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Abstract 
Remotely Piloted Aircraft Systems (RPAS) have become an important tool in studying glaciers and their 

surfaces as they can generate high-resolution ortho-images and digital elevation models (DEM). It is 

important to monitor the surface of the Greenland Ice Sheet (GrIS) as it has become the largest 

cryospheric contributor to sea-level rise. Glacier surface energy balance models can provide insight in 

the mass loss rate and show that turbulent fluxes can form a major component. Aerodynamic 

roughness is an important parameter in these models, for which currently a fixed value is often used. 

This paper therefore analyses the possibilities of using RPAS-derived DEMs to quantify topographic 

roughness and its impact on turbulent energy fluxes on the GrIS. To answer this question, the following 

two unique methods were developed. First, the Moving Footprint (MF) method which produces a 

roughness estimate for a single location by moving a rotating footprint of varying size over the DEM. 

This footprint then extracts transects to which commonly used microtopographic algorithms (Lettau, 

Munro, and Nield) were applied. Second, the Fixed Grid (FG) method which produces a distribution of 

roughness values over the study area, by subdividing the study area in grid cells in which commonly 

used microtopographic algorithms (Lettau, Munro, and Nield) were applied. Our results show that both 

methods can produce realistic roughness estimates for a range of scales using certain algorithms. In 

the MF method, the Lettau algorithm performs well, while in the FG method, the Munro, Nield SdElev 

and Nield Max algorithms perform well. Moreover, we prove that the simulated sensible heat fluxes 

using roughness values derived using the MF method (Lettau, 5x40m footprint) or FG method (Munro, 

Nield SdElev, 5m grid size) are as accurate as simulated sensible heat fluxes using roughness values 

obtained by aerodynamic inversion of automatic weather station (AWS) data. The implication of these 

findings are that RPAS surveys are capable of producing realistic estimates of topographic roughness 

when using the methodology developed in this study, and thus contribute to the improvement of 

turbulent energy flux estimations for areas on the GrIS where no AWS are present.  
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1. Introduction 

1.1 Background 

1.1.1 Introduction on Greenland Ice Sheet 
The Greenland Ice Sheet (GrIS) has become the largest cryospheric contributor to global sea-level rise 

as a result of both increased surface melt and runoff as well as increased ice discharge from marine-

terminating outlet glaciers (Enderlin et al., 2014; Sasgen et al., 2012). During the first decade of the 

21st century, mass loss of the GrIS was composed of surface melting which results in runoff, and ice 

discharge from marine-terminating glaciers in approximately equal parts (van den Broeke et al., 2009). 

During the period 2009-2014, 84% of the increase in rate of mass loss has been due to increased 

surface melting and runoff (Enderlin et al., 2014), implying that surface melt is the primary driver of 

GrIS mass loss on decadal and greater time scales (Nick et al., 2013; Wouters et al., 2013). It was 

expected that the surface melt of the GrIS would continue to accelerate with ongoing climate change 

(Fettweis et al., 2013). However, recent research illustrated the difficulty of extrapolating short records 

into longer-term trends as cold summers in 2010-2018 caused the surface melt to decelerate 

(Mouginot et al., 2019). Nevertheless, an average of 0.69 mm yr-1 sea level rise contribution during the 

2012-2016 period is observed (Bamber et al., 2018; Bevis et al., 2019). Thus, while the acceleration 

may be negative, it is expected that due to ongoing climate change substantial fresh water fluxes will 

be originating from the GrIS as the mass loss is increasing (Fettweis et al., 2013). Understanding the 

mass loss rate of the GrIS is of great importance due to the potential implications of this large 

freshwater influx into the surrounding oceans (Böning et al., 2016), next to Greenland’s large 

contribution to current (van den Broeke et al., 2016) and expected future sea level rise (Cuffey and 

Marshall, 2000). One way to better understand the mass loss rate is to apply glacier surface energy 

balance models (Hock, 2005). It is shown that in these surface energy balance models, turbulent fluxes 

of sensible and latent heat can form a major component and substantially influence its rate of surface 

melt (Fitzpatrick et al., 2019). The bulk aerodynamic method is commonly used to parametrise the 

turbulent fluxes. This requires the input of roughness length values, and therefore is aerodynamic 

roughness an important parameter for these glacier surface energy balance models (Smeets and van 

den Broeke, 2008). 

1.1.2 Introduction on surface and aerodynamic roughness 
Roughness is a widely used term in Earth Sciences (Smith, 2014). While the term ‘roughness’ is used 

ambiguously, it is mostly used to describe sub-grid scale topography, which in the following is referred 

to as ‘surface roughness’ (Smith, 2014). The notion of sub-grid scale topography induces one 

characteristic of surface roughness, namely its scale-dependency. It is key to refer to some grid scale 

that acts to partition roughness and topography. Therefore, an upper and lower limit should be defined 

for the analysis of surface roughness. Below the lower boundary, the measurement scale, topographic 

variations are unknown, or are indistinguishable from instrument error. Above the upper boundary, 

the partition scale, topographic variability is represented explicitly. Between the upper and lower 

boundary, it is parametrised as surface roughness. Advances in surveying techniques have increased 

the range of scales over which the roughness-topography partition has been applied, ranging from 

magnitudes of 0.1 m (Nield et al., 2011) to 50 km (Smith, Raymond, and Scambos, 2006). Quantifying 

the surface roughness value as the partition scale provides useful insights in the scale-dependency of 

roughness. A useful reference point is the scale at which this relationship changes, also known as the 

interface width (Figure 1).  
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Figure 1. Schematic outline of the relationship between the measurement and partition scales and roughness measurement 
(Smith, 2014) 

A prerequisite for many procedures of quantifying surface roughness, is filtering out overall 

topographic trends. Surfaces are often detrended using a variety of methods including (bi)linearly 

detrending e.g. (Miles et al., 2017), second-order polynomials e.g. (Rodríguez-Caballero et al., 2012) 

or median filtering (Hiller and Smith, 2008). Both the method of detrending and the scale of which it is 

applied are of great relevance to roughness parameterisations. For example, high-order polynomials 

approximate the real surface variability more closely, reducing the amount of overall roughness. In 

contrary, linear detrending will cause areas of high curvature to be represented as higher roughness 

values (Haubrock et al., 2009). This is illustrated in Figure 2 (Glenn et al., 2006). 

 

Figure 2. (a) Detrending a one-dimensional elevation profile (LiDAR derived, 1m resolution, solid line) using a thin-plate 
spline interpolated underlying surface (dashed) or simple linear interpolation over the whole baseline (dot-dash); (b) 
aggregation of LiDAR roughness (defined as the standard deviation of residuals from thin-plate spline in (a), grey line) into 5 
m cells (black line). After Glenn et al. (2006: p.135). 
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Surface roughness is often applied as a surrogate for other variables that are more difficult to retrieve 

directly. One of these variables is the aerodynamic roughness length (in the following referred to as 

‘aerodynamic roughness’ or simply z0). The aerodynamic roughness length is defined as the length 

scale that characterises the loss of flow momentum attributable to surface roughness (Chappell and 

Heritage, 2007). Simply, it is the height above the ground surface where the inertial semi-logarithmic 

wind profile extrapolates to zero. As such, it is a parameter that controls the loss of momentum by 

turbulent transfer. Although z0 and surface roughness are fundamentally different, relationships 

between z0 and microtopography are commonly exploited to obtain z0 values (Nield et al., 2013; Smith, 

2014; Smith et al., 2016). Empirical relationships probably represent actual values of z0 best, as they 

are developed from paired wind and topographic measurements. Many recently developed methods 

are not empirically derived, but are mechanical approximations which may be a significant 

shortcoming (e.g. Irvine-Fynn et al., 2014; Rounce, Quincey, and McKinney, 2015). By definition, z0 

directly influences the turbulent exchange of sensible and latent energy at a surface, and is thus a 

crucial parameter in energy balance models (Brock et al., 2006, 2000). Moreover, uncertainty in z0 

values present a serious challenge in energy balance models since a change in order of magnitude of 

z0 leads to an approximate factor of 2 change in estimated turbulent fluxes (Brock et al., 2010; Hock 

and Holmgren, 1996; Munro, 1989). Often, these fluxes are calculated with the bulk aerodynamic 

method in which z0 is one of the key input parameters (Smeets and van den Broeke, 2008). A schematic 

representation of z0 is given in Figure 3A, and how the AWS measurements are performed in Figure 

3B. 

 

 

Figure 3. Schematic representations of (a) wind profile characteristics at a certain site with a rough-ice surface and (b) an 
automatic weather station (AWS) at this site (Smeets and van den Broeke, 2008). In this figure U(z) is the average wind 
speed (m/s) as a function of height z (m), d (m) is the zero-plane displacement, z0 (m) is the aerodynamic roughness length, 
z* (m) is the height of the roughness sublayer, zs (m) the sensor height and H (m) is the average hummock height.  

1.1.3 Remote sensing on the Greenland Ice Sheet 
The first remote sensing data on the GrIS for civilian use date as far back as the mid-1960s, when 

images collected by the Nimbus satellite covered the GrIS (Bindschadler, 1998). Ever since, an 

increasing variety of sensors have been launched to monitor the earth and its ice sheets from space 

(Belward and Skøien, 2015). In recent years, a rapid increase in the number and range of earth 

observing satellites is occurring (Belward and Skøien, 2015). Key satellite remote sensing techniques 

next to optical imagery are radar altimetry, laser altimetry, gravimetry, multispectral optical imagery, 

and microwave and thermal imagery (Cooper and Smith, 2019). The new satellites are often capable 

of producing images of high spatial and temporal resolution (Cooper and Smith, 2019). Applications 
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are diverse, from the global land ice contribution to SLR during the satellite era (Bamber et al., 2018) 

to satellite remote sensing of polar climate change (Hall, 1988). Nevertheless, the temporal resolution 

and availability of very high spatial resolution satellite sensors (less than 10 m) are often still 

inadequate for many quantitative remote sensing applications (Manfreda et al., 2018). Furthermore, 

obtaining cloud-free data is complicated for all satellite sensors that do not operate in microwave 

wavelengths (Bhardwaj et al., 2016).  Analysis of meteorological data has shown that optical satellite 

imagery in a rainy regions (yearly precipitation > 800mm) has a 20% probability of producing an 

adequate image (van der Wal et al., 2013). Most satellites that do provide high spatial and temporal 

resolution (e.g. CubeSat; (McCabe et al., 2017)) are operated by commercial organizations, causing the 

cost of image acquisition to become a limiting factor in studies where short revisit times are required 

(Manfreda et al., 2018).  

Remotely Piloted Aircraft Systems (RPAS) prove to be of great use in this case, as they provide data of 

unprecedented spatial and temporal resolution at relative low cost (Bhardwaj et al., 2016). 

