
Utrecht University

Master Thesis Theoretical Physics

Statistical Physics Models for Economic
Systems
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1 Introduction

In modern day society income inequality has become more and more prevalent. Some countries have seen
an increase in the gap between the rich and poor where especially the rich have seen their income increase
drastically [1]. This increase in the gap between rich and poor would suggest that a change in the distribution
of wealth has occurred. However, it is quite remarkable to notice that this increase in the wealth gap has
not had any drastic effects on the distribution of wealth. In fact, in the USA it seems that the lower 97%
of the population has not seen any significant changes in the shape of the income distribution in the last
decades. It is mainly the upper 3% which has seen changes over time. In Figure 1.1 it is shown that the shape
of the income distribution for the lower 97% of the population is that of a Boltzmann-Gibbs distribution.
Notice that the vertical shift between the 1980s and 1990s in this figure has simply been done for clarity.
What we observe in this graph is that the lower-income part of the distributions overlap on the same curve,
i.e. a Boltzmann-Gibbs distribution. This illustrates that the shape of the income distribution for the lower
part has been extremely stable over time suggesting a so called statistical ‘thermal’ equilibrium. The upper
3%, however, does not seem to adhere to a Boltzmann-Gibbs distribution but rather to a Pareto power law
which changes shape [2]. The occurrence of a statistical ‘thermal’ equilibrium in the lower part of the wealth
distribution suggests that an underlying mechanism is at work here. The aim of this thesis is to discuss and
combine two models in order to gain a further understanding of such mechanisms.

Figure 1.1: Cumulative probability distributions of annual income in the USA plotted on log-log scale versus
m/m0 (the annual incomem normalized by the average incomem0 in the exponential part of the distribution).
The Internal Revenue Sevice (IRS) data points are for 1983-2001 and the columns of the numbers give the
values of m0 for the corresponding years [2].

To reach this aim this thesis is divided into three different parts. In the first and second part two separate
models will be introduced and discussed. In the third part these two models will be combined into a single
model. It is this third part which will be the main focus of this thesis.

In the first part a start will be made by considering the model developed by the physicist Victor
Yakovenko. In a part of his 2009 Colloquium he developed an agent-based model that predicts the income
or wealth distribution of the lower class based on pairwise interactions between the agents of a population.
He has shown that the stable wealth distribution that results from these interactions is a Boltzmann-Gibbs
distribution [2]. The reason why the Boltzmann-Gibbs equilibrium distribution should emerge from this
model shall be discussed extensively in this text. This discussion will also focus on several numerical results
and provide a further analysis.

In the second part we will elaborate on some of the results from the master’s thesis by Jan Mulder [3]. In
this thesis he discusses a utility-based model in which the pairwise interactions between agents are governed
by an increase in a quantity called ‘utility’. It is the maximization of this utility that indicates that the
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system has reached thermal equilibrium. It will be demonstrated that, upon reaching this equilibrium, this
model does not have a Boltzmann-Gibbs distribution.

In the third part the two earlier models will be combined into what we will call the utility-based
Yakovenko model. To understand this model it will be approached both analytically and numerically. The
analytical approach will be done by making use of the master equation. This equation will provide a basis
from which the workings of the model can be understood and analysed. This analysis is aimed at determining
the eigenvalues of the transition matrix of the master equation in order to identify the equilibrium solution
for this model. The numerical approach will focus on computer simulations of this model and analyse what
occurs as the model equilibrates.

Finally, this thesis will conclude by presenting the various results that have been obtained and by giving
an outlook on possible future research in this area. In this outlook it will mainly be discussed that the
utility-based Yakovenko model can be extended to a two economies model where the interactions between
two economies or countries are considered. Further development of this extension might lead to interesting
results.

2 Yakovenko Model

The aim of this chapter is to study the statistical mechanics of money by considering a model proposed
by Victor M. Yakovenko [2]. In this model Yakovenko applies statistical physical methods to economical
systems in order to obtain new insights. To understand this model a start is made by first considering the
mechanics of the Yakovenko model. After this, an analytical solution for this model is discussed by using the
master equation. The derivation of this solution means to show that the Yakovenko model can be solved by
a Boltzmann-Gibbs distribution. Following this, the discussion will continue by showing the validity of the
analytical solution by comparing it with numerical results.

2.1 The Yakovenko Model

The model proposed by Yakovenko means to predict the stationary distribution of a closed economy in
which the various market participants exchange money with each other [2]. Before this model is considered
in depth, one should recall that in equilibrium statistical mechanics the probability of the occurrence of a
certain microstate is given by a Boltzmann-Gibbs distribution. The probability measure of this distribution
is dependent on the energy and the temperature of the system. The formulation of this distribution is of the
form P (ε), where ε depicts the energy of the microstate

P (ε) = ce−ε/T , (2.1)

here T is the temperature, and c the normalizing constant. An important requirement for this distribution
to hold is that it is applied to a physical system with a conserved quantity. In the above formulation this
conserved quantity would be the energy of the system. It is now this property of dealing with a conserved
quantity that brought about the application of the Boltzmann-Gibbs distribution to non-physical systems
with conserved quantities [2]. Yakovenko’s working example of such a system is that of a closed economy
where the total amount of money m is conserved. In his model, Yakovenko uses the conservation of money to
describe a simple system which is based on the interactions between various agents in an economic system. In
this system every agent has a certain amount of money mi > 0, with i = 1, 2, . . . , N labelling the individual
agents, and N ∈ N the number of agents present in the system. Initially, he lets each agent start with an
equal amount of money m0. After this, two random agents i and j exchange a random amount of money ∆
so that their personal money balance changes. It is this process of random exchange which will be done for
a definite number of time periods. The steps taken in such a time period are as follows

1. Two random agents i and j are selected to make a transaction from agent i to j.

2. In this transaction a random, uniformly distributed, amount of money, ∆ ∈ [0,∆max], is chosen. Here,
∆max is the maximum value of the transaction.

3. It is checked whether agent i is able to make the transaction, i.e. mi ≥ ∆.
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4. If agent i has sufficient funds then he will transfer an amount ∆ to agent j so that

mi → m′i = mi −∆; (2.2)

mj → m′j = mj + ∆. (2.3)

The conservation of money entails that in this algorithm the value of the transaction before and after will
always be equal, i.e.

mi +mj = m′i +m′j . (2.4)

It is apparent that taking the above steps only once does not result in interesting observations. For this
reason, a sweep of transactions is performed. This sweep is defined as N independent transactions so that on
average every agent is selected once for receiving, and once for giving money. Doing these sweeps multiple
times will cause the system to go to an equilibrium. In other words, the probability distribution of money
becomes stationary and as such independent of time. In order to demonstrate this time independence the
Yakovenko model will first be approached analytically and then numerically.

2.2 Analytical Solution

In the previous section it was postulated that the Yakovenko model tends towards an equilibrium. To
demonstrate this we will consider the time evolution of the master equation when applied to Yakovenko’s
model and show that it becomes time independent. We would like to note that for an extensive discussion
on the master equation we refer the reader to the lecture notes by Landau and Lifshitz [4] and the book by
N. van Kampen [5]. Generally, the master equation is expressed by

dP (m)

dt
= C[P (m)], (2.5)

where C[P (m)] is the collision integral. This integral represents the rate of change of the distribution function
P (m) by virtue of collisions. It is these collisions between particles which change, for example, the value of
their energy. The collision integral then means to describe the losses and gains of this energy in a particular
range of variables [4]. In statistical mechanics this equation displays the time evolution of the distribution
function due to collisions between particles. However, we need to be aware that in our model we are not
dealing with collisions but rather with interactions between two agents. So, in order to solve this transport
equation for the Yakovenko model we need an expression for its collision integral. This integral is given by
[2]

dP (m)

dt
=

∫ ∞
0

dm′
∫ ∞
−∞

d∆
[
f[m+∆,m′−∆]→[m,m′]P (m+ ∆)P (m′ −∆)

−f[m,m′]→[m+∆,m′−∆]P (m)P (m′)
]
.

(2.6)

Here, f[m,m′]→[m+∆,m′−∆] is the probability of transferring an amount of money ∆ from an agent with money
m′ to an agent with money m per unit time. Multiplying this with the occupation numbers P (m) and P (m′)
results in the rate of transition from the state [m,m′] to [m+ ∆,m′−∆]. In other words, the second term of
this integral depicts the depopulation rate of the state m. Similarly, we can argue that f[m+∆,m′−∆]→[m,m′]

depicts the probability that the reverse process occurs, i.e. the first term of the integral represents the
population rate of state m. When the probability of both the direct and reverse process are equal, i.e. there

is time-reversal symmetry, then the probability distribution becomes stationary: dP (m)
dt = 0. This procedure

where each process is balanced by the reverse process is also known in physics as detailed balance. When
there is stationarity and there is detailed balance then one gets from Equation (2.6) that

P (m)P (m′) = P (m+ ∆)P (m′ −∆) . (2.7)

Assuming that ∆ 6= 0, this equality is only solved by an exponential distribution of the form

P (m) = AeBm, (2.8)

where A and B are to be determined constants. In pursuance of ascertaining these constants, and under
the assumption that time-reversal symmetry holds for this model, we need to make use of the constraints
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on this system: conservation of money and normalization. Another route to determine that the solution is
given by an exponential distribution is by utilizing the fact that the exponential distribution maximizes the
entropy of the system [3]. From basic thermodynamics it is known that entropy describes the number of
different microscopic states that a system can adopt. The size of this number depends on the macroscopic
quantities that define the system, i.e. money. From the second law of thermodynamics it is known that
the total entropy of an isolated system does not decrease over time and that the entropy is constant if and
only if all processes are reversible. Therefore, isolated systems spontaneously evolve towards thermodynamic
equilibrium, i.e. the state with maximum entropy. The entropy S of this system is defined by

S = −〈log[P (m)]〉 = −
∫ ∞

0

dm P (m) log[P (m)]. (2.9)

In order to find an expression for the distribution function P (m) we maximize the entropy. This is done by
calculating the functional derivative of the entropy and equating it to zero

δS[P (m)]

δP (m)
= 0. (2.10)

To solve this equation we administer the constraints of this system. The first constraint is that the probability
distribution is normalized ∫ ∞

0

dm P (m) = 1. (2.11)

The second constraint is that, as both the amount of money and the number of agents are conserved, the
average amount of money per agent should be constant at all times. Giving the constraint

〈mi〉 =

∫ ∞
0

dm P (m)m = m0. (2.12)

Now, with these constraints the functional derivative can be calculated using two Lagrangian multipliers λ,
and κ. Determining the values of these will help in establishing the probability distribution. The expression
we need to solve has become

δ

δP (m)

{
−
∫ ∞

0

dm′ P (m′) logP (m′) + λ

[∫ ∞
0

dm′ P (m′)− 1

]
+ κ

[∫ ∞
0

dm′ P (m′)m′ −m0

]}
= 0.

(2.13)
Taking the functional derivative and rewriting the result for P (m) gives that

P (m) = e−1+λ+κm. (2.14)

This preliminary result can be evaluated for λ and κ by inserting it into the two constraints. Let us start
with the first constraint ∫ ∞

0

dm e−1+λ+κm = 1. (2.15)

When we do this integral we see that it is convergent for κ < 0. Hence, we get that

e−1+λ = −κ, with κ < 0. (2.16)

Now, we calculate the value of κ using the second constraint and the result that P (m) = −κ exp(κm)∫ ∞
0

dm (−κeκmm) = m0. (2.17)

Using integration by parts gives that κ = − 1
m0

. Substituting this into our expression for P (m) gives

P (m) =
1

m0
e−

m
m0 . (2.18)

This equation we recognize as the Boltzmann distribution, an example of which was given in Equation
(2.1). What this result shows is that following the constraints on the Yakovenko model we expect that the
probability distribution at equilibrium is indeed given by a time-independent Boltzmann distribution. To
further illustrate the validity of this result we will consider a numerical model in order to compare the results
at equilibrium.
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2.3 Numerical Results

Having computed the analytical result for the Yakovenko model, we continue by comparing the analytical
result with some numerical results. To obtain the numerical results we initialize a simulation with N = 1000
agents where each agents starts with m0 = 100. The maximum value for ∆ in this model is ∆max = 25.
It is with these initial conditions that we let a simulation perform the four steps of the Yakovenko model
for various amounts of sweeps. In Figure 2.1 the results for this analysis are shown up to 200 sweeps by
making use of histograms. What is observed in this figure is that as the amount of sweeps increases that the
system starts to equilibrate. For this model this seems to mean that over time the distribution of the goods
becomes exponential. This is depicted most clearly in Figure 2.1(f) where the shape of the histogram follows
the probability distribution given in Equation (2.18). This illustrates that the Boltzmann distribution is an
accurate representation of the Yakovenko model at equilibrium.

