 Constrained Mesh Generation

The second set of experiments looked at how well constrained meshes could be gen-

erated by training the autoencoder and then performing optimisation in the latent

space. As mentioned in the previous chapters, the types of constraints that we focus

on are constraints which fix a single vertex or set of vertices or some fixed points or

plane. The autoencoder was trained using the same three datasets that were used

for the first set of experiments. For each data set, the same training parameters were

used which are as follows: 400 training epochs, batch size of 1000, learning rate of

1e-3, Mean Squared Error (Pytorch implementation) as a loss function and Adam as

the optimizer.

Using the trained autoencoder, we generate constrained meshes using the method

outlined in chapter 4.4. We perform experiments for fixing vertices to both points

and planes, and use the corresponding cost functions (4.3) and (4.4) in the latent

space optimisations. To examine the robustness of the constrained mesh generation,

different examples were generated with different constraints involving a single fixed

vertex, multiple fixed vertices or a row of vertices fixed to a single plane. All three

scenarios were tested for each of the three mesh sizes. To gauge how well vertices

were fixed, a visualisation was used which shows each vertex’s actual position in com-

parison with its desired constrained position.

For the three constraint variations we tested, generation was done via latent space

optimisation, which requires a valid latent vector as an initial guess. To do this, a

single validation example was encoded and used as an initial guess.

28

Chapter 6

Results

This section contains the results generated from the framework outlined in the previ-

ous section. Results are split into two separate sections for the two sets of experiments;

the integration network, and generation of constrained meshes. All experiments in

both sections were conducted on three different data sets, containing meshes of size

4x4, 8x8 and 16x16 quads.

6.1 Integration Network

First we will look at the performance of the integration network. Experimental were

performed as outline in chapter 5.1. As a benchmark for comparison, all experi-

ments were conducted using integration network and also the Levenberg-Marquardt

algorithm in MATLAB.

29

(a) 16x16 (b) 8x8

(c) 4x4

Figure 6.1: Losses recorded while training the integration network on each data set. Data
sets consisted of 6000 meshes each, split into 5800 training samples and 200 test samples.
Loss was measured using PyTorch’s mean squared error loss function, comparing output
vertex positions with a ground truth data set. The integration network training results in
the best loss value on the 4x4 data set and worst on the 8x8 data set.

Error Per Data Set

4x4 8x8 16x16

Integration Network 0.018586 0.084803 0.050732

Levenberg-Marquardt 0.078949 0.155008 1.001953

Figure 6.2: The above table shows the error value for a set of 200 validation meshes for each
mesh size. Error calculation was done as outlined in the previous chapter. The scores in
the table show that the integration network performed significantly better than Levenberg-
Marquardt for every mesh size.

30

Figure 6.3: Two examples comparing the integration network with Leverberg-Marquardt
output for 4x4 meshes. These examples were chosen to illustrate an observation made about
the results. The Leverberg-Marquardt produces output with varying quality compared
with the integration network. For some examples, Leverberg-Marquardt creates an almost
perfect reconstruction while other examples are very poorly reconstructed. The integration
network produces good, but less perfect reconstructions without suffering from the very
poor outliers. These outliers could be attributed to the Levenberg-Marquardt getting stuck
in a local minimum while optimising. As the network is technically a statistical model
rather than an iterative optimisation, then the possibility for local minima is avoided.

31

Figure 6.4: Two examples comparing integration network with Leverberg-Marquardt output
for 8x8 meshes. The same observation holds for 8x8 meshes where Leverberg-Marquardt
output varies much more in reconstruction quality than the integration network.

32

Figure 6.5: Two examples comparing integration network with Leverberg-Marquardt output
for 16x16 meshes. The same observation holds for 16x16 meshes where Leverberg-Marquardt
output varies much more in reconstruction quality than the integration network.

33

Figure 6.6: This figure shows an interpolation between two 4x4 meshes in edge length
and dihedral angle form. Two original meshes were converted to this form, and then a
linear interpolation is done between them. At each step, the result is reconstructed using
the integration network and displayed. Interpolations are smooth and intuitive, showing
that the integration network allows us to perform mesh interpolation in edge and dihedral
angle space without having to constantly re-optimise as would be required if interpolating
numerically.

