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Abstract

In this thesis project, the baseline of new method has been developed to back-track the

sources of plastic marine litter by coupling Bayesian inference with Lagrangian simulations

of virtual particles tracking, for the Black Sea region. It has been concluded that the use of

Bayesian statistics provides convincing results that can only be upgraded by the addition of

new data. However, this approach still needs more thorough validation, through the use of

observational data, to confirm its accuracy. In addition, the efficiency of this approach is

limited by the quality of the prior knowledge and information about the studied domain.

Specifically to the Black Sea, when only considering the largest rivers of the basin as source

of marine litter, it has been found that the Danube is the main contributor of plastic pollution

in most of the zones of the Black Sea. In addition, the entropy of mixing has been calculated in

order to understand over which timescales the sources of plastic could be inferred. For the

open sea, the sources can be back-tracked over a timescale up to five years. After this period,

all the particles are beached, and hence cannot be back-tracked anymore. This is mainly due

to the northerly winds and the induced Stokes drift that drives the majority of the particles

towards the Southern region of the Black Sea. Thus, if the plastic particle is located on the

Southern beaches or along the corresponding coastal areas, its source can be inferred over a

maximum timescale of 2 years.
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I Introduction

Plastic accumulation is widely recognized as one of the largest pollutants of contemporary

society. It can be found in any environmental reservoir: in the atmosphere, the biota, the

terrestrial and marine habitat. Because it is everywhere and since plastic has a very slow degra-

dation rate, it might be used, in the future, as a stratigraphic indicator of the Anthropocene

(Zalasiewicz et al., 2016).

Despite this widespread in the environment, the global plastic production keeps rising: it

passed from 348 to 360 millions tons from 2017 to 2018, which the largest contribution results

from the production of packaging goods (PlasticsEurope, 2019). These types of products have

a very short lifespan (<1 year) (Geyer et al., 2017) because they are mostly single-use items and

thus almost directly disposed of (Jambeck et al., 2015). Hence, they considerably contribute

to the circa 4 to 12 metric tons of plastic introduced in the oceans every year from terrestrial

waste (Geyer et al., 2017; Hardesty et al., 2017).

In the oceans, plastic can be found everywhere, from the surface to the seafloor, the coast-

lines to the the open ocean (van Sebille et al., 2015). This extensive distribution is in part

due to its longevity and its buoyancy (van Sebille et al., 2020). The longevity of plastic-based

materials is associated to their principal component, fossil hydrocarbons (e.g. polyethylene

or polypropylene), that makes them non-, or hardly, biodegradable (Geyer et al., 2017). In

fact, fossil hydrocarbons are characterized by an high molecular weight and the presence of

long and strong molecular bonds (Zheng et al., 2005), that lead to minimal biological degrada-

tion. Plastic preferentially shatters into smaller and smaller pieces, by diverse fragmentation

mechanisms, such as the exposure to UV radiations, and it therefore can travel very long dis-

tances (van Sebille et al., 2015; O’Brine and Thompson, 2010). For example, plastic fragments

have been sampled in some regions quite isolated from anthropogenic pressure, namely the

Southern Ocean (Suaria et al., 2020) and the Arctic (Barrows et al., 2018).

Plastic can have different entry points into the marine environment, such as atmospheric

fall out (Dris et al., 2016), beach littering, sewage outflows, shipping, fishing, rivers runoffs

(Lebreton et al., 2017). Hence, it is necessary to understand the sources, the pathways, and

the accumulation zones of plastic, in order to avoid its entry in the oceans (UNEP, 2016).

Unfortunately, observations in situ are not always possible, since they require long periods of

sampling and can be expensive (Hardesty et al., 2017). Furthermore, they are not always reli-
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Chapter I Introduction

able, due to human error or biases caused by different instruments or methods used (Barrows

et al., 2018). For example, in the case of the Black Sea region, a few observational studies have

been made, the majority of which are beach surveys, and a couple of surface/seafloor/water

column trawling experiments (Anton et al., 2013; Ioakeimidis et al., 2014; Topçu and Öztürk,

2010). Virtual particle modelling becomes then an important supplementary tool, to fill the

gap of the general knowledge on their pathway.

The Black Sea is a semi-enclosed basin located in Eastern Europe and bordered by Turkey,

Romania, Bulgaria, Ukraine, Russia, and Georgia (Fig.1.1). Because of the high anthropogenic

pressure it is subject to, the Black Sea is considered as one of the most degraded ecosystem

in the world (Ötzekin and Bat, 2017), degradation that is in part due to the presence of

high levels of plastic. In Kershaw and Rochman (2015), it was estimated that the Black Sea

contained between 425 to 900 gkm−2 of macro-plastics and between 20,000 to 93,000 items

of micro-plastics per km2, which is 400 times higher than in regions with the lowest value

of micro-plastic concentration. Despite these estimations, as mentioned above, it is not a

very well studied area. In fact, besides the small number of observational surveys, Stanev

and Ricker (2019) is the only numerical study of plastic particle tracking for this region in

the literature to date. In their study, a Lagrangian model is used with the purpose to detect

accumulation patches of plastic, as well as to simulate its pathways when it originates from

eight of the largest rivers of the region : the Danube, Dniester, Dniepr/Southern Bug, Rioni,

Coruh, Sakarya, and Kizilirmak rivers.

Fig. 1.1: Bathymetric map of the Black Sea. In blue, the main rivers studied in this project: Danube,
Dniester, Dniepr, Rioni, Coruh, Sakarya, Kizilirmak, Kodori, Bzyb. (NB: in Stanev and Ricker (2019),
cited in the introduction, the Kodori and the Bzyb are not taken in account, while for this project they
are.)

Although virtual particle tracking is becoming more and more common in the marine litter

context, there is not yet a fully reliable way to backtrack them to their source. The main limit

for numerical simulations is that they can not simply be computed backward in time from the

plastic sampling location to find their origin. In fact the propagation of particles in the ocean

is largely influenced by random walking-like diffusion which, given its intrinsic stochasticity,
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Introduction Chapter I

cannot be reproduced. Moreover, once the mixing time ratio of the particles advected in the

domain is reached, it becomes almost impossible to backtrack them (Wichmann et al., 2019).

Nevertheless, the hindcast/forcast approach has showed some satisfying results (Carlson

et al., 2017; Kako et al., 2011; Isobe et al., 2009). This method consists in advecting particles

backward in time from their sampling location in order to single out a number of probable

sources, and then advecting them forward in time from these selected entry-points, resulting

in a list of more likely sources (Isobe et al., 2009). Although, the results obtained might be

satisfactory, this approach encounters some restrictions: it seems not to work so well if extreme

meteorological events, such as typhoons, took place (Kako et al., 2011); and the probable

sources must be close (max two times the standard deviation of the particle distance from

their averaged position in a certain direction) to the particle sampling location (Isobe et al.,

2009). The latter limitation is the more constraining one, and a motivation to develop a new

method.