Figure 2.1: Normalized probability distribution of money for the Yakovenko model after various amounts of
sweeps. The red line is the money distribution given in Equation (2.18).

To get a further understanding of the equilibration of this system we consider the evolution of its mean square
displacement (MSD). Before we do this, we recall that the mean square displacement is generally given by

MSD = 〈(x(t)− x(0))2〉 =
1

N

N∑
i=1

|xi(t)− xi(0)|2. (2.19)

Expanding this in terms of averages gives

〈(x(t)− x(0))2〉 = 〈x2(t)〉+ 〈x2(0)〉 − 2〈x(t)x(0)〉. (2.20)

Now, we know that the system is in equilibrium when 〈x2(t)〉 = 〈x2(0)〉. As such, the mean square displace-
ment becomes at equilibrium

〈(x(t)− x(0))2〉 = 2〈x2(0)〉 − 2〈x(t)x(0)〉. (2.21)

In physics we would usually be dealing with particles and then the above MSD would depict the average
distance travelled by a particle. In this system, however, we do not consider the location of particles but
rather the money balance of agents. So, here we will compare the initial money balance of the agent x(0)
with the current money balance x(t). This means that the MSD depicts the average money exchanged per
agent over time. Now, to gain more insight about the equilibration of the system we consider the MSD of
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a system that is similar to what we will be considering later in this thesis. In the current simulation of the
MSD we consider a system that is initially shaped like an Boltzmann distribution. Furthermore, the agents
will no longer trade a random amount of goods but rather a set amount of goods ∆ = 1 in an economy with
an average of m0 = 10. In Figure 2.2 the time evolution of the mean square displacement of this system is
given. It is observed that the MSD increases towards a certain value after which it reaches a plateau and
fluctuates around it. It is clear from this figure that the MSD does not behave like a typical diffusion process
where the mean square displacement is linear [6]. In this model it seems that we are dealing with anomalous
diffusion or sub-diffusion. Unfortunately, the underlying mechanism that causes this anomalous diffusion has
not been determined. What has been found, however, is a function which fits the MSD of this system. In
Figure 2.2b it is shown that the MSD fits the function 208.8

(
1−e−0.00824x0.93)

. From this function we obtain
that the time scale of the equilibration of this system is given by τ ≈ 178. It is interesting to note that this
result is close to what is found when determining the eigenvalues of the transition matrix of the Yakovenko
model in Section 4.6. Having discussed the Yakovenko model we continue in the next chapter by having a
look at the utility-based market model. It is this market model that will be combined with the Yakovenko
model in Chapter 4.

10 100 1000 104
Time

5

10

50

100

Mean Square Displacement

(a) Time evolution of the mean square displacement in the
Yakovenko model for a system with m0 = 10.
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5

10
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(b) Time evolution of the mean square displacement in
the Yakovenko model with a fitted function of 208.8

(
1 −

e−0.00824x0.93)
Figure 2.2: Time evolution and prediction of the mean square displacement of the Yakovenko model.

3 Utility-based Market Model

In this chapter we will consider another economic model which depicts a market where trading is no longer
solely based on the change in goods but also on the change in utility. To consider such a market a start
will be made by giving a short introduction to utility theory. After this, the derivations following from Jan
Mulder’s master thesis will be considered [3]. Along with these derivations a discussion will be held on the
demand and supply functions following from utility theory for a market with only two goods. Subsequently,
the elasticity of substitution will be used in combination with the constant elasticity of substitution utility
function. It is this utility function that will be implemented to obtain values for the demand and supply
curves. The results of this analysis will then be demonstrated by making use of various graphs. Having
determined the demand and supply it is possible to consider the dynamics of a utility-based market. It will
be discussed what these dynamics are like and what kind of distribution we should expect for this market.
In the end, a numerical analysis on this model will be done.

3.1 Introduction to Utility Theory

In economic theory, utility has long been seen as a numeric measure of a person’s happiness. On the basis
of this notion it was thought that people would make economic choices so as to maximize their happiness,
i.e. utility. This concept of utility, however, has many conceptual problems. So, in current neoclassical
economic theory, utility theory is seen in terms of consumer preferences with utility as the only way to
describe them [7]. A general formulation of the consumer preferences is given by a utility function U which
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is related to the consumption of one or more goods x1, x2, . . . , xk. In order for an agent to consume these
goods economists will look at the agents income pi in order to see the amount of money he can spend. The
aim of the agent’s spending is to maximize their own utility function. Considering what we know about the
maximization of functions it becomes clear that it is more convenient to look at the marginal utilities of the
agents MU1,MU2, . . . ,MUk rather than the utility itself. In economic theory the marginal utility is obtained
by taking the partial derivative of the utility function with respect to a good xi

MUi =
∂U

∂xi
. (3.1)

Starting from this marginal utility, Heinrich Gossen formulated a principle as a basis for the maximization
of an agent’s utility which is known as Gossen’s Second law. According to Gossen “a person maximizes his
utility when he distributes the available money among the various goods so that he obtains the same amount
of satisfaction from the last unit of money spent on each commodity” [8]. In other words, when a person no
longer prefers one good over another then he has maximized his utility. In terms of marginal utilities this
means that

MU1

p1
=
MU2

p2
= · · · = MUk

pk
. (3.2)

Here, MUk represent the marginal utility of good k and pk depicts the associated price of this good. Another
important principle in utility theory comes from the law of diminishing marginal utility. This law entails
that as consumption increases the marginal utility for each additional unit consumed decreases. What this
involves in practice is that when you earn one euro you get a certain utility from this. Earning a second euro,
however, would give less utility than earning the first euro. Again, the same holds for earning a third euro
which gives less utility than earning the second, etc. So, according to this law marginal utility decreases as
your consumption of a good increases. By making use of this fundamental knowledge on utility theory it is
possible to consider the demand and supply functions for a market with two conserved goods.

3.2 Demand and Supply Function

We continue to construct the utility-based market model by first considering an expression for the demand
and supply function [3]. To do this we assume that we have a market with only two conserved goods A
and B. In this market we consider good A to be a good and good B to be a currency. We also have N
agents or market participants present where each agent possesses a certain amount of good A, i.e. ai with
i = 1, 2, . . . , N , and a certain amount of currency B, i.e. bi. Besides this, it is assumed that each agent has
the same utility function U(ai, bi) which depends on their own goods. Now, to determine the demand and
supply function we assume that all trades between the agents involve a fixed amount of good A which we
represent with q and a variable amount of good B which we call p. In this market model we assume that two
agents i and j will only exchange goods under several conditions. These conditions are that the buyer i is
able to pay for the good

bi ≥ p, (3.3)

and that the seller j is able to sell the good
aj ≥ q. (3.4)

On top of this, it is required that the change in utility of both the buyer and seller does not decrease their
utility. This means that for the buyer i the condition should hold that

U (ai + q, bi − p) ≥ U (ai, bi) . (3.5)

We know now, from utility theory, that it is more convenient to write this inequality in terms of marginal
utilities. To do this we make use of a first order Taylor expansion around p = q = 0. Doing this and rewriting
the expression for p gives the condition for buyer i

U (ai, bi) +
∂U (ai, bi)

∂ai
q − ∂U (ai, bi)

∂bi
p ≥ U (ai, bi) (3.6)

p ≤ ∂U (ai, bi) /∂ai
∂U (ai, bi) /∂bi

q. (3.7)
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In a similar way the condition for the seller j can be written as

U (aj − q, bj + p) ≥ U (aj , bj) (3.8)

p ≥ ∂U (aj , bj) /∂aj
∂U (aj , bj) /∂bj

q. (3.9)

Having determined these conditions we can define the demand and supply function. The demand function
D(p) is defined by the amount of goods q the agents in the market want to buy at a certain price p. To
identify this amount of demand we simply have to sum over all agents and see whether they satisfy the buyer
conditions given in Equation 3.3 and 3.7. Some consideration suggest that an appropriate representation of
these trading conditions is given by a heaviside step function θ. This choice ensures that the agents will trade
only if the separate conditions are met. For the supply function S(p) we have to do something similar but
now we have to consider the amount of goods q the agents in the market want to sell. Similar to the demand
function we do this by checking whether the sellers satisfy the seller conditions given in Equation 3.4 and
3.9. Combining all this means that the demand and supply equations become

D(p) = q

N∑
i=1

θ

(
∂U (ai, bi) /∂ai
∂U (ai, bi) /∂bi

q − p
)
θ (bi − p) ;

S(p) = q

N∑
i=1

θ

(
p− ∂U (ai, bi) /∂ai

∂U (ai, bi) /∂bi
q

)
θ (ai − q) .

(3.10)

Now, we assume that there is a known normalized distribution for goods A and B of the form P (a, b)∫ ∞
0

da

∫ ∞
0

db P (a, b) = 1. (3.11)

Inserting this into Equation 3.10 and rewriting gives

D(p) = Nq

∫ ∞
0

da

∫ ∞
0

db P (a, b)θ

(
∂U(a, b)/∂a

∂U(a, b)/∂b
q − p

)
θ(b− p);

S(p) = Nq

∫ ∞
0

da

∫ ∞
0

db P (a, b)θ

(
p− ∂U(a, b)/∂a

∂U(a, b)/∂b
q

)
θ(a− q).

(3.12)

It is these demand and supply curves which will help to determine the equilibrium market price that will be
paid for a quantity q of good A. However, to find an exact expression for these prices it is necessary to first
identify the utility function U(a, b) of these goods. For this reason, we will introduce the constant elasticity
of substitution utility function.

3.3 Constant Elasticity of Substitution

In order to find a more applicable expression of the demand and supply function it is necessary to have an
expression for the utility function. In practice there are many different utility functions which can be used
such as the isoelastic, the exponential and the quasilinear utility function [9]. For this thesis we have chosen
to make use of the constant elasticity of substitution utility function. In economic theory, the elasticity of
substitution σ shows the degree by which the number of products sold changes when the price of another
similar product changes. In other words, it shows the degree by which the two products can replace each
other. In the two goods market we are considering this elasticity depends on the ratio of the consumption
of the currency B compared to good A, i.e. R = b/a, and on the ratio of the price of good A compared to
currency B, i.e. PB = q/p. The elasticity of substitution for these goods is given by [9]

σ =
∆R/R

∆PB/PB
=

dR

dPB

PB
R
. (3.13)

For this function it generally holds that σ ≥ 0 as we assume that an increase in the currency B compared to
good A will lead to an increase in the consumption of the currency B compared to good A. A commonly used
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utility function for such a scenario is the Constant Elasticity of Substitution (CES) utility function [9]. As
the name suggests this function is based on constant elasticity of substitution between the two goods. This
utility function is given by

U(a, b) =

[( a
α

)r
+

(
b

β

)r]1/r

, (3.14)

where α and β are share parameters for a and b. The value of r depends on the value of σ which will be found
by solving Equation 3.13 with this utility function. To achieve this, we start by calculating the marginal
utility functions

∂U

∂a
=

1

α

(
a

α

)r−1 [( a
α

)r
+

(
b

β

)r](1−r)/r

; (3.15)

∂U

∂b
=

1

β

(
b

β

)r−1 [( a
α

)r
+

(
b

β

)r](1−r)/r

. (3.16)

Now, we use Gossen’s Second Law given in Equation 3.2 to get

1

q

∂U

∂a
=

1

p

∂U

∂b
. (3.17)

Using this identity and rewriting for a function of good A dependent on PB gives

R =

(
β

α

)r/(r−1)

P
1/(1−r)
B . (3.18)

Taking the derivative of this function with respect to PB will allow us to find the value of σ

dR

dPB
=

1

1− r

(
β

α

)r/(r−1)

P
r/(1−r)
B . (3.19)

With this we solve for σ to obtain

σ =
dR

dPB

PB
R

=
1

1− r

(
β
α

)r/(r−1)

P
r/(1−r)
B PB(

β
α

)r/(r−1)

P
1/(1−r)
B

=
1

1− r
. (3.20)

This then shows the relation between r and σ when there is CES. Note that if we want to ensure that σ > 0
then we will need that r < 1. With this we have obtained a utility function with which it is possible to solve
the demand and supply function exactly.

