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Abstract 
In the Terai Arc Landscape a number of endangered faunal species, including the elusive Bengal Tiger 

(Panthera tigris tigris), depend on sub-tropical tall grassland habitats. In Bardia National Park, Nepal, 

these grasslands are predominantly located close to the Geruwa river, the eastern branch of the Lower 

Karnali system. The presence of these grasslands is associated with disturbances, such as fluvial 

processes, forest fires and anthropogenic cutting and burning. In the last decades, these grassland 

habitats are observed to be vulnerable to encroachment of woody species. In 2009, a change in the 

hydrology occurred: the dominant discharge branch of the Karnali river, bifurcating at Chisapani, shifted 

from the eastern branch (Geruwa river) to the western branch (Kauriala river), with reduced discharges 

along the western border of Bardia National Park as a consequence. This study mapped the development 

of the vegetation pattern during the last decades in the western part of Bardia National Park and related 

environmental drivers to the observed vegetation dynamics to gain insight in underlying processes and 

drivers of change. The environmental drivers considered are precipitation, discharge, flood extent and 

forest fires. Land cover dynamics derived from annual land cover maps, for which remotely sensed 

imagery (Landsat) together with data from the field is combined in a supervised Random Forest 

classification model. In the annual land cover maps, two levels of detail are considered: the level 1 

classification, from 1993 to 2019, has 4 classes and the level 2 classification, from 2013 to 2019, has 8 

classes. Accuracies obtained for the level 1 and level 2 classification are +- 85 % and 72%, respectively. 

Landscape fragmentation metrics are used to quantify the development of grassland patches. These 

metrics indicate that the grassland patches decreased in number and perimeter length, indicating a 

decrease of heterogeneity of grassland in the landscape. In relation with environmental drivers, peak 

discharges coincide with successional resets before the shift in river course in 2009. After 2009, this was 

not observed, because the discharge through the Geruwa river has decreased. Since then coverage of 

vegetation close to the Geruwa river increased, mainly involving the expansion of alluvial tall grasslands 

(Saccharum spontaneum dominant). For precipitation, only extreme precipitation events have a signal of 

successional resets in the classifications. We could not show direct relations between the used forest fire 

dataset and changes in land cover. For grassland (phantas) of which is known that yearly burning takes 

place, succession to later successional stages is prevented and they have been present for a longer time 

than other grassland patches.  
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1. Introduction 
In the outer reaches of the Himalayas the Terai Arc Landscape (TAL) stretches along the border of the 

countries Nepal and India. This sub-tropical belt encompasses an elongated lowland region known for its 

characteristic jungle flora and fauna. In the TAL settlements and agriculture alternate with forests 

providing shelter for wildlife and rivers draining the Himalayas. It is the most densely populated region of 

Nepal, in which the fertile soil supports agriculture and livelihood for more than half of the population of 

the country (CBS, 2014). In this diverse environment rare and threatened endemic species roam in 

national parks, such as the Greater One-horned Rhinoceros (rhinoceros unicornis), Asian elephant 

(Elephas maximus) and the Royal Bengal Tiger (Panthera tigris tigris) (Prajapati, 2008; Thapa et al., 2013; 

DNPWC and DFSC, 2018). To protect wildlife, conservational effort has been taken place in the Terai Arc 

Landscape, deemed as the number one tiger conservation unit by government of Nepal and WWF. Since 

1973, National Parks such as Chitwan National Park (CNP) and Bardia National Park (BNP) have been 

established in the Terai belt to conserve these unique environments. Together with 12 other countries 

the Government of Nepal has signed a treaty in 2010 (St. Petersburg Declaration) to double the global 

tiger numbers by 2022 (DNPWC and DFSC, 2018).  Important aspects in establishing healthy tiger 

numbers are space and sufficient prey, such as ungulates and primates (Støen and Wegge, 1996; DNPWC 

and DFSC, 2018). The habitat usage of ungulates in Bardia National Park is studied by Dinerstein (1979b) 

finding that only one of the six ungulate species present has a preference for the homogeneous Shorea 

robusta climax vegetation that covers around 70% of the park, while the other species are dependent on 

the more heterogeneous riverine forests and grasslands. In the similar National Park of Chitwan the 

landscape metric habitat heterogeneity is positively correlated with the principle prey for tigers 

(Bhattarai and Kindlmann, 2012). Not only for ungulates, but also other endangered faunal species such 

as the Rhino, Hispid hare, Indian hare and the Bengal Florican rely on early successional habitats. These 

early to mid-successional stages of vegetational development are of prime importance for wildlife 

habitats in Parks such as Bardia and Chitwan (Eisenberg and Seidensticker, 1976; Seidensticker, 1976; 

Dinerstein, 1979b).  

The presence of the grasslands is associated with disturbances that prohibit successional growth of 

vegetation to later successional stages. These disturbances include fluvial processes, fires, cutting and 

grazing (Seidensticker, 1976; Dinerstein, 1979b; Lehmkuhl, 1989, 1994). Fluvial processes in the west 

part of Bardia National Park are largely originating from the Karnali river, the largest tributary of the 

Ganges river, located on the western border of the park. The Babai river is dominant in fluvial processes 

in the eastern part of the park (Adhakari, 2013). Next to fluvial processes, forest fires are common in 

Bardia Park and mainly occur at the end of the dry season. On top of that, anthropogenic disturbances 

occur in BNP, which are either originating from local inhabitants or are a part of park management 

strategies. 

Grazing of cattle and cutting and burning by local inhabitants, that retards successional growth of 

vegetation, has been reduced since Bardia is established as a national park. Each year, during a short 

period in the dry season, locals are permitted to harvest thatch grass used as building material. 

Additional cutting and burning is carried out as part of park management strategies since the mid 1990’s 

to prevent encroachment and maintain habitat diversity (Brown, 1997). 
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Several aspects on changes in the vegetation cover, transition between vegetation types and impact of 

environmental factors such as hydrology and forest fires are not fully understood in Bardiya National 

Park. 

Of concern in Bardia National Park is that the grasslands have been threatened by encroachment of 

woody species (Peet et al., 1999a; Jnawali and Wegge, 2000), which follows the natural trajectory for 

grasslands (Clements, 1916) . In earlier times in BNP the grasslands were more widespread, and the area 

of these early successional habitats in the region have been declining (Peet et al., 1999a; Odden, 2007). 

This decline poses a threat to the endangered and rare fauna populations dependent on them.  

Near the Karnali river, possibly an equilibrium is maintained between the coverage of grass-dominated 

communities and the tree-dominated successional stages (Wegge et al., 1999). This equilibrium in 

vegetation cover and whether it changed has not been extensively studied in the park. 

Next to that,  Lehmkuhl (1999) suggests with an exploratory successional model of vegetation types in 

Chitwan National Park, with similar conditions and floral and faunal species, that the aerial change of 

grass communities differ from higher successional stages of grassland communities. Tall grass species 

Saccharum spontaneum, which is dominant in the floodplain grassland assemblages, covers fresh 

alluvium faster than the rate of succession from Saccharum spontaneum to other ecological important 

grassland assemblages and vegetation types. He states the clear need for development of models that 

predict change in coverage of grassland types due to fluvial disturbances. 

From a hydrological viewpoint, a change has occurred in the river course of the Karnali river during the 

2009 monsoon season. The river changed its dominant discharge channel to the western Kauriala branch 

(Van Kooten, unpublished; Sinclair et al., 2017). Combined with gravel mining and construction of an 

irrigation system the water supply to the Geruwa river and BNP could be affected (Bheri Babai Diversion 

Multipurpose Project, no date; Department of Irrigation Nepal, 2017). Ground water near the Karnali 

floodplain is largely controlled by the Karnali river. The impact of the changing Karnali branch to the 

Kauriala branch potentially lowers the groundwater head (Berghuis, 2019). A reduced groundwater head 

could favor higher successional levels of vegetation and therefore loss of habitats important for wildlife.  

From a methodology perspective, in Bardia National Park, barely any remote sensing work on the 

vegetation patterns has been conducted and no scientific work has been published that measured the 

mechanics of the space-time dynamics using satellite imagery of the park. Dinerstein (1979a) drew a map 

of a part of the study area and Sharma (1999) presented a vegetation map with GIS of the study area in 

1999, using the classes Sal forest, savannah grassland, successional forest, tall grass floodplains and 

riverbeds. A shift to later successional stages of vegetation was observed (Sharma, 1999; Odden, 2007). 

Later, Nagarkoti (2012) created a land cover map similar to the extent of Dinerstein but with fewer 

classes and no changes of land cover have been assessed between them.  

These gaps of knowledge in the development of the vegetation patterns and impact of environmental 

factors in Bardia National Park highlights the interest in understanding the spatial and temporal patterns 

of land cover based on frequent land cover maps created with remote sensing and GIS. This enables 

insight in the impact of environmental disturbances with focus on fluvial processes on the successional 

pattern of the vegetation in the park. 
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1.1 Objectives and Research Questions 
The main objective is to map the development of the vegetation pattern in Bardia Park during the last 

decades and relate environmental drivers to the observed vegetation dynamics to gain insight in 

underlying processes and drivers of change. The main question that will be answered in this study is: 

What are possible causes of changes in the vegetation pattern near the Karnali floodplain in Bardia 

National Park?  Sub questions to be answered are:  

I. What is the development of the land cover pattern in the past decades near the Karnali 

river in Bardia National Park? 

II. What is the spatio-temporal variation in the environmental drivers in Bardia National 

Park? 

III. When and where did successional resets happen and what caused these resets?  

IV. How do environmental drivers relate to changes in the vegetation pattern in Bardia 

National Park? 

On the large timescale, from 1964 to 2019, it is expected to see a decrease in early successional 

vegetation and an increase in shrub and forest area, based on literature (Dinerstein, 1979b; Peet et al., 

1999a; Odden, 2007) and experiences of staff of the National Park. On short timescales, removal of grass 

and riverine forest is expected during high discharge years, and in the years thereafter an increase in 

floodplain grasslands is expected, following the proposed successional trajectory of vegetation for the 

park and observational data (Dinerstein, 1979a; Lehmkuhl, 1989; Peet, 1997).  

The answers to the research questions can be found in the changes in the vegetation pattern derived 

from a time series of the landcover of the study area. From this land cover series vegetation indices will 

be calculated, such as changes between years, transitions between classes and metrics of habitat 

fragmentation. The transitions of class types provides detailed information on dynamics between land 

cover classes and underlying processes (Kennedy et al., 2014). Landscape fragmentation metrics assist in 

quantifying the land cover pattern obtained from the classification and provide insight into the spatial 

development of the classes (McGarigal, 2014). 

These indices will be related to environmental factors derived from a rainfall, a discharge, a flood extent 

and a forest fire dataset. Additionally, the findings of the study area are compared to two similar, close 

by environments where the change of coverage of the classes is compared. These two regions are the 

landcover near the Kauriala river, the western branch of the Lower Karnali river and near the Babai river, 

east in Bardia National Park, because of its hydrologic importance for the National Park. 

The designated method for studying these space-time dynamics are remote sensing and Geographic 

Information Systems (GIS), which have been proven useful for monitoring moist grasslands in other areas  

in the Terai Arc Landscape (Acharya, 2002; Sarma et al., 2008; Biswas, 2010), vegetation mapping in 

Chitwan (Thapa, 2011) and morphological changes of rivers (Thorne et al., 1993; Yang et al., 1999). The 

outline of this study to use remotely sensed Landsat imagery for reconstruction of a time series of land 

cover of the National park. During fieldwork, the Bardia National Park was visited to collect ground truth 

data of vegetation types for supervised classification of Landsat satellite imagery for the time series 

creation. Next to that, archives were visited to acquire aerial photographs of 1964 and a topographic 

map of 1927 that can be used to evaluate presence of settlements in the park and changes in the land 
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cover over a longer time span. The time of fieldwork has been done during November and December 

2019, falling in a dry period providing adequate circumstances for fieldwork because of the lack of clouds 

resulting in more reliable satellite imagery. The acquirement date for the satellite imagery is as close as 

possible to the field date, to reduce the chance of changes in the landscape between the image 

acquirement date and sample date.   

The structure of the report is as follows: first, the study area is described, secondly a literature review is 

provided containing key properties of the studied ecosystem and used methodology. Thirdly, the 

methodology contains the data collection of remote sensing and field samples, the classification of the 

interannual image composites and the analysis of the derived land cover data in respects to 

environmental drivers. In chapter 4, the results are presented in the order of land cover time series, 

analysis of the development of the vegetation pattern, environmental indices and the relation between 

the vegetation pattern and environmental drivers in space and time. Furthermore, a short historical and 

regional analysis of the study area is conducted. Chapter 5 contains a discussion of the results followed 

by chapter 6 with the conclusion. 

 1.2 Study area: Karnali floodplain of Bardia National Park 
Nepal is located between 80°4’ to 88°12’ East longitude and 26°22’to 30°27’ and North latitude as a 

landlocked country. When traversing the country, diverse environments are encountered, with 

subtropical jungles in the south to majestic peaks of the Himalaya in the north. The Terai Arc Landscape, 

a uniform subtropical belt stretching from west to east along the toes of the Himalaya in Nepal and India, 

is one of the regions with the highest population density, and also tiger density (DNPWC and DFSC, 

2018). In the far South West of Nepal the Royal Bardia National park (figure 1), a former hunting reserve, 

was established as the Royal Karnali Wildlife Reserve in 1976 holding an area of 368 km2. In 1984 it has 

been expanded with the Babai valley to the east, and received the status of National Park in 1988 

(Brown, 1997). Bardia National Park has a core zone area of 968 km2, surrounded by a buffer zone of 507 

km2 falling in IUCN category II (DNPWC and DFSC, 2018). 

 Three distinct seasons are present in the region. From June to September a monsoon is present 

activating intermittent and ephemeral streams, recharging groundwater and providing 90% of the 

discharge for the Karnali river (USAID, 2018). From late September to February a cool post-monsoon with 

almost absent precipitation is present in the region. From February to mid-June a hot and dry pre-

monsoon is present (USAID, 2018). Temperatures reach a maximum of 45 degrees Celsius in the hot 

season and fall to 10 degrees Celsius in January (Bolton, 1976). The mean annual precipitation is 1560 

mm (DHM, 2017). Important for the hydrology in Bardia National Park is the Karnali river system, called 

the Lower Karnali south of Chisapani. The Karnali river lies on an alluvial mega fan (USAID 2018) and 

avulsions are often present. The lower Karnali system is divided in a Geruwa branch in the east and 

Kauriala river in the west, joining together in India as a tributary to the Ganges river. Prior to 2009 the 

eastern branch Geruwa was dominant in discharge over the Kauriala branch. Since 2009 the system has 

shifted to the Kauriala river resulting in a decreased low flow discharge in the Geruwa river. The 

distribution of discharge is considered 80% for the Kauriala river and 20% for the Geruwa branch during 

low discharges. During high flow the discharge distribution is modelled to be evenly distributed over the 

two branches (Van Kooten, 2019; Sinclair et al., 2017). 
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Figure 1: Top left: Location of Nepal with Karnali catchment in blue. Top right: Delineation of Bardia National Park, with 

study area colored in red. Bottom: Bardia National Park. The mega fan of the Karnali river is located at the western border of 

Bardia National Park. The Babai valley is in the eastern part of the park. This is a false color composite (RGB = 652 for 

Landsat 8 imagery, 2019) 
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2. Literature review 

2.1 Properties of ecosystem 

2.1.1 Types of vegetation 

Dinerstein (1979a) described six major vegetation associations in the park, later modified by Jnawali and 

Wegge (1993) into seven types: Sal forests, Khair-Sissoo forest, moist riverine forest, mixed hardwood 

forest, wooded grasslands, previously cultivated fields and tall floodplain grasslands.  

Firstly, the Sal forest is discriminated. In India these forests have been studied extensively, due to their 

central role in the forest ecosystems (Puri, 1961; Champion and Seth, 1968). In Bardia National Park in 

Sal forest, a moist deciduous forest, the canopy is dominated by Shorea robusta (sal) and Terminalia 

tomentosa, with mainly seedlings and small Buchanania trees in the understory. Shorea robusta is fire 

resistant and is the most dominant tree species in BNP. Subtypes of Sal forests are dry Sal forests on soils 

with higher clay content and flat terrain and hill Sal forest on soils with probably reduced fertility and 

more excessive drainage, where the Shorea robusta trees being less dominant (Dinerstein, 1979a). 

Secondly, the Khair-Sissoo forest is prevalent along the river courses and on floodplain islands in the 

Terai due to their ability to withstand floods, which in the western part of BNP is concentrated along the 

eastern Karnali branch. This association is dominated by species as Dalbergia sissoo and Acacia catechu, 

mixed with Bombax ceiba and Streblus asper (Dinerstein 1979a) and its understory is often densely 

vegetated. Thirdly, a moist riverine forest is present, an assemblage of Mallotus phillippinensis and 

Syzigium cumini (Jnawali and Wegge, 1993). Fourthly, a mixed hardwood forest is present, named the 

Ficus glomerata-Mallotus philippinensis-Eugenia jambolana association. It borders the floodplain, 

resembling a more common ‘West Gangetic Moist Mixed Deciduous Forest' that is present throughout 

the region. Moist soil conditions have buttressing as consequence. Of the four forests, this forest 

resembles a tropical evergreen forest the most (Dinerstein, 1979b). 

