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Abstract

This work presents research on the pair-wise impostor finding problem: ‘Given a pair
of user accounts (and optionally, messages sent by either user account), can one reliably
determine whether this pair is controlled by the same actual author?’. The specific domain
for which this thesis aims to solve the pair-wise problem is social networks in which short
conversational texts are sent between nodes.

Two approaches to this problem are evaluated. The first is the combination of stylo-
metric authorship attribution methods with the Doppelgénger Finder. Three stylometric
authorship attribution methods and various stylometric feature sets are compared on their
performance on the authorship attribution task on short conversational text: Cosine Delta,
SVM and CNN. The CNN model achieves the highest scores on all datasets used, and for all
three methods, character 3-grams and word 1-grams prove to capture the most characteristic
information.

The second approach to the pair-wise problem is a direct network analysis-based method,
which is an original contribution of this thesis. This method is evaluated on the Opsahl
Facebook-like Social Network dataset, where the edges have been injected with Tweets from
the Sentiment140 Twitter dataset. The network analysis-based method does not attain
notable results when used with only network features or stylometric features. However,
with stylometric and network features combined, it reaches a weighted F1l-score of 0.7 on
the pair-wise problem.

To compare the two approaches, the SVM model is applied to the injected subset of
the Sentiment140 Twitter dataset on the authorship attribution task. The Doppelginger
Finder is applied to the predictions of the SVM model to answer the pair-wise problem.
The resulting scores are no higher than 0.5, which is unremarkable on the binary pair-wise
problem, but also lower than the 0.7 attained by the network analysis-based method.
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Chapter 1

Introduction

Imagine a detective faced with the task to investigate a criminal organisation. At their
disposal is a dataset consisting of a large amount of mobile messages that are suspected to
be related to members of the criminal organisation. However, criminals are known to use
burners - disposable phones that are used for the sake of anonymity. This not only means
that one cannot link one phone number to a specific person, but also that one person may
be behind multiple phone numbers.

Being able to identify groups of phone numbers with the underlying people would pro-
vide the detective with more coherent information about these people. For example, any
geolocation information of the phones used by a specific person can be used to construe a
path that the person has traveled. Another example is that some conversations this per-
son has held with other individuals might be spread out over multiple phones, and can be
re-constructed with this newfound information.

Finding groups of phone numbers (or other electronic identifiers such as Twitter IDs)
that are used by one person is what this thesis is concerned with. More specifically, the
main research question of this thesis is:

Given a dataset of messages from a number of user accounts, can one reliably find groups
of user accounts that are controlled by the same actual author?

To simplify the main question, it can be expressed in terms of the question

Given a pair of user accounts (and optionally, messages sent by either user account), can
one reliably determine whether this pair is controlled by the same actual author?

A method that can (reliably) find whether a pair of user accounts is controlled by the
same actual author can be used to find groups of user accounts controlled by the same
actual author. Therefore, this thesis is concerned with proposing and evaluating methods
that solve the simpler pair-wise research question to answer the main research question in
extension. Some options for the translation from the pair-wise to the main research question
are discussed in Section 7.1.4.

To answer the pair-wise research question, there are two approaches that will be discussed
in this thesis. One is a combination of existing authorship attribution methods with a
method called the Doppelgénger Finder. The other is a newly-proposed network analysis-
based method.

The authorship attribution task, to be shortened to A A, can be defined as follows:
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Given a text of unknown authorship, the authorship attribution task is to identify the
most likely author of this text out of a set of candidate authors of whom text samples are
available.

AA, and consequently methods that solve AA, have been relevant for a long time. The
Donation of Constantine[19] is a Roman imperial decree by which authority over Rome and
the western part of the Roman empire was transferred from Constantine the Great, a fourth-
century emperor, to the Pope. Although its authenticity had been repeatedly contested since
the beginning of the 11th century[65], it took until the 15th century for its forgery to be
proven by Lorenzo Valla - the convincing evidence being that the form of Latin used in the
decree cannot possibly date back to the fourth century[G1]. The forgery of the Donation of
Constantine was of big importance to the people living in Medieval Europe - it allowed for
juridical resistance against papal power, most prominently within Italy.

The method used to solve the AA problem of the Donation of Constantine made use of
stylometric features - features of text that describe writing style. Contrary to this example,
the majority of AA methods employed nowadays are automated, but at the same time
they still mainly perform analysis on the basis of stylometric features. In 2015, Boyd and
Pennebaker|[] used stylometric features to train a couple of classifiers to study the authorship
of Double Falsehood[58], a play officially published as the original work of Lewis Theobald.
The conclusion was that it was likely written by Shakespeare and Fletcher instead.

Another change that came with recent times is the type of text on which AA is to be
solved, as in the detective example. Instead of long, literary text, it is short conversational
text that concerns recent AA-related problems. Some examples of short conversational
text are WhatsApp messages, SMS messages and Twitter Tweets. As stated earlier, AA
methods can be used to answer the pair-wise problem, but this needs to be done on short
conversational text. This gives rise to a sub-question:

How well do existing AA methods perform the AA task on short conversational text?

The lengthiness and plentifulness of literary texts seems to be a requirement for AA,
as 5000 words per text is the minimum requirement for any AA method to be performed
on prose with an accuracy of at least 80%, regardless of language.[15] While this is on
literary text, it poses a problem for AA on short conversational text. Another problem
with dealing with conversational short texts is that, unlike in (relatively heavily regulated)
literary texts, a larger number of texts contain more than one language. Over 50% of the
world’s population speaks more than one language (semi-)fluently[3]. This large percentage
of bilingual people is reflected in language use on Twitter and many other social media[31].

To answer the pair-wise problem, methods that solve AA can be paired with the Dop-
pelgénger Finder. This is a method introduced by Afroz et al.[l] that uses the predictions
of an AA method to solve the pair-wise problem - it translates the output of an AA method
to a solution to the pair-wise problem. This translation allows for comparison of the perfor-
mance of AA methods (combined with the Doppelgénger Finder) with that of other methods
that solve the pair-wise problem.

In the example where a detective is tracking a criminal organisation, one type of data
that can be used is network data. If the senders and recipients of the messages in the
dataset are known, the dataset itself describes a network. Here, the nodes are the unique
phone numbers and the edges are connections over which messages are sent between phone
numbers. It is probable that patterns can be found in the comparison of connectivity data
of mobile phones that indicate that two phones are used by the same person. For example,
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this could be a set of common contacts the two phones share, that none of the other phones
share.

The goal is to use network information as a supplement to stylometric information to
solve the pair-wise problem. Unfortunately, AA methods are author classifiers that do not
easily support the addition of network information without data leakage. To circumvent
such problems, a method that can use such network information to directly solve the pair-
wise problem is proposed and evaluated in this thesis. This means the method is novel in
two ways. Firstly, it can use network information. Secondly, it is a direct solution to the
pair-wise problem, in contrast to AA methods, which need the addition of the Doppelgénger
Finder to form a solution to the pair-wise problem.

To summarize, the research in this thesis can be split into three parts. Firstly, it eval-
uates the applicability of existing AA methods on short conversational text. Secondly, the
applicability of the network analysis-based method will be evaluated on short conversational
text. And thirdly, it concerns a comparison of AA in combination with the Doppelgéinger
Finder with the network analysis-based method.

1.1 Relevance for Al

The relevance of this thesis research project to the field of AT is threefold.

Firstly, this thesis shows the applicability of Al-based methods to relevant real-world
problems. To answer the research question, this thesis explores multiple approaches that
are rooted in the field of AI. With the exception of the family of Delta methods, all methods
discussed belong to the family of machine/deep learning methods, or are used in combi-
nation with such a method. These methods are examined on their applicability to short
conversational text. This specific type of text is of increasing abundance in the past years,
and of increasing relevance is the search for patterns in such text, for example in the problem
of imposter finding.

Secondly, this thesis introduces a novel Al-based approach. The network analysis-based
method is a novel approach to the AA-related field of imposter finding, that combines ideas
from two Al-related fields: AA and node similarity on graphs.

Thirdly, the research has interdisciplinary relevance. Some of the methods discussed,
including the network analysis-based method, can give insight into the types of features
in short conversational text that are most characteristic for the classification of authors.
This could be interesting for a linguist that wishes to compare the subconscious stylometric
behaviour of people in short conversational text to that in other types of text.



4 CHAPTER 2. RELATED WORK

Chapter 2

Related work

As stated before, there are two routes to solving the main research question of this thesis.
The first is to use AA methods in combination with methods that determine similarity
between any two user accounts based on the AA method’s output. The second is to use a
network analysis-based classifier to directly identify whether any two user accounts are used
by the same author.

This section serves as a literature review of related work on the topic of the research
question and the two routes to solving the question stated above. Firstly, various methods
used in the field of AA are discussed. In particular Burrows’ Delta, SVM and CNN. These
three methods will be compared on their accuracy on the AA task on short conversational
texts. Secondly, two methods for finding impostors using the predictions of any AA method
from the literature will be discussed: the Doppelginger Finder and the Impostor Method.
The first will be applied to the predictions of an SVM model trained on the AA task.
Thirdly, network analysis methods from the literature will be discussed that have inspired
the network analyis-based method proposed in this thesis. Finally, the available options for
feature sets for the AA methods are discussed.

2.1 Stylometric authorship attribution

The set of automated AA methods can be divided into two main categories; non-trained
methods and machine learning methods[63]. Both methods make use of a distance metric
to determine the distance between a given document and the already identified documents
of any of the candidate authors. Non-trained methods are given a static distance metric.
Machine learning methods learn different weights that tie into a distance metric. They
use the already identified documents of candidate authors as training data to construct a
classifier. This classifier can then be used to classify a given document as most likely having
been written by one specific candidate author.

Both non-trained methods and machine learning methods (in particular the ones dis-
cussed in this thesis - Delta, SVM and CNN) come with their strengths and weaknesses.
Due to the general simplicity of non-trained methods, their explainability often surpasses
that of machine learning methods. When the results of an AA method are the only con-
cern, this explainability is barely of interest, but one should not forgo the fact that it is
invaluable to A A research. It offers an insight into what constitutes an authorial fingerprint,
and what does not. However, this explainability is a double-edged sword, as the distance
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metric of a non-trained method is subject to human bias. The distance metric is based on
what intuitively makes a document similar in writing style to another. Even if this distance
metric is based on a number of properties, or features, of a document, the weights of these
features are picked by hand. On the other hand, machine learning methods learn these
weights by fitting them to a training set. Deep learning methods are even more capable
of finding the intricacies that determine an authorial fingerprint, due to the integration of
feature extraction in a deep network. An added advantage of non-trained methods is that
precisely because they are non-trained, they are domain-independent. No model needs to
be trained with data specific to a domain in order to apply it to other data from the same
domain. For trained methods, domain-specific training is necessary and unavoidable, which
makes such models domain-dependent.

The following section will provide an overview of Burrows’ Delta, a non-trained similarity-
based method. After that, support vector machines, a machine learning-based method, will
be discussed, followed by convolutional neural networks, a deep learning-based method.
These sections include a brief introduction to the methods and notable research using these
methods, as well as what makes these methods of interest to our research. Finally, a few
other AA methods that will not be used in this research will be discussed briefly to motivate
the choice of methods.

2.1.1 Burrows’ Delta

One notable non-trained similarity-based method is Burrows’ Delta method[7]. Burrows’
Delta method checks for similarity of word distributions of most frequent words. This
method has initially been developed to transform the problem of identifying the author of
a given text out of a large number of candidate authors (‘open game’) into the problem
where the set of candidates is small (‘closed game’). By doing so, an open game could be
approached by first transforming it into a closed game, which in turn is easier to solve by
existing AA methods.

As Delta is a similarity-based method, it works by using a distance metric to determine
the distance between a document and a set of documents that are known to be written
by some candidate author. By calculating the distance between a document (of which its
author is to be identified) with the document sets of each of the candidate authors, it
becomes possible to rank the most probable authors of this document. This ranking is
exactly what allows Delta to transform an open game into a closed game - by selecting the
top n candidates. While Burrows’ Delta is designed with this transformation in mind, it
can also be used directly as an AA method by selecting the single top ranking candidate.

As part of calculating Delta, the application of a distance metric is preceded by a number
of steps. First, the occurrence of each word within each document is counted. For each
document, these word counts are transformed to relative frequencies, to account for different
document lengths. For efficiency purposes, the n most frequent words over the whole corpus
are chosen, of which the relative frequencies can be represented as a documents x words
matrix. These word frequencies are then standardized such that, over the whole corpus, the
mean of each word is 0 and its standard deviation is 1. On the final frequency matrix, the
Manhattan distance can be used to determine the distance between a document and the
document set of any candidate author.

Burrows is the first to use Delta for AA[7], or more accurately, to the related problem
of likely authorship attribution; to find the n most likely authors of a text. For this, he
used Delta on a dataset of 200 English poems from the late seventeenth century. Out of 25
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candidate authors, the top 5 most likely authors contain the actual author in 67 out of 100
poems of at most 500 words. For poems of more than 500 words and at most 1000 words,
the actual author was within the top 5 for 32 out of 40 poems, and within the top 10 for all
of the 40 poems. This ratio increases further as the poem length increases.

