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Chapter 1

Introduction

In a performance, musicians can express themselves by providing their own inter-
pretation to a musical score. This is done, for example, by altering the tempo, tim-
ing and loudness during a performance (Poli, 2004). It is even possible to model
these personal choices such that a performance of a musical piece can be generated
in a certain performer’s style (Bresin, 1998). The movements that the performer
makes during their performance are also used to express emotions in music (Dahl
and Friberg, 2003). Such motion cues, also called ’musical gestures’, are suggested
to be related to emotional expression, similar to how the altering of music features is
used by the musician to express their own interpretation of a musical piece (Friberg,
2004). Examples of these gestures would be to bob one’s head or swing one’s hips
to the music that is being played, but they can vary in form and intensity between
different performers. Figure 1.1 below shows a pianist performing an expressive
musical gesture on the piano.

FIGURE 1.1: Pianist Lang Lang performing an expressive gesture.
Image from: https://www.steinway.com/pianos/steinway/limited-

edition/blackdiamond

https://www.steinway.com/pianos/steinway/limited-edition/blackdiamond
https://www.steinway.com/pianos/steinway/limited-edition/blackdiamond
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However, not everyone is able to express themselves through such expressive
movements. My Breath My Music1 is a foundation which aims to give people with
severe physical disabilities the opportunity to play music by using special electronic
MIDI instruments developed by the organization themselves. These special instru-
ments allow these people to perform live on stage like any other musician, see Figure
1.2. This research was inspired by an idea from this foundation: to allow these mu-
sicians to express themselves through a 3D avatar that accompanies them on stage.
This avatar should make expressive musical gestures in real-time that match the mu-
sic which is being played live. To realise this goal, we must first find out whether
it is possible to generate expressive musical gestures from a given music piece. In
this thesis, we would like to explore the possibility of a 3D avatar that moves expres-
sively in a believable way to a given audio input.

FIGURE 1.2: Live performance of My Breath My Music. Image from:
https://mybreathmymusic.com/en/.

In the past, researchers have already tried to find out the relationship between
music and the expressive motion that corresponds to it. The origins of expressive
gestures were thought to be the underlying emotion in the music. For example,
music characterised as sounding ’angry’ has been shown to have a lot of large, un-
even and fast gestures, while ’sad’ music has small, even and slow gestures (Friberg,
2004). The difference in emotion-based music-related expressive gestures is appar-
ent in children listening to music as young as four years old, as seen in a study by
Boone and Cunningham, 2001. In this study, preschool children successfully com-
municated the emotions in a song to their parents through expressive movements
they made using a teddy bear. The expression of emotions in music is also prevalent
in the movements of dancers, as certain motion cues made by dancers can be clas-
sified into specific emotions associated with the music (Camurri et al., 2003). How-
ever, human perception is vital in perceiving and distinguishing these expressed

1https://mybreathmymusic.com/en/

https://mybreathmymusic.com/en/
https://mybreathmymusic.com/en/
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emotions, which makes the simulation of emotion-based expressive gestures diffi-
cult (Friberg, 2004). Instead of using high-level emotional information, researchers
have also tried to find correlations between low-level information from the music it-
self and the respective musical gestures to find the origins of these motion cues, but
no strict relation between music and motion has been found as of yet (Cadoz and
Wanderley, 2000; Santos, 2017; Massie-Laberge et al., 2019; Thompson and Luck,
2012; Zbikowski, 2016). Therefore we take inspiration from previous audio-driven
and music-driven methods which focused on generating body motion to a given au-
dio input. However, we also look into music cognition research on actual musicians
to see which musical elements are thought to affect the gestures they make.

The simulation of expressive musical gestures has been done with procedural an-
imation approaches before (Bouënard et al., 2011; Sauer and Yang, 2009), but works
on instrument playing gestures mostly focused on correct finger positioning simu-
lation (Zhu et al., 2013). Data-driven approaches promise to produce more natural
results than procedural animation (Van Welbergen et al., 2010), which are therefore
our preferred methods to use. Deep learning is the current state of the art in gesture
synthesis, and these techniques have shown to produce good and natural looking
animations in for example locomotion (Holden et al., 2017; Zhang et al., 2018) and
speech (Ruobing et al., 2020; Zhou et al., 2018a). Deep learning has also been used to
generate conversational gestures (Hadjicosti et al., 2018; Coninck et al., 2019; Ferstl
et al., 2019; Kucherenko et al., 2019; Rodriguez et al., 2019), instrument playing ani-
mations (Liu et al., 2020; Shlizerman et al., 2018) and dance (Alemi et al., 2017; Lee
et al., 2019; Tang et al., 2018; Yalta et al., 2019) before, but there has not yet been a
deep learning approach for the generation of expressive musical gestures.

1.1 Aims and objectives

As stated before, it is difficult to generate motion from high-level information such
as emotion. Therefore, it is important that we can generate gestures on music in-
formation alone and preferably on MIDI-files to support the special instruments of
the My Breath My Music foundation. To develop our method, we look into different
fields such as music cognition and previous audio-driven motion animation studies
to find out which music or audio information is commonly used to describe the rela-
tion between sound and expressive motion. We also look into previous related work
to find common methods used to solve similar problems.

The purpose of this thesis is thus to explore the possibility of generating believ-
able expressive musical gestures from musical features using a deep learning ap-
proach. Additionally, it is also to find out what features are needed to model these
expressive musical gestures. The research questions we would like to answer are
thus:

1. Is it possible to generate believable expressive musical gestures using musical
features extracted from audio input?

2. What musical features are needed to model believable expressive musical ges-
tures?

With this thesis, we propose a music-driven deep learning solution using a Long
Short-Term Memory network to generate expressive musical gesture animations
from a given audio input. We show the background information and related work
to explain the choices that we made to design our model. We also talk about the mu-
sical features that we used, which are inspired by previous studies on audio-driven
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animation generation and music cognition research on actual musicians. We go over
our methods and the decisions we made during the process of developing the model.
Finally, we show that we are able to generate believable musical gestures with our
method through our results and discuss our possible options for future work.
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Chapter 2

Background

In this chapter, we review previous work on related topics for our research. In the
first section of this chapter, we explain what expressive gestures are and how mu-
sical gestures come into play. This section also contains previous work on music
cognition research of the gestures of real life human musicians. The second section
of this chapter shows background information about different animation techniques,
previous work on using deep learning to generate animations and previous work on
using audio to generate animations. In the last section, we provide a simple explana-
tion on how neural networks work, starting from the workings of a simple network
to our chosen neural network model.

2.1 Gestures

The word gesture is commonly used to describe the visible actions that are used by
a person to give extra information or convey a meaning to another person, as stated
in Kendon, 2004. By this definition, such an action must be voluntarily made by
a person to be considered as a gesture. Examples of actions that are gestures are:
waving goodbye, pointing and hand movements used to communicate things which
cannot be said, and head wagging movements that accompany talking. Actions such
as laughing, smiling or crying are not described as gestures because they are not
considered as voluntary actions.

2.1.1 Musical gestures

Gestures are also prevalent in musical performances. Musicians produce a total of
four types of gestures while performing music, according to Jensenius, Wander-
ley and Godøy (Jensenius and Wanderley, 2010). These gestures are categorized
in sound-producing, communicative, sound-facilitating and sound-accompanying
gestures.

Sound-producing gestures are the movements which are needed to play the in-
strument. These gestures can be divided in excitation and modification gestures
(Cadoz, 1988). Excitation gestures are the movements which are interacting with the
instrument to produce sounds, such as plucking a string or moving the bow on a
violin. Modification gestures are movements that do not produce sound by them-
selves, but are used to modify the quality of the sound, such as moving the bow in a
certain way on a violin or applying vibrato to a note on a string.

Communicative gestures are the movements which are used for communication,
for example between performers or between the performer and the audience. In a
study by Bishop, Cancino-Chacón and Goebl, two musicians had to play a musical
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piece which contained a part that had no annotated metre (Bishop et al., 2019b). In
order to synchronise with each other, they had to communicate how they were play-
ing the piece through head movements. The results showed that they made more
head movements during the unmetered part of the piece. Furthermore, these move-
ments were affected by the tempo of the music and became more similar between
the two musicians after subsequent performances. Eye gaze is another form of com-
municative gestures between musicians (Bishop et al., 2019a).

Sound-facilitating gestures are gestures that are not used to produce the sound,
but do follow the features in the sound and help with shaping the sounds. They are
supportive to the sound-producing gestures. An example of such gestures are the
movements that are caused by the musician as they are breathing in or out through
the instrument or the arm movements that occur together with the pressing of piano
keys. Although they do not produce sound, they can have audible components, such
as by causing a change in the sound through the motion of the instrument (Wander-
ley, 1999).

Sound-accompanying gestures are gestures that are not involved in producing
the sound, but do follow the music. Dancing to music is one example of these ges-
tures (Haga, 2008), but sound-tracing is also a type of sound accompanying gesture.
This is defined as tracing the features of sound with hands in the air or by drawing
shapes on a surface (Jensenius and Wanderley, 2010). Another type is that of air in-
strument performance, such as by pretending to play guitar to a song by imitating
the sound-producing gestures in the air (Godøy et al., 2005). This thesis focuses on
these types of musical gestures.