Three main types of grasslands are present in the region. On floodplains tall grasses with the Saccharum 

spontaneum species are dominant (Dinerstein, 1979b; Lehmkuhl, 1989; Peet et al., 1999a). Other tall 

grass species mixed in are Phragmites karka, Narenga porphyrocoma, Saccharum bengalensis and shrubs 

like Callicarpa macrophylla. The grasses grow to approximately 3-4 meters, providing shelter to a 

number of endangered species and are able to withstand inundation. They are encountered in the 

floodplain and abandoned river channels. Saccharum spontaneum is described as a pioneer species. Its 

flowering is right after the monsoon, probably explaining their dominance in the advantage in the early 

successional stages of vegetation in wetter parts of the park (Dinerstein, 1979b). Located further from 

the floodplains phantas are present. These phantas are grasslands that previously have been used for 

agriculture and are considered to owe their existence to human interference (Dinerstein, 1979a; 

Pokheral, 1993), but this is not clear for every grassland. Nowadays they are vegetated with shorter 

grasses (< 2 meters) such as and Imperator Cylindrica, Vitiveria zizanioides and Desmostachyia bipinnata 

(Peet et al., 1999b) Also some tall grasses ( > 2 m) such as Narenga porphyrocoma and Erianthus 

ravennae can be present. Several assemblages of these grasses have been described (Dinerstein, 1979b; 

Lehmkuhl, 1989, 1994; Jnawali and Wegge, 1993; Pokheral, 1993; Peet et al., 1999a).  
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Whether the grasslands are named phantas or wooded grasslands is attributed to their disturbance 

history. If the disturbances have been caused by humans, they are called phantas (Pokheral, 1993). For 

other grasslands the origin is unclear (Pokheral, 1993). The largest phantas present are Lamkauli, 

Baghaura and Khauraha (figure 2). Another difference between wooded grasslands and phantas is that 

wooded grasslands are more savannah type, with more trees present than in the phantas. Whether a 

grassland is a phanta or a wooded grassland can change because they are considered to lie on a 

continuum (Dinerstein, 1979b). According to literature, the phantas were cultivated and grazed in Bardia 

National Park from 1965 to 1975 (Brown, 1995). Since then, because of the establishment as national 

park, villages present on Baghaura Phanta and Lamkauli Phanta were relocated out of the reserve 

(Upreti, 1994). On top of that, from 1979 to 1984, 1572 families have been removed from the Babai 

valley in the eastern part of BNP (Brown, 1997). 

 

 

 

 

 

 

 

Figure 2: Zoomed in on the study area (lightly shaded red). The grasslands of Lamkauli, Baghaura and Khauraha are shown 

which are of scientific interest for tiger habitats. Favorable grasses for ungulates are investigated by Shyam Thapa to 

increase the prey base of tigers. This is a false color composite (RGB = 652 for Landsat 8 imagery, 2019) 
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2.1.2 Ecological function 

The importance of the several present habitat types for ecology has been addressed by several studies 

and an overview is shown in Table 1 (Dinerstein, 1979). The table gives an overview for the species and 

displays the ecological importance of several habitat types and their successional stage. Missing in this 

table are the hispid hare and Bengal florican, which rely on the Erianthus Ravennae-Imperata cylindrica 

assemblage (Inskipp and Inskipp, 1983; Peet, 1997). Also missing are the introduced rhino populations 

(Jnawali and Wegge, 1993), that rely on tall floodplain grasses. Evident from this graph is that the deer, 

primary prey of tigers, rely heavily on the early and middle successional stages of habitat. For hog deer 

and rhino it is thought that the abundance and distribution of the animals is greatly affected if changes 

occur in the composition and area of tall riverine grassland (Peet, 1997; Odden et al., 2005).  

 Habitat type(s) preferred Successional stage of habitat type(s) 
preferred     

                 area % 

Hog deer Tall grass floodplain Early Less than 10 

Indian hare Tall grass floodplain Early Less than 10 

Blackbuck* Open grassland Early-middle 10 

Swamp deer Open grassland Early-middle 10 

Chital Savannah, riverine forest** Middle 30 

Nigal Savannah, riverine forest Middle 30 

Wild boar Savannah, riverine forest, Sal 
forest 

Middle to late 90 

Elephant All Early to late 100 

Barking deer Riverine forest, sal forest Middle to late 90 

Langur monkey Riverine forest, sal forest Middle to late 90 

Rhesus monkey Riverine forest, sal forest Middle to late 90 

Goral Sal forest Late 10 

Sambar 
 

Late 70 

* Blackbuck became locally extinct about 1973 but still survives as a relict herd in a sanctuary 30 km 
from Karnali-Bardia. 
** Riverine forest in this instance includes early riverine forest and the moist mixed riverine forest. 
*** The area considered in this table is the study area of Dinerstein in 1979, delineated in figure 4. 

Table 1: Habitat preference of large mammals present in Bardia National Park, after Dinerstein (1979a), names for habitats 

not adjusted to the names used further in this report. Adjusted names:  Tall grass floodplain = wet tall grassland, open 

grassland = short grassland, savannah = dry tall grassland. 
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2.1.3 Vegetation dynamics 

As previously stated, of prime importance for presence of grassland are disturbances, which can be 

fluvial, anthropogenic (cutting, grazing), fires (natural and anthropogenic), and grazing (natural). Fluvial 

processes are considered to be the most rigorous. Most of the grasslands are present on gravel bars and 

in active and abandoned stream channels. A study by Ghimire et al. (2014) has been conducted on forest 

fires in Bardia park using remotely sensed MODIS data. Results are a hazard map, with largest 

occurrences of forest fires in Sal forest and near the borders of the park.  

The forest fires are considered unable to completely set the vegetation back in succession, because of 

the fire resistant nature of tree species and the magnitude of the fires according to Lehmkuhl (1989). 

Grassland in the park is cut short by park staff and local people. Annual management practices by the 

staff includes cutting, burning and uprooting of shrubs and trees to maintain the presence of the 

grasslands. Next to the ecological importance of the grasslands, grasslands serve as thatching material 

for the houses of local people. Each year permits are given to local villagers for a restricted period in the 

year for harvesting resources (Lehmkuhl, 1994; Brown, 1997; Peet et al., 1999a). 

With no disturbances present, the line of succession is from floodplain grasslands via riverine forest with 

D. Sissoo and A. catechu to other riverine forest types, based on development of soil and better drainage 

the Ficus glomerata-Mallotus philippinensis-Eugenia jambolana if the soil is boggy or eventually to climax 

Sal forest (figure 3). Proposed is that disturbances hinder this succession resulting in floodplain 

grasslands turning into wooded grasslands due to the presence of fire, and if disturbances as fire, grazing 

or cutting continue it leads to the open grasslands (phantas).  

2.1.4 Mechanisms of vegetation-flood interaction 

Riparian vegetation and river interactions have been extensively studied (e.g. by Hupp and Osterkamp, 

1996; Lorenz et al., 1997; Vesipa et al., 2017). The three main elements of interaction are vegetation, 

sediment and the water stream. High discharges can have diminished survival rate of vegetation as 

consequence. Next to physical damage and uprooting, anoxia can occur due to prolonged inundation and 

burial by depositing fresh alluvium. Low discharge rates can have drought stress as consequence, 

adversely affecting adult vegetation and seedlings when the ground water table is too low. Flooding and 

associated clearance of vegetation together with deposition of fresh alluvium are observed in Bardia 

National Park (Dinerstein, 1979b; Lehmkuhl, 1994; Peet et al., 1999b). 
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2.2 Literature review of methodology 

2.2.1 Remote sensing studies in Bardia  

Several studies in similar ecosystems in the Terai Arc Landscape have successfully used satellite imagery 

to study space-time dynamics of land. An overview is given of their methodology, with focus on 

classification and sample collection, classified classes, and their accuracies. Also considered are the 

temporal components and incorporation of environmental disturbances. First an overview is given of the 

remote sensing studies on land cover of Bardia National Park and then an overview of similar ecosystems 

in- and outside of the Terai, followed by the use of annual land cover maps to map interannual 

vegetation transitions, providing insight in disturbance mechanisms.  

 

In 1979, Dinerstein described and drew a map of the vegetation pattern in the Karnali-floodplain of 

Bardia National Park. An area of 11.8 km2 which is part of the study area of this report is shown in figure 

Figure 4:  Land cover maps partly of Bardia National Park, from (Dinerstein, 1979a; Sharma, 1999; Nagarkoti, 2012). 

Cursive names of vegetation types represent the types used in this report. The areal extents of the studies differ. 

 

A B C 

Figure 4:  Land cover maps of the Karnali-floodplain of Bardia National Park (Dinerstein, 1979b; Sharma, 1999; Nagarkoti, 2012). 

Cursive vegetation types indicate the types used in this report (further explained in section 3.2). 
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4A with the six vegetation types distinguished by Dinerstein described in the section on vegetation types 

(section 2.1.1). Later Sharma created a land cover map (1997/1999) of Bardia park (from Odden, 2007), 

displayed in figure 4B. He used the classes successional forest, climax forest, savannah grassland, tall 

floodplain grassland and riverbeds. No information on accuracy are present for these maps. In Odden 

(2007), the data of Dinerstein and Sharma were compared (table 2). In comparison, an increase of 

vegetation successional trajectory is observed, which is in line with statements of other studies (Peet et 

al., 1999b; Jnawali and Wegge, 2000). No comparison was made with the land cover measured by 

(Nagarkoti, 2012) which delineated forest, phantas, tall grass floodplain with early successional sissoo 

forest river and sand in the south of the Karnali floodplain, using topographic map and Google Earth 

imagery. It was used to investigate habitat preference of Chital deer.  

 1976 

(Dinerstein) 

1997 

(Sharma) 

Tall floodplain 

grasslands 

8.5% 4.6% 

Savannah grasslands 

(imperata dominated) 

22.9% 18.8% 

Successional forest  44.9% 51.6% 

Sal forest 23.7% 25.0% 

 

2.2.2 Land cover studies in the Terai  

A more elaborate study on land cover has been conducted in Chitwan, for mapping habitat suitability of 

leopards (Thapa, 2011). Vegetation types in Chitwan are comparable to the types present in Bardia 

National Park. Field samples have been taken and used in a supervised classification with a Maximum 

Likelihood algorithm (ML). Vegetation classes that have been distinguished are sal forest, riverine forest 

and grasslands, subdivided in the assemblages lowland sal forest, sal mixed forest, hill sal forest, 

degraded sal forest, riverine forest (Vellar association), riverine forest (Khair-Sissoo), mixed riverine 

forest, floodplain grassland, tall grass land (swampy), tall grass land (dry), wooded grassland and short 

grassland. Half of the field samples have been used for classification and half for validation. The accuracy 

obtained was 84.5% and Kappa Index of Agreement was 0.83. Classes below 80% for user’s and 

producer’s accuracies are degraded Sal forest, riverine mixed forest, and tall grasslands. The study also 

used landscape metrics which are useful to measure spatial heterogeneity of the classes for categorical 

land cover. The metrics enable quantification of the spatial properties and geometrics patterns 

(McGarigal, 2002) that can link ecology to the spatial patterns. 

In the TAL, the following studies used land cover maps to study changes of the landscape for which a 

more general delineation of classes is used to reduce errors in transitions between classes. 

Acharya (2002) used three different change detection techniques for land cover change in Chitwan 

National Park. For the years 1988, 1992 and 2000, the study examines changes In land cover detected by 

Table 2: Land cover compared from maps shown in figure 4. Table from Odden (2007) 
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post classification comparison, image differencing and multitemporal composites. Supervised 

classification was done with Landsat TM imagery and a maximum likelihood classifier, whereas 

unsupervised classification was used for the multitemporal composite. 78% accuracy was achieved for 

the post classification. According to Acharya, the specific nature of changes is effectively studied with the 

post classification comparison if ground truth data is reliable. For post-classification comparison, errors 

can be accumulating in the comparisons of classifications due to misclassifications in the individual maps 

(Skidmore, 1999). Difficulties in obtaining sufficient accuracies in the classification can arise when classes 

have similar spectral signatures and when these signatures are inadequately selected (Li and Yeh, 1998).  

For the buffer zone around Chitwan Park the land use change in the buffer zone has been studied by 

Baidya et al. (2009). Years considered are 1972, 1992 and 1999 using Landsat imagery, topographic and 

land utilization maps. Land cover was classified with a Maximum Likelihood Classifier and training 

samples obtained from a collection of sample data. Classes were agricultural land, forest, grassland, and 

water bodies, built up and shrub land. The overall accuracy was 79.0%, with for individual classes in 

descending order the user’s accuracies: 97.7% for forest, then agriculture, grassland, waterbodies and at 

the lower end shrubland with a user’s accuracy of 48,2%.  

Furthermore, in Chitwan the extend of grasslands has been mapped in 2016 with handheld GPS and 

tracking the boundary of grassland and forest, resulting in accurate estimations of grassland coverage of 

the park (CNP, 2016).  

In Northeast India, a comprehensive study by Biswas (2010) was conducted with focus on the Jaldapara 

Wildlife Sanctuary, considering the potential of remote sensing for grassland mapping and their temporal 

dynamics. Especially the Normalized Difference Vegetation Index (NDVI) and Normalized Difference Dry 

Index (NDDI) were considered useful for classification of distinct grassland assemblages based on their 

location, structure, and composition.  At first unsupervised classification was used for creating land cover 

maps of satellite imagery (ASTER and Landsat) from 1978, 1990, 2001, 2004 and 2006. Field data 

collected with a random sampling design was used to associate the spectral clusters with ground 

vegetation, followed by change detection of the land cover maps. Level 1 consisted of grassland, 

woodland, forest, river and riverbed, and classes increased in detail in the level 3 classification: Short 

grassland, tall dense grassland, tall open riverine grassland, mosaic grassland, woodland, degraded forest 

and dense forest. Descriptions  of these classes are available in (Biswas, 2010; Biswas et al., 2014). The 

vegetation types are similar to the vegetation observed in Bardia National Park. Temporal comparison of 

the level 2 and 3 classification provided more difficulties due to decreased accuracies between the years 

and thus making the comparison less reliable. An 80% overall accuracy was achieved for the land cover 

map of 2006. For separate classes it was >70% except for degraded forest and villages on the lower end 

(0.69% and 0.68%) respectively. Since no historic ground truth data was available the indices are 

compared of the historic land cover maps to the present land cover and enabled a degree of accuracy 

assessment, especially NDVI, NDMI and wetness were better than brightness and greenness, this 

assumes no changes within vegetation types. As a quantitative analysis of the vegetation pattern, 

landscape fragmentation metrics were used to evaluate the landscape pattern and enabled comparison 

of different areas with each other. Analysis of the temporal vegetation dynamics pointed out that the 

change of river course in 1968 had a large impact for the spatial pattern of grasslands, that experienced a 

shift towards later successional stages of vegetation.  
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Another remote sensing study with a temporal component was conducted in the Indian Terai done by 

Chitale and Behera (2014), who analyzed the vegetation and land cover dynamics between 1975, 2000 

and 2010 in Katerniaghat wildlife sanctuary. This study area is located south of Bardia National Park and 

downstream of the hydrologically important Geruwa river. Satellite imagery used in this study is Landsat 

MSS (medium resolution), IKONOS and Quickbird (both high resolution satellite imagery) with accuracies 

of respectively 83.5%, 91.5%, and 95.2%. Accuracies were validated with field data and for the 

classification, decision tree classifiers were used. Geruwa river had significant impact in the form of 

flashfloods and sedimentation decreasing forest areas of the reserve. Especially during august 2009 

heavy flooding was observed. During the timespan studied, the area of grasslands increased due to 

anthropogenic and natural disturbances.  

In Manas National Park , Northeast India, Sarma et al. (2008) studied a shift in river course and its impact 

on the vegetation pattern in the park. The shift caused a change to dryer types of vegetation, that partly 

could have been prevented by more active management of the grasslands. Classes distinguished are 

alluvial grasslands, savannah grassland, shrub land (which includes forest), river and water bodies. Years 

studied are 1977, 1998 and 2006.  

An example of a corridor investigated is the Kosi river wildlife corridor in Northeast India (Areendran et 

al., 2017) with an unsupervised classification and checked with field survey. Images compared are 2009 

and 2014. A field survey was conducted for validation of the map that yielded an overall accuracy: 79.1% 

with a 0.77 Kappa Index. Next to analysis of the land cover changes in the past, a Land Change Modeler 

with Multi-Layer Perceptron (MLP) neural network is used for predictions. Using the current disturbance 

situation, Markov transition probabilities calculated the possible scenarios for the years 2020 and 2030. 

2.2.3 Land cover studies outside of the Terai 

Outside of the Terai, a study where the impact of hydrology on wetland vegetation is explicitly analyzed 

is conducted by Arieira et al. (2011) in the Pantanal, Brazil, where a driving factor for the pattern of 

vegetation communities are extreme hydrological scenarios. A promising approach was presented for 

mapping wetland vegetation combining geostatistics, field sampling and remote sensing (high resolution 

IKONOS imagery). The spatial pattern of the ecological important wetlands together with other 

vegetation communities is linked with the spatial pattern of inundation. The study shows the ability to 

classify vegetation communities by measuring structural and floristic characteristics of flora, combined 

with remotely sensed data and a DEM. Stratified random sampling or stratified systematic unaligned 

sampling is recommended by the study to prevent bias in the dataset (Lo and Watson, 1998)  

On a larger scale, Hu and Hu (2019) considered interannual land cover changes and their driving factors 

in central Asia from 2001 to 2017. Landsat imagery was classified with a Random Forest classification 

algorithm, which is a decision tree classifier creating votes based on predictor values given to the model 

(Breiman, 2001). From this study, the dominant disturbance factors on a large scale are the amount of 

precipitation and degree of drought.  