Hoover[27] made several modifications to Burrows’ Delta, of which the most notable is
the use of a cosine distance metric. Smith and Aldridge[62] showed that Hoover’s Cosine
Delta is capable of forming a top 5 that includes the actual author with an accuracy of over
85% for poems of at least 800 words long, while Burrows’ Delta obtains an accuracy of 70%
on the same task.

As mentioned before, one big advantage of using similarity-based methods, such as Delta,
is their explainability due to their transparency. Because Delta uses only a subset of all
words, it gives insight into what part of an author’s vocabulary accounts for their authorial
fingerprint[17]. Moreover, by using a bag-of-words approach, the effectiveness of Delta shows
that sequential data in text becomes less influential to AA as sample length increases|7].
For our research, it is a benefit that Delta has rarely been applied to non-literary texts, as
this allows us to utilize its explainability in a novel domain.

One possible downside to Delta is that its minimal sample size for reliable AA was shown
by Eder (2015) to be 5000[16]. However, Eder (2017) later re-evaluated the minimal sample
size to be 1500 words[17]. Furthermore, when used for reducing the set of candidate authors
(to 5), Cosine Delta performs with 85% accuracy on poems of even 800 words long[62]. This
indicates that Delta can be used for AA(-related) tasks on short texts. However, note that
the short conversational texts investigated in this thesis are tweets and mobile messages.
These are closer to 30 words than the 800 words of the texts investigated by Smith. For an
overview of the data, refer to Section 4.1.

In short, Burrows’ Delta and its related Delta methods are still studied today for its
explainability. Despite early indications of Delta’s minimal sample length for reliable AA,
recent research shows Delta’s potential as an AA method for use on short texts.

2.1.2 Support vector machines

While Delta is a similarity-based AA method, support vector machine (SVM) classifiers form
a family of supervised machine learning-based methods. In AA research, SVM classifiers
have been used frequently[12, 56, 59].

The principle behind SVM is to construct a hyperplane that best splits two classes of
data points in an n-dimensional space, where the dimensions represent features such as word
n-grams[11]. SVM receives its name from the fact that only a small set of training examples,
called the support vectors, is needed to determine the best hyperplane, or decision surface.
While SVM is in principle a binary classifier, most AA problems concern the attribution
of an author from a set of more than two candidates. For these AA problems, multiclass
SVMs can be used, which reduce the multiclass problem to a set of binary problems to be
solved by a regular SVM[28].

Diederich et al.[12] were the first to apply an SVM to AA. Previously, SVMs had been
proven to be effective when applied to other text classification problems[32, 13]. SVMs had
only recently been gaining popularity in the learning community at the time of Diederich et
al.’s research[(4]. One of the reasons for this surge in popularity, as well as the main reason
Diederich et al. decided to use SVMs for AA, was SVM’s ability to process hundreds of
thousands of features. This allowed for the frequencies of all words in a text to directly be
used as features. In that research the SVM is used on a dataset of the texts of the seven
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authors with most documents from the Berliner Zeitung, a daily newspaper in Berlin. Their
results show that SVMs using only word frequency features consistently achieve results that
are comparable to, or better than, those achieved with methods that use more intricate
feature selection. Do note that this specific case concerned only seven authors. If there
are many authors, like in most domains that concern short conversational texts, feature
selection might still be necessary or beneficial in terms of computational costs.

Schwartz et al.[56] used libsvm’s MATLAB implementation of the multi-class SVM][8]
with a linear kernel on Twitter tweets, using libsvm’s option to return probability estimates.
The selected author is the one with the highest probability estimate for a given text, if this
probability estimate is higher than a given threshold. This threshold allows for the SVM to
return ‘don’t know’ as a result, increasing classification precision at the cost of recall. As
features, Schwartz et al. used character 4-grams and word n-grams, where 2 < n < 5. On a
dataset of 50 authors with 500 tweets per author, Schwartz et al.’s implementation obtained
an accuracy of 66%.

Sharma et al.[59] published an investigation of supervised learning methods for AA on
a dataset of short Hinglish (a blend of Hindi and English) texts. One of the methods they
looked at was SVM, using only character and word n-grams as features. As character n-
grams, n-grams were used where 3 < n < 5. As word n-grams, only unigrams (n = 1)
and bigrams (n = 2) were considered. Compared to the other methods used in this study
(Naive Bayes, conditional tree and random forest), the SVM classifier achieved the best
results with a test accuracy between 90.514% and 95.079% on word unigrams and character
n-grams. Since Hinglish is a macaronic language, meaning that it is a language in which
two languages are used interchangeably, it contains distinctive features such as its idiolectic
spellings. This means that differences in the spelling of specific words frequently occur at
the level of an individual speaker of that language. Sharma et al. have shown that this is
reflected in their Hinglish text data by showing that the top distinctive word unigrams of
authors contain many words that are slight variants of one another.

Comparing these three studies utilizing SVM classifiers, one can see that SVM classifiers
owe their popularity within the field of AA to a number of advantages they have over other
AA methods. Section 2.1.4 will provide a more comprehensive comparison between the AA
methods discussed in this thesis. As mentioned previously, the ability of SVMs to process
hundreds of thousands of features eliminates the need of feature selection[57]. Another big
advantage is that SVMs are fairly robust to overfitting and are highly suitable for high-
dimensional input, such as text[57]. As such, SVM’s do not require term selection. Other
positive attributes of SVM that are not specific to its usage in AA include its guaranteed
global minimum and memory-efficiency[45]. Furthermore, SVM’s popularity as a supervised
learning method and its wide applicability has given rise to many SVM implementations in
many languages, for example; libsvm[8], PyStruct[14] and SVMStruct[33].

One of the disadvantages of using SVMs is that SVMs become more prone to overfitting
as there is increasing overlap between classes[15]. What this could mean for AA is that it
becomes harder to train an SVM on datasets when authors exhibit a plethora of writing
styles, of which some overlap with those of other authors.

All in all, SVM classifiers continue to be used in AA today. This wide usage can be
attributed to the fact that SVMs do not require feature nor term selection, minimizing
any selection efforts to be done by hand, as well as any loss in information that could be
represented by features. These practical bonuses outweigh potential costs.
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2.1.3 Convolutional neural network

Convolutional neural networks (CNN) are frequently used within the field of computer
vision. Its application to NLP tasks is not straightforward, and as such it has only first
been applied to AA in 2015[54]. Other approaches that are commonly used for NLP tasks
include LSTMs and RNNs. In Section 2.1.4 it will be explained why CNNs are chosen
over these. As a deep learning-based approach, CNNs can be categorized as a machine
learning-based approach to AA.

To briefly explain the workings of a CNN, the first focus is on the convolutional operation.
This operation takes an n-dimensional matrix, which could be a 2D image or a sentence
that is represented as the concatenation of the word vectors of its words. Suppose that the
input is a 2D greyscale image, represented as a 2D matrix containing the brightness values
for each pixel. The convolutional operation uses a filter, for example a 3 x 3 identity matrix
representing a diagonal line, and checks for each cell (or pixel) in the input matrix to what
extent this diagonal line is present. This is done by a cellwise multiplication of the filter
with the 3 x 3 matrix surrounding the cell in question, after which the results are summed
up. After performing this on all cells, the result is a matrix of similar size to the input
matrix, now called a feature map. In a similar fashion, the convolutional operation can be
applied using multiple filters, after which the resulting feature maps are stacked. The layer
in which the convolutional operation takes place is called the convolutional layer. The 3 x 3
matrix in this example is a filter that has a filter size of 3 x 3. The sizes of the filters are
dependent on the specific architecture of the CNN used.

A convolutional layer is often followed by a threshold layer, which enables learning of
non-linear maps by applying a non-linear function such as ReLU[4]. After that comes a
pooling layer that downsamples the output of the threshold layer by applying a pooling
function. A common pooling function is max-pooling, which divides the input matrix into
equally-sized (n-dimensional) cubes to preserve only the maximum value of each cube[53].
While there exists no cookie cutter architecture for a CNN, the feature extraction part of
a basic CNN consists of a number of subsequent sequences of convolutional, threshold and
pooling layers (in this order). Often, this includes a normalization step after the pooling
layer. To turn a CNN into a classifier, the feature extraction part is to be followed by a
flattening layer, a fully connected layer and a softmax layer. Training of a CNN happens
through a process called backpropagation of error, where the content of the filters are the
weights to be trained[70].

Rhodes[51] was the first to apply CNNs to AA, using Kalchbrenner et al.’s approach
to using a CNN for modelling sentences[34]. Rhodes used pre-trained word vectors with a
dimensionality of 300, derived from co-occurrence in a dataset of Google News articles[412].
By producing word vectors for every word in a sentence, Rhodes represented each sentence
as the concatenation of its word vectors. The sentence is padded with Os at both ends,
such that the convolutional operation would be as sensitive to words near the edge of a
sentence as it is to words in the centre. For the convolutional step, he uses word n-gram
filters in the form of a concatenation of n word vectors. A positive consequence of this use
of word vectors is that the CNN is more robust to the scenario where different words share
similar semantics. To ensure constant sized output of the convolutional layers, Rhodes used
max-over-time pooling[10]. On a dataset of eight books on the highly specific subject of life
in Canada during the 19th century, written by six different authors, Rhodes obtained a test
accuracy of about 76%.

To perform AA on short texts specifically, Shrestha et al. employed a CNN[G0]. Instead
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of using a sequence of words or characters, they use a sequence of character n-grams as
input. The CNN model consists of a character embedding module, a convolutional module
and a fully-connected softmax module. The character embedding module learns a vector
representation of the character n-grams. In the convolutional module, filters of varying
width are used to capture patterns involving anything from morphemes to words, followed
by max-over-time pooling[10]. On Schwartz et al.’s dataset of 9000 Twitter users with 1000
tweets each[56], Shrestha et al. compared the performance of their own CNN models to
a number of models. Schwarz et al.’s SVM model, an LSTM trained on bigrams, logistic
regression with character n-grams, and a CNN trained on word sequences. Both CNN-
2, their CNN trained on character bigrams, and CNN-1, their CNN trained on character
unigrams, outperform any of the other tested methods. This holds true even when varying
the number of authors and tweets. For 50 authors with 1000 tweets each, CNN-2 achieves
an accuracy of 76.1%. These results show that CNNs are at least as promising as SVMs
on short texts. In addition to introducing an approach to CNNs for AA, Shrestha et al.
employed a method for interpreting the patterns their CNN captures. The saliency score
S(e) of an embedding e is defined by Li et al. as

d(Se
S0 =Jut@)],  w(e) = 5
where S, represents the output of the CNNJ[40]. The saliency score indicates the con-

tribution of an n-gram to the final decision. Using saliency scores, uncommon versions of
emoticons were found to be among the highest contributing bigrams.

The increased interpretability due to saliency scores forms an advantage of using CNNs.
The semantic robustness gained by using word vectors, like in Rhodes’ research[54], could
be an advantage of CNNs for AA on texts where specific semantics are highly correlated
with specific authors. A more intrinsic property of CNNs is their preservation of sequential
data. A consequence is a CNN’s proneness to picking up syntactic features. While stylistic
features may reside at a syntactic level[60], many syntactic features are the result of the
language being used, rather than being an indicator of the author themselves[7].

To summarize, CNNs are a relatively novel deep learning-based method for AA, with
promising results compared to other AA methods such as SVMs, LSTMs and logistic re-
gression models.

2.1.4 Comparison to other authorship attribution methods

Having discussed Delta, SVM and CNN, there exist many other AA methods that will not
be investigated any further as part of this thesis. To support the choice for Delta, SVM
and CNN, these AA methods will be briefly introduced in this section and compared to the
chosen AA methods.

Note that this selection of methods includes both similarity-based and machine learning-
based methods, of which CNN can be categorized as a deep-learning method. By selecting
the best candidate method of each of these categories, the aim is to not only illustrate the
strengths and weaknesses of each method on short conversational texts, but also to extrap-
olate these findings to their category. To assess whether Burrows’ Delta, SVM and CNN
are indeed the best candidate methods within their categories, it is paramount to introduce
selection criteria. This includes a method’s known potential for high AA performance on
short (conversational) texts and its well-establishedness as an AA method.
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Besides the family of Delta methods, another similarity-based AA method is n-gram
tracing[23]. This novel method counts the distinct word unigrams and character n-grams.
The distance metric is the percentage of overlap between the document and each author in
the corpus. In contrast to Delta, the frequency of these n-grams does not contribute to the
distance. n-gram tracing is designed for use on short texts. However, a comparative study
by Proisl et al. shows that, on (shortened) English, French and German novels, Cosine Delta
performs at least as well as n-gram tracing, regardless of text length[52]. Delta’s performance
on short non-literary texts has not previously been studied. Even so, it has been shown that
Delta is reliable for AA on literary texts containing at least 1500 words[17]. Proisl et al.’s
study indicates that the minimal sample size for n-gram tracing is comparable to that
of Cosine Delta. The hypothesis is that, for both Delta and n-gram tracing, this minimal
sample size will be lower on conversational texts, due to the presence of highly characteristic
stylistic markers such as uncommon abbreviations, smileys and systematic misspellings[60].
Because of Delta’s superior performance and its well-establishedness compared to n-gram
tracing, Delta seems to be a better representative of similarity-based AA methods.

