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Abstract
Secure multi-party computation (MPC) is a cryptographic primitive that lets a num-

ber N of mutually distrustful parties compute a function f (x1, . . . , xN) on their private
inputs xi such that at the end of the MPC protocol, each honest party obtains the func-
tion’s correct output and no adversary controlling a certain subset of parties learns any-
thing about the honest parties’ inputs beyond what can be inferred from the function’s
output value. In 2002, [Smi01] and [CGS02] introduced the notion of multi-party quan-
tum computation (MPQC) in which arbitrary quantum circuits can be evaluated in a
distributed manner, secure against a quantum adversary. Few protocols for MPQC are
known. We present a fundamental study of the building blocks of MPC and MPQC in
the information-theoretic setting with a focus on protocols built on top of (quantum) se-
cret sharing schemes. In particular, we point out structural similarities and differences
and compile an extensive list of theoretical feasibility results for the maximum number
of corrupted parties within classical and quantum secret sharing and MPC protocols.
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Introduction

Performing analyses of datasets that are distributed over different sources is sought after
in many domains. For instance, health care providers as well as patients might profit
greatly from models that take into account different kinds of medical records or patient
data to predict possible diseases. General privacy concerns and regulations such as the
General Data Protection Regulation (GDPR), however, restrict merging or sharing data
from different sources and oftentimes, no trusted third party is available that may legally
perform such analyses. Secure multi-party computation (MPC) is the study of cryptographic
protocols with multiple participants that want to jointly compute the output of some
function on their private inputs without revealing their inputs to each other. Sometimes
called secure function evaluation, multi-party computation was first considered formally
by Yao in [Yao82], who illustrated the task at hand by introducing the famous millionaires’
problem: two millionaires A and B both possess a certain wealth xA and xB and want to
determine who is wealthier. They do, however, not want to reveal their exact wealth
to each other. Formally, their goal is to jointly compute the function f (xA, xB) that is 1
whenever xA < xB, and 0 otherwise, under the restriction that at the end of the protocol,
none of the players know more about the other’s wealth than what can be inferred from
f (xA, xB), i.e., whether the other is wealthier or not. More generally, the goal of MPC
is to have a number N of players with private inputs x1, . . . xN jointly evaluate a func-
tion f (x1, . . . , xN) without having to reveal their inputs. In a certain sense, this deviates
from traditional cryptography which is typically centered around securing point-to-point
communications against external adversaries. In the MPC setting, it is usually assumed
that a private and authenticated communication channel is given between participants in
the protocol and one tries to prevent against attacks from participants within the proto-
col. To achieve the latter, one typically considers the worst case scenario in which a single
adversary corrupts the actions of several participants in the protocol, trying to either ob-
tain secret information, or, additionally, manipulate the outcome of the protocol to their
advantage. Informally, MPC protocols aim at achieving two goals:

• Privacy: apart from the output value of the jointly evaluated function, the adversary
learns nothing about the honest parties’ inputs.

• Correctness: at the end of the protocol, the honest parties obtain the correct output
of the function.

Various adversarial models and settings can be considered in the study of secure MPC
protocols, such as restrictions on the run time of the adversary’s attacks or whether their
sole interest is to learn about the honest parties’ inputs or whether deviations from the
protocol that may change the function’s output are considered possible. Two major dis-
tinctions on the setting in which MPC protocols are studied are typically made. The first
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one concerns the abilities of the adversary that are admitted, and one distinguishes be-
tween two scenarios:

• Passive (or semi-honest, or honest-but-curious) adversary: the corrupted parties all
strictly follow the protocol.

• Active (or malicious) adversary: the corrupted parties can arbitrarily deviate from
the protocol.

Clearly, finding secure MPC solutions against the latter type of adversary is the com-
paratively harder task. Modern cryptographic protocols for secure communications often
tie their security to the assumed computational hardness of problems such as the prime
factorisation of large integers [RSA78] or finding a discrete logarithm [DH76]. Perfectly
secure solutions such as the one-time pad1 exist but are hard to implement in the real
world since they require a secure exchange of keys. Similarly, one can distinguish be-
tween different solutions for the task of multi-party computation. For some protocols,
security proofs are based on computational assumptions while others do not impose any
restrictions on the computational power of the adversary. We can therefore distinguish
between two types of security for MPC protocols:

• Computational security: the adversary is limited in the amount of time and compu-
tational power.

• Information-theoretic security: the adversary has unlimited time and computational
resources.

Cryptography in the presence of quantum adversaries

Driven by breakthrough papers in the 90s by Peter Shor, Michael Ben-Or, Dorit Aharonov
and others, we can today observe global efforts in building the first large-scale quantum
computers. For instance, Shor’s algorithm ([Sho94]) can be used to efficiently solve the
problem of finding the prime factorisation of large integers. A successful realisation of
quantum computers would therefore break large parts of (public-key) cryptography that
is being widely used at the time of writing. With regard to research in secure multi-party
computation, this evokes one central question: what impact does the advent of quantum
computers have on MPC solutions? More specifically, some questions that naturally arise
are:

• Do quantum computers pose a similar threat to existing MPC solutions as to tradi-
tional cryptography?

• Does the use of quantum communications and computations for secure multi-party
computation provide any security advantages over that of classical computers?

• Assuming an increasing use of quantum information in the foreseeable future, can
we develop MPC protocols that allow for securely processing such information?

This work will be centered around the latter two questions. In particular, we will
contrast the theory of multi-party quantum computation (MPQC) to that of classical MPC.

1The one-time pad is a symmetric-key encryption scheme, i.e., it requires both communicating parties to
hold the same private key. The key has to be at least as long as the plaintext, and encryption (and decryption)
works by performing a modular addition of plaintext (ciphertext) and the key. For example, a single bit
message m ∈ {0, 1} is encrypted using the single-bit key k as c := m ⊕ k. As long as the key is kept
completely secret, chosen uniformly at random and is never reused, the scheme is perfectly secure.
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While the latter aims at finding ways to implement arbitrary classical functions on clas-
sical inputs in the presence of a classical adversary securely and in a distributed manner,
MPQC focuses on having a number of parties evaluate arbitrary quantum computations
on quantum inputs in the presence of a quantum adversary.