Figure 6.7: This figure shows an interpolation between two 8x8 meshes in edge length
and dihedral angle form. Interpolation is done in the same way as for 4x4 meshes. The
interpolation quality seen for 4x4 is preserved with 8x8 meshes.

34

Figure 6.8: This figure shows an interpolation between two 16x16 meshes in edge length
and dihedral angle form. Interpolation is done in the same way as for 4x4 meshes. The
interpolation quality seen for 4x4 is preserved with 16x16 meshes.

35

6.2 Fixed Point/Plane Constraints

In this section we will look at the performance of the autoencoder framework, and its

ability to generate new meshes which adhere to constraints fixing points to certain

positions or planes. Experiments were performed as outlined in chapter 5.2.

(a) 16x16 (b) 8x8

(c) 4x4

Figure 6.9: Losses recorded while training the autoencoder on each data set. Data sets
were the same as the ones used for the integration network, with the same training/test
split. Loss was measured using PyTorch’s mean squared error loss function, comparing
autoencoder input and output. The 4x4 dataset produced the best loss value and the 16x16
the worst, although 16x16 and 8x8 were relatively similar. For the 16x16 dataset, training
was only done for 250 epochs instead of 500, because after this point both the training and
test losses increased dramatically.

36

Figure 6.10: Examples for generating a 4x4 mesh with a single fixed vertex. In each example,
the x coordinate of the fixed point is changed and the y, z coordinates are kept the same.
The position that we are fixing the point to is shown in green, and the actual position of
that vertex is shown in red. For values of x close to zero, fixing the point is achieved with
the best precision.

37

Figure 6.11: Examples for generating an 8x8 mesh with a single fixed vertex. In each
example, the x coordinate of the fixed point is changed and the y, z coordinates are kept
the same. The position that we are fixing the point to is shown in green, and the actual
position of that vertex in the mesh is shown in red. Converse to what was seen in the 4x4
data set, fixing the point worked better for values of x further from zero.

38

Figure 6.12: Examples for generating a 16x16 mesh with a single fixed vertex. In each
example, the x coordinate of the fixed point is changed and the y, z coordinates are kept
the same. The position that we are fixing the point to is shown in green, and the actual
position of that vertex in the mesh is shown in red. The results for the 16x16 mesh are
more comparable to the 4x4 mesh. Fixing a point achieved higher precision when the x
coordinate was closer to zero.

39

Figure 6.13: Examples for generating a 4x4 mesh with two fixed vertices. In each example,
the fixed points are given different x and y values, while the z coordinates are kept constant.
Fixing two points gives relatively good results for x and y values close to zero.

40

Figure 6.14: Examples for generating an 8x8 mesh with two fixed vertices. In each example,
the fixed points are given different x and y values,while the z coordinates are kept constant.
As with the 4x4 examples, the fixed points are most accurate at values of y and x close to
zero.

41

Figure 6.15: Examples for generating a 16x16 mesh with two fixed vertices. In each example,
the fixed points are given different x and y values, while the z coordinates are kept constant.
From the examples it is clear that the latent space did not capture meshes with x and y
values close to zero. As such, some extra examples are included to show that fixing the
points becomes more possible as the fixed positions approach the starting vertex positions.

42

Figure 6.16: Examples of fixing a row of vertices to a single plane on a 4x4 mesh. Y and
z coordinates for each vertex in the row were not constrained, only x coordinates were
constrained to a specific value. The goal is for all the vertices denoted in red to be as close
as possible to the green line. For values of x closer to zero, the margin of error on the fixed
plane was smaller

43

Figure 6.17: Examples of fixing a row of vertices to a single plane on a 8x8 mesh. Y and
z coordinates for each vertex in the row were not constrained, only x coordinates were
constrained to a fixed value. The goal is for all the vertices denoted in red to be as close as
possible to the green line. As can be seen, the fixed points were not able to be properly lined
up on the required plane. At best, some examples showed a subset of the row successfully
lined up on the plane

44

Figure 6.18: Examples of fixing a row of vertices to a single plane on a 16x16 mesh. Y
and z coordinates for each vertex in the row were not constrained, only x coordinates were
constrained to a specific value. The goal is for all the vertices denoted in red to be as close
as possible to the green line.. Results are relatively comparable to the 8x8 example- the
entire row was unable to be fixed to a single plane. For each example though, a subset of
the row does lie close to the plane.