Besides the machine learning-based methods SVM and CNN, there exist other methods
such as LSTM and logistic regression. These have been used before in the context of AA.
Long short-term memory (LSTM) networks are variations on the recurrent neural network
(RNN), where RNN units (or nodes in the neural network) are replaced by LSTM units[22].
For the machine learning-based methods, each method will be evaluated on their known
potential for high AA performance on short (conversational) texts. Both SVMs and CNNs
have been previously applied to datasets of Tweets[60, 56]. In addition to introducing a
CNN-based approach to AA, Shrestha et al. compared the results thereof on a dataset
of Tweets to that of methods including Schwartz et al.’s SVM method for short texts[506],
logistic regression and LSTMs[60]. In this study, both of their CNN models on character
unigrams and bigrams, as well as Schwartz et al.’s SVM approach, outperformed the logistic
regression and LSTM-based methods.

Thus, by choosing Delta, SVM and CNN for the comparative study, the results of the
study will give insight into the strengths and weaknesses of similarity-based methods versus
machine learning-based methods.

2.2 Finding impostors using AA

The impostor finding problem can be viewed as an extension of the regular AA problem.
With AA, one can figure out what documents of author A get classified as belonging to
author B, and vice-versa. The next question is how big such an overlap should be to
conclude that author A and B are the same person.

Afroz et al.’s Doppelgéanger Finder is built upon the same principle[1]. First, one calcu-
lates the probability of author A being identified as author B, and vice-versa. Then, these
probabilities are either summed, multiplied or taken the square average of. The result of
this operation is check against a pre-determined threshold, to conclude whether author A
and B are the same person upon passing the check.

Another method for finding impostors is Koppel and Winter’s Impostor Method (IM)[38].
IM has been further adapted by Seidman for the PAN’ 13 authorship identification com-
petition. GenIM, the adapted method, ranked 1%* overall. The original IM works by first
creating n impostors of a document Y, for example by picking n random documents out
of the whole dataset. Each of these impostor documents is compared to the documents
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of author X using a distance metric. The percentage of impostors that are less similar to
author X than document Y is shows how similar author X is to the author of document Y.
On blog posts of 500 words each, IM achieves an accuracy of around 86%.

2.3 Network-based methods

An overview of the related literature does not reveal any network analysis-based methods
that answer the research question of this thesis. Few attempts exist at AA that concern
an analysis of social networks, let alone the combination of social network data and the
directed text sent along the edges of such a network.

However, a related topic within network analysis of interest to the method proposed
in this thesis is the topic of node similarity within a network. User accounts correlate to
nodes of a network, and text sent between user accounts to metadata on the edges between
nodes. Therefore, it is not hard to fathom that there could be a link between node similarity
and impostor similarity - when two user accounts are ‘impostor similar’, they are controlled
by the same author. Inspiration from methods used to compute node similarity can be
taken for the method proposed in this thesis. In particular, these methods use measures
that use features that contain characteristic information for the node similarity of a pair of
nodes. Despite that node similarity is not necessarily and not likely the same as impostor
similarity, these features can still be useful for finding impostor pairs. In the case of the
proposed method, and in contrary to one type of node similarity computation method, no
pre-defined measure is used, but rather implicitly trained through an SVM.

Li et al.[41] have made the distinction between neighborhood-based and path-based
measures. Neighborhood-based measures define the similarity between nodes in terms of
the overlap between the neighborhoods of both nodes. These measures differ in the way
they calculate the overlap. One example of such a measure is the Jaccard Index[30] that
normalizes the number of shared nodes between the two neighborhoods by the union of the
neighborhoods. Another is cosine similarity[55], that normalizes the number of shared nodes
by the cosine of the angle between the characteristic vectors of the two neighborhoods. Path-
based measures are more varied, but they all share that they incorporate paths between
pairs of nodes into their measure. One such measure is proposed by Chen et al.[9], who
define a so-called relation strength between two nodes. In short, the relation strength is an
asymmetric property that increases when A and B are adjacent, and A has relatively fewer
direct neighbours. When the two nodes are not adjacent, the relation strength is defined in
terms of the relation strengths of the nodes on any path between A and B of a pre-specified
maximal length. To look at another example, Li et al.[41] propose a measure that is based
on the idea that the similarity of two nodes is negatively correlated with the information
loss that results from merging the two nodes. The information loss is defined in terms of
weights of edges on paths between all nodes of the network. Another group of examples is
given by Fouss et al.[18]. They propose measures that use properties of a number of random
walks between a pair of nodes. One example of such a measure derived from random walks
is ‘average commute-time’ which is the average number of steps that a random walker takes
to travel from starting node A to ending node B and the other way around.

Two criteria for the feature sets used are scalability and extensibility to the particular
case of combination with stylometric features. For both criteria the features used in the
neighborhood-based measures are a better fit. When representing the direct neighborhood
of a node, the size of the representation is O(n) where n is the number of nodes in the
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network. For features used in path-based measures the representation would require O(n?)
space. This is because the feature set that would contain the required information for
learning based on path-based quantities would include the connectivity data between every
pair of nodes. Direct neighborhoods can be represented by the connectivity data between
two nodes and all nodes in the network. To combine network-based features with stylometric
features, it is important to note that the analysis performed on the stylometric features is
that of AA. This means that it should be performed on texts originating from a user account
when one wants to investigate the author fingerprint of that user account. Direct (directed)
neighborhoods of a node A have the property that it consists of nodes that have a directed
connection originating from A - there is a 1-to-1 mapping of all edges A has sent text over to
all nodes A has an outgoing edge to. When combining direct neighborhood information with
stylometric information, this stylometric information would be descriptive of the information
sent along the edges of the direct neighborhood. Path-based features concern edges that
do not all directly originate from A. Adding stylometric information that solely originates
from A would be possible with path-based features, but it would not be descriptive of the
information encoded by the path-based features, while for direct neighborhood information
it would be.

2.4 Feature sets for AA

For machine learning-based AA methods, there exists a plethora of commonly used features.
These features can be categorized into lexical, character-based, syntactic and semantic fea-
tures. This section lists features that have previously been used in AA methods, as well as
the tools that are required to extract these features. Any features that have been shown to
capture especially author-specific information, or require specifics, will be pointed out and
discussed in text.

2.4.1 Lexical

A list of lexical features, i.e. features concerning words, can be seen in Table 2.1.

] Feature I Required tools \
Word length Tokenizer
Sentence length (words) Tokenizer, sentence splitter
Sentence length (characters) sentence splitter
Vocabulary richness Tokenizer, stemmer
Word n-grams Tokenizer
Spelling errors Tokenizer, spell checker

Table 2.1: Lexical features used in AA and the tools required to obtain these features|[63].

In particular, vocabulary richness is the feature that lies at the heart of the family of Delta
methods. Prior to the invention of Burrows’ Delta, in the year 1949 Zipf observed that «(f),
the number of words that occur exactly f times, is given as a(f) = f7, where v = 2[73]. He
further conjectured that « varies depending on the age and intelligence of the author[72], thus
capturing author-specific information. Later in 1964, Mosteller and Wallace[43] had the idea
to count function words such as ‘while’ and ‘upon’ to discriminate between authors. Burrows’
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Delta can be viewed as a generalized version of this method; counting the occurrences of
all words instead of being limited to function words. This illustrates that the underlying
principle of vocabulary richness has been thought to contribute to an author’s characteristics
for over half a century.

To give an explanation of the required tools, a tokenizer takes a text input and converts
it into a stream of tokens, where a token can be a word, URL, date, etc.[51]. The (straight-
forwardly named) sentence splitter splits an input text into its individual sentences[25]. A
stemmer reduces inflected words to their word stem, and a spell checker determines whether
a presented word forms a correct spelling. All of these tools are available in a wide array of
languages. For macaronic languages like Hinglish and Singlish, it is difficult to find stem-
mers and spell checkers of established reliability. For English, there exist stemmers with an
accuracy of about 97%[29].

2.4.2 Character-based

Table 2.2 contains character-based features and the tools required to extract those features.

’ Feature H Required tools ‘

Character types (letters, digits, special characters, etc.) || Character dictionary
Character n-grams -

Table 2.2: Character-based features used in AA and the tools required to obtain these
features[63].

2.4.3 Syntactic

Table 2.3 shows a list of syntactic features and their required tools.

’ Feature H Required tools ‘
POS tags Tokenizer, sentence splitter, POS tagger
Flexible patterns Tokenizer, HFW /CW tagger

Table 2.3: Syntactic features used in AA and the tools required to obtain these features[63,

!

A part-of-speech (POS) tag is a tag given to a word in a sentence that indicates the
syntactic role of the word, such as ‘noun’; ‘verb’ or ‘adjective’[24]. POS taggers are tools
that assign POS tags to words in the input text. POS taggers are available for most
languages and even for mixes of languages like Hinglish and Chinese-English[66, 71].

A concept introduced by Schwarz et al.[56] are flexible patterns, which are a type of word
n-gram. Every flexible pattern is composed of high-frequency words (HFW), i.e. words that
appear in more than 0.01% of the corpus, and content words (CW), i.e. words that appear
in less than 0.1% of the corpus. This also means that words that occur in more than 0.01%
but less than 0.1% of the corpus can act as both HFW and CW. Each flexible pattern
should start and end with an HFW and contain at least one CW. An example of a flexible
pattern is ‘the CW of the’. A document matches a flexible pattern if it contains the flexible
pattern sequence, which is the case when the document contains the sequence ‘the king of

the hill’. Partial matches, such as ‘the great king of the’ count with a weight of %
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Through the inclusion of flexible patterns, Schwarz et al.’s SVM model on Tweets gained
an averaged 2.9% improvement in accuracy across varying numbers of tweets and authors.

2.4.4 Semantic

Several semantic features are listed in Table 2.4, along with any required tools.

’ Feature H Required tools

Word embedding n-grams Tokenizer, Word embedding model

Sentence-level sentiment Sentence splitter, Sentence-level sentiment analysis method

Table 2.4: Semantic features used in AA and the tools required to obtain these features[63].

Word embedding n-grams are similar to word n-grams, except that the words themselves
are represented as word vectors. Converting words to word vectors involves the use of a
word embedding model, such as Word2Vec[21]. The previously discussed study by Rhodes
uses word embeddings as features of his CNN[54].

Using sentence-level sentiment as a feature involves the use of sentiment analysis to
determine the emotional state represented by each sentence. The underlying idea is that,
for example, some authors have a tendency to write text that has a sad tone[49].

2.4.5 Choice of feature sets

The choice of feature sets to use in this thesis is any combination of word unigrams and/or
character uni-, bi-, or trigrams. This means that a lot of feature sets are not used. The set
of unused feature sets can be divided into two groups. For each of these groups, there are
reasons to not use them in combination with word and character n-grams. The first group
consists of features that are partially implicit in the combinations of character and word
n-grams. For example, average sentence length per message can be extracted from the total
message length found via word unigrams or character unigrams and total count of periods,
question marks and other sentence markers. Average word length, and vocabulary richness,
are also implicit. The second group consists of features that would require any pre-trained
model or dictionary. For example, counting spelling errors would require a dictionary to be
able to identify misspelled words. These dictionaries are inevitably domain specific. Given
the diversity in datasets used in this thesis, in particular in the languages present, it is
preferable to use features that don’t introduce dependencies on domain specific models or
dictionaries. A combination of word and character n-grams is both an informationally dense
feature set, as well as being independent of external information to the investigated texts.



15 CHAPTER 3. METHODS

Chapter 3

Methods

This section consists of two parts. The first part, Section 3.1, details the approach where an
AA method is paired with the Doppelgénger Finder to answer the research question. The
AA methods used are Delta, SVM and CNN. Since there are commonalities between the
feature extraction used to make the data applicable for each of these methods, the specific
feature extraction used will first be discussed. The second part, Section 3.2, introduces an
approach where network features are combined with stylometric data to answer the research
question directly.

Certain data-specific pre-processing steps will be discussed in conjunction with the dis-
cussion of the specific datasets themselves in Section 4.1 and not in this section.

3.1 Authorship attribution methods on short conversa-
tional texts

3.1.1 Feature extraction

In order for most AA methods to become applicable to author-linked texts, the features
by which these methods profile an author should first be extracted from these texts. This
section details the feature extraction methods used for AA.

Analysing texts: N-grams

This thesis uses both word and character n-grams as the main stylometric features, which
are groups of n subsequent words and characters respectively. The experiments in this thesis
use character 1, 2 and 3-grams, and word 1-grams.

Word n-grams are extracted from each text by the NLTK ngrams function[5], using
whitespace as the separator. Since tags are pre-processed to be surrounded by whitespace,
these are also treated as individual words. Likewise, newlines are treated as individual words.
The underlying idea is to better capture newline-specific author characteristics such as their
frequency of using newlines. Since generally, punctuation marks are not surrounded by
whitespace, these punctuation marks are added to the word 1-gram. The consequences are
that some occurrences of words will not be counted as such because they are appended with
a punctuation mark. However, compared to literary text that is reviewed for correct usage
of punctuation, short conversational text is not. This means that the use of punctuation
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becomes a stylometric marker. For example, some people tend to add whitespace before a
punctuation mark.

For extracting character n-grams, the texts are split by character and processed by the
same NLTK ngrams function. Tags are treated as single characters.