3.4 CES Demand and Supply

In the last section we obtained an expression for the utility function by assuming constant elasticity of
substitution. Here, we continue by applying this expression to solve the demand and supply functions given
by Equation 3.12 [3]. However, before this can be done a guess about the form of the distribution function
P (a, b) has to be made. Luckily, we know from the Yakovenko model that a Boltzmann distribution is an
appropriate estimate for this since we are dealing with two separately conserved quantities. For this reason,
we take the distribution to be of the form

P (a, b) =
1

ā
e−a/ā

1

b̄
e−b/b̄, (3.21)

where ā and b̄ are the average amounts of goods A and B respectively. It is with this probability distribution
at our disposal that we can continue our attempt to determine the demand and supply function [3]. To
illustrate this solution we will show the steps taken for solving the demand function, which is now given by

D(p)

q
=
N

āb̄

∫ ∞
0

da

∫ ∞
0

dbe−a/āe−b/b̄θ

(
q

α

(
a

α

)r−1 [( a
α

)r
+

(
b

β

)r](1−r)/r

− p

β

(
b

β

)r−1 [( a
α

)r
+

(
b

β

)r](1−r)/r )
θ(b− p). (3.22)
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To simplify this equation we introduce the following identity(
b

a

)
crit

=

(
β

α

)r/(r−1)(
q

p

)1/(r−1)

= γ(p). (3.23)

An understanding of the meaning of this identity is crucial for determining the demand and supply function.
In short, this function shows whether the preference of an agent is to buy or to sell R = b/a. It is evident
that for the demand function there should be a preference to buy R, i.e. b/a ≥ γ(p). While for the supply
function there should be a preference to sell R, i.e. b/a ≤ γ(p). The consequence of these inequalities is
that in the former the agent prefers to hold on to goods and in the latter to hold on to money. It should be
noticed here that in the critical case above we have an equality which indicates that the agent is indifferent
to buying or selling. Applying the first interpretation to the first step function in Equation 3.22 means that
it will be rewritten as follows

θ

(
q

α

(
a

α

)r−1 [( a
α

)r
+

(
b

β

)r](1−r)/r

− p

β

(
a

α

)r−1 [(
b

β

)r
+

(
b

β

)r](1−r)/r )
= θ(b− γ(p)a). (3.24)

With this simplified step function we can proceed to solve the integral for the demand. Doing this results in

D(p)

q
=
N

āb̄

∫ ∞
0

dbe−b/b̄θ(b− p)
∫ b/γ(p)

0

dae−a/ā

=
N

b̄

∫ ∞
p

dbe−b/b̄
[
1− exp

(
− b

γ(p)ā

)]
= Ne−p/b̄

[
1− γ(p)ā

γ(p)ā+ b̄
exp

(
− p

γ(p)ā

)]
.

(3.25)

This result is then an expression for the demand which depends on the price. To obtain an expression for
the supply we implement the same procedure as above to the supply curve given in Equation 3.12. However,
note that, following the interpretation of γ(p), we will use that the step function becomes θ(γ(p)a− b). From
this it then follows that

S(p)

q
= Ne−q/ā

[
1− b̄

γ(p)ā+ b̄
exp

(
−γ(p)q

b̄

)]
. (3.26)

These two expressions we found for the demand and the supply function give an indication of their behaviour
for varying values of p. Be that as it may, these functions in itself do not directly give a clear illustration
of the function’s behaviour. Now, in order to get an idea of this behaviour we have a look at the regions
where p → 0 and p → ∞. But before we do this, we have to consider what happens in these regions in
Equation 3.23. Here, it is straightforward to see that limp→0 γ(p) = 0 and limp→∞ γ(p) = ∞. Besides this,

we also need to have a look at the case p/γ(p). What we need to realize for this is that γ(p) ∝ p
1

1−r . As
a consequence of this, γ(p) will go to zero and infinity faster than p for r < 1. As such, the limits become
limp→0 p/γ(p) =∞ and limp→∞ γ(p) = 0 for r < 1. Applying these results we can consider the limits of the
demand and supply function

• Demand when p→ 0

lim
p→0

D(p) = lim
p→0

Nqe−p/b̄
[
1− γ(p)ā

γ(p)ā+ b̄
exp

(
− p

γ(p)ā

)]
. (3.27)

We see that the first exponential will be equal to one and that the second exponential will be equal to
zero as the exponent becomes infinity. This gives that

lim
p→0

D(p) = Nq. (3.28)

This shows that at a price of zero all agents want to buy a quantity q of good A.
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• Demand when p→∞

lim
p→∞

D(p) = lim
p→∞

Nqe−p/b̄
[
1− γ(p)ā

γ(p)ā+ b̄
exp

(
− p

γ(p)ā

)]
. (3.29)

Here, the first exponential will equal to zero and as such the demand becomes

lim
p→∞

D(p) = 0. (3.30)

This result demonstrates that at a price of infinity no one wants to buy good A.

• Supply when p→ 0

lim
p→0

S(p) = lim
p→0

Nqe−q/ā
[
1− b̄

γ(p)ā+ b̄
exp

(
−γ(p)q

b̄

)]
. (3.31)

In this function both the fraction and the exponential will equal to one. As a result, we will have that
Nqe−q/ā [1− 1] = 0. So that the supply becomes

lim
p→0

S(p) = 0. (3.32)

This is the result one would expect as no agent would be willing to give away their goods for free.

• Supply when p→∞

lim
p→∞

S(p) = lim
p→∞

Nqe−qā
[
1− b̄

γ(p)ā+ b̄
exp

(
−γ(p)q

b̄

)]
. (3.33)

The exponential goes to zero and as such we obtain

lim
p→∞

S(p) = Nqe−q/ā. (3.34)

Intuitively this is not a result one would expect as you would think that all agents would want to sell
their goods. What we tend to forget is that the agents need to have the required amount of goods in
order to sell it. It is this requirement which this result takes into account.

One of the most interesting regions for the utility-based market model is the point where the demand and
supply curves intersect

D(p) = S(p). (3.35)

To consider this point some additional assumptions have to be made. This is done as the above equation
cannot be solved analytically. For this reason, we inspect the critical case where b/a = γ(p). As mentioned
before, this is the case where the agent is indifferent to buying or selling. So, following Gossen’s second law
this would be the point where the agent’s utility is maximized. Combining this with a mean field approach,
that is we ignore fluctuations, we evaluate a and b at their average values so that b̄/ā = γ(p). Substituting
this into Equations 3.25 and 3.26 gives for the equality

e−p/b̄
(

1− 1

2
e−p/b̄

)
= e−q/ā

(
1− 1

2
e−q/ā

)
. (3.36)

To show the solution for this we have a closer look at effect of the mean field approach on Equation 3.23
which we rewrite for p

p = q

(
b̄

ā

)1−r (
β

α

)r
= pMF. (3.37)

Now, to solve the equality in Equation 3.36 we need the exponents to be the same. To see the case where
this is true let us consider the above relation when it is divided by b̄

p

b̄
= q

ār−1

b̄r

(
β

α

)r
= − q

ā

(
βā

αb̄

)r
. (3.38)
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From this we observe that demand and supply will be equal when(
βā

αb̄

)r
= 1, or

ā

α
=
b̄

β
. (3.39)

This allows us to write

pMF = q

(
b̄

ā

)1−r (
β

α

)r
= q

b̄

ā
. (3.40)

This equality shows that the solution for Equation 3.36 is indeed given by the mean field approach under the
condition that β/α = b̄/ā. So, we now have an expression for the demand and supply functions including an
approximation for the equilibrium price. Having done this analysis it is insightful to represent the demand
and supply curves in graphs in order to verify these results.

3.5 Numerics of CES Demand and Supply

In Figure 3.1 various plots are shown of the demand and supply curve. In these figures the red dashed line
is the expected price according to Equation 3.37 and ∆MF is the difference between the actual price at the
intersection and the mean field price. It can be observed in the figures that the demand and supply curves
act as expected near their limits as p → 0 and p → ∞. It is seen that in most cases the mean-field price is
a good predictor of the actual price. However, there are a few cases where this is not true, the best example
of which is seen in Figure 3.1g. The cause of this divergence is understood quite easily. It is related to the
fact that in a Boltzmann distributed system with b̄ = 1 most agents are unable to buy the good A. Since
the average money per agent is only equal to one, it is the case that about half of the agents present do
not have enough currency to buy good A at a price that is near the mean-field price. Consequently, these
agents are not buyers. Similarly, a certain amount of agents neither has enough of good A to sell. It it these
agents which are unable to buy or sell that will not be able to participate in the market when it is near
the mean-field price. On top of this, the ratio β/α = 10. This means that the goods do not exchange in
a 1-to-1 ratio and as such an agent needs more goods in proportion to the currency. For these reasons, the
equilibrium price turns out to be lower than the mean-field price. In all the other subfigures we observe that
the mean-field price is an appropriate approximation to the equilibrium price. With this knowledge in mind
we can continue to describe the dynamics of the utility-based market model.

3.6 Utility-based Market Model Dynamics

Up until this point the focus has been on what the demand and supply curve in an economy based on utility
looks like. This representation of the demand and supply is, however, only a portrayal of the demand and
supply at a certain moment in time. The aim of this section is to discuss the distribution of goods A and
B that results from the dynamics of utility-based trading [3]. In the utility-based market model agents are
all conscious of their own utility. As a result of this, each agent ‘knows’ what kind of trade it needs to make
in order to optimize its utility. In other words, the agent knows whether it is on the demand or the supply
side of the market. What happens in this model is that all agents will go to a marketplace where they will
either sell goods or buy them for a set price. It is the presence of the marketplace that makes sure that the
goods will be sold at the price at which demand equals supply. Here, the agents will then put their goods
and currency on display and exchange it for what they prefer. So, after having come to this marketplace
every agent will have done his preferred trade, ‘go back home’, and wait until the next trading day arrives.
As such, in this model every trading day can be seen as a time step or sweep, meaning that a certain amount
of trading days accounts for an equal amount of time steps. A step-by-step approach to a single trading day
of the utility-based market model is then [3]

1. All agents gather at the marketplace where the price is determined so that D(p) = S(p).

2. All agents trade goods at the marketplace based on the market price p and their own preferences.
Note: The preferences of the agents are based on the CES utility function.
The buyers will have their goods change to

a→ a′ = a+ q; (3.41)
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Figure 3.1: Demand curves (blue) and Supply curves (orange) plotted as a function of the price p. The
parameters r = 0.5, N = 1000 q = 1, and ā = 10 are kept constant. The red dashed line represents the p
value expected from Equation 3.37. The factor ∆MF represents the distance between the actual intersection
and the mean field prediction.

b→ b′ = b− p. (3.42)

Sellers will have their goods change to
a→ a′ = a− q; (3.43)

b→ b′ = b+ p. (3.44)

3. All agents ‘go home’ and repeat steps 1 and 2 T times.

Similar to the Yakovenko model, we want to know what the distribution of the population becomes over time
when the above process is repeated T times. To get an idea of this we will consider an initial population with
an exponential distribution of goods A and B over random agents. The choice of this initial distribution is
based on the fact that without an inequality in the initial distribution of goods trading does not take place.
If all agents would have an equal amount of good A and currency B then they will always prefer to either be
on the demand or supply side, i.e. trading cannot take place if everyone wants to sell. As such, the number
of goods and currency for each agent will be taken from an exponential distribution. On top of this, we
initially expect that this system tends towards a Boltzmann distribution. Using this setup, a start will be
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made by considering what the equilibrium distribution becomes for this model. To do this an analytical and
numerical consideration will be done.

3.7 Analytical Representation of the Utility-based Market Model Distribution

To approach the utility-based market model analytically the results from the thesis by Jan Mulder have been
used [3]. To do the derivation given in his thesis several assumptions have to be made. First, it is assumed
that the initial distribution is drawn from an exponential distribution. For this reason, the initial distribution
will have a shape similar to the Boltzmann distribution

P (a, b) =
1

āb̄
exp

(
−a
ā
− b

b̄

)
(3.45)

where we take ā = b̄. Secondly, we assume to be dealing with an economy where α = β = 1, and r = 0.5. On
top of this, it is assumed that q = 1, p ≈ 1. When these assumptions are combined with Gossen’s Second Law
then it is understood that in this economy agents will prefer to have their goods distributed in a 1 : 1 manner.
In other words, under our assumptions the agents will tend to have an equal amount of good A and currency
B. As a consequence of all this, all agents will keep their total amount of goods c constant, i.e. c = a + b.
Also, the tendency towards a one-on-one distribution of goods makes sure that afinal = bfinal = cinit/2 = c/2.
With this in mind we let the distribution PC(c) be the distribution of the population. In order to calculate
this distribution we need to go from the P (a, b) distribution to a distribution dependent on c. Luckily, we
know that we can define b = c− a so that the distribution can be found by solving

PC(c) =

∫ c

0

da P (a, c− a). (3.46)

Based on our earlier observations with respect to the conservation of goods, we guess that a Boltzmann
distribution will accurately represent the distribution of this economy. Solving with this gives

PC(c) =
1

āb̄

∫ c

0

da e−a/āe−(c−a)/b̄

=
e−c/b̄

āb̄

∫ c

0

da exp

[
a

(
1

b
− 1

ā

)]
=
e−c/b̄

āb̄

1
1
b −

1
ā

{
exp

[
c

(
1

b
− 1

ā

)]
− 1

}
=
e−c/ā − e−c/b̄

ā− b̄
.