Classical MPC protocols have been built on essentially three different kinds of cryp-
tographic primitives. These are called garbled circuits, homomorphic encryption and se-
cret sharing, as for example in [Yao82], [AJL+12], [GMW87], [CDvdG87], [BGW88], and
[CCD88]. At the time of writing, essentially two types of approaches for MPQC pro-
tocols have been proposed: the work of [CGS02], [BCG+06] and [LRW20] focuses on
information-theoretically secure MPQC, while [DNS10], [DNS12] and [DGJ+20] obtain
computational security. We focus on both classical and quantum protocols that achieve
information-theoretical security. In this regime, the most commonly used MPC protocols
are built on top of different kinds of secret sharing schemes in a modular way: a secret
sharing scheme is chosen and it is shown that using this scheme, the parties can jointly
evaluate a universal set of gates securely, giving them the ability to jointly compute ar-
bitrary functions on their inputs. The work on information-theoretically secure MPQC
seems to follow a similar approach in that a quantum secret sharing scheme is chosen on
top of which the different parties securely evaluate quantum gates. However, recent
work on MPQC is still rather sparse and hardly any resources explaining the construc-
tion of MPQC protocols on a fundamental level exist.

Contribution

The goal of this work is create an extensive analysis of similarities and differences in the
construction of information-theoretically secure MPC and MPQC protocols. In particular,
we investigate whether MPQC protocols can be decomposed in a modular way into se-
cret sharing schemes that allow for secure computations, such as it is known for classical
MPC. To achieve this task, we will dissect available work on both classical and quantum
protocols and study their building blocks on an abstract, fundamental level. We answer
the question in the affirmative and argue that we can observe strong similarities in the
way that MPC and MPQC protocols are constructed, but also outline several subtle dif-
ferences between the two. For both classical and quantum multi-party computation we
will see that choosing a suitable secret sharing scheme plays a key role in the construc-
tion of MP(Q)C protocols, and that both classical and quantum secret sharing schemes
are closely related to (quantum) error-correcting codes and that many such codes can
be used as secret sharing schemes. Additionally, we collect and compare feasibility re-
sults for different types of adversaries for classical and quantum protocols, essentially
answering the second of the three questions outlined above. Throughout this work, we
keep a focus on information-theoretically secure protocols and therefore on secret sharing
schemes and its variants.

Outline

In the first, preliminary chapter, we give a brief introduction into the theory of quantum
information and computation with references to more extensive introductory literature.
This section gives a reader novel to the field a feeling of the way that quantum informa-
tion is modelled and processed in contrast to classical information.

The second chapter will then focus on the cryptographic primitive of secret sharing
that, as we noted above, is frequently used for designing MPC protocols. We will in-
troduce secret sharing protocols both for classical and quantum information and point
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out the similarities and differences between the two. In particular, we study the relation
between secret sharing schemes and error-correcting codes that turns out to be very fruit-
ful in the design of quantum protocols. Furthermore, feasibility results for classical and
quantum secret sharing schemes in different adversarial settings will be collected and
compared.

Finally, we study the task of multi-party quantum computation in Chapter 3. After
giving a formal definition of the computational model for quantum computations, we
study existing work on MPQC protocols and discuss one recent proposal in detail. This
chapter combines the work of all previous chapters and contains a detailed analysis of
similarities and differences between MPC and MPQC protocols in terms of their design
and security guarantees. We conclude with a discussion as well as a list of possible direc-
tions for further research.
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1. Preliminaries

Today’s computers are based on the principles of classical physics. Their basic unit of
computation is a bit that can be in exactly one out of two possible states, 0 or 1. In a clas-
sical computation, local operations called logical gates are applied to a system of bits that
can only be in one state at a time. The theory of modern quantum physics, however, tells
us that nature behaves quite differently: in contrast to a classical system, a quantum sys-
tem can be in a linear combination of multiple states, in what is also called a superposition
of classical states. During the course of its evolution, a quantum system can exhibit so-
called interference effects and may be entangled with another, spatially separated quantum
system so that operations can cause “non-local” effects on the entangled system.

Quantum computation is the field of research that investigates the properties of com-
puters that are built based on the theory of quantum mechanics. In the following, we will
give an introduction into the formalism of quantum information theory in general, and
quantum computing in particular, based mainly on [dW11] and [NC16]. This chapter is
supposed to give the interested reader a feeling for the mechanisms at play in quantum
information theory and introduce the necessary formalism for the following chapters.
For an in-depth introduction into the topic, however, we refer in particular to [NC16].

First, pure quantum states will be introduced and we will outline the two kinds of
operations that such states can be subjected to, namely measurements and unitary evolution,
and discuss some examples. Hereafter, we will show how these concepts generalise to a
wider class of quantum systems.

1.1 Quantum information and computation

Superposition

Consider a physical system that can be in a finite number N of mutually exclusive classi-
cal states. We start counting at zero and call these classical states |0〉,. . ., |N − 1〉. In our
context, a “classical state” denotes a state that the system can be found in if we observe
it. A pure quantum state |ψ〉 is a superposition of such classical states and we write it as

|ψ〉 = α0 |0〉+ α1 |1〉+ . . . + αN−1 |N − 1〉 . (1.1)

The αi are complex values called amplitudes that satisfy ∑N−1
i=0 |αi|2 = 1 and correspond to

the probability to which the state |ψ〉 can be found in the classical state |i〉. We will later
see the exact nature of that correspondence. Intuitively, one can think of |ψ〉 as being in
all classical states |i〉 at the same time with amplitude αi.

The classical states |0〉 , . . . , |N − 1〉 form an orthonormal basis of an N-dimensional
Hilbert spaceH and each pure quantum state |ψ〉 is a vector with complex entries in that
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Hilbert space,

|ψ〉 = (α0, . . . , αN−1)
t. (1.2)

The notation |ψ〉 that is used to describe a complex-valued vector is often used by physi-
cists for linear algebra and is called Dirac notation. Note that we will, especially in this
chapter, sometimes use the Dirac notation to describe a complex-valued vector that is not
a pure quantum state, and it should be clear from the context when we assume the vector
to have unit norm. A vector of amplitudes like the above, |ψ〉, is called a ket while its con-
jugate transpose, written as 〈ψ| := |ψ〉† = (ᾱ0, . . . , ᾱN−1), is called a bra. The inner prod-
uct of two vectors |ψ〉 = (α0, . . . , αN−1)

t and |φ〉 = (β0, . . . , βN−1)
t in the Hilbert space

spanned by the N classical states is given by their bra-ket product 〈ψ| |φ〉 = ∑N−1
i=0 ᾱiβi,

sometimes abbreviated as 〈ψ|φ〉.
Note that we can find different bases for the same Hilbert space and that therefore the

amplitudes corresponding to the chosen basis may vary. Consider for example some pure
state |ψ〉 with some amplitudes α0 and α1 corresponding to the basis vectors |0〉 = (1, 0)t

and |1〉 = (0, 1)t, |ψ〉 = α0 |0〉+ α1 |1〉. The space C2 spanned by {|0〉 , |1〉} over C is also
spanned by

|+〉 := (1/
√

2, 1/
√

2)t and |−〉 := (1/
√

2,−1/
√

2)t,

so we find that the amplitudes with respect to the different bases vary, |ψ〉 = α0 |0〉 +
α1 |1〉 = β0 |+〉 + β1 |−〉 with β0 = (α0 + α1)/