The aim of this study is to focus on using Bayesian statistics in order to better understand

the pathways of plastics in the ocean. More specifically, to understand the pathways from

their sources to their sampling locations. Hence, the purpose of this project is to know if

Bayesian inference can be used to back-track plastic sources. In addition, due to the limited

observational studies that have been done in the Black Sea, this virtual simulation study would

largely benefit the scientific community by having a first theoretical estimation of plastic

distribution and their sources in the Black Sea.

3





II Theory

Marine Litter

The UNEP (United Nations Environment Program) defines marine litter as "any persistent,

manufactured or processed solid material discarded, disposed of or abandoned in the marine

and coastal environment" (UNEP, 2020). Plastic has been estimated to be by far the most

abundant marine litter (Pham et al., 2014). For instance, in the Black Sea, twelve studies

out of thirteen, reported plastic to be the most abundant sampled material (Appendix A).

Despite international laws on marine litter, such as MARPOL (International Convention

for the Prevention of Pollution from Ships), up to 10% of the production of the worldwide

manufactured plastic ends up in the oceans (Barnes et al., 2009; Cole et al., 2011).

Marine litter gets in the marine environment through several entry points: they can be

sea-based or land-based, with the latter being reported as the largest contributor (Hardesty

et al., 2017). However, before investigating these pathways, it is necessary to identify the size

of the studied plastic fragments, since it influences their behaviour. Large fragments (i.e.,

mega-/macro-/meso-plastic), are most often directly discharged in the oceans, voluntarily

or involuntarily, through shipping waste, navigation accidents or fishing activities. If these

fragments are land-based, they are usually the result of abandoned objects, such as food

packaging or cigarette butts on the beach, poorly managed landfills, improper management

of city sewage plants, or they can be wash off from the streets by storms UNEP (2016). The

smaller fragments, microplastics, are usually divided in two groups: primary and secondary.

Secondary microplastics are the result of the fragmentation of larger pieces already present

in the marine environment. Primary microplastics, in contrast, are discarded as such in the

oceans. For instance, microplastics present in cosmetics, or generated by urban infrastructures,

such as nurdles, are considered as primary plastics (UNEP, 2016). Another sub-group of

microplastics are fibers, which can enter the marine environment via domestic water (e.g.,

washing machines) (Cesa et al., 2017) or from indoor cleaning water as a result of indoor

fallout (Dris et al., 2016). Even though a large range of plastic litter size is found in the marine

environment, Barnes et al. (2009) suggested that their size will tend to decrease over time and

hence the total number of plastic concentration would increase (van Sebille et al., 2020).

Plastic litter size, in addition, influences the type of environmental impacts it will have. For

instance, microplastics can be ingested by some marine organisms as the particles have the
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Chapter II Theory

same size range as plankton (UNEP, 2016) and thus bio-accumulate in the food chain, which

may lead to the introduction of toxins at the base of the food chain (Maximenko et al., 2019;

Barnes et al., 2009). They can also be a scattering vector of chemical additives or represent

an habitat for other organisms which may result in the introduction of new species in other

habitats, since plastic can travel over long distances (Suaria et al., 2016; Ioakeimidis et al.,

2014; Pham et al., 2014). Larger plastic litter can lead to animals’ entanglement (UNEP, 2016),

be a threat to marine navigation (Hong et al., 2017), but also have a negative impact on the

economy (Maximenko et al., 2019; UNEP, 2016). The leakage of large plastic fragments in

touristic areas contributes to economic losses due to the landscape deterioration, leading to

a diminution of the touristic activity and cleaning costs. For instance, the removal of 75% of

marine debris in several Californian beaches in the United States resulted in a $40 million

benefit, while an increase in marine litter on the beaches of Goeje Island in South Korea led to

more than a $20 million loss (Maximenko et al., 2019).

The Black Sea

The Black Sea (Fig.1.1) is a semi-enclosed basin (Özsoy and Ünlüata, 1997), which makes it

by definition more vulnerable to anthropogenic pressure. Indeed, because they are naturally

favorable for human societies - because they generally provide water, food and economical

expansion -, semi-enclosed basins are usually correlated with dense population centers,

and are thus highly polluted (Healy and Harada, 1991). Furthermore, due to the limited

outflow of these basins versus the large pollution inputs, this pollution tends to increase

and accumulate. Following this general description, the Black Sea might be one of the most

degraded ecosystems in the world, as a consequence of highly polluted rivers discharges,

several industrial cities along its coastlines, intense shipping routes and fishing activities,

all of which contribute to the release of large amounts of plastic litter and other pollutants

(Ötzekin and Bat, 2017). Specifically to the Black Sea, the precipitation rate is almost equal to

the evaporation rate, suggesting that the net water outflow, through the Bosphorus Strait, is

balanced by the net inflow which comes largely from rivers discharge (Stanev and Ricker, 2019).

The concentration of marine litter being larger in the rivers mouth than in the Bosphorus

Strait, and since the water fluxes are equivalent, it implies that the marine litter concentration

will, as expected, increase (Stanev and Ricker, 2019).

The main dynamical feature of the Black Sea its permanent cyclonic current, the so-called

Rim current (Fig. 2.1), which flows much faster in the upper layer (max 100 cm/s) than in the

sub-pycnocline layer (max 40 cm/s) (Oguz and Besiktepe, 1999). Another unique aspect of the

basin, is its quasi-permanent halocline (i.e., the salinity vertical gradient) between 100-150m

(Bat, 2017; Capet et al., 2012), separating the saltier, and warmer, deep waters from the less

salty, colder surface waters (Özsoy and Ünlüata, 1997). This is due to the combination of

two factors: the rapid and narrow Rim current which produces a dynamical barrier between

the deep and surface waters, and the large freshwater inflow coming from the rivers that,

as a consequence of the Rim current, remains at the surface (Kubryakov et al., 2016). The
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Fig. 2.1: Schematic of the main features of the Black Sea circulation, from Birkun et al. (2009).

basin interior, isolated by the Rim current, is the saltiest zone with 19 g/kg, while the North-

Western part, where the largest freshwater discharges occur, is the least salty area of 14

g/kg (Bat, 2017; Sezgin et al., 2017). To illustrate this feature, it has been demonstrated that

nutrients and plankton scatter over the whole basin surface with almost no sinking into deeper

waters (Kubryakov et al., 2016). However, during a weaker Rim current period, which usually

occurs in summer (Staneva et al., 2001), the dynamical barrier is less intense and baroclinic

instabilities arise (Kubryakov et al., 2016). Those derive from the strong vertical stratification

of the Black Sea basin. The combination of the steep bottom between the Rim current and

the coasts and the weakening of the Rim current in summer favor vertical mixing which, due

to the strong stratification, leads to baroclinic instabilities. Near the coast, these instabilities

lead to mesoscale anticyclones (Fig. 2.1), and hence to even more mixing (Staneva et al.,

2001). In short, the seasonal cycle of the Black Sea circulation is as follows: in winter the

Rim current is strong and two quasi-persistent cyclonic eddies are noticeable (i.e., Sevastopol

and Batumi in Fig.2.1), while during summer/autumn the Rim current is hardly present and

several anticyclones appear (Staneva et al., 2001; Bat, 2017). Finally, the surface circulation

is mainly influenced by the northerly winds and the resulting Stoke drift (Stanev and Ricker,

2019; Geyer et al., 2017).