Additionally, RPAS-mounted sensors have two other key advantages. First, their ability  to acquire data 

on specific dates or at a specific time is a major advantage over space-borne remote sensors (Bhardwaj 

et al., 2016; Manfreda et al., 2018). Second, RPAS are capable of collecting data under cloudy 

conditions during which satellite are not (always) capable of producing adequate images (van der Wal 

et al., 2013). Applications of RPAS are diverse, and range from research purposes such as mapping 

vegetation properties (Lu et al., 2018) to more applied purposes such as power line inspections (Teng 

et al., 2017).  

A recent development in the field of RPAS-derived photogrammetry is the use of Global Navigation 

Satellite System-supported aerial triangulation (GNSS-AT; (Benassi et al., 2017)), which significantly 

reduces the need for Ground Control Points (GCPs) (Chudley et al., 2019). This technique makes use of 

differential carrier-phase GNSS positioning to accurately geolocate imagery and subsequent 

photogrammetric products (Benassi et al., 2017).  This development is of great importance in e.g. the 

field of applied glaciology, in which producing a GCP network of adequate density is often not feasible 

due to impracticality, costs, and hazardous terrain (e.g. crevasses, moving icebergs) (Chudley et al., 

2019). Other methods for overcoming the difficulties in building GCP networks include using tie points 

to tie datasets together geodetically (Kraaijenbrink et al., 2016), linearly interpolating the on-ice GCP 

location from the start and end point of a RPAS mission (Jouvet et al., 2017), or using an on-board 

navigational GPS geolocation (Ryan et al., 2015). 

Through these developments, RPAS photogrammetry has become an important tool to study glaciers 

and their dynamics, as they are capable of generating multi-temporal, high resolution digital elevation 

models (DEMs) in the order of centimetre magnitude (Jouvet et al., 2019). These high resolution DEMs 

can be used to extract parameters used in the estimation of z0 as is described in the section 2.5-2.7. 

1.1.4 The importance of turbulent fluxes  
Turbulent fluxes of sensible and latent heat are commonly considered to be secondary to radiative 

fluxes in glacier surface energy balance models (Hock, 2005). However, these turbulent fluxes over ice 

surfaces may be subject to systematic underestimation in Regional Climate Models (RCMs) (Elvidge et 

al., 2016; Noël et al., 2015). Furthermore, during overcast and windy conditions the turbulent fluxes of 

sensible and latent heat increase in significance (Giesen et al., 2014). These conditions are expected to 

become more frequent in a future, warming climate, therefore increasing the future significance of 

the nonradiative fluxes (Gorter et al., 2014; Schuenemann and Cassano, 2010; Vavrus, 2013). In the 

past, the nonradiative fluxes have contributed significantly to extreme melt events as was the case e.g. 

in the year 2012 (Fausto et al., 2016; Neff et al., 2014). On July 12th of 2012, satellite observations 

indicated that more than 98% of the GrIS surface was melting, a value unprecedented in the satellite 
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era (Nghiem et al., 2012). These melt events can often be correlated to the North Atlantic Oscillation 

(NAO) index. This index represents the pressure difference between the climatological high pressure 

system near the Azores, and the low pressure system near Iceland (Hurrell et al., 2003). A positive NAO 

index implies north-westerly flow over Arctic Greenland. A negative NAO index inverts this flow, 

resulting in earlier described advection of relatively warm air from southern latitudes to the GrIS (van 

Angelen et al., 2014). The warm air advected causes a large air-surface temperature gradient and as a 

result a significant role for the sensible heat flux as melt energy source. Some papers dispute the 

dominant role of the NAO, suggesting an alternative dominant position for the Arctic Dipole in relation 

to large-scale melt (Ding et al., 2017; Watanabe et al., 2006). Regardless, it is even expected that within 

a decade or two, global warming will be able to cause 2012 levels of runoff with little or no assistance 

from the NAO (Bevis et al., 2019). In any case, climate models such as RACMO do not reproduce the 

turbulent fluxes well during these circumstances (Noël et al., 2015), thus extreme melt events also 

cannot be modelled accurately, nor can they be reproduced by calculations from weather stations 

(Fausto et al., 2016; van den Broeke et al., 2017).  As in the future these extreme events are expected 

to occur more frequently (Oltmanns et al., 2019), it is of great importance that this shortcoming is 

solved. A more realistic 2D field of surface aerodynamic roughness is expected to improve the 

simulation of turbulent energy fluxes, since a uniform and constant value is presently used in spatially 

distributed energy balance models (Arnold et al., 2006), while field studies have highlighted the 

variability of z0 over ice surfaces in both space and time (Bintanja and van den Broeke, 1995, 1994; 

Brock et al., 2006; Smeets et al., 1999). 

1.2 Aim and research questions 
Therefore, the overall aim for this study is to assess different methods to quantify aerodynamic 

roughness length from topographic roughness based on RPAS data and to quantify its impact on 

turbulent energy fluxes on the Greenland ice sheet. 

To do so, several specific sub-objectives need to be achieved: 

1. Assess if RPAS-derived DEMs can be used to quantify topographic roughness 

2. Compare different empirical and microtopographic methods to derive aerodynamic roughness 

3. Investigate the impact of spatial scale on the aerodynamic roughness estimates 

4. Evaluate the impact of the different methods and scale on the magnitude of the turbulent 

fluxes  

5. Assess if the RPAS estimates are comparable to other large-scale datasets 
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2. Data and methods 

2.1 Study site 
The studied areas are located in Western Greenland near or on the K-transect (Figure 4). The K-transect 

is a west-east transect perpendicular to the edge of the GrIS ranging from the low ablation area to 

above the equilibrium line, along which IMAU and the Free University of Amsterdam started 

meteorological experiments in 1993 (Oerlemans and Vugts, 1993). The transect is still maintained at 

this date by the IMAU (Kuipers Munneke et al., 2018). One of these AWS is covered in this study, 

namely site S5. An overview of the extents, date of capture and which RPAS was used for which area 

is given in Table 1. The study areas are of different size to showcase the performance of the developed 

methods for areas of different size.  

 

Figure 4. Schematic overview of the location of the K-transect on the GrIS (A) (Smeets and van den Broeke, 2008), satellite 
overview of the location of the K-transect (B), and the locations described in this study (C).  
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Table 1. Description of RPAS Images. The Asterix (*) in the column ‘Date of Capture’ denotes the inclusion of this dataset in 
the results of this research. The other datasets were processed to DEMs but not included in this research.  

D
a
t
e 
o
f 
c
a
p
t
u
r
e 

Resolution File-
name 

Site  Xmin 
 

Xmax 
 

Ymin 
 

Ymax RPAS 

 CRS: WGS84 UTM zone 22N  

0
8
-
0
8
-
2
0
1
4 
* 

0.60m KanL KanL 552151 570838 7437895 7442562 Skywalker X8 

0
8
-
0
8
-
2
0
1
4 
* 

0.60m KanM KanM 566485 585429 7439502 7442870 Skywalker X8 

0
1
-
0
9
-
2
0
1
9 
* 

0.30m F1 A  539346 540750 7450007 7451521 eBee 

0
3
-
0
9
-
2
0

0.30m F2 B 539485 540943 7444355 7447208 eBee 
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1
9  

0
4
-
0
9
-
2
0
1
9 

0.10m S6 S6 569203 569255 7441065 7441119 Mavic Pro 

0
5
-
0
9
-
2
0
1
9 

0.15m SHR SHR 545390 545549 7442342 7442715 Mavic Pro 

0
6
-
0
9
-
2
0
1
9 
* 

0.025m S5 S5 540434 540811 7441831 7442285 Mavic Pro 

 

2.2 RPAS  
The RPAS used for the site A is the eBee developed by senseFly (www.sensefly.com/drone/ebee-

mapping-drone/). The eBee airframe is a fixed-wing drone. It has a wingspan of 96 cm and weighs an 

approximately 0.69 kg including battery and supplied camera. It is wind-resistant to wind speeds up to 

45 km h-1, while under benign conditions its cruise speed is up to 90 km h-1. Its maximum flight time of 

50 minutes allows for a maximum range of 33 km.   

The RPAS used for the site S5 is the Mavic Pro by DJI (www.dji.com/mavic). The Mavic Pro is a 

quadcopter drone with a diagonal size of 33.5 cm excluding the propellers, weighing an approximate 

0.74 kg including camera. Its flight time under normal conditions (with 15% remaining battery) is 

around 21 minutes. It has a range of 13 km under perfect conditions (e.g. no wind, full battery, constant 

cruise speed of 25 km h-1).   

For information on the RPAS used for the KanL and KanM datasets, the reader is referred to Ryan (Ryan 

et al., 2018, 2015).  

http://www.sensefly.com/drone/ebee-mapping-drone/
http://www.sensefly.com/drone/ebee-mapping-drone/
http://www.dji.com/mavic
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2.3 Cameras 
The camera equipped on the eBee airframe was an 18.2 megapixel Sony DSC-WX220. The sensor type 

of this camera is a 1/2.3” type Exmor CMOS sensor. Its focal length is 4.45mm. The widest possible 

coverage of this camera gives an angle of view of 82°.  

The camera equipped on the Mavic airframe was the standard equipped 12.35-megapixel camera DJI 

FC220. The sensor type of this camera is a 1/2.3” type CMOS sensor. Its focal length is 4.73 mm. The 

widest possible coverage of this camera gives an angle of view of 78.8°. 

For information on the camera used for the KanL and KanM dataset, the reader is referred to Ryan 

(Ryan et al., 2018, 2015).  

2.4 DEM generation 
Agisoft Photoscan software version 1.5.5 build 9097 (www.agisoft.com) is used to create digital 

elevation models from the RPAS images. Agisoft Photoscan makes use of an image-based surface 

restitution method which relies on automated, image-to image registration method called Structure 

from Motion (SfM) (Fonstad et al., 2013; Snavely, 2011). SfM is a form of photogrammetry, which 

makes use of image matching algorithms that can process images acquired from multiple viewpoints 

to reproduce the three-dimensional geometry of a surface. It does so by recognizing physical features 

in multiple images regardless of image scale, and matching these features, which is a simplification to 

some degree. The image matching algorithms in the SfM workflow of Agisoft Photoscan allow for a 

high level of automation, and produces excellent results from aerial imagery in a minimum amount of 

time with almost no effort needed, also enabling non-specialists to produce 3D models from aerial 

images (Verhoeven, 2011). The DEM of study site S5 (section 2.1) was for instance processed within 

three hours. For a comprehensive description of the general SfM workflow the reader is directed to 

Westoby’s overview (Westoby et al., 2012). For the workflow related to Agisoft specifically the reader 

is directed to Immerzeel et al., (2014) or Ryan et al., (2015). 