√
2 and β1 = (α0 − α1)/

√
2. The latter

basis given by {|+〉 , |−〉} is sometimes called the Fourier basis.
In particular in the context of quantum cryptography with multiple parties we will

often consider quantum states that reside in different Hilbert spaces. Let HA and HB be
two Hilbert spaces spanned by the orthonormal bases |0〉A , . . . , |N − 1〉A and |0〉B , . . .,
|M− 1〉B, respectively. Then their tensor product H = HA ⊗HB is the NM-dimensional
space spanned by the set of states {|i〉 ⊗ |j〉 : i ∈ {0, . . . , N − 1}, j ∈ {0, . . . , M − 1}}.
An arbitrary state in H is of the form ∑N−1

i=0 ∑M−1
j=0 αij |i〉 ⊗ |j〉 with some complex ampli-

tudes αij. Similarly, we can describe quantum states that reside in Hilbert spaces that are
comprised of multiple Hilbert spaces. For a formal introduction into the tensor product
arithmetic, we refer to [NC16], Section 2.1.7.

Measurement

One of the operations that we can perform on a quantum system is that of a measure-
ment. We can think of a measurement as observing a quantum state. We cannot “see” the
superposition of states but only classical states. A measurement of a state |ψ〉 determines
one and only one classical state that we will see. The probability with which we see one of
the classical states in the superposition depends on the amplitudes αi; we see the classical
state |i〉 with probability |αi|2, which is known as Born’s rule. Hence, observing a quan-
tum state induces a probability distribution of the classical states |0〉 , . . . , |N − 1〉 and we
have ∑N−1

i=0 |αi|2 = 1, i.e., any pure quantum state has Euclidean norm 1. After perform-
ing a measurement and obtaining as outcome some i, the superposition “collapses”. What
remains is only the classical state |i〉; all other information in the form of the other ampli-
tudes αj vanishes. Note that the probability of any measurement outcomes is determined
by the squared absolute value of the corresponding amplitudes. These remain the same
when we multiply the overall state |ψ〉 by some global phase eiθ , eiθ |ψ〉, which is why we
sometimes say that the global phase of a state is irrelevant.

The process outlined above describes a measurement in the computational (standard) ba-
sis and has as its output a classical value i ∈ {1, . . . , N} corresponding to a computa-
tional basis state |i〉. A measurement in the computational basis is a special form of a
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so-called projective measurement: a projective measurement is characterised by some m
projectors P1, . . . , Pm that sum to identity, ∑i Pi = I. Each of the projectors Pi projects
on some subspace Hi of the total Hilbert space H. The projectors are Hermitian and
satisfy the relation PiPj = δi,jPi for all i, j, so that the subspaces Hi are mutually or-
thogonal as well and P2

i = Pi for all i. Every pure quantum state |ψ〉 can be decom-
posed uniquely into |ψ〉 = ∑m

i |ψi〉 with |ψi〉 := Pi |ψ〉 ∈ Hi. When such a projec-
tive measurement is applied to a state |ψ〉 then the outcome will be i with probability
‖ |ψi〉 ‖2 = Tr(Pi |ψ〉〈ψ|) = 〈ψ| Pi |ψ〉. Similar to the above measurement in the compu-
tational basis, if the outcome of the measurement is some i then the state collapses to
the normalised state |ψi〉 /‖ |ψi〉 ‖ = Pi |ψ〉 /‖Pi |ψ〉 ‖. The measurement in the computa-
tional basis is a special case of a projective measurement where the projectors are given
by Pi = |i〉〈i| and m = N.

It is often convenient to write down a projective measurement given by some projec-
tors P1, . . . , Pm and associated distinct outcomes λ1, . . . , λm ∈ R in a more succinct way.
This can be achieved by writing the projectors as one matrix M = ∑m

i=0 λiPi, which is
called an observable.

Definition 1.1.1 (Observable). An observable M is a Hermitian operator on the state
spaceH. By the spectral theorem, its spectral decomposition is given by some

M = ∑
i

λiPi,

where Pi denotes the projector onto the eigenspace of M with real eigenvalue λi ∈ R.

Some important observables that we will often see are given by the 2× 2 Pauli matrices
I, X, Y and Z that we will later introduce in more detail. For example, the Pauli matrices
X and Z are given by

Z =

1 0

0 −1

 = |0〉〈0| − |1〉〈1| and X =

0 1

1 0

 = |+〉〈+| − |−〉〈−| ,

and correspond to the projective measurement of a qubit in the computational basis
(Fourier basis) with outcomes +1 and −1 for |0〉 and |1〉 (|+〉 and |−〉), respectively. The
most general form of a measurement is described by Postulate 3 of quantum mechanics
(Section 2.2.3 in [NC16]). It states that a quantum measurement is described by a collec-
tion of measurement operators {Mi} acting on the state space of the quantum system that
is being measured, the index i representing the outcome of the measurement. For some
pure quantum state |ψ〉, the probability of obtaining measurement outcome i is given by
〈ψ|M†

i Mi |ψ〉 and the post-measurement state is given by

Mi |ψ〉√
〈ψ|M†

i Mi |ψ〉
.

The measurement operators Mi satisfy the completeness equation ∑i M†
i Mi = I. One can

easily see that the projective measurement described above is a special cases of a general
quantum measurement. It has its projectors Pi as the measurement operators Mi and the
property P2

i = Pi ensures that the completeness relation is satisfied. In this work we will
often times consider projective measurements instead of general measurements, and in
the next section we will see that this in fact does not impose any restrictions.
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Unitary evolution of quantum states

The evolution of a closed quantum system is decribed by a change in its amplitudes,

|ψ〉 = α0 |0〉+ . . . + αN−1 |N − 1〉 7→ β0 |0〉+ . . . + βN−1 |N − 1〉 =: |φ〉

Such an evolution of a state is subject to two constraints: first of all, the laws of quantum
mechanics only admit linear operations. This means that if we represent a pure state as
|ψ〉 = (α0, . . . , αN−1)

t, evolving the initial state |ψ〉 to some other state |φ〉 corresponds to
applying an N × N complex-valued matrix U to |ψ〉:

U |ψ〉 = U


α0

α1
...

αN−1

 =


β0

β1
...

βN−1

.