The North-Western zone of the Black Sea is quite distinctive from the rest of the basin. It

consists of the continental shelf and represents 25% of the total seafloor. The shallow water of

that area is separated from the deep waters by a steep slope, passing from -10m to -1,000m

quite abruptly (Fig.1.1) (Özsoy and Ünlüata, 1997). The North-West is also the region where

most of the freshwater discharges. There, the Danube, Dniepr, and Dnister rivers flow into

the Black Sea (Fig.1.1). Seven other relatively large rivers, located in other zones, flow in the

basin: the Rioni, Çoruh, Kızılırmak, Sakarya, Yeşilırmak, Kodori, and the Bzyb, but also many

smaller ones not cited here. All together, these rivers approximately count for 88% of the total

freshwater flux into the basin (Jaoshvili, 2002). The Danube itself contribute to almost 60% (of

the 88%), which makes it by far the largest water discharge into the basin. Due to the limited

water outflow, exclusively through the Bosphorus Strait, the surface water is mainly influenced

by the riverine freshwater inflows (Özsoy and Ünlüata, 1997). As already mentioned above,
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the evaporation rate is equivalent to the precipitation rate, such as the total rivers inflow

( 300km3 y−1) is almost equivalent to the water outflow through the Bosphorus strait (Stanev

and Ricker, 2019). In addition, these influxes could also influence the plastic pathways as it

could accumulate in river plume fronts (van Sebille et al., 2020). Therefore, rivers act both as a

barrier for marine litter from coastlines to the open oceans, since plume fronts can become

accumulation zones, as well as a source of marine litter into the sea.

The transport of plastic litter into the Black Sea seems to be largely due to the coastal pop-

ulation density (Lebreton et al., 2019), and to shoreline activities (i.e., coastal tourism and

recreational fishing) (UNEP, 2016). Such emissions are usually caused by landfills and wastew-

ater mismanagement, or beach tourism. In fact, UNEP (2016) reported that on a national

level, Ukraine and Turkey together had between 0.5 and 2 thousand tonnes per day of mis-

managed plastic waste in 2010. In 2018, Bulgaria discarded 70% of its plastic waste in landfills

(PlasticsEurope, 2019), making it more likely to end up in the Black Sea. Concerning the

lack of wastewater management, Georgia treated less than 1% of its wastewater before 2015,

while Turkey is the country within the entire Black Sea region which has the highest level

of wastewater treatment, between 40-60 %, which is still relatively low (UNEP, 2016). More-

over, since the largest cities are situated along the coast, implying that the plastic released

by mismanaged wastewater and landfills can result in the direct disposal into the Black Sea.

Furthermore, rivers should also be considered as an additional key entry-point for plastics. It

has been reported that at least 2,060 tonnes of plastic per year comes from rivers (Lebreton

et al., 2017), of which a minimum of 530 tonnes are transported by the Danube only (van der

Wal et al., 2015). Finally, Moncheva et al. (2016) reported that the North-Western part is the

most polluted region. This is an expected outcome since it is the area where the largest river

mouths are found and it is also an intense region for navigation (Fig.2.2).

Fig. 2.2: Navigation routes in the Black Sea for the most recent year available (2017). Red to green lines
represent the most to least used routes, the blue areas are where there is almost no navigation. [Source :
www.marinetraffic.com]
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Bayes’ Theorem

Bayes’ theorem is here used as a potential tool to infer the sources of plastic introduced in the

marine environment. This theorem is widely used in our contemporary society: from online

translation, to physics, or national security (McGrayne, 2011). It expresses the probability of

an event, based on prior knowledge of conditions that are related to the event (McGrayne,

2011). In other words, this probability is used to quantify the uncertainty level of a statement

(Martin, 2016). With a probability of 1, the statement is 100% certain, while a probability of 0

denotes a 0% certainty. Hence, to understand the theorem, one should be familiar with the

notion of probability, in particular conditional and conjoint probability.

Conditional probability, expressed as P (A|B) - read as the probability of A given B - is a

probability based on some background information (Downey, 2013). By adding background

information to a prediction, its probability changes. For instance, say that the probability that

a random person gets sick after drinking milk is equal to 0.5, if we know that this person is

lactose intolerant, then the probability goes up to 1 (i.e., the prediction is 100% certain). A

conjoint probability expresses the fact that two statements are true, such as P (A,B) = P (A)P (B)

(Downey, 2013; Martin, 2016). However, this is valid if and only if A and B are independent:

the outcome of the first event does not influence the probability of the second event (Downey,

2013). This means that A and B are commutative (i.e., interchangeable). Thus, in a more

general sense, the conjoint probability can be equally expressed as P (A∩B) = P (B |A)P (A) =

P (A|B)P (B) (Downey, 2013; McGrayne, 2011).

The definition of the conditional and the conjoint probability form the foundations of the

Bayes’ theorem. They are therefore used as follows :

P (A|B) =
P (B |A)P (A)

P (B)
, (1)

with P (A|B) and P (B |A) conditional probabilities, while P (A) and P (B) are marginal proba-

bilities, also called unconditional probabilities (i.e., the probability that event A/B occurs but

without being conditioned by another event).

When speaking of Bayesian inference, the theorem is used to update the prior probability of

an hypothesis H as new data D becomes available and so become a diachronic interpretation

of Eq. 1 (Donovan and Mickey, 2019; Downey, 2013). Meaning that it is " of, relating to, or

dealing with phenomena [...] as they occur or change over a period of time" (Merriam-Webster),

with here, the change over time being due to the addition of new observational data. It is

9
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described as follows:

P (H |D) =
P (D|H)P (H)

P (D)
, (2)

with P (H |D) the posterior, P (H) the prior, P (D|H) the likelihood, and P (D) the normalizing

constant.

The fundamental difference between Eq.1 and Eq.2 is in the denominator P (D): it should

represent the probability of seeing the data under any hypothesis (Downey, 2013; Martin,

2016). However, in many cases, such as this project, it is difficult to narrow down an acceptable

assumption for P (D). Nevertheless, the law of total probability can be used to calculate it,

such that :

P (D) = P (H |D)P (H)+P (H c |D)P (H c ), (3)

with the exponent c indicating the complementary of H. In the literature, it is often re-

ferred to as "does" (H) and "does not" (Hc ). Hence, it can be assumed that H and H c

represent all the computable hypotheses of a specific case, allowing the assumption that

P (D) =
∑

P (Hi |D)P (Hi ).