A sophisticated method for studying interannual land cover changes by disturbance mechanisms has 

been conducted in Canada (Hermosilla et al., 2018). The study looks into disturbance mechanisms such 

as fires and harvesting. A 29-year series of land cover maps was created based on a sophisticated 

algorithm incorporating image compositing and mosaicking by ‘best available pixel composites’ and post-

classification processing including transition rules for land cover. The best available pixel selection is 
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based on White et al. (2014)  and factors considered are the amount of days a pixel is off from the 

desired day of year. Presence of clouds and cloud shadows and the distance of these to the pixel is 

calculated. Together with sensor type a score for quality is given to a pixel in order to create the most 

reliable image composites for interannual comparison (Hermosilla et al., 2015a). Multicollinearity 

between predictors for the classifier (Random Forest) was calculated to find the best predictors and at 

the same time decrease the number of predictors needed and get rid of redundant information given to 

the classifier to reduce computation times. Useful combination of predictors to extract values for at each 

training pixels for developing the classification model were Landsat bands 4 and 7, EVI, TCG, elevation, 

slope and TRASP. Important to note in the study is that the classification model was considered portable 

through time (Gómez et al., 2016). One annual composite was used of which the spectral data at training 

sites was used to develop the classification model, and for other annual composites the pixels are 

labeled with the most voted class (Pal, 2005; Lawrence et al., 2006).  

From the above-mentioned studies differences in methodology are observed, such as different temporal 

and spatial resolutions, different classifiers and methods for training (mostly MLC or RF for supervised 

classification). Also, the possible vegetation classes for classification and associated accuracies differ 

between studies. The possible vegetation types to classify is dependent on the spatial resolution of 

imagery, the classification and training sample and methodology and whether a temporal component is 

present. For temporal analysis, continuous land cover maps give more information on the nature and 

magnitude of disturbance, whereas the studies with change detection between a couple of years obtain 

a more generalized understanding of the vegetation dynamics during the studied timespan.  

Part of the studies used supervised classification, where others use unsupervised classification. 

According to  Hasmadi et al. (2009) as well as  Ahmad and Quegan (2013), a supervised classification 

algorithm gives favorable results on accuracy classification compared to unsupervised. A priori 

knowledge is needed for supervised classification compared to unsupervised classification. The better 

performance of the MLC algorithm over the ISODATA algorithm (Ahmad and Quegan, 2013) is partly due 

to better separation of the spectral mean of the different classes. Several of the studies gathered the 

training samples in the field, where others gather them from high resolution data and only used field 

samples for validation.  

3. Materials and Methods 
The methodology includes how remote sensing and training data is collected and classified (section 3.1, 

3.2 and 3.3) and how the land cover maps are analyzed, with the different work packages and steps 

visualized in figure 5. The basic data contains methodology on the imagery collection (section 3.1), the 

ground truth samples of vegetation in the field (section 3.2), classification and validation of the land 

cover maps (section 3.3) and datasets on hydrology and forest fires. After classification with a Random 

Forest classifier two timeseries of landcover maps are created, the first (level 1) with four classes with a 

timespan from 1993 to 2019 with an historic situation of 1964, and the second series (level 2) with 8 

classes from 2013 to 2019. In section 3.4, the analysis of these timeseries is described to quantify 

coverage of vegetation classes, transition between classes in different spatial zones of the study area and 

development of landscape fragmentation metrics to assess habitat heterogeneity. To relate vegetational 

changes to the environment, indicators are calculated from four sources (section 3.5). The first two 
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datasets are a daily discharge and monthly precipitation dataset acquired by the Department of 

Hydrology and Meteorology (DHM) in Nepal, both measured at Chisapani weather station (figure 1). The 

third is a forest fire dataset detected with MODIS imagery (FIRMS - Active Fire Data). 

 

 

Figure 5: Flowchart from data sources to analysis steps. 
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Figure 6 shows an overview of the timing of different aspects in this study. Disturbances from 

anthropogenic cutting and burning and nature forest fires typically happen at the end of the dry period, 

and disturbances caused by extreme hydrological events during the monsoon. The seasonal composites 

are explained in the following section on remote sensing (section 3.1.4). Important to note is that a land 

cover map is based on the last months of year ‘t’ and the first months of year ‘t + 1’ (figure 6). For clarity, 

the maps are given the name of t. This means that a land cover map containing satellite data from the 

dry period beginning in 2019 and ending in 2020 is labeled ‘land cover map of 2019’. This is then also the 

same year as the disturbances happened. The disturbances happening in 2019 then have impact on the 

2019(-2020) land cover map and changes could then be observed between the 2018 and 2019 land cover 

map. 

3.1 Remote sensing data collection 
Remote sensing is beneficial in a practical and economical point of view for studying space-time 

vegetation dynamics, especially over larger spatial and temporal scales (Langley et al., 2001; Nordberg 

and Evertson, 2005).  

3.1.1 Landsat imagery 

Landsat imagery is used in this study to address the spatial and temporal component. Its missions have 

been collecting moderate resolution imagery since 1972 until present. This range in time and the fact 

that it is satellite imagery with the highest resolution that is free since 2008 makes it the most adequate 

satellite imagery for this study. On board of the Landsat satellites are the sophisticated multispectral 

imaging sensors Thematic Mapper (TM), added on Landsat 4, and the Enhanced Thematic Mapper Plus 

(ETM+) in 1999 on Landsat 7. TM has a reflective resolution of 30m and 120m for the thermal band. 

ETM+ has a resolution of 30 meters for the multi spectral bands and 60 m for the thermal infrared band. 

See table 3 (USGS, 2015). 

Figure 6: Timing of fieldwork, seasonal composites, land cover maps and disturbance factors of cutting, burning, and extreme 

hydrological events. 
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The flyover time of the Landsat satellites is 16 days, so theoretically, in the period of two Landsat 

satellites in orbit 3-4 images will be taken in a month, and in the period with only 1 satellite in orbit (LS 5 

TM from 1993 to 1999) 1-2 images per month. However, the study area has not been visited every 

month in the last decades. Figure 7 shows the Landsat images for the study area that are available for 

each land cover map.  

Landsat sensor LS 4 - 5 TM LS 7 ETM+ LS 8 OLI/TIRS Pixel size (m) 

Timespan  1982 - 1993 1984 -
2013 

1999 - present 2013 - present 
 

Coastal aerosol 
  

B1 (0.43 - 0.45) 30 

Blue B1 (0.45 - 0.52) B1 (0.45 - 0.52) B2 (0.45 - 0.51) 30 

Green B2 (0.52 - 060) B2 (0.52 - 0.60) B3 (0.53 - 0.59) 30 

Red B3 (0.63 - 0.69) B3 (0.63 - 0.69) B4 (0.64 - 0.67) 30 

NIR B4 (0.76 - 0.90) B4 (0.77 - 0.90) B5 (0.85 -0. 88) 30 

SWIR 1 B5 (1.55 - 1.75) B5 (1.55 - 1.75) B6 (1.57 - 1.65) 30 

SWIR 2 B7 (2.08 - 2.35) B7 (2.09 - 2.35) B7 (2.11 - 2.29) 30 

Thermal B6 (10.40 -12.50) B6* (10.40 -12.50) B10 (10.60 - 11.19) 30**    
B11 (11.50 - 12.51) 

 

Panchromatic 
 

B8 (0.52 -0.90) B8 (0.50 - 0.68) 15 

Cirrus 
  

B9 (1.36 - 1.38) 30 

Table 3: Landsat missions and spectral bands. Adapted from USGS (2015). Band numbers with wavelengths in micrometers. 

* LS 7 Thermal data was acquired with high and low gain settings, therefore two Band 6 files are delivered ** Data is 

recorded at a coarser pixel size and upsampled. Original pixel size of thermal data  is 60 m (TM), 120 m (ETM+) and 100 m 

(TIRS). 

 

Figure 7: Available Landsat imagery for Bardia National Park. Note that the years shifted to one year earlier (Landsat was for 

example available from February 2013 and onwards). This was explained in figure 6.  
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The images taken by Landsat 5, 7 and 8 will be used in the timeseries. Some years have few images 

(figure 7), limiting the creation of land cover maps for these years. In figure 8 a flowchart of the process 

from image selection to land cover timeseries is shown. Data input is shown in orange. 

3.1.2 Preparation of imagery 

The important part for timeseries is that atmosphere, sensor, energy source and earth surface itself can 

cause unwanted disturbances to the image. Since the important component studied here is the changes 

in objects on the earth surface, this should be the changing variable. To be able to do this, the other 

three components must be corrected for.  

To correct for variations of the energy source (e.g. sun angle) and atmosphere, the preprocessed Surface 

Reflectance (SR) dataset of Landsat is considered (Zanter, 2019). Although the atmospheric correction in 

surface reflectance imagery can come with additional errors (Schroeder et al.,), the Surface Reflectance 

Figure 8: Flowchart with the process from image acquirement to the land cover timeseries. 
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dataset of Landsat is chosen as advised by Young et al. (2017) because we are using multiple scenes for 

each time period. In the surface reflection there already has been corrected for the source, solar 

correction, and the atmosphere, limiting disturbances of these during classification. Further manual 

preprocessing such as radiometric correction, geometric correction and orthorectification are not 

needed since the dataset has already been preprocessed to ‘Tier 1’ quality (Zanter, 2019). 

For sensors, it is important that the imagery is preprocessed for different sensors they are measured 

from, with the desired result as if the images are all taken with the same sensor (Hall et al., 1991). To 

provide continuity in data and since the OLI sensor has different specifications for the bands than TM 

and ETM+ sensors, the Landsat OLI images have been corrected to Landsat 7 ETM+ images using 

coefficients provided by Roy et al. (2016). Secondly, Landsat 7 endured a failure of the Scan Line 

Corrector from 2003 to present, resulting in gaps in the images. This is addressed by a gap filling 

algorithm using imagery right in front or right after the date and will introduce some errors in the 

classification to an acceptable margin.  

Thirdly, clouds and cloud shadows can impede correct observations. Cloud masking has been done by 

selecting pixels that contain clouds or cloud shadows, and then updating the imagery so contamination 

pixels are not present anymore. The information on which pixels contain clouds or cloud shadows is 

available via metadata of the Tier 1 Surface Reflectance dataset of Landsat. The script Fmask (Zhu et al., 

2015) has been used to create those cloud-masked images making use of the above mentioned 

algorithm. Lastly, the pixel values of several images per year created in the dry period have been 

combined and their median pixel value is taken to get rid of outliers.  

In the past decades, the sensors have taken millions of images, which in recent developments of cloud 

platforms such as Google Earth Engine (GEE) have become easier to handle. GEE is cloud platform 

software that contains open access imagery of several imaging sensors, such as Landsat, Sentinel and 

MODIS. This makes the creation of time series less time-consuming (Gorelick et al., 2017). Remote 

sensing algorithms for image enhancement, image classification and cloud masking are also available and 

can be edited (Gorelick et al 2017). Therefore, to create a time series on a yearly basis GEE is used. 

3.1.3 Spectral metrics 

To enhance the spectral information available, metrics are developed to increase the detection 

possibilities of the earth surface objects. Indices commonly use different bands together in a formula to 

enlarge differences or apply a transform to the bands. Vegetation reflects low in the red region and high 

in the near-infrared region compared to other objects, representing their photosynthecal activity. Indices 

based on this principle is NDVI, which is useful for vegetation type discrimination, being a measure for 

the chlorophyll and energy absorption of vegetation and enables biomass calculation (Rock et al., 1986; 

Myneni et al., 1995; Beeri et al., 2007). Other indices are the NDDI (Normalized Differenced Drought 

Index) that exploits the lower reflectance values of moist objects compared to dry objects (Rouse et al., 

1973). Biswas 2010 uses NDDI successfully in Jaldapara National Park in India for discriminating between 

grasslands comparable in composition to grasslands encountered in Bardia. Next to that, remote sensing 

studies often use the Tasseled Cap Transformation, which filters useful spectral information from the 

bands of a sensor to calculate the spectral indicators Brightness, Greenness and Wetness of an image 

(Crist and Cicone, 1984). This transformation has proven to be useful in detecting disturbances in forest, 

different land cover types and different grassland types. 
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3.1.4 Seasonality 

Adding seasonal spectral data reveals an improvement of the classification accuracy (Kelley et al., 2018), 

where for the mapping of coffee plantations the use of three seasonal composites in a year significantly 

increased accuracy of the classification with 7,8%-20,1% . To include seasonality two composites for each 

annual land cover map are created (illustrated in figure 6). The months per composite are October-

November-December and February-March-April. The vegetation differs in phenology between these 

periods (Dinerstein, 1979a), which causes different reflectance values of the vegetation classes during 

different seasons and enhances the classification accuracy. Three-month periods are taken to make sure 

enough Landsat imagery is available.  

3.2 Ground truth data collection 
Field work has been done to have a clear idea of the vegetation types, and field samples have been taken 

for training the classification model and for validating the accuracy of the land cover maps. Ground 

truthing is an important aspect in land cover classification for both training the classification model and 

validation of the accuracy of the classified maps (FAO, 2016). During fieldwork, the following data was 

recorded: coordinates with a handheld Garmin GPS, vegetation type, height, cover and dominant 

species, further explained in this section.  

3.2.1 Vegetation classes 

For this study for the following vegetation types field samples will be collected to obtain the spectral 

signatures of the desired vegetation types for supervised classification. Choice for which vegetation 

types to classify has been done on the basis of literature on vegetation in Bardia National Park 

(Dinerstein, 1979a; Jnawali and Wegge, 1993; Peet et al., 1999a) and on remote sensing studies in similar 

environments (Sarma et al., 2008; Biswas, 2010; Arieira et al., 2011; Thapa, 2011; Biswas et al., 2014). 

The classification on level 2 detail use the following classes:   

- Sal forest  

- Riverine forest  

- Shrublands 

- Dry tall grasslands (savannah) 

- Short grasslands (phantas) 

- Wet tall grasslands (floodplain) 

- Water 

- Bare soil 

For the level one classification the classes forest, grassland, bare and water are used. Including shrubland 

in the classification as intermediate step between grassland and forest did not have the desired 

accuracies during the first test runs.  
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This choice for classes has been made according to the description of vegetation species mentioned in 

section 2.1 Properties of ecosystem and the classes used in other land cover studies with a temporal 

component as described in section 2.2 Literature review of methodology. At an initial classification level, 

grasslands, forest and shrubland can be spectrally separated in the TAL (Biswas et al., 2014). For 

grasslands, Biswas et al. (2014) used NDVI and NDDI indices to distinguish riverine grassland from non-

riverine grasslands. For short and tall grasslands, the moisture gradient proved important. The three 

subtypes of Sal forest have been combined to (climax) Sal forest, because of the similarity in composition 

and ecological function (Dinerstein, 1979b) and expected troubles with discriminating in spectral 

signatures, especially considering time-series analysis. Riverine forest has been chosen to classify 

separately from Sal forest due to its ecological function for ungulates (Dinerstein, 1980) The different 

types of riverine forests, Dalbergia sissoo-Acacia catechu (Khair-Sissoo forest) and the Ficus glomerata-

Mallotus philippinensis-Eugenia jambolana forest association have been combined to the class “riverine 

forest”. An extra class for shrubs is chosen to be able to classify the intermediate step between grass to 

Sal or riverine forest succession. Shrublands entails no distinct vegetation assemblage recorded by 

Dinerstein (1979b), Jnawali and Wegge (1993), but has been used in the Terai by Biswas (2010) and 

(Sarma et al., 2008) and provided interesting successional information on impact of disturbances in 

Canada  (Hermosilla et al., 2015b). Discrimination between shrubland and other classes at the sample 

locations is based on height and cover of the shrubs and forests.  

3.2.2 Classification of grassland types 

For the classification classes, assemblages have been combined to more elementary classes named in 

Dinerstein (1979b) shown earlier in table 2 in the study area section 2.1 . Grasslands will be divided into 

wet tall grasslands (floodplain), short grasslands (phantas) and dry tall grasslands (savannah). These 

three grassland classes will contain the grassland assemblages as shown in table 3. 