The following parameters are used in the Agisoft workflow. First, the photos were aligned using the 

“Align photos” function under Workflow. This was performed using the highest accuracy, a key point 

limit of 120,000, and a tie point limit of 4,000. Hereafter, the cameras were optimized using all 

optimization parameters of “Optimize cameras” under Tools. Then, the 5% of the points which were 

deviating most from other points were deleted using the “Gradual selection” under Model, after which 

the cameras were optimized again. These two steps of optimizing cameras and removing outlier points 

was repeated 5 times in total. After these steps, the dense cloud was constructed at highest quality 

using a mild filtering mode in the function “Build Dense Cloud” under Workflow. Lastly, the DEM was 

extracted from this dense cloud using “Build DEM” under Workflow, enabling interpolation. No GCPs 

were included in the process of creating the DEMs. This possibly reduces the accuracy of the created 

DEMs as systematic errors are often observed for DEMs that have limited reference points (James and 

Robson, 2014).  

This DEM is then used to estimate z0 via a combination of methods that will be explained in section 

2.5-2.7, for the purpose of capturing the variability of z0 across the study area. For comparison, data 

of the AWS from IMAU will be used. This data is extracted from aerodynamic inversion. A similar 

approach was previously used by Miles et al., on which this study has built upon (Miles et al., 2017).  

2.5 Algorithms  

2.5.1 Lettau and Munro 
The zero-up crossing method of Lettau (Lettau, 1969) is the basis on which several mechanistic 

methods to estimate z0 have been developed. In this method, a linear set of height measurement is 

http://www.agisoft.com/
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detrended and broken into sections crossing the mean value in an upward direction. The rationale 

behind this method is that each section crossing the mean value in an upward direction exemplifies an 

obstacle to wind. Of each obstacle, its length and height are measured, jointly forming a population of 

obstacles. Then, the method estimates the resistance of flow based on the properties of this 

population, as is seen in equation (1). This equation uses the average obstacle size h*, the silhouette 

area of the average obstacle s (cm2) and the specific area measured in the horizontal plane (also called 

the unit ground area) S (cm2). s and S are defined by equations (2) and (3) following Lettau’s 

nomenclature, where X is the length of the transect and f is the roughness element frequency (number 

of continuous groups of positive height deviations above the mean elevation).  

 𝑧0 = 0.5ℎ∗ 𝑠

𝑆
  (1) 

 𝑠 =  
ℎ∗𝑋

2𝑓
  (2) 

 𝑆 = (
𝑋

𝑓
)

2
  (3)   

 ℎ∗ = 2𝜎𝑧 (4) 

 𝑧0 =  
𝜎𝑧

2𝑓

𝑋
  (5) 

The Lettau equation for z0 has been simplified slightly by Munro (Munro, 1989), by taking twice the 

standard deviation of the elevations, where mean elevation is set equal to zero, for the value of h* 

(Munro, 1989). This substitution (4) reduces equations (1-3) to equation (5). The method of Munro has 

been extensively used in glaciology (e.g. Brock et al., 2006; Miles et al., 2017), since the 

characterization made by Munro is especially advantageous for glacial surfaces (Munro, 1989). The 

Munro algorithm was specifically intended to emulate the Lettau results. Ideally applying the two 

algorithms would yield equal results. However, we also make use of an ensemble of the two algorithms 

as to account for potential under- or overestimations in either of the algorithms which have been 

found in some studies. For example, Rounce et al., (2015) found that the Munro method 

underestimates z0 in some cases. Some studies (e.g. Smeets et al., 1999) argue that this is due to the 

fact that the original formula by Lettau was developed for blocks in a wind tunnel, which may not be 

representable objects with regard to the silhouette area. Furthermore, the Lettau equation lacks the 

clear definition of what constitutes an obstacle (Rounce et al., 2015). The ensemble is created by 

calculating the mean of the base 10 logarithms of the output of Lettau and Munro, after which this 

value is transformed back to non-log values (equation (6)). 

 𝐸𝑛𝑠𝑒𝑚𝑏𝑙𝑒 = 10
10 log(𝐿𝑒𝑡𝑡𝑎𝑢)+10log (𝑀𝑢𝑛𝑟𝑜)

2     (6) 

2.5.2 Nield 
Nield et al., (2013) developed a range of empirical relationships between z0 and various surface 

characteristics, by combining wind tower measurements with terrestrial laser scanning. These 

empirical relationships were established for small (144m2), high-resolution plots (0.01m) located on 

the Makgadikgadi Salt Pan complex in central Botswana (20.5754°S, 25.959°E) (Nield et al., 2013). In 

this study, only a selection of single-parameter models were considered that have a coefficient of 

correlation R2 > 0.7. In these empirical relationships, the following  SdElev, equation (7)), the standard 

deviation of obstacle height ℎ𝜎 (Nield SdObs, equation (8)), mean obstacle height ℎ𝑚𝑒𝑎𝑛 (Nield Mean, 

equation (9)), and maximum obstacle height encountered for the profile ℎ𝑚𝑎𝑥 (Nield Max, equation 

(10)). 



15 

 ln(𝑧0) = 0.65 + 1.37 ln (𝜎𝑧)  (7) 

 ln(𝑧0) =  0.28 + 1.33 ln (ℎ𝜎)  (8) 

 ln(𝑧0) =  −0.29 + 1.33 ln (ℎ𝑚𝑒𝑎𝑛)  (9) 

 ln(𝑧0) =  −2.02 + 1.5 ln (ℎ𝑚𝑎𝑥)  (10) 

 

2.6 Detrending methods 

2.6.1 Linear detrending 
The Lettau and Munro algorithms make use of simple linear detrending regardless of transect length. 

This is due to the explicit inclusion of transect length X in the Lettau and Munro algorithms, which 

accounts for the scale dependency. Linear detrending makes use of the best straight-line fit, which is 

then extracted from the elevation data. An example of a linear model is shown in Figure 5A.    

2.6.2 Spline detrending 
In contrary to the Lettau and Munro equations, the Nield equations do not contain a length term, and 

solely rely on the surface characteristics that were used for the established relationships. Furthermore, 

the established empirical relationships were established form small (144m2), high-resolution (0.01m) 

plots located in a salt pan complex which are (relatively) flat morphological features. The resulting 

plots therefore contain almost no overall topographic trends, which makes detrending redundant for 

these surfaces. However, the plots that are considered in this study do contain large-scale topographic 

trends. For the empirical relationships to hold, it is necessary that the plots are comparable. As the 

plots are not comparable when there is a large-scale topographic trend present, this trend should be 

removed from the plots prior to further processing.  

As is visible in Figure 5, linear detrending does not (fully) remove the large scale topographic trend 

since the original elevation trend is still visible in the residuals. Therefore, a more powerful detrending 

technique had to be applied to remove the trend. This paper examined the possibility of spline 

detrending. A recent comprehensive study on spline functions can be found in Wüst et al., (2017). 

One key parameter in the spline functions, is the degrees of freedom (DOF) parameter. The DOF is in 

related to the number of spline sampling points or knots, which divides the area for which the spline 

is applied into subintervals. For each subinterval, a third-order polynomial is defined, and this induces 

that more subintervals lead to a better fit. Similarly, lower DOF lead to more constrained splines, higher 

DOF lead to more flexible splines as more subintervals are present. Figure 5A shows the resulting spline 

using different DOF on a transect of 200m in length, and Figure 5B shows the residuals in comparison 

to the residuals from the linear model, while Figure 5C shows solely the residuals from the spline 

functions. These residuals comprise the data that is used as input for the empirical relationships of 

Nield. From the figure it can be concluded that the DOF is of great influence on the resulting residuals, 

and therefore on the roughness estimate by the Nield functions. After examining the influence of DOF 

on multiple plots and study areas, it was decided that a fixed DOF of 6 was used for the Fixed Grid 

method (section 2.7.2) to simplify matters, while three different DOF (6, 12, and 18) are tested for the 

Moving Footprint method that will be in 2.7.1. 
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Figure 5. Different detrending methods applied to a random 200m transect of S5. Subpanel A shows the original elevation 
and the different fitted models. Subpanel B shows the residuals of all fitted models, which are used as input for the Lettau, 
Munro, and Nield algorithms. Subpanel C shows the residuals for only the fitted spline models and shows that fitted splines 
with higher DOF result in lower residuals.  

 

2.7 Developed workflow 
The study areas were subjected to two different methods that were developed in this study. The first 

method is called the Moving Footprint (MF) method. This method aims to estimate roughness for a 

single location by simulating wind over obstacles from certain directions, for example the main wind 

direction. In short, it does so by considering transects within a rotating footprint to said location, which 

are then further processed using the Lettau, Munro, and Nield algorithms.  
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The second method is called the Fixed Grid (FG) method. This method aims to estimate roughness for 

a complete study area with low computational effort. In short, it does so by constructing a grid of 

specified size over the input DEM, after which in each grid cell, transects are drawn, which are then 

further processed using the Lettau, Munro, and Nield algorithms.  

The difference between the two techniques is thus that the MF method results in roughness values for 

a single location as a function of direction, while the FG method results in distributed roughness that 

does not take direction into account. This is a disadvantage as some surfaces of the GrIS are formed in 

certain directions (Smith et al., 2006), which may not be captured by the FG.  

2.7.1 Moving Footprint 
The approach for the Moving Footprint (MF) method is as follows.  

First, a single location or point around which the MF will rotate should be established. In this case, this 

will be the AWS location as this will allow us to directly compare the results to the AWS reference data.  

Then, rectangular shaped footprints of predefined size are created from different directions to the 

(AWS) location. This is shown in Figure 6A, in which three different footprint sizes (1: 5x40m, 2: 

10x100m, 3: 15x200m) are depicted that will rotate around the location of the AWS. The direction can 

be adjusted to for example correlate to the main wind direction. Within the rectangular shaped 

footprints, all possible transects in the direction of the AWS i.e. all rows are then constructed. A 

selection of the possible transects are shown in Figure 6B+C. These transects are then linearly 

detrended for the Lettau and Munro algorithms, and spline detrended for the Nield algorithms; the 

reason of this is explained in section 2.6. The detrended transects are then used as input for the 

algorithms, which results in a z0 estimate per method, per transect, and per direction. The mean of the 

z0 estimate was taken for all transects per method, per direction, which finally results in a directional 

dependent z0 estimate per method. The parameters that should be defined prior to applying this 

method are the size of the footprint, the scope of directions, and the DOF for the spline detrending. A 

summary of the workflow is given in Figure 9.  
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Figure 6. DEM of a part of S5 showing the outlines of the footprints of different size that were used in the MF method (A), 
5x40m (1), 10x100m (2), and 15x200m (3) footprint. The footprint rotates around the AWS location with angle r. A single 
15x200m footprint is shown (B), including 5 of the possible transects (B+C).  