45

Chapter 7

Discussion

The original aim of this project was to develop a generative neural network which

could generate constrained three dimensional quad meshes. The scope of the project

covered constraints which fixed a designated vertex or set of vertices to a specific

plane or points. An important consideration however, was to develop a framework

that is as general as possible to allow for extension into other types of constraints in

the future. After some unsuccessful initial experimentation using vertex coordinates,

we chose to use a mesh’s set of edge lengths and dihedral angles as input for our

framework. This representation was used by Fröhlich and Botsch[FB11] and chosen

for our framework as it captures the geometry of quad mesh better than other, more

naive representations.

Using the edge lengths and dihedral angles is useful in capturing the geometry of

a mesh for a neural network, but is not useful when rendering a mesh. This led to the

secondary goal of the project- using a neural network to convert between our edge

length and dihedral angle format, to a list of vertex positions of a mesh. This inte-

gration problem would typically be solved using an iterative optimisation algorithm,

however our idea was that using a network would be much faster and could then be

built into our generative framework.

46

7.1 Integration Network

The first part of the experiments was focused on the integration network. The perfor-

mance of the integration network was measured in comparison with an implementa-

tion of the Levenberg-Marquart algorithm in MATLAB. Results showed that for all

three mesh sizes tested the integration network outperformed Levenberg-Marquardt,

producing reconstructions with better accuracy In observing the renderings of spe-

cific examples used for experiments however, it would be too simplistic to say that

the integration network works better than Levernberg-Marquardt. Reconstruction

examples done using Levenberg-Marquardt tended to either be extremely accurate,

or extremely inaccurate. Conversely, the integration network did not produce recon-

structions to the same accuracy, but did so consistently and did not suffer from the

extremely inaccurate outliers.

The difference in the way that the two integration methods perform leads to a trade

off between consistency, and accuracy between the methods. The integration network

provides a way to convert from edge lengths and dihedral angles, to vertex coordinates

very quickly, reliably and with a reasonable accuracy. This makes it ideal for use with

applications that require a large number of reconstructions, very fast reconstruction

or do not require extreme accuracy. On the other side of the trade off, Levenberg-

Marquart produces reconstructions with extremely high accuracy most of the time,

but takes longer for each reconstruction and has a chance to produce an extremely

poor result. Applications which only require a small number of reconstructions, or

for which accuracy is the most important factor are more suited to using Levenberg-

Marquart.

The intended application for the our constrained mesh generation framework is for

47

incorporation in an architecture design tool or something similar. For such design

tools, speed is important so that a user can interact with a mesh in real time and

manipulate it without having to wait for the application to process their inputs. Such

a requirement means that the integration network is the better suited reconstruction

method for our framework.

As an extra application of the integration network, we performed experiments to

show that the integration network allows for smooth linear interpolations between

meshes on the edge lengths and dihedral angles. While this is technically possible

using an optimisation such as Levenberg-Marquardt, it requires re-optimising at ev-

ery intermediate step and runs the risk of hitting a poor outlier as we have seen in

the comparison experiments. The consistency in its accuracy and the fact that we do

not have to perform an entire optimisation at every step, allows for easy and smooth

interpolation in the edge length and dihedral angle space- an application which is

useful in architecture design.

7.2 Constraints

The second set of experiments tested the generation of constrained meshes using the

autoencoder framework. Three variations on the fixed point constraints were tested-

fixing a single vertex to a point, fixing two vertices to two separate points and fixing a

row of vertices to a single plane. Moderate results were achieved overall but accuracy

and trends did vary amongst the three constraint variations as well as amongst the

different mesh sizes that were experimented with.

48

7.2.1 Constraints - Single Fixed Point

For each of the three mesh sizes used for experiments, there was a distinct region

for which the single point could be fixed to. This region was not consistent between

the three sizes however. For generating 4x4 meshes, it was possible to fix the point

to a small region surrounding the position of the vertex in the starting mesh (initial

guess). For 8x8 meshes the region where the vertex could be successfully fixed was

for more extreme values for the x coordinate around 1.0, and for 16x16 the region

was relatively similar to the 4x4 meshes.