Delta and SVM For Delta and SVM, n-grams are counted per message. The input
for these methods becomes a count matrix where each row represents a message and each
column a unique n-gram.

CNN For the CNN model, each message is split up into word or character n-grams, for
any combination of n-grams types (e.g. character 3-grams and word unigrams). The result
is a list of n-grams for each of the n-gram types of interest. For example, when character
3-gram and word unigram features are desired, the message ‘Hi dude’ becomes a list of lists
containing [‘Hi’, i1 d’, ¢ du’, ‘dud’, ‘ude’] and [‘Hi’, ‘dude’]. These lists are padded such that
the lists” lengths correspond to the length of the longest list of that specific n-gram type (e.g.
lists of character 3-grams are as long as the longest list of character 3-grams in the dataset).
These n-gram lists are then concatenated to form a long list containing all n-grams of the
desired types. The CNN thus uses a sequence of n-gram information, whereas for SVM and
Delta, sequential information is not retained.

3.1.2 Feature selection

Feature selection is performed on all datasets using scikit-learn’s x? function[50]. This
function performs the y? test to measure the dependence between features and classes to
retain the n most class-dependent features.

In each of the experiments, on all datasets top-2000 x? feature selection is performed
prior to applying any of the methods. This is done to improve computational efficiency. On
a test set, the evaluation scores are largely unaffected by the top-2000 feature selection.

3.1.3 Delta

As mentioned in Section 2.1.1, there exist different versions of the Delta method, based
on different metrics. In this thesis, the Cosine Delta method will be used, because of its
superior performance as shown by Smith and Aldridge [62].

Burrows’ Delta method is originally crafted for use on word unigrams. However, the
method can easily be generalized for use on any combination of n-gram features. To allow
for a fair comparison to SVM and CNN, that are both general methods with respect to
feature input, this thesis proposes and implements this generalized version of Cosine Delta.

Whether the effectiveness of such a generalization can be supported theoretically, is
another question. Intuitively however, it is no big stretch to hypothesize that if authors can
be identified by the similarity of word frequencies across their works (or messages), they can
also be identified by the similarity of n-gram frequencies across their works.

3.1.4 SVM

For the SVM, this thesis uses the SVM with a linear kernel from scikit-learn[50], using its
default settings. A linear kernel is a special case of the more general RBF (Gaussian) kernel.
Although there always exists a Gaussian kernel for which the SVM is at least as optimal as
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with a linear kernel, there is a preference for the linear kernel because of it superior time
efficiency[35].

3.1.5 CNN

Architecture

The architecture of the CNN model used in this thesis is based on Kim’s CNN architecture
for sentence classification[36]. Figure 3.1 shows this architecture.

The whole architecture will be discussed in this section. Choices that are not standard to
CNNs will be explained in further detail, while the standard elements will only be mentioned.
In addition, hyperparameters that deviate significantly from Kim’s model[36] will also be
defended. For the sake of explanation, the architecture is split into three modules: the
embedding, convolutional and classification modules.

Embedding module The input the embedding module receives is a sequence of any
pre-specified combination of character and word n-grams, as detailed in Section 3.1.1 as
the result of preprocessing. This preprocessing, prior to embedding, is similar to that for
Delta and SVM and thus allows for comparison of results between these methods and the
CNN. For each of the input n-grams, the embedding module learns a d-dimensional vector
representation.

Convolutional module The convolutional module consists of the convolution, non-linear,
and pooling layers. The architecture contains three groups of convolutional, non-linear
and pooling layers - each for a different filter size. This deviates from a standard CNN
architecture that has only one such group for one predetermined filter size.

Filters are used in the convolutional layer of the CNN to find patterns in the embed-
ded input of the convolutional layer, for each of the filters of a specific filter size. In the
convolutional layer, a filter of size k would check for the extent to which a pattern, that is
represented by the filter, is found in all subsequences of k n-grams in the input data.

The filter sizes used are 3, 4, and 5. The reasoning behind using multiple filter sizes is
to capture patterns present in a variety of local filter sizes. Since the CNN performs the
convolution operation on a sequence of n-gram embeddings, the actual filter size is two-
dimensional like in the example in Section 2.1.3, and its second dimension is as large as the
embedding size. For the sake of simplicity, a filter size of 3 will refer to an actual filter size
of 3 x d, where d denotes the embedding size. The presence of filter sizes larger than 3 in
this CNN model has impact on its comparability with the SVM model and Delta. This will
be further explored in Section 7.1.2.

For the non-linear layer, a ReLU layer is used, after which the data is fed to a max-
pooling layer. This is in accordance with standard CNN architecture.

Classification module The classification module consists of matrix multiplication, soft-
max cross-entropy and argmax layers, all of which have been implemented according to
standard CNN architecture. The flattened and reshaped output of the max-pooling layer is
the input for the dropout layer. This dropout layer has a dropout keep percentage of 70%
and is added for regularization. Then, scores are computed through a matrix multiplication
with the weights and bias. This is equivalent to a fully-connected layer, which is a standard



18 CHAPTER 3. METHODS

bxs
m
32
Embedding = =
g
@
bxsxd
Convolution
for each filter
/ lN- sl
<]
=}
S
é
=8
bx bx bx §
(s - filter size + (s - filter size + (s - filter size + 3
1)xd 1xd 1xd g
=
@©
RelLU +
Max-pooling
bx1xd bx1xd bx1xd
\ Iv / Flatten
| b*3"d ]
l Reshape
b*3*d/
#iilters
x #ilters
i Dropout
b*3*d/ o
Hilters 2
x Hilters weights 2
#ilters x 8
#samples =)
* weights ;
+ bias 2
bias =
®
scores
b*3*d/
Hilters
x #samples

Ng.max

softmax

cross-entropy labels redictions
#samples #samples

L{

loss accuracy
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length, d = embedding dimensionality.
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layer in CNN applications. From the scores, predictions are made using an argmax function
for each of the samples, and the loss is computed through softmax cross-entropy.

Training

To optimize the loss function, the Adam optimizer is used, which is a built-in stochastic
gradient descent optimizer in Tensorflow[37]. Training is done in batches of batch size 4,
over 30 epochs.

Hyperparameters

The CNN is provided with hyperparameters of the following values. It has 3 filter windows of
sizes 3, 4 and 5, with 128 filters each. For regularization, the dropout keep probability is 70%
and the L2 constraint is 0.001. The L2 constraint regularizes the weights by introducing
weight decay for each optimization step based on the sum of squared weights and the
L2 parameter. The batch size has been set to 4 to accommodate memory constraints.
Training is done over 30 epochs to accommodate runtime constraints. Most of these values
are identical to that of Kim’s model[36], or are close to theirs. The exception is the L2
constraint, which is 3 in their model. This lower value was decided on because Zhang and
Wallace showed showed that the L2 value has little to no effect on the outcomes of this
specific sentence classification model[G9].

3.1.6 Doppelganger Finder

To find impostor pairs, a variation of the method introduced in Doppelgéinger Finder[l] is
used, which has previously been mentioned in Section 2.2. This method uses a probability
score that determines the probability that two users share the same actual author based on
the frequencies of which the first user is classified as the second user, and vice-versa, by any
AA method.

To explain the probability score calculation approaches that are proposed in Doppelganger
Finder, define Pr(A — B) as the probability score that a text from user account A is clas-
sified as a text from user account B, by any AA model. These probability score calculation
approaches can then be defined as:

Pr(A— B)+ Pr(B — A)
2

Prayg(A,B) =

Pryu(A,B) = Pr(A— B)Pr(B — A)

Pr(A— B)?+ Pr(B — A)?

Pry(A,B) = 5

Respectively, Prq.g, Prmw and Prg, are the average, multiplication and square average
probability score calculation approaches.

One conceptual problem with these approaches is that it does not take into account the
accuracy of the AA method. Intuitively, if Pr(A — A) is high, it makes sense to assign a
higher weight to Pr(A — B), for any pair of user accounts A and B. If Pr(A — A) is low, a
lower weight should be assigned to Pr(A — B). This is because if an AA model is generally



20 CHAPTER 3. METHODS

accurate with regards to class (user account) A, then in the case of a message from A being
misclassified, the class it has been misclassified as is likely more similar to A than in the
case that the AA model is inaccurate with regards to class A.

To take this into account, modified versions of the probability score calculation ap-
proaches are proposed in this thesis. In these modified versions, Pr(A — B) is replaced by
the product Pr(A — B)Pr(A — A), and Pr(B — A) by Pr(B — A)Pr(B — B). The
resulting formula is then multiplied by a scalar to ensure that the range of the resulting prob-
ability score is [0, 1]. The substitution changes this range since both Pr(A — B)Pr(A — A)
and Pr(B — A)Pr(B — B) are within [0, 1]. The resulting modified probability score cal-
culation approaches are:

A — B)Pr(A— A)+ Pr(B — A)Pr(B — B)
2

N Pr
Pravg(A,B) =4 (

Pr* (A, B) = 16(Pr(A — B)Pr(A — A)Pr(B — A)Pr(B — B))

mul

(Pr(A — B)Pr(A — A))?+ (Pr(B — A)Pr(B — B))?
2

Pri,(A,B) = 16

Through comparing the resulting probability score with a hand-chosen threshold value,
one can decide whether a pair of users is controlled by the same actual author. How this
threshold is determined, and how each of the probability score calculation approaches are
to be compared, is detailed in Section 5.

Note that Pr(A — B) is not the same as Pr(B — A). For example, when user accounts
A and B are an impostor pair, A’s stylometric footprint might be so typical that its messages
never get misidentified. Whereas B’s messages might occasionally be identified as belonging
to A.

3.2 Network Analysis

Previously, the research question was stated as:

Given a pair of user accounts (and optionally, messages sent by either user
account), can one reliably determine whether this pair is controlled by the same
actual author?

One approach to answering this research question would be to apply the impostor method
to any of the previously discussed AA methods. Another is a network analysis-based ap-
proach that is original to this thesis. It utilizes both network connectivity information, as
well as stylometric information to directly determine whether two user accounts are con-
trolled by the same actual author. This method can be used either with only network
features, only stylometric features or a combination of network and stylometric features.
Both will be used in the experiments.

To use this method, two dataset requirements to be met are:

1. For each user account (represented by a node) in the dataset, its actual author should
be identifiable. In addition, there should be multiple groups of accounts that share
the same actual author.
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2. The dataset should be a network dataset that contains stylometric information about
the text sent over its edges. This text should be short and conversational in nature.

Unfortunately, neither of these requirements are met by any dataset available for this the-
sis. However, there are enough normal network datasets available that can be transformed
into datasets that fit these requirements.

This section will detail each of the aspects of the network analysis method. First, each of
the users in the network dataset is split into two new users, to act as a user pair controlled
by the same actual author. Then, the data is prepared by injecting stylometric information
into the edges of the network dataset. Next, data points are made for arbitrary pairs of
users by combining adjacency and stylometric information from the network dataset, in
order to directly determine whether the user pair is controlled by the same actual author.
And finally, the method of classification is discussed.

3.2.1 Synthesizing impostor accounts

Since there is no network dataset available with true author identity labels, such labels
should be fabricated. A true author identity label is different from a user ID. A true author
identity label is a label that can be attributed to a multitude of user accounts, that refers
to the one person that sends messages using those accounts. A true author is called an
imposter when its label is attributed to more than one unique user account. It is assumed
about the dataset that there is a 1-1 mapping of authors and user accounts. It cannot be
guaranteed that there is no actual impostor pair among the dataset’s user accounts. It seems
fair to assume that the number of actual impostor pairs is low compared to the number of
all possible user account pairs in the dataset. Using this 1-1 mapping, each of the nodes
is provided a true author identity label. From this basis imposters can be generated. This
can be done by creating two (or more) synthesized nodes out of every node that represents
a user in the original network dataset. Since both synthesized nodes are affiliated with the
same original node, the original node’s true author identity label will be attributed to either
synthesized node. The synthesized nodes will be dubbed impostors with respect to one
another. First, the concrete details of the underlying synthesis method will be explained.
After that, the method itself will be critically discussed in terms of scientific plausibility.

The impostor synthesis method operates on node level, and is applied to every node of
the given original network dataset. For any node A, two copies A; and Ay are made. A;
and As share all incoming edges, but only n% of all of A’s outgoing edges (where A;
and As sharing an edge means that for an edge (A1, B), there exists an edge (As, B) with
identical edge attributes, and vice-versa). The number n will be referred to as overlap%.

To determine which of A’s outgoing edges are distributed to A; and As respectively, a
random percentage in [n, 1] of A’s outgoing edges is given to A; at random. A, is given
all edges of A that are not given to Ay, in addition to m randomly selected edges that are
given to A. Here, m is n% of A’s total number of outgoing edges, where n is the selected
overlap%.

As an example, Figure 3.2 shows the result of applying impostor synthesis on node A,
with an overlap% of 50. Here, the edges (A, B), (4,C), (A, D), (A, E) are transformed into
(A1, B), (A1, D), (A1, E) and (As, B), (A2,C), (As, D). Edges ’shared’ by A; and Ay are
(A, B) and (A., D).
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Figure 3.2: An example of impostor synthesis on node A with 50% overlap.

A question one might ask is: Are these synthesized impostors good representations of
actual impostors? An actual impostor might show different stylometric and network-based
patterns across their user accounts than a synthesized impostor would.