The sound-accompanying gestures that musicians make during a performance,
are thought to originate from the way people use gestures in storytelling (Zbikowski,
2016). However, Zbikowski states that in contrast to storytelling gestures, which are
mostly randomly improvised, gestures that are made in musical scenarios follow a
certain grammar. This grammar is thought to be a framework that is provided by
the pitch and rhythm of a musical piece. This means that gestures made within a
musical context have a relation to the pitch and rhythm of the music. Specifically,
the rhythm provides an anchor for the processes of music, because the beats in a
musical piece occur at the same time intervals, such that they can be anticipated
and acted on. The relationships between the musical pitches provide a framework
for finding the similarity or difference between musical events. In this case, pitch is
defined as the perceived frequency of a note. Rhythm as a musical feature in music-
related gesture research is often defined as the location of the beats in a musical
piece, and used to see if gestures align with these beats. The beats in this case are
the points of time in a musical piece to which listeners would tap their foot, or the
numbers a musician counts in their head while performing. This definition however
clashes with how the rhythm feature is traditionally defined in music research. In its
traditional definition, rhythm is a concept that is derived from four other parts in the
music, namely the length of the notes and/or beats, the measure and time signature
of the music, the pattern of strong and weak beats and the metre of the song. When
we use rhythm as a feature in this thesis, we refer to the simpler definition that
was used in gesture research and other related music-driven animation studies. A
different musical feature which will also be addressed in this paper is dynamics,
which describes the changes in loudness of the sound throughout a piece of music.
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2.1.2 Related work on gesture research

We looked at music cognition studies analysing musical gestures in real human per-
formers to find relations between music and gesture. In a study on flutists, the musi-
cians stated to be aware of their artistic intentions and how they performed a piece,
but they were not aware of any gestures they made (Santos, 2017). Furthermore,
it was found that the flutists often made the same circular motion during a certain
excerpt of the musical piece they played. One flutist preferred to make a circular mo-
tion which contained a rhythmic sense, as it moved back and forth related to their
sense of time. This back and forth pattern also occurred in the other flutists. When
comparing the motion distance of the flute to the beat of the tempo, they found that
the changes in motion happened to the beat of the music.

Three origins of musical gestures were proposed for clarinets (Cadoz and Wan-
derley, 2000). Cadoz found that clarinetists would change their posture at the begin-
ning and during musical phrases when they performed with an expressive intent,
and that upward gestures were made during long sustained notes, where the height
of the gesture related to the dynamics of the note. He proposed that musical gestures
performed by clarinetists were of material or physiological, structural and interpre-
tative origin. Physiological gestures were affected by musician respiration, fingering
and the ergonomics of the instrument. Structural gestures were affected by the char-
acteristics of the musical piece that was being performed. Interpretative gestures
related to the mental model of the piece developed by the performing musician.

These three origins were later examined by Wanderley in multiple studies on
clarinetists (Wanderley, 2001; Wanderley et al., 2005). He found that clarinets would
bring their instruments up and down when breathing in (Wanderley, 2001). How-
ever, when asking the clarinetists to perform the same piece without any expressive
movements, many of these gestures no longer occurred. Although not performing
these gestures did affect the respiration of the musicians, the absence suggested that
these gestures are not solely physiologically based. Furthermore, gestures occurred
at the same timing between different performances of the same piece of music, sug-
gesting that there was a strong relation between the rhythmical characteristics of the
music and the gestures that were performed. This confirmed that these gestures had
a structural origin and were not randomly chosen. Another given example was that
a certain fast upward gesture only occurred in specific musical pieces, suggesting
that its performance depended on the type of piece that was played. Between musi-
cians, there was a difference in the amplitude and the types of gestures performed,
suggesting gestures also contained a idiosyncratic characteristic. One musician also
changed their gesture pattern twice between performances of the same piece, which
suggested that the mental model of the piece of this musician changed over time.

A follow-up research on the origins of expressive musical gestures was done on
pianists (Massie-Laberge et al., 2019). The main findings were that expressiveness
was more related to the quantity of motion than the velocity or regularity of mo-
tion. This is because the quantity of motion had a significant difference between
performances of different expressive intent. For pianists, most expressive motion
was measured in the arms, head and torso. Especially the head showed a large sig-
nificant variance between different levels of expression. The velocity of this motion
was related to notes with a high dynamic level, large chords in the lower register
and staccato articulations, or notes that are played in a short and disconnected way.
The motion of the head also matched the section boundaries in the musical piece,
suggesting a structural origin. Parts of the body which were closer to the instrument
had both an expressive and a structural function. Lastly, motion of the hips had a



Chapter 2. Background 8

clear connection to structural parameters of the music.
A follow-up study by Thompson and Luck looked at the difference of timing be-

tween four different levels of expressive intention (Thompson and Luck, 2012). This
research showed that expressive performances have a larger timing variation in the
played music. When the pianists played expressively, but with as little motion as
possible, the timing variation was still present. This showed that expressive timing
was used even when the expressive gestures were absent. Body parts which were
further away from the instrument had a significantly larger difference in the quan-
tity of motion between the different expressive levels. Furthermore, they find that
expressive performances have a larger variation in the dynamics of the music.

The relation between musical features and sound-accompanying gestures out-
side of playing instruments was also analysed in a study by Nymoen et al., 2010.
In this study, participants with different levels of musical knowledge were asked to
move a rod to different songs. They find that the rod is shaken to the beat of the mu-
sic and that the position of the rod correlated with the pitch of the music. That is, for
a higher note, the participants would put their rod higher up in the air. For repeat-
ing segments in the music, participants would reset their rod position and repeat the
motions they performed before.

A study on participants dancing to drum music showed that the motion of the
head had a high correlation to rhythm-related low frequency sounds such as the kick
drum (Burger et al., 2013). Furthermore, the motions of the hands had a correlation
to higher and faster sounds such as the cymbals and hi-hats. This was suggested to
relate to the freedom of the hands, which enables them to more easily react to faster
sounds.

Research has also been done on the relation between pitch and sound-accompanying
gestures, in particular that of sound-tracing (Kelkar and Jensenius, 2018). In this
study, participants were asked to move their hands to the vocal melody of different
cultural genres of music. They found that the participants would always start and
end with smaller movements than they would demonstrate in the middle of the mu-
sic, even if the music itself did not represent this arch-like progression. Pieces with a
lot of vibrato on notes caused a bigger quantity of motion than pieces which rapidly
changed in pitch. When expressing the pitch with their hands through vertical mo-
tion, subjects would use relative vertical changes of their hands rather than absolute
changes. This showed that the height of a motion in general was not descriptive for
the pitch, but the vertical change in a sequence of motions was.

2.1.3 Summary

From the previous studies, we found that musical gestures are idiosyncratic and
can evolve with the mental representation that the musician has of a musical piece.
They are also voluntary, as a musician can choose not to move expressively and still
use expressive timing variations while performing. Expressive musical gestures are
primarily made with body parts that are not involved with playing the instrument,
i.e. ’free’, such as the head and torso.

To answer our research question of which features should be used to model the
expressive gestures, we found that the following musical features and their effects
on gestures are thought to be related:
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Musical feature Definition Described motions

Rhythm
The placement of the (un)accented
beats in a musical piece.

Affects when gestures are made to the music
High relation to the motion of the head

Dynamics
The variation in (relative) loudness
between notes or musical phrases.

Affects the height of a gesture
Affects the velocity of motion.

Melody
A sequence of musical tones that a
listener perceives as a single entity.

A vertical displacement that relates to the
pitch of every note, relative to the pitch of
the previous note.

From these features, the dynamics are thought to vary the most between expres-
sive and non-expressive play. Additional musical features that are interesting are
ones that describe structural properties in music, such as when a new phrase starts.
This seems to indicate the start of a gesture as well. However, these kinds of features
are harder to extract from audio than low-level features such as rhythm, dynamics
and melody. Furthermore, these low-level features can also be extracted from MIDI-
files, which enables us to build towards using MIDI input for our model. We will
thus primarily focus on incorporating these low-level features into our method to
further study whether using these features as an input allows us to generate believ-
able musical gestures.

2.2 Animation Techniques

There are several techniques which are used to generate animations (Van Welbergen
et al., 2010). These techniques require the creation of motion primitives, which are
pre-computed motions that the animated character can make. These primitives are
generated from a motion space, which is a continuous collection of motions that
can be produced by a technique, based on parameter values of the animation. The
different animation techniques can be classified into two categories based on how
they create these primitives, namely motion editing and simulation (Van Welbergen
et al., 2010).

2.2.1 Motion editing

In motion editing techniques, motion primitives are generated within a motion space
which is explicitly defined beforehand, such as by using motion capture of actors or
created motions by an animator. New motion primitives are then generated by ap-
plying modifications to one of these example primitives or by interpolating two mo-
tion primitives such that a combination is created. Motion editing techniques gen-
erate more natural and detailed animations, but only when the modifications which
are applied to the example motion primitives are small. When these modifications
are required to be larger, this technique requires exponentially more examples for
the number of animation parameters that need to be animated. Furthermore, this
technique does not allow for physical interaction with the environment and can pro-
duce physically incorrect motion. The amount of control in the animation is only
given by the number of example motion primitives.

2.2.2 Simulation

In simulation, parameterized mathematical formulas are used to create motion prim-
itives. These formulas describe the rotations of character joints directly or define the
path of movement of end effectors such as hands through space. The solutions to
these formulas then define how the character should move in order to achieve these
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rotations or paths. This is also known as procedural simulation. There can be multi-
ple different solutions to one formula. Physical simulation methods use constraints
to specify preferred solutions, for example by introducing a function to keep move-
ments small. Another option is to use a controller for the body which defines the
desired state of the body, such that extreme movements can be compensated for by
minimizing the difference between the solution and the desired state. In contrast to
motion editing techniques, simulation or procedural techniques allow for more con-
trol. The direct control of animation parameters offers precise timing of motion and
the positioning of limbs. Furthermore, the use of a controller that keeps track of bod-
ily constraint allows for interaction with the environment. However, this technique
cannot easily generate animations with the amount of detail that example motion
primitives have, as these will have to be incorporated in the mathematical formu-
las that are used. Additionally, the naturalness of motion is limited because of the
calculation process of these formulas. The methods that are used to speed up this
process do this at the cost of physical realism.

2.2.3 Data-driven animation techniques

Recently, deep learning has been used as a novel, data-driven animation technique.
One specific deep learning approach is supervised learning, where the data con-
tains input features, but also contains an output example for every input that is
given (Goodfellow et al., 2016). The algorithm is designed to learn to predict the cor-
rect output to a given set of input features. In the case of animation generation, the
algorithm is trained on a large database of input features and output animation ex-
amples, and should then generate natural looking animations which are generalised
from this database to a newly given input.