For the floodplain grasslands, the assemblages dominated by Saccharum spontaneum, Pragmites karka 

and Saccharum arundinaceum are combined. For the dry tall grasslands, assemblages dominated tall 

grasslands such as Narenga porphyrocoma and Themeda arundinacea will used, together with patches of 

Imperata cylindrica grasslands which are invaded by tall grasses such as and Erianthus ravennae and, 

again, Narenga porphyrocoma. For the short grasslands (phantas), the Imperata cylindrica assemblages 

where Imperata is dominant will be used. Other grass species commonly present on these open 

grasslands are Vitiveria zizanioides and Desmostachyia bipinnata.  
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Assemblages Vegetation class (level 2) 

Typha elephantina assemblage; permanently waterlogged sites Wet tall grassland 

Phragmites karka-Saccharum spontaneum assemblage; seasonally 
inundated, heavily grazed 

Wet tall grassland 

Phragmites karka-Saccharum spontaneum-Saccharum arundinaceum 
assemblage 

Wet tall grassland 

Phragmites karka assemblage; Tall, dense riverine grassland, seasonal and 
permanent marsh 

Wet tall grassland 

Saccharum spontaneum assemblage; Mixed Saccharum spontaneum phase, 
Saccharum spontaneum phase, Saccharum spontaneum-Dalbergia sissoo 
phase, floodplain grasslands, alluvial soils, often inundated 

Wet tall grassland 

Imperata cylindrica-Narenga porphyrocoma assemblage; (1) Saccharum 
spontaneum-Saccharum bengalense phase, edges of wet sites, newer river 
terraces. (2) Imperata cylindrica phase, sites where tall grasses invading an 
Imperata cylindirica dominated sward. 

Wet tall grassland/ 
Dry tall grassland 

Imperata cylindrica assemblage; Imperata cylindrica phase, Erianthus 
ravennae phase; Imperata-Saccharum phase; dry sites, well developed soils, 
previously cultivated 

Short grasses/ Dry tall 
grassland 

Narenga porphyrocoma assemblage; Tall, dense grassland, older river 
terraces and wetter sites, influenced by fire 

Dry tall grassland 

Themeda arundinacea assemblage; Tall, dense grassland, often at forest 
edge, well developed soils, influenced by fire 

Dry tall grassland 

Sal forest Sal forest 

Dry sal forest Sal forest 

Hill sal forest Sal forest 

Khair-Sissoo forest (Dalbergia sissoo-Acacia catechu) Riverine forest 

Mixed hardwood forest (Ficus glomerata-Mallotus phillippinenis-Eugenia 
jambolana 

Riverine forest 

Moist riverine forest (Mallotus phillipinensis and Syzigium cumini) Riverine forest 

3.2.3 Ground truth data 

Characteristics of vegetation to be measured require to be of discriminating value such that the different 

vegetation types can be identified in the park. Vegetation cover and height have been proven to 

discriminate riverine grassland from non-riverine grasslands (Biswas et al., 2014). The recommendation 

from this study to focus the sampling of vegetation cover and height has been followed. Next to that, the 

dominant species of each vegetation type have been documented, enabling identification of them.  

Height is important for distinguishing between the vegetation types (Edwards, 1983). The height of the 5 

tallest trees at each sample location of 30x30 meters is averaged to indicate height of the top of the 

canopy. At places where the grasses have variable height, the 80% height was taken. To distinguish 

between the moist and dry grasslands height of the grasses is an important parameter. For example: 

Phragmites karka and Saccarum spontaneum which grow in moist conditions are high grasses, reaching 

Table 4: Vegetation assemblages present in Bardia National Park and its associated vegetation class as used in the level 2 

classification model in this study. Grass assemblages from Peet et al. (1999a). Forest assemblages are from Dinerstein (1979a) 

and Jnawali (1993) 
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easily over 2 meters high. While on the contrary, Imperata Cylindrica does not reach over 2 meters and 

populates the dryer non-riverine grasslands.  

Cover, here the projected crown cover, was expressed as a percentage (Edwards, 1983). The percentage 

indicates the area a crown covers compared to the whole plot. It indicates the density of the vegetation, 

enabling discrimination between assigning the vegetation type to the plot (Edwards, 1983). A photo was 

taken when the species is not recognized to enable identification afterwards. Important to be kept in 

mind is that the vegetation type is the most valuable data to record on the plots, it is used in the 

supervised classification for creating the vegetation map. The dominant species, cover and height have 

been used as discriminatory parameters to assign vegetation types to the plot. 

 

In table 5 the rules and dominant species per vegetation type are shown. The range of height for shrub 

land is from 0 to 5 meters. The range of short grasslands of from 0 to 2 meters. Grasses higher than > 2 

m are classified as tall grasses, being riverine or non-riverine dependent on which species were 

abundant. The < 2 m boundary is based on literature (Jnawali and Wegge, 1993; Peet et al., 1999a), 

although >3 m is named in Peet (1998) for tall grasses. For forest, the dominant species recorded at the 

sample locations are used for the riverine forest or Sal forest class.  

3.2.4 Sample scheme 

During fieldwork 359 samples have been taken. The area chosen for the sample plots is 30mx30m, 

associated with the Landsat pixel size. To obtain reliable data and results, a sample scheme was created 

containing the locations, number, and size of sample plots, together with the characteristics of the 

vegetation that would be measured. Eventually, the plan was adjusted due to safety issues. Tiger attacks 

have increased, probably due to larger tiger numbers and fewer prey. Sample locations therefore were 

taken during trips with staff of the National Trust for Nature Conservation (NTNC) located in 

Thakudwara, Nepal, that conducts and facilitates research on flora and fauna in Bardia National Park. 

The locations of the samples were dependent on the route of NTNC staff and on the accessibility by 

Criteria 
Dry tall 
grasslands 

Wet tall 
grasslands Short grasslands Sal forest Riverine forest Shrubland 

Dominant 

species 

Narenga 

porphyrocoma, 

Themeda 

arundinacea, 

Erianthus 

ravennae, 

Bombax ceiba 

Saccharum 

spontaneum, 

Phragmites 

karka, 

Saccharum 

arundinaceum 

Imperata 

cylindrica, 

Vitiveria 

zizanioides, 

Desmostachyia 

bipinnata. 

Shorea 

robusta, 

Terminalia 

tomentosa 

Dalbergia sissoo, 

Acacia catechu, 

Mallotus 

phillippinensis, 

Syzigium cumini, 

Bombax ceiba, 

Lantana Camara - 

Cover > 50 % grass > 50 % grass 

> 50 % short 

grass 

> 50 % 

trees > 50 % trees > 50% shrubs 

Height > 2 m > 2m < 2m > 5 m > 5 m < 5 m 

Table 5: Dominant species per vegetation type used for assigning classes. Cover and height are used for further discrimination of classes. 
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roads. The downside of this strategy is lacking randomness and the increasing risk of bias in the dataset, 

which can result in a reduced accuracy of the vegetation map. On five locations with a view of the 

surrounding vegetation, the locations of vegetation types have been drawn to verify the vegetation type, 

and the exact location of the vegetation ground truths was recovered later via Planet satellite imagery 

(Planet Team, 2017). For these locations and other inaccessible places such as water or large fields of tall 

grasses, that were unable or unsafe to enter, the training data was collected from a distance or via visual 

interpretation of high-resolution satellite data. This imagery has a spatial resolution of 5 m and its 

acquirement date is the same moment as fieldwork time. 

3.3 Classification & validation 

3.3.1 Random Forest Classifier 

The spectral information and predictor values of pixels at the 359 sample locations is extracted from the 

2019 Landsat imagery. With the spectral information extracted from the 2019 image composite a 

classification model is trained and used to classify the annual image composites.  

Several mature classifiers are available and used for vegetation mapping. A widely used classifier is the 

Maximum Likelihood algorithm, which rests on a statistical distribution pattern of the spectral data and 

is regarded as a classic supervised classification. However, in more complex areas where spectra of 

different vegetation types show marginal differences the results of the classification are often less 

satisfactory due to the Gaussian distribution as assumption for the data (Xie et al., 2008). In a study by 

Stuart (2006) the ML classifier was able to discriminate savannas, two types of forests and open water 

within 2 pixels (60 m), although subtypes within savannas, grassland, marshland and shrub land, where 

better discriminated with a continuous classification. In studies described in the Terai, described in 

section 2.2, Maximum Likelihood and Random Forest were used most abundantly.  

A Random Forests classifier (Breiman, 2001) is an ensemble learning algorithm, producing multiple 

decision trees. For each pixel the model is applied to, votes are given by the different decision trees. It 

also uses a random subset of input predictors (Belgiu and Drăgu, 2016). A study of Shetty (2019) 

indicated the better performance of RF classifier than the CART and SVM classifiers. Shetty found that RF 

and Cart outperformed other classifiers on small sample sizes. Next to that, it was found that RF has a 

lower sensitivity to training sample quality (Xie et al., 2008). 

In this study the Random Forest model is used, considering its earlier successful use (Xiong et al., 2017; 

Kelley et al., 2018; Shetty, 2019), lower sensitivity to training sample quality and most satisfactory results 

during initial tests. 70% of the field samples have been used for training and 30% of for validation. The 

Random Forest model for classification created for the image composite of 2019 is considered portable 

through time (Gómez et al., 2016). Pixels of the Landsat composites of earlier years (1992-2019) are 

labeled with the most voted class for these pixels (Pal, 2005; Lawrence et al., 2006). 

For classification selection, several things have to be addressed regarding how the data is organized and 

what kind of information do the pixels contain (Xie et al., 2008). For Random Forest, the structure of the 

data is of importance. To prevent over classification of classes with a lower coverage, proportionally 

weighted sample distribution per class is advised (Xie et al., 2008). When balanced training sample 

amounts per class are used the underrepresentation of smaller classes is countered. The collected 
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ground truth dataset available contains approximately 50 samples per classification class, somewhat 

higher for the vegetation types tall grasslands and the more abundant Sal forest. Between 10p and 30p 

in number of data points are needed for each class, where p represents the number of spectral bands 

that are used in the classification (Xie et al., 2008). This puts the dataset of this study, according to this 

guideline, in the lower margins of the range that is suitable for RF classification. At the same time, the 

performance of Random Forest under lower datapoints is not to unsatisfactory compared to other 

classifiers (Shetty, 2019).  

The Random Forest classifier is run with the following parameters: Number of trees is set to 100, 

resulting in workable computation time. Timeouts of the software were more common at higher number 

of trees. The number of variables per split is ‘0’, the minimum size of the terminal node ‘1’, fraction of 

input to bag per tree is ‘0.5’, and out of bag mode is set to false. 

3.3.2 Validation 

For accuracy assessment the error matrix is constructed and the user’s and producer’s accuracy is 

calculated (FAO, 2016). For validation of the level 1 and level 2 classifications of year 2019 30% of the 

original dataset of ground truths is used and checked with the classification.  

For the years prior to 2019, for which no ground 

truths are taken in the field, as a first step the 

reliability is visually interpreted to determine its 

suitability for analysis, and when satisfactory (for 

example no presence of water-classified pixels 

present due to clouds, shadow or the Landsat 7 scan-

line failure at places where there is clearly forest). As 

a second step, error matrices are constructed using 

ground truths obtained from satellite imagery. This is 

only done for the level 1 classification since the 

imagery is not suitable for more detailed 

classification and only for the years 2000, 2010, 

2011, 2018 because for these years adequate 

imagery of the study area is available for validation 

via Google Earth. 

To obtain validation data via satellite imagery (1993-

2018) a grid is created with an equal distance of 1200 

meters between sample locations (figure 9). The 

location of these grid points primarily covers forest, 

so to have a better representation of the grassland, 

bare and water classes a second grid is overlain over 

the floodplain, displayed figure 9. Locations are 

assessed with Landsat imagery available via Google 

Earth and the vegetation class at the sample location (in 

total 106) is noted.  
Figure 9: Locations of sample points for validation acquired 

via Landsat imagery 
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The validation points are compared to the classified land cover classes and an error matrix is constructed 

from which the user’s and producer’s accuracy is derived. Software used for the explained survey 

collection is CollectEarth (Bey et al., 2016), significantly improving workflow of sample collection via 

Google Earth.  

3.3.3 1964 aerial photographs and historic topographic maps 

Next to the 1993-2019 series, aerial imagery of 1964 is used that enables an increase of the timeframe 

studied for aerial change of the vegetation pattern and change in river morphology. In Kathmandu old 

aerial photographs have been obtained from 1964, prior to establishment of BNP. The resolution of the 

imagery is 2-3 meters, the extent covering the whole of Bardia National Park. The images are used for 

analyzing the landcover at that time and indicating places of former settlements together with a 

topographic map of 1927 providing general historical information of the park and surrounding area, 

among which the location of villages, roads and river channels. The imagery is manually classified for the 

vegetating types forest, grassland, bare soil, water and agriculture. The individual photographs, 400 for 

Bardia Park, are combined and a point cloud is generated, followed by an orthomosaic. This orthomosaic 

is georeferenced with satellite imagery using unchanged features on the orthomosaic such as crossroads. 

After classification, the resolution of the map is resampled to 30 meters to be able to compare the 

pattern to the Landsat imagery. The software used for point cloud building and orthomosaicking is 

Agisoft Photoscan (“AgiSoft PhotoScan Standard,” 2016), georeferencing is done in ArcGIS Pro. 

Although object based image classification would be suitable for classifying the older black-white aerial 

photograph (Vogels et al., 2017), because the area studied is not extremely large and noise is present in 

the images due to the conversion from analog to digital information the chosen method is manual 

classification.  

3.4 Analysis of land cover maps 
In this section the methods for analyzing the land cover dynamics is presented. Also a description of 

which vegetational indicators are extracted, used for relating the environmental drivers to changes in the 

vegetation pattern. First, the method for the different spatial zones are explained, then the calculation of 

the landscape fragmentation metrics that assist in analyzing the development of the vegetation pattern 

and lastly the transition between classes is calculated.  
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3.4.1 Areal changes within different 

spatial zones 

Spatial differences of areal change of land cover are 

considered two ways: firstly, the division between 

inside and outside the floodplain is made. The 

border between floodplain and not-floodplain is 

based on an ALOS DEM (Tadono et al., 2014) and 

flood extent maps of the Karnali river (Van Kooten, 

2019). Secondly, to provide insight into the spatial 

distribution of land cover dynamics, the land cover 

distribution perpendicular to the Geruwa river is 

calculated. Along the center of active channel belt of 

the Geruwa river a line is drawn from north to south. 

Perpendicular to this line zones of 500 meters are 

defined and for each zone the land covers are 

calculated, the zones displayed in figure 10. This 

provides information on the areal changes within 

specific distances of the floodplain. 

3.4.2 Landscape pattern analysis 

For analyzing the landscape pattern, quantification of 

characteristics of the landscape are needed to 

compare the landscape between years and gain information on the development.  

In similar systems in the Terai, landscape metrics are used (Biswas, 2010; Thapa, 2011). Biswas (2010) 

used the metrics as a useful tool to quantify changes of the land cover maps and several metrics enabled 

comparison between other study areas in the TAL. 

In Chitwan habitat heterogeneity was measured in the field along transects (Bhattarai and Kindlmann, 

2012). The habitat heterogeneity index in this study was calculated by counting the habitat patches 

crossed along a transect and dividing the number by the length of the transect (Moe and Wegge, 1994). 

This index compares most with the landscape metric Patch Density used in this report. The finding in 

Chitwan was that the habitat heterogeneity is positively correlated to the abundance of prey for tiger 

(Bhattarai and Kindlmann, 2012). Especially fragmentation of the class is described by metrics such as 

number of patches, patch density, Euclidean Nearest Neighbor, SPLIT and Aggregation Index enable 

quantification of the fragmentation of the class (Sertel et al., 2018). 

To quantify the development of the landscape pattern landscape fragmentation metrics are used. The 

landscape components and their spatial patterns can be defined by landscape metrics, which are capable 

of measuring and characterizing the spatial patterns through time  (Da Gama Leitão and Stolfi, 2002). For 

the landscape pattern, multiple metrics are needed to cover the landscape pattern, but should be 

chosen well since some indices are highly related to each other (Turner and Gardner, 2015). To be able 

to analyze the landscape pattern objectively and quantitatively, indices are developed that effectively 

characterize the geometric and spatial properties of vegetation patterns (McGarigal, 2014). These 

Figure 10: Spatial zones with intervals of 500 meter used for 

analysis of landcover perpendicular to the Geruwa river 
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landscape metrics are based on the patch level, class level and landscape level. On the patch level the 

individual patches are considered, which are grouped per class in the class level. Landscape level metrics 

are the combination of the patch and class types in the area (McGarigal, 2014). 

For this study it is chosen to focus on the development of the grassland class, the fragmentation of this 

class is calculated because of its ecological importance. The metrics indicate important elements for 

ecology such as the boundaries of classes that are of prime importance as these represent habitats for 

the tiger and its prey (Moe and Wegge, 1994).  

Five metrics are considered to elucidate on the pattern of grassland in the park. These landscape metrics 

are described in table 5. The focus of these metrics is on the number of patches (PD), length of edges 

(ED), size of patches and aggregation of the patches (EMM_MN and AI). The metrics are calculated for 

each year of the level 1 classification between 1993-2019.  

 

Metric Description 

Patch Density (PD) Number of patches of corresponding patch type 
per unit area 

Edge Density (ED) The sum of the lengths (m) of all edge segments 
in the landscape, divided by the total landscape 
area (m2) 

Landscape Shape Index (LSI) A standardized measure of patch compactness 
that adjusts for the size of the patch 

Euclidean Nearest Neighbor Distance Mean 
(EMM_MN) 

Shortest straight-line distance (m) between a 
focal path and its nearest neighbor of the same 
class 

Aggregation Index (AI) The ratio of the observed number of like 
adjacencies to the maximum possible number of 
like adjacencies given the proportion of the 
landscape compromised of each patch type, given 
as percentage 

 

Table 6: Landscape fragmentation metrics used for quantification of the vegetation pattern (McGarigal, 199AD, 2002; Plexida 

et al., 2014). Lower part of table from Sertel et al. (2018). 

 ff 
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3.4.3 Transitions between classes  

Transitions between classes are calculated on a pixel basis with a yearly timestamp (Mas and Vega, 

2012). Per year a matrix is calculated containing the transitions between all the land cover classes.  The 

transition matrices are calculated by taking the transition of a pixel of year t to year t + 1. For the level 1 

classification 16 combinations are possible, for level 2 classification 64 combinations are possible. 