The parameter that is introduced when fabricating impostors is the overlap%. It is
unknown whether there is a characteristic overlap% for real impostor pairs, or whether the
edges they share are uniformly distributed with regards to the contents of those edges. What
can be investigated however, is how the overlap% influences the classification accuracy in
the end. This should give an indication of how accurate the network analysis-based method
will be on a dataset, if one can determine the characteristic overlap% of impostors in that
dataset.

Another question might be: Why are impostors synthesized for every single network
node? The main reason is to maximize the number of impostor pairs for the classification
part of this method. Precisely two impostors are created out of every node to avoid any
bias towards specific nodes and their degrees. In a dataset with real impostors, high degrees
might be a characteristic of an impostor pair, but such information is not available.

After making impostors of all network nodes, self-loops are added to each one of these
nodes to avoid zero columns in the classification part of this method.

3.2.2 Injecting stylometric information

The second dataset requirement was stated as:

The dataset should be a network dataset that contains stylometric information
about the text sent over its edges. This text should be short and conversational
i nature.

To make the network dataset that already underwent impostor synthesis meet this re-
quirement, tweets are injected into each of the edges of the network dataset. For this, each
network node is paired with a Twitter user, and only tweets by the same Twitter user are in-
jected on the outgoing edges of the corresponding node. To keep the stylometric fingerprint
of impostor pairs consistent, any impostor pair nodes are paired with the same Twitter user.
In practice, there might be more discrepancy in stylometric features between user accounts
used by the same author. However, to check on this, one would need a dataset as described
in Section 3.2. But as stated, such a dataset is not available. There is no information on the
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extent and specifics of this possible discrepancy between stylometric features of accounts
controlled by the same author. This injection is done as if the overlap between impostors is
100%, to keep the mapping of tweets onto edges the same between runs, as well as to avoid
unnecessarily executing tweet injection too many times Any specific overlap% is enforced
upon the impostor pairs of the dataset after tweet injection.

For this, tweets from the Sentiment140 dataset are injected into the edges of the network|
These tweets are first filtered to contain only tweets starting with ‘Q’, followed by any user-
name. These ‘Qusername ’ strings are then removed from the message. The underlying
reason is to distill messages that are conversational in nature, rather than picking any type
of tweet. For example, a tweet that is meant to promote a product would not be a perfect fit
for a dataset that is meant to be conversational. Since tweets in this dataset contain at most
140 characters, these are short conversational texts. This is important for the comparison
of the results of AA on the Twitter dataset to that on the other SMS datasets. NER is
used to replace any remaining hyper-personal information with placeholders. This process
will be explained in Section 4.2.2. As with AA, tweets are converted into n-gram counts.
The specific n-gram counts that are injected into the edges can contain any combination of
n-grams, which is up to the user’s specification.

Similar to AA, x? feature selection is performed on these n-gram features. To conserve
computational resources and limit memory usage, x? is performed on the AA task, instead
of the task of identifying whether a pair of users has the same actual author. This means
that through x?2, the 2000 n-grams are selected that x? deems most characteristic to pairing
the injected tweets to the Twitter users corresponding to nodes of the network dataset. This
is justified under the assumption that a high performance in the AA task translates to a
high performance in the impostor pair identification task.

3.2.3 Creating pair-wise datapoints

After impostor synthesis and tweet injection, the data still needs to be transformed to
directly answer the question whether any arbitrary pair of user accounts is controlled by the
same actual author, or not.

First, pairs are to be made from the current nodes in the dataset. When considering all
possible pairs of nodes in a network with n nodes originally, and when not pairing nodes
with themselves, the resulting number of data points would be n(2n — 1), which is O(n?).
This is not scalable, and enlarges the problem of class imbalance as n increases. As an
alternative, the method retains all pairs with the same actual author. Out of the pairs that
do not share their author, it picks as many as there are same-author pairs, at random. The
resulting number of data points is 2n, which is O(n). Instead of picking 1 times as many
not-same-author pairs as there are same-author pairs, the choice could have been made to
pick more than that. However, picking too high of a number would be out of scope in terms
of computational resources.

Then, for each of these pairs, data points are made. These data points should contain
adjacency data for both nodes of the pair, as well as stylometric data. For a user pair (A, B),
this is done through the following procedure:

First, it finds direct neighbourhoods of A and B. These neighbourhoods can be repre-
sented as adjacency vectors. Each of these adjacency vectors is a row in the full network’s
adjacency matrix. The adjacency vectors of A and B are summed.

Then, for both A and B, the n-gram counts of the tweets injected into their outgoing
edges are summed. The result is a vector containing the sum of all n-gram count vectors
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contained in all outgoing edges of A and B. This vector is appended to the adjacency vector
of the previous step to form the data point, which is then fed into an SVM.

It is important to mention that the shape of the adjacency vectors is formed with regard
to the entire network dataset, instead of only the train or the test subset. This is because
the features represented in these adjacency vectors correspond to nodes in the network. This
only works for directed networks, since the train-test split is made on the set of nodes, and
any outgoing edge of a node in the train set will never be the outgoing edge of a node in
the test set, and vice-versa.

As an example, let the adjacency matrix in Table 3.1 be the adjacency matrix for the
entire network dataset. In this example, the nodes A and B belong to the train set, and C
and D to the test set. The adjacency vector of A will be the row labeled A. And similarly,
the adjacency vector of node C is row C.

This is done since the features that are trained on should be present in the test data in
order to apply the model. This could pose a problem for the applicability of the model, since
it becomes completely unusable in the attempt to apply it to a network that is completely
unrelated to the network it has been trained on. In such a case, a mapping is to be made
of the nodes of the new network to those of the network the model is trained on. Which
nodes are mapped onto which nodes is entirely random, with the exception of perhaps
trying to match the degrees of the nodes as closely as possible. To show the influence of
such a mapping, an experiment one could do is to use this method on a number of random
mappings of the same dataset. This issue is further discussed in Section 7.1.4.

| [[A[B]CID]
A1 [1]1]0
B 1101
Clolo[1]0
D1 011

Table 3.1: Adjacency matrix example.
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Chapter 4

Data and data preparation

In this section two important preparatory steps for the thesis will be discussed. The first is
the choice and description of the datasets used, which will be discussed in Section 4.1. The
second is the description of relevant preprocessing methods that need to be applied to the
datasets, including their implementation details. This will be discussed in Section 4.2.

4.1 Datasets

In this thesis a number of datasets will be used. The AA methods require textual data
whereas the network analysis-based method requires connectivity data combined with tex-
tual data. Unfortunately, it is difficult to find data concerning short conversational texts
that both contains this textual data and represents a sufficiently large and interconnected
network for both AA and network analysis to be applicable. Therefore, four SMS datasets
are used for the AA portion of this thesis as well as a Twitter dataset. This Twitter dataset
will also be injected into both network datasets to serve as the textual data that is not
present in any network dataset.

4.1.1 SMS datasets and Twitter dataset

Table 5 serves as an overview of the SMS datasets and the Twitter dataset to be used in
this thesis.

SMS4Science

The SMS4Science Swiss SMS Corpus is a collection of donated SMS messages collected
between 2011 and 2014[14]. The SMS messages are directly forwarded from the phones.
Compared to other collection methods such as transcription, there is no loss of information
due to typos. However, the SMS donor does have full control over the set of messages that
is forwarded, possibly introducing bias. Since the collection of the SMS4Science Swiss SMS
Corpus was limited to Switzerland, the corpus reflects the multilingualism of its population.
41% of all entries are in Swiss German, 28% in non-dialectal German, 18% in French, 6% in
Italian, and 4% in Romansh. The multilingual nature of the dataset is useful for testing the
AA methods’ robustness to cross-lingual AA. In total, the dataset contains 2784 authors
and 25947 messages.
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Mobile Forensics Text Message Corpus

The Mobile Forensics Text Message (MFTM) Corpus is a dataset of text messages where
text messages are labeled as drug-related when anything drug-related is mentioned in the
text message. For this thesis however, these labels can be disregarded. The dataset consists
of 4934 messages either written or received by any of the 112 authors. Since this dataset is
missing sender user-IDs for incoming messages, only outgoing messages are considered for
AA. The collection method of this corpus is unspecified and all messages are in English,
including slang.

NUS SMS Corpus

The National University of Singapore (NUS) SMS Corpus is composed out of 67093 SMS
messages from 686 Singaporean students. The dataset consists of an English and a Chinese
set, but since Singaporeans speak Singlish, a macaronic language, influences of Chinese leak
into their use of English and vice-versa. The SMS messages were collected either through
transcription or by directly exporting all messages on a phone. As mentioned earlier, both
of these collection methods can introduce bias. On top of that, transcription has the added
danger of introducing typos.

Spanish-English Bilingual Youth Texts

The Spanish-English Bilingual Youth Texts (BYTs) Corpus consists of 44597 messages di-
rectly downloaded from the phones of 15 authors. The dataset contains all incoming and
outgoing messages for these 15 authors, possibly meaning that not all incoming messages
are written by one of these 15 authors. Because of this, only the subset of outgoing messages
is to be used for the AA task. The dataset is not split up into English messages and Spanish
messages, but shows a high intermingling of the two languages within messages.

Sentiment140 dataset of Tweets

The Sentiment140 dataset is a dataset of 1.6 million Tweets. 106922 out of these Tweets
are directed. Only these directed Tweets are used because these Tweets are closer to the
conversational nature of the messages in the other datasets. The Tweets are exclusively in
English. Not all directed messages in the dataset will be used for injection, as explained
in Section 3.2.2. Only the Tweets of as many authors as there are nodes in the network
are used, and as many Tweets of these authors as is needed for the outgoing edges of the
corresponding nodes.
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Language #authors | #messages | Collection Collection
method year
MFTM Corpus English 112 4934 Unknown Published
2013
NUS SMS Corpus || Singaporean | 686 67093 Transcribed | Published
English, or directly | 2015
Singaporean exported
Chinese
Spanish-English English, 15 44597 Directly Published
BYTs Spanish down- 2016
loaded
SMS4Science Swiss- 2784 25947 Forwarded | 2011-2014
German,
German,
French,
Ttalian,
Romansh
Sentiment 140 English 2927 106922 Twitter 2009
API

Table 4.1: SMS datasets and Twitter dataset.

4.1.2 Network datasets: The Opsahl Social Network

Due to computational limitations, this thesis limits itself to the use of one network dataset:
the Opsahl Facebook-like Social Network. For a summarized view of the social network
dataset specifications, please consult Table 2. Degree distributions for the Opsahl dataset
can be found in Figure 4.1.

Opsahl: Social Network

The other network dataset is the Facebook-like Social Network collected by Opsahl.[48] This
dataset features a network of 1899 (active) users on an online community for students at
University of California. Two nodes are connected by a directed edge when at least one
message has been sent between the users, weighted by both the number of messages and
characters sent in that direction.

Although unlike the other datasets, the communication did not (primarily) take place
on mobile phones, the nature of this dataset is still a close enough match - the messages are
conversational and feature one-on-one conversations.

In addition, with a mean message length of 108.99 + 0.30 (95% confidence interval)
characters, the messages can definitely be called short. This is despite the fact that, when
compared to the datasets used in the comparative study of AA methods, the messages in
Opsahl’s network dataset are considerably longer. The SMS4Science and NUS datasets
have a mean message length of 51.87 4+ 0.99 and 55.98 4+ 0.45 characters, respectively.
For the Hispanic BYTs dataset, the messages are even shorter, averaging on 26.7 £+ 0.23
characters per message. Precisely because the message length in the Hispanic BYTs datasets
is much shorter compared to the other datasets, the message length of 108.99 characters for
Opsahl’s network dataset can also be excused. In addition, with an average word length
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of 4.7 characters[46] and considering spaces as characters, the average message in Opsahl’s
network dataset contains about 19 words. For all intents and purposes, these are short
messages. This means that the Opsahl dataset is representative for a network in which
short conversational texts are sent between nodes.

#Nodes #Edges Directed | Weighted Collection
year

Opsahl 1899 20296 Yes #messages, Published
#£characters | 2009

Table 4.2: Social network datasets.

Opsahl Social Network
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Figure 4.1: Degree distributions over all nodes in the Opsahl Social Network dataset.

4.2 Data preparation

4.2.1 Author selection

As with most SMS datasets, the distribution of the number of messages sent per author is
not uniform within each of the datasets used in this thesis. The extent of this imbalance
can be seen in Figure 4.2.

These sorts of properties of datasets are problematic for AA, since, firstly, they will
generate a tendency to overfit to authors/classes that make up a large percentage of all
messages. Secondly, a high number of classes leads to longer training, validation and testing
times. Training on all classes proved to be prohibitive within the constraints of computa-
tional resources available in this project. This adds up even if these classes are small.
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Figure 4.2: Number of messages per user in the four SMS datasets, sorted descendingly.

To avoid these problems, users with less than n or more than m messages are left out.
However, since the range of messages sent per user varies wildly per dataset, these n and
m are picked for each of the datasets individually. For the MFTM Corpus, only users with
at least 20 messages are considered, without a maximum number of messages. For the
SMS4Science dataset, users should have at least 20 and at most 109 messages. For the NUS
SMS Corpus, the accepted range of messages per user is between 114 and 1244. For the
Hispanic BYTs dataset, this range is between 152 and 1289 messages.