Thus, for the purpose of this project, the Bayes’ theorem is defined as follows:

P (Ai |B) =
P (B |Ai )P (Ai )∑

P (B |Ai )P (Ai )
, (4)

with :

P (B ) ≡ P(plastic being sampled in location B)

P (Ai ) ≡ P(source i )

P (B |||Ai ) ≡ P(find sample from location B knowing the source A)

P (Ai |||B ) ≡ P(that source A is the origin of a known sample from B)

The probability of a source (P (Ai )) is based on the dataset found in the literature (Appendix

A), while the probability of P (B) and P (B |A) are computed with the Lagrangian modelling of

virtual particle trajectories. This allows to compute P (A|B) and infer the source of a plastic

sampled in a specific location.

10
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As a final remark on the Bayes’ theorem, as it can be seen in Eq.2 and Eq.3, the result of P (A|B),

equivalently P (D|H), is optimal when combining all the possible hypotheses. In fact, the

definition of P (D) (Eq.3) involves the hypothesis (H ) as well as its complementary (H c ), hence

any other possible hypothesis within the sample space. Nevertheless, it is almost impossible

to gather all the knowledge linked to an event, which should be done in order to carry out a full

Bayesian analysis. As accurately formulated by Goldstein and Wooff (2007), "Bayes falls victim

to the ambition of its formulation". In other words, there is no absolute answer to a probability

question. Moreover, the fact that probabilities are numerical summaries of a person’s epistemic

state of knowledge about a subject, causes their inherent subjectivity (Rougier, 2007). Indeed,

Bayesian statistics, and even more when considering Bayesian inferences, could seem to be

subjective. Nevertheless, it is important to note that this subjectivity is more the expressions

of the acknowledgment that our understanding of the world is conditioned by the data and

models that have been made, and hence imperfect (Martin, 2016), than an actual real bias.

However, these concepts are entering the philosophical sciences expertise and are therefore

beyond the scope of this thesis. Thus, here, the assumptions and approximations have been

made based on the data available.

Entropy of Mixing

As stated by Wichmann et al. (2019), plastic particles can only be back-tracked over a finite

timescale t . Hence, for the purpose of this project, the entropy of mixing is calculated here in

order to understand over what timescale t the source of plastic present in the Black Sea can be

inferred.

To understand what the entropy of mixing consists of, it is easiest to start by defining entropy,

or more specifically Shannon entropy, and mixing, in the context of this thesis. The Shannon

entropy is a quantity that is used to estimate the uncertainty, or information, inherent to

the outcome of random events - in probabilistic terms -, that can take any value between 0 -

minimum entropy - and 1 - maximum entropy (Guida et al., 2010). Hence, here the entropy is

not a property of the event itself but of the knowledge one has of the event. Here is a quick

example to illustrate it : if we flip a coin that we know is loaded, says it gives only heads,

the entropy of this event is equal to 0 because the outcome is known; if the coin is fair, then

the entropy is equal to 1, since it is impossible to predict the outcome. Meanwhile, mixing

represents the increase in homogeneity within a system (Guida et al., 2010; Camesasca et al.,

2006). However, it can also be interpreted as a process by which particles of different species

are exchanged between regions of the studied system (Guida et al., 2010), with the species

being relative to the particles location of origin (Fig. 2.3). Thus, the entropy of mixing describes

the efficiency of the mixing of these particles, or how they are exchanged, between the different

regions of the system (Guida et al., 2010; Wichmann et al., 2019).

For the purpose of this project, the entropy of mixing Sk at time t is calculated for each particle

i at each bin k (with a 0.2°x 0.2°resolution) after advection of particles initially homogeneously
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(0.1°x 0.1°resolution) distributed over the Black Sea (Fig.2.3), which follows the Wichmann

et al. (2019) approach:

Sk (t ) = −∑
i

Pi |k (t )lnPi |k (t ), (5)

where Pi |k is the conditional probability to find a particle i in a bin k at time t and is defined

as:

Pi |k (t ) =
ρi ,k (t )∑
i ρi ,k (t )

, (6)

where ρi ,k is the density of particle i in bin k.

Perfect mixing, and hence maximum entropy, arrives when the concentration of any particles

in any bins is the same as the concentration of those particles in the whole basin (Camesasca

et al., 2006). Thus, the maximum entropy is given by Smax
k = lnM , with M the number of

particle species (Wichmann et al., 2019).

To summarize, here, the entropy of mixing is useful to understand on which timescales the

information about the plastic fragment source is lost. This means that, once the timescale

to arrive to the maximum mixing (i.e., Sk /Smax
k = 1) is reached, the plastic source can not

be back-tracked anymore since the information containing it is lost (Wichmann et al., 2019).

Therefore, calculating the entropy of mixing allows to better determine the timescale of the

simulations, and this timescale gives also the range of time over which the source of a plastic

particles can be inferred.
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Fig. 2.3: Schematic view of how the entropy of mixing is calculated. At time t = t0, the particles are
placed homogeneously over the studied domain. The domain is divided on several grid-cells k and
all the particles located in the same grid-cell k is from the same species i . Hence, at time t = t0, any
grid-cell contains particles from a unique species. After advection, at time t = t0+4t , the distribution is
not homogeneous anymore and the density ρk,i for each species i in each grid-cells k can be calculated.
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Hydrodynamic and Observational Data

To apply Bayesian inference to the plastic pollution in the marine environment, virtual particle

simulations are needed. Hence, to get results as close as possible to the realistic features of the

Black Sea, accurate hydrodynamics’ description is needed.

The surface currents velocity is obtained from 1/12°resolution (i.e., 9.3 km) global Copernicus

Marine Environment Monitoring Service (CMEMS) reanalysis (i.e., GLORYS12V1)1 provided by

the EU Copernicus institute. The Black Sea is a eddy dominated system with a Rossby radius

of 20-30 km (Staneva et al., 2001), so the CMEMS product resolution is high enough to resolve

most of the dynamical features of the Black Sea. This dataset provides daily mean fields from

1993 to 2018 over 50 depth levels. In addition, it includes fields describing the horizontal

velocities, the salinity, the temperature, and sea ice features (concentration, thickness and

horizontal velocities). An detailed description of this product is given by Fernandez and

Lellouche (2018) and a quality assessment is given by Drévillon and et al. (2018). For the

purpose of this project, only the surface currents is used which corresponds to a depth of

0.49m in the CMEMS dataset.

To have an accurate simulation of the sea surface, the Stokes drift is usually a necessary field

to add to the surface current. The Stokes drift data is taken from the 1/5 °resolution global

WaveWatch3 model developed by the National Oceanic and Atmospheric Administration

(NOAA). This dataset provides fields from 1999 to the present days. More details on the model

can be found in WW3DG (2019).

Finally, the location of ten stations sampled along the Romanian coasts - from the river

Danube mouth to the city of Constanta - during ’CoCoBLAS 2015’ cruise held from the 26t h

to the 29t h of May 2015 on board R/V Mare Nigrum is used. These locations are used as an

example of how the results of the Bayesian inference can be applied to observational data.