Note that by linearity this implies |φ〉 = U |ψ〉 = U(∑N−1
i=0 αi |i〉) = ∑N−1

i=0 αiU |i〉. The
second constraint on U is that the resulting vector of amplitudes |φ〉 must still induce a
probability distribution, ∑N−1

i=0 |βi|2 = 1. This implies that any such operation U must
preserve the norm of vectors, i.e., U must be a unitary transformation. A matrix U is
unitary if its inverse U−1 is equal to its conjugate transpose U†. Hence we see that any
unitary transformation is reversible. This is in stark contrast to the application of a mea-
surement that in general “deletes” a lot of information in a quantum state. We denote the
set of N × N unitaries by U (N). In Appendix A we have listed an overview of the most
common unitaries used in this work.

Qubits and quantum entanglement

We have noted earlier that the basic unit of computation in classical computations is a
bit which can be either in state 0 or 1. The basic unit of computation in quantum com-
puting is called a quantum bit (or qubit). A single qubit is in a superposition of the two
basis states |0〉 and |1〉 which we identify by the two orthogonal unit vectors (1, 0)t and
(0, 1)t, respectively. Hence, a single qubit can be written as α0 |0〉 + α1 |1〉 such that
|α0|2 + |α1|2 = 1, and resides in the complex Hilbert space C2. Similar to the earlier
description of bipartite quantum systems, a 2-qubit system is a linear combination of
the four basis states |0〉 ⊗ |0〉 , |0〉 ⊗ |1〉 , |1〉 ⊗ |0〉 and |1〉 ⊗ |1〉. For instance, the state
|1〉 ⊗ |0〉 characterises a 2-qubit system, the first of which is in basis state |1〉, the second
of which is in basis state |0〉. Most of the times we will abbreviate these basis states by
|0〉 |0〉 , |0〉 |1〉 , . . . , |1〉 |1〉 or even |00〉 , . . . , |11〉.

More generally, an n-qubit system has 2n basis states and instead of denoting each
of them by its binary representation, |b1b2 . . . bn〉 with bi ∈ {0, 1} we often identify them
with |i〉 where i ∈ {0, . . . , 2n − 1}. Note that the i-th of the 2n basis state in an n-qubit
system corresponds to the binary representation of i, i.e., the vector that has a 1 in the
i-th coordinate and 0’s in all other coordinates, again counting from 0. For example, in
a 2-qubit system, |3〉 = |11〉 = |1〉 ⊗ |1〉. This also implies that any two vectors |i〉 and
|j〉 are orthogonal whenever i 6= j. We call a system of n qubits a quantum register of n
qubits; any such register can be represented as a superposition of these computational
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basis states,

α0 |0〉+ . . . + α2n−1 |2n − 1〉 =
2n−1

∑
i=0

αi |i〉 with
2n−1

∑
i=0
|αi|2 = 1,

and a measurement in the computational basis produces outcome i with probability |αi|2.
Similarly, performing a measurement in the computational basis on a single, say, the first,
qubit within such higher-dimensional systems corresponds to the projectors |0〉〈0| ⊗ I2n−1

and |1〉〈1| ⊗ I2n−1 . Accordingly, we can also calculate the post-measurement state of such
a single-qubit measurement on a larger quantum register.

This leads us to another important property of quantum information called entangle-
ment. Entanglement describes the non-local effects that quantum operations might take
on different, potentially spatially separated qubits. Consider the 2-qubit system

1√
2
|00〉+ 1√

2
|11〉 . (1.3)

The above state is one of the so-called EPR-pairs, owing their name to Einstein, Podolsky
and Rosen who studied these states and their properties [EPR35]. Initially, both qubits in
the state are in a superposition of |0〉 and |1〉. However, if, say, the first qubit is measured
and the outcome is 1, then the total state collapses to |11〉 and thus immediately fixes
the second qubit as well, without measuring it. Such non-local quantum effects hold
even if the two qubits in question are far apart which initially led to a lot of disbelief
among researchers. What is crucial in the above example is that the two qubits cannot
be written as the tensor product of two qubits that reside in two different Hilbert spaces.
More generally, a bipartite state |ψ〉 is called entangled if it cannot be written as the tensor
product of two pure states, i.e., there exist no |ψA〉 and |ψB〉 such that |ψ〉 = |ψA〉 ⊗ |ψB〉.

Elementary gates and quantum interference

We have seen above that we can evolve a pure quantum state by applying a unitary
matrix to it. Unitaries are also called (quantum) gates in analogy to logic gates such as
AND, OR and NOT in classical, binary computations. In the following we will discuss
some of the most important quantum gates.

The so-called bit flip gate X acts on a single qubit and swaps the two basis states
|0〉 and |1〉, similar to a classical bit flip. The phase flip gate puts a −1 in front of the
basis state |1〉 and leaves |0〉 unchanged. This relative phase is not to be confused with
the global phase mentioned earlier, and can in fact lead to observable differences in the
measurement statistics of quantum systems as we will see later on. Together with the
2× 2 identity matrix I and the Y-gate that corresponds to a phase flip followed by a bit
flip, Y = iXZ, these four matrices form an important class of single qubit gates:

Definition 1.1.2 (Pauli gates and Pauli group). The Pauli matrices are given by

I =

1 0

0 1

, X =

0 1

1 0

, Y =

0 −i

i 0

, and Z =

1 0

0 −1

.

The single-qubit Pauli group, P1, is comprised of all Pauli matrices as well as the factors
±1 and ±i,

P1 = 〈X, Y, Z〉{±1,±i},
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while the n-qubit Pauli group, Pn, consists of all n-fold tensor products of Pauli matrices,
including the complex factors ±1,±i.

Note that each of the Pauli matrices is self-inverse, that is, U−1 = U for all U ∈
{I, X, Y, Z}. Another frequently used single-qubit gate is the Hadamard gate (also called
the Hadamard or Fourier transform), H, given by

H =
1√
2

1 1

1 −1

. (1.4)

It acts on the two computational basis states as

H |0〉 = 1√
2
(|0〉+ |1〉) = |+〉 and

H |1〉 = 1√
2
(|0〉 − |1〉) = |−〉 ,

i.e., it transforms the computational basis to the Fourier basis. Just like the Pauli matrices,
the Hadamard gate is self-inverse, as can be seen from the following computation:

H(
1√
2
(|0〉+ |1〉)) = 1√

2
H |0〉+ 1√

2
H |1〉 = 1

2
(|0〉+ |1〉) + 1

2
(|0〉 − |1〉) = |0〉 ,

and similarly for |1〉. In the above calculation we can observe that the amplitudes on
|1〉 cancelled out in the last equality. This effect is called interference, similar to the in-
terference that can be observed between light or sound waves. Moreover, we see that
the Hadamard transform can be expressed as a linear combination of single-qubit Pauli
matrices, H = X/

√
2 + Z/

√
2. This result in fact holds in more generality and we will

use it in Section 2.5.1.