Additionally, since k-fold cross validation is performed using stratified k-folds, any users
with less than k conversations will not be present in all of the train-test splits, when messages
are grouped by conversation. k is either 5 or 10 depending on the size of the dataset, and
specified in the captions of the experiment results. Message grouping has not been mentioned
up until this point. For more on message grouping, refer to Section 4.2.3. To nullify any
influence of this on the results, these users are preemptively filtered out of the Hispanic BYTs
dataset. This is the only dataset that will have conversation-level message grouping later
on in this thesis, because this is the only dataset that comes with conversation identifiers.

After author selection, the specifications of each of the SMS datasets are as described in
Table 4.2.1.
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#authors #messages #authors #messages
previously previously
MFTM Corpus 112 4934 29 1959
NUS SMS Corpus 686 67093 44 21552
Spanish-English BYTs 15 44597 8 5501
SMS4Science 2784 25947 192 6756

Table 4.3: Number of authors and messages per SMS dataset, both after and prior to author
selection.

4.2.2 Tagging

Messages often contain hyper-personalised data like names, email addresses and phone num-
bers. In AA, the idea is to capture stylometric fingerprints of authors, and use these finger-
prints to detect authors. When feeding messages containing uncensored names into an AA
method, this fingerprint becomes more reliant on the specific name(s) mentioned, rather
than stylometric information. Especially when searching for authors that try to hide their
identity, it is rather unhelpful that the AA method has learnt to rely on hyper-personalised
data.

For avoiding overfitting to hyper-personalised data, while retaining information that
is captured in the frequency of mentioning such information and the placement thereof,
replacing this data with placeholders can be a solution. To know where to place placeholders,
one needs to know the location of words that contain such hyper-personalised information.
The method of finding such words is called named entity recognition. The process of placing
tags that represent such hyper-personalised information will be called tagging in this thesis.
A placeholder can then be placed to conceal a name, phone number, etc. To show an
example, the message ‘Heya John! Your new phone number was +316 123 4567 right?’
would become ‘Heya <N>! Your new phone number was <#> right?’

For the Hispanic BYTs dataset, tags are already given for names, phone numbers and
locations. In addition, it contains emoticon tags that serve as identifiers for unique emoti-
cons. Since emoticons do not contain hyper-personalised information like names, they can be
treated as stylometric data, much like other word or character n-grams. In other datasets,
such emoticon tags are not given. If AA were to be applied to the combination of all
datasets, this could pose a problem - the presence of emoticons would be a unique identifier
for the authors from the Hispanic BYTs dataset. However, AA will not be applied to the
combination of all datasets as part of this thesis. For the application of AA to solely the
Hispanic BYTs dataset, the presence of emoticons poses no problem, as emoticon tags are
present for all users within the dataset.

To tag the other datasets, SpaCy’s named entity recognition models for English, Spanish,
French, German and Multilingual texts are used to determine tag positions for names and
locations.[26, 67] To determine which of the models to use on each of the messages, the
main language used in the given message needs to be known. To retrieve this information,
language detection is used on all of the datasets except for SMS4Science, which comes
with language tags per message, and the MFTM Corpus, which is comprised primarily of
English messages. For language detection, PYCLD2[2], a Python wrapper for CLD2[47] is
used, using hint languages English and Spanish for the Hispanic BYTs dataset and English,
Chinese and Malay for the NUS SMS Corpus.

For each of the datasets, a default language is chosen in case that a message has no
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language tag that corresponds with one of the aforementioned SpaCy NER models. This
default is Spanish for the Hispanic BYTs dataset, Multilingual for the SMS4Science dataset,
English for MFTM Corpus and English for the NUS SMS Corpus.

Email address positions are found by locating space-delimited substrings containing at
least one ‘.’ and one ‘@’. Substrings are tagged as webpages when they contain either
‘www’, ‘http’, ://’, or any combination of these.

Once the tag locations are found through NER, placeholders are placed with a format
as described in Table 4.4.

Tag Description

<N> Name

<#> Phone number

<WH> Webpage, where # is an integer identifier
<P> Place/location

<I> Image

<E> Email address

<E#> Emoticon, where # is an integer identifier

Table 4.4: Placeholders and their descriptions as used to preprocess text data for AA.

These placeholder formats are chosen for their uniformity - they all start with a < and
end in a >. This makes it easy to detect a placeholder to treat that placeholder as an
individual character when extracting character n-grams. Parsing a placeholder character-
by-character could be problematic. The sequence of characters that makes up a placeholder
does not hold any syntactic nor semantic information, like the sequence ‘<N’. On top of
that, it could give rise to sequences like ‘>:’, which might be used elsewhere as a sad
text emoticon. Hence, placeholders are treated as individual characters when extracting
character n-grams. Likewise, placeholders are also treated as individual words in word
n-grams, since the information represented by a placeholder forms a semantic unit.

To ensure proper handling, the datasets have been checked to not already contain any
substring enclosed by < and >. The tagged words in the pre-tagged Hispanic BYTs dataset
have been replaced by placeholders in this format. Any identifiers that came with the tags
have been removed, with the exception of emoticon and webpage tags. Image pre-tags do
not have such an identifier.

4.2.3 Message grouping

So far, this thesis has dealt with the AA problem on short conversational texts. However,
in practice, messages are often given as a conversation - a set of messages that acts as a
dialogue between two authors. Given that such a conversation is indeed between two authors
(i.e. assuming that none of the user IDs are used by two or more authors), messages of this
conversation sent by either user ID can be grouped. By grouping, the AA problem morphs
into an AA problem on not-so-short conversational texts.

However, for the datasets used in this thesis, grouping messages by conversation would
result in a low number of data points per user ID. In practice, this is also bound to be the
case - a person’s total number of conversations often does not reach high numbers. Another
downside of grouping by conversation, and a result of low sample size, would be that there
might be overfitting to ‘how user A speaks to their friends’ in particular. The AA methods
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would then have trouble classifying a sample of user A speaking to their mother. The
chances of this happening are heightened by the low sample size.

This does not necessarily imply that AA on individual messages is preferred over AA
on grouped messages. Individual messages come with the very problem this thesis has been
trying to deal with. They are short. To try and get the best of both worlds, a better
approach might be to group the messages from each conversation into x groups, if the
conversation contains more than x messages.

For the Hispanic BYTs, experiments will be performed to show the effects of message
grouping on the AA task. The AA task will be performed on individual messages and
grouped messages, separately, where the contribution of an author to each conversation is
split into 1, 3, 5 or 10 groups. The results of this are discussed in Section 6.1.1.
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Chapter 5

Experiment setup

5.1 AA experiments

Experiments have been set up for the authorship attribution task to evaluate the perfor-
mance of the three AA methods on short conversational text using different feature sets.
The methods evaluated are the three AA methods discussed in Section 3.1, which are Delta,
SVM and CNN. Experiments are run for each of these three methods on each of the four
SMS datasets described in Section 4.1. In these experiments, the features sets used consist
of n-gram features, as described in Section 3.1.1. The feature sets experiments are run on
consist of all combinations of character 1-, 2-, 3-grams and word 1-grams. This results in
15 different feature sets.

5.2 Network analysis-based experiments

For the network analysis-based method, several experiments are run to evaluate the method
on performance on different feature sets and overlap%. The experiments cover a total of 7
feature sets, which are: character 1-grams, character 1-, 2-, and 3-grams, and word 1-grams
with character 2-grams, with or without network features, or exclusively network features.
This should provide insight into whether combining network and stylometric features has
any added value compared to using either of these separately. A choice in specific stylometric
features has been made because of computational limitations. This choice includes two of the
top-performing feature sets in the AA experiments (character 1-, 2-; and 3-grams, and word
1-grams with character 2-grams) and one of the worst-performing feature sets (character
1-grams). Overlap% as a variable is discussed in Section 3.2.1. The three overlap% values
used in the experiments are 20%, 50%, and 80%, to provide insight into the influence of
overlap% on the performance of the network analysis-based method on a relatively broad
range.

5.3 Comparison of the two sets of results

To evaluate whether the network analysis-based method performs better than the combi-
nation of an AA method with any of the Doppelganger Finder probability score formulas,
a fair comparison between the two has to be made. Because the network analysis-based
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method is presented as many not-same-author pairs as there are same-author pairs, such a
comparison is not straight-forward. For a text from a user account, the AA methods are
presented with all user accounts as classification candidates. This is a significantly harder
task that would result in an unfair comparison.

For a fairer comparison, only user account pairs that are used in the network analysis-
based method are considered for the Doppelgédnger Finder. This not only means that these
are the exact user account pairs that the Doppelganger Finder is applied to, but also that
when calculating Pr(A — B), for two user accounts A and B, only user accounts that A
forms a pair with are considered.

The process of translating the output of any of the AA methods to an accuracy score that
can be compared to the network analysis-based method’s output then becomes as follows:
For each of the 5-fold cross-validation folds of the network analysis experiments, the user
pairs in the test set are selected to apply the Doppelganger Finder to. This results in 5
sets of user pairs. For each of these sets, one of the Doppelgénger Finder probability score
calculation approaches is applied to the pairs within these sets, considering only pairs that
belong to the set. The resulting probability scores for each pair are held against a threshold
value to form predictions for those pairs - either they are the same author, or not. From
these predictions and the true labels, an accuracy score can be computed. The threshold is
picked such that it achieves the highest accuracy, mimicking the procedure as described in
the paper introducing the Doppelgénger Finder[l]. Finally, the accuracy scores for each of
the cross-validation folds are averaged and compared to the average scores from the network
analysis-based method.
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Chapter 6

Results and discussion

The full results of Delta, the SVM model, and the CNN model on all four SMS datasets
are displayed in Appendix B. The full results of the network analysis-based method can be
found in Appendix C. On each of these runs, top-2000 feature selection is performed on the
stylometric features using x2. All AA and network analysis results shown in the appendices
are the averaged results of 5- or 10-fold cross-validation, as specified in the captions. The
figures shown in this chapter include results that are averaged over specific parameters to
illustrate specific points.

6.1 AA

6.1.1 Message grouping

In Section 4.2.3, message grouping on the basis of conversations was introduced. Experi-
ments have been run where either the contribution of an author to a conversation is split
into 1, 3, 5 or 10 groups, or no message grouping is applied. Instead of messages, the groups
resulting from message grouping become the data points used in the AA task - given a
group of messages, the author behind the messages is to be attributed to this group. To
evaluate which of these groupings is best, each of the AA methods discussed is applied to
the Hispanic BYTs dataset in each of the three forms (per message, per conversation and
the hybrid grouping). Figure 6.1 shows the average, maximal, and minimal results.
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Figure 6.1: Mean scores of the SVM model on the Hispanic BYTs dataset over all feature
sets. The error bars illustrate the maximal and minimal scores achieved over all feature sets.
The horizontal axis lists the message grouping sizes that are applied. Each of these labels
details the number of groups each user account’s contribution to a conversation is split up
into. The only exception is ‘msg’, which has no message grouping applied and consists of
individual messages.

Since the Hispanic BYTs dataset contains 8 authors, the results are significantly higher
than random classification, which would on average achieve scores of %. No direct correlation
between message group number and SVM performance scores on the Hispanic BYT's dataset
can be derived from these results. Moreover, the confidence intervals of the maximal results
for each of the message groupings overlap significantly, as can be seen in the full result
plots in Appendix A. Because of these two reasons, none of the message groupings can be
concluded as superior over the other. Therefore, it is justified to compare the performance
of the AA methods on all datasets on the basis of individual messages, without any message
grouping - not only because out of the datasets, the Hispanic BYTs dataset is the only one
where message grouping is at all possible.

6.1.2 Feature sets

To gain insight into how well each of the three AA methods perform on each of the feature
set types, the results of the AA methods have been averaged over all of the four SMS
datasets. This averaging is not weighted and is performed to provide a clearer overview.
The insights provided in this subsection are also present in all dataset-specific results, which
can be found in Appendix B. The averaged results for Delta, SVM, and CNN are shown in
Figure 6.2, Figure 6.3, and Figure 6.4 respectively.
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Dataset averages - Delta

o I I
03 £ L Il 1 i Tl I
0.1 I I

1 2 3 1,2 13 1 2 30 1,2 1,3

2,3 1,2,3 None 2,3 1,23

m Fl-score
Precision
B Accuracy

m Accuray (top 3)

character n-grams

word n-grams None 1

Figure 6.2: Mean weighted scores of the Cosine Delta method, averaged over all datasets.
The error bars indicate 95% confidence intervals.

From Figure 6.2, it can be concluded that character 1-grams and 2-grams lead to rel-
atively low results when not used in combination with other types of n-grams. Character
3-grams and word l-grams lead to relatively high results when used on their own. Using
word 1-grams in combination with character 1-grams and/or 2-grams leads to scores that
are generally higher than when word 1-grams are not included. The same holds true for
character 3-grams. However, none of the scores achieved through the addition of character
3-grams to other n-grams are significantly higher than the scores achieved on character 3-
grams alone. For word 1-grams however, the scores achieved from the combination of word
l-grams and character 2-grams is significantly higher than either of the two n-gram types
on their own. But this the only combination with this property. That this property is not
present for other n-gram combination can possibly be explained by the fact that top-2000
feature selection is performed on the data through x?2 prior to using Delta. The restriction
to 2000 features potentially introduces a maximal cap to the scores. x? does not necessarily
see the same features as most distinctive as Delta would, sometimes leading to slight declines
in scores when n-gram types are combined.
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Figure 6.3: Mean weighted scores of the SVM model, averaged over all datasets. The error
bars indicate 95% confidence intervals.