(3.47)

Combining this result with the knowledge that at equilibrium a = b = c/2, we can depict the distribution for
good A as

PA(a) ∝ e−2a/ā − e−2a/b̄

ā− b̄
. (3.48)

All that remains is to normalize this distribution. Normalization gives∫ ∞
0

da PA(a) =
1

ā− b̄

(
a

2
− b̄

2

)
=

1

2
. (3.49)

As a result, the normalized distribution of good A, and as such good B, is given by

PA(a) =
2e−2a/ā − 2e−2a/b̄

ā− b̄
. (3.50)

When this expression is considered more closely then it becomes apparent that it is unclear what happens
when b̄ → ā. For this it can be seen that both the numerator and the denominator approach zero. To get
more insight into this limit we make use of L’Hôpital’s rule to get

lim
b→ā

PA(a) = lim
b→ā

−4ae−2a/b̄

−b̄2
=

4a

ā2
e−2a/ā. (3.51)
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Having derived this result for the distribution function we can proceed to compare it with numerical results
to see if it describes the distribution of the utility-based market model.

3.8 Numerical Results Utility-based Market Model

In this section the numerical results from a simulation of the utility-based market model will be elaborately
discussed. The simulation of this model has been based on the properties described in the sections above.
For more details on this simulation it is advised to have a look at the pseudocode in Appendix A. To consider
the results from the simulation a start will be made by looking at the parameters which change in the system.
After this, the probability distribution function of the model will be considered. In our simulations we have
taken the constant parameters to be ā = 50, b̄ = 50, α = 1, β = 1, r = 0.5, and q = 1. In Figure 3.2 it
is shown what happens with the total utility of the system and the mean square displacement. It has been
chosen to show these two system parameters as they are the only ones that change significantly. The market
price, for example, remains constant in these simulations. In Figure 3.2a it is observed that the total utility
quickly maximizes and reaches a limit. After this, the utility no longer changes. What this maximization
entails is that every agent has reached its one-on-one ratio of goods and can no longer improve upon its utility.
In Figure 3.2b the mean square displacement of the two goods, A and B, is given. What is observed here
is that there is an initial sharp increase in the mean square displacement of both goods. From the previous
figure we can deduce that the increase in the mean square displacement is related to the maximization of
the utility. After this maximization, we see that the MSD seizes to increase significantly and as such the
MSD remains constant afterwards. From these two figures we observe that the main functionality of the
utility-based market model is to maximize the total utility of the system. It is this maximization that can
also be observed in the shape of the probability distribution. In Figure 3.3 the probability distribution of the
initial configuration is given. In this figure it is observed that the goods are given by the initial condition of
a Boltzmann distribution in both the a and b direction. When this figure, however, is contrasted with Figure
3.4 then the effect of the model is seen clearly. The model maximizes the utility by distributing the goods
along a single line. The cause of this is that utility is maximized when the goods are distributed in a set
ratio. This ratio appears to be equal to the fraction qb̄/ā. Besides the change towards a single line, it is also
observed that the goods are no longer Boltzmann distributed in the a and b direction but rather that the
distribution has become similar to what has been predicted in section 3.7. To illustrate the accuracy of this
prediction Figure 3.5 has been generated. In this figure the data has been adjusted manually so that an agent
will have the exact ratio b̄/ā for goods a and b. The only reason this has been done is that limiting q = 1
results in a small deviation from the optimal ratio. So, to clearly show that the prediction made in Section 3.7
corresponds with the numerical results this additional figure has been made. With this final observation we
can confirm that Equation (3.50) is able to predict the stationary probability distribution. Furthermore, we
observe that the stationary solution is not given by the Boltzmann-Gibbs distribution. We will now continue
to look in the next chapter at what happens when we combine this model with the Yakovenko model.

(a) Change of total utility in the system over
time.This is an empty line of text. This is another
empty line of text

(b) Change of mean squared displacement over time.
The blue line represents good A and the orange line
represents currency B.

Figure 3.2: Numerical results for model parameters of the utility-based market model.
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Figure 3.3: Probability distribution of the initial configuration of agents in the utility-based market model.
The x (bottom left) and y axis (bottom right) show the values of a and b while the z-axis shows the value of
P (a, b).
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Figure 3.4: Normalized probability distribution of the final configuration of agents in the utility-based market
model. The blue line represents the probability distribution predicted by the analytical result from Section
2.7. The x (bottom left) and y axis (bottom right) show the values of a and b while the z-axis shows the
value of P (a, b).
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Figure 3.5: Normalized probability distribution of the final configuration of agents in the utility-based market
model adjusted to distribute goods along a single line. The blue line represents the probability distribution
predicted by the analytical result from Section 2.7. The x (bottom left) and y axis (bottom right) show the
values of a and b while the z-axis shows the value of P (a, b).
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4 Utility-based Yakovenko Model

So far we have only been dealing with markets with a single trading mechanism. In these markets it was
specified at what prices and at what quantities the economic agents will trade their goods using a single
trading mechanism. In this chapter there will be looked at what happens in a market where two trading
mechanisms take place at the same time. We will call this new market model the utility-based Yakovenko
model as it combines the two formerly discussed trading mechanisms. The first of these two mechanisms is
the utility-based trading mechanism. The second is the trading mechanism used in the Yakovenko model. To
consider this market a start will be made by explaining its dynamics and providing a short pseudocode. After
this, the master equation for this market will be discussed extensively. To formulate the master equation for
this model the trading conditions that contribute to the varying transition probabilities will be determined.
With this it will then be demonstrated what the master equation solution will be. This will show that the
master equation cannot easily be solved analytically. Therefore, the master equation will be linearized and
discretized in order to determine the eigenvalues. For clarity, an easy illustration of this will be provided
by considering the eigenvalues of the transition matrix of the Yakovenko model. After this, the transition
matrix of the utility-based Yakovenko model will be determined. The result that follows from this has to be
solved numerically in order to predict a solution for it. Finally, various numerical results of this model will
be shown and analyzed.

4.1 Utility-based Yakovenko Model Dynamics

In the utility-based Yakovenko model agents trade by making use of one of the two trading mechanisms every
sweep. The two trading mechanisms are the utility-based trading mechanism and the Yakovenko trading
mechanism. The dynamics of these two separate mechanisms have already been discussed extensively in the
previous chapters (See Sections 2.1 and 3.6). One of the reasons to consider this new model is to construct
a Yakovenko model with two variables which can then be approached as a thermodynamical system. The
analysis of this could provide intriguing results. In this new market model we again have an even number of
N agents with two different goods a and b. We take this number to be even as we are dealing with pairwise
interactions and we want every agent to be able to trade. At the marketplace an agent will be able to do
a utility-based trade or a Yakovenko trade of either good a or currency b. All agents will gather at this
martketplace and either sell a fixed quantity of goods q at the price p for which demand and supply are equal
or exchange q or p goods. It is important to note that an agent will never make use of more than one trading
mechanism at a time. To make sure this happens all the agents will be assigned a trading mechanism every
sweep. This assignment will be done randomly in certain fractions. In other words, every sweep a Yakovenko
fraction of Yf agents will trade using the Yakovenko mechanism of which half will trade good a and half
currency b. Practically, this means that if Yf = 0.1 that 10% of all agents will trade using the Yakovenko
mechanism and that roughly 5% of all agents will only trade good a and 5% will only trade currency b. This
allocation of trading mechanisms for agents will be done every sweep. The step-by-step approach for the
utility-based Yakovenko model is then given by

1. Allocate to every agent a trading preference so that 1 − Yf agents will trade using the utility-based
model and Yf agents will trade using the Yakovenko model.

2. All agents trade based on their trading preference. (See Sections 2.1 and 3.6 for the different mecha-
nisms).

3. Repeat the above steps T times.

For an extensive explanation of the pseudocode used in the numerical analysis for this model the reader is
advised to have a look at Appendix A. Now that we have description of this model, we would like to be able
to predict its behaviour by making use of methods from statistical physics. For this model we again make use
of the master equation which will help in predicting the equilibrium probability distribution of this model.
Therefore, we proceed by formulating the master equation for this market model.



4 UTILITY-BASED YAKOVENKO MODEL 21

4.2 The Master Equation

To determine the master equation for this model we start by considering a general expression of it for the
probability distribution P (a, b). Notice that, in contrast to the Yakovenko model, we assumed for this model
that q and p are constants so that we need to only integrate over a′ and b′ which gives

dP (a, b)

dt
=

∫ ∞
0

da′
∫ ∞

0

db′
(
Wgain −Wloss

)
. (4.1)

Here, Wgain represents the gain terms and Wloss represents the loss terms of the master equation. Also, note
that in this thesis the usage of primes on variables is not to indicate that we are taking a derivative. It is
simply another variable. For this master equation the gain and loss terms each consist out of three parts: one
part for the utility-based transitions and two parts for the Yakovenko transitions. We continue by writing
these terms down separately. The utility-based part of the master equation is given by

dPU (a, b)

dt
= C1(1− Yf )

∫ ∞
0

da′
∫ ∞

0

db′[f[a+q,b−p,a′−q,b′+p]→[a,b,a′,b′]P (a+ q, b− p)

P (a′ − q, b′ + p)− f[a,b,a′,b′]→[a+q,b−p,a′−q,b′+p]P (a, b)P (a′, b′)].

(4.2)

In this expression C1 denotes a to be determined constant and Yf is the Yakovenko trade fraction. The
transition probability f[a,b,a′,b′]→[a+q,b−p,a′−q,b′+p] represents the probability to acquire a good q for cur-
rency p for an agent with goods a, b from an agent with goods a′, b′. The other transition probability
f[a+q,b−p,a′−q,b′+p]→[a,b,a′,b′] depicts the reverse process. The Yakovenko parts of the master equation are
given by

dPYa
(a, b)

dt
=
C2Yf

2

∫ ∞
0

da′
∫ ∞

0

db′
[
f[a+q,b,a′−q,b′]→[a,b,a′,b′]P (a+ q, b)P (a′ − q, b′)

−f[a,b,a′,b′]→[a+q,b,a′−q,b′]P (a, b)P (a′, b′)
]

;

(4.3)

dPYb
(a, b)

dt
=
C3Yf

2

∫ ∞
0

da′
∫ ∞

0

db′
[
f[a,b−p,a′,b′+p]→[a,b,a′,b′]P (a, b− p)P (a′, b′ + p)

−f[a,b,a′,b′]→[a,b−p,a′,b′+p]P (a, b)P (a′, b′)
]
.

(4.4)

Here, C2 and C3 are to be determined constants. Similar to what has been described in Section 2.2 the
transition probabilities depict the probability to exchange an amount of q of good a or p of currency b with
another agent. Following this, the complete expression of the master equation is given by the combination
of Equations (4.2), (4.3), and (4.4)

dP (a, b)

dt
=
dPU (a, b)

dt
+
dPYa

(a, b)

dt
+
dPYb

(a, b)

dt
. (4.5)

In order to obtain a general solution for the above master equation it will be necessary to determine the
conditions which affect the various transition probabilities. A start will be made by first analyzing the
trading conditions for the Yakovenko parts after which the utility-based part will be analyzed.

4.3 Trading Conditions

To determine the trading conditions which indicate the transition probability we start by defining the ap-
proach that will be taken. In the analysis of this section it is assumed that if an agent meets the conditions
to trade that he will trade. This means that the transition probability f will equal to one when an agent
can make a trade and it will equal to zero when he cannot. Consequently, the transition probabilities will
be given by Heaviside step functions as they represent this ‘all or nothing’ trading behaviour. Furthermore,
it should be realized that agents will only do one type of trade each sweep. What this means is that to
determine the transition probability we need to establish the required conditions for an agent to perform a
certain type of trade. To do this for varying ranges of a and b we define the lower limits ai and bi and the
upper limits af and bf . Using this we continue by considering the trading conditions for each part of the
master equation.
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4.3.1 Trading Conditions Yakovenko Trade Good A

The master equation for the Yakovenko trade of good a is given by

dPYa(a, b)

dt
=
C2Yf

2

∫ af

ai

da′
∫ bf

bi

db′
[
f[a+q,b,a′−q,b′]→[a,b,a′,b′]P (a+ q, b)P (a′ − q, b′)

−f[a,b,a′,b′]→[a+q,b,a′−q,b′]P (a, b)P (a′, b′)
]
.