Although transitions from for example short grass to forest is not too common as intermediate stages of 

tall grassland and shrubland are expected, these transitions are not ruled out on forehand. There will be 

a focus on the level 1 classification series from 1993 to 2019, because the precipitation and discharge 

series are available for this timeframe (figure 11). Scripts already developed that assist with the 

explained calculations are Intensity.analysis (Pontius and Khallaghi, 2019) for crosstabulation and raster 

(Hijmans et al., 2011) packages in R (https://r- project.org, R Core Team 2016). The transitions between 

classes and the trend in these transitions is used as index for vegetational change in the study area.  

3.5 Environmental indicators  
To be able to relate vegetation dynamics to the environment several datasets are obtained, and 

indicators are calculated that provide insight in changes in the environment which can impact the land 

cover pattern. The coincidence of the datasets is shown in figure 11 and the environmental indicators 

are explained in this section. 

 

3.5.1 Discharge and precipitation datasets 

The available hydrologic data contains discharge and rainfall timeseries of Bardia National Park and is 

purchased from the Department of Hydrology office in Kathmandu. The discharge timeseries contains 

maximum monthly and daily discharges from 1962 to 2015, the precipitation amount is monthly from 

1964 to 2017. Indicators used from these datasets are for each year the maximum monthly rainfall, 

maximum measured discharge, and duration of exceedance of a discharge threshold, with the threshold 

expressed in number of days per year. Extreme discharges and their recurrence times are calculated 

using the Gumble distribution based on the 54 year dataset. The timing of the extreme hydrologic events 

are compared to the areal change of the vegetation pattern.  Another hydrologic indicator used is the 

switch of dominant discharge branch of the Karnali river (Sinclair et al., 2017; Van Kooten, 2019). The 

situation of the land cover before and after year 2009 is compared to assess the impact of the change 

from the fluvial perspective.  

In literature is stated that mean average precipitation and average temperature has been increasing at 

Chisapani (Bajracharya, 2014), together with an increase in more intense but more sporadic precipitation 

Figure 11: Coincidence of datasets. 
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events (Karki et al., 2017). Cyclones are observed to be responsible for flooding in the Banke-Bardiya 

district by the Babia river (Chhetri et al., 2020). Dry spells are considered to be have become more 

frequent and longer in duration (Bajracharya, 2014; Karki et al., 2017), with probably increased water 

scarcity as a consequence.  

3.5.2 Flood extent 

Van Kooten (2019) modelled the flood extent of the Lower Karnali river for the situation of 2016-2018. 

This extent is calculated with a 2D HEC-RAS model for the recurrence times of floods of 1, 5 and 10 years. 

The land cover maps of years with extreme peak discharges are compared to the flood extent which 

provides insight on which part of the vegetation would be affected by a flood.   

3.5.3 Forest fires 

Next to hydrologic drivers, a forest fire dataset from 2000 to 2019 is obtained. The dataset flags MODIS 

pixels where fire has occurred, adding attributes such as the brightness, confidence of fire occurrence 

and time of day. The pixel of the MODIS imagery used is 1 kilometer in resolution, limiting information 

on the extent of the fire. From the dataset the number of pixels that during a year were flagged with 

presence of a forest fire is used as environmental indicator.  

3.6 Relating vegetation to environmental indicators 
For gaining insight in the driving factors of the vegetation pattern, the characteristics of the vegetation 

dynamics are related to the environmental indicators explained in the previous section. To study the 

relation plots are created with on the two axis the properties of land cover and environmental drivers 

(table 7). A statistical Pearson test is conducted to establish if the relation is statistical valid. This is done 

on a yearly basis, and years with extreme environmental events are labeled and compared to changes in 

the land cover and transitions between classes. No causal relation is established, but by additional 

knowledge of the system such as location and magnitude of changes, conclusions can be drawn on the 

outcome of the results.  

 

Vegetation Environmental drivers 

Change in land cover area Extreme discharge events 

Change in transitions of classes Extreme precipitation events 

Landscape fragmentation metrics Number of pixels that detected fires  
Duration of high discharge  
Change of dominant Karnali branch 

 

 

 

 

Table 7: The information obtained from land cover maps and environmental drivers used in this study 
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4. Results 
This section is organized in the following order: firstly, the spatial distribution and patterns of the two 

land cover classifications series are shown. Secondly, the coverage of the classes through time in 

multiple spatial zones and analysis of the vegetation pattern using landscape fragmentation metrics is 

presented. Section 4.3 contains the transitions between the land cover classes. In section 4.4, 

environmental indicators are calculated and in section 4.5 these are related to the vegetation pattern to 

gain insight in relation between the space-time dynamics of vegetation and environmental indicators. 

Lastly, in section 4.6 a short historical analysis is conducted and an overview of the classification model 

applied to segments of the Kauriala and Babai rivers is presented. In figure 12 the 352 locations of 

ground truth sampling are shown. 

4.1 Spatial distribution of land cover  

4.1.1 Level 2 classification 

Figure 13 shows seven annual land cover maps from 2013 to 2019 created with the Level 2 classification. 

The landcover of year 2019 is characterized by patches of dry tall grasses and short grasslands within the 

riverine forest, located between the Sal forest in the east and river channel in the west. Almost all 

grassland patches are in the riverine forest, located within 2 kilometers from the active Geruwa channel, 

except for the Lamkauli grassland (figure 2) The riverine forest starts to appear south of 28.55°N, 81.25°E 

and broadens downstream (2488 ha). North of this location no riverine forest is present and a cliff of +- 7 

meters in height divides the Sal forest and the floodplain (photo 1). No open grassland patches are 

present except close to the smaller rain fed streams in the eastern part of the study area. Sal forest 

dominates the eastern and northern part of the study area (6689 ha / 50.0%).  

The patches of grass within the riverine forest consist of dry tall grassland (359 ha) and short grassland 

(433 ha). The area covered by water (690 ha) represents the situation during the dry period, since 

imagery of the dry period is used. The main channel diverts at 28.59°N to the Kauriala branch of the 

Karnali river. In and near the active river channel the wet tall grasses (1185 ha) dominate the channel 

bars, and on most bars shrubland (242 ha), dry tall grasslands and riverine forest are present. On the 

western side of the Geruwa river, close to the built-up area, some bars are covered with short grassland.  
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 Photograph 1: Sal forest on top and grasses below. This marks the spatial extent of fluvial disturbances of 

the Karnali river. More southwards this boundary is lower in height. 

 

Figure 12: Sample locations in the study area 
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Figure 13: Maps of the level 2 land cover classification of the study area from 2013 to 2019 
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4.1.2 Level 1 classification 

For the level 1 classification, the spatial distribution of land cover with a five-year interval is shown in 

figure 15. At the bifurcation, the avulsion of the main channel from the Geruwa to the Kauriala branch is 

visible in between year 2005 and 2010. This avulsion happened in 2009 (Sinclair et al., 2017). The 

dynamic nature of the stream channel is visible in the relocating, appearing, and disappearing of the 

channels and bars. For vegetation, trends visible are opening up of grasslands when the situation in the 

years 1993 and 2000 are compared, and encroachment hereafter. 

Apart from the 1993-2019 series land use in 1964 is manually classified, and the land cover is shown in 

figure 14. In comparison to 1993, in 1964 the channel belt is located more to the east and grassland 

covers a larger area. In the eastern part of the study area more patches of grassland are present, 

especially close to the smaller streams originating in the Siwalik hills and close to the Lamkauli grassland. 

Interpretation has to be done with care between the 1964 and the other classified maps because the 

classification methods differs.  

 

 

 

Figure 14: Land cover of 1964 based on aerial imagery 
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Figure 15: Land cover maps with +- 5 year in between of the level 1 classification. The complete collection of maps is in appendix A 

A. 



- 41 - 
 

The 1964 map contains information of the landscape that is still remnant in the series from 1993 to 

2019. The almost completely abandoned river channel visible in figure 16 has been vegetated with 

grassland and then forest.  

Over time, significant changes are observed in the grasslands north, west and south of the Baghaura 

grassland (28.50N°, 81.25E°). The situation is shown for 4 moments in time (1964, 1993, 2007, and 2019). 

A stream channel that is present in 1964, is completely covered by grass in 1993 and forest in 2019. The 

area west of this channel experienced a transition from grassland to forest between 1964 and 1993, and 

from 1993 to 2005 grasslands increased again.  In figure 17 the general development in the southern 

part of the study area is displayed, where also the Khauraha grassland is situated (28.47N°, 81.24E°). For 

the grasslands south in the study area the trend in transition of grass to forest is different than near the 

Figure 16: Land cover of abandoned river channel near the Baghaura grassland. 

Figure 17: Land cover in the southern part of the study area.  
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Baghaura grassland. From 1964 to 1993, a large transition of grassland to forest happened. From 1993 to 

2005 a slight increase of the grasslands is observed and in 2019 more grasslands are present in the 

channel belt and the grasslands within the forest increased in extent.  

4.1.3 Location and total duration of classes (level 1) 

In figure 18, the area that has been covered by water or grass at a certain moment in time from 1993 to 

2019 is shown. For water, the presence is calculated based on the dry period (October – April), so no 

flooding is taken into account here. It shows all channels that have been active (figure 18A). The 

grasslands have been present in and near the channel belt and near smaller rain fed streams of the 

Siwalik hills (figure 18B). The amount of years water has been present is largest in the smaller streams 

and some central channels. For other channel water has been present for 5 to 10 years. Some grasslands 

have been present for the last 27 years, visualized in dark green (figure 18D).   

Figure 18: For 1993-2019, shows where water and grassland have been present (A,B) and for how many years (C,D) 

based on the land cover timeseries. 
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4.1.4 Accuracy of classifications 

Firstly, the maps discarded because of visual inspection are discussed. Secondly, the accuracies of the 
classifications are presented (all error matrices can be found in appendix C). Thirdly, unrealistic class 
transitions are shown and lastly the two levels of classification are compared.  

Decided is to not use 1995 and 2006 in the analysis of land cover dynamics due to unrealistically large 
portions of water and bare observed in the forest because of clouds and the Landsat 7 Scan-line error 
(only for the land cover map of 2006). 

The proportion of the ground truths correctly classified (overall accuracy) for the level 1 and level 2 

classification of year 2019 is 84.7% and 71.9%, respectively (table 8). For the level 2 classification of year 

2019 two additional validation runs are performed and added in appendix C (69.5% and 75.7% overall 

accuracies). Next to the overall accuracy, the user’s (UA) and producer’s accuracies (PA) are considered. 

The user’s accuracy is how often the class on the map will actually be present on the ground.  The 

producer’s accuracy is the proportion of ground truths of the reference data that is also a class in the 

classification map. For the level 1 classification, UA is highest for grassland (91.9%) and lowest for bare 

(60%) followed close by water (62.5%). PA is higher for forest (90.5%) and lowest for grassland (77.3%). 

2019 level 1 Forest Grassland Bare Water Sum UA 

Forest 38 5 0 0 43 88.4 

Grassland 3 34 0 0 37 91.9 

Bare 0 4 6 0 10 60.0 

Water 1 1 1 5 8 62.5 

Sum 42 44 7 5 98  
PA 90.5 77.3 85.7 100.0  84.7 

 

2019 level 2  

Sal 
forest 

Wet tall 
grassland 

Short 
grassland Bare Water 

Shrub
land 

Riverine 
forest 

Dry tall 
grassland Sum UA 

Sal forest 23 0 0 0 0 0 0 0 23 100.0 
Wet tall 

grassland 0 5 2 1 0 0 0 1 9 55.6 
Short 

grassland 0 1 19 1 0 2 0 2 25 76.0 

Bare 0 1 1 8 0 0 0 0 10 80.0 

Water 0 0 0 0 8 0 0 1 9 88.9 

Shrubland 0 1 2 0 0 3 2 1 9 33.3 
Riverine 

forest 1 1 1 0 0 0 10 0 13 76.9 
Dry tall 

grassland 0 1 4 0 0 3 2 6 16 37.5 

Sum 24 10 29 10 8 8 14 11 114  
PA 95.8 50.0 65.5 80.0 100.0 37.5 71.4 54.5  71.93 

Table 8: Confusion matrices of the level 1 and level 2 classification for year 2019, created with 30% of the ground truth data. 
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For the 2019 level 2 classification, the lowest user’s accuracies are observed for Shrubland (33.3 %), 

followed by 37.5% for dry tall grassland. The highest user’s accuracies are found for Sal forest (100% 

followed by water (88.9%). For the producer’s accuracy the values are lowest for shrubland, wet tall 

grassland and dry tall grassland (37.5%,50% and 54.5% resp.) and highest for Water (100%) followed by 

Sal forest (95.8%). 

The very low values for shrubland is because few samples used for accuracy estimation are shrubland. 

The classification is probably higher than displayed in the error matrices. For better overview of 

accuracies of the maps more sample locations should be used, preferably more evenly distributed over 

the classes.  

For the years 2000, 2010, 2011 and 2018 for which validation points are collected via satellite imagery 

the highest overall accuracy is observed in descending order of achieved accuracies: 2010 (86.8%), 2011 

(84.9%), 2018 (78.3%) and 2000 (75.5%). Classes typically underperforming in accuracy is bare for user’s 

accuracy and water and grassland for the producer’s accuracy. For water, the explanation can be found 

in the large seasonal differences in water coverage, and not all available satellite imagery was from the 

same date as the Landsat imagery for classification.  

Overall, the classifications of level 1 are considered useful for detecting long term trends. For interannual 

fluctuations caution should be taken with drawing conclusions. To solve this, the observed changes could 

be accompanied with visual inspection of satellite imagery to validate observed changes.  

 

Figure 19 shows unrealistic pixel transitions. Shadow present in forest and along forest edges can be 

classified as water and especially in the classifications of 1994, 1996, 1998, 2004 and 2012 large portions 

of water turned to forest, indicating that in the year before portions of forest were classified as water 

(see appendix A). Furthermore, unrealistic transitions from bare to forest happened from 1993 to 1994 

and from 2012 to 2013, meaning that more noise in the satellite images is present in these years and 

probably the overall classification of these years is less accurate.  

Figure 19: Unrealistic transitions from bare and water to forest indicates less reliable maps. Either map with timestep t has 

too much water or bare classified in the forest (most likely) or map t+1 has forest classified where in reality is bare and water. 

The total number of pixels is 171391 
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When comparing the level 2 classification with the level 1 classification, the situations are not completely 

similar. More grasslands within the channel belt are observed in the level 2 classification, being more 

sensitive for grasses with a lower density. The level 1 classification has a higher threshold for recognizing 

grasslands and therefore shows only more densely populated grasslands. On top of that, the level 2 

classification classifies at multiple places riverine forest where the level 1 classification classifies 

grassland. Summarized, compared to the level 2 classification, pixels in the level 1 classification that are 

mixed with bare and grass have a lower threshold for classifying bare compared to grassland, and for the 

boundary between grassland and riverine forest, the level 1 classification classifies more pixels as 

grassland than riverine forest.  

4.2 Temporal development of land cover 
In this section the results of the temporal dynamics of land cover area of the level 1 and level 2 

classifications are shown in more detail and in different spatial zones. Next to that, the landscape 

fragmentation metrics are used to quantify changes of the grassland class in the level 1 classification.  

4.2.1 Coverage of the level 2 classification through time 

Considering the timeframe from 2013 to 2019, the most significant trends are a decrease in bare area 

and an increase in wet tall grassland (figure 20). In figure 20, the y-axis in panel C stops at 25% for 

visualization purposes. The other 75% of the of the area outside of the floodplain is Sal forest. 

The bare area decreases from 2192 to 1373 ha, which is a decline of 37.4%. The area classified as bare in 

2013 is predominantly vegetated with wet tall grasslands in 2019. During these seven years, wet tall 

grassland experienced a growth of 280 ha to 1185 ha (an increase of 323%). Next to an increase in wet 

tall grassland, also an increase of dry tall grassland, shrubland and riverine forest on the channel bars is 

observed. In the study area, Sal forest covered 6997 ha in 2013, 6689 ha in 2019 and experienced 

fluctuations in area especially in 2015 and 2017. When considering Sal and riverine forest together, a 

decrease is observed between 2014 and 2015 and an increase from 2015 to 2019. The total area covered 

for shrubland is 239 ha in 2013, a maximum of 588 ha in 2017 and in 2019 the cover was 241 ha. Riverine 

forest covered 1718 ha in 2013 and 2488 ha in 2019. For some classes, the fluctuations between the 

years of coverage are high, indicating that error is present in the classification. This is the case for the 

year 2017, where a much larger area of riverine forest is present than in 2016 and 2018. Short grassland 

is stable, except in the year 2019. Of dry grassland in total 1.6% (218 ha) is present in 2013, increasing to 

4.4% (587 ha) in 2015, and then gradually decreasing to 2.7 % (359 ha) in 2019.  
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In the floodplain (Figure 20B), the most significant trend is the decline in bare area and the increase of 

wet tall grassland and riverine forest. From 2014 to 2015 riverine forest did decrease with 209 ha from 

1364 (26.0%) to 1155 ha (22.0%) in the floodplain and experienced from 2015 to 2019 a mean net 

increase of its area with 95 ha/year. Another significant element is from 2015 and onwards: between 

Figure 20: The coverage of the level 2 classification plotted against time. A represents the whole study area, B the floodplain 

and C outside the floodplain. Y-axis values have different meanings: For A, 100% area is the total study area (13459 ha), for B, 

100% the area of the floodplain (5248 ha) and for C 25% of the area outside the floodplain has been chosen to increase for 

visualisation purposes. The remaining 75% of the area outside the floodplain consists solely of Sal forest.  
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2014 and 2015 grasses experienced an increase and the two classified forest types a decrease, and since 

2015 forests increased again and especially shrubland and dry tall grassland experienced a decrease in 

aerial cover. The large fluctuations between riverine forest in 2015 and 2017 are likely due to errors in 

the classification.  