Similarly to Delta, the features that contribute most to the SVM model’s ability to
achieve high scores are character 3-grams and word 1-grams, as can be seen in Figure 6.3.
However, contrary to Delta’s results, character 2-grams on their own also lead to relatively
high scores. The behaviour observed in Delta’s scores when adding n-gram types to the
feature set is also present in the SVM scores, and can also be explained by the application
of top-2000 2 feature selection, albeit with a higher maximal score cap.

Dataset averages - CNN
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Figure 6.4: Mean weighted scores of the CNN model, averaged over all datasets. The error
bars indicate 95% confidence intervals.

Contrary to Delta and the SVM model, the CNN model does not show significant vari-
ation in scores when varying the feature set, as can be seen in Figure 6.4. This can be
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explained because the CNN model discovers sequential patterns through the variety of filter
sizes (3, 4, 5). This means that for char 1-grams, the CNN implicitly finds character 3-, 4-
and 5-grams in which to express the patterns it finds in the data.

The implications are that for the AA task on short conversational texts, no more input
features than character 1-grams are needed for the CNN model to achieve optimal results.
The SMS dataset with the highest number of character 1-grams has only 130 character
1-grams. This means that in this case, having only 130 features is sufficient instead of 2000,
which is the number of features present for all other feature sets due to feature selection.
This also raises the suspicion that, at least for the CNN model, the scores are not maximally
capped because of the top-2000 feature selection.

6.1.3 Delta vs SVM vs CNN

Feature set averages - Delta, SVM, CNN
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Figure 6.5: Mean weighted F1 scores of Delta, the SVM model, and the CNN model on
all SMS datasets, averaged over all feature sets. The error bars illustrate 95% confidence
intervals.

In Figure 6.5, weighted F1 scores are shown for Delta, SVM and CNN over the four SMS
datasets. The CNN model achieves the highest scores on all datasets, followed by the SVM
model.

That the CNN model performs so well on short conversational text can be explained by
(other than that it is a deep learning model) how it retains sequential information. While
n-gram features are inherently sequential (with the exception of 1-grams), both Delta and
SVM use n-gram counts, instead of a sequence of n-grams like CNN does. This is especially
helpful in short texts, since this type of text does not hold the same amount of stylometric
information a longer text would.
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6.1.4 Twitter AA results
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Figure 6.6: Weighted scores of the SVM model on the Sentiment 140 Twitter dataset,

achieved through 5-fold cross-validation and preceded by top-2000 feature selection using

X2

On the Twitter dataset, the SVM model achieves extremely low scores. This might lead one
to think that Twitter data is less suited for the AA task. However, Layton et al.[39] achieves
an accuracy of 70% on the AA task on a Twitter dataset using the SCAP methodology,
when replacing Qusername mentions by @ and using only character 3-grams. This suggests
that the low scores are not a result of the type of data (Tweets).

A possible reason for the low scores could be the number of conversations per user and
the number of messages per conversation. A group of messages is said to belong to the
same conversation when they share their sender and recipient. For the Twitter dataset,
users partake in an average of 30.4 conversations, with an average of 1.9 messages each. For
NUS, these averages are 15.9 and 30.2 respectively, and 23.6 and 29.1 for the Hispanic BYTs
dataset. The number of conversations per user is highest for the Twitter dataset, and the
number of messages per conversation is lowest. It seems likely that this is a reason behind
the low scores, since intuitively, one expects some stylometric properties to be conversation-
specific. Many people do not use the same writing style they use with their friends when
texting their mother. A high number of conversations per user would potentially lead
to a wider spread of conversation-specific stylometric features, which might make author-
specific stylometric features harder to pick up on. This is not in accordance with common
assumptions in stylometry, where writing style is assumed to be domain-independent.

Layton et al. report that their method uses 50 Twitter users with 200 Tweets each. In
the subset of the Twitter dataset used in this thesis, there are 213 users with an average of 60
Tweets each. This difference in users and Tweet count per user could be one of the reasons
why the Twitter scores in this thesis are so low. To compare the number of users to that
of the other SMS datasets, the Hispanic BYTs dataset, the MFTM Corpus and the NUS
SMS Corpus all contain less than 50 users. However, the Twitter dataset is comparable
with the SMS4Science dataset in terms of number of users and number of messages per
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user. SMS4Science has 192 users with around 35 messages each. The SVM model does not
necessarily achieve low results on the SMS4Science dataset. Therefore, the number of users
and messages per user are likely not the sole reason behind the low scores on the Twitter
dataset, but could still potentially be one of the reasons.

6.2 Network analysis

To evaluate the network analysis-based method, a couple of parameters have been chosen to
vary across the experiments, as discussed in Section 5.2. These parameters are overlap% and
feature sets. For overlap%, the values 20%, 50% and 80% are used. The stylometric feature
sets used are character 1-grams, character 1-, 2- and 3-grams, and finally word 1-grams and
character 2-grams. Experiments are run for each stylometric feature set, the combination
of each of the stylometric feature sets with network features, and network features on their
own, for each of the overlap% values.

6.2.1 Overlap%
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Figure 6.7: Mean weighted scores of the network analysis-based method on the injected
Opsahl dataset, averaged over all feature sets. The error bars indicate the maximal and
minimal scores achieved over all feature sets.

Figure 6.7 shows that the scores do not vary significantly with the different overlap% values.
This leads to the conclusion that the scores of the network analysis-based method is invariant
over the overlap%.

It is worth mentioning however, that overlap% here is a very specific property of the
dataset used, as it is the percentage of shared direct neighbours of two nodes forming a
same-author pair. This percentage is in relation to the union of the direct neighborhoods of
the two nodes. The overlap% property is dataset-wide, meaning that the overlap% of each
same-author pair is constant across the dataset, with some slight variation as a result of
the size of some direct neighborhood unions not being perfectly divisible. This is a highly
specific dataset property that is unlikely to surface in real-world problem data.
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One might have expected that higher overlap% would contain more useful network infor-
mation, as it would allow the classifier to identify same-author pairs on the basis of shared
neighbours. However, the results suggest that when the overlap% is uniform, or close to
uniform, across the whole dataset, the influence of the specific overlap% value is minimal.
This is a sign of robustness to dataset variation. However, note that the overlap% parameter
has only been tested on 3 specific values. This leaves the possibility that the method shows
not to be robust to overlap% when other ranges are inspected.

6.2.2 Feature sets
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Figure 6.8: Mean weighted scores of the network analysis-based method on the injected
Opsahl dataset, averaged over the overlap% parameter (20%, 50% and 80%). The error
bars indicate 95% confidence intervals. The red line indicates a score of 0.5 that is expected
when randomly assigning classes on a binary classification problem.

What is immediately evident from the results shown in Figure 6.8 is that stylometric features
combined with network features achieve higher results than stylometric or network features
on their own.

The network features on their own achieve drastically low results. Since the method is
applied to a binary classification problem, one would expect scores of at least 0.5 on all
scoring metrics. The results when using only stylometric features are also not impressive.
Only when using character 1-grams is are all scores significantly higher than 0.5. Adding
network features significantly improves the scores on each of the stylometry-only feature
sets. This is an interesting observation especially because network features on their own
lead to drastically low scores, and the scores achieved using only stylometric features do
not improve upon random classification. Yet, the presence of a combination of network and
stylometric features prove to be valuable for solving the pair-wise problem.

When comparing the results across the stylometric feature sets, both with and without
network features, the resulting scores indicate no significant differences. This suggests that
the specific stylometric features used are not as important as having both stylometric and
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network features. A consequence is that, as for stylometric features, no more than the
character 1-gram features seem to be needed. This feature set is computationally favorable
because it is relatively small.

6.3 AA versus Network analysis

To answer the pair-wise research question, two approaches are evaluated in this thesis. The
first is the direct network analysis-based method. The second is the combination of an AA
method, SVM specifically, with the Doppelgéanger Finder.

For some feature sets, the network analysis-based method can achieve an accuracy sig-
nificantly higher than the 50% one would expect when predicting randomly on the Twitter
dataset. This is the case when using both stylometric and network data, achieving around
70% accuracy.

Application of the Doppelgéinger Finder to the predictions of the SVM model on the
Sentiment140 Twitter data has proven to provide results that are no better than random
guessing. For each cross-validation fold, only 0 to 4 of the test pairs have a Doppelgénger
Finder score higher than 0, roughly symmetrical across same- and not-same-author pairs, out
of the 200 test pairs. Therefore, the best threshold choice is 0, in all cross-validation folds
and for each Doppelgéinger Finder probability score calculation method. This essentially
renders it a majority classifier, and results in roughly 50% accuracy. This means that for
the pair-wise problem, the network analysis-based method that uses both stylometric and
network data is seems to be strongly preferred as a method.

That most Doppelganger probability scores are no higher than 0 is likely a consequence
of the low AA results on the Twitter dataset. Conceptually, it makes sense that low AA
results lead to low results on detecting the same author if they are hiding behind a different
name. In the Twitter dataset, the impostors are fabricated and do not show the same
behavior of an impostor that is actively trying to mask their stylometric footprint. For
real-world applications, the Doppelginger Finder would likely be even less useful, since it
relies on the AA method being able to accurately identify an author.

When the AA method does achieve good results, this might lead to better results on the
pair-wise problem through the Doppelganger Finder. Since the CNN model achieves higher
scores than the SVM model on the AA task, using the CNN model can be an alternative that
might potentially lead to better scores on the pair-wise problem. However, such experiments
have not been conducted as part of this thesis due to time constraints. Not just for AA
methods, but also for datasets on which higher AA task accuracy is expected, the conclusion
that the network analysis-based method performs better than AA with the Doppelgéinger
Finder can also not be made yet.

One drawback of the network analysis-based method is that, even when only using
stylometric information, the network analysis-based method is dependent on the availability
of network data. The alternative, the combination of an AA method with the Doppelgédnger
Finder, is not.

On the other hand, the network analysis-based method is not dependent on having text
that belongs to a specific author and is identified as such in the training set. The approach
using an AA method with the Doppelgénger Finder is dependent on this being the case.

The conclusion is that whenever network data is available for a dataset, and the AA
task accuracy is low on that dataset, the network analysis-based method is preferred over
the use of an AA method in combination with the Doppelginger Finder.
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Chapter 7

Further research and conclusion

7.1 Limitations and further research

This section is dedicated to discussing open issues related to, but falling outside of the scope
of, this research. This includes, but is not limited to, suggestions for further research to
solve these issues.

7.1.1 From pair-wise to group-wise

An unsolved problem for this thesis is the translation from a solution to the pair-wise
problem to one to the group-wise problem. The two main types of approaches discussed
are aimed at solving the pair-wise problem. These two types are AA methods combined
with the Doppelgidnger Finder and the network analysis-based method. In the case of the
detective from the introduction, a solution to the group-wise problem is desired - in the end,
they wish to find what groups of phone numbers share the same author. This subsection
will visit a number of approaches to translate a pair-wise solution to a group-wise solution.

Given that for any pair of user accounts, one can reliably find whether they share the
same author or not, one could evaluate this for each pair of user accounts in question. From
these results, a graph can be made with the user accounts as its nodes, which share an edge
if and only if the user accounts are determined to be controlled by the same actual author.

The groups of user accounts that concern the main question can then be found using a
heuristic on this graph. For example, one can choose to pick only maximal fully-connected
subgraphs as groups. Another heuristic could be picking maximal fully-connected subgraphs
of which each node is connected to at least n% of the remaining nodes of the subgraph it
belongs to.

Which one of these two heuristics is chosen reflects upon the accuracy of the method
used to solve the pair-wise problem. If the method is fully accurate, the resulting groups
will be equal for either heuristic. Each node that belongs to a group would be connected
with all other nodes belonging to that group. While the maximal fully-connected subgraph
heuristic lessens the influence of false positives, the maximal subgraph heuristic does so for
false negatives. Whichever one of the two heuristics performs better in practice, where full
accuracy of a pair-wise method cannot be guaranteed, is something that requires further
research.
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7.1.2 Comparing CNN to Delta and SVM

While the results on the AA task show that the CNN achieves higher scores than both Delta
and SVM, a potential worry about the comparability of these results remains. Despite using
the same n-gram data, the CNN implicitly finds character 3-, 4-, and 5-grams in character
l-gram features, because of its filter sizes. When other n-gram types are given as input,
these sequences become even longer. This means that the shortest implicit character n-gram
lengths for which the CNN has been tested are character 3-, 4-, and 5-grams.

Delta and the SVM model on the other hand, have only been tested with character 1-,
2-, and 3-grams. This raises the suspicion that the comparison between the CNN results
and that of Delta and SVM cannot be made. However, the CNN receives the same n-gram
types as input. The CNN’s filter sizes are part of its architecture, and therefore the fact that
character 3-, 4-, and 5-grams are implicitly found by the CNN is an inherent property of
the CNN method. This means that the comparison is fair on the grounds of n-gram types.