(4.6)

The main condition for the Yakovenko trade to occur is that the agent does not exceed the boundaries of
the system. In all other cases the agent will be able to trade his goods. The boundaries of the system
that are of interest in this trading mechanism are ai and af . In this equation the transition probability
f[a,b,a′,b′]→[a+q,b,a′−q,b′] denotes the probability for an agent with goods a and b to gain q goods and for an
agent with goods a′ and b′ to lose q goods. For this to be possible a should not exceed af after the trade and
a′ should not be smaller than ai. In terms of Heaviside step functions this is given by

θ(af − (a+ q)) =

{
0, af < a+ q
1, af ≥ a+ q

; (4.7)

θ((a′ − ai)− q) =

{
0, a′ − ai < q
1, a′ − ai ≥ q

. (4.8)

Combining these gives the transition probability

f[a,b,a′,b′]→[a+q,b,a′−q,b′] = θ(af − (a+ q))θ((a′ − ai)− q). (4.9)

For the reverse process f[a+q,b,a′−q,b′]→[a,b,a′,b′] the conditions are slightly different. In this process we start
from a state with goods [a + q, b, a′ − q, b′]. In this transition it is necessary that a + q does not become
smaller than ai after losing q and that a′− q does not exceed af after gaining q. Following this the Heaviside
step functions are initially given by θ((a + q − ai) − q) and θ(af − (a′ − q + q)). However, one can observe
that these can easily be simplified to

θ(a− ai) =

{
0, a < ai
1, a ≥ ai

; (4.10)

θ(af − a′) =

{
0, af < a′

1, af ≥ a′
. (4.11)

Under the boundary conditions of the system we know that these two step functions are by definition always
equal to one. The reason, however, to mention these ‘trivial’ step functions is that it is important in the
understanding of the transitions. It shows, by the use of similar step functions, that the probability of the
reverse process to occur is dependent on the conditions of the initial process. It appears that the definition of
the initial process determines the values of the reverse process. Therefore, it is necessary for this transition
probability that the initial process can occur as well. Otherwise the state of the reverse process would not
even exist. Consequently, the transition probability is fully (i.e. including trivial terms) given by

f[a+q,b,a′−q,b′]→[a,b,a′,b′] = θ(a− ai)θ(af − (a+ q))θ((a′ − ai)− q)θ(af − a′). (4.12)

Leaving out the ‘trivial’ terms results in

f[a+q,b,a′−q,b′]→[a,b,a′,b′] = θ(af − (a+ q))θ((a′ − ai)− q). (4.13)

This final result shows that f[a+q,b,a′−q,b′]→[a,b,a′,b′] = f[a,b,a′,b′]→[a+q,b,a′−q,b′]. In Section 2.2 it was already
assumed that the transition probabilities of the Yakovenko model are equal. In the same section on the
Yakovenko model it was also shown that for this to be a stationary process it is necessary that probability
distribution is a Boltzmann distribution. However, for the current model the presence of the utility-based
trade prohibits the use of the same assumption as it was shown in the previous chapter that it does not
adhere to a Boltzmann-Gibbs distribution.
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4.3.2 Trading Conditions Yakovenko Trade Good B

The master equation for the Yakovenko trade of good b is given by

dPYb
(a, b)

dt
=
C3Yf

2

∫ af

ai

da′
∫ bf

bi

db′
[
f[a,b−p,a′,b′+p]→[a,b,a′,b′]P (a, b− p)P (a′, b′ + p)

−f[a,b,a′,b′]→[a,b−p,a′,b′+p]P (a, b)P (a′, b′)
]
.

(4.14)

Again, the main condition for the Yakovenko trade to occur is that the agent does not exceed the boundaries
of the system. In fact, the analysis for this trading system is equal to that of good a. So, one can easily
determine that the transition probabilities are given by

f[a,b−p,a′,b′+p]→[a,b,a′,b′] = θ(bf − b)θ((b− bi)− p)θ(b′ − bi)θ(bf − (b′ + p)); (4.15)

f[a,b,a′,b′]→[a,b−p,a′,b′+p] = θ((b− bi)− p)θ(bf − (b′ + p)). (4.16)

Leaving out the ‘trivial’ conditions in Equation (4.15) shows that the transition probabilities are equal.

4.3.3 Trading Conditions Utility-Based Trade

The master equation for the utility-based trade is given by

dPU (a, b)

dt
= C1(1− Yf )

∫ af

ai

da′
∫ bf

bi

db′[f[a+q,b−p,a′−q,b′+p]→[a,b,a′,b′]P (a+ q, b− p)

P (a′ − q, b′ + p)− f[a,b,a′,b′]→[a+q,b−p,a′−q,b′+p]P (a, b)P (a′, b′)].

(4.17)

For the utility-based trade to occur an agent should meet two conditions. The first is not to exceed the
boundary conditions of the system after a trade. The second is that an agent should increase its utility
following a trade. The first of these two conditions is ensured by incorporating the transition probabilities
of both Yakovenko trades, i.e. θ(af − (a+ q))θ((a′ − ai)− q) and θ((b− bi)− p)θ(bf − (b′ + p)). The second
condition can be represented by step functions similar to Equation (3.24). In the analysis in Section 3.4 it
is explained why. From this analysis it follows that a buyer needs to have that b/a ≥ γ(p) and that a seller
needs to have that b/a ≤ γ(p). Applying this to f[a+q,b−p,a′−q,b′+p]→[a,b,a′,b′] it is observed that the agent
with goods (a+ q, b− p) is selling and that the agent with goods (a′ − q, b′ + p) is buying. This means that
the transition probability will be given by

f[a+q,b−p,a′−q,b′+p]→[a,b,a′,b′] = θ(af − (a+ q))θ((a′ − ai)− q)

θ((b− bi)− p)θ(bf − (b′ + p))θ(γ(p)− b− p
a+ q

)θ(
b′ + p

a′ − q
− γ(p)).

(4.18)

For the transition f[a,b,a′,b′]→[a+q,b−p,a′−q,b′+p] it is the case that the agent with goods (a, b) is buying and
that the agent with goods (a′, b′) is selling. This means that this transition probability is given by

f[a,b,a′,b′]→[a+q,b−p,a′−q,b′+p] = θ(af − (a+ q))θ((a′ − ai)− q)

θ((b− bi)− p)θ(bf − (b′ + p))θ(
b

a
− γ(p))θ(γ(p)− b′

a′
).

(4.19)

When the two transition probabilities above are compared it is observed that they differ in the conditions for
the increase in utility. As such, the transition probabilities do not cancel out for a Boltzmann distribution.
An implication of this is that the stationary solution for this master equation might not be given by a
Boltzmann distribution. To verify this we continue by solving the master equation with this distribution and
see whether it equates to zero.
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4.4 Master Equation and the Boltzmann Distribution

In this section it is considered whether the Boltzmann distribution represents the stationary solution of the

master equation. To do this we check whether the Boltzmann-Gibbs distribution gives that dP (a,b)
dt = 0. If

we obtain a non-zero result then we know that the Boltzmann distribution is not the equilibrium solution of
this model. To start, we recall that a Boltzmann distribution for this system is depicted by

P (a, b) =
1

āb̄
exp

(
−a
ā
− b

b̄

)
, (4.20)

where ā and b̄ represent the average number of goods a and b respectively. For a Boltzmann distribution it is
known that P (a+ q, b− p)P (a′ − q, b′ + p) = P (a, b)P (a′, b′). Thus, making use of a Boltzmann distribution
in Equation (4.5) results in

dP (a, b)

dt
=

∫ af

ai

da′
∫ bf

bi

db′
(
W ′in −W ′out

)
P (a, b)P (a′, b′). (4.21)

Here, W ′in represents

W ′in = C1(1− Yf )f[a+q,b−p,a′−q,b′+p]→[a,b,a′,b′] +
C2Yf

2
f[a+q,b,a′−q,b′]→[a,b,a′,b′] +

C3Yf
2

f[a,b−p,a′,b′+p]→[a,b,a′,b′].

(4.22)
The terms of the transition probabilities are given by Equations (4.18), (4.13), and (4.16). The terms in W ′out

are

W ′out = C1(1−Yf )f[a,b,a′,b′]→[a+q,b−p,a′−q,b′+p] +
C2Yf

2
f[a,b,a′,b′]→[a+q,b,a′−q,b′] +

C3Yf
2

f[a,b,a′,b′]→[a,b−p,a′,b′+p],

(4.23)
where the transition probabilities represent Equations (4.19), (4.13), and (4.16). Now, we know from the
analysis on the trading conditions that the Yakovenko terms are equal to each other and as such they cancel
out here. This leaves us with

dP (a, b)

dt
=

∫ af

ai

da′
∫ bf

bi

db′C1(1− Yf )

(
f[a,b,a′,b′]→[a+q,b−p,a′−q,b′+p] − f[a,b,a′,b′]→[a+q,b−p,a′]

)
P (a, b)P (a′, b′).

(4.24)
It is straightforward to solve this integral by making use of the step functions to adjust the limits. Doing this
and integrating provides a non-zero result. This indicates that the Boltzmann distribution is not a stationary
solution for this model. It is in our interest, however, to know whether a model such as this will tend towards
a stable equilibrium in the long term. For this reason, we will try to show that a stationary solution exists
by determining the eigenvalues of the transition matrix of the master equation. To do this we first continue
with linearizing and discretizing the master equation.

4.5 Linearization and Discretization

In this section we will continue by linearizing and discretizing the master equation we have obtained in order
to determine the stability. The master equation is given by

dP (a, b)

dt
=

∫ af

ai

da′
∫ bf

bi

db′
(
Win −Wout

)
. (4.25)

Where Win signifies

Win = C1(1− Yf )f[a+q,b−p,a′−q,b′+p]→[a,b,a′,b′]P (a+ q, b− p)P (a′ − q, b′ + p)

+
C2Yf

2
f[a+q,b,a′−q,b′]→[a,b,a′,b′]P (a+ q, b)P (a′ − q, b′)

+
C3Yf

2
f[a,b−p,a′,b′+p]→[a,b,a′,b′]P (a, b− p)P (a′, b′ + p) .

(4.26)
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The transition probabilities in this equation have been determined in Section 4.3. The expression for Wout

is similar to Equation (4.23) and is depicted by

Wout = W ′outP (a, b)P (a′, b′). (4.27)

Now, the master equation given above is hard to solve analytically. Nonetheless, it is possible to determine
the stationarity of this system by considering the eigenvalues of its transition matrix. The definition of this
matrix will be shown shortly. In order to obtain this transition matrix and its eigenvalues we have to rewrite
the master equation. We do this rewriting by first linearizing and then discretizing the master equation.
But before we do this, we start by shifting the above functions so that the last term becomes of the form
P (a′, b′). We do this to make our later analysis easier. For this shift we take the limits to be af = bf = ∞
and ai = bi = 0. It can be observed that only the Win terms have to be shifted. To do this shift we change
all the lower integral limits to −∞ by making use of step functions. We then proceed to shift the variables
a′ and b′ in such a way that we get P (a′, b′). Shifting then first term of Win results in∫ ∞

−∞
da′
∫ ∞
−∞

db′C1(1− Yf )θ(a′ + q)θ(b′ − p)f[a+q,b−p,a′,b′]→[a,b,a′+q,b′−p]P (a+ q, b− p)P (a′, b′) . (4.28)

Do note that the terms in the transition probability f are shifted as well. Doing the same for the other two
terms in Win gives∫ ∞

−∞
da′
∫ ∞
−∞

db′
C2Yf

2
θ(a′ + q)θ(b′)f[a+q,b,a′,b′]→[a,b,a′+q,b′]P (a+ q, b)P (a′, b′) ; (4.29)

∫ ∞
−∞

da′
∫ ∞
−∞

db′
C3Yf

2
θ(a′)θ(b′ − p)f[a,b−p,a′,b′]→[a,b,a′,b′−p]P (a, b− p)P (a′, b′) . (4.30)

On the Wout term we only apply the step functions so that the integrals have the same limits. That means
that now we have