Theorem 1.1.1. The complex span of single-qubit Pauli matrices generates the space of com-
plex 2 × 2 matrices, C2×2. More generally, the set of tensor products of n Pauli matrices,
{I, X, Y, Z}⊗n forms a basis for the complex vector space of 2n × 2n matrices, C2n×2n

.

Proof. This first result follows from the observation that

I + Z
2

=

1 0

0 0

,
I − Z

2
=

0 0

0 1

,
X + iY

2
=

0 1

0 0

,
X− iY

2
=

0 0

1 0

.

Having found a basis for C2×2, taking the tensor products then generalises to the n-fold
tensor product space (C2×2)⊗n = C2n×2n

.

In later sections, we will sometimes use an abbreviated notation for the application
of a single-qubit Pauli matrix on a larger quantum register: given an n-qubit quantum
register, we will sometimes use Ui for a Pauli matrix U to denote the application of U to
the i-th qubit, i.e., Ui := I ⊗ . . .⊗ I︸ ︷︷ ︸

i−1

⊗U ⊗ I . . .⊗ I︸ ︷︷ ︸
n−i

.

Last but not least we introduce a common 2-qubit gate, the controlled-NOT or CNOT
gate. The CNOT gate is characterised by a control qubit and a target qubit and flips the
target qubit based on the value of the control qubit. More specifically, it maps |b1〉 |b2〉 7→
|b1〉 |b2 ⊕ b1〉 for b1, b2 ∈ {0, 1} if b1 is the control and b2 is the target, where b1⊕ b2 denotes
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the addition modulo 2. Similarly for the case where the second qubit is the control and
the first qubit is the target qubit. In matrix form, the CNOT gate is written as

CNOT =


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

. (1.5)

Having introduced the unitary evolution of quantum states, we recall our earlier
claim that considering projective measurements instead of general measurements can
be done without loss of generality in many cases. Indeed, Nielsen and Chuang show
in [NC16], Section 2.2.8, that projective measurements augmented with the ability to in-
troduce ancilliary quantum registers and unitary evolution can be used to implement
an arbitrary general measurement described by some measurement operators {Mi}. We
will use this fact when discussing the computational model for the use in multi-party
quantum computation in Section 3.1.

In the above first introduction into the principles of quantum computation we have
seen some effects such as superposition, entanglement and interference that are exclusive
to quantum information and can seem quite paradoxical at first. However, we want to
note that processing quantum information also imposes some restrictions as compared
to classical information. One important example is the quantum no-cloning theorem:

Theorem 1.1.2 (No-cloning). There does not exist any unitary U that maps

|ψ〉 |0〉 7→ |ψ〉 |ψ〉 (1.6)

for arbitrary quantum states |ψ〉.

Proof. Assume such a unitary U existed. Then for any state |ψ〉 we have U |ψ〉 |0〉 =
|ψ〉 |ψ〉. In particular, U maps |0〉 |0〉 7→ |0〉 |0〉 and |1〉 |0〉 7→ |1〉 |1〉. Consider the state
|ψ〉 = |+〉 = (|0〉+ |1〉)/

√
2. By linearity we find

U(|+〉 |0〉) = 1√
2
(U |0〉+ U |1〉) |0〉 = 1√

2
(U |0〉 |0〉+ U |1〉 |0〉) = 1√

2
(|0〉 |0〉+ |1〉 |1〉)

but the latter is not equal to |+〉 |+〉.

In classical computations, cloning information is frequently used, for instance to pro-
tect information from noise, as we will for instance see in Section 2.2. The limitation in
form of the above theorem caused by the principles of quantum mechanics cannot be un-
derstated and we will frequently see its effects in this work. On the other hand, we also
note that the no-cloning theorem concerns cloning of arbitrary quantum states. Classical
information such as bit strings encoded as computational basis states can be cloned using
simple CNOT gates: for any b ∈ {0, 1} we have CNOT(|b〉 |0〉) = |b〉 |b〉.

Quantum states in more generality

In the context of classical computations, we sometimes have uncertainty over the state
that a system is in. In such cases, the system is expressed as a random variable that has
a probability distribution over the different states that it could be in. A similar reasoning
can be applied to quantum states. In the previous section, we have focussed solely on
pure quantum states that can be expressed as a single vector of amplitudes. More gen-
erally, a mixed quantum state is a probability distribution over pure quantum states. Let
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A be a linear operator on some Hilbert space H, A : H → H. We say that A is positive
semi-definite if A is Hermitian and has only non-negative eigenvalues. Then we define
mixed quantum states as follows:

Definition 1.1.3 ((Mixed) quantum states). A (mixed) quantum state on a Hilbert spaceH
is an element of the set of positive semi-definite operators on H with trace 1. Quantum
states are often referred to as density operators or density matrices.

A pure quantum state |ψ〉 corresponds to the density matrix |ψ〉〈ψ|. A mixed state ρ
that is in pure states |ψ1〉 , . . . , |ψn〉 with probabilities p1, . . . , pn, ∑n

i=1 pi = 1 corresponds
to the density matrix ρ = ∑n

i=1 pi |ψi〉〈ψi|. By the spectral theorem for Hermitian opera-
tors, any quantum state can be written as a sum

ρ = ∑
i

pi |ψi〉〈ψi| (1.7)

with eigenvalues pi and corresponding orthonormal eigenvectors |ψi〉. Since all quan-
tum states are postive semi-definite, all eigenvalues satisfy pi ≥ 0. Moreover, since
1 = Tr(ρ) = ∑i pi we find that the eigenvalues (pi)i do in fact form a probability dis-
tribution. We call the number of non-negative eigenvalues the rank of the density matrix,
such that pure states are exactly the mixed states of rank 1. In the literature on quan-
tum computation, it is assumed that one starts off with a pure quantum state. During
the course of a computation, quantum states are then typically depicted as mixed states,
which we will see especially in situations where a quantum adversary might have tam-
pered with a quantum state (Section 3).

Similar to the first section, we can define measurements and unitary operations on
mixed states. We saw that applying a unitary U to a pure state |ψ〉 results in the pure
state U |ψ〉. In terms of density matrices, this is equivalent to applying

|ψ〉〈ψ| 7→ U |ψ〉〈ψ|U†.

By linearity of U this generalises to arbitrary mixed states ρ such that U acts on ρ as

ρ 7→ UρU†.