However, the real difference between the inputs for CNN compared to Delta and SVM is
that the CNN input is sequential. It is an inherent property of the CNN method to work on
sequential information, whereas Delta and SVM both do not, and cannot take sequentiality
into account.

Despite the fairness of the comparison, there remains a chance that the characteristic
stylometric information is captured in character 4- or 5-grams. In that case, additional
experiments would be required where character 4- and/or 5-grams are given as input to
Delta and SVM. The results of this experiment would show that character 4- and/or 5-
grams are very characteristic for AA, or would confirm that the CNN model is superior
with regards to the AA task.

7.1.3 Comparing the network analysis-based method to AA com-
bined with the Doppelganger Finder

In Section 6.1.4, low scores on the AA task on the Sentiment140 Twitter dataset are reported.
The SVM model achieves an accuracy score of about 0.003 on this dataset that contains
messages from 213 users. This is lower than the accuracy score a random classifier would
achieve on average, which is about 0.005. The F1- and precision scores are even lower.
These low scores make it harder for the Doppelgénger Finder to find impostors, forcing it
to become a majority classifier to achieve an average accuracy of 50% on the binary pair-
wise impostor finding task. The network analysis-based method achieves 70% accuracy on
the same task, when using both stylometric and network features. The question remains
whether the network analysis-based method still achieves higher scores than the SVM model
with Doppelgéanger Finder on the pair-wise task when the accuracy on the AA task is not
exceptionally low.

The low scores on the Sentiment140 Twitter dataset raise the suspicion that the AA task
is much harder on Twitter data compared to SMS data. However, Layton et al.[39] report
an accuracy of 53% on the AA task on a Twitter dataset using the SCAP methodology.
This means that the SCAP methodology is far superior compared to the SVM model, or
that the AA task is easier on their specific Twitter dataset.

Further research could test whether the network analysis-based method remains superior
on the pair-wise impostor finding task when AA accuracy is higher. This can be done by
performing the AA task followed by Doppelgédnger Finder on Layton et al.’s Twitter dataset
using the SCAP methodology. The resulting scores can be compared to that of the network
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analysis-based method on a network dataset that is injected with directed tweets from
Layton et al.’s Twitter dataset. For a fair comparison, the SCAP methodology should be
applied to precisely those tweets that are injected into the network. The same can be done
using the SVM model instead of the SCAP methodology to either confirm or rule out that
the AA task is easier on Layton et al.’s Twitter dataset.

7.1.4 Applying the network analysis-based method to other net-
works

As stated in Section 3.2.3, there is a problem to the applicability of the network analysis-
based method. This problem originates from the fact that the features that the network
analysis-based method uses are specific to its training data, since they are derived from
the adjacency matrix. Each of these features represents a node in the network. Nodes
of a pair to be evaluated might be both (dis)connected to, or might have precisely one of
the pair’s nodes connected to the node represented by a feature. Inherently, the network
analysis-based method seems to be extremely domain-specific.

However, whether this is actually the case has yet to be proven. In this subsection, a
way of evaluating the robustness of the network analysis-based method to application to
other networks will be proposed. In addition, a solution to make the network analysis-based
method applicable across different networks is proposed.

Evaluating robustness to network variation

To evaluate whether the network analysis-based method can be applied when the training
network is not the same as the network it is applied to, it is paramount to check its robustness
to network variation.

One approach to evaluating this robustness would be to first train the method on a
network dataset with stylometric data, as is usual. As the next step, the method is evaluated
on a number of variations of the test set, where the node identifiers of the network nodes
are shuffled randomly. The variance of the resulting scores is an indicator of the method’s
robustness to network variation. However, this might vary greatly depending on the general
(dis)similarity between nodes of this specific network. When presented with a network where
all nodes are relatively similar in their connections (e.g. the network is fully-connected),
shuffling the nodes’ identifiers does not change such properties significantly. Therefore, one
would expect a lower variance in the resulting scores.

Graph matching

If the network analysis-based method is not sufficiently robust against network variation,
one alternative is to make a network, that one wishes to apply the method to, look like the
training network. Given a new network, the aim is to map its nodes onto the nodes of the
training network such that the change in the relations between the nodes is minimized.

To do this, it can be helpful to explore the subject of graph similarity, or more specifically,
approaches to graph matching. Zager et al.[08] propose a similarity measure that generates
both node and edge similarity scores. This similarity measure is then applied to the graph
matching task to find an optimal matching of nodes and edges from one graph onto another.

Their approach also considers different types of edges. This is important for the network
analysis-based method, since it is best used with both stylometric and network data. Some
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edges are connections between spouses, while others are between friends or family members.
For each of these types of connections, one would expect different stylometric properties.

One drawback of their approach is that it assumes that the graph to be mapped onto
another graph is smaller than, or equal in size to the other. If graph mapping using their ap-
proach is performed prior to the network analysis-based method, it would limit the method’s
applicability to networks smaller than the training set.

7.1.5 One user account, multiple authors

One problem that presents itself in domains with short conversational text is that of shared
user accounts. Some user accounts might have more than one author writing their mes-
sages. For the pair-wise methods, as well as most AA methods when combined with the
Doppelgianger Finder, this poses a problem. This is because these methods implicitly as-
sume that each user account amounts to one singular author. This leads to the following
problem to be solved:

Given a set of short conversational messages sent by one user account, and optionally, a
dataset of candidate authors, are these messages all written by the same author or more
than one author?

If there is a reliable solution to this problem, the dataset to be used for the AA or the
network analysis-based method can be filtered to only contain user accounts controlled by
one and the same author.

However, a consequence of such an approach to filtering the data is that it potentially
leads to a considerable loss in usable data. An alternative would be to find a method that
solves the problem posed in the following question:

Given a set of short conversational messages sent by one user account, and a dataset of
verified messages from candidate authors, are these message all written by the same author
or more than one of these authors? And if so, which authors are responsible for which
subset of the account’s messages?

This is a harder problem to solve, as it requires high accuracy on the AA task on user
account-level. The existence of a reliable solution would provide the option to split each
of these multi-author accounts into however many authors it is used by. Messages of this
account would be split accordingly. This would preserve the information that is lost when
otherwise dropping shared accounts. However, it introduces a heavy dependency of the
pair-wise method to the accuracy of the method used to find authors on shared accounts.

7.2 Conclusion

To find a solution to the main research question, this research had three main aims. The first
aim was to evaluate the performance of three AA methods (Delta, SVM and CNN) on short
conversational text. The second to propose and evaluate a network analysis-based method
to directly solve the pair-wise problem. And finally, the third aim was to evaluate AA
with the Doppelganger Finder against the network analysis-based method on the pair-wise
problem.

When evaluating and comparing the performance of Delta, SVM and CNN on short
conversational text, the CNN model has shown to achieve the highest scores. Character
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3-grams and word 1-grams are most indicative of writing style among the tested stylometric
feature sets on short conversational text. However, when using the CNN model, character
1-grams are sufficient.

The network analysis-based method has shown to be useful when using it with a com-
bination of stylometric and network features. Using such a combination, it achieves around
70% accuracy on the pair-wise task. When using solely stylometric or network features, the
network analysis-based method does not achieve considerably good results on this binary
classification task.

Applying the Doppelgéinger Finder to the predictions of the SVM model has proven to
be useless on the Twitter dataset. The hypothesis is that the performance of the Dop-
pelgénger Finder is heavily dependent on the performance of the AA method on the dataset
in question. Further research using other AA methods and other datasets is necessary to
draw a conclusion. On the other hand, the network analysis-based method can make usable
predictions, albeit with an accuracy of 70%. However, this method requires both stylometric
and network features to achieve this score. But, it is usable when either the AA method
accuracy is low on the dataset in question, or when the dataset is missing author labels
for its messages. The approach where an AA method is combined with the Doppelgénger
Finder is not usable in these cases.

Further research is needed to translate any solution to the pair-wise problem to a solution
to the group-wise problem. In addition, whether the network analysis-based method is
applicable to networks other than the training network is yet to be confirmed. However,
some suggestions have been given for evaluating its applicability, as well as an approach
that could make it more applicable to other networks.
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Appendix A
Message grouping

All plots are results of the SVM model on the Hispanic BYTs dataset achieved through 5-fold
cross-validation, with top-2000 feature selection through chi-squared. For the plot on the
right, word unigram features are used along with the character n-gram features mentioned
in the labels on the x-axis. Error bars indicate a confidence interval of 95%.

The plots vary in the number of groups each conversation is split into.
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Figure A.1: No message grouping. Individual messages.
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Appendix B

Authorship attribution results

B.1 Delta

MFTM Corpus - Delta
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Figure B.1: Results of the Cosine Delta model on the MFTM Corpus achieved through 5-
fold cross-validation, with top-2000 feature selection through chi-squared, without message
grouping. Error bars indicate a confidence interval of 95%.
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NUS SMS Corpus - Delta

= mFl-score

0.8
Precision

0.7
W ACCUray

0.6

W Accuray (top 3)

=
s

=
w

=]
P

=]
[

At

character n-grams 2,3 1,23 MNone

[

23 123

i

Figure B.2: Results of the Cosine Delta model on the NUS SMS Corpus achieved through 5-
fold cross-validation, with top-2000 feature selection through chi-squared, without message
grouping. Error bars indicate a confidence interval of 95%.
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Figure B.3: Results of the Cosine Delta model on the SMS4Science dataset achieved through
5-fold cross-validation, with top-2000 feature selection through chi-squared, without message
grouping. Error bars indicate a confidence interval of 95%.
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Figure B.4: Results of the Cosine Delta model on the Hispanic BYTs dataset achieved
through 5-fold cross-validation, with top-2000 feature selection through chi-squared, without
message grouping. Error bars indicate a confidence interval of 95%.

B.2 SVM
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Figure B.5: Results of the SVM model on the MFTM Corpus achieved through 5-fold cross-
validation, with top-2000 feature selection through chi-squared, without message grouping.
Error bars indicate a confidence interval of 95%.
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Figure B.6: Results of the SVM model on the NUS SMS Corpus achieved through 5-
fold cross-validation, with top-2000 feature selection through chi-squared, without message
grouping. Error bars indicate a confidence interval of 95%.
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Figure B.7: Results of the SVM model on the SMS4Science dataset achieved through 5-
fold cross-validation, with top-2000 feature selection through chi-squared, without message
grouping. Error bars indicate a confidence interval of 95%.
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Hispanic BYTs - SVM

mFl-score
0.8
Precision
0.7
W ACCUray
0.6
W Accuray (top 3)
0.5
0.4
0.3
0.2
0.1

0
character n-grams 1 2 3 1,2 13 2,3 1,23 MNone 1 2 3 1,2 1,3 23 1,23

word n-grams None 1

Figure B.8: Results of the SVM model on the Hispanic BYTs dataset achieved through 5-
fold cross-validation, with top-2000 feature selection through chi-squared, without message
grouping. Error bars indicate a confidence interval of 95%.

B.3 CNN
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Figure B.9: Results of the CNN model on the MFTM Corpus achieved through 5-fold cross-
validation, without message grouping. Error bars indicate a confidence interval of 95%.
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Figure B.10: Results of the CNN model on the NUS SMS Corpus achieved through 5-fold
cross-validation, without message grouping. Error bars indicate a confidence interval of

95%.
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Figure B.11: Results of the CNN model on the SMS4Science dataset achieved through 10-
fold cross-validation, without message grouping. Error bars indicate a confidence interval
of 95%.
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Figure B.12: Results of the CNN model on the Hispanic BYTs dataset achieved through
5-fold cross-validation, without message grouping. Error bars indicate a confidence interval
of 95%.
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Appendix C

Network analysis results

Network Analysis results
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Figure C.1: Results of the network analysis-based method on the Opsahl dataset achieved
through 5-fold cross-validation. Error bars indicate a confidence interval of 95%.



	Introduction
	Relevance for AI

	Related work
	Stylometric authorship attribution
	Burrows' Delta
	Support vector machines
	Convolutional neural network
	Comparison to other authorship attribution methods

	Finding impostors using AA
	Network-based methods
	Feature sets for AA
	Lexical
	Character-based
	Syntactic
	Semantic
	Choice of feature sets


	Methods
	Authorship attribution methods on short conversational texts
	Feature extraction
	Feature selection
	Delta
	SVM
	CNN
	Doppelgänger Finder

	Network Analysis
	Synthesizing impostor accounts
	Injecting stylometric information
	Creating pair-wise datapoints


	Data and data preparation
	Datasets
	SMS datasets and Twitter dataset
	Network datasets: The Opsahl Social Network

	Data preparation
	Author selection
	Tagging
	Message grouping


	Experiment setup
	AA experiments
	Network analysis-based experiments
	Comparison of the two sets of results

	Results and discussion
	AA
	Message grouping
	Feature sets
	Delta vs SVM vs CNN
	Twitter AA results

	Network analysis
	Overlap%
	Feature sets

	AA versus Network analysis

	Further research and conclusion
	Limitations and further research
	From pair-wise to group-wise
	Comparing CNN to Delta and SVM
	Comparing the network analysis-based method to AA combined with the Doppelgänger Finder
	Applying the network analysis-based method to other networks
	One user account, multiple authors

	Conclusion
	References

	Message grouping
	Authorship attribution results
	Delta
	SVM
	CNN

	Network analysis results