Wout = θ(a′)θ(b′)W ′outP (a, b)P (a′, b′). (4.31)

Having applied these shifts we continue by linearizing the master equation. To linearize it we write P (a, b) =
P0(a, b)+δP (a, b). Here P0(a, b) is the stationary solution of the master equation and δP (a, b) is a small devi-
ation away from this equilibrium solution. In the master equation there are now four different combinations
that can be linearized. Doing this results in

P (a+ q, b− p)P (a′, b′) = P0(a+ q, b− p)P0(a′, b′) + P0(a+ q, b− p)δP (a′, b′)

+P0(a′, b′)δP (a+ q, b− p) + δP (a+ q, b− p)δP (a′, b′);
(4.32)

P (a+ q, b)P (a′, b′) = P0(a+ q, b)P0(a′, b′) + P0(a+ q, b)δP (a′, b′)

+P0(a′, b′)δP (a+ q, b) + δP (a+ q, b)δP (a′, b′);
(4.33)

P (a, b− p)P (a′, b′) = P0(a, b− p)P0(a′, b′) + P0(a, b− p)δP (a′, b′)

+P0(a′, b′)δP (a, b− p) + δP (a, b− p)δP (a′, b′);
(4.34)

P (a, b)P (a′, b′) = P0(a, b)P0(a′, b′) + P0(a, b)δP (a′, b′)

+P0(a′, b′)δP (a, b) + δP (a, b)δP (a′, b′).
(4.35)

This linearization means that the master equation has now become

dP0(a, b)

dt
+
d δP (a, b)

dt
=

∫ ∞
−∞

da′
∫ ∞
−∞

db′
(
Wlinearized in −Wlinearized out

)
. (4.36)

In this expression Wlinearized in is given by Equation (4.26) but with the terms linearized as above. Similarly,
Wlinearized out is given by combining Equation (4.27) with Equation (4.35). In the process of linearizing
we defined P0 as the stationary solution for the master equation. As a consequence of this, all the P0P0

terms together will have a contribution of zero as the assumption of stationarity gives that dP0(a,b)
dt = 0.
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Furthermore, δP is defined as a small deviation away from the equilibrium. As such, the terms with δPδP
are considered to be negligibly small. This means that we are left with

d δP (a, b)

dt
=

∫ ∞
−∞

da′
∫ ∞
−∞

db′
(
W ′linearized in −W ′linearized out

)
. (4.37)

With W ′linearized in

W ′linearized in = C1(1− Yf )θ(a′ + q)θ(b′ − p)f[a+q,b−p,a′,b′]→[a,b,a′+q,b′−p]

(
P0(a+ q, b− p)δP (a′, b′)

+ P0(a′, b′)δP (a+ q, b− p)
)

+
C2Yf

2
θ(a′ + q)θ(b′)f[a+q,b,a′,b′]→[a,b,a′+q,b′]

(
P0(a+ q, b)δP (a′, b′)

+P0(a′, b′)δP (a+q, b)

)
+
C3Yf

2
θ(a′)θ(b′−p)f[a,b−p,a′,b′]→[a,b,a′,b′−p]

(
P0(a, b−p)δP (a′, b′)+P0(a′, b′)δP (a, b−p)

)
.

(4.38)

Similarly, W ′linearized out is given by

W ′linearized out = θ(a′)θ(b′)

(
C1(1− Yf )f[a,b,a′,b′]→[a+q,b−p,a′−q,b′+p] +

C2Yf
2

f[a,b,a′,b′]→[a+q,b,a′−q,b′]

+
C3Yf

2
f[a,b,a′,b′]→[a,b−p,a′,b′+p]

)(
P0(a, b)δP (a′, b′) + P0(a′, b′)δP (a, b)

)
. (4.39)

Having linearized the master equation we continue by discretizing it. This gives

d δP (an, bm)

dt
=

∞∑
n′=−∞

∞∑
m′=−∞

(
Wnm,n′m′ −W ′nm,n′m′

)
. (4.40)

Here, Wnm,n′m′ is the discretization of W ′linearized in and W ′nm,n′m′ is the discretization of W ′linearized out. In
this notation the subscripts denote a transition from state with n and m to a state with n′ and m′. Also, it
is important to mention that in this discretization we have that an = nq and bm = mp. The gain and loss
terms are now given by

Wnm,n′m′ = C1(1−Yf )θ(an′+q)θ(bm′−p)f[an+q,bm−p,an′ ,bm′ ]→[an,bm,an′+q,bm′−p]

(
P0(an+q, bm−p)δP (an′ , bm′)

+P0(an′ , bm′)δP (an+q, bm−p)
)

+
C2Yf

2
θ(an′+q)θ(bm′)f[an+q,bm,an′ ,bm′ ]→[an,bm,an′+q,bm′ ]

(
P0(an+q, bm)δP (an′ , bm′)

+ P0(an′ , bm′)δP (an + q, bm)

)
+
C3Yf

2
θ(an′)θ(bm′ − p)f[an,bm−p,an′ ,bm′ ]→[an,bm,an′ ,bm′−p](

P0(an, bm − p)δP (an′ , bm′) + P0(an′ , bm′)δP (an, bm − p)
)

; (4.41)

W ′nm,n′m′ = θ(an′)θ(bm′)

(
C1(1−Yf )f[an,bm,an′ ,bm′ ]→[an+q,bm−p,an′−q,bm′+p]+

C2Yf
2

f[an,bm,an′ ,bm′ ]→[an+q,bm,an′−q,bm′ ]

+
C3Yf

2
f[an,bm,an′ ,bm′ ]→[an,bm−p,an′ ,bm′+p]

)(
P0(an, bm)δP (an′ , bm′) + P0(an′ , bm′)δP (an, bm)

)
. (4.42)

With this we have both linearized and discretized this master equation. To continue we now want to write
it in the following form in order to easily determine the eigenvalues

d δP (an, bm)

dt
=

∞∑
n′=−∞

∞∑
m′=−∞

W ′′nm,n′m′δP (an′ , bm′). (4.43)
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In this expression W ′′nm,n′m′ represents the transition matrix of the master equation. It is for this matrix
that we want to determine the eigenvalues. But before we do this, we will consider an easier example. We
will continue by first having a look at what the transition matrix and eigenvalues would be for the Yakovenko
model. The reason we do this is in order to make this analysis for the utility-based Yakovenko model more
insightful.

4.6 Eigenvalues Yakovenko Model

In the previous section we linearized and discretized the master equation for the utility-based Yakovenko
model. In this section we make use of this previous analysis to determine the transition matrix and the
eigenvalues of the Yakovenko model. For this analysis we already know that the Yakovenko is stable and that
the stationary solution is given by the Boltzmann distribution. From stability theory we then know that for
a stable system the real parts of the eigenvalues are negative [6]. As such, we expect to find that the real
parts of all the eigenvalues are negative, i.e. Re[λ] < 0. Furthermore, we expect that the eigenfunction of
the lowest eigenvalue will return to us the Boltzmann distribution. To verify this for this model we start by
using one of the linearized Yakovenko terms of W ′linearized in and its associated term in W ′linearized out. Notice
that we only consider it for an economy with one good. One can then easily recognize that the linearized
master equation for the Yakovenko model is given by

d δP (a)

dt
=

∫ ∞
−∞

da′
(
θ(a′ + q)f[a+q,a′]→[a,a′+q]

(
P0(a+ q)δP (a′) + P0(a′)δP (a+ q)

)
− θ(a′)f[a,a′]→[a+q,a′−q]

(
P0(a)δP (a′) + P0(a′)δP (a)

))
.

(4.44)

To easily compute the eigenvalues we want to rewrite the above expression in the following form

d δP (an)

dt
=

∞∑
n′=−∞

Wn,n′δP (an′), (4.45)

where Wn,n′ is the transition matrix for this model. What is necessary for this rewriting is that we describe
all the deviations in terms of δP (an′). We can do this by first making use of delta functions to do the
transformations. After this, we integrate the result for a Boltzmann distribution and then continue by
discretizing. For convenience, we assume here that the transition rates f are constant as they have been
shown to be equal, i.e. we take f equal to 1. The use of delta functions and dummy variables to transform
the master equation results in

d δP (a)

dt
=

∫ ∞
−∞

da′
(
θ(a′ + q)P0(a+ q)− θ(a′)P0(a)

+

∫ ∞
−∞

da′′
(
θ(a′′ + q)P0(a′′)δ(a′ − a− q)− θ(a′′)P0(a′′)δ(a′ − a)

))
δP (a′).

(4.46)

This result we integrate over a′′ for the Boltzmann distribution P (a) = e−
a
ā

ā so that we get

d δP (a)

dt
=

∫ ∞
−∞

da′
(
θ(a′ + q)

e−
a+q
ā

ā
− θ(a′)e

− a
ā

ā
+ e

q
ā δ(a′ − a− q)− δ(a′ − a)

)
δP (a′). (4.47)

Now, we discretize this result and obtain

d δP (an)

dt
=

∞∑
n′=−∞

(
θ(an′ + q)

e−
an+q

ā

ā
− θ(an′)

e−
an
ā

ā
+ e

q
ā δan′ ,an+q − δan′ ,an

)
δP (an′). (4.48)

From this we see that the transition matrix Wn,n′ is given by

Wn,n′ = θ(an′ + q)
e−

an+q
ā

ā
− θ(an′)

e−
an
ā

ā
+ e

q
ā δan′ ,an+q − δan′ ,an . (4.49)
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It is for this transition matrix that we want to obtain the eigenvalues. To do this we make use of numerical
methods. Here, we assumed that ā = 10 and that q = 1. For this analysis we started by generating a
400 × 400 matrix for which we computed the elements with Equation (4.49). We then proceeded to make
use of Mathematica functions to compute the eigenvalues and eigenvectors. In Figure 4.1a the eigenvalues
of the transition matrix are shown. What is observed in this figure is that all the eigenvalues have negative
real parts and both positive and negative imaginary parts. From stability theory we know that as all the real
parts of the eigenvalues are negative that we are dealing with a stable system. This means that after a small
perturbation the system will return to its equilibrium point. The complex part of the eigenvalues indicates
that the return to the equilibrium is like a damped harmonic oscillator [6]. In Figure 4.1b the eigenfunction
of the lowest eigenvalue is shown. To make this plot the absolute value of the eigenfunction has been taken
so as to make it real valued. What this graph shows us is that the Boltzmann distribution, given in red, is
the equilibrium solution of this system. It is important to note, however, that the Boltzmann distribution in
this graph has been rescaled as the eigenfunction is not normalized. Furthermore, it has been shifted slightly
to the right to demonstrate the correspondence between the eigenfunction and the equilibrium solution. This
result once again verifies that the Boltzmann distribution is the stationary solution of the Yakovenko model.
On top of this, we observe that inverse of the real part of the lowest eigenvalue, 1

λ ≈ 207, is an approximation
of the time scale determined in Section 2.3. Having done this analysis for this simpler model we now get on
with trying to determine the stability of the utility-based Yakovenko model.
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(a) Plot of the eigenvalues of a 400 × 400 transition
matrix of the Yakovenko model. The y-axis repre-
sents the imaginary part of the eigenvalue λ and the
x-axis the real part.
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(b) Plot of the eigenfunction of the lowest eigenvalue
λ = −4.83×10−3 - 6.11×10−2i. The y-axis represents
the value of the nth row of v. The x-axis denotes the
row n of the eigenvector. The blue dotted line repre-
sents the values of the eigenvector. The red line is the
rescaled and shifted Boltzmann distribution P (a).

Figure 4.1: Plot of the eigenvalues of the transition matrix of the Yakovenko model and a plot of the
eigenfunction of the lowest eigenvalue λ = −4.83× 10−3 - 6.11× 10−2i.