2.7.2 Fixed Grid 
The FG method designed to create distributed z0 estimates is constructed as follows.   

First, the input DEM is divided into grid cells of predetermined size, an example of what this division 

of fixed grids of predetermined size looks like is given in Figure 7A. A multitude of grid sizes are taken 

as multiple studies have described an effect of grid size on microtopographic estimates (e.g. Kuo et al., 

1999; Martin, Valeo, and Tait, 2008; Zhao, Hou, and Wu, 2020). Then, within each individual grid cell, 

all possible transects in x- and y-direction (Figure 7C+D) containing elevation data were extracted 

(Figure 7B). All possible transects implies that every row or column of cells is considered. A grid of 10m 

over a 0.025m resolution DEM yields for example 400 transects in x-direction and 400 transects in y-

direction since 10m divided by 0.025m equals 400.  These transects were then detrended (again, linear 

detrending for Lettau and Munro, spline detrending for the Nield equations), after which the 

algorithms were applied. Hereafter, the mean of all transects per method were taken and assigned to 

all the cells within the grid, leading to a single roughness value per method per grid block. The resulting 

distributed roughness value map is thus of coarser resolution than the input DEM. It is also possible in 

this step to retain the different transect directions, thus leading to two roughness values per method 

per grid, one for the x-direction (horizontal lines), and one for the y-direction (vertical lines). The 

overview of the workflow is given in Figure 10. 
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Figure 7. Figure clarifying the Fixed Grid method. A DEM of the study area is segmented in grids of specified size (A), in this 
case 10x10m grid. Within this grid (B), all possible transects are drawn in x-direction (C), and y-direction (D). Now, only the 
transects at 1m intervals are shown, while the method itself considers every possible transect i.e. every row or column of 
cells. Each single resulting transect is then further processed through detrending and subsequent input in the algorithms.    

While the nature of the results is inherently different for the FG method and the MF method 

(distributed results vs location-specific), a simple approximation is used to allow the comparison of 

results. This approximation is the movement of the Moving Footprint over the distributed results of 

the FG method, which returns the mean value within the footprint. This allows us to simulate 

directional influence on the z0 estimate. An example is given in Figure 8.      

 

Figure 8. Simplified Moving Footprint which moves over the Fixed Grid distributed result for grid size 5m. It calculates the 
mean value inside the footprint, therefore, producing z0 values as a function of angle r.  
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The Fixed Grid method makes use of an arbitrary fixed grid that is placed over the DEM as is previously 

explained. The use of an arbitrary grid may potentially cause inaccuracies, as every cell within the fixed 

grid is assigned the same value.  A moving focal instead of a fixed grid could potentially compensate 

for this error. However, the required computational power is roughly 40000 times greater for the 

smallest grid size (5m) that was examined in this research, as is explained by the following example.  

In the current FG method, for each grid of e.g. 5x5m, the algorithms are applied for every possible 

transect within said grid. The results are then averaged for said grid, and assigned to every cell within 

the grid, resulting in a single value for the 5x5m grid. The moving focal would create a grid of e.g. 5x5m 

around each cell, in which the methods are applied for every possible transect, averaged, and then 

assigned to the single cell. After which, it moves to the next cell. As the resolution of the data is 0.025m, 

and the example grid size is 5m, it would have to apply the functions 200 (5m/0.025m=200) times extra 

in x-direction and 200 times extra in y-direction, thus 40000 times extra to cover the same area as the 

FG approach. Therefore, this method was not a realistic option for the aim of this study, namely 

producing distributed roughness estimates with low computational effort.    

2.7.3 Used parameters 
The parameters that were used in this study are summarized in Table 2. As was mentioned in section 

1.1.2, the spatial resolution is of importance for the roughness-partition scale. Consequently, different 

spatial resolutions were considered to examine the scale-dependency of z0. Other research often also 

includes the exploration of the impact of spatial resolution on e.g. the modelling of surface mass 

balances of the GrIS (Franco et al., 2012). Therefore, the DEM of S5 was coarsened to resolutions of 

multiple scale magnitudes by averaging. Hereafter, the coarsened DEM was processed like the original 

DEM, and z0 was calculated for this DEM as well.  

Table 2. Parameters used in this research for the two developed methods. 

Site Original 
Resolution 

Moving Footprint Fixed Grid 

 Coarsened Resolutions Footprint size Scope of 
directions 

Grid size 

S5 0.025m 0.05m, 0.5m, 1.0m, 
2.5m, 5.0m 

5x40, 10x100, 
15x200 

90-180° 5m, 10m, 
15m, 20m 

A 0.30m  
Moving footprint not applied to these datasets 

30m 

KanL 0.60m 90m 

KanM 0.60m 90m 
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Figure 9. Workflow of the Moving Footprint method 
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Figure 10. Workflow of the Fixed Grid method 

 

 



23 

2.8 Turbulent flux estimation 
As the z0 is used in the calculation of turbulent fluxes, we are interested in what consequences the 

resulting z0 values have for these fluxes. Therefore, the turbulent fluxes were estimated using the z0 

values obtained in the previous part of this study. The resulting flux estimate can then be compared to 

the sensible heat flux that was measured by the eddy-covariance system. It can also be compared to 

the simulated fluxes using the aerodynamic roughness length derived by applying the profile 

aerodynamic method based on Monin-Obukhov using the AWS observations.  A clear example of how 

aerodynamic roughness length is derived from AWS observations can be found in Sicart et al., (2014). 

Turbulent fluxes were estimated with the commonly used bulk aerodynamic method (Munro, 1989), 

using data collected by the AWS.  The bulk aerodynamic method consists of a set of Equations that 

solve the Monin-Obukhov length L* (m) with an iterative process. We focus on the sensible heat flux 

H (W m-2), equation (10).  

 𝐻 =  𝜌𝑎𝑐𝑝𝑘2 𝑢(𝑇𝑎−𝑇𝑠)

(ln(
𝑧𝑣
𝑧0

)−𝜓𝑚(
𝑧𝑣
𝐿∗

))(ln(
𝑧𝑡

𝑧𝑡0
)−𝜓ℎ(

𝑧𝑡
𝐿∗

))
  (10) 

Where 𝜌𝑎 (kg m-3) is the air density, 𝑐𝑝 (J K-1 kg-1) is the specific heat of dry air at constant pressure, 𝑘 

(0.4) is the von Karman constant, 𝑇𝑎 (K) is the air temperature, 𝑇𝑠 (K) is the surface temperature, 𝑢 (m 

s-1) is the windspeed, 𝑧𝑣  𝑧𝑡  𝑧𝑞 (m) are the levels at which windspeed, temperature and humidity levels 

are measured, 𝑧0 𝑧𝑡0 𝑧𝑞0 (m) are the roughness lengths for momentum, sensible heat and humidity. 

Normally the potential temperature difference is used to account for the adiabatic heating of a 

downwelling air parcel, but for small height differences it is roughly the same to 𝑇𝑎 − 𝑇𝑠. Typically, the 

𝑧𝑡0 and 𝑧𝑞0 are one or two orders of magnitude smaller than 𝑧0 (Cullen et al., 2007; Radić et al., 2017; 

Smeets et al., 1998), but it is known that the ratio depends on the roughness Reynolds number 

(Andreas and Murphy, 1986; Smeets and van den Broeke, 2008). The modelled sensible heat flux 

greatly depends on the roughness length of heat, which is calculated by the bulk model of Smeets and 

van den Broeke (2008).   
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3. Results 

3.1 Overview of Digital Elevation Models 

 

Figure 11. Digital Elevation Models of site A (A), and S5 (B). The DEMs for the areas A and S5 were produced in this study 
using Agisoft. The DEMs for KanM and KanL were produced by Jonathan Ryan (Ryan et al., 2018, 2015) of which a subset 
was taken in this research.  

3.2 Moving footprint estimated roughness 

          

 

Figure 12. Orthomosaic of S5 including a selection of the outlines of the footprints that were taken when using the moving 
footprint of 15x200 (A), including the transects (B).   
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3.2.1 Lettau & Munro 
Figure 12A shows a selection of outlines for which the elevation data was considered in the algorithms, 

and Figure 12B shows the correlating transects, illustrating the variation in elevation. In Figure 13 the 

resulting estimated values for z0 are shown on a logarithmic scale per direction for each footprint for 

the Lettau and Munro algorithms. The resulting estimated values for z0 differ per footprint size, for 

both the Lettau as the Munro algorithm. The largest difference in estimated z0 is visible between the 

5x40m (A) and the 10x100m (B) footprint. The 10x100m (B) and 15x200m (C) footprint are more 

similar. Between the two algorithms, a large difference is also noticed. The estimated z0 values by 

Munro are roughly an order of magnitude higher than the estimated z0 values by Lettau. The values 

for Lettau are more variable over directions and seem to capture some of the directional dependence 

that the AWS also captured. Noticeable is also the directional differences per footprint. The 5x40m 

footprint finds the largest z0 value around 120°, while the largest z0 values for the 10x100m footprint 

and the 15x200m footprint are found around 170° and 155°. The Munro algorithm seems to capture 

less directional differences within the z0 estimate. It should be noted that the reference data only 

provided an estimate of z0 for the range of directions 97° to 149°.  

 

 

Figure 13. Results for the MF method binned per 2 degrees, from 90-180°, for footprint sizes 5x40 (A), 10x100 (B), and 
15x200 (C). The AWS reference data is of August 2019.  
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3.2.2 Lettau-Munro ensemble 
In Figure 14 the results are shown per direction for the Moving Footprint for the Lettau and Munro 

algorithms.  

Multiple differences are noticeable in this figure. Firstly, the differences in the magnitude of estimated 

z0 between the three footprint sizes are less significant when compared to the differences in 

magnitude of estimated z0 between the footprint sizes for Lettau and Munro. Differences in z0 

estimates per direction remain, though the values are roughly in the same order of magnitude. The 

15x200m footprint (Figure 14C) seems to capture both value and direction similar to the AWS 

reference data. Furthermore, the values are in the same order of magnitude as the AWS reference 

data.  

 

Figure 14. MF results for Lettau-Munro ensembles, binned per 2 degrees, from 90-180°, for footprint sizes 5x40 (A), 10x100 
(B), and 15x200 (C). The AWS reference data is of August 2019. 
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3.2.3 Nield fixed DOF 
Figure 15 and Figure 16 summarizes the resulting z0 estimates in identical to previous polar plots, only 

now for the Nield functions. It reveals immediately the performance of the different Nield algorithms. 

Nield SdElev and Nield Max (Figure 15) both show a similar pattern for the 5x40m footprint (A) with 

high estimated z0 values in the directions 120-130° and 170-180°, and produce z0 values in an order of 

magnitude similar to the AWS albeit slightly higher. For Nield Max and Nield SdElev the observation 

can be made that an increase in grid size leads to higher roughness estimates. The similarity of patterns 

of Nield Max and Nield SdElev can be observed throughout all footprints.  