It should be noted that for every example- even those that did not produce a fixed

vertex anywhere close to the desired point, there was always at least one axis where

the actual vertex position and its desired position were very close. This is an indi-

cation that the latent space optimisation was working correctly, and that the output

provided a vertex position as close to the desired position as possible. The limitations

instead likely stem from the actual range of meshes spanned by the latent space. The

range of possible meshes that can be generated from the latent space reflects the range

of meshes in the training data. As such, if a specific vertex position is not sufficiently

represented in the training data then constraining the vertex to that position will not

be successful.

This limitation stemming from the span of the latent space also could explain why the

behaviour of the 8x8 mesh was different from the 4x4 and 16x16 meshes. If the ex-

ample chosen as the starting mesh contained vertex positions that were very different

from the positions represented in the training data, then the latent space could not

produce meshes with such vertex positions. Since we choose fixed positions relative

to the starting mesh, this could explain the situation that we see where points close

to the original vertex cannot be fixed, but more extreme positions can.

49

7.2.2 Constraints - Two Fixed Points

Similar to fixing a single vertex, when fixing two vertices to separate points there

was a distinct region where this worked best. For the 4x4 and 8x8 meshes, these

regions seemed much larger than when fixing a single point, but this was not the

case for 16x16 meshes. The way that the fixed vertex positions were chosen for each

experiment was like squeezing and stretching the starting mesh along a diagonal line.

For the cases of the 4x4 and the 8x8 meshes, the region where the points could be

fixed best showed the limits of how far the mesh could be squeezed or stretched.

This is likely to be the case for the 16x16 mesh as well, but when using the same

fixed points as the other experiments almost the identical output was produced every

time. Following the observations from the other sizes, it’s possible that these points

were already squeezing the 16x16 much as much as possible. Following this logic,

two further examples are shown for the 16x16 meshes showing fixed points with more

extreme values. For these examples, the constraints were enforced with more success.

The results for two fixed points are in line with the idea that the span of the la-

tent space is the limiting factor to successfully generating constrained meshes with

fixed points. If the training data contained a larger range of positions for the two con-

strained vertices, then likely the generated meshes could be squeezed and stretched

further in order to better satisfy constraints.

7.2.3 Constraints - Fixed Plane

The third constraint variant that was tested was constraining a row of vertices to a

single plane. We saw that this was reasonably achievable for smaller meshes of size

4x4, however for 8x8 and 16x16 meshes at best only a subset of the row could be

constrained to the plane. The latent space limitation as explained for the previous

two constraints can also be applied here to explain the results. For the small 4x4

examples, the row contains comparatively few vertices and therefore it is more likely

50

that the latent space spans a mesh that lines this row up on a single plane. For the

larger meshes, the effect of the eigenvector deformation is much more apparent and

so the training data does not contain examples in which an entire row lines up to a

single plane. This means that the latent space will not span such a mesh and so the

best that the latent space optimisation can do is find a mesh that has a subset of the

row lining up to the plane.

7.3 Summary

Overall, some moderate success was seen in generating meshes for each of the three

fixed point constraint variants. This success however, is very limited in the range of

positions that we are able to constrain a set of points to, and this range is not nec-

essarily similar between different mesh sizes. The eigenvector deformation method

that we used to create our training data, was intended to produce a general set of

deformed meshes that could be easily encoded into a latent space. This was suc-

cessful, we were able to create an integration network that accurately converts edge

length and dihedral angles to vertex coordinates and then encodes a span of meshes

in a latent space. Despite this, using these meshes as training data also served as

a limitation in generating meshes constrained with fixed vertices. Creating training

data by deforming meshes using our eigenvalue method meant that in the training

data sets, the range of positions that a single vertex took across the different meshes

was quite small. This range was encoded into the latent space, ultimately limiting

the region to which vertices could successfully be constrained.