Measurements on mixed quantum states are defined as follows. Consider a projective
measurement with orthogonal projectors P1, . . . , Pm that sum to the identity. When apply-
ing this measurement to a mixed state ρ, the probability to get outcome i is given by pi =
Tr
(

PiρP†
i
)
. In case of outcome i, the state then collapses to the (normalised) state PiρP†

i /pi.
To show that this definition is in fact consistent with the measurement we defined earlier,
consider a measurement in the computational basis of the n-dimensional space with pro-
jectors Pi given by |0〉〈0| , . . . , |n〉〈n| on some pure state |ψ〉 = ∑n

i=0 αi |i〉. By the definition
above, the probability to obtain outcome i is given by pi = Tr

(
Pi |ψ〉〈ψ| P†

i
)
= |〈i|ψ〉|2 =

|αi|2, which corresponds exactly to the probability of obtaining outcome i in our previous
definition. Similarly, we see that after the measurement, the state collapses to

Pi |ψ〉〈ψ| P†
i

pi
=
|i〉〈i| |ψ〉〈ψ| |i〉〈i|

|αi|2
= |i〉〈i| .

Partial trace and purifications

In quantum cryptography, we are often interested in describing the information that
some player holds. For this, we need means to describe the share of a quantum sys-
tem that is held by some participant, e.g., the adversary. We have already seen in the
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discussion of entanglement that in general, if, say, Alice and Bob share some pure quan-
tum state |ψ〉 then this cannot always be described as a tensor product |ψA〉 ⊗ |ψB〉 from
which we can immediately deduce the state held by Alice respectively Bob. One exam-
ple for such a state was the EPR pair (|00〉+ |11〉)/

√
(2). The generalised definition of

quantum states in Def. 1.1.3, however, provides a way to describe the state held by Alice
(respectively Bob) locally as a mixed state. This can be accomplished by tracing out Bob’s
part of the global state. For some tensor product of matrices C ⊗ D we can define the
partial trace over D as TrD(C ⊗ D) := C · Tr(D). For example, assume that in the case of
the EPR pair the first qubit is held by Alice and the second is held by Bob. Their joint
density matrix is given by

ρAB =
1
2
(|00〉+ |11〉)(〈00|+ 〈11|)

=
1
2
(|00〉〈00|+ |00〉〈11|+ |11〉〈00|+ |11〉〈11|)

=
1
2
(|0〉〈0| ⊗ |0〉〈0|+ |0〉〈1| ⊗ |0〉〈1|+ |1〉〈0| ⊗ |1〉〈0|+ |1〉〈1| ⊗ |1〉〈1|).

We have that Tr(|a〉〈b|) = δab for computational basis states (and similarly for arbitrary
orthonormal |a〉 and |b〉). Hence, by tracing out Bob’s part, we find that Alice’s density
matrix is given by

ρA = TrB(ρAB) =
1
2
(|0〉〈0|+ |1〉〈1|).

From Alice’s point of view, the state she is holding is equivalent to a completely random
coin flip. We sometimes call the state that is obtained from removing Bob’s share of
the state Alice’s reduced density matrix. By linearity, we can define the partial trace of a
quantum state more generally:

Definition 1.1.4 (Partial trace). Let HA and HB be two Hilbert spaces, and let (|b〉i) be
an orthonormal basis of HB. Let ρAB be a quantum state in the overall Hilbert space
HAB = HA ⊗HB. Then the partial trace over B is the linear map defined by

TrB(ρAB) := ∑
i
(IA ⊗ 〈bi|)ρAB(IA ⊗ |bi〉). (1.8)

The partial trace over A is defined analogously. Similarly, we can define the par-
tial trace over multiple subsystems which we will often need when considering proto-
cols with multiple participants. For example, if we consider a global state with three
subsystems, ρABC, the respective partial traces are given by ρA = TrBC(ρABC), ρAB =
TrC(ρABC), ρAC = TrB(ρABC), etc.

Quantum channels

The most general formalism to describe the evolution of quantum states, which is a gen-
eralisation of all of the above operations, is that of a quantum channel or completely positive,
trace-preserving (CPTP) map which maps density matrices to density matrices. We adopt
the definition given by [Pre99]. Quantum channels allow us to describe the evolution of a
quantum system S that is part of a larger, closed system, S, together with its environment,
E, without having to reference the environment E.

Definition 1.1.5 (Quantum channel). A quantum channel is a linear operator E from the
space of density matrices of some Hilbert space HA to the space of density matrices of
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some Hilbert spaceHB that acts on a density matrix ρ onH as

E(ρ) = ∑
i

EiρE†
i , (1.9)

where the {Ei}i are linear operators mapping fromHA toHB such that ∑i E†
i Ei = IHA .

The above set of operators {Ei} associated to a quantum channel E are called the
Kraus operators and are, in general, not unique. A derivation of the necessary properties
of a quantum channel as well as an explanation to the equivalent term of a CPTP map can
be found in [Wal20]. For our purposes it suffices to know that we can describe arbitrary
quantum operations in form of a quantum channel and that a decomposition in form
of Eq. 1.9 exists. This representation is in particular used for modelling noise processes
(Section 2.5.1) as well as arbitrary actions on part of an adversary within a quantum
multi-party computation protocol (Chapter 3).

Comparing quantum states

We conclude this introduction with a note on ways to compare quantum states. These
will be particularly needed when comparing the output states of different quantum pro-
tocols such as quantum secret sharing or MPQC protocols such as, e.g., in Section 2.6 and
Section 3. Two measures that are used particularly often are the trace distance and fidelity
of two quantum states. Intuitively speaking, the trace distance measures the distance
between two quantum states while the fidelity expresses the similarity of two quantum
states.

Definition 1.1.6 (Trace norm). Let M be a linear operator between two Hilbert spacesHa
andHB with singular values s1, . . . , sr > 0. Then the trace norm of M is defined as

‖M‖1 :=
r

∑
i=1

si = Tr
√

M† M. (1.10)

Note that on the right-hand side, the trace of the square root of the positive semi-
definite operator M† M is taken. More generally, if an operator A is positive semi-definite,
then the (positive semi-definite) square root

√
A is the operator with the same eigenvectors,

but whose eigenvalues are the square root of those of A. In particular, if A = ∑i λi |ei〉〈ei|
is the eigendecomposition of A, then

√
A = ∑i

√
λi |ei〉〈ei|.

Using the above norm, we can now define metrics to measure the distance between
two quantum states. One frequently used measure is the trace distance:

Definition 1.1.7 (Trace distance). For two density matrices ρ, σ on H, the (normalised)
trace distance between them is defined as

T(ρ, σ) :=
1
2
‖ρ− σ‖1 . (1.11)

For the trace distance of two quantum states we have for all ρ, σ that T(ρ, σ) ∈ [0, 1],
and that T(ρ, σ) = 0 if and only if ρ = σ, so the trace distance is at its lowest when
the states are the same. For pure states ρ = |φ〉 and σ = |ψ〉, the trace distance has the
following relation to their overlap |〈φ|ψ〉|:

T(ρ, σ) =

√
1− |〈ψ|φ〉|2.