 

Figure 15. Results for the algorithms Nield SdElev & Nield Max applied in the Moving Footprint 5x40m (A), 10x100m (B), and 
15x200m (C). The AWS reference data is of August 2019. Large differences in magnitude are observed for the different 
footprints. Similar directional patterns are also observed for these two Nield functions.  
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Figure 16. Results for the algorithms Nield SdObs & Nield Mean applied in the Moving Footprint 5x40m (A), 10x100m (B), 
and 15x200m (C). The AWS reference data is of August 2019. No differences in magnitude are observed for the different 
footprints. Furthermore, none of these methods seem to capture directional influence, as the variation in estimated values is 
very little.   

The other Nield algorithms, Nield SdObs and Nield Mean (Figure 16), produce estimates for z0 that are 

at least an order of magnitude larger compared to the reference data. None of the footprints seem to 

capture directional differences, as very little variation is observed over the different angles. When 

comparing the different footprints, it is clearly observed that between the different footprints, little to 

no differences can be discerned.   

3.2.4 Nield variable DOF 
For the algorithms Nield SdObs and Nield Mean we established earlier that footprint size had no 

influence on the resulting z0 estimate, which induces that they are also insensitive to increasing the 

DOF. Therefore, only the Nield SdElev and Nield Max were considered in this section, where the 

influence of the DOF of the spline detrending is examined. By examining Figure 17, multiple 

observations can be made. First, an increasing DOF results in a lower estimate for z0. This is 

understandable, as increasing the DOF, decrease the metrics on which these Nield functions are based, 

and thus reduce the resulting z0 estimate. More interestingly, the directional variation does not seem 

to be affected by the changing DOF.  
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Figure 17. Results for the Nield algorithms Nield SdElev (A) & Nield Max (B) applied in a 15x200m Moving Footprint using 
multiple DOF for the spline.  

3.3 Fixed grid estimated roughness 
The distributed results of the FG method are not directly comparable to the AWS reference data as the 

results are distributed over the study area instead of location-specific results, thus the distributed 

results are compared by the estimated values for z0, and their spatial patterns. Selected spatial 

distributions of z0 are included in the results. Note that the scales are not equal. This was done 

purposefully as some results contained very little variation (e.g. Figure 18F) which complicate the 

illustration of these figures.  
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Figure 18. Distributed results for 5m grid size for Lettau (A), Munro (B), Lettau-Munro Ensemble (C), Nield SdElev (D), Nield 
Max (E), and Nield SdObs (F).  

3.3.1 Lettau & Munro 
When visually examining the distributed results for the 5m grid size (Figure 18), a noticeable difference 

between the two algorithms is present. The Lettau algorithm (A) shows an area of high z0 values around 

position x=540630, y=7442140, which the Munro algorithm (B) does not show. This correlates to a 

small meltwater lake, which is visible on the orthomosaic (Figure 12). Meanwhile, in the distributed 

result of the Munro algorithm, the meltwater river is identifiable, in contrast to the Lettau results.  
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The variation within the estimated roughness values of the study area is up to two orders of magnitude 

(e.g. 0.001-0.1m for Munro at 5m grid size). This is a realistic range, as the estimated roughness by the 

AWS has a similar range of values. The FG method does seem to overestimate the roughness for all 

grid sizes and algorithms, except Munro 5m, as the values are at most an order of magnitude higher 

than what is expected when comparing to the reference values.    

Figure 19 shows the distribution of values displayed in a violin plot for Lettau, Munro and the Lettau-

Munro ensemble. Both the Lettau and Munro algorithms exhibit a sensitivity to grid size. Interestingly, 

the patterns are the opposite for Lettau and Munro. The Munro algorithm shows a tendency to 

produce a higher estimate for z0 as the grid size increases. The Lettau algorithm shows a tendency to 

produce a lower estimate for z0 as the grid size increases. More interestingly, the Lettau-Munro 

Ensemble roughness estimate remains (almost) equal over the grid sizes.  

 

Figure 19. Estimated z0 values for the Lettau & Munro algorithms and their ensemble displayed in violin plot format. For 
Lettau, a downward trend is observed with increasing grid size, in contrast to Munro for which an upward trend is observed. 
The z0 estimates of the ensemble are not influenced by grid size.  

3.3.2 Nield 

 

Figure 20. Estimated z0 values for the Nield algorithms displayed in violin plot format. For Nield SdObs (located inside the 
grey band) the violin plots are not visible due to the extremely low variation within the z0 estimate. It can be observed that 
grid size does not influence the z0 estimate of Nield SdObs and Nield Mean, as the values remain equal regardless of grid 
size. For Nield Max and Nield SdElev it is visible that a greater grid size result in higher z0 estimates.   
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Figure 20 shows the distribution of values displayed in a violin plot for the different Nield algorithms. 

From this figure it can be concluded that Nield SdObs and Nield Mean are not affected by the 

different grid sizes that were taken. This in contrast to Nield SdElev and Nield Max. Nield SdElev and 

Nield Max both show the tendency to produce higher z0 estimates as the grid size increases, similarly 

to the Munro algorithm. Furthermore, the spread within the roughness estimate is much less within 

Nield SdObs and Nield Mean. For Nield SdObs, the values produced by this algorithm ranged from 

0.50-0.52m.  

The range of values produced by Nield SdElev and Nield Max span roughly an order of magnitude and 

contain slightly less variation then the Lettau and Munro algorithms.   

3.4 Moving footprint over fixed grid estimated roughness  
A way how a meaningful comparison can be made between the FG method and the AWS reference 

data is to visualize the data as a function of wind direction. The way this was performed was by 

producing a moving footprint in which the mean for each footprint was taken, in contrast to the MF 

technique where the algorithms were applied within each footprint.  

3.4.1 Lettau & Munro 
As was expected by examining Figure 19, the estimated roughness values for Lettau are substantially 

higher than the estimated roughness values for Munro. Also, Figure 21A strengthens the believe that 

Munro captures more spatial variability over direction than the Lettau algorithm, as the estimated 

roughness values for Munro vary more with direction. At 118° the estimated z0 is roughly 0.005m, while 

at 94° this is roughly 0.010m, an absolute difference of 0.005m, and a relative difference of factor 2.  

For Lettau the resulting values are less variant in direction, resulting in values in the range 0.022-

0.032m. In absolute terms, this difference between lowest and highest value is high (0.01m), while 

relatively, this difference is lower than within Munro (factor 2 versus factor 1.46). Furthermore, two 

peaks of Munro seem to coincide with peaks in the AWS data, namely the peak at around 130° and 

145°, though the estimated values for z0 for Munro are significantly lower (around half). Figure 21B 

shows a very interesting feature of the estimated values for z0 by the ensemble as predicted earlier in 

Figure 19, namely that the taken grid size seems to have no influence on the magnitude of the 

predicted values. In the ensemble, there is little directional dependency in the roughness estimate, as 

the values vary from 0.0085-0.0130m (absolute difference of 0.045m, relative difference of factor 

1.53), though similar directional dependency as the Lettau algorithm portrayed earlier.  
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Figure 21. Results for the FG method using the Lettau (A), and Munro (B) algorithms and the Lettau-Munro Ensemble (C) for 
a grid size of 5, 10, 15, and 20m, which is illustrated by different shades. For Lettau applies the darker the shade, the higher 
the grid size. For Munro applies the lighter the shade, the larger the grid size. Within the ensemble almost no differences are 
discernible for the different grid sizes. The results are binned per 2 degrees, from 90-180°.  The AWS reference data is of 
August 2019. 

3.4.2 Nield 
The Nield functions Nield SdElev and Max show great dependency on the chosen grid size, which can 

be observed in Figure 22. Both algorithms produce values of higher orders of magnitude as the grid 

size increases. For Nield SdElev the estimated roughness ranges from 0.012m at its lowest for grid size 

5m, to 0.120m at its highest for grid size 20m, a factor 10 difference. The Nield Max estimated 

roughness has a similar range in values of a factor 10 difference between the lowest and highest 

produced value. The directional variability seems not affected by the different grid sizes, as the pattern 

of z0 values seem to persist over grid size.   
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Figure 22. Results for the FG method using the Nield SdElev (A) and Nield Max (B) algorithms for grid sizes 5, 10, 15, and 
20m, which is illustrated by different shades. The lighter the shade, the larger the grid size. The results are binned per 2 
degrees, from 90-180°. The AWS reference data is of August 2019.  

3.5 Turbulent flux estimation 
The rationale of advancing our abilities to estimate the roughness is, as discussed in the Introduction, 

the need for improvement of flux estimation. Therefore, a simulation of the fluxes was made with the 

help of AWS data. The estimated z0 values per direction were correlated to the wind direction, allowing 

us to use variable roughness over direction. The resulting simulated flux can be compared to the 

measured sensible heat flux by the AWS. Positive flux is defined upwards, which means that negative 

flux implies a heat flux towards the ice sheet (air temperature > surface temperature). As a multitude 

of parameters can be changed within both the FG and MF method, a selection was made to provide a 

clear comparison between methods. To show the influence of the grid size on the turbulent flux 

estimation by the FG method, the grid sizes 5m, and 20m are taken for both the Lettau and Munro, 

and the Nield algorithms. The influence of the footprint size is shown by comparing the simulated 

fluxes when using the z0 estimate obtained by applying a 5x40m and a 15x200m footprint. Lastly, the 

influence of the DOF is examined by simulating the fluxes for one footprint (15x200m) and multiple 

DOF (6, 12, and 18). The chosen parameters are shown in Table 3. 
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Table 3. Parameters chosen for input roughness for the simulation of the turbulent fluxes 

MF 
method 

Footprint size DOF of 
Spline 

FG method Grid 
size 

Footprint 
size 

Direction of 
transects 

Lettau 5x40m, 
15x200m 

 
Not 
applicable 
to these 
functions 

Lettau 5m, 
20m 

15x200m x-direction 

Munro 5x40m, 
15x200m 

Munro 5m, 
20m 

15x200m x-direction 

Ensemble 5x40m, 
15x200m 

Ensemble 5m, 
20m 

15x200m x-direction 

Nield 
SdElev 

5x40m, 
15x200m 

6, 12, 18 Nield 
SdElev 

5m, 
20m 

15x200m x-direction 

Nield Max 5x40m, 
15x200m 

6, 12, 18 Nield Max 5m, 
20m 

15x200m x-direction 

 

3.5.1 Using roughness values derived by the moving footprint method 
Figure 23 shows the measured and simulated fluxes using the estimated z0 by the MF method for the 

month August. Multiple key differences are discernible. First, from the figure it becomes apparent that 

most of the MF methods overestimate the measured flux regardless of footprint size. Then, the Nield 

functions are subject to large differences in magnitude as the footprint size increases. The 5x40m 

footprint results in mean fluxes of approximately -70 Wm-2 for Nield SdElev and -65 Wm-2 for Nield 

Max, while the 15x200m footprint results in mean fluxes of approximately -230 Wm-2 for Nield SdElev 

and -100 Wm-2 for Nield Max. A large portion of this difference can be attributed to the DOF of the 

spline function, which does not increase with increasing footprint size. The Lettau, Munro, and Lettau-

Munro ensemble show much less sensitivity to footprint size. Furthermore, the simulated fluxes do 

produce a similar pattern for the whole time period. This is mainly since the roughness is only one 

parameter that is changed, and a large part of the pattern is formed due to the forcing data from the 

AWS. Additionally, it can be observed that the 5x40m footprints for Munro, Nield SdElev and Nield 

Max produce very similar results as is underlined by the violin plots of Figure 23C. Furthermore, it can 

be concluded that the Lettau method reproduced the measured flux best in this case, regardless of 

footprint size. It produces similar values to the measured flux, though overestimating or slightly 

underestimating it at times.   
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Figure 23. Simulated fluxes using the estimated z0 of multiple MF techniques and AWS data of August (A). A single day has 
been highlighted (B) to provide a more detailed view, including a violin plot of the values of that single day (C).     