2.2.4 Related work on data-driven animation

We looked at previous research on data-driven animation to see which methods
were commonly used to generate animations in general. We also looked at research
on audio-driven motion synthesis to see which features and methods were com-
monly used when audio was used specifically as an input to generate animations.
We found three types of related audio-driven work, namely speech-driven anima-
tion, musical gestures and dance animation generation. We looked at speech-driven
animation studies to find how expressive audio is commonly mapped to expres-
sive motion. We also look at previous studies on generating musical gestures to
see what methods were used. However, there is little related work on generating
musical gestures. Therefore, we also look at music-driven dance animation to find
more methods on mapping music input to expressive motion and generating music-
driven animations.

Deep learning for animation

Neural networks have shown to produce high quality animations for bipedal loco-
motion (Holden et al., 2017). In this study, a phase-functioned neural network is
used to animate a character that is traversing different terrains in real time. The net-
work was trained on several motion captures of different gaits and facing directions,
including locomotion such as walking over or around obstacles and crouching or
jumping. The resulting animations show the character interacting with terrain in
real time based on the speed of its gait and the roughness or steepness of the terrain.
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This approach was later expanded to also work with quadruped characters (Zhang
et al., 2018).

In a research by Karras et al., 2017, a convolutional neural network is used to
generate expressive 3D facial animation based on a given vocal audio track. Their
network was trained on the 3D face meshes of actors which were gained by film-
ing the actor from nine angles with multiple cameras. The way the actor spoke
was modelled for different acting fragments performed with different emotions.
One advantage of their method is that they did not predefine emotions and instead
used emotion vectors to blend the animations of different emotions together. Their
method was also shown to be applicable to different face meshes, to 3D models and
to synthetic audio. Another advantage of using deep learning is that the produced
animations can be generalised, as shown in a similar research by Taylor et al., 2017.
Here, a recurrent neural network was trained on extracted phonemes from the audio
input to create facial animations for a character. The network showed to generalise
enough to be used on a stylised avatar and with audio input from outside the train-
ing dataset.

In another research by Suwajanakorn et al., 2017, a recurrent neural network is
trained on many videos of speeches of Barack Obama, such that it can produce high
quality videos of him speaking with an accurate lip sync to given audio input of his
voice. Their network was shown to produce photo-realistic results. A deep learning
approach by Coninck et al., 2019 showed that it was able to correctly generate gaze
and gesture behaviour for small group conversations of background characters. In
this case, a dynamic Bayesian network was used which generated gaze behaviour
based on the conversational state of the characters, which depended on speech-
taking turns. Including information about these conversational states allowed the
network to generate more believable animations than a similar model without this
information. Additionally, a dynamic Bayesian network was also used to automat-
ically generate head motion based on speech input in a research by Sadoughi et al.,
2017. In this case, the network based its generation on information about the func-
tion of the given speech, such as asking a question or giving affirmation.

Aside from deep learning techniques, procedural techniques have also used for
audio-driven animation of speech, such as in a research by Charalambous et al.,
2019. This approach worked by taking into account expressive speech in audio to-
gether with a rule-based coarticulation model using dynamic linguistic rules. The
expressivity of the speech and facial animation was affected by the intensity and
pitch with which vowels and consonants were spoken in the audio. Similarly, pro-
cedural animation techniques have also been used to generate gesture animations
with personality (Durupinar et al., 2016). In this research, an approach called Laban
Movement Analysis was used to act as an intermediary language between low-level
motion parameters and personality. This allowed the researchers to formulate a link
between motion parameters and personality factors, such that they could generalize
the representation of personality across various motions and virtual characters. In a
research by Pejsa et al., 2013, procedural techniques were used to generate gaze shift
animations for stylized characters.

Speech-driven Animation Generation

In speech-driven facial animation generation, it is common practice to use the Mel-
frequency cepstral coefficients (MFCCs) (Karras et al., 2017; Ruobing et al., 2020;
Zhou et al., 2018a) and spectral features (Zhou et al., 2018a) to map audio to the
related motions. MFCCs are also used for this purpose in speech-driven animation
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generation (Ferstl et al., 2019)(Rodriguez et al., 2019), as well as the F0 trajectory
(pitch) of the audio (Charalambous et al., 2019; Ferstl et al., 2019) and the root mean
square (intensity) (Charalambous et al., 2019).

Musical Gesture Animation Generation

In musical gesture animation generation, Sauer and Yang, 2009 proposed a proce-
dural approach where predefined gestures such as headbobs and sway could be
applied to specific limbs and parameterized by extracted musical features. For ex-
ample, the dynamics of a piece of music affected the magnitude of the motion, while
the beat positions drove the length of a motion. These gestures could be picked by
the user up front or randomized by the algorithm itself. Their results showed that
complex looking animations could be created from combinations of primitive move-
ments which responded to simple features. Shlizerman et al., 2018 used MFCCs,
their temporal derivatives and the log mean energy to generate hand and finger an-
imation for piano and violin. They trained an LSTM network on multiple YouTube
videos of musicians such that it learnt the correlation between audio features and
the skeleton position of the body. They showed that their model could produce
satisfactory results and showed that body gestures could be predicted from audio
signals. However, because they trained their network on 2D videos, this also intro-
duced some limitations, such as a bad prediction of occlusions. Liu et al., 2020 used
only MFCCs when generating string instrument gestures.

Music-driven Animation Generation

Because there was little related work on musical gesture generation, we also looked
at other animation generation studies where music was used as an input. In music-
driven animation, different sets of features were used. DiPaola and Arya, 2006 pro-
posed a rule-based approach where they animated a face based on emotions ex-
tracted from music. They extracted musical features from which they determined
the corresponding emotion through a fuzzy rules based system. If the audio cor-
responded to multiple emotions, all of the emotions were selected with different
weights to create a mixed emotion. Each emotion was then connected to a set of pre-
defined animations, which they called a personality. Fukuyama and Goto showed
that a combination of high (structural) and low-level (audio) musical features re-
sulted in a better style-specific generation (Fukayama and Goto, 2015). They pro-
posed probabilistic model approach to automatically generate choreography based
on music input. They introduced a second model which contained a set of motion
connectivity constraints. Their results showed that these enhanced the naturalness
of the generated dance motion. Alemi et al., 2017 used low-level music features
such as the RMS level, spectral features, timbral features (MFCCs) and melodic fea-
tures (pitch, pitch salience). Their approach, called GrooveNet, generated dance
movements to a given music input using factored conditional restricted Boltzmann
machines. They showed that they could teach their model specific dance patterns
belonging to specific music inputs. However, they also found that their model could
not generalize beyond the given training dataset. Tang et al. (Tang et al., 2018) ex-
tracted the MFCCs, constant-Q chromagram, tempogram, onset strength and tem-
poral indexes (i.e. first frame of each beat occurrence) from the music. In this re-
search, an LSTM network was used in combination with an autoencoder to generate
dance choreography based on music input. Their results showed that their network
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was able to correctly output the matching dance choreography to its typically cor-
responding music input, with the best accuracy belonging to cha-cha music and
dance as this dance has consistent choreography with the music. A recently pro-
posed model by Yalta et al., 2019 generates long dance sequences based on an audio
spectrum as input. Their results showed that their network could generate a cor-
related dance motion pattern with a motion beat f-score similar to that of a dancer.
However, the generated motion patterns were highly affected by the diversity of mo-
tion patterns in the training data and thus constrained to the given dataset. Another
recent study by Lee et al., 2019 used the kinematic and musical beats to align the
dances to the input music. They proposed a synthesis-by-analysis learning frame-
work to teach the model how to move to music. In the analysis phase, the model
learnt to move by teaching it basic dance units. Then, in the synthesis phase, the
model learnt to compose a dance by teaching it how to organize multiple dancing
units to the input music. Their results showed that they could generate realistic,
diverse, style-consistent and beat-matching generated dances.

2.2.5 Summary

We found that MFCCs have been used as a standard audio feature in previous deep
learning studies on audio-driven and music-driven expressive gesture animation.
This feature thus is important to incorporate in our method, as it has shown to be
able to generate believable results before. However, in music-driven animation stud-
ies, explicit musical features are also often used. The features we wanted to use
in Section 2.1 are commonly represented in these studies as pitch (F0 trajectory),
rhythm (location of beat onsets) and dynamics (energy levels of the music). Because
it was shown that a combination of musical features helps a model produce more
realistic results, it is important for us to test different combinations of the features
we found.

LSTMs have shown to produce believable results in music-driven gesture gener-
ation (Shlizerman et al., 2018) and dance generation (Tang et al., 2018) before. These
kinds of networks were designed to handle sequential data (Goodfellow et al., 2016).
Because we are analysing the possibility of generating expressive musical gestures
from an audio input, which is sequential, using this type of network seems like a
reliable and feasible choice.

2.3 Artificial Neural Networks

As stated in Sections 2.2.3 and 2.2.4, deep learning is a novel, data-driven anima-
tion technique, which has shown to produce high quality animations before. Deep
learning methods are based on using Artificial Neural Networks (ANNs) to learn
relations between input features and representative outputs. These networks have
been called as such because they were inspired by the workings of the neurons in the
biological brain. The greatest advantage of ANNs compared to other techniques is
that they are able to model complex, non-linear mapping from an input vector to an
output by learning from examples (Goodfellow et al., 2016). ANNs are comprised
of an input layer and an output layer, with a number of layers in between which
are referred to as the hidden layers. Each layer in the network has a set of neurons,
which each can receive inputs and then produce an output based on an activation
function, which can then be sent to other neurons. The activation function defines
the output of the neuron given its input(s). Commonly used activation functions are
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(Goodfellow et al., 2016):

Sigmoid: σ(x) =
1

1 + e−x

TanH: tanh(x) =
ex − e−x

ex + e−x

Rectified linear unit: ReLU(x) =

{
0 for x ≤ 0
x for x > 0

= max{0, x}(NairAndHinton, 2010)

Different neurons are linked together through a connection containing a certain
weight and bias term, which represents its relative importance (Zell, 1994). To pro-
duce an output, the neuron takes the weighted sum of all the inputs, weighted by
the weights given in the connections from the inputs to the neuron, together with
the added bias term. This sum is then passed through the activation function, pro-
ducing the output. This process can be described as:

Outputi = α(Wix + bi),

where i is the current layer, α is the given activation function, Wi is the weight of the
connection to the current layer i, bi is the given bias term and x is the input that was
fed into the layer. The practice of pushing data through the network in this way is
called forward propagation. At the final output layer, the error, or loss, is calculated
through a given loss function. In the case of a network solving a regression problem
the mean squared error is a commonly used loss measure:

MSE =
1
n

n

∑
i=1

(Yi − Ŷi)
2,

where n is the number of predicted values, Y is the vector containing the true data
and Ŷ is the vector containing the predicted data. This loss can then be used to
update the weights and biases in the networks, such that the loss of the final output
can be minimized. This can be done through a method called back-propagation
(Bishop et al., 1995). One pass through and back through the network of forward
and back-propagation is called an epoch. Back-propagation starts by using the chain
rule to compute the gradient of the loss function with respect to the weights of the
network for a single input-to-output example. It computes the gradient one layer at
a time and iterates backwards from the last layer to avoid redundant calculations of
intermediate terms in the chain rule (Goodfellow et al., 2016).