Outside of the floodplain, the most significant observation is the decrease between 2014 and 2015 

coinciding with a large increase of shrubland. Shrubland change occurs partly close to the perennial 

streams and the national highway that crosses the park from Chisapani to the eastern border of the 

study area. 

4.2.2 Coverage of the level 1 classification through time 

In figure 21 the percentage of area covered by the level 1 classification is plotted against time. The most 

relevant changes are a decrease of water class and an increase of bare class in 2008 and 2009. The two 

largest increases for bare is from 2679 ha (1999) to 3056 ha (2000) and from 2836 ha (2007) to 3051 ha 

the following year (2008) and 3354 ha the year thereafter (2009). Hereafter, the coverage of bare and 

water experienced a steady decline from 3354 ha in 2009 to 2044 ha in 2019 for the study area. This 

decline is also observed earlier in the level 2 classification series as discussed in the previous section. In 

2000 another increase in bare is observed from 1185 ha (1999) to 1584 ha (2000), coinciding with a 

decrease of 216 ha grassland and 116 ha of forest. Outside of the floodplain an increase of grass is 

observed of 152 ha during this period.  

The trend of forest can be divided in three periods and two events. The following three periods can be 

distinguished: a stable period from 1993 to 1998, a decreasing trend from 2001 to 2010 and an 

increasing trend from 2010 to 2019. Two events break the trend: in 1999 and 2000 a fast decrease of 

forest is observed to 8408 ha, which increases again in 2001 (8951 ha) to roughly the same coverage 

area of forest before 1999. In 2015 another decrease is observed to 8798 ha from 8974 in 2014, 

hereafter following the increasing trend again from and 2015 onwards to 9276 ha in 2019.  

The coverage of grassland experienced different trends. From 1993 to 1998 an increasing trend of 1536 

ha to 1788 ha is observed. In the years 1999, and 2000 grassland has a much higher coverage (resp. 2097 

ha and 1995 ha), followed by four more variable years. In 2001 the coverage is 1502 ha, in 2002 1747 ha, 

in 2003 it is 1517 ha and in 2004 1909 ha. From 2004 to 2007 a steady increase is observed. In 2008 and 

2009 large decreases are seen, and then an increasing trend from 2010 to 2019 to a larger coverage than 

earlier has been observed during the studied timespan.  
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Figure 21: The coverage of the level 1 classification plotted against time. A represents the whole study area, B the floodplain 

and C outside the floodplain. Light shaded columns are years with no data. Water area can be interpreted as average water 

cover during the dry season. 
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4.2.3 Location of disturbances 

Figure 22 shows the land cover distribution perpendicular to the Geruwa river. Years displayed are 

during the large observed decreases of grasslands in the years 2008 and 2009. Between 2007 and 2009, 

most changes happened within an interval of 0-1500 meters of the channel. In the first interval of 500 

meters both grass and riverine forest decreased in area, and bare increased significantly. This highlights 

the dynamic nature of the grasslands close to and within the channel belt of the Geruwa river.   

  

 

 

 

Figure 22: The coverage of the level 1 classification plotted perpendicular to the floodplain with intervals of 500 meter. 



- 50 - 
 

4.2.4 Analysis of vegetation pattern 

Figure 23 shows the landscape metrics calculated for the grassland class of the level 1 classification. Over 

the last three decades, Patch Density, Edge Density and Landscape Shape Index experience a decrease, 

whereas AI showed an increase and ENN no particular trend. The declining trend in patch density and 

edge density indicates a decrease in patches in the study area. High values are encountered in 1993, 

1994 and 1995, 1997, 2007 and 2011. Especially the values of 2007 and 2011 are much higher than the 

values of the years before and after. Patch density for 2009 is low compared to the years before and 

after.  

 

Figure 23: Landscape fragmentation metrics through time for the grassland class. 
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The metrics Patch Density and Edge Density do not follow the exact same trend. From 1998 to 2002 

Patch density has lower values than expected when following a linear decline. This means that more 

patches are found in the classified maps from 2003 to 2007 than from 1997 to 2002. Noise of the 

satellite images can interfere here, as Landsat 7 has a line scan error (from 2003 till present) which likely 

introduces some wrongly classified lines that can contribute to an increase in patch density.  

LSI shows a decrease with the same jump from 2002 to 2003 as observed for patch density and edge 

density, but the decline in trend is still present. Year 2007 and 2011 are high outliers, and lowest values 

are observed in 2017-2019. The patches have become more compacted over the last three decades. The 

aggregation index shows an increase, meaning an increased isolation of grassland patches.  

The results for the fragmentation of grassland patches can be summed up as follows: Patch Density 

shows an decrease in the number of patches, the length of the edges of the class grass with other classes 

decreased, the patches of grass have become more compact, the patches have become more connected 

to eachother and the distance between patches did not follow a clear trend.  

4.3 Transitions 
In this section the transitions between classes is shown in a Sankey plot (figure 24) which gives an 

overview of the class dynamics and their trends during the studied timespan. 

 

Figure 24: Sankey plot with transitions between classes of the level 1 classification. Thickness of connecting grey bars 

indicate size of area transitioned. 
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Figure 24 shows the transitions between each class for the years 1964, 1993, 2001, 2010 and 2019. It 

gives an overview of the transitions of classes between certain classification years. Furthermore, it 

includes the classification of year 1964, so instead of an 8- or 9-year timestep a 29-year timestep is taken 

between 1964 and 1993.  

For the comparison between 1964 and 1993, almost half (1167 ha) of the grass area at that time present 

turned into forest 29 years later. Of the other half, 660 ha stayed grassland and 791 ha turned in either 

bare or water. Agriculture turned into bare and water.  The area covered as water in 1964 is almost 

completely transitioned in other classes, and the water class in 1993 consists of all classes covered in 

1964 evenly.  

The area covered by bare and water in 1964 is comparable to the area covered in 2019, whereas the 

area covered by bare and water in 1993, 2001 and 2010 is larger. The area of grass in 1964 was larger 

than any other year, while bare and water were comparable in area to the 2019 situation. The 

successional transition from grass to forest from 2010-2019 was larger than for the comparisons of 1993-

2001 and 2001-2010.  

The transitions between classes for 1993-2001 is evenly balanced. Transitions between grass and forest 

together with transitions between water and bare are most dynamic. For 2001-2010 the largest 

transitions are seen in forest to grass and in water to bare. Comparing the situation of 2010 to 2019 

shows a large portion of bare turned into grassland, grassland turned into forest and almost no 

transitions to bare and water are present, a more static nature than observed in earlier years. 

4.4 Environmental Indicators 
In this section the possible driving factors are shown, with first the hydrological indicators based on 

discharge and precipitation, followed by a forest fire dataset.  

4.4.1 Discharge 

Extreme discharges of the Karnali river can be two- or threefold of the yearly average peak discharge, as 

observed in the years 2000, 2008, 2009, 2013 and 2014 (figure 25). The amount of the five largest 

discharges is equal or greater than 12500 m3/s, which is a recurrence time equal or greater than five 

years (figure 25). These five years with discharges that exceed a recurrence time of 5 years will be 

labeled as ‘extreme discharge years’ and compared to land cover transitions in the following section. The 

5 year recurrence interval has been chosen because it has been postulated that discharges with these 

intervals have major changes in the river courses in the Ganga Plains (Thorne et al., 1993).   
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The next hydrological indicator is the number of days in the year that a discharge of 5000 m3/s is 

exceeded (figure 26). The years of 1998, 2000, 2008 are considered as the most extreme years for 

duration of high discharge and used in the following section for relating hydrology to land cover changes.  
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Figure 25: Dataset of peak discharges with the maximum discharge per month on an annual basis (left panel).  Recurrence of 

extreme discharges at Chisapani (right panel). No data available after 2015 (Department of Hydrology and Meteorology, no date).  

Figure 26: Based on daily discharge dataset (Department of Hydrology and Meteorology, no date) the number of days in a year are 

summed to calculate the duration of high discharges greater than 5000 m3/s. Not accounted for multiple events in a year. 
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4.4.2 Rainfall 

From the monthly rainfall series the maximum monthly rainfall per year is taken and its recurrence time 

calculated (figure 27). Year 2007 and 2014 have the highest amount of rainfall in a year of 15600 mm and 

16731 mm respectively. These two years together with the years of high discharge are chosen as 

hydrologic disturbance years next to the extreme discharge years.  

        

4.4.3 Forest fires 

 

Forest fires have been most abundant in the years 2012, 2014, 2016 and 2019, based on the number of 

MODIS satellite pixels that detected a forest fire. These years are used as disturbance factor and these 

years are flagged as high disturbance years for forest fires (figure 28). 
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Figure 27: Left panel; Dataset of maximum monthly precipitation amounts per year. Right panel; recurrence rainfall time of peak 

discharges calculated with a Gumble distribution and based on a 57-year daily discharge dataset. The discharges are measured at 

Chisapani weather station and are viable for the Karnali river. The precise discharges for the Geruwa and Kauriala river are unknown. 

(Department of Hydrology and Meteorology, no date). 

Figure 28: Based on 20-year forest fire dataset the number of pixels is counted that detected a forest fire. Pixel size is 1 kilometre and 

satellite is MODIS (FIRMS - Active Fire Data) 
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4.5 Relation between land cover dynamics and environment 
In this section the changes in land cover are related to the environmental drivers derived from discharge, 

precipitation, and forest fires.  

4.5.1 Grassland to Bare transitions 

Figure 29 shows the number of hectares of grassland that converted to bare area per year for three 

distinct areas. In the study area, large numbers of hectares grassland that transitioned into bare 

coincides with the hydrologically wet years (figure 29A). Inside the floodplain, the largest transitions of 

grass to bare are observed during 2000, 2008 and 2009, coinciding with high discharge in that year. This 

contrasts with the years after the change in river course of the Karnali river: during 2013 and 2014 the 

grass to bare transitions have not been larger during the extreme discharges (figure 29B). Outside the 

floodplain, the transitions of grass to bare coincide with high precipitation years in 2007, 2009 and 2014, 

but not to all high discharge years (figure 29C). The magnitude of change for grassland is 20 times higher 

inside the floodplain compared to outside the floodplain. 

 
Figure 29: Transition from grassland to bare shown with extreme hydrological events as vertical lines. In the panel at the right-

bottom the investigated areas for B and C are displayed. 
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4.5.2 Net changes of forest and bare 

For forests, the net change is visualized in figure 30. Loss of forest is observed in 1999 and 2000, gained 

again in 2001. This large gain of forest and large decreases of the previous year incites some questions 

for the reliability of the transitions recorded. It is possible that due to errors less forest was classified in 

1999 and 2000 and in 2001 this loss is compensated for in the classification. During extreme discharges 

and precipitation events no large transitions are observed, and for the extreme discharge year of 2009 

even a gain in forest is observed. For the net change of bare large increases of bare coincide with 

extreme discharge years before the shift in river course. After 2009, this is not observed, and even large 

increases are seen. 

 

Figure 31 shows the nature of transitions for grassland on yearly basis. Transitions of grassland to water 

significantly declined after 2009. Large transitions of grassland to forest are observed for 2001 and 2019, 

which seem unrealistically high. Largest transitions of grassland to bare are in 2000, 2007, 2008 and 

2009.  

Figure 30: Net change of forest and bare classes 

Figure 31: Transitions of grassland to bare, forest and water 
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4.5.3 Correlations of environmental indicators and land cover  

Environmental indicators and yearly transition magnitudes are plotted and checked for statistical 

correlation with Pearson’s test. For extreme discharges, a correlation is present between the maxium 

discharge in a year and the amount of grassland to bare for the period between 1993 -2009. This is not 

the case for 2010-2019, where the high peak discharges of 2013 and 2014 experience no larger 

transitions from grassland to bare than years with average peak discharges (figure 32). 

Outside of the floodplain, extreme rainfall events and grassland to bare transitions show correlation, 

where the high values of 2007 and 2014 are the years with the highest precipitation events recorded and 

coinciding with highest transitions from grassland to bare. Solely observing gain for the bare class, the 

extreme discharges of 2013 and 2014 are outliers.  

For forest fires, no relation could be detected for number of MODIS flagged forest fires and the amount 

of forest that was lost (figure 32). This was also checked for the level 2 classification and transitions 

between classes did not show a correlation with the variation in the used forest fire dataset. 
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Figure 32: Correlation tests for environmental drivers and land cover class dynamics, calculated for the floodplain area. 
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Comparison between landscape metrics and hydrological indicators (figure 33) for the whole study area 

show correlation between peak discharges and edge density, patch density and edge density and years 

after an extreme discharge. For LSI compared to peak discharges the statistical hypothesis is just 

rejected. For the Aggregation index and Mean Euclidean distance no correlation was observed. 

4.5.4 Flood extent 

Figure 34 shows the results for the land cover within areas defined by flood recurrence time. This is done 

for three recurrence times of flooding: 1 year, 5 year and 10 year with flood extents of respectively 2184 

ha, 3185 hectares and 3326 hectares for the study area of this report. The inner circle represents a 

recurrence time of 1 year, the second circle of 5 years and the outer circle a 10-year recurrence time. 

The difference between a 5- and 10-year recurrence time flood is marginal. And for these recurrence 

Figure 33: Correlation test for landscape fragmentation metrics and environmental drivers, plotted for the whole study area. 
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times the number of forest hectares affected are significantly higher than for the 1-year recurrence 

discharges. From the level 2 classification can be derived that the forest type is solely riverine forest. If a 

flooding with a 5-year recurrence time would occur, 851 ha of wet tall grassland would be affected in 

2019, which is 71.8% of the total coverage of wet tall grassland in the study area.  

 

 

 

 

 

 

 

 

Figure 34: Comparison of land cover in areas defined by flood recurrence time, i.e. 1-year (inner circle), 5-year (middle 

circle) and 10-year (outer circle) recurrence intervals as modelled by Van Kooten (2019). Numbers are in hectares.  
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4.6 Historical and regional analysis 
In this section the land cover in the study area is analyzed from an historical and regional perspective to 

gain insight in their origin.  

4.6.1 Historic perspective 

Several grasslands patches found in the land cover maps of 1993 - 2019 can be traced back to the 1964 

map (figure 35). Their location is outside the active channel belt and consist of short grassland and dry 

tall grassland mainly. The grasslands Baghaura, Lamkauli and Khauraha belong to these grasslands 

(earlier described in figure 2). Grassland present on the channel bars is barely persistent from 1964 to 

2019, and together with their residence time of 5-10 years (computed in section 4.1.3, figure 18) it 

highlights their dynamic nature.  

 

 

 

 

 

Figure 35: Historic analysis of grasslands. The 1964 map is compared to grasslands present in 2010-2019 



- 62 - 
 

In maps classified by the topographic survey of Nepal (figure 36), the Lamkauli grassland can be traced 

back to 1927, consisting of the village Lathwa, underlining the anthropological origin of this grassland. A 

significant change in land cover is the deforestation, for example clearly visible between the Geruwa and 

Kauriala river.  

 

 

 

 

 

 

 

 

Figure 36: Topographic maps from the topographic survey department in Nepal, based on aerial photographs (complete maps 

in appendix E). 
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Figure 37: 1964 aerial photographs. A; the Lamkauli phanta with supposedly anthropogenic cutting practices. Darker shaded 

grass is tall grass, light grey is short grassland.  B; Baghaura grassland. C; a comparison with Chitwan National Park, where 

agriculture was present in what is now the core area of the Park. 



- 64 - 
 

Figure 37 shows the situation of the Lamkauli and Baghaura grassland on aerial photographs from 1964. 

On 37A cutting patterns are visible, highlighting the impact of antropogenic activities for Lamkauli. On 

37B is visible that the grasslands west of Baghaura are more savannah type, with trees more dispersed 

than at present in that area. No signs of a village or agriculture in Bardia is oberved. This is the case in 

Chitwan, where clearly squares for agriculutral fields are vsibile on the nowadays phantas.  

4.6.2 Regional perspective 

To gain additional insight into the land cover dynamics of the study area, two neighboring areas are 

classified with the trained models as well. To put the impact of peak discharges on vegetated area in the 

Geruwa branch in perspective, it is compared to the Kauriala branch to the west and the Babai river to 

the east (figure 38). The Kauriala river is the main branch of the Karnali river since 2009. The Babai river 

lies to the east, is mainly rainfed, and has a high hydrologic impact on the eastern side of Bardia National 

Park (Adhakari, 2013). 