4.7 Master Equation of the Utility-based Yakovenko Model

In this section we continue to write the master equation of the utility-based Yakovenko model into the form

d δP (an, bm)

dt
=

∞∑
n′=−∞

∞∑
m′=−∞

W ′′nm,n′m′δP (an′ , bm′). (4.50)

In Section 4.5 it was shown that the discretized gain and loss term of the master equation are given by
Equation (4.41) and Equation (4.42). So, similarly to the previous section, we now carry on with transforming
the master equation by applying delta functions. Having shown the procedure already we simply state the
result. Transforming Equation (4.40) using Kronecker delta functions gives that the master equation becomes
as Equation (6.12) given in Appendix B. From this it can be seen that this expression is mainly about
bookkeeping. It simply needs to be made sure that all functions match. From this equation we see that the
transition matrix W ′′nm,n′m′ is given by Equation (6.13). With this we have written the master equation in
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Figure 4.2: Plot of the eigenvalues of a 400 × 400 transition matrix of the utility-based Yakovenko model.
The y-axis represents the imaginary part of the eigenvalue λ and the x-axis the real part.

the form of Equation (4.50). Having found this expression we could proceed by determining the eigenvalues of
this system. To do this we could either take an analytical or numerical approach. To analytically determine
the eigenvalues of this system is not quite feasible as there are many different terms which contribute to
each matrix element. As such, doing this analytically would result in a professional bookkeeping exercise.
To do the numerical analysis one would need an expression for the equilibrium solution. Be that as it
may, identifying this equilibrium solution is left for future research. What can be verified here is that the
Boltzmann distribution is not the equilibrium solution. Similar to Section 4.6, we computed the eigenvalues
of a 400 × 400 matrix with ā = 10, b̄ = 10, and q = 1. The eigenvalues of this matrix are given in Figure
4.2. In this figure we observe that the eigenvalues have both negative and positive real parts. The presence
of the positive real parts shows that this transition matrix does not result in a stable system. Thus, we have
verified that the Boltzmann distribution is not the stationary solution of this model. Having identified our
expression for the master equation and the transition matrix we will continue by considering what happens
with this model in simulations. This numerical analysis of the utility-based Yakovenko model is given in the
next section.

4.8 Numerical Results

In this last section we will consider some numerical results which have been obtained from simulations of the
utility-based Yakovenko model. The simulation of this model has been done by making use of the pseudocode
which is given in Appendix A. In all the simulations that we discuss here we took the following parameters
to be constant ā = 50, b̄ = 50, α = 1, β = 1, r = 0.5, and q = 1. It is also worth to mention that the average
number of goods ā and b̄ is approximately 50 in the simulations as we draw the initial distribution from a
Boltzmann distribution. Now, when we take the population to be N = 1000 and the Yakovenko fraction to
be Yf = 0.7 then the time evolution of the utility of the total population is given by Figure 4.3a. In this figure
we see that there is an initial spike in the utility after which it starts to decay slowly to a lower point. This
initial spike seems to be related to the effects of the utility-based market model. In Section 3.8 we already saw
that the utility maximizes rapidly under the influence of this model. The same observation can be made here.
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In the first few hundred sweeps the population quickly maximizes their personal utility under the influence of
the utility-based market mechanism. It seems that the process that occurs afterwards is dominated mostly
by the effects of the Yakovenko model. This model seems to decrease the total utility up until the model
has reached its equilibrium point. To determine that the model has reached its equilibrium we consider its
mean square displacement. More specifically, we consider the MSD with respect to good A which means
that here the MSD depicts the average number of good A exchanged per agent. In Figure 4.3c the MSD of
good A of this model, i.e. Yf = 0.7, is represented by the blue line. What we observe here is that the MSD
rises quickly to a level of about 1000 where it seems to flatten off. After this short plateau in the MSD it,
however, seems to slowly increase to an even higher level where it eventually remains. When we compare the
blue line with the red line then we can observe that the first ’plateau’ in the MSD is strongly related to the
maximization of the utility. We see that a lower Yakovenko fraction entails that the MSD reaches its first
plateau faster. To highlight this even further we created Figure 4.3d in which the MSD of the same setup
with different Yakovenko fractions is given. Here, it is confirmed that the lowest Yakovenko fraction results
in the highest slope in the first part of the MSD. We observe that as the Yakovenko fraction becomes higher
that the slope starts to decrease in the first part. It is interesting to note that for the second rise in the MSD
the higher Yakovenko fractions result in a higher slope and that the lower Yakovenko fractions result in a
lower slope. This contrast is highlighted the most by Figure 4.3c where a Yakovenko fraction of 0.7 results
in a lower slope for the first part but in a higher slope for the second part and the Yakovenko fraction of 0.1
results in a higher slope for the first part and a lower slope for the second part. As the Yakovenko fraction is
an indication of how much influence the Yakovenko model has in the simulation we can see that the slope in
the first part is correlated mostly with the utility-based trading mechanism and that the slope in the second
part is correlated mostly with the Yakovenko trading mechanism. In the end, we see that both simulations
eventually reach a final plateau where they remain indefinitely. This last plateau suggests that the model
does have an equilibrium solution. From this analysis we have already learned that the equilibration of the
system is related to the Yakovenko fraction. A higher Yakovenko fraction seems to indicate that the system
will reach its equilibrium faster. To illustrate this we created Figure 4.3b. In this figure the exponential decay
constant τ of the simulation has been plotted against the Yakovenko fraction Yf . What we clearly see here
is that an increase in the Yakovenko fraction results in a decrease in the exponential decay constant. This
again demonstrates that a system with a higher Yakovenko fraction reaches its long term equilibrium earlier.
In this figure we also included the function that predicts these values. It is as of yet unclear what causes the
values of the constants in this function. Lastly, we want to have a look at the probability distribution of the
population at the end of the simulation. As before we took the initial population to be Boltzmann distributed,
an example of which is given in Figure 3.3. In Figure 4.4 it shown what the probability distribution of a
simulation with N = 10000 and Yf = 0.7 is like after 1 million sweeps. In this figure we again see that the

probability distribution is oriented along the line qb̄
ā due to the maximization of the utility. Furthermore, we

see that the distribution looks for a large part like a Boltzmann distribution. However, when we consider the
first part of the distribution closely we see that the probability distribution does not peak near the origin but
rapidly increases towards its peak after which the distribution resembles a Boltzmann distribution. What
this confirms again is that the Boltzmann distribution is not the stationary solution of this model. A result
which we expected from the analytical analysis. The expression that describes the equilibrium distribution
still has to be determined.
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(a) Time evolution of the total utility of the utility-
based Yakovenko model.
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(b) Change of the decay rate τ as a function of the
Yakovenko fraction Yf . The red dots represent data
points for this this graph, the blue line a fit of the
function that matches the data points, and the grey
area indicates the region one standard deviation from
the predicted value. The predicted function for this
graph is given by −5840 + 16470

x0.39 .

(c) Log-log plot of the time evolution of the mean
square displacement for good A. The blue line shows
the MSD of a simulation with Yf = 0.7 and the red
line that of a simulation with Yf = 0.1.

(d) Log-log plot of the time evolution of the MSD
of good A for various fractions of Yf . The purple
line represents an economy with Yf = 0.05. The
lines following it are, respectively, for economies with
Yakovenko fractions of 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, and
0.7.

Figure 4.3: Numerical results for the utility-based Yakovenko model.
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Figure 4.4: Normalized probability distribution of the final configuration of agents in the utility-based
Yakovenko model with N = 10000, Yf = 0.7, and at T = 1 × 106. The x and y axis show the values
of a and b while the z-axis shows the value of P (a, b).

5 Conclusion

5.1 Conclusion and Discussion

In this thesis we have had a look at various economic models from a statistical physical viewpoint. The first
model we considered was that of Victor M. Yakovenko. In this model he considers the pairwise interactions
between agents in a single good market. By making use of the master equation or of entropy maximization
we were able to demonstrate that the Boltzmann-Gibbs distribution predicts the income distribution of
this model. We then proceeded to construct a second model; the utility-based model. This model extends
the trading between agents to a two goods market. Furthermore, it makes the trading dependent on the
maximization of the personal utility of every agent. Having demonstrated the dynamics of this market, it
was shown that the Boltzmann-Gibbs distribution does not predict the income distribution of this model.

Having established these two models we continued by constructing a new model which combines them:
the utility-based Yakovenko model. For this model we have shown what the expression of the master equation
would be like. In determining this expression we have also shown that the Boltzmann-Gibbs distribution
does not predict the stationary state of this system. Furthermore, we have written down the master equation
in terms of its transition matrix. Having identified this matrix it was possible to verify again, using stability
theory, that the Boltzmann distribution is not the equilibrium solution. Besides this, we have looked at
numerical simulations of all the above models. In these simulations we made use of the mean square displace-
ment to identify the equilibration of the various models. Moreover, the time evolution of the mean square
displacement has shown the relation between each mechanism and the time evolution of the utility. Also, we
learned from the simulations what the shape of the income distribution is like but we have not identified an
expression for it. As such, we managed to write down an expression for the master equation of this model
and analyze what happens with this model in simulations.

In the process of doing this research it has been observed how extensive this topic is. In this thesis we
have mainly focused on specific parameters and based our conclusions on this. A slight adaptation in these



5 CONCLUSION 33

parameters, however, can have big effects on the results. It has been learned that one cannot easily explore
all the possible results from these models. In the outlook we will discuss several of these possible results
which have not been discussed in the main body of this thesis.

Looking back on the results obtained in this thesis it becomes apparent that they are quite straight-
forward. We recognize that these results are simple but that in the process of this thesis it was harder to
acquire them. Much of this has to do with keeping the method structured and by knowing what exactly you
are doing. It has been learned that it is important to accurately keep track of this. Part of the learning
curve is found in making oneself familiar with the models and the statistical physical methods. But also in
approaching the model as simply as possible as soon as possible in order to avoid tedious bookkeeping. It is
these experiences which help one grow in understanding larger problems in physics.

5.2 Outlook

At the end of this thesis we want to have a look at several interesting questions which arose but could not
be looked at into detail. Here we will have a short look at some of these questions so that in the future they
might be pursued further.

Firstly, in this thesis most of the analyses have been dealing with the same set of constants. Almost all
of the simulations are for a system where N = 1000, α = β = 1, q = 1, and r = 0.5. These values were chosen
in this thesis in order to be able to compare models with similar parameters. It would, however, be insightful
to consider what happens when these parameters change drastically. Doing this analysis is a potential way
in which one might continue this research.

Secondly, in the analysis of the mean squared displacement of the models it appeared that we were
dealing with anomalous diffusion. In this thesis it has not been considered what causes this anomalous
diffusion nor what predicts the shape of the mean square distribution. So far, we have only stated what the
shape of mean square displacement is like. Investigating this further could provide more knowledge about
these models.

Thirdly, up until this point we have only identified the master equation for this model. However, we
have not determined what the equilibrium solution for this model would be or whether there even is an
equilibrium solution. The numerical analysis seems to suggest that a equilibrium solution exists but has not
verified this. It would be of interest to find whether an expression for this equilibrium solution exists and, if
so, what it is. To do this one could make use of predictions based on the numerical analysis and apply these
to the transition matrix.

Lastly, in this thesis the analysis of the models has only focused on a single closed economy that equi-
librates and trades using the utility-based Yakovenko model. It is, however, also possible to consider an
economy that is not closed. In other words, it is interesting to examine what would happen once this closed
economy opens up to trade with other economies. To model this one could consider two separate economies
with different initial conditions such as a different average number of goods a and b. From this one could start
with a situation where both economies are closed and have their agents trade until they reach equilibrium.
Now, once these two economies have reached equilibrium then they open up to each other. This opening
up entails that agents from one economy can visit the other economy as ‘tourists’. The tourists then trade
their goods in this ‘foreign’ economy after which they proceed to return to their own. This new type of
interaction leads to all kinds of interesting behaviour which can be studied. One way to study this behaviour
is by considering what the master equation for two interacting economies would be like. To do this one
should consider the two economies as a single system through their interaction. From this one can work on
identifying the full master equation by making use of two separate master equations for both economies which
interact with each other. To make this system truly ‘open’, and not just a larger closed system, one could
include a central bank which functions as a heat bath to keep the prices in the ‘world’ economy constant. A
part of these separate master equations is given by the utility-based Yakovenko model. In future research
one could focus on identifying the exact contributions of Win and Wout in the master equation. When we
did a preliminary analysis of the simulation of this system it became apparent that the system slowly moves
towards an equilibrium. To do this simulation we have taken the following steps:
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1. Initialize two separate closed economies with non-equal averages ā1, ā2, b̄1, and b̄2.

2. Let these closed economies trade using the utility-based Yakovenko model (see appendix for the algo-
rithm) until they have both reached equilibrium.

3. Open-up both economies by randomly selecting a small number Ntourist from both economies and by
then making these agents part of the other economy. Do make sure to keep track of who the tourists
are.

4. Let both economies trade using the utility-based Yakovenko model. The difference with step 2 being
that there are now several tourists residing in the economy.