The gradient describes the change in loss for the possible value combinations of
each parameter, in this case the weight and bias. This gradient can be ’traversed’
with step sizes that are defined by the so-called learning rate to inspect how the
different parameter values affect the loss. Each step in the gradient thus returns the
decrease in loss for that new parameter value combination. To minimize the loss
for each parameter, the gradient is thus traversed in such a way that the loss keeps
decreasing. Once the loss value stops decreasing, it means a minimum has been
reached. This point is known as convergence and the parameter values found at
this point are considered to be the best set of combinations. In gradient descent, the
process of traversing the gradient and updating the parameter values is repeated
until convergence is reached. This process is how a neural network learns.

In the case of training neural networks, computing the gradient for all possible
values can be replaced by an estimate thereof, calculated from a subset. This method



Chapter 2. Background 15

can greatly increase the computational time of a single epoch at the cost of a lower
convergence rate (Bottou and Bousquet, 2008). This method is called stochastic gra-
dient decent (SGD) and is considered a popular optimization algorithm for neural
networks (Goodfellow et al., 2016). Later optimization algorithms such as Adagrad,
RMSProp (Goodfellow et al., 2016) and Adam (Kingma and Ba, 2015) propose im-
provements to this method.

Recurrent Neural Networks

Recurrent neural networks (RNNs) are an extension to ANNs, designed to model se-
quences of data, such as videos, by adding so-called feedback connections between
the layers. During training, a sequence is given to the RNN as a multivariate time se-
ries It ∈ Rm for 1 ≤ t ≤ P as input, where each time step t is processed individually.
The output from one single RNN layer can be described as:

hi+1,t = α(W1σ(hi+1,t−1) + W2hi,t + bi) for t = 1, . . . , N,

where Wi is the weight matrix, bi is the bias matrix, α is the activation function and
σ(hi,t−1) is the hidden state of the layer i. This hidden state contains context-based
information of past inputs, which allows the network to use this information for fu-
ture predictions. One problem with RNNs is however that the gradients propagated
over long sequences tend to either vanish or explode (Goodfellow et al., 2016). This
is caused by the exponentially smaller weights given to long-term interactions.

Long Short-Term Memory Neural Networks

Long Short-Term Memory (LSTM) networks are a modified version of RNNs, which
solve the vanishing gradient problem (Goodfellow et al., 2016). LSTMs have shown
to be powerful in long-term time series predictions (Goodfellow et al., 2016) and
were efficient in generating music-driven animation in recent studies (Shlizerman et
al., 2018; Tang et al., 2018). The LSTM network introduces cell states in each neuron,
which are used as memory. Information in the cell state is controlled by gates. The
most common LSTM architecture contains three gates: the forget gate, the input gate
and the output gate. The forget gate uses the current input and previous hidden state
to determine which details can be discarded. This is decided by a sigmoid function,
which outputs a number between 0 and 1 for each number in the cell state, where 0
instructs the cell to discard the information and 1 instructs it to keep it. The input
gate uses a similar approach to determine which value from the input should be
used to modify the memory. After a sigmoid function outputs a number between
0 and 1 to determine which value passes, a hyperbolic tangent function weights
these values by their given weight matrix and biases. Lastly, the output gate uses a
sigmoid function to decide which values to let through, weights these values with
the hyperbolic tangent and then multiplies this value with the output of the sigmoid
function.

We picked this type of network because of its reliability in generating sequences
of data in related problems such as musical gesture generation (Shlizerman et al.,
2018) and dance (Tang et al., 2018) animation before. While there are other ap-
proaches such as Generative Adversarial Networks which have shown to produce
more realistic results, the main purpose of this thesis is to explore whether it is pos-
sible to generate believable expressive musical gestures from audio input. Therefore
using a simpler but reliable network is a feasible solution. Using this simpler model
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also does not limit the scope of the project in the future, as it is still possible to in-
crease the model complexity to enhance its performance in later stages of the project.
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Chapter 3

Methodology

In this chapter, we go over our chosen methods for our model. In the first section,
we give a description about our data and why we picked this dataset. In section two,
we explain which commonly used musical features in audio-driven research relate
to our chosen features (pitch, rhythm and dynamics). We also explain in detail how
we extract these features and how we pre-process our data for our model. Section
three contains information about our neural network model and gives details about
our training method.

3.1 Data Description

Existing musical gesture datasets consist mostly of 2D video data. There are a few
public music-related 3D motion capture datasets available for playing drums (Bouë-
nard et al., 2011) and interpretive dance (Carlson et al., 2020). However, the drum-
ming dataset did not provide enough data and the interpretive dance data did not
concern musical playing performances.

The dataset that we used is the piano gesture dataset presented by Sarasúa et
al., 2017. We picked this dataset because we needed sufficient motion capture data
of musical performances with expressive variations. This dataset consists of raw
audio, MIDI, motion capture and video recordings of an excerpt from Schumann’s
Träumerei (Kinderszenen Op.15 No.7), played on a piano with different variations in
tempo and playing styles. This piano piece has been used before to research expres-
sive aspects of piano performances (Repp, 1992; Repp, 1996). Each motion capture
recording contains the global positions and orientations of 22 body limbs, captured
at 100 Hz or 100 fps. The audio was recorded at 44.100 kHz and aligned with its
corresponding motion capture recording.

The different tempo categories in this dataset are Fast (120 BPM), Normal (70
BPM), Slow (40 BPM) and Rubato (continuous expressive tempo alteration). The
different playing styles are Still (only necessary movement), Normal, Exaggerated,
Legato (long, connected notes) and Staccato (short, detached notes). From this dataset,
everything but the Still variation will be used, along with all of their tempo varia-
tions. This is because Still is intentionally played without expressive movement. The
exact number of frames per category and playing style is shown in Table 3.1.

We created five different datasets, which are summarized in Table 3.2. NESL is
the full dataset without the Still category, the other data combinations are subsets
of this dataset. The NE subset was picked because it contains just expressive pi-
ano performances and no playing style choices such as Legato and Staccato, which
drastically change the way the song is played. In NR the Rubato category is re-
moved from the tempi to keep the tempo differences consistent. The Rubato tempo
contains performances where the tempo changes freely, as opposed to Fast, Normal
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#frames Fast Normal Slow Rubato
Exaggerated 7830 7314 8624 5979
Legato 13554 11357 4548 4548
Staccato 20335 16376 19920 14371
Normal 6645 5893 6851 4157

TABLE 3.1: This table shows the number of frames per tempo cate-
gory and playing style in the final dataset.

Subset Contains
NE (Normal-Exag) Normal and Exaggerated, for all tempo
NR (No Rubato) Normal, Exaggerated, Staccato and Legato, for Fast, Normal and Slow tempo.
NR_NN (No Rubato-No Normal) Exaggerated, Staccato and Legato, for Fast, Normal and Slow tempo.
NR_NE (No Rubato-No Exag) Normal, Staccato and Legato, for Fast, Normal and Slow tempo.
NESL (Normal-Exag-Stac-Leg) Normal, Exaggerated, Staccato and Legato, for all tempo.

TABLE 3.2: This table shows our five created datasets, their abbrevia-
tions and which tempo category and playing style combinations they

contain.

and Slow where the piece is played at a set BPM. The NR_NN subset removes the
Normal playing style and the Rubato tempo from the full dataset. This was done
because the difference between Normal and Exaggerated is small in the audio, but
large in the motion capture data. To remove this inconsistency, both the NR_NN
and NR_NE subsets are tested as well, in which the latter has the Exaggerated data
removed instead. We use these datasets to see if we can generate different musi-
cal gestures for the different categories using the musical features we picked. We
need the different category combinations to ensure that certain combinations do not
confuse the network by i.e. having very similar gestures and/or audio and thus
implicate the results.

3.1.1 Preprocessing of the motion capture data

Observing the motion capture data showed that the joint tracking drifted over time.
This means that between recordings, the location of the body changes in space. Be-
cause the motion capture recordings are of global positioning, this means that the
recordings have to be realigned. This is done by moving the central hip joint to
the XYZ-location of (0,0,0) for every recording, and moving the rest of the body ac-
cordingly. Furthermore, the tracking on the joints below the hips is unstable and
unsuitable for training, thus the recorded entries for these joints are removed from
the training data and replaced by a static set of legs in the final recording. The re-
sulting data contains the XYZ-locations of 14 joints, resulting in 42 values for every
frame.

3.2 Feature extraction

In this section, we detail our choices on which features we extract and what they
represent. We explain for each feature how we extract it, how we will use it and
where it is located in the final feature vector.
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3.2.1 Music features

Music features can generally be categorized in two categories: low level and high
level features, however, the opinions of which features belong to which category
differ between researchers (Vatolkin et al., 2014). High level features are consid-
ered to be those which relate to music theory, such as features describing harmony,
melody, instrumentation, rhythm, tempo or structural characteristics of the piece of
music. Low level features are described as features which are hard to be interpreted
by humans, consisting of all simplified abstractions from the raw audio input, such
as spectral or timbral features. A combination of low and high level features has
shown to give the best results for motion predictability as opposed to using just one
category on its own (Fukayama and Goto, 2015). However, adding too many fea-
tures will lead to a larger computational overhead.