1Product’s name: GLOBAL_REANALYSIS_PHY_001_030
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Lagrangian Modelling

All simulations were carried out using the Ocean Parcels framework, which is fully described

in Lange and van Sebille (2017) and which is freely available at http://oceanparcels.org. In a

nutshell, the particles are advected using a C-grid interpolation scheme and the trajectories

are interpolated with a 4th-order Runge-Kutta scheme. The trajectory of a displaced particle,−→
X is computed as follows:

−→
X (t +∆t ) =

−→
X (t )+

∫ t+∆t

t
υ(~x(t ), t )d t +∆−→

X b(t ), (7)

where υ(~x(t),τ) is the flow velocity from an Ocean General Circulation Model (OGCM) at

the particle location ~x(t) at time t , while∆~Xb(t ) is a change of position due to an additional

process. Here, either υ = υc or υ = υc +υsto , with υc the surface currents υsto the stokes drift.

As for ∆~Xb(t), it is an already built-in diffusion kernel of Ocean Parcels that computes the

2D-diffusion in the basin by using the 4th-order Runge-Kutta scheme for the advection and

the 1st -order Milstein scheme to approximate the diffusion (c.f. AdvectionRK4DiffusionM1).

Finally, it is also necessary to precise that plastic particles are assumed to be fully immersed

directly below the surface, hence the wind drag is neglected. Also, in all simulations, particles

that reach the coastlines are assumed to accumulate at shore and stay there (i.e., they are

beached) and therefore they are not re-suspended by waves dynamics.

Lagrangian Black Sea Circulation

In order to choose which parameters to implement to solve the Black Sea hydrodynamic

features described in Chapter II, several combinations were tested : a) using the surface

velocities only; b) the surface velocity plus the Stokes drift; c) the surface velocity plus the

Stokes drift and diffusion (Table 1). The diffusion coefficients Kh zonal and Kh meridional

are randomly determined, following the approach of Gräwe (2011). For those three sets of

simulation, the particles were tracked for one year from the 1st of January 2015. This year

was chosen because it corresponds to the year when the plastic analysed fragments from the

Black Sea were sampled (c.f. "Hydrodynamic and Observational Data" section of this Chapter).

Their initial positions were distributed over an horizontal grid of 0.1°resolution and at each

point twenty particles were released at the beginning of the simulation (38,260 particles in

total).

Fig. 3.1 shows the results of the three experiments as density maps. The densities were

calculated for each bin as an average over the full simulation (i.e., over one year) since the

idea here is to find a model that best represents the dynamical features of the Black Sea. It

can be seen that the addition of the Stokes drift to the surface currents leads to a depletion of
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Surface currents (υ = υc ) Stokes drift (υ = υc +υsto) Diffusion (∆
−→
X b(t ) 6= 0)

Experiment A ×
Experiment B × ×
Experiment C × × ×

Table 1: Summary of the three experiments (A, B, C) tested to setup the model. The mathematical
expressions in italic refer to eq.7. For experiment A, only the surface currents were used; for B the
surface currents and the Stokes drift; and for C, the surface currents, the Stokes drift and the diffusion.
Experiment C provided the more realistic results, and hence is the setup used for the later simulations.

particles in the Northern region of the Black sea (Fig. 3.1a vs. Fig. 3.2b) and to more stranded

particles along the Southern coasts. This is probably due to the northerly winds present in this

region (Stanev and Ricker, 2019). Also, more particles stay trapped in the Western gyre (Fig.2.1)

compared to the situation in which they are advected only with the surface currents. Finally,

the addition of diffusion, leads to more diffusive density patterns (Fig. 3.1c) compared to the

case in which only the Stokes drift is added (Fig. 3.1b). Experiment C (Fig. 3.1c), capture the

Western gyre as well as the Batumi eddy. Since it is one of the permanent features of the Black

Sea, it has been decided that this model setup best represents the Black Sea’s hydrodynamic

feature and therefore it has been used for all the further simulations. Note that the addition of

diffusion to the model does not smooth the flow as one could expect. Instead, the addition of

random scattering here tend to amplify the quantity of particles into the center of the basin

and hence towards the permanent gyres which are isolated from the rest of the basin by the

Rim current. Thus, more particles are trapped and those features, in particular the Batumi

gyre (Fig.2.1), are enhanced (Fig. 3.1c).

Probabilistic information

The probabilistic information was partially derived with the simulations, and partially de-

ducted from the data available in the literature. As specified in Chapter II, the Bayes’ theorem

is defined by Eq.4, and is applied to this project as follows :

P (Ri veri |Locati on j ) =
P (Locati on j |Sour cei )P (Sour cei )∑

P (Locati on j |Sour cei )P (Sour cei )
(8)

In order to compute Eq.8, the first step is to determine P (Sour ce) from the literature. The

Marine Litter Report of the Black Sea Commission (Birkun et al., 2009) presented a ranked

list of the primary sources of marine litter in the Black Sea for each bordering country (Annex

B). The ranks range from 1 - least likely - to 5 - most likely - and were assessed by the own

appraisal of national experts. Hence, from the mean score results, in descending order, the

sources likelihood are : sewage plants, ship waste/port and rivers, tourism, industry, and

fishery (NB: tourism includes any recreational activities in coastal area). This estimation is
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quite consistent with the studies mentioned in Appendix A. Subsequently, and because it is

the best data in term of quality and quantity that was found, this work focuses exclusively on

rivers as possible sources of plastic.

Previous studies that have estimated the water discharge of the main rivers of the Black are

(a)

(b)

(c)

Fig. 3.1: Results of the three experiments made to determine which components are required to best
represent the physical features of the Black Sea: the particles are advected a) only with the surface
currents; b) with the surface currents and the Stokes drift; c) with the surface currents, the Stokes drift,
and diffusion.
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Danube Dniepr Dniester Rioni

Obs. years 1960-2000 1960-2006 1960-1984 1960-1984 Ludwig et al. (2009)
Mean flux [m3/s] 6573.8 1488.1 376.6 110.5 408.5

Obs. years bf. 1997 bf. 1997 bf. 1997 bf. 1997 Bat et al. (2018)
Mean flux [m3/s] 6595.6 1623.5 323.4 405.9

Obs. years - - - - Jaoshvili (2002)
Mean flux [m3/s] 6300 1375 288 31.6

Mean [m3/s] 6489.8 1495.5 329.3 407.2

Çoruh Kodori Bzyb Yeşilırmak Kızılırmak Sakarya

Obs. years bf. 1997 bf. 1997 bf. 1997 bf. 1997 bf. 1997 bf. 1997 Bat et al. (2018)
Mean Flux [m3/s] 275.6 129.4 97.3 156.3 159.2 202.3

Obs. years - - - - - - 2*Jaoshvili (2002)
Mean Flux [m3/s] 12.5 132 120 168.1 187.1 177.6

Mean [m3/s] 275.6 130.7 108.7 162.2 173.2 190

Table 2: Main rivers and their water discharge in the Black Sea. (NB : the red value for the Rioni has
been neglected since it was excessively small compared to the other reported values.)

presented in Table 2. From this information, the mean freshwater runoff in the Black Sea is

9762.2 m3s−1 and the contribution of each rivers is as follows : Danube: 65.9%, Dniepr: 15.2%,

Rioni: 4.1%, Dniester: 3.3%, Çoruh: 2.8%, Kızılırmak: 1.8%, Sakarya: 1.9%, Yeşilırmak: 1.6%,

Kodori: 1.3%, Bzyb: 1.1%; which is consistent with the results of Jaoshvili (2002). There are

obviously many smaller rivers flowing into the Black Sea but since their water discharge is so

little (< 1%), they have been neglected.