5. The tourists return home.

6. Repeat steps 3, 4, and 5 T times.

When we did this simulation we initialized the first economy to have averages of ā = 50 and b̄ = 30 and
the second economy to have that of ā = 150 and b̄ = 220. All the other constants were given by N = 1000,
Yf = 0.1, q = 1, α = β = 1, and r = 0.5. The simulation has been done for T = 4.5 × 106 sweeps. In
Figure 5.1 the preliminary results are given to indicate what one could expect from such a simulation. In
these results it is observed that the first economy, Figure 5.1a, has a lower initial utility than the second
economy, Figure 5.1b. Furthermore, it is observed that the time evolution of the two economies is related.
The first economy increases in utility as the second economy decreases. Future analyses should show whether
the two economies will tend towards an equilibrium value of the utility. It is interesting to note that Figure
5.1c shows the total utility of the system is not conserved. It has so far not been determined what causes
this. Lastly, it is seen in Figure 5.1d that the price levels of the two economies become equal in a relatively
short time. An exploratory analysis seems to indicate that there is a relation between the fraction of tourists
that visits the other economy and the time it takes for the price level to equilibrate. In Figure 5.2 a possible
relation between the tourist fraction and the equilibration time is given. The exact nature of this relationship
requires further analysis.

All in all, this outlook meant to show that many inquiries have not yet reached their full potential. Most
importantly of these are the anomalous diffusion in the mean squared displacement of the model, the nature
of the interaction between various different economies, and the expression of the equilibrium solution for the
utility-based Yakovenko model. With this outlook we have given some indication of what paths may be taken
in the future.
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(a) Time evolution of the utility of the first economy.
(b) Time evolution of the utility of the second econ-
omy.

(c) Time evolution of the combined utility of the two
economies.

(d) Time evolution of the price level of both
economies. Price level of economy 1 is given in blue
and that of economy 2 in orange.

Figure 5.1: Time evolution of the utility and price level in the two economies model
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Figure 5.2: Equilibration time of the price in the two economies model for varying tourist fractions Ntourist/N .
The red dots indicate data points, the blue is the function that fits these data points, i.e. 37.18 + 7.62

x1.11 , and
the grey area indicates the region one standard deviation away from the fitted model.
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6 Appendix

Appendix A

In this appendix I will describe the steps taken to simulate the utility-based Yakovenko model. It is important
to note that the simulations in this thesis have been performed in Python. To simulate the utility-based model
one simply has to set Yf = 0. The steps taken to simulate the utility-based Yakovenko model are

1. Initialize the system parameters. These are: ā, b̄, N , q, α, β, r, and Yf .

2. Initialize a system of N agents with goods a and b. This initialization is done by randomly drawing
the goods of each agent from an exponential distribution with average values ā and b̄.

3. Determine the total utility, the mean square displacement, and the equilibrium price of the system. To
do this use three functions which determine the following quantities

• Utility: Gives the utility of an agent (U(a, b)) and the change in utility for good a, i.e. ∂U
∂a , and

good b, i.e. ∂U
∂b .These quantities are determined by computing the following equations

U(a, b) =

[( a
α

)r
+

(
b

β

)r]1/r

; (6.1)

∂U

∂a
=

1

α

(
a

α

)r−1 [( a
α

)r
+

(
b

β

)r](1−r)/r

; (6.2)

∂U

∂b
=

1

β

(
b

β

)r−1 [( a
α

)r
+

(
b

β

)r](1−r)/r

. (6.3)

• Mean Squared Displacement: Computes the mean squared displacement (MSD) of the system
for both good a and good b. The MSD is given by

MSD =
1

N

N∑
i=1

|xi(t)− xi(0)|2. (6.4)

• Equilibrium price: Calculates the equilibrium price and the associated demand and supply for
the market model. The demand is given by

D(p) = qNe−p/b̄
[
1− γ(p)ā

γ(p)ā+ b̄
exp

(
− p

γ(p)ā

)]
. (6.5)

Recall that γ =
(
β
α

)r/(r−1) (
q
p

)1/(r−1)

. The supply is given by

S(p) = qNe−q/ā
[
1− b̄

γ(p)ā+ b̄
exp

(
−γ(p)q

b̄

)]
. (6.6)

The equilibrium price is the price at which D(p) = S(p). A first estimate of this price can be
made by using the mean field approach

pMF = q

(
b̄

ā

)1−r (
β

α

)r
. (6.7)

After this, continue to check if this guess is correct. This means that it should hold that D(pMF ) ≈
S(pMF ). If this is not the case then slightly change the price until it is. This can be done by
changing the price up or downwards. The direction can be identified by recognizing that when
D(p) > S(p) that the price should increase and that when D(p) < S(p) it should decrease.
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4. Allocate a trade preference to each agent in the system. Do this allocation randomly where a certain
fraction of agents Yf will do a Yakovenko trade and another fraction 1 − Yf a utility-based trade. A
Yf fraction of 0.1 means that 10% of all trades will be a trade following the Yakovenko model and 90%
following the utility-based model. For the Yakovenko trade it is important to make sure that 0.5Yf of
the Yakovenko trades will be with goods a and an equal amount with goods b. The amount traded will
be the quantity q or the calculated price p. Note: Make sure that the same agent never does more
than one trade in a sweep and that a transaction always involves both the giver and the taker of the
good.

5. All the agents in the system trade based on their trade preference. The trading mechanisms in this
step are:

• Yakovenko Model:

(a) In this transaction a set amount of q or p is traded between the predetermined agents.

(b) It is checked whether the supplying agent is able to make the transaction, i.e. a ≥ q or b ≥ p.
(c) If the agent has sufficient funds then he will transfer an amount of q or p to the other agent.

• Utility-based Model:

(a) In this transaction a set amount of q or p is traded on a market.

(b) Before the goods are traded it needs to be verified that at the current price the demand and
supply are equal. To do this the total demand and supply is determined based on the utility
preferences of each of the agents. If a > q and p ≥ ∂aU

∂bU
q then the agent is on the supply side.

If b > p and p ≤ ∂aU
∂bU

q then the agents is on the demand side. With this information it should
be checked that demand and supply are equal. If this is not the case, then the number of
trades that will occur on the market will be the minimum of the demand or the supply.

(c) The agents will trade based on their preferences. The total number of trades that will occur
in the market is based on the previous step. If a > q and p ≥ ∂aU

∂bU
q then the agent will sell an

amount q for a price p. This means that for this agent his goods will change as follows

a→ a′ = a− q; (6.8)

b→ b′ = b+ p. (6.9)

If b > p and p ≤ ∂aU
∂bU

q then the agent will buy an amount q for a price p. This means that

a→ a′ = a+ q; (6.10)

b→ b′ = b− p. (6.11)

Note: In Python for loops are sequential. This means that the above trading mechanism
will always be executed in a sequential manner. This sequential behaviour should not pose
a problem if demand and supply are always equal. However, it appears that they often are
not. Consequently, it occurs that the last couple of agents in your system will never trade.
To avoid this you keep track of which agent did the last trade. Using this, you need to make
sure that the system starts trading at this agent in the next sweep. Once the last agent has
traded the trading will continue with the first agent. In this manner all agents will have the
opportunity to trade at the market.

6. Repeat steps 3, 4, and 5 T times.

7. To finish one needs to record the last step as well. To do this, repeat step 3 once more.
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Appendix B

Below the final expressions of the master equation and the transition matrix of the utility-based Yakovenko
model are given.

d δP (an, bm)

dt
=

∞∑
n′=−∞

∞∑
m′=−∞

(
C1(1− Yf )θ(an′ + q)θ(bm′ − p)f[an+q,bm−p,an′ ,bm′ ]→[an,bm,an′+q,bm′−p]

P0(an+q, bm−p)δP (an′ , bm′)+

∞∑
n′′=−∞

∞∑
m′′=−∞

C1(1−Yf )θ(an′′+q)θ(bm′′−p)f[an+q,bm−p,an′′ ,bm′′ ]→[an,bm,an′′+q,bm′′−p]

P0(an′′ , bm′′)δan′ ,an+qδbm′ ,bm−pδP (an′ , bm′)+
C2Yf

2
θ(an′+q)θ(bm′)f[an+q,bm,an′ ,bm′ ]→[an,bm,an′+q,bm′ ]

P0(an+q, bm)

δP (an′ , bm′)+

∞∑
n′′=−∞

∞∑
m′′=−∞

C2Yf
2

θ(an′′+q)θ(bm′′)f[an+q,bm,an′′ ,bm′′ ]→[an,bm,an′′+q,bm′′ ]
P0(an′′ , bm′′)δan′ ,an+q

δbm′ ,bmδP (an′ , bm′) +
C3Yf

2
θ(an′)θ(bm′ − p)f[an,bm−p,an′ ,bm′ ]→[an,bm,an′ ,bm′−p]P0(an, bm − p)δP (an′ , bm′)+

∞∑
n′′=−∞

∞∑
m′′=−∞

C3Yf
2

θ(an′′)θ(bm′′−p)f[an,bm−p,an′′ ,bm′′ ]→[an,bm,an′′ ,bm′′−p]P0(an′′ , bm′′)δan′ ,anδbm′ ,bm−pδP (an′ , bm′)

− θ(an′)θ(bm′)
(
C1(1− Yf )f[an,bm,an′ ,bm′ ]→[an+q,bm−p,an′−q,bm′+p] +

C2Yf
2

f[an,bm,an′ ,bm′ ]→[an+q,bm,an′−q,bm′ ]

+
C3Yf

2
f[an,bm,an′ ,bm′ ]→[an,bm−p,an′ ,bm′+p]

)
P0(an, bm)δP (an′ , bm′)−

∞∑
n′′=−∞

∞∑
m′′=−∞

θ(an′′)θ(bm′′)(
C1(1− Yf )f[an,bm,an′′ ,bm′′ ]→[an+q,bm−p,an′′−q,bm′′+p] +

C2Yf
2

f[an,bm,an′′ ,bm′′ ]→[an+q,bm,an′′−q,bm′′ ]

+
C3Yf

2
f[an,bm,an′′ ,bm′′ ]→[an,bm−p,an′′ ,bm′′+p]

)
P0(an′′ , bm′′)δan′ ,anδbm′ ,bmδP (an′ , bm′)

)
. (6.12)

W ′′nm,n′m′ = C1(1− Yf )θ(an′ + q)θ(bm′ − p)f[an+q,bm−p,an′ ,bm′ ]→[an,bm,an′+q,bm′−p]P0(an + q, bm − p)

+

∞∑
n′′=−∞

∞∑
m′′=−∞

C1(1−Yf )θ(an′′+q)θ(bm′′−p)f[an+q,bm−p,an′′ ,bm′′ ]→[an,bm,an′′+q,bm′′−p]P0(an′′ , bm′′)δan′ ,an+qδbm′ ,bm−p

+
C2Yf

2
θ(an′ + q)θ(bm′)f[an+q,bm,an′ ,bm′ ]→[an,bm,an′+q,bm′ ]

P0(an + q, bm)

+

∞∑
n′′=−∞

∞∑
m′′=−∞

C2Yf
2

θ(an′′ + q)θ(bm′′)f[an+q,bm,an′′ ,bm′′ ]→[an,bm,an′′+q,bm′′ ]
P0(an′′ , bm′′)δan′ ,an+qδbm′ ,bm

+
C3Yf

2
θ(an′)θ(bm′ − p)f[an,bm−p,an′ ,bm′ ]→[an,bm,an′ ,bm′−p]P0(an, bm − p)

+

∞∑
n′′=−∞

∞∑
m′′=−∞

C3Yf
2

θ(an′′)θ(bm′′ − p)f[an,bm−p,an′′ ,bm′′ ]→[an,bm,an′′ ,bm′′−p]P0(an′′ , bm′′)δan′ ,anδbm′ ,bm−p

− θ(an′)θ(bm′)
(
C1(1− Yf )f[an,bm,an′ ,bm′ ]→[an+q,bm−p,an′−q,bm′+p] +

C2Yf
2

f[an,bm,an′ ,bm′ ]→[an+q,bm,an′−q,bm′ ]

+
C3Yf

2
f[an,bm,an′ ,bm′ ]→[an,bm−p,an′ ,bm′+p]

)
P0(an, bm)−

∞∑
n′′=−∞

∞∑
m′′=−∞

θ(an′′)θ(bm′′)(
C1(1− Yf )f[an,bm,an′′ ,bm′′ ]→[an+q,bm−p,an′′−q,bm′′+p] +

C2Yf
2

f[an,bm,an′′ ,bm′′ ]→[an+q,bm,an′′−q,bm′′ ]

+
C3Yf

2
f[an,bm,an′′ ,bm′′ ]→[an,bm−p,an′′ ,bm′′+p]

)
P0(an′′ , bm′′)δan′ ,anδbm′ ,bm . (6.13)
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