3.5.2 Using roughness values derived using multiple DOFs  
In Figure 24 the positive effect of increasing the DOF for the MF of 15x200m is clearly visible. The 

simulated fluxes using higher DOF yield results that match the measured flux more closely. The large 

peaks visible for Nield SdElev DOF = 6 are reduced for the other DOF. This is expected as the 

roughness values produced using higher DOF matched the measured z0 more closely. Still, even with 

higher DOF, the simulated flux produced by the 5x40m footprint (Figure 23) with lower DOF are 

showing a closer resemblance to the measured flux.   
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Figure 24. Simulated fluxes using the estimated z0 of a 15x200m MF for Nield SdElev and Nield Max using multiple DOF and 
AWS data of August (A). A single day has been highlighted (B) to provide a more detailed view.  

3.5.3 Using roughness values derived by the fixed grid method 
Figure 25 shows the measured and simulated fluxes using the estimated z0 by the FG method for the 

month August. From this figure it can also be concluded that the resulting z0 values from the FG method 

also overestimate the measured flux in most cases. More interestingly, a difference in pattern can be 

observed for the FG and MF method.  The magnitude of this overestimation is similar to the magnitude 

of overestimation of the MF method. The similarity between the patterns are also significant. The 

method that now best reproduces the measured flux, is the Munro algorithm with a grid size of 5m. 

This is underlined by comparing the mean estimated flux of Munro (± -48 Wm-2) to the mean measured 

flux (±- 37 Wm-2). Still, this algorithm tends to overestimate the measured flux by 30%.  
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Figure 25. Simulated fluxes using the estimated z0 of multiple FG techniques and AWS data of August (A). A single day has 
been highlighted (B) to provide a more detailed view, including a violin plot of the values of that single day (C).    

3.6 Large scale RPAS imagery 
No AWS was present for the area captured by the eBee flight; thus no reference data was available. 

This also applies to the KanM and KanL datasets. Therefore, it was decided to only produce FG results 

aiming to show the capability of this method to produce realistic z0 estimates for multiple study areas 

spanning several magnitudes of size and resolution. From the KanM and KanL dataset, a subset was 

extracted for examination. One of the interesting aspects of assessing site A is that by visually assessing 

the DEM (Figure 11A) it can be expected that there will be higher roughness values for the southwest 

part of the plot area, as this is a relatively rough area dominated by crevasses. This should be captured 

in the FG results, as missing this feature would indicate weak performance of the FG method. Again, 

note that the scales are not identical for the different plot, which was done purposefully to compensate 

for methods with very low variability (e.g. Figure 26E+F).  
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Figure 26. FG results with transects in x-direction at 30m grid size for methods: Lettau (A), Munro (B), Nield SdElev (C), Nield 
Mean (D), Nield SdObs (E), and Nield Max (F).  

As we compare the different methods, multiple observations can be made. First, for most methods, 

the resulting estimated z0 values are higher than the estimated z0 values for site S5.  Furthermore, most 

methods show sensitivity to the rough, crevassed area in the south-southwest. However, the Nield 

SdObs algorithm indicates that the area in this area is in fact slightly smoother (±-0.010-0.015m) than 
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the rest of the area. This is incorrect and further strengthens the believe that this algorithm can be 

excluded. Moreover, the Nield SdObs algorithm estimated z0 does not differ from site S5, producing a 

range of values from ±0.505-0.530m against ±0.500-0.520m for site S5. Then, there is a striking 

similarity between the patterns produced by Munro, Nield SdElev, and Nield Max. These all clearly 

highlight the crevassed area as rough, as well as a smaller area around x=540300, y=7450250, while 

the rest of the area is rather uniform. Lastly, while it was expected that the Nield Mean would be 

underperforming, it was not expected for Lettau. As we examine the distributed results for the Lettau 

algorithm, it does not pick up the expected higher roughness in the crevassed area. Furthermore, there 

are no distinguishable features in the results; it resembles a uniform random distribution at best.      

 

Figure 27. FG results using the Munro algorithm for site A at 30m grid size with taken transects in x-direction (A) and y-
direction (B). Clearly visible is the higher roughness in the west-southwest. Also noticeable is the difference between the two 
directions; the transects in x-direction produce higher roughness values than transects in y-direction.  

Another interesting aspect of the results is the clear difference between transects derived in x- and y-

direction. As example are the FG results for site A shown in Figure 27 Here it is visible that while large 

parts of the site are estimated similarly, the rough area in the south-southwest is estimated differently. 

The transects in x-direction pick up higher roughness values than the transects in y-direction. This is 

due to the direction in which the features in this area are orientated, as is visible in Figure 11A. The 

main orientation of these crevasses is in north-south direction. This orientation complicates the 

capture of roughness by transects in equal direction. Transects perpendicular to this orientation, 

transects in x-direction, can capture this roughness quite easily. This will be further discussed in the 

section 4.4.4.  
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Figure 28. FG results for KanL (left column; 1) and KanM (right column; 2) at 90m grid size with transects in x-direction for 
methods Lettau (A), Munro (B), Nield SdElev (C), and Nield Max (D). 

The KanL and KanM dataset show similar results regarding similarity of patterns; the Munro, Nield 

SdElev, and Nield Max algorithms produce similar patterns. The poor performance of Nield SdObs is 

also underlined, as again, it produces values between ±0.510-0.527m. Since it is extremely unlikely 

that the roughness of the different sites is of similar magnitude, Nield SdObs is deemed unsuitable 

when applied in this method. Importantly, this result shows that the methods pick up lower roughness 

values for KanM which is situated higher up on the ice sheet, where lower roughness values are 

expected. In the KanL dataset, this is even seen in a single plot as the roughness values decrease in 

eastern direction.  
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4. Discussion 

4.1 Performance of Moving Footprint 
The Moving Footprint technique makes use of the Lettau and Munro algorithms similar to their 

intended use; transects in a certain direction that provides us with a roughness estimate along the 

predominate wind direction. Therefore, it is not unexpected that this approach results in the best 

roughness estimates, as they reproduce great directional variability and result in estimated z0 values 

in similar order of magnitude as the reference values. While the algorithms Nield SdElev and Nield Max 

also reproduce the directional influence, they do tend to overestimate the roughness. Even so, the 

capture of directional influence by both algorithms is a great benefit of this technique. Furthermore, 

directional influence is best captured by a smaller footprint. Additionally, this method is easy to apply, 

and does not require much computational power. Therefore, it can be of use for creating quick 

roughness estimates dependent on direction for a designated location, such as an AWS or other point 

of interest. The different footprint sizes are of influence on the resulting estimated z0. Possibilities to 

ameliorate the tweaking of the footprint sizes are given later in section 4.4.2. It should be noted that 

the Nield SdObs and Nield Mean function do not produce realistic results in the MF method. The results 

show no directional variability, and the values do not correspond in magnitude to the reference values. 

Therefore, it is concluded that the Nield SdObs and Nield Mean functions are of no use for the MF 

technique, and should therefore not be considered. The main shortcoming is its inability to produce 

distributed roughness estimates, and therefore being unsuitable for larger datasets or for mapping the 

roughness of an area.  

4.2 Performance of Fixed Grid 
In contrast to the MF method, the FG method is able to produce distributed roughness estimates and 

can therefore be used to map the roughness of a complete area, and as a result provide insight in the 

spatial variability of roughness. It succeeds in this, as is exemplified by e.g. Figure 27, for which one 

glance is enough to observe the rough area in the south-southwest. Furthermore, it can capture 

variation of z0 on a larger scale which is exemplified by the results for KanM and KanL where it picked 

up lower roughness values higher up the GrIS.  

While the empirical Nield SdElev and Nield Max algorithms were developed to produce roughness 

estimates for flat, small (12x12m), square plots (Nield et al., 2013), they also seem to perform well on 

grid sizes of up to 90 times that cell size (90x90m plots, 8100m2). While the values may be an 

overestimation at most times, it does produce great spatial results. The overestimation of values can 

be the result of an insufficient DOF of the spline detrending function. This will be discussed further 

later in section 4.4.1.        

The mechanical algorithm of Lettau does not seem to perform well in the FG workflow. While the 

values are not far from expected, the spatial patterns show that very little spatial variability is captured, 

and roughness elements are not captured or distinguishable. The Munro algorithm however does work 

well in the workflow, as this captures roughness features such as crevasses, melt-water valleys, and 

other spatial objects. The Lettau-Munro ensemble does seem to produce viable results. However, this 

is probably mainly due to the influence of the Munro results, and while it produces results independent 

of grid size, it is unlikely that this ensemble is in fact a realistic option.   

As mentioned, the Lettau-Munro ensemble produces results independent of grid size. This is also the 

case for the Nield SdObs and Nield Mean functions, yet these functions are not further discussed as 

we have seen that they did not perform well. All other functions have strong dependence on grid size. 

The Munro, Nield SdElev, and Nield Max roughness estimates all increase continuously as the grid size 

increased. The Lettau roughness estimate showed a contrasting trend; the roughness estimate 
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decreased continuously as the grid size increased. The FG in combination with a mean with Moving 

Footprint is also capable of producing results that contain some directional influence. Even so, the 

magnitude of the directional influence is much less than what the MF can produce. This is expected as 

transects are taken only in two directions (x- and y-direction, instead of all possible directions of the 

MF). Nevertheless, it is promising to see that some directional influence is retained even in the FG 

approach.  

Another interesting result is the similarity of patterns in produced z0 between the Munro, Nield SdElev, 

and Nield Max algorithms. The resulting orders of magnitude for estimated z0 were also comparable 

between the Lettau and Munro versus the Nield algorithms. This in contrast to previous papers in 

which the resulting z0 estimate often differed with (at least) an order of magnitude (Miles et al., 2017). 