From the music cognition studies, we found that the pitch, dynamics and rhythm
played a role in the expression of musical gestures of a performer. Therefore, we
want to extract the pitch, dynamics and rhythm from our audio input. When we
looked at previous research in audio-driven gesture synthesis, we found that the
MFCCs were used as a standard feature for this type of problem and were often
described as pitch. The F0 trajectory was also used to explicitly describe pitch. In
music-driven motion synthesis, the energy levels were used to describe the dynam-
ics and the beat onsets were used to describe rhythm from audio input. When ex-
tracting features from an audio file, it is treated as a floating point time series of
samples. The audio in the dataset is sampled at 44.100 kHz, which means that every
second contains 44.100 samples.

Pitch

Pitch by itself is described as "the attribute of sensation whose variation is associated
with musical melodies" (Plack et al., 2006) or the attribute of an auditory sensation
which can be ordered on a scale extending from low to high (Klapuri and Davy,
2007). When describing the relation between Pitch and musical gestures in the re-
searches shown in Section 2.1, this feature is commonly described as the (relative)
height of a note in a melody.

Mel frequency cepstral coefficients (MFCC) features and their derivatives are
commonly used to describe the pitch of a song in music-driven animation gener-
ation, and have shown to produce good results (Fukayama and Goto, 2015; Alemi
et al., 2017; Lee et al., 2018; Lee et al., 2018; Tang et al., 2018;
Shlizerman et al., 2018; Qi et al., 2019). A Mel is a unit of measure based on how
human ears perceive frequency. These features are computed from the Mel scale,
which is a scale that relates the perceived frequency of a note to the actual measured
frequency. The Mel scale is approximately linear below 1 kHz and logarithmic above
1 kHz, corresponding to how humans are able to easier distinguish smaller changes
in lower frequencies than in higher ones (Stevens et al., 1937). MFCC features are
widely used in acoustic analysis of music as they are said to approximate the hu-
man auditory system’s response (Fukayama and Goto, 2015). To compute MFCC
features, the audio must first be divided into short frames, which are then converted
to the frequency domain by Discrete Fourier Transforms (DFT) (Rao and Manjunath,
2017). This dividing is done because the interesting information from the audio is
how it changes over time. A DFT will convert a signal from the time domain to the
frequency domain, thus obscuring these changes in time when using DFT on the
complete signal. The DFT of every frame xi(n) containing n audio samples is taken
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by performing:

Xi(k) =
N

∑
n=1

xi(n)h(n)e−j2πkn/N 1 ≤ k ≤ K, (3.1)

where h(n) is an N sample long analysis window, this is generally a hamming win-
dow to enhance the harmonics and smooth the edges (Picone, 1993). K is the length
of the DFT. From this, the Periodogram estimate of the power spectrum is taken.
This is gained by squaring the absolute values of the calculated Fourier transform.
This value is then passed through the Mel-spaced filterbank, a set of 20-40 triangu-
lar Mel weighting filters, which will scale the frequencies in each frame according to
the Mel scale which was discussed before. The approximation of Mel from physical
frequency can be expressed as:

fMel = 2595log10(1 +
f

700
),

where f is the physical frequency in Hz and fMel is the resulting perceived fre-
quency (Deller et al., 2000). The resulting Mel spectrum after passing the Fourier
transformed frame through Mel-spaced filterbank is computed by:

s(m) =
N

∑
k=0

[|Xi(k)|2Hm(k)] 1 ≤ m ≤ M, (3.2)

where M is the total number of triangular Mel weighting filters and Hm(k) is the
weight given to the kth energy spectrum bin contributing to the mth output band,
expressed as (Rao and Manjunath, 2017):

Hm(k) =


0 k < f (m− 1)

k− f (m−1)
f (m)− f (m−1) f (m− 1) ≤ k ≤ f (m)

f (m+1)−k
f (m+1)− f (m)

f (m) ≤ k ≤ f (m + 1)

0 k > f (m + 1)

, (3.3)

where f () is the list of M+2 Mel-spaced frequencies. Finally, the cepstral coefficients
are computed by taking the discrete cosine transform of s(m) by (Picone, 1993):

c(n) =
M

∑
m=0

log10(s(m))cos(
πn(m− 0, 5)

M
) n = 0, 1, 2, ..., C, (3.4)

where c(n) are the cepstral coefficients, and C is the number of MFCCs.
The MFCCs by themselves only contain information from a given frame, any

extra information about the temporal dynamics of the audio is gained by taking the
first and second derivatives of the MFCCs, called MFCC-Delta and MFCC-Delta-
Delta respectively (Lawrence et al., 2008). These are then computed by:

dt =

N
∑

n=1
n(ct+n − ct−n)

2
N
∑

n=1
n2

, (3.5)

where dt is the delta coefficient from frame t, which is computed from the static co-
efficients ct+N to ct−N , where N is typically chosen to be 2. The MFCC-Delta-Delta
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features are computed in the same way, using the delta coefficients instead of the
static coefficients.

However, MFCC features are traditionally associated with timbre in music infor-
mation retrieval, which is a feature described separately from the melody (Müller,
2015). Instead, timbre, or tone quality, is an attribute which allows someone to dis-
tinguish between sounds of the same pitch, loudness, duration and spatial location,
for example between different instruments or speakers (Grey, 1975). While MFCC
features do contain pitch information as they represent the entire audio spectrum in
a compact form (Logan et al., 2000), these features thus do not specifically match the
description of Pitch that was given in the gesture research.

Instead, the pitches in the melody of a piece of music are traditionally extracted
by finding the fundamental frequency values of each note in the melody (Müller,
2015). The resulting trajectory is also called the F0-trajectory. There are many differ-
ent pitch detection algorithms (PDAs) to extract the fundamental frequencies from
an audio file, of which the state of the art consists of deep learning methods such
as CREPE (Kim et al., 2018). Most PDAs focus on extracting the pitch from mono-
phonic sounds, such as speech (Strömbergsson, 2016) or sung melodies (Gómez et
al., 2018). MELODIA (Salamon and Gómez, 2012) is a salience-based method to ex-
tract melody from polyphonic music, such as the audio used in the dataset, which
has a good accuracy score compared to other publicly available melody extraction
tools for this type of music (Salamon et al., 2014). It extracts the melody by filtering
out frequencies which are not perceivable by human ears and finding the strongest
pitches which are present in the remaining audio information. Then it finds series
of consecutive pitch values which are continuous in time and frequency, discarding
any outlier pitches that were found. This approach means that it is not dependent on
the sound of a singing voice or a strictly monophonic melody. Therefore, we chose to
use MELODIA in order to extract the melody or F0-trajectory. The resulting feature
will be denoted as Pitch in the rest of this thesis.

Additionally, the MFCC and MFCC-Delta features are extracted as well using
Librosa (McFee et al., 2015) which was also used in the aforementioned researches.
These features are used to help extract other features later mentioned in this chapter,
and will also be used as a baseline as this feature is commonly used for gesture
generation (Kucherenko et al., 2019).

Because the audio is recorded in a different frequency (sampling rate of 44100
kHz or 44100 audio samples per second) than the motion capture data (100 video
frames per second), the MFCC features must be aligned to the motion capture by
dividing the audio into windows of size h, which is computed by (Qi et al., 2019):

h = wsize− ((S + 1)× wsize−M)

S
,

where wsize denotes the size of the Fourier transform window, which by default is
set to 2.048. S denotes the number of video frames and M is the total number of
samples of the music, which is 44100 times the length of the audio in seconds.

Rhythm

Music typically is organized into temporal units called beats (Müller, 2015), which
are often described as the pulses a human taps along to when listening to music.
Rhythm is defined as the temporal patterns which are then formed from the repeat-
ing sequences of these beats. A measure or bar is a segment of time defined by a
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given number of beats. Dividing music into measures thus provides regular refer-
ence points within it. The beats are also used to define the temporal structure in
music, which is given by the so-called time signature. The time signature consists of
two numbers, stacked on top of each other. The bottom number indicates the dura-
tion of a beat with respect to a whole note, this means that an ’8’ would indicate that
each beat has a length of 1/8th note. The number on top then indicates how many
beats are in a measure. The duration of a beat in seconds is defined by the tempo
of the music, denoted in beats per minute (BPM). For example, in the Fast category
of the data, the tempo is 120 BPM. This means that each minute contains 120 beats,
and if every beat has a duration of 1/4th note, then each 1/4th note would have a
duration of half a second. When musicians deviate from the tempo as an expressive
choice, as stated in Canazza et al., 2004, it means that they do not abide by the sug-
gested beat duration given by the tempo, the practice of which is also referred to as
tempo rubato.

The location of beat onsets in the music have shown to be adequate for giving ex-
plicit rhythm-related information to music-driven animation approaches (Fukayama
and Goto, 2015; Tang et al., 2018). While this explicit information was also shown
to not be necessarily needed in order to produce beat-aligned motion to music input
(Lee et al., 2019; Yalta et al., 2019), these researches use pop and hip-hop music which
could contain strong beat indications, such as drums or bass. This could lead to the
beat-related information leaking into other features, such as the MFCCs and simi-
lar related features computed by short term Fourier transforms, thus still implicitly
providing the algorithm with this information.

Librosa (McFee et al., 2015) was used to extract the beat onsets in the aforemen-
tioned researches. The algorithm used by Librosa is based on a dynamic program-
ming approach proposed by Ellis, 2007. This algorithm uses the aforementioned
MFCC features to first find the onset strengths of where each musical note begins.
Then it estimates the tempo of the audio and picks the peaks from the calculated on-
set strengths which are approximately consistent with the estimated tempo. Because
the MFCCs are aligned to the motion capture frames, this function then returns the
frame numbers in which a beat was present. The presence or absence of a beat onset
in the audio is then coded in a binary manner using these locations, such that a ’1’
corresponds to a present beat onset at the given frame, and ’0’ does not.