For more properties of the trace distance, see Section 3.2 in [Wal20]. On the other hand,
the fidelity can be used to measure the closeness of two quantum states:
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Definition 1.1.8 (Fidelity). For two density matrices ρ, σ onH, their fidelity is defined as

F(ρ, σ) := Tr
(√√

σρ
√

σ

)
=
∥∥√ρ
√

σ
∥∥

1. (1.12)

In contrast to the trace distance, the fidelity of two states is large when the two states
are similar: we have for all ρ, σ that F(ρ, σ) ∈ [0, 1] and F(ρ, σ) = 1 if and only if ρ = σ.
For pure quantum states ρ = |ψ〉〈ψ| and σ = |φ〉〈φ| we find that

√
ρ = |ψ〉〈ψ| (similarly

for σ), so their fidelity is given by

F(ρ, σ) =
√
〈φ|ψ〉 〈ψ|φ〉 = |〈φ|ψ〉|, (1.13)

and therefore generalises the overlap of pure states.
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2. Secret sharing and error correction

Secret sharing schemes are an essential ingredient for many secure multi-party compu-
tation protocols. Informally, the goal of secret sharing scheme is to distribute a secret
among a number of participants by encoding the secret’s content into a number of shares.
Only certain authorised subsets of parties should be able to reconstruct the secret while
unauthorised parties cannot obtain any information at all about the secret by pooling
their shares. To illustrate this, imagine that Alice, Bob and Charlie jointly have a bank
account which they only want to be able to access if the majority of the three agrees to do
so. In order to achieve this, they might distribute the PIN to their bank account using a
suitable secret sharing scheme, such that at least two of their three shares are needed in
order to reconstruct their PIN and access their joint bank account.

Being able to securely share private inputs in fact constitutes a large step towards
realising secure multi-party computation protocols. In fact, encoding into shares and dis-
tributing them among multiple participants securely combined with the ability to per-
form meaningful operations on these shares turns out to be sufficient for performing
arbitrary secure multi-party computations. We consider the example of additive secret
sharing: at the start of the protocol, each of some number n of participants, Pi, 1 ≤ i ≤ n,
holds a private input si, their secret, from some finite field Fq with q > n. To share their
secret, each party samples some n − 1 elements si,j ∈ Fq, j = 1, . . . , n − 1, uniformly at
random and sets si,n := si− (si,1 + · · ·+ si,n−1). Based on this we can observe three things:
on one hand, si,1 + · · ·+ si,n = si such that if all n parties pool their inputs then they can
reconstruct the private input si. On the other hand, any smaller number of participants
k < n is unable to extract any information about si: from the colluding participants’ view,
the k shares are distributed uniformly at random in Fq and therefore their sum gives a
random element in Fq as well. These two observations show that the above scheme con-
stitutes a secret sharing scheme. Moreover, we see that if each participant adds together
the shares of the other parties’ secrets, then the resulting values form a secret sharing of
the sum of all of the parties’ secrets: party j holds shares si,j for i = 1, . . . , n. Adding these
together, party j now holds a new share s′j = s1,j + · · · + sn,j of the secret s1 + · · · + sn.
Similarly, we can see that multiplying shares with constants is also possible with this ba-
sic secret sharing scheme, so we can in fact compute any linear function f (s1, . . . , sn) in a
distributed, privacy-preserving manner. Achieving multiplicativity, that is, the ability to
securely compute the product of multiple shares, requires more work but given a scheme
that allows to privately evaluate addition and multiplication of inputs, any arithmetic cir-
cuit can be evaluated. We will formally introduce the arithmetic circuit model in Section
3.3. For now, we remark that we assume all computations to be additions or multipli-
cations over some finite field F and that therefore, these two gates are universal in this
model of computation. Hence, we see that secret sharing schemes with properties such
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as additivity and multiplicativity form important building blocks for multi-party com-
putation protocols. In this chapter, we will review some fundamental results on secret
sharing schemes and will discuss some constructions. In particular, we will explore their
connection to the theory of error-correcting codes: we will see that the well-studied area of
these codes exhibits close links to that of secret sharing and provides tools to analyse and
construct secret sharing schemes efficiently.

Given the overall context of this thesis, we will then discuss the concepts of secret
sharing and error correction in the quantum realm. We will see what additional prob-
lems may arise when viewing these as means to secret-share or protect quantum infor-
mation, and what benefit the use of quantum information may offer in solving these
cryptographic tasks. In particular, we will see that in particular for quantum protocols,
close connections exist and that the more established theory of quantum error correction
may be harnessed to construct good quantum secret sharing schemes.

2.1 Secret sharing schemes

Secret sharing schemes aim at distributing a secret value s among some n parties such
that certain subsets of parties can recover the secret jointly from their inputs while others
cannot obtain any information about the secret. Typically, the party performing the shar-
ing of the secret is called the dealer and the input that the individual players are handed
are called shares of the secret s. The collection of shares obtained from the scheme will
sometimes be denoted by [s] and we say that [s] is a secret sharing of s. Secret sharing has
been invented independently by Adi Shamir [Sha79] and George R. Blakley [Bla79] in
1979. Both authors wanted to tackle the single-point-of-failure risk that arises when stor-
ing cryptographic keys. In particular Shamir’s scheme remains one of the most widely
used secret sharing schemes and we will later discuss it in more detail; it is both an illus-
trative example of a secret-sharing scheme with nice properties as well as for the close
link between classical secret sharing and error correction.

First, we describe some of the elementary notions and basic schemes for secret shar-
ing. Most of the definitions in this section follow [Bei11] and [CDN15], which the reader
should consult for a more in-depth introduction of secret sharing schemes. As noted
above, a secret sharing scheme should enable certain subsets of players to reconstruct the
secret while others cannot. More formally, we can define the notion of an access structure
as follows:

Definition 2.1.1 (Access structure). We denote the participants in a secret sharing scheme
by T = {T1, . . . , Tn}. A collection of subsets of the participants, Γ ⊆ P(T ), is called
monotone if for every B ∈ Γ and B ⊆ C ∈ P(T ) we have C ∈ Γ. A monotone collection
Γ ⊆ P(T ) consisting of non-empty subsets of T is called an access structure. The sets in Γ
are called authorised, and sets outside of Γ are called unauthorised.

Similarly, we need to be able to describe the subsets of participants that should not
learn anything about the secret from their collective shares. We can do so by means of an
adversary structure.