The main cause why the resulting z0 estimates are more alike, is the use of spline detrending instead 

of (bi)linear detrending which was used in the aforementioned paper. The bilinear detrending method 

does not sufficiently remove trends when applying the empirical Nield functions on larger scale. Spline 

detrending is proving to be a viable option.  

 

Figure 29. Reference z0 values from the period January-August 2019 to put the resulting estimates for the FG (5m) (A) and 
MF (5x40m) (B) into perspective.  
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While solely focussing on the absolute reference values, it is also important to put the roughness 

estimates into perspective. Figure 29 shows the variability of z0 over half a year as captured by the AWS 

including the estimate roughness values using the FG method (A) and the MF method (B) for selected 

algorithms. This shows that the z0 itself varies over direction and time and can range from 0.00001 to 

0.05m. This also stresses the difficulties related to roughness estimates, as the techniques should be 

capable of recreating roughness values in varying orders of magnitude.  

4.3 Implications for flux estimation 
After the assessment of the resulting turbulent flux estimation, and comparison to the measured flux, 

it was concluded that the simulated fluxes overestimate the measured flux. This could be detrimental 

to the results of this study, though a nuance should be made. While a comparison was made to the 

measured flux, which is the absolute benchmark, there was no comparison made to the relative 

benchmark; the turbulent flux simulated using the roughness values as obtained by the AWS. 

Therefore, we compared the best performing MF (Lettau, 5x40m) and FG (Munro, 5m) approaches to 

three measured z0’s (raw measured z0, z0 with an applied 12-hour Moving Average Focal (MAF) and z0 

with an applied 24-hour MAF) (Figure 30).   

 

Figure 30. A comparison of simulated fluxes using estimated z0’s and simulated fluxes using measured z0’s (raw, 12-hour 
MAF and 24-hour MAF), taking the measured flux as a reference (A). In B the absolute errors are given including the mean 
per method.  

Assessing Figure 30A reveals immediately that the simulated fluxes with measured z0 values do not 

perfectly reproduce the measured flux. These simulated fluxes also tend to overestimate the actual 

flux by 11.5-15.2 Wm-2 on average (Figure 30B). In fact, they overestimate the measured flux to similar 

magnitude as the Lettau MF (mean absolute error = 11.2 Wm-2) and Munro FG (mean absolute error = 

12.4 Wm-2) methods. This puts forth two main conclusions. The first conclusion is that the developed 
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methods seem to produce promising results and are thus a viable option for roughness estimation for 

large scale applications using high-resolution DEMs for the purpose of estimating turbulent fluxes. The 

second conclusion is that difficulties remain in simulating turbulent fluxes, as even simulated fluxes 

with measured roughness values do not perfectly reproduce the measured turbulent flux.   

4.4 Limitations, simplifications, and recommendations 
The developed methods were produced in such a fashion that the resulting required computational 

powers would be limited. For this purpose, some simplifications were made which may have resulted 

in imprecisions. In this part some simplifications are addressed, as well as their possible improvements 

for future purposes for when limitations regarding e.g. computational power may be removed. 

4.4.1 Spline detrending 
As stated in section 2.6.2, a spline detrending method was used prior to applying the empirical Nield 

algorithms. Since one of the objectives of this study was to determine a method suitable for larger 

datasets, focus was put on simplicity. Therefore, a single DOF was used of 6. This DOF was chosen 

manually after checking a multitude of areas and transects. While this simplified the process, it will 

most likely result in less consistent results for the Nield algorithms. The reason for this is that almost 

all surfaces are non-uniformly or irregularly shaped. Therefore, while a spline with a DOF of 6 will 

suffice for parts of the study area, for some other parts it may be too strict as there are large scale 

topographic differences; for other parts it may be too forgiving as there are little large scale 

topographical differences. Additionally, increasing the DOF will naturally result in a better fit, thus 

lower residuals. This will in turn produce lower roughness values as the lower the input statistics in the 

empirical functions, the lower the resulting output. Furthermore, when considering greater grid sizes, 

the DOF did not change in this study. It may be worthwhile to take greater DOF for greater grid sizes. 

A more elegant strategy should thus be adopted for choosing the DOF or in the appliance of the spline 

detrending. 

In the current state of the developed methods, the detrending method is applied to the 1D transects, 

even within the FG method. The resulting consequence is that all transects within a grid have different 

splines. While it is unexpected that this causes erroneous results, future research could include the 

assessment of applying the spline detrending step using different approaches. This could be for 

example implementing a variable DOF by relating the DOF to certain surface characteristics. Other 

approaches can include detrending the individual grid blocks, or even the complete study area with a 

single spline function. To conclude, more research should be put in the performance of the spline 

detrending method before they are applied on larger scale.  

4.4.2 Shape and size of footprint  
The shape and size of the footprint mainly influences the results of the Moving Footprint method, in 

this case the results for S5. As the area of that was captured by the drone was limited, the option to 

vary the footprint size was also limited. The largest footprint that could be taken was the 15x200m 

footprint, as taking a larger footprint would result in reaching the limits of what has been documented 

by the RPAS. This footprint size was thus the upper limit of what was possible to assess in this study. 

The lower limit was arbitrarily set on 5x40m. These different footprint sizes are ‘guesstimates’ and may 

be unrepresentative. More research could focus on what footprint size is appropriate for AWS on the 

GrIS. Furthermore, it is known that the shape of a flux footprint is not a rectangle, but resembles more 

an oval shape (see Figure 31). While the rectangle may provide a good approximation, better would 

be to draw the transects in a manner similar to Figure 31C. However, getting this footprint right is 

difficult, and requires many parameters. Research shows promising developments in reducing the 

problems and required computational power related to creating flux footprint models as simple two-

dimensional footprint parametrisations are being developed and tested (Kljun et al., 2015).  
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Figure 31. An example of a 2D footprint estimate (A), which in the current method is approximated by a rectangle in which 
transects are taken (B), but which could be ameliorated by applying the transects as drawn in C. The crossed circle 
represents the AWS location. The footprint contour lines are shown in steps of 10% from 10 to 90% (increasing in the 
direction of the arrow in A), also correlating to the colour which denotes the relative contribution of the area to the total 
footprint. Original footprint after Kljun et al., (Kljun et al., 2015).   

The footprint also influences the Fixed Grid method since the Moving Footprint calculates the mean 

per footprint is applied over the FG distributed results. Now, each cell is given equal weights. However, 

as is also depicted in Figure 31, the area near the AWS influences the aerodynamics more than an area 

further away. It may be possible that this should be accounted for in the MF over FG step. Future 

research could explore the possibility of adding variable weights to the individual grid cells.   

4.4.3 Dome-effect 
The DEMs for the sites S5 and A were created without the help of GCPs, which can cause a significant 

dome-effect (Eltner and Schneider, 2015). This can be checked by verifying the created data with 

verified elevation data e.g. an IceSat2-track. However, as the profiles are detrended this possible effect 

was neglected since detrending the profile would remove the aforementioned effect in any case. While 

this is certainly the case when using the spline detrending method, it may not be the case for the linear 

detrending method, as the dome shape is a parabolic; fitting a straight line through a parabolic shape 

is problematic. Therefore, the possible influence of the dome-effect on the Lettau and Munro 

roughness estimates should be examined. It is not expected that the dome-effect in this study is of 

minor influence, as visual inspection did not reveal a dome-structure in the DEM.  

4.4.4 Transect direction 
Step 2 of the FG method (Figure 10) states that the 2D grid cells were divided into 1D transects in x- 

and y-direction. This results in transects in only two directions, which in contrast to the MF method 

wherein you can theoretically obtain transects in 360 different directions, shows a significant 

shortcoming. When the FG method is applied to anisotropic surfaces (i.e. surfaces which are formed 

in certain direction), this anisotropy can only be captured when the direction of the anisotropy 

correlates to the direction of the transect as is depicted in Figure 32. Now, the FG method is only 

capable of working in the x- and y-direction. This while it is known that some parts of the GrIS are 

shaped in the direction of the predominant wind direction, and crevasses can also be found in certain 

directions, exemplifying the anisotropy of the GrIS (Smith et al., 2006). Therefore, we recommend that 

prior to applying the FG method in the current state, isotropy should be established. Furthermore, 

future enhancements of the method could include the possibility of multi-directional transects 

construction. It is an option to combine the MF and the FG methods developed in this paper to create 

said functionality, though this would require far more computational power than the two separate 

methods, therefore it was left out as it was not in the scope of this research. A simple solution that 

requires (almost) no additional coding, is rotating the elevation raster in such fashion that the direction 

of the anisotropy (if present) is in the same direction as the x-axis or y-axis. This results in the highest 

roughness value for the study area. Another option is rotating the elevation raster in such a way that 
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the transects are taken in the direction equal to the main wind direction. This results in a 

representative roughness for the study area, as it is not necessarily that the anisotropic direction is 

equal to the main wind direction. This way, it is expected that the current method and code can be 

used to produce meaningful results for anisotropic surfaces.  

 

Figure 32. An extreme case of anisotropy; a sinusoidal wave. When applying the FG method and constructing transects in x- 
and y-direction, the transects in y-direction do not capture any variability in elevation, while transects in x-direction do 
capture variability in elevation. Within these extremes the variability increases as the angle between the transect and the y-
axis increases, until the point the line coincides with the x-axis.   

4.4.5 Moving focal option  
One of the advantages of the FG method, is also one of its disadvantages. The FG method calculates a 

roughness value per grid tile (computationally easy). As the grid tile is in the case of this study at least 

200 times larger than the original resolution, the resulting map will consequently have a lower 

resolution as the original input map. This may not be desired in some cases. A future development of 

the method that involves the application of a moving focal function could be a solution to retain the 

original high-resolution data. Currently, this moving focal is not a feasible option as run times will 

increase dramatically compared to the Fixed Grid method. While the Fixed Grid method took about 8 

hours to complete when processing the entire S5 site, the moving focal took 7 days for a small section 

(±50x50m) of S5.  

4.4.6 Use of satellite data 
Future research could also focus on the use of high-resolution satellite data. One new source of 

interesting data is the Advanced Topographic Laser Altimeter System (ATLAS) onboard the ICESat-2 

satellite. The ATLAS is an, with respect to the ICESat-1/GLAS measurement system, improved dual-

beam single-photon counting laser altimeter (Abdalati et al., 2010; Neumann et al., 2019). Each beam 

has a 17m spatial footprint diameter with 0.7m along-track spacing and can provide sub-decimal 

elevation change. While this satellite gives great new prospects with regards to elevation changes of 

the GrIS, the nature of the data provides some difficulties when the methods developed in this paper 

are applied. Since the data is extracted in beams, it is possible only to create a few transects and only 

in the direction of the beam. While these transects can be used as input for the algorithms, their use 

is limited as only one direction can be considered. While an aerodynamic roughness estimate can be 

produced for isotropic surfaces, for anisotropic surfaces this is not achievable.  