If we could use a different and more varied data set and still achieve similar loss

in training the integration network and autoencoder, it’s very likely that results for

the fixed point constraints would be improved. The problem is that using such a

51

data set may be counter-intuitive to our goal of keeping the autoencoder general and

extensible to other types of constraints. The eigenvector method of deformation was

chosen specifically with extensibility in mind and so moving away from the eigen-

vectors could compromise that. Another approach to improve the constrained mesh

generation could be to find a neural network architecture for the integration network

and autoencoder, that could somehow omit any bias towards the eigenvector defor-

mations. If the networks could solely learn based on the geometric information of the

data and resist any bias regarding the eigenvectors, then the latent space would likely

be far more robust in generating constrained meshes.

52

Chapter 8

Conclusion

In this thesis, we created an autoencoder neural network architecture trained to gen-

erate constrained quad meshes. Our network is capable of generating meshes with

fixed point constraints, fixing a single or set of vertices to a specific set of points or

plane. The goal was to create a framework that could feasibly be integrated into some

sort of architectural design tool. Through the process of creating this autoencoder,

we have also achieved a secondary goal of training a multi-layer perceptron neural

network to convert a quad mesh represented by a set of edge lengths and dihedral

angles into a set of vertex coordinates. This conversion is an integration which is

typically solved using a non-linear least squares optimisation algorithm.

The integration network we created for integrating between mesh representations

presents a new way to solve such an integration, with a number of benefits over nu-

merical solutions. Results showed that overall, the integration network completed the

conversion with lower error than an implementation of the non-linear least squares

Levenberg-Marquardt algorithm, however a trade off exists between the two meth-

ods. The integration network produces more consistent results however Levenberg-

Marquardt is capable of higher accuracy. Despite being capable of higher accuracy

though, Levenberg-Marquardt also often produced results of extremely poor quality.

Different applications will benefit from the different advantages of the two methods

53

but since our application values speed and consistency highest, the integration net-

work is more fit for our use.

Generating constrained meshes showed moderate results. In some cases meshes could

be generated which adhered closely to the fixed point constraints but in other cases

this was not possible at all. For each data set a rough region where points could be

constrained was identified, and this reflected the range of data that the autoencoder

was trained on. Further improvements could be made by either finding an architec-

ture that can successfully train on a broader data set, or an architecture that more

accurately learns the mesh geometry without bias towards the eigenvectors used to

create the data set.

54

Bibliography

[AW11] Marc Alexa and Max Wardetzky. “Discrete Laplacians on general polygo-
nal meshes”. In: ACM SIGGRAPH 2011 papers. ACM SIGGRAPH 2011,
2011, pp. 1–10.

[Bok+12] Martin Bokeloh et al. “An algebraic model for parameterized shape edit-
ing”. In: ACM Transactions on Graphics (TOG) 31.4 (2012), p. 78.

[Cra18] Keenan Crane. “Discrete differential geometry: An applied introduction”.
In: Notices of the AMS, Communication (2018), pp. 1153–1159.

[Den+13] Bailin Deng et al. “Exploring local modifications for constrained meshes”.
In: Computer Graphics Forum. Vol. 32. Wiley Online Library. 2013, pp. 11–
20.

[Den+15] Bailin Deng et al. “Interactive design exploration for constrained meshes”.
In: Computer-Aided Design 61 (2015), pp. 13–23.

[FB11] Stefan Fröhlich and Mario Botsch. “Example-driven deformations based
on discrete shells”. In: Computer graphics forum. Vol. 30. Wiley Online
Library. 2011, pp. 2246–2257.

[Ful+19] Lawson Fulton et al. “Latent-space Dynamics for Reduced Deformable
Simulation”. In: Computer Graphics Forum. Vol. 38. Wiley Online Li-
brary. 2019, pp. 379–391.

[Hee+16] Behrend Heeren et al. “Splines in the space of shells”. In: Computer
Graphics Forum. Vol. 35. Wiley Online Library. 2016, pp. 111–120.

[Hee+18] Behrend Heeren et al. “Principal Geodesic Analysis in the Space of Dis-
crete Shells”. In: Computer Graphics Forum. Vol. 37. Wiley Online Li-
brary. 2018, pp. 173–184.