A comparison of area versus time is made to (1) see whether hydrologic events are also visible in the 

other two areas and (2) to detect some artifacts in the classification, since the classifications are made 

with the same satellite images but a different mask for the study area. No ground truths are taken for 

the Kauriala river and the Babai river, but the same vegetation types are present. The results are not 

checked for accuracy. 

 

Figure 38: The three rivers shown for which the land cover near the floodplain is compared and linked with extreme 

hydrologic events 



- 65 - 
 

Firstly, the Kauriala and Geruwa river are compared with the level 1 classification. For the water class, 

the change of dominant channel from Geruwa to Kauriala is clearly observed. Whereas the area of grass 

increases in the floodplain of the Geruwa river, the floodplain of the Kauriala river experienced a 

decrease of grassland and increase of bare area since the avulsion in 2009, as shown in figure 39. 

 

Figure 39: Comparison of land cover (level 2) near Kauriala river and Geruwa river with the change of dominant channel shown as 

yellow vertical line. White vertical columns mean that the years (1995, 1997 and 2006) have no data. 

Figure 40: Comparison of land cover (level 2) near Geruwa river and Babai river with the change of dominant channel shown 

as yellow vertical line. White bars represent missing data. 
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Comparison of the land cover area near the Geruwa river and the Babai river shows the following (figure 

40): during the 2014 extreme precipitation amounts, bare area near the Babai river increased 

significantly and forest and wet tall grassland decreased, whereas this is not observed for the land cover 

near the Geruwa river. Furthermore, the coverage of bare increased during 2017, when flooding was 

recorded downstream of the Babai river (ICIMOD, 2017).  

From these comparisons the following is the main result: the active channel of the lower Karnali (so 

Geruwa or Kauriala) has a smaller grassland coverage than the other channel. For the Babai river the 

extreme rainfall in 2014 measured at Chisapani coincides with a successional setback in grass and forest 

cover. 

5. Discussion 
In this research two land cover time series of the Karnali floodplain in Bardiya National Park are 

presented, along with analysis of their spatial and temporal dynamics and the impact of environmental 

drivers.  The classification of the land cover series is supported by field data of vegetation collected in 

2019. For the analysis of the land cover time series the following elements are considered in space and 

time: the areal change of land cover classes, the spatial change perpendicular to the stream channel, 

landscape fragmentation metrics that quantify the pattern of grassland, transitions between land cover 

classes, environmental drivers derived from discharge, precipitation and forest fire datasets and lastly 

the relation in space and time between the environmental drivers and the land cover dynamics. This last 

part is predominantly done for the level 1 classification series due to the timespan of the datasets.  

The land cover time series and its derived results can only be evaluated in combination with the possible 

uncertainty of the data. The first section in this chapter will cover this. In the second section the answers 

to the research questions are given considering the results of this study, in the third section the results 

will be put in context with literature and lastly research questions and recommendations for future 

research will be provided. 

5.1 Uncertainties 
Uncertainties in the results can originate from the classification model, its input data (field samples and 

satellite image composites) and validation data (collected in the field and with Google Earth). Errors 

could also be introduced via uncertainties in the datasets of the environmental drivers.  

Firstly, errors in the input data for land cover map creation can be introduced via inaccuracies in satellite 

imagery composites and in field samples of vegetation types. Errors in the annual composites can 

originate from satellite artifacts (Landsat 7 scan-line error, presence of clouds, difference in acquirement 

date) and differences in sensor characteristics between the Landsat satellites. Recent years have more 

images available for creating the image composites, and the higher the number of images available per 

composite, the better the composite is thought to be. Furthermore, a more extended ‘best available 

pixel’ algorithm (White et al., 2014) for the satellite composites and post classification processing such as 

incorporation of logical transition rules done by Hermosilla et al. (2018) would increase reliability of the 

results. Introduction of bias in the dataset could be a source for errors, especially since an optimal 
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random clustered stratified sampling design for collecting field samples was not possible and the number 

of samples is somewhat low for optimal supervised classification. Also, misclassification in the field and 

collection of validation data with Google Earth can introduce errors. Misclassification in the field is not 

considered as a large source of error. Validation data gives insight into which degree the reference data 

is mapped correctly. Collection of validation data for land cover before 2019 was suboptimal, and with 

this also the assessment of accuracy itself for these maps. The imagery accessed via Google Earth for 

validation was not complete in coverage of the whole study area for some years and seasonal variation 

in water coverage makes validation more difficult as limited free imagery is accessible. For the level 2 

classification, too few samples for shrubland were available to accurately assess accuracy for this class.  

For older imagery it is hard to distinguish the separate classes of the level 2 classifications accurately, 

limiting validation of the classification maps before 2019.   

Uncertainties in the interpretation can originate from the following sources. Years with disturbance 

events may coincide with erroneous transitions in land cover introduced by the above-mentioned 

reasons. Also, the lack of a precise dataset of anthropogenic disturbances, such as where and when 

cutting and uprooting took place, how many permits were given for locals to enter the park and where 

active management with fire was executed. Since its expected large impact on the dynamics of 

vegetation, lack of information on this part hinders a more detailed analysis. 

Although these factors pose limitations to optimal classification accuracies, the series of land cover maps 

are of sufficient accuracy (+- 85% for level 1, +- 72% for level 2) to draw general conclusions on the 

development of the land cover pattern.  

5.2 Possible drivers of land cover change 
The outcome of the study is discussed by answering the research questions.  

I. What is the development of the land cover pattern in the past decades in the 

study area? 

The land cover pattern experienced considerable changes since 1993, especially close to the Geruwa 

river. At two moments in time large transitions from grassland to bare are observed, after which 

revegetation occurs. In 2000, the forest and grassland cover recovered to the extent observed prior to 

the disturbance, whereas for the 2009 event, the increase in grassland and forest is still ongoing in 2019. 

In 2019, the largest coverage of grassland and forest is observed for the studied timespan, while areal 

coverages for bare and water was lowest. The trend observed in the level 2 classification is in line with 

the longer timeseries of the level 1 classification and shows the land cover dynamics in more detail. 

Furthermore, it shows that the increase in the area covered by grasslands mainly involves expansion of 

the wet tall grassland class. Successional growth is observed annually in the level 2 classification, except 

for 2014 to 2015 where a setback in forest is observed coinciding with an increase in shrubland.  

Landscape metrics were used to describe the pattern of the grassland class in the level 1 classification 

From 1993 to 2019, the metrics indicated a decrease in the size and heterogeneity of the grassland class. 

These results indicate that the number of patches of grassland decreased, the length of contact of the 

grassland to other classes decreased, the grassland patches became more connected to each other and 

the shape of the patches of grassland has become more compact. Since these metrics are calculated for 
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the whole study area both the grasslands present in the stream channel and grassland present in the 

forest are considered. The signal could mainly be affected by variation in the distribution of the more 

dynamic wet tall grasslands, but also a decrease of small patches within the riverine and Sal forest is 

observed.  

II. What is the variation in the environmental drivers in Bardia National Park? 

The discharge dataset shows extreme discharges with a greater than 5-year recurrence time in 2000, 

2008, 2009, 2013 and 2014. The rainfall dataset shows extreme rainfall events in 2007 and 2014.  

In 2014 the extreme precipitation and extreme discharge coincide. Droughts are not considered in this 

report.  

For 2012, 2014, 2016 and 2018 most MODIS pixels were flagged for presence of forest fires. In the first 

10 years of the dataset, the number of pixels where fire was detected is more stable, whereas for the 

years from 2011 to 2019, the variation between years is much larger. Whether this has a connection with 

the decreased discharge in the Geruwa branch, increased anthropogenic burning or changing climate is 

not understood.  

Ghimire et al. (2014) created a fire hazard zonation map of BNP and found that more forest fires are 

present after 2008. They attribute this increase to possibly changing climatic conditions. On the other 

hand, the timing also coincides with the shift in the river course and if investigated further, the link to 

decreased discharge of the Geruwa river or increased anthropogenic management by fire could be an 

alternative explanation. 

III. When and where did successional resets happen and what caused these 

resets?  

At several moments in time successional resets happened. The first is from 1999 to 2000, when the 

coverage of bare increased heavily and forest experienced a large decrease. The observed coincidence of 

the increase in coverage of bare and the extreme discharge indicates flooding as the driving factor for 

this event. Most of the transition happened close to the river (Appendix B) obtained from the spatial 

analysis of land cover. The decrease in bare and increase of grass from 2000 to 2004 indicates regrowth 

of vegetation. Not explainable is the large transition from forest to grass observed one year earlier in 

1999. Interpretation of the result and magnitude of transitions of grassland back to forest in the 

following year suggests an erroneous classification.  

The second successional setback is observed in three separate but consecutive years. In 2007, during a 

high rainfall event, 15 ha of grassland to bare is transitioned in the east of the park close to perennial 

streams. In 2008 and 2009, large amounts of grassland are converted to bare area, coinciding with 

extreme discharges measured at Chisapani. During the extreme discharges in 2009 the main branch of 

the Lower Karnali system changed to the Kauriala river (Sinclair et al., 2017; Van Kooten, 2019). The 2008 

transitions are observed close to the Geruwa river, whereas the 2009 transitions are also observed 

further away from the floodplain. 

The third event is observed in the level two classification in 2015, where forest experienced a decrease 

and increases are observed for shrubland and the three types of grassland. The shift to earlier levels of 

successional vegetation does not coincide with either the forest fires or the hydrologic indicators. 
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Whether it can be attributed to another environmental indicator or increased uprooting and removal of 

trees in the area is unknown since detailed information on annual park management and variation 

therein is not available. After the successional reset in 2015, forest steadily increases from 2015 to 2019. 

The location of the successional resets is close to the Geruwa river in 2000, 2008 and 2009, whereas in 

2007 and 2014 the transition from grass to bare was mostly outside the floodplain. Within the 

floodplain, the forest is not older than around 27 years, since almost the complete area within the 

floodplain has been grass covered at a certain moment in time between 1993 and 2019. 

The events of 2000, 2008 and 2009 coincide with extreme discharge events of the Karnali river. This, 

together with the location of these resets close to the Geruwa river strongly indicates high discharge as 

disturbing factor. Furthermore, the duration of discharge was assessed, but the statistical relation to 

grass-bare transitions was stronger for the magnitude of high discharges. The higher rates of grass-bare 

transitions measured outside the floodplain in 2007 and 2014 coincide with heavy rainfall measured at 

Chisapani and disturbing factors are the perennial streams originating in the Siwalik hills.  

After the extreme discharges in 2009, dynamics of the water class greatly reduced. The area of water 

greatly declined, which entails that the average area of the river in the dry period did decrease. 

Decreased transitions from forest to water indicate that a smaller area of forest is eroded annually.  

During peak discharges of 2013 and 2014, no large successional transitions were observed in the 

floodplain, indicating that the reduced level of discharges in the Geruwa branch reduced impact on the 

vegetation pattern.  

IV. How do environmental drivers relate to changes in the vegetation pattern in 

Bardia National Park? 

The possible environmental drivers such as impact of magnitude of discharge, duration of discharge, 

magnitude of rainfall and shift in river course were plotted against each other and coincidence of 

discharge events and large transition events are assessed. The drivers were checked for statistical validity 

(correlation) against properties of the development of the vegetation pattern, such as change in 

coverage of a land cover class or transitions between classes.  

The shift in the river course is thought to have had a profound effect on the relation between 

environmental drivers and the vegetation pattern. Until 2009, the annual number of hectares 

transitioned from grassland to bare has a statistical correlation with the magnitude of discharge or the 

magnitude of the extreme precipitation event, dependent on the location observed (respectively 

floodplain and non-floodplain). This was not the case after 2009. 

For the years 2013, 2014 and 2019 the land cover in areas defined by flood recurrence time is assessed. 

Part of the vegetation would have been affected by floods in 2013 and 2014 according to the modelled 

flood extent, but no successional setbacks were observed. From 2015 and onwards, successional growth 

is observed and after colonization of grasses on bare soil, the vegetation types shrubland and forest 

increased in area. In 2019, almost half of the area that would be affected by a flood with a 5- or 10-year 

recurrence time was  vegetated. Due to this increased coverage of vegetation in the floodplain, hydraulic 

roughness of the stream channel is greatly increased in Bardia National Park and downstream of the 

park. If a new shift in river course would occur and the Geruwa branch would become dominant again, 
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the increased hydraulic roughness could lead to severe flooding with loss of property and lives as a 

consequence, if not properly forecasted and addressed (Baptist et al., 2007). 

For forest fires no correlation could be established for transitions between land cover classes in the level 

1 and the level 2 classification. For grasslands known to be yearly burned such as Lamkauli, Baghaura and 

Khauraha (figure 2) this measure is important to prevent succession. These grasslands have therefore 

been present for a relatively long time, at least since 1964. Smaller patches of grass close to these 

grasslands have mostly disappeared, especially east of Baghaura and north of Lamkauli. The reason why 

these patches disappeared and phantas such as Baghaura and Lamkauli are maintained as grasslands is 

presumably because of the lack of annual fires and anthropogenic cutting for these surrounding patches.  

Lacking is precise annual knowledge on anthropogenic disturbances. Persistent presence of short 

grasslands on the channel bars south west in the park, is visible in the level 2 classification. This is close 

to the built-up area and accompanied with field observations the short grasslands here are a likely a 

consequence of grazing of livestock. 

V. What are possible causes of changes in the vegetation pattern near the 

Karnali floodplain in Bardia National Park?   

To answer the main research question, the causality of the relation between drivers and changes in the 

land cover pattern is discussed. The established correlations between the land cover dynamics and the 

environmental drivers does not imply causation, but with knowledge of the system the main drivers of 

change in the vegetation pattern can be inferred. 

Before 2009, large transitions of grassland to bare were observed in years with extreme discharge events 

(in 2000, 2008 and 2009). After 2009, these successional resets were not observed anymore while 

discharges measured at Chisapani in 2013 and 2014 were of a greater magnitude than the earlier 

measured discharges. The shift in river course in 2009 is therefore considered as the cause of reduced 

(peak) discharges in the Geruwa branch, resulting in less successional resets nearby to the Geruwa river. 

Consequently, more successional growth is observed with increased coverages of grassland and forest. 

In years 2007 and 2014, years with extreme precipitation, transitions from grassland to bare occurred 

along the perennial streams. Large discharges in the perennial streams during extreme precipitation 

events are therefore considered as the driver for successional resets along these streams.  

From 2014 to 2015, a successional setback of forest cover is observed throughout the area in both the 

level 1 and level 2 classifications. From the level 2 classification is derived that the decrease in forest area 

in 2015 coincides with increased coverage of shrubland and dry tall grassland. Since then a regeneration 

of forest occurs. This event is not coinciding with a disturbance event from the datasets used in this 

study, so no relation to the environmental drivers was established. Possible explanations are intensive 

anthropogenic cutting and burning occurred in 2015, or extensive forest fires took place. 

Anthropogenic disturbances are considered the main drivers for maintaining the phanta grasslands such 

as Lamkauli and Baghaura. Historical analysis shows that these phantas have been present for at least 

since 1964 and for Lamkauli probably at least since 1927. For these phantas it is known that annual 

anthropogenic cutting and burning occurs (Dinerstein, 1979a; Brown, 1995). Before Bardia was 

established as National Park, a larger extent of savannah type grasslands was present, based on the 
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aerial photograph of 1964 (Appendix D) and its classified land cover map. Supposedly, because of 

absence of anthropogenic disturbances and slow westward shift of the Geruwa river in the last decennia 

of the 20th century, these grasslands declined in coverage. The still present phantas such as Lamkauli, 

Baghaura and Khauraha are present because successional growth is mainly deterred by anthropogenic 

measures. 

5.3 In context with literature and regional findings 

5.3.1 Historic context 

In a historical context, comparison of the grasslands of the level 1 classification to the land cover map 

created for 1964 indicates that the Lamkauli, Baghaura and Khauhara phantas have been present for at 

least a couple of decades. Going further back in time, the Lamkauli grassland can be traced back to a 

village that is mapped on the topographic map of 1927 as Lathwa. This is not the case for Baghaura and 

Khauraha. Based on the aerial photographs from 1964 (Appendix D) no villages are present within the 

park, except a tiny agricultural area close to Chisapani. According to Brown (1997) the Baghaura and 

Lamkauli phantas haven been cultivated between 1965 and 1975, one year after the date of aerial 

photographs 1964. 

5.3.2 Regional context  

In a regional context, the shift of the river course in 2009 resulted in an increase of water coverage 

during the dry period along the western branch of the Karnali river (Kauriala river), with a decreasing 

trend of forest coverage and lower coverage of grassland along this branch, as calculated in section 

4.6.2. The fluvial disturbance factors seemed to have increased in this river whereas those disturbances 

seem to have decreased along the Geruwa branch. 