 

 



48 

4.4.7 Most appropriate method for the Greenland Ice Sheet 
Multiple methods have been presented in this paper, all with their own strong and weak points. It is 

highly interesting to see what works best. However, it is possible that for different study areas, 

different combinations of grid sizes, resolutions and techniques produce best results. Therefore, a 

recommendation is made how to determine the approach to produce best roughness values for an 

area with no reference data to check. First, the area should be checked on its isotropy. If the study 

area is uniformly variable in all directions, the Fixed Grid method can be applied in its current state, as 

the direction of the transects will not influence the roughness estimate. Vice versa, when the directions 

of the transects have an influence on the roughness estimate, you will know that the area shows 

anisotropic features. If the study area contains anisotropic features, it should be decided whether to 

draw transects in anisotropic direction or in main wind direction. This can be achieved by rotating the 

entire raster so that the rows or columns are in the same direction as intended.  Then, a representative 

point should be taken, which will act as a dummy AWS. Hereafter transects from possible wind 

directions should be taken to this dummy AWS location for an appropriate footprint. The transects are 

then fed into the Lettau algorithm, as this method produced roughness values that matched most 

closely to the reference data. The roughness values estimated by the MF Lettau will then act as anchor 

point for the other values. Hereafter, the whole study area is considered using the FG technique and 

the Munro, Nield SdElev, and Nield Max algorithm, as these algorithms proved to capture spatial 

variability on both smaller and larger scale. The size of the grid cells, and thus transects, should ideally 

be in the order of metres when the resolution is in centimetres, as has been proposed in earlier papers 

(Rees and Arnold, 2006). This paper found that roughness is reasonably well described by scale-free 

models longer than a few metres, and shorter than about 100m. This fractal behaviour was established 

for a snow-free surface of a glacier in Svalbard, and not for the GrIS. Therefore, more research can 

point out whether assumption and underlying relation holds for the GrIS. Anyhow, in this paper the 

relation boils down to 2.5cm resolution - 5m grid size, 30cm resolution - 30m grid size, and 60cm 

resolution - 90m grid size. In practice, a ratio of 1:100 to 1:200 should be maintained. Then the resulting 

values are compared between the FG and MF methods, with the MF values providing as an anchor as 

to what order of magnitude should be expected. The final step is checking the difference in magnitude 

between the FG and MF, and possibly adjusting the values for the FG distributed results.   

4.5 Relation z0 and wind speed  
It is important to establish whether the wind speed has an influence on the z0 measured by the AWS. 

Primarily since the possible presence of a relation between wind speed and z0 implicates that certain 

roughness elements are only captured by larger footprints. This would mean that upwind of the AWS, 

certain roughness elements are located that are included in the measured z0 if the wind speed is 

sufficiently high, so that the roughness elements are located within the footprint. Second, the z0 

estimates that were produced in this study did not take wind speed into account. Might there be a 

relation between z0 and wind speed, this should be accounted for. Therefore, a scatterplot was made 

to examine the possible relation between the aforementioned two factors which is presented in Figure 

33.  
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Figure 33. Scatterplot of wind speed against measured z0 by the AWS of S5 for the month August. 

This scatterplot does not show a relation between wind speed and z0. The implication of this absence 

of relation is that there are no roughness elements upwind of the AWS that are only captured at higher 

wind speed. In other words, the AWS is not located in the wake of a roughness object that is only 

captured at higher wind speeds. While this is desired for the location of an AWS, it is not always 

achieved as you are limited by the possible locations to place an AWS by for example accessibility of 

the site. For this paper, it strengthens the belief that the documented area is of sufficient size to 

provide meaningful roughness estimations in the directions from 90-180°.  

4.6 Relation original DEM resolution on z0 

Figure 34 shows the mean estimated aerodynamic roughness plotted against the original resolution of 

the DEM. To create this figure, the original DEM of site S5 was coarsened from 2.5cm to 5, 50, 100, 

250 and 500cm. Then, the Moving Footprint method was applied to determine if and what the 

influence of the resolution on estimated z0 is. From the figure can be concluded that there is a negative 

relation between resolution and z0 estimate; the coarser the resolution, the lower the estimated z0. 

This link is visible for both Lettau and Munro. This relation can be explained by the loss of roughness 

elements by coarsening the resolution, as small variations in elevation are averaged out by this step. 

Interesting is that the slope at which both the algorithms decrease looks similar, while the values of 

both algorithms differed significantly in magnitude. From the figure it can be concluded that a 

(negative) logarithmic relation can be established. Whether this logarithmic relation is coincidence, or 

that this relation holds for other areas as well can be an opportunity for future research.   
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Figure 34. Plot of mean z0 values with standard deviation against resolution of original DEM over which the moving footprint 
(15x200) was applied, with a fitted linear model and 95% confidence interval.  
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5. Conclusion 
This study showed that RPAS-derived DEMs of various scales and resolutions can be used to produce 

realistic topographic roughness estimates by applying a variety of microtopographic methods and 

comparing the resulting estimates to values obtained by aerodynamic inversion of AWS data.  

Both of the in this study developed methods, the Fixed Grid method (FG) and the Moving Footprint 

method (MF), produced promising results in combination with the Lettau (Lettau, 1969) and Munro 

(Munro, 1989) algorithms, and the Nield (Nield et al., 2013) functions. These methods resulted in 

roughness estimates approximating the reference values obtained by aerodynamic inversion of AWS 

data, though overestimating it in most cases.  

When comparing the FG and the MF method the following findings are important. The MF worked 

especially well in combination with the Lettau equation, producing roughness estimates close to the 

reference values. Furthermore, the MF also proved capable of partly reproducing the high dependency 

of the roughness on the prevalent wind direction. Additionally, the MF requires low computational 

power and is easy to apply. As a result, it is suitable for producing directional dependent roughness 

estimates for a specific location. In contrast, its main shortcoming is the inability to produce distributed 

roughness estimates.aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa          

The FG method proves that it can produce realistic distributed roughness estimates and roughness 

patterns, complementing the MF method. Spatial patterns were reproduced by multiple algorithms. 

The largest similarity in patterns was exemplified by the Munro, Nield SdElev, and Nield Max algorithm. 

While the Lettau algorithm performed well in the MF method, it underperformed in the FG 

methodology, as it did not reproduce spatial patterns. The Nield algorithm that makes use of the 

standard deviation of obstacle height, in this study continuously referred to as Nield SdObs, is proven 

unable to produce realistic results in both FG and MF methods. It produces no variable results, as the 

z0 estimate ranges from 0.50-0.55m for each plot regardless of input. Visible assessment of roughness 

patterns has confirmed the poor performance. Hence, the Nield SdObs algorithm can be excluded from 

further research. The Nield equation that makes use of the mean obstacle height (Nield Mean) is able 

to reproduce some of the spatial patterns, yet structurally overestimates the values by an order of 

magnitude. Therefore, this algorithm can also be excluded from further research. To conclude, the FG 

method is a computational inexpensive method capable of producing realistic distributed roughness 

estimates and roughness patterns. The algorithms that perform well inside the FG method are the 

Munro, Nield SdElev, and Nield Max algorithms. These also shown capable of capturing variability in z0 

on a larger scale, exemplified by the studies of KanL and KanM.  

The impact of spatial scale on the aerodynamic roughness by the FG method is considerable. The 

roughness estimates of almost all algorithms are dependent on the chosen grid size, with an exception 

for Nield SdObs and Nield Mean. For most algorithms, the following statement applies: the larger the 

grid size, the larger the estimated roughness length for momentum. The estimated roughness length 

can multiply by a factor three to five when increasing the grid size of the FG from 5m to 20m, depending 

on what algorithm is used. Only Lettau showcases a negative relation between grid size and estimated 

roughness value. A logarithmic mean of the Lettau and Munro algorithms also proves to be 

independent on grid size. For the Nield equations, the grid size dependency may be partly caused by 

the fixed degrees of freedom (or number of nodes) of the spline function over the different grid sizes. 

Future research should examine the possibility of variable degrees of freedom per grid size.  

The resolution of the input DEM also affects the aerodynamic roughness estimate. The coarser the 

original resolution, the lower the roughness estimate. The observed relation for the Munro and Lettau 

equation was that the modelled z0 decreased logarithmically with coarser resolution. Whether this is 

coincidence or the possibility that this relation holds, is opportunity for future research.  
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This study also shows that it is possible to simulate the turbulent fluxes with relative high accuracy 

when using the produced roughness estimate. The best performing techniques were the Lettau MF 

method, the 5m FG method, and the 5m Nield Max which reproduced the turbulent fluxes with an 

average absolute error of 11.2 Wm-2 (Lettau), 12.4 Wm-2 (Munro), and 10.7 Wm-2 (Nield Max). The 

average absolute error of the simulated fluxes using roughness values obtained by the AWS amounted 

to 11.5 Wm-2 (Measured raw), 13.9 Wm-2 (Measured 12-hour moving focal average), and 15.2 Wm-2 

(measured 24-hour moving focal average). This shows that the method can perform just as well as the 

simulated fluxes obtained by the AWS. Increasing the grid size will cause the absolute error to increase.  

For users that are interested in applying the methods of this research to large scale datasets, it is 

recommended that a combination of the two methods is used. This study showed that a MF using the 

Lettau algorithm for a footprint of 5x40-15x200m in size moving over a high-resolution DEM (2.5cm) 

produces results that match the directional variability and the magnitude of the AWS reference data. 

The MF method using the Munro, Nield SdElev, and Nield Max algorithms at a small grid size (5m) for 

a high-resolution DEM (2.5cm) show spatial differences over the study area. By combining these 

techniques, an insight is given in the magnitude of z0 and the variability over the studied area.   

ICEsat-2 tracks are a good source of extra information and can provide additional verification of 

elevation data. However, as the satellite makes use of tracks in certain direction, it can only produce 

roughness estimates in a certain direction. Therefore, the ICEsat-2 tracks can only be used in a way 

similar to the FG method used in this paper if the surface that is considered is isotropic.  

Future research can focus on more elegant ways to apply spline detrending in the Fixed Grid method. 

It can also explore to what extent the Moving Footprint can be improved by creating footprints more 

similar to realistic footprints, and adding weights to cells so that cells closer to the AWS are given more 

weight than cells further away.   
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Appendix I: Abbreviations 
  

AWS Automatic Weather Station 

DEM Digital Elevation Model 

DOF Degree of Freedom 

FG Fixed Grid  

GCP Ground Control Point 

GNSS Global Navigation Satellite System 

GNSS-AT Global Navigation Satellite System Aerial Triangulation 

GrIS Greenland Ice Sheet 

IMAU Institute for Marine and Atmospheric research Utrecht 

MF Moving Footprint 

RCM Regional Climate Model 

RPAS Remotely Piloted Aircraft System 

SLR Sea-level rise 

 