Dynamics

Dynamics in music composing traditionally refer to the volume of a sound or note.
However, on the audio side, dynamics correspond to a perceptually scaled prop-
erty called loudness (Müller, 2015). This is a subjective measure which correlates
to objective measures of sound intensity and power, but it also depends on other
sound characteristics such as frequency or duration. Similarly to how musicians can
change the tempo of a song during a performance, they can also change the dynam-
ics by stressing certain notes (Canazza et al., 2004). In music-driven animation, the
energy levels are often used to describe the dynamics of a piece, such as through the
root mean square energy (RMS) (Fan et al., 2011; Alemi et al., 2017) or the log mean
energy (Shlizerman et al., 2018). The energy E of a signal corresponds to the total
magnitude of the signal, which roughly corresponds to how loud the signal is. This
is defined as:

E = ∑
n
|x(n)|2,
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where x(n) is one Fourier transform window. The root-mean-square energy is then
defined as:

RMS(E) =

√
1
N ∑

n
|x(n)|2,

where N denotes the length of each window in audio samples.

3.2.2 Motion Features

Aside from giving the locations of the joints as input to a network, it is also common
to supply extra motion information such as velocity (Alemi et al., 2017; Hasegawa et
al., 2018; Kucherenko et al., 2019; Alemi and Pasquier, 2019) or acceleration, which is
said to give worse results when used on its own compared to velocity (Hasegawa et
al., 2018; Alemi and Pasquier, 2019). The velocity of motion is traditionally defined
as the rate of change of the position x of an object with respect to time t. This can be
calculated as:

v =
∆x
∆t

In the case of real-time data-driven animation generation, the animation is generated
by animating a certain number of frames at a time. In this case, the velocity is then
computed as the difference between the current and last frame.

3.2.3 Dataset preprocessing

We extract the features from each audio file and put these into a separate feature
vector per file as shown in Table 3.3.

Feature Description Affiliation Tool Feature #
MFCC Perceived frequencies Pitch Librosa 0...15
MFCC-Delta Change in perceived frequencies Pitch Librosa 16...31
Pitch Contour Shape of the melody Pitch Melodia 32
Beat Onsets Location of beats in the music Rhythm Librosa 33
RMS Perceived loudness over time Dynamics Librosa 34

TABLE 3.3: This table shows the music features we extracted, their
definitions, which tools we used to extract them and their location in

the final feature vector.

Here, the MFCC, MFCC-Delta and RMS features are considered to be low level,
while the pitch contour and beat onsets are considered to be high level.

The resulting input audio feature vector thus consists of 35 values per frame.
The corresponding output to each feature vector consists of the XYZ-positions of 14
joints, resulting in 42 values for every frame. Finally, the resulting feature vector and
the corresponding output are rescaled using a MinMaxScaler1 such that all values lie
between a range of -1 to 1 while preserving the shape of their original distribution.
Each input-output combination is then divided into slices of 100 frames, to facilitate
online training. During training, we compute the motion features from each output
slice and add these to the input feature vector as shown in Table 3.4.

1https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.html

https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.html
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Feature Description Feature #
Position Joint positions of last frame 35...76
Velocity Difference in positions between last two frames 77...118

TABLE 3.4: This table shows the motion features we computed, their
definitions and their location in the final feature vector.

For the first frame, Position contains the ground truth and the velocities are all
zero.

To test the differences between using certain feature combinations, the results
from the network will be categorized in different conditions, which will be compared
against each other. In these conditions, certain features will be left out from the
complete feature vector. The different conditions are shown in Table 3.5

Condition Description
Pitch (P) Pitch
Pitch + Beat (PB) Combination of Pitch and Beat Onsets
Pitch + RMS (PR) Combination of Pitch and RMS
Pitch + Beat + RMS (PBR) Combination of all three listed above
MFCC Combination of MFCCs and MFCC-Deltas
MFCC + Pitch + Beat + RMS (ALL) Combination of all features listed above
Ground Truth The actual animation belonging to each sample

TABLE 3.5: This table shows the different conditions we defined and
which features they contain.

3.3 Network

In this section, we explain how we set up our network and how we perform the
training stage.

3.3.1 Architecture

When looking at similar research in the recent years for sequential motion gener-
ation, LSTMs have shown to give good results (Crnkovic-Friis and Crnkovic-Friis,
2016; Tang et al., 2018; Yalta et al., 2019). This will be the type of network that we
will be using. To create and train the network, we will use the Tensorflow framework
(Abadi et al., 2016).

To find the best network architecture, grid search was used (Goodfellow et al.,
2016). While random search (Bergstra and Bengio, 2012) allows us to test more op-
tions, the required computation time also scales with the number of options to try.
When tuning a lot of hyperparameters, this approach works best because it would
allocate less time to changing the values of hyperparameters which do not improve
network performance. However, in both grid search and random search there is a
chance of missing optimal combinations. Because the network has a low number
of hyperparameters and the dataset is small, however, using grid search suffices as
there are less options to try and thus the computation time is shorter than random
search. The resulting network contains one LSTM layer and two hidden layers. One
hidden layer acts as the input layer and consists of a number of units equal to the
number of features that are given as input (up to 119). The LSTM layer contains
64 units and connects to the second hidden layer which acts like the output layer,
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consisting of 42 units which are equal to the output size. While a stacked LSTM is
better at representing a problem at different time scales by chunking observations
over time (Pascanu et al., 2014), a larger number of layers can also make it harder for
the network to learn to remember information from the distant past (Goodfellow et
al., 2016). When using a network consisting of two stacked LSTM layers, the results
showed that the network could not learn to adequately predict the correct anima-
tion. This could be due to having too little training data to make the network learn
the relations between the input and output data with this network depth. There-
fore, the network consisting of a single LSTM layer was chosen. When choosing the
number of units in a layer, a larger number of units will allow the network to find
more implicit relationships among the inputs it is getting (Goodfellow et al., 2016).
A larger number of units will thus allow the network to learn more about the input,
but a high number can also induce overfitting. Between 64 and 128 units, the net-
work with 128 units learned faster but was also shown to overfit quickly, therefore
64 units were chosen to make sure the network retained the ability to generalize over
inputs.

3.3.2 Network training

We train the network using a method called online training. This means that in our
case, the network will be trained on subsequent slices of the audio recording rather
than on the full audio recording at once. This will allow the network to generate
animations in real-time by using its own generated output to the previous input
as an input for the next step. However, when taking this approach, the network
should be trained on its own generated data as well. Because human motion is
stochastic, long-term predictions can significantly differ from the ground truth but
still depict human-like motion (Jain et al., 2016). This difference can cause a network
purely trained on ground truth data to freeze or diverge when it is faced with its
own generated output (Zhou et al., 2018b). Thus, the network should be trained
on its own generated output to treat such observations as normal input instead of
noise. An alternative solution to this problem would be to use an autoencoder on
the generated output to mitigate error accumulation (Holden et al., 2015; Gregor
et al., 2015), however this does not eliminate accumulating errors like training on
generated output does (Jain et al., 2016). There are different ways to approach this
problem, but we follow the approach in Yalta et al., 2019, where ground truth data is
only used for the first frame and the generated output is used for every subsequent
frame as input. This will cause the network to generate ground truth-like output for
the first frame, but generate its own humanlike motion afterwards.

The network is trained on slices of 100 timesteps or frames, which equals to one
second of audio or animation. The error between every generated and expected
output is also called the loss, and is computed by using the mean squared error:

MSE =
1
n

n

∑
i=1

(Yi − Ŷi)
2,

where n is the number of predicted timesteps, Y is the matrix containing the true
joint locations and Ŷ is the matrix containing the generated joint locations. By squar-
ing the difference between these two, even a large difference for a single joint at-
tributes a lot towards the overall loss. Minimizing on this measure thus makes it so
the network has to produce more accurate results.
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The ADAM optimizer was used for training the model (Kingma and Ba, 2015).
The learning rate was picked using cyclical learning rates (Smith, 2017). This ap-
proach works by picking a learning rate and increasing it on every batch. Because
it is custom to decrease the learning rate during training, increasing it will help the
network come out of any local minima it encounters. Cyclical learning rates assume
that if a higher learning rate cannot come out of a local minimum, a lower learn-
ing rate will probably never generate enough gradient to come out of it. Thus, the
highest learning rate with the steepest decrease in loss is picked. When testing for
learning rates between 0.0001 and 0.01 for our network, this resulted in an optimal
learning rate of 0.001. To prevent the network from overfitting, we use Early Stop-
ping (Goodfellow et al., 2016). Overfitting occurs when the network starts to learn
the patterns in the training data itself rather than the relations between the given
inputs and outputs, and thus cannot correctly generate output for new inputs. After
the validation loss of the network has failed to improve for a total of 5 times, the
network will stop training to prevent this from happening. The network itself was
trained using an NVIDIA RTX 2070 GPU, an Intel i7-9700k CPU running at 3.6 GHz
and 24 GB of RAM. One full training run of 50 epochs took an average of 60 minutes.

3.4 Animation

After training, the generated files containing joint positions are loaded into Unity
where they are parsed to animate a 3D character. This is done by drawing 3D spheres
on the joint locations and connecting these spheres with a 3D cylinder. These posi-
tions are updated per frame and interpolated to create a smooth animation. The
character is put into a preset room containing a piano, a piano stool and the static
legs, shown in Figure 3.1. This scene is then recorded for every frame through a
camera within Unity, such as in Figure 3.2. Finally, the recorded frames are exported
as a video in the correct fps. Additionally, the data in the files themselves is analysed
for further objective evaluation. 2

2Code and further implementation details available at https://github.com/apsbogaers/Master-
Thesis.

https://github.com/apsbogaers/Master-Thesis
https://github.com/apsbogaers/Master-Thesis
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FIGURE 3.1: The preset room in Unity.

FIGURE 3.2: The animated character as seen from a camera within
Unity.
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Chapter 4

Results and Limitations

In this chapter, we analyse our results. We first show our objective results, which we
gained by comparing our generated animations to the ground truth. Secondly, we
show our subjective results, which we gained through a user study. Lastly, we go
over the limitations of our research.