Definition 2.1.2 (Adversary structure). A collection of subsets of the participants, A ⊆
P(T ), is called antimonotone if for every C ∈ A and B ⊆ C we have B ∈ A. An antimono-
tone collection A ⊆ P(T ) consisting of subsets of T is called an adversary structure.
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In the literature, sometimes the term privacy sets is used to describe elements in the
adversary structure. Note that by definition of an access structure, the collection of unau-
thorised sets is antimonotone, too. We furthermore need to define the notion of a distri-
bution scheme.

Definition 2.1.3 (Distribution scheme, according to [Bei11]). A distribution scheme Share =
〈Π, µ〉with domain of secrets K is a pair consisting of a probability distribution µ on some
finite set R called the set of random strings, and Π is a mapping from S× R to the set of
n-tuples S1 × . . .× Sn, where Si is called the domain of shares of Tj. A dealer distributes
a secret s ∈ S according to Share by first sampling a random string r ∈ R according to µ,
computing a vector of shares Π(s, r) = (s1, . . . , sn) =: [s] and privately communicating
share sj to party Tj. For some set B ⊆ T , let Π(s, r)B denote the restriction of Π(s, r) to
the entries in B.

In the following work on secret sharing schemes, we will often consider S = Si = F

for all i, for some finite field F. Formally, we then define a secret sharing scheme as
follows.

Definition 2.1.4 (Secret sharing, according to [Bei11]). Let S be a finite set of secrets
such that |S| ≥ 2. A distribution scheme Share = 〈Π, µ〉 with domain of secrets S is a
secret sharing scheme realising an access structure Γ and an adversary structure A such
that Γ ∩A = ∅, if the following two requirements hold:

(1) Correctness: The secret s can be reconstructed by any authorised set of parties, that
is, for any B ∈ Γ with B = {Ti1 , . . . , Ti|B|}, there exists a reconstruction function
RecB : Si1 × . . .× Si|B| → S such that for every s ∈ S,

Pr[RecB(Π(s, r)B = s)] = 1. (2.1)

(2) Perfect privacy: For any set B ∈ A and for every two secrets s, s′ ∈ S, and for every
possible vector of shares (sj)Tj∈B:

Pr
[
Π(s, r)B = (sj)Tj∈B

]
= Pr

[
Π(s′, r)B = (sj)Tj∈B

]
. (2.2)

Note that the above definition of perfect privacy guarantees security in the information-
theoretic sense: for every two secrets s and s′, their distributions of shares are identical.
Both of the above requirements can be relaxed such that correctness holds only with high
probability and such that the statistical distance between Π(s, r)B and Π(s′, r)B is small, in
which case we obtain statistical secret sharing schemes. A secret sharing scheme for which
the collection of unauthorised sets equals the adversary structure, i.e., for which Γ and A
form a partition of P(T ), is referred to as a perfect secret sharing scheme. For ease of nota-
tion, we will in the following sometimes use Rec to denote the family of reconstruction
functions RecB associated to a secret sharing scheme Share. One of the most extensively
studied kind of access structures is that of a threshold access structure:

Definition 2.1.5 (Threshold structure). Let T = {T1, . . . , Tn}, so |T | = n. Then we call
an access structure of the form Γ = {A ⊆ T : |A| ≥ t} a (t, n)-threshold (access) structure
with threshold t ≤ n.

Note that in a threshold access structure, any t participants can jointly recover the
secret. In the present work, we will mostly focus on threshold secret sharing schemes that
are perfect secret sharing schemes realising a threshold access structure. Accordingly,
an (t, n)-threshold scheme realises a (t, n)-threshold access structure and an adversary
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structure A consisting of all subsets of participants of cardinality ≤ t − 1. We say that
such a secret sharing scheme has t-reconstruction. If any t− 1 or fewer shares cannot be
used to deduce any information on the secret, then this is called (t − 1)-privacy. In the
present section, we consider secret sharing schemes with t-reconstruction and (t − 1)-
privacy. As noted above, we will consider secret sharing schemes in more generality in
Section 2.6 and allow for t reconstruction and p-privacy for some p < t ≤ n, such that
some unauthorised sets may leak partial information about the secret. Such schemes are
called ramp schemes ([CPT+13]).

From the above definition it is easy to see that any threshold structure is mono-
tone. As an example for a monotone access structure that is not (directly) a threshold
structure, consider the following situation: the president holds some secret access code
that she wants to secret share among the vice-presidents while being out of office. She
does not trust the vice-presidents to each be able to access the secret individually, so
she chooses a secret sharing scheme that requires either her share of the secret or at
least two vice-presidents’ shares to access the secret. Such an access structure would
be monotone but not a threshold scheme. Denote the president by P and assume there
are two vice-presidents V1 and V2. The access structure above would then be given by
Γ = {{P}, {P, V1}, {P, V2}, {P, V1, V2}, {V1, V2}} and is characterised by different shares
having different importance. It should be noted, however, that such an access structure
can be realised by a (4, 2) threshold scheme in which the president holds two shares while
the vice-presidents hold one each.

For threshold schemes with threshold t = n we already discussed a simple protocol
for additive secret sharing based on ideas similar to those of the one-time pad encryption.
For the case where t < n, slightly more involved ideas are necessary. Shamir’s scheme,
first proposed in [Sha79], offers a solution that can be adapted for any t ≤ n:

Definition 2.1.6 (Shamir’s secret sharing scheme). Let n denote the number of players
and t ≤ n be the privacy parameter. Let F be a finite field containing at least n + 1
elements and let the secret be s ∈ F. In order to secret share s, choose some t− 1 elements
p1, . . . , pt−1 ∈ F uniformly at random and define the polynomial

f (x) = s + p1x + · · ·+ pt−1xt−1. (2.3)

Fix some distinct, non-zero elements α1, . . . , αn ∈ F publicly and evaluate f at these n
points, si = f (αi) for i = 1, . . . , n. The shares of this scheme are given by the si and each
player knows which αi their value corresponds to.

Note that in the above scheme, using Lagrange interpolation we can uniquely de-
termine f from any t shares and therefore recover s = f (0). On the other hand, t − 1
or less shares reveal no information on s whatsoever: for any t − 1 shares sk1 , . . . , skt−1

and for any z′ ∈ F there exists a unique polynomial f ′ ∈ F[X] of degree t− 1 such that
f ′(αki) = ski for all i = 1, . . . , t − 1 and f ′(0) = z′ (i.e., given only t − 1 shares, we can
reconstruct to any secret). For a full proof of security, see [CDN15].

We have already discussed the linearity of additive secret sharing schemes earlier.
Linearity also holds for Shamir’s scheme: given two secret sharings [s] = (s1, . . . , sn