Since the concentration of plastic in a river is unknown, one of the main assumption of this

study is that the plastic concentration stays constant over time and corresponds to the river’s

water discharge. Thus, in this context, Eq.8 can be rewritten as :

P (Ri veri |Locati on j ) =
P (Locati on j |Ri veri )P (Ri veri )∑i , j =n

i , j =1 P (Locati on j |Ri veri )P (Ri veri )
, (9)

with i being the rivers listed above, and their probability is their corresponding contribution

(e.g., P (Ri verDanube ) = 0.659).

The probability to find a plastic fragment in a specific location knowing its source is deter-

mined by tracking virtual Lagrangian particles. Thus, ten distinct simulations, corresponding

to the number of possible sources, were carried out using the model setup determined earlier

(Fig. 3.1c). For these simulations, particles were released and tracked everyday during one

year, from 1st of January 2015 to the 31st December 2015, from the geographical position of

the source. Afterwards, density maps were constructed by dividing the Black Sea in bins of

0.1°resolution (i.e., the Locati oni ) in which the average density over the timescale of the event
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(e.g., one year) was calculated. Here, the average density is taken because nor the particle age

nor the sampling date is known. Hence, it is assumed that this information would have no

effect on the resulting density (i.e., sampling a particle in January is equivalent to sampling

it in September). This way, P (Locati on j |Ri veri ) is obtained for each grid-cell (Locati on j )

and for each river.

Finally, by combining the probabilistic information deduced from the literature (P (Ri veri ))

and from the simulations (P (Locati on j |Ri veri )), the origins of plastic could be inferred by

using Bayes’ theorem (Eq.9).

Inference Timescales

After time t , the origin of a particle cannot be back-tracked anymore and so by extension the

origin of a plastic fragment cannot be inferred anymore. To determine the timescale for which

the Bayesian inference can be applied, two methods can be used : a) the Shannon entropy; b)

the Bayes’ theorem itself. For method b), Eq.4 can be rearranged as :

P (Ai |B j )

P (Ai )
=

P (B j |Ai )∑
P (B j |Ai )P (Ai )

, (10)

with P (B j |Ai ) is the density of plastic from the source Ai at location B j and
∑

P (B j |Ai )P (Ai )

is the maximum density over the basin.

Hence, if Eq.10 equals 1, then the mixing is maximum, which mean that the source of a plastic

fragment cannot be inferred. For Eq.10 to be equal to 1, P (B |A) must be equivalent to P (A).

Thus, when the probability that a plastic from the source Ai is the same as the probability that

a plastic comes from the source Ai knowing its sampling location B j , then its source cannot

be inferred anymore.

Secondly, the entropy of mixing, derived from the Shannon entropy, was also calculated to

determine the mixing timescales. The Shannon entropy is highly sensitive to the amount of

information we have about an event, or an item in this case. More information known about

an event leads to longer timescales to reach maximum entropy. A common example is the

marble bag game: the player has a marble bag with both blue and red marbles and they must

guess which color marble they will randomly draw. If the player does not have the information

that the marbles can be either blue or red, the probability that they guess the color is close to

0 and the entropy is maximum (i.e., close to 1). However, if they know the colors and if, for

instance, they also know how many marbles from each color are in the bag, then the entropy

is smaller than 1. Here, the entropy of mixing was calculated for the following situation: very

little is known about the plastic particles (i.e., only their origin and final position is known).

This is mainly for consistency: to compute the Bayesian inference, time averaged densities
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have been used, implying that the particle age and its sampling date is unknown. If these two

parameters were known, the quantity of information about the plastic fragments would be

more, and so the timescales to reach the maximum entropy would be longer, meaning that

the plastic fragment could be back-tracked over a longer time.

Finally, to compute the entropy of mixing, twenty particles were released at each point of

a homogeneous 0.1 degree resolution horizontal-grid and tracked for one year. The mixing

entropy was calculated by comparing the initial position of a particle with its final position,

for different timescales, up to one year (Fig. 4.1a-4.1d). It is important to note that the entropy

of mixing is quite sensitive to the number of released particles, if they are too little the entropy

values could be equal to zero everywhere. Here, 38,260 particles in total were released at each

point of the initial grid. In addition, the entropy analysis was carried out over a coarser grid

than the initial grid (0.2 degree and 0.1 degree resolution, respectively).
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Shannon Entropy

The main result obtained was that in the open ocean, the highest level of entropy reached is of

0.657 after two months of simulation, while near the coasts, in particular in the South-Western

area, values close to the maximum entropy emerge after 6 months. The decrease of the entropy

in the open ocean is due to the model assumption that the particles are stranded when they

reach the coast. Hence, the density of particles in the open ocean lessen while they are cast

ashore the Southern coasts of the Black Sea, leading to an increasing density - and entropy -

on the beaches and in the coastal zones. Therefore, the maximum entropy of mixing is never

reached in the Black Sea. Thus, in theory, the source of plastic fragments sampled in the open

ocean can be back-tracked for any timescales, up to five years. In fact, after five years, for this

model setup, all the released particles have stranded (i.e., there is no particles left in the open

sea). The plastic particles sampled near the Southern coasts of the Black Sea reaches values

close to maximum entropy (0.92) in some regions after 1 year (Fig.4.1d). This suggests that the

inference of the plastic that is found on the beaches and the coastal zonal is time-limited. This

result is not surprising since most of the particles are transported towards the Southern coasts

by the northerly winds.

To summarize, the results of the entropy of mixing is convenient because it means that for

most of the regions, in the open sea, the sources of plastic can be inferred after any time t

smaller than five years after their release. However, stranded particles can be back-tracked

only over a limited timescale, smaller than two years.

Plastic Source Back-tracking

The results of the Bayesian inference of particle source are presented as probability maps

of the Black Sea for each potential source: the Danube, Dniepr, Dniester, Coruh, Kilizirmak,

Rioni, Sekarya, Yesilimark, Kodori, and Bzyb rivers (Fig.4.4).