4.1 Results

4.1.1 Objective evaluation

We evaluate the results using the following metrics:

1. Validation loss: the mean square error (MSE) between a generated animation
and the ground truth, measured over the validation set during each training
step of the network. This measure evaluates how well the network learns the
mappings between input and output.

2. Average Positioning Error (APE): the average of the euclidean distances per
joint and time step between the generated animation and the ground truth,
measured over the test set. This measure evaluates how accurate the generated
output is compared to the ground truth.

3. Acceleration: the second time derivative of the joint locations, or the average
change in velocity over all joints and time steps for an animation, measured
over the generated animations from the test set and the ground truth. This
measure evaluates how fast each joint accelerates into the next gesture dur-
ing each frame. It shows the smoothness or naturalness of the animation and
should have a value close to the ground truth for the generation animation to
appear most natural.

4. Jerk: the third time derivative of the joint locations, the first time derivative
of acceleration, or the average change in acceleration over all joints and time
steps for an animation, measured over the generated animations from the test
set and the ground truth. This measure is used in addition to acceleration
to measure how fast the acceleration changes per joint and per frame. Large
changes in acceleration can mean that joints shoot out of proportion and thus
this measure should also be close to the ground truth values in order to make
the animation appear more natural.

The MSE and APE are used to evaluate the accuracy of the network. A low error
value indicates that the generated animation closely follows the ground truth. MSE
has been used to analyse the accuracy of models in general machine learning before
(Taylor et al., 2017; Tian et al., 2019) and the APE showed to be a common measure
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for the accuracy of generated motion in recent animation papers (Kucherenko et al.,
2019; Starke et al., 2019; (Zhang et al., 2018)). Acceleration is the second derivative
of the joint positions with respect to time and describes the change in velocity. Jerk
describes the change of acceleration. A natural human motion ideally has a smooth
acceleration, if acceleration changes too quickly, limbs can overshoot in a direction,
causing jerkiness. Acceleration and jerk are commonly used to evaluate the smooth-
ness of the generated animations, which indicates how natural the animation looks
(Kucherenko et al., 2019). The purpose of gesture generation is not to reproduce the
ground truth, but to generate natural looking animations. The acceleration and jerk
give information about the flow of motion, which should be similar in the generated
animations and the ground truth.

Accuracy

The results of the training runs are shown in Table 4.1. The validation loss is the
MSE the network produces when it has to predict a set of unknown samples (which
are neither in the training nor the test set). A higher validation loss means that the
prediction was further off from the ground truth. The network ran for a maximum
of 50 epochs. A lower number of epochs means that the model started to overfit and
thus had to be terminated prematurely. The lowest validation losses are recorded in
the MFCC and the ALL (MFCC+Pitch+Beat+RMS) conditions. These were thus the
’easiest’ for the network to learn the associations between music and gestures from.
For Pitch, Pitch+Beat and Pitch+Beat+RMS, the network often stopped early due to
overfitting. However, the training loss of the Pitch conditions is rather high as well
compared to for example the MFCC condition for every subset. This could mean
that using Pitch and Beat Onsets is not giving the network enough information to be
able to model the expressive gestures to the music. This failure in modelling could
also be due to only using one song excerpt as input, as opposed to other research
where multiple songs are used and thus different pitch sequences can be connected
to different motions. This assumption gets strengthened when using the data subsets
with more discernible categories. When removing the possibly confusing data (NR,
NR_NN and NR_NE) or having more distinct differences between the categories
(NESL), the MSE for this condition appears to decrease. However, for each of these
subsets, the Pitch conditions remain their worst performance. For these features,
there might still be too little difference between every performance. Nonetheless
it means that for different performances of the same song, these features do not
describe the expressive gestures well. This can be seen in the generated animation
as well, as a recognizable ’head-dunking’ gesture in the ground truth data does not
appear in the generated data, of which an example is shown in Figure 4.1. What
is interesting is that MFCC outperforms the ALL condition, except for the last two
subsets (NR_NE and NESL).
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Condition/Set
NE NR NR_NN NR_NE NESL
MSE # MSE # MSE # MSE # MSE #

P 2763.754 37 1902.123 17 2205.897 28 2160.335 49 1166.755 26
PB 2837.244 22 1952.299 12 2119.022 32 2195.191 50 1494.773 13
PR 2478.616 50 1881.905 17 1950.359 33 2128.574 33 1438.196 10
PBR 2675.961 35 1817.459 19 1851.255 40 2011.162 50 1123.411 25
MFCC 2111.649 50 1435.083 30 1441.867 50 1604.379 50 837.163 29
ALL 2153.945 50 1474.041 24 1593.404 28 1592.825 50 795.653 35

TABLE 4.1: The final validation loss of each condition and the final
epoch of each training run (maximum of 50) for every data subset.

The best scoring condition is marked in bold per dataset.

FIGURE 4.1: Expressive gesture of the upper body in the ground truth
data (top two rows) and its absence in the generated animation from

the Pitch condition (bottom two rows).

The APE of each condition is shown in Table 4.2. This error shows how far off
the generated animation is from the ground truth, therefore a lower value is better.
Again, the MFCC and ALL condition outperform the other conditions. Between
MFCC and ALL, there is not a large difference in the error. ALL seems to perform
better when the gestures and corresponding audio are more distinctively different
(NR_NN and NESL), showing that it might be able to capture these differences more
accurately. However, the differences between MFCC and ALL are not significant,
except for the NESL subset (p=0.007).
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APE
NE NR NR_NN NR_NE NESL
µ σ µ σ µ σ µ σ µ σ

P 0.151 0.030 0.193 0.082 0.188 0.065 0.147 0.042 0.182 0.054
PB 0.152 0.031 0.195 0.089 0.181 0.059 0.148 0.043 0.195 0.050
PR 0.145 0.041 0.193 0.088 0.171 0.049 0.149 0.042 0.191 0.048
PBR 0.149 0.035 0.195 0.092 0.166 0.046 0.147 0.044 0.180 0.053
MFCC 0.117 0.037 0.167 0.074 0.160 0.061 0.128 0.039 0.160 0.044
ALL 0.118 0.035 0.172 0.076 0.157 0.057 0.129 0.038 0.156 0.045

TABLE 4.2: The average positioning error of each condition over all
generated animations. µ denotes the average score over all tempos
and σ denotes the standard deviation. The best scoring condition is

marked in bold per dataset.

Smoothness

The results for the smoothness are shown in the Tables 4.3 and 4.4 below. In these
cases, a value closer to the ground truth value is better. For acceleration, no condi-
tion is significantly better than the other. It is however apparent that removing the
possibly confusing data (NR, NR_NN and NR_NE) makes the acceleration of the an-
imation smoother. As shown in Table 4.4, the generated animations are more jerky
than the ground truth. The ALL condition seems to perform better than MFCC for
the NE, NR_NE and NESL with p=0.048, p=0.037 and p=0.001 respectively.

Acceleration
NE NR NR_NN NR_NE NESL
µ σ µ σ µ σ µ σ µ σ

P -2.191 0.900 -2.669 1.649 -2.185 0.940 -2.074 0.834 -2.438 0.948
PB -2.188 0.897 -2.660 1.710 -2.200 0.965 -2.081 0.838 -2.236 0.852
PR -2.137 0.879 -2.514 1.494 -2.275 1.071 -2.059 0.793 -2.368 0.892
PBR -2.170 0.877 -2.662 1.694 -2.217 1.103 -2.076 0.852 -2.424 0.920
MFCC -2.143 0.887 -2.714 1.755 -2.373 1.134 -2.123 0.871 -2.480 0.999
ALL -2.120 0.883 -2.638 1.698 -2.428 1.209 -2.075 0.816 -2.426 0.970
GT -2.128 0.744 -2.297 1.180 -2.136 0.918 -2.086 0.770 -2.098 0.768

TABLE 4.3: The average acceleration of each condition over all gener-
ated animations. µ denotes the average score over all tempos and σ
denotes the standard deviation. The best scoring condition is marked

in bold per dataset.
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Jerk
NE NR NR_NN NR_NE NESL
µ σ µ σ µ σ µ σ µ σ

P 18.599 10.685 32.371 27.312 24.754 16.812 13.333 13.586 44.302 22.740
PB 20.513 14.380 26.266 19.206 30.456 20.856 15.440 23.806 30.859 14.137
PR 11.226 10.398 42.315 33.350 29.261 19.230 7.752 9.260 26.397 13.785
PBR 7.996 9.563 42.003 30.778 34.883 29.867 11.893 16.249 45.592 19.596
MFCC 12.321 12.522 32.956 31.856 10.228 15.603 14.613 17.416 37.227 21.555
ALL 1.181 7.194 34.812 26.274 17.735 23.588 9.169 9.848 19.418 14.464
GT 2.630 3.078 0.214 1.183 4.123 5.746 1.213 1.631 3.888 3.977

TABLE 4.4: The average jerk of each condition over all generated an-
imations. µ denotes the average score over all tempos and σ denotes
the standard deviation. The best scoring condition is marked in bold

per dataset.

4.1.2 Subjective evaluation

Because human motion can be volatile, a large error value between the generated
output and the ground truth does not mean the network does not generate adequate
expressive gestures. Therefore, we also conduct a user study showing 16 animations,
of which each animation belongs to one of the tempo categories described in Section
3.1. Half of the animations consist of the generated animation within that perfor-
mance by the ALL condition and the other half consists of the corresponding ground
truth animations. First, the participants are asked what their age, gender and expe-
rience with piano performances and animated characters is. Then, the participants
have to rate each of the animations based on how correct and how natural/smooth
the animation looks. The survey questions can be found in Appendix A or online.1

With this we test the believability and the smoothness of the generated animations.
Our hypothesis is that the scores for these ratings should not be significantly differ-
ent with a confidence level of 0.05. This means that the mean score of each generated
animation should not be more than two standard deviations away from the mean of
the corresponding ground truth animation.