For the Babai river, eastward of the Geruwa river, the level 2 classification is applied. Especially 

disturbances in the vegetation pattern are observed in 2014 and 2017, coinciding with large precipitation 

events. For these years is also known that extensive flooding of the Babai river occurred (Chhetri et al., 

2020). From 1993 to 2019, for the Babai river it is expected to have seen decreased coverage of 

grasslands because of the replacement of several villages when the park was established. However, in 

this study this is not investigated further with the level 1 classification model. An increase in extreme 

precipitation events in the region (Bajracharya, 2014; Karki et al., 2017) could mean that the magnitude 

of fluvial disturbances caused by the Babai river and perennial streams increases. This would be 

favorable for maintaining a degree of heterogeneity and also grassland habitat of endangered faunal 

species. 

For a long time, plans of creating an hydropower dam in the Karnali river near Chisapani have been 

around, which could have significant consequences on the floodplain vegetation in Bardia National Park. 

It is thought that installment of the dam will have consequences for discharge and sediment supply. 

Variation in magnitude of discharge will decrease as observed in other locations where dams have been 

built (Beck and Basson, 2003). This would result in smaller peak discharges downstream. The decreased 

peak discharges would also impact the morphodynamical changes of the Geruwa river. Changes in river 

morphology are postulated to happen during extreme discharges with recurrence intervals of 5 years or 
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larger (Richardson and Thorne, 2001). If the magnitude of extreme discharges decreases, it is less likely 

that the river course will shift to the Geruwa branch, so that it becomes the dominant discharge branch 

of the Lower Karnali system again. Installment of the dam would than make the present-day situation 

more permanent, and a shift to higher successional levels of vegetation is expected. From a 

sedimentation supply perspective, smaller amounts of sediment are expected to reach Bardia National 

Park, resulting in narrowing of the river channel (Beck and Basson, 2003).  

5.3.3 Earlier studies in Bardia 

The outcome of this study is compared to earlier findings in Bardia National Park and for other places in 

the terai with similar characteristics. No other study considered annual land cover maps for studying the 

space-time dynamics of land cover in the Terai Zone. The studies that assessed land cover changes used 

three to six moments in time to assess changes. In Canada and in the Netherlands, studies have used 

annual imagery for studying land cover dynamics, to which the results of this study can be compared.  

The land cover data of 1976 (Dinerstein) and 1997 (Sharma) indicated a decrease in tall floodplain 

grasslands and savannah grasslands, and an increase in forest, both successional and Sal forest. This is in 

line with the trend found in this study for the period between 1964 and 2000, in which a loss of 

grasslands and increase of forest is observed.  

5.3.4 In context with studies in the Terai Zone 

Other parks in the (Indian) Terai where a shift in river course occurred are the Manas reserve and 

Jaldapara Wildlife Sanctuary. In the Manas reserve, the coverage of alluvial grasslands decreased (46.8%) 

along the river branch with reduced discharges, while a 74.8% increase in savannah type of grasslands 

was observed. Water sources became scarce and a shift to drier vegetation types occurred in the 

reserve. These changes are somewhat different from those observed at Bardia National Park. In Bardia 

National Park, the succession from alluvial grasslands is observed to transition directly to riverine forest 

instead of savannah grassland (short grassland in this report), except if disturbances occur (Dinerstein, 

1979b). In the Jaldapara Wildlife Sanctuary a shift in course of the Torsa river during floods in 1968 is 

seen as one of the primary factors for decreased coverage of grassland and increase in woodland. These 

are both scenarios that could happen to Bardia National Park if the shift of the river course is permanent.  

5.3.5 In context with similar studies outside of the Terai Zone 

As described in the literature review, the study of Hermosilla et al. (2018) used an elaborate method of 

post processing using a framework of changes between annual land covers. Accuracy obtained was 

70,3% with a Random Forest classification model, resembling the accuracy achieved in this study for the 

level 2 classification with a comparable choice of land cover classes. Post-processing in the study of 

Hermosilla included a Hidden Markov Model, and logical land cover transition rules, significantly 

reducing errors in land cover change.  

In the Netherlands a similar study was conducted, specific on floodplain vegetation (Harezlak et al., 

2020). The vegetation in the floodplain has been mapped using a 35-year Landsat series, with 5-year 

steps in time taken with 5-year composites. Although this reduces the temporal resolution for analysis, 

the obtained accuracy is somewhat higher (77%). For analysis Ternary graphs with unchanged, 
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retrogression and succession on the axes was an adequate analysis for considering dynamics of land 

cover. Compared to these studies the achieved accuracies of this study are of the same magnitude. 

5.3.6 Implications for ecology and measurement practices 

The coverage of wet tall grasslands is relatively extensive at present, which is beneficial for species 

dependent on these grasslands, such as hog deer and rhinoceros. For faunal species dependent on 

dispersed grasslands in the landscape the habitat suitability is thought to have decreased over the last 

decades. With the reduced fluvial disturbances by the Geruwa river, land cover will shift to later 

successional stages in the vicinity of the channel belt. This makes anthropogenic interventions a greater 

necessity to maintain a large enough degree of disturbances for the early- to mid-successional stages of 

vegetation to be maintained in the vicinity of the channel belt. Without interventions, it is expected that 

on a longer timescale the now extensive alluvial tall grasslands will transition to more woody species 

with ultimately a homogenic riverine forest. However, if anthropogenic disturbances are extensive, the 

now alluvial tall grasslands could turn into grasslands with short grassland (more Imperata cylindrica 

dominated), such as Lamkauli and Baghaura, based on successional relationships from literature 

(Dinerstein, 1979b; Lehmkuhl, 2000).  

5.4 Future research 
For future research in the park it is interesting to focus on a more detailed level of vegetation types. 

UAVs (Unmanned Aerial Vehicles) are considered very useful for mapping floodplain vegetation at very 

high accuracies (Van Iersel et al., 2018; Van Iersel, 2020), considering vegetation height (0.17 - 0.33 m 

accuracy) and greenness. This would enable detailed monitoring of growth of grasses and transitions to 

other types of vegetation, although this has not yet been explored on more detailed grassland 

communities. Increased accuracies could be achieved by using satellite imagery with a higher spatial and 

temporal resolution (e.g. Sentinel) or imagery taken by UAVs, although the latter is more costly.  

Driving factors not considered here, but proven to have impact on the vegetation pattern are soil 

moisture and substrate. Including these, along with forest fires and anthropogenic disturbances would 

make the understanding of space-time land cover dynamics in Bardia more complete. The impact of 

forest fire was shallowly considered in this study. To gain more insights into the impact of forest fires on 

the vegetation pattern, it is advised to study forest fire events on a smaller spatial and temporal scale. 

Detailed logging of anthropogenic measurements could increase understanding of the impact of 

anthropogenic disturbances on land cover dynamics.  

For other parks in the Terai, the used methodology could successfully be implemented for assessing the 

annual development of the vegetation pattern, while the monetary costs are minimal. Two parks of 

interest are for example Chitwan National Park, where grasslands have been recorded to decline in area, 

and the Katerniaghat wildlife sanctuary located downstream of Bardia National Park. The reduced impact 

of the Geruwa river is likely of impact for the Katerniaghat wildlife sanctuary as well, and of interest is 

the consequence of the shift in river course for the vegetation there. Moreover, with the assumption 

that the composition of the vegetation types does not change, the classification model created for 2019 

could be used for years to come to monitor the land cover development, preferably with the advised 

optimizations incorporated. 
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6. Conclusion 
The land cover dynamics could successfully be connected to environmental drivers. The drivers 

considered are discharge and flooded area of the Karnali river, precipitation, and forest fires. The 

relation between environmental drivers on the space-time dynamics of the land cover in Bardia National 

Park is studied by creating annual land cover maps and by comparing the changes in land cover to 

variations in datasets of environmental drivers. The accuracy of the produced maps is sufficient to draw 

general conclusions on the land cover dynamics.  

The general pattern of grassland patches experienced a decline in heterogeneity, based on landscape 

fragmentation metrics. The outcome indicates the following for grassland patches: a decrease in 

number, a decrease in length of the perimeter, an increase in connectivity and a compaction of the 

shape. These findings indicate encroachment of the grassland patches and loss of landscape 

heterogeneity. Furthermore, the aerial coverage of grasslands was largest in 2019 compared to other 

years in the studied timespan, which is from 1993 to 2019 and separately 1964). From 1993 to 2019, 

grasslands have covered almost the whole extent of the active river channels at least one moment in 

time, which indicates that no forest stand is older than 27 years in and close to the stream channel. 

Before the shift in river course in 2009, extreme hydrologic events (in 2000, 2008 and 2009) coincide 

with considerable transitions of grassland to bare, where the coverage of grassland is revegetated over 

time after the event. For extreme discharges of the Karnali river measured at Chisapani, these transitions 

happen close to and near the Geruwa river, which is the eastern branch of the Lower Karnali system.  

The shift in river course of the Geruwa river is considered to be of significant influence on the peak 

discharges and therefore on the vegetation pattern. After 2009, no successional resets coincided with 

extreme discharges of the Karnali river, while discharges measured at Chisapani in 2013 and 2014 were 

of a greater magnitude than the earlier measured discharges. The fluvial disturbances have been 

reduced and extensive revegetation of the riverbed by early successional vegetation along and within the 

stream channel is observed, accompanied with a steady shift to later successional stages of vegetation. 

The decline of fluvial disturbances along the Geruwa river is supported by applying the classification 

model to the Kauriala river, the western branch of the Lower Karnali system. Since the shift to this 

branch in 2009, a loss of grass and forest and increase of bare and water cover is observed there.  

In years 2007 and 2014, years with extreme precipitation events, transitions from grassland to bare 

occurred along the perennial streams.  Large discharges in the perennial streams during extreme 

precipitation events are therefore considered as the driver for successional resets along these streams. 

From 2014 to 2015, a successional setback of forest cover is observed throughout the area in both the 

level 1 and level 2 classifications, while shrubland and dry tall grassland increased in coverage. This event 

This event is not coinciding with a disturbance event from the datasets used in this study, so no relation 

to the environmental drivers was established. Possible explanations are intensive anthropogenic cutting 

and burning occurred in 2015, or extensive forest fires took place not recorded by the fire dataset based 

on MODIS imagery. 

Anthropogenic disturbances are considered the main drivers for maintaining the phanta grasslands such 

as Lamkauli and Baghaura, on which annual anthropogenic cutting and burning occurs. Historical analysis 

shows that these phantas have been present for at least since 1964 and for Lamkauli presence is 
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recorded in 1927. Before Bardia was established as National Park, larger extent of savannah type 

grasslands were present, based on the land cover map of 1964 and literature. Supposedly, because of 

absence of anthropogenic disturbances and slow westward shift of the Geruwa river in the last decennia 

of the 20th century, grasslands declined in coverage especially east of Baghaura and north of Lamkauli. 

The still present phantas such as Lamkauli, Baghaura and Khauraha are present because successional 

growth is mainly deterred by anthropogenic measures.  

The changing land cover pattern with expected increase in later successional stages of vegetation in the 

vicinity of the Geruwa river in the next decade highlights the necessity to maintain a degree of 

disturbance processes to conserve the early to mid-successional vegetation types beneficial for faunal 

species in Bardia National Park. 

Increased annual data on anthropogenic activities, a more elaborate evaluation of forest fires and other 

environmental drivers such as soil moisture and substrate, or using imagery with a higher spatial or 

temporal resolution such as Sentinel satellites imagery or UAVs will increase the understanding of the 

space-time dynamics of the land cover pattern in Bardia National Park. 
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8. Appendices 
 

I. Appendices in this report 

A. Land cover maps of level 1 

B. Land cover perpendicular to Geruwa river 

C. Error matrices  

D. 1964 composite of aerial photographs 

E. Topographic maps  

II. Digital appendices 

F. Input data 

- Training samples 

- Discharge dataset 

- Precipitation dataset 

- Flood extent files 

- Forest fire dataset 

- Validation dataset 

G. Scripts (Goole Earth Engine & RStudio)  

- Creation of satellite composites 

- Classification of land cover maps  

- Land cover perpendicular to floodplain 

- Transition matrices 

- Sankey plot 

- Validation 

- Landscape fragmentation metrics 

- Rasterization of the 1964 map 

H. Output data 

- Land cover maps 

- Excel sheets with all data ‘complete-overview’ (transition data, calculated environmental 

indicators etc) 

I. Additional data 

- Topographic maps 

- Aerial photographs (1964) of Bardia National Park and Chitwan National Park 
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A. Land cover maps of the level 1 classification
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B. Land cover perpendicular to Geruwa river 

B. Land cover perpendicular to Geruwa river 
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C. Error matrices 

2000 Forest Grassland Bare Water Sum UA 

Forest 45 4 0 0 49 91.8 

Grassland 3 20 0 0 23 87.0 

Bare 0 7 10 5 22 45.5 

Water 1 4 2 5 12 41.7 

Sum 49 35 12 10 106  
PA 91.8 57.1 83.3 50.0  75.5 

       

p-value 1.43E-07 CI95 0.66 0.83 kappa 0.64 

       

2010 Forest Grassland Bare Water Sum UA 

Forest 45 5 0 0 50 90.0 

Grassland 1 14 0 0 15 93.3 

Bare 1 1 22 5 29 75.9 

Water 1 0 0 11 12 91.7 

Sum 48 20 22 16 106  
PA 93.8 70.0 100.0 68.8  86.8 

       

p-value 3.06E-15 CI95 0.79 0.93 kappa 0.81 

       

2011 Forest Grassland Bare Water Sum UA 

Forest 45 6 0 0 51 88.2 

Grassland 1 13 0 0 14 92.9 

Bare 0 1 20 7 28 71.4 

Water 0 0 1 12 13 92.3 

Sum 46 20 21 19 106  
PA 97.8 65.0 95.2 63.2  84.9 

       

p-value 1.10E-13 CI95 0.77 0.91 kappa 0.78 

       

2018 Forest Grassland Bare Water Sum UA 

Forest 46 4 0 1 51 90.0 

Grassland 5 20 1 1 27 74.0 

Bare 0 5 10 4 19 52.6 

Water 0 2 0 7 9 77.8 

Sum 51 31 11 13 106  
PA 90.2 64.5 90.9 53.8  78.3 

       

p-value 3.78-e09 CI95 0.69 0.86 kappa 0.67 
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2019 level 1 Forest Grassland Bare Water Sum UA 

Forest 38 5 0 0 43 88.4 

Grassland 3 34 0 0 37 91.9 

Bare 0 4 6 0 10 60.0 

Water 1 1 1 5 8 62.5 

Sum 42 44 7 5 98  
PA 90.5 77.3 85.7 100.0  84.7 

 

2019 level 2  

Sal 
forest 

Wet tall 
grassland 

Short 
grassland Bare Water 

Shrub
land 

Riverine 
forest 

Dry tall 
grassland Sum UA 

Sal forest 23 0 0 0 0 0 0 0 23 100.0 
Wet tall 

grassland 0 5 2 1 0 0 0 1 9 55.6 
Short 

grassland 0 1 19 1 0 2 0 2 25 76.0 

Bare 0 1 1 8 0 0 0 0 10 80.0 

Water 0 0 0 0 8 0 0 1 9 88.9 

Shrubland 0 1 2 0 0 3 2 1 9 33.3 
Riverine 

forest 1 1 1 0 0 0 10 0 13 76.9 
Dry tall 

grassland 0 1 4 0 0 3 2 6 16 37.5 

Sum 24 10. 29 10.0 8 8 14 11 
114.

0  
PA 95.8 50.0 65.5 80.0 100.0 37.5 71.4 54.5  71.93 

2019 level 2 
Second 

validation 
run 

Sal 
forest 

Wet tall 
grassland 

Short 
grassland Bare Water 

Shrub
land 

Riverine 
forest 

Dry tall 
grassland Sum UA 

Sal forest 18 0 0 0 0 1 0 0 19 94.7 
Wet tall 

grassland 0 7 0 0 0 1 0 0 8 87.5 
Short 

grassland 0 1 12 1 0 0 1 2 17 70.6 

Bare 0 1 1 9 1 0 1 0 13 69.2 

Water 0 1 0 0 5 0 2 0 8 62.5 

Shrubland 0 0 2 0 0 1 4 2 9 11.1 
Riverine 

forest 1 0 0 1 1 0 8 0 11 72.7 
Dry tall 

grassland 0 0 3 0 0 1 0 6 10 60.0 

Sum 19 10 18 11 7 4 16 10 95  
PA 94.7 70.0 66.7 81.8 71.4 25.0 50.0 60.0  69.5 
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2019 level 2 
Third 

validation 
run 

Sal 
forest 

Wet tall 
grassland 

Short 
grassland Bare Water 

Shrub
land 

Riverine 
forest 

Dry tall 
grassland Sum UA 

Sal forest 24 0 0 0 0 0 0 0 24 100.0 
Wet tall 

grassland 0 8 1 1 0 0 0 0 10 80.0 
Short 

grassland 0 1 14 1 0 0 0 1 17 82.4 

Bare 0 3 1 11 0 0 0 0 15 73.3 

Water 0 1 0 0 11 0 0 0 12 91.7 

Shrubland 1 0 1 0 0 2 1 3 8 25.0 
Riverine 

forest 1 0 1 1 0 0 13 0 16 
81. 
3 

Dry tall 
grassland 0 1 6 0 0 1 1 5 14 35.7 

Sum 26 14 24 14 11 3 15 9 116 
 

PA 92.3 57.1 78.6 78.6 100.0 66.7 86.7 55.6  75.7 
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D. Composite of aerial photographs from 1964
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E.. Topographic maps of 1927 and 1984 
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