[HK12] Martin Habbecke and Leif Kobbelt. “Linear analysis of nonlinear con-
straints for interactive geometric modeling”. In: Computer Graphics Fo-
rum. Vol. 31. Wiley Online Library. 2012, pp. 641–650.

[Li+17] Jun Li et al. “Grass: Generative recursive autoencoders for shape struc-
tures”. In: ACM Transactions on Graphics (TOG) 36.4 (2017), p. 52.

[Luo+18] Ran Luo et al. “Deepwarp: Dnn-based nonlinear deformation”. In: arXiv
preprint arXiv:1803.09109 (2018).

55

[Mas+15] Jonathan Masci et al. “Geodesic convolutional neural networks on rieman-
nian manifolds”. In: Proceedings of the IEEE international conference on
computer vision workshops. 2015, pp. 37–45.

[Mo+19] Kaichun Mo et al. StructureNet: Hierarchical Graph Networks for 3D
Shape Generation. 2019. arXiv: 1908.00575 [cs.GR].

[PCG15] Roi Poranne, Renjie Chen, and Craig Gotsman. “On linear spaces of
polyhedral meshes”. In: IEEE transactions on visualization and computer
graphics 21.5 (2015), pp. 652–662.

[Pot+15] Helmut Pottmann et al. “Architectural geometry”. In: Computers & graph-
ics 47 (2015), pp. 145–164.

[Qi+17] Charles R Qi et al. “Pointnet: Deep learning on point sets for 3d classi-
fication and segmentation”. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition. 2017, pp. 652–660.

[Rad+16] Philipp von Radziewsky et al. “Optimized subspaces for deformation-
based modeling and shape interpolation”. In: Computers & Graphics 58
(2016), pp. 128–138.

[Roc19] Joseph Rocca. Understanding Variational Autoencoders (VAEs). Sept.
2019.

[Sch+14] Christian Schulz et al. “Animating deformable objects using sparse space-
time constraints”. In: ACM Transactions on Graphics (TOG) 33.4 (2014),
p. 109.

[Sch+17] Adriana Schulz et al. “Interactive design space exploration and optimiza-
tion for cad models”. In: ACM Transactions on Graphics (TOG) 36.4
(2017), p. 157.

[Tan+15] Chengcheng Tang et al. “Form-finding with polyhedral meshes made sim-
ple”. In: ACM SIGGRAPH 2015 Posters. ACM. 2015, p. 5.

[Vax12] Vaxman. “Modeling polyhedral meshes with affine maps”. In: Computer
Graphics Forum. Vol. 31. Wiley Online Library. 2012, pp. 1647–1656.

[Vax14] Amir Vaxman. “A projective framework for polyhedral mesh modelling”.
In: Computer Graphics Forum. Vol. 33. Wiley Online Library. 2014, pp. 121–
131.

[Yan+11] Yong-Liang Yang et al. “Shape space exploration of constrained meshes”.
In: ACM Trans. Graph. 30.6 (2011), p. 124.

[YPM12] Xin Zhao Cheng-Cheng Tang Yong, Liang Yang Helmut Pottmann, and
Niloy J Mitra. Intuitive design exploration of constrained meshes. Citeseer,
2012.

56

https://arxiv.org/abs/1908.00575

	Introduction
	Literature Review
	Previous Work
	Architectural Geometry
	Constrained Shape Spaces in 3D Modelling and Animation
	Machine Learning for Shape Spaces

	StructureNet
	Continuous Geometry Generation
	Latent Space Interpolation
	Encoding Unannotated Images and Models
	Latent Space Dimensionality

	Background
	Constraint Spaces
	Autoencoders

	Methodology
	Creating Training Data
	Calculating the Laplacian
	Deforming Using Eigenvectors

	Mesh Representation
	Edge Lengths and Dihedral Angles
	Consequences for Data Generation

	Integration Network
	Generating Constrained Meshes

	Experimentation
	Integration Network
	Constrained Mesh Generation

	Results
	Integration Network
	Fixed Point/Plane Constraints

	Discussion
	Integration Network
	Constraints
	Constraints - Single Fixed Point
	Constraints - Two Fixed Points
	Constraints - Fixed Plane

	Summary

	Conclusion