Because the simulations setup assumes that the plastic concentration is proportional to the

water discharge of the rivers, plastic most likely originates from the Danube (Fig.4.5a). Since

the Danube contributes to 66.5% of the total freshwater inflow in the Black Sea, the other
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(a) (b)

(c) (d)

Fig. 4.1: Entropy mixing for particles advected from a homogeneous horizontal grid, after: a) 1 month;
b) 4 months; c) 6 months; d) 1 year. An entropy mixing value of 1 represents the maximum entropy,
while the value 0 indicates that a region is completely depleted of particles (i.e., does not mean in per
se that there is no entropy). Note that after 1 year, the majority of the released particles have already
beached, hence the vast majority of depleted grid-cells.

rivers have a minimal role on the input of plastic litter into the Black Sea, compared to the

Danube. Focusing on some of the other rivers, in the far North-Western area, plastic comes

almost exclusively from the Dniepr (Fig. 4.5b). This can be explained by the general circulation

of the Black Sea: the combination of the northerly winds and the strong Rim current lead to

the accumulation of particles southward and limits the influx of particles of other zones into

the North-Western part. Hence, the particles found in this region almost exclusively originates

from the Dniepr.

Regarding the Bzyb, is that even though it contributes only to 1.1% of the total freshwater

discharge into the Black Sea, its particles largely spread over the Eastern region of the basin

and seems to be the only possible source of plastic in some specific locations close to the

North-Eastern coasts around 45°N 36°E (Fig. 4.5j). Again, this can be explained by the general

circulation: the Bzyb mouth is located near an area (i.e., North-East) in which many small

eddies appear between the coast and the Rim current, and it is also close to the Batumi gyre.

Thus, plastic from the Bzyb can easily get trapped in these eddies and gyres, which is why

those scatter so much over the Eastern part of the basin. As a consequence, in this regions,

the Bzyb is more likely to be the source of plastic than, for instance, the Coruh, which has a

larger contribution to the total freshwater (i.e., 2.8%) input than the Bzyb. For the other rivers,

generally, the probability that a plastic fragment originates from them is relatively high when

it is sampled near the river mouth, and becomes quite low when the distance to the source

increases (Fig. 4.5c-4.5i). Note that for this project, the rivers contributing to less than 1% of
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(a) (b)

(c) (d)

Fig. 4.2: Pie charts displaying the probabilities that sampled plastics comes from a specific river, at a
regional scale: a) West; b) East; c) North-West; and d) for the full basin. The delimitation of the regions
are not political but in function of the results of the Bayesian inference. A map of this delimitation is
presented in Appendix C.

the total freshwater discharge have been neglected. By adding these rivers to the analysis, the

final probability maps might be different. However, since the actual plastic concentration in

the rivers is unknown, and hence based on the water discharge alone, these differences would

be here, quite small.

These results can also be visualized as a pie chart (such as Fig.4.2). As expected, the Danube

is the main source of plastic in all parts of the Black Sea besides the North-West (West: 70%,

East: 40.6%, North-West: 14%). Considering the whole basin, after the Danube, the Dniepr

(10%) and the Bzyb (7.1%) are the two most important sources of plastic of the basin. The pie

chart for the whole Black Sea (Fig. 4.2d) is important because it allows us to see if P (A|B) is

equal to P (A) or not, and by extension understand if the mixing of particles is at its maximum

or not (cf. Chapter III). As a reminder, the P (A) of each river here is proportional to their water

discharge and is as such: Danube: 65.9%, Dniepr: 15.2%, Rioni: 4.1%, Dniester: 3.3%, Çoruh:

2.8%, Kızılırmak: 1.8%, Sakarya: 1.9%, Yeşilırmak: 1.6%, Kodori: 1.3% , and Bzyb: 1.1%. The

comparison between these contributions and Fig.4.2d, shows that P (A|B) and P (A) are not

equal. In other words, the P (A) of each rivers, mentioned above, is not the same as the results

for the full basin (Fig.4.2d), which induces that the the mixing is not at its maximum. This
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implies that the plastic source could be inferred over an even longer time, which follows the

result given earlier by the Shannon entropy (c.f. "Shannon Entropy" section of this Chapter).

Finally, Fig.4.3 shows a possible application of the probability results to real sampled data.

The ten sampling stations (red crosses) are interpolated over the probability map (Fig. 4.3a),

of the Danube since they are located close to its mouth and also because it is the most likely

source of plastics over the Black Sea (Fig.4.2d, Fig.4.44). This way, it can be seen that the most

probable origin of the sampled plastics is, all stations included, the Danube (Fig. 4.3b) with

an average probability of 0.78. However, there is also a small chance that they provide from

the Dniepr or the Dniester, with an averaged likelihood over all the stations of 0.18 and 0.03,

respectively. Note that the sum of the averaged probability is not equal to 1. This is because,

there is very small likelihood that these plastic fragments comes from the other analysed rivers

(c.f Annex E).

(a) (b)

Fig. 4.3: a) Interpolation of sampling locations (red crosses) and the result of the probability map for
the Danube as a source of plastics. The red dot shows the location of the Danube mouth; b) Bar chart
showing the most likely source for each station. For all the stations, the Danube (orange) is the most
probable source, followed by the Dniepr (green) and the Dniester (blue).

Tool Validity

The main purpose of this project is to develop a tool to back-track plastic fragments to their

source. Hence, a fundamental point is to demonstrate that this method is in fact reproducible.

This could be done by comparing the density maps of each source (Annex D) to the probability

map of the same source. In fact, the probability should be high where the particle density is

large. However, a more solid statistical proof is obtained by adding up the probability of all the

sources at each grid-cells (i.e., summing all the probability maps together). The results should

be that the total probability is equal to 1 everywhere. Thus, since this criterion is attained

(Annex F), the inference of plastic source with Bayesian statistics is, statistically speaking, a

reliable tool. However, it still would need a more comprehensive verification to completely

prove its reliability.
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A thorough validation of an oceanographic or statistical model should be validated by ob-

servations on site. For oceanographic circulation models, drifter measurements are usually

adequate and in the context of plastic pollution they could also work. However, in this project,

plastic fragments were assumed to flow just below the water surface which it also implies that

their size is really small (i.e. micro- or nano-plastics). Thus, drifter measurements might not

be enough, since the pathways of these kinds of particles are believed to be influenced by

other factors than the ocean (surface) dynamics such as bio-fouling (Kooi et al., 2017; Fazey

and Ryan, 2016). Another option could be to compare the sources using the Scoring Matrix

Technique (MTS) (Tudor and Williams, 2004), that is applied directly on sampled marine litter,

with the results obtained by Bayesian inference. The baseline of the MTS approach is to give

a score based on the character and the aspect of the litter. For instance, an oil drum will be

considered to be more likely sea-based or land-based if it is marked for ship use or domestic

use, respectively (Tudor and Williams, 2004). Finally, a last alternative, would be to voluntarily

release labelled plastic tracers. However, this would obviously bring up an ethical problem:

trying to find answers to marine pollution by adding pollution ?
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Fig. 4.4: Probability maps that a plastic fragment comes from a specific source with the source being: a)
the Danube; b) the Dniepr; c) the Dniester; d) the Coruh; e) the Kilizirmak; f) the Rioni; g) the Sakarya;
h) the Yesilimark; i) the Kodori; j) the Bzyb. These probabilities were inferred after tracking particles
daily for one year.
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For this thesis, the baseline of a new method to assess the entry-points of sampled plastic in the

oceans was developed by using Bayesian statistics. This method uses Lagrangian simulations

of virtual particles performed via the Ocean Parcels framework from which the sources are

inferred by applying Bayes’ theorem. On a wider scale, this method could be applied to

generate a map for each possible source of plastic sampled in a specific location in the ocean,

with its associated probability values (such as in Fig.4.4).