Demographics

In total, 37 participants answered the survey. Of the participants 37.8% is between
the ages of 18-24 years old, 35.1% is between ages 25-34, 13.5% is between ages 35-44,
5.4% is between ages 45-54, 5.4% is between ages 55-64, and 2.7% is under 18 years
old. 64.9% of the participants is male, 27% is female and the rest preferred not to say.
73% of the participants is familiar with piano performances and 89.2% is familiar
with animated characters.

Results

When looking at the answers from all participants, we found that the generated an-
imations for the Fast and Normal tempo either had significantly better believability
scores than the corresponding ground truth animations or had a score that was simi-
lar, as can be seen in Figure 4.2(a). However, the scores for the generated animations
in the Slow and Rubato tempo are worse than the ground truth. This could be due to
the length of these animations, which is often twice as long as the Fast and Normal

1The survey itself can be found at: https://forms.gle/xYPrknXKDkQzfSvg8

https://forms.gle/xYPrknXKDkQzfSvg8
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tempo animations. Because the network generates gestures one second at a time,
the slower music could have limited its ability to look further into the future for
these longer sequences. Comments from the participants on the Slow and Rubato
clips indicate that the 3D model moves too stiffly. The main concerns were with the
lack of expressive motion in the arms and not so much with that of the upper body.
This also shows in the smoothness scores for these tempos in Figure 4.2(b), as the
generated animations gained a worse score than the ground truth.

There was also a difference between the participants that were familiar with pi-
ano performances and those that were not. Participants unfamiliar with piano per-
formances did not have differing opinions for most of the tempos between the gener-
ated and ground truth animations, as shown in Figure 4.3(a). Comments from these
participants include that the character appears to play expressively and confidently,
but sometimes plays out of sync and makes stiff transitions. Participants that were
familiar with piano performances more often thought that the generated animations
had a worse smoothness, as indicated in Figure 4.4(b). Additionally, they also had
a stronger opinion about the believability of the generated videos in the different
tempos, as shown by the larger differences in scores in Figure 4.4(a). Comments
from the participants familiar with piano performances included that the 3D charac-
ter did not transition between poses smoothly, that the arms did not move correctly,
that movements were too small and that the character was not correctly conveying
the emotion of the music. This indicates that our current model could be adequate
for the average person, but needs more adjusting to generate sufficiently believable
animations for a trained audience.
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(a) Believability score

(b) Smoothness score

FIGURE 4.2: The results for the survey over all participants (37). An
asterisk indicates that the difference is significant (p < 0.05).
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(a) Believability score

(b) Smoothness score

FIGURE 4.3: The results for the survey over the participants unfa-
miliar with piano performances (10). An asterisk indicates that the

difference is significant (p < 0.05).
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(a) Believability score

(b) Smoothness score

FIGURE 4.4: The results for the survey over the participants familiar
with piano performances (27). An asterisk indicates that the differ-

ence is significant (p < 0.05).
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4.2 Limitations

Because the motion capture data contains global positions instead of local positions,
the joints can lose their proportions during the animation. This could affect the ac-
curacy of the model. This issue can be resolved by using local position or rotation
data, which was not available at this time. This issue also made it hard to use motion
capture recordings of different people, as their body proportions did not match in
the global space.

Due to a small training set size, the network had to be generalized over differ-
ent expressive levels of performance. Therefore it does not generate different styles
based on the given input, even if the performances are labelled as such. This could
be resolved by having more training data, and/or by training separate models to
generate gestures in specific styles. This small training set size also prevented us
from training a more complex network (i.e. more layers and/or units) which could
potentially increase the performance of the model. Creating a too complex network
for a simple dataset can cause overfitting.

As shown by the results, the network struggles with generating smooth anima-
tions for longer sequences, i.e. slower and longer notes in the music. This could be
caused by the short time frame on which the network was trained. However, if this
time frame length was increased, the network would perform worse on generating
animations in the Fast tempo. This issue could be solved by exploring other models
or approaches which will possibly support the different sequence lengths better.

A short overview of our limitations is listed below:

1. Joint positions/rotations are relative to the world space instead of a body ref-
erence, which can cause disproportions between different recordings.

2. The dataset was small, limiting the complexity of the model in favour of pre-
venting overfitting.

3. There was not always a lot of diversity in the audio compared to the motion
capture data, causing the network to generalize over multiple styles. This
means the network could not always generate different animations for certain
styles, e.g. ’Normal’ and Exaggerated’ expression.

4. The network struggles with generating animations for long sequences, i.e. slow
music.
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Chapter 5

Conclusion and Future Work

In this chapter, we draw conclusions from our research and discuss the possible
directions for future work on this project.

5.1 Conclusion

Our goal was to explore the possibility of using a music-driven deep learning method
to generate expressive musical gestures from a given audio input. This goal was in-
spired by an idea from the foundation "My Breath, My Music". They wished to have
a virtual avatar performing expressively to music being played by disabled musi-
cians using specially developed MIDI-instruments. Although MIDI-files would be
the preferred input to our method, previous studies solely focused on using audio
files instead. Therefore we chose to use audio input as well. We looked at music cog-
nition studies on real life musicians to find which musical features were related to the
expressive musical gestures they made. From these studies, we found that the pitch,
rhythm and dynamics were thought to affect these musical gestures. These features
could possibly also be extracted from MIDI-files, so we picked these features with
the thought of expanding our research to MIDI-files as well. We found that pitch was
often described with either MFCCs or the F0 trajectory in audio-driven and music-
driven animation studies. Rhythm was described with the locations of beat onsets
and dynamics with the energy levels of the music. We tried out different combina-
tions of these features as input to our model to find which combination worked best
for our goal.

For our model, we used an LSTM network. These networks had previously
shown to produce believable results and were thus a viable choice. We used a public
dataset containing motion capture data of a pianist playing the same piano excerpt
in different expressive intentions, playing styles and tempos to train the model. To
find out whether we could generate different musical gestures for different expres-
sive variations, we trained the model on several combinations of expressive inten-
tions, playing styles and tempos from the dataset. For each category combination,
we also tried out the different feature combinations. We found that MFCCs pro-
duced the most accurate results, while using MFCCs together with the F0 (pitch),
beat onsets (Rhythm) and energy levels (Dynamics) produced the most natural and
smooth results.

We showed videos of the generated animations using all the features together
to 37 participants in a user study to see if participants could discern these from the
ground truth. From this user study, we found that participants which were not fa-
miliar with piano performances thought that the generated videos looked more or
equally believable to the ground truth for most categories. However, participants
that were familiar with piano performances though that the generated videos looked
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less smooth than the ground truth and commented that the movements of the char-
acter were too small. This indicates that our model could be adequate at producing
believable animations for a general audience, but needs more adjusting to generate
sufficiently believable animations for a trained audience. Additionally, the believ-
ability and smoothness scores for both groups were lowest for the generated perfor-
mances played in the slow tempo. This indicates that the network might be receiving
too little information on slow music as it trains for one second at a time, thus ideally
needing a larger time frame.

Our research questions were whether it was possible to generate believable ex-
pressive musical gestures from audio input and which musical features were needed
to do so. We showed that our method could generate believable results for a gen-
eral audience using pitch, rhythm and dynamics features, indicating that it is indeed
possible to generate these from audio input. We extracted MFCC, F0-trajectory, beat
onsets and energy levels from the audio files, which have been used for describing
pitch, rhythm and dynamics in previous research. While these features were suffi-
cient for generating believable results, there are still ways to optimize our current
method by using other features or by improving the model we used to generate
more realistic results.

We published this research in the form of a Late Breaking Results (LBR) paper
in the Adjunct Proceedings of the 2020 International Conference on Multimodal In-
teraction (ICMI 2020). Additionally, a short presentation video1, a website2 and a
research poster3 about this paper are available online.

5.2 Future Work

Possibilities for future work are to expand the dataset to contain more different
songs, playing styles and instruments in order to further analyse the influence of
our chosen musical features. To generate believable expressive musical gestures, it
was important that the model could learn to discern expressive variations within the
same piece of music. However, training the model on only one piece of music lim-
its its ability to generalize over different unknown inputs. Therefore it is important
to find out whether it is also possible to generate different expressive musical ges-
tures for other songs, musical instruments and/or playing styles using our method.
Furthermore, there is ample room to improve our current model such that it can
better accommodate our chosen features and be more robust over the different mu-
sical tempos. LSTMs might be an adequate approach for our problem but we would
like to investigate the performance of other popular deep learning approaches such
as GANs (Sun et al., 2020) or a decomposition-to-composition learning framework
(Lee et al., 2019). There is also the option of exploring other musical features, such as
high level structural information (Fukayama and Goto, 2015) or additional spectral
features (Alemi et al., 2017), which can possibly give the network more information
than our current set of features do. Lastly, we would prefer to use MIDI-files as
input instead, in order to be able to match the original idea of "My Breath, My Mu-
sic". Ideally, we would like our method to work in real-time as well, which might
need a different approach to computing the musical features from the incoming mu-
sic stream. One method that we discussed could be to ’prebuffer’ a musical score

1https://youtu.be/G8e_tj82QGA
2https://apsbogaers.wixsite.com/musicalgestures
3https://www.dropbox.com/s/o0k8y6r2j9px9v0/poster.pdf

https://youtu.be/G8e_tj82QGA
https://apsbogaers.wixsite.com/musicalgestures
https://www.dropbox.com/s/o0k8y6r2j9px9v0/poster.pdf
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and compare the incoming music stream to this original score in order to find the
differences quickly.

A short overview of possible directions for future work is listed below:

1. Expand the dataset and test performance when there is more diversity in mu-
sic, e.g. with more different songs, playing styles and/or instruments.

2. Improve our model, e.g. explore other network model options such as LSTM-
based GANs.

3. Explore using other musical features, i.e. structural music information or other
commonly used features in music information retrieval research.

4. Adapt our method to use MIDI-files as input.

5. Adapt our method to work in real-time.
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Appendix A

Survey Questions

FIGURE A.1: Starting page containing information about the survey.
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FIGURE A.2: Demographic questions about the participant.

FIGURE A.3: Questions about the familiarity of the participant with
piano performances and 3D characters.
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FIGURE A.4: Questions about the animation, one example out of the
sixteen videos.
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