This project focuses on the Black Sea exclusively with only the largest rivers being considered

as possible sources of plastic (i.e., Danube, Dniepr, Dnister, Rioni, Coruh, Sakarya, Kilizirmak,

Yesilimark, Kodori, Bzyb). The concentration of plastic in each river has been assumed to be

constant through time and relative to the river’s water discharge. Hence, the results might

be biased: there is no observational study to date that report which of these rivers in fact

transports the most quantity of plastic. The water discharge of the Danube (66.5% of the

total freshwater discharge) being seventeen times larger than the mean of all the other nine

rivers (3.72% of the total freshwater inflow), it is most likely that in fact it transports the largest

quantity of plastic litter into the Black Sea. However, for the rest of the rivers, the assumption

that their plastic concentration is relative to their water discharge is not so straightforward.

In addition, if a plastic particle reaches the coast, it has been assumed to be stranded (i.e.,

re-suspension not possible). In this scenario, it has been found that the main source of plastic

in the Black-Sea in absolute is the Danube (54.9%), followed by the Dniepr (10%) and the Bzyb

(7.1%). The large difference between these probabilities is due to the assumption that the

plastic concentration is relative to the river’s runoff: the Danube’s water discharge is by far

the largest (6,489 m3/s and the others are <1,496 m3/s). However, when looking at the results

region-wise, the outcome varies (although the Danube is always dominant). For instance, in

the North-West region, the Danube, Dniepr, and Dniester are probably the only sources.

In addition, by calculating the Shannon entropy, it as been found that for simulations in

which particles are allowed to strand, the plastic particle source can be back-tracked over a

time t of five years in the open Black Sea. After five years, all the plastic has beached and cannot

be back-tracked anymore, at least along the Southern coast. This is because particles tend to

beach along the Southern shores, as a consequence of the northerly winds and the induced

Stokes drift. Thus, the source of beached particles in that region and in the corresponding

coastal zone can only be back-tracked over a maximum time t of two years.
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The main benefit of using Bayesian inference for plastic pollution is that it can potentially be

applied to any region, globally or locally, and to any plastic fragment size-range. In addition,

because of the definition of the Bayes’ theorem, the results can be updated and improved as

soon as new observational data is reported. Nevertheless, using Bayesian statistics has also

some down sides. It is mainly based on the previous knowledge of a specific system, including

a prior idea of where the plastic could come from. For instance, in the case of the Black Sea for

which the prior information is limited, it would be difficult, presently, to generate satisfying

results for sources other than rivers. Plus, it largely depends on what the user considers as a

source of plastic or not. Hence, before applying this method, it is necessary to clearly define

what can be or cannot be a source and to assess the quality of the prior information related to

that source.

Overall, and in conclusion, using Bayesian inference is a promising tool to be used to back-

track the source of floating marine debris and to better understand the pathways of plastic in

the marine environment. However, an imperative aspect missing here is the validation of this

approach by observational data. Without such validation, there is no solid evidence that the

results obtain via Bayesian inference reflect the reality. It is necessary to develop and improve

such tools in order to switch from a bottom-up approach (i.e., cleaning the ocean after release)

to a top-down approach (i.e., reducing the release directly from the source) concerning ocean

plastic pollution. In fact, it would more efficient to focus on the sources of plastic to avoid

its entry into the marine environment than removing it afterwards. Therefore, identifying

plastic litter sources would as formulated by Carlson et al. (2017) "maximize the effectiveness of

prevention and response efforts by providing scientific support to the implementation of public

policies", and ideally by reducing the release of marine debris directly from their sources.
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A Observational Surveys

Fig. A: Summary of the observational survey carried out in the Black Sea.
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B Marine Litter Source

Country/Sources Bulgaria Georgia Romania Russia Turkey Ukraine Mean Score

Garbage/Sewage 5 5 5 5 3 4 4.5
Ship waste/ports 4 3 2 3 5 5 3.66

Tourism 3 4 3 4 1 3 3
Rivers 1 - - 5 5 - 3.66

Industry 1 - 1 - 4 - 2
Fishery 1 1 4 - - - 2

Table 3: Likelihood that marine litter comes from a source, 5 is the most likely, specific for the Black Sea.
From Birkun et al. (2009).
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C Regional Delimitation

Fig. C: Illustration of the regions used to determine the pie chart of the sources probabilities (Fig.4.2)
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D Density Maps

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j)

Fig. D: 1-year average density of particles advected from each source: a) Danube; b) Dniepr; c) Dniester;
d) Coruh; e) Kizilirmak; f) Rioni; g) Sakarya; h) Yesilimark; i) Kodori, j) Bzyb
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E Source Probability Sampled Data

River/Station 1 2 3 4 5 6 7 8 9 10

Danube 0.84 0.85 0.71 0.79 0.83 0.68 0.77 0.74 0.77 0.81
Dniepr 0.11 0.11 0.23 0.17 0.13 0.27 0.19 0.22 0.19 0.15

Dniester 0.04 0.03 0.05 0.03 0.03 0.03 0.02 0.03 0.03 0.02
Rioni 0.0005 0.0008 0.0017 0 0 0 0 0 0 0
Coruh 0.0007 0 0 0 0 0 0 0 0 0

Kizilirmak 0 0 0 0 0 0 0 0 0 0
Sakarya 0 0.0007 0.0005 0 0 0 0 0 0 0

Yesilimark 0 0.0003 0.0009 0 0 0 0 0 0 0
Kodori 0.0005 0 0 0 0 0.0009 0 0.001 0 0
Bzyb 0 0.0004 0.0006 0 0 0 0 0 0 0

Table 4: Detailed probability values for the plastic sampled in the Black Sea, used to illustrate a possible
application of the Bayesian inference results, originates from a specific river at each sampling station
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F Statistical Validation

Fig. F: Sum of the probability of all the source at each grid-cells. The red dots represent the location
of the source (i.e., the river mouth). Nb: the sum is not precisely 1 for all the cells, it actually ranges
from 0.0 to 1.0000000000000004, consequence of some rounding that had to be done to compute the
Bayesian inference. However, this divergence is small enough to be tolerated.

47


	List of figures
	List of tables
	Introduction
	Theory
	Marine Litter
	The Black Sea
	Bayes' Theorem
	Entropy of Mixing

	Methods
	Hydrodynamic and Observational Data
	Lagrangian Modelling
	Lagrangian Black Sea Circulation
	Probabilistic information
	Inference Timescales

	Results and Discussion
	Shannon Entropy
	Plastic Source Back-tracking
	Tool Validity

	Conclusion
	Bibliography
	Observational Surveys
	Marine Litter Source
	Regional Delimitation
	Density Maps
	Source Probability Sampled Data
	Statistical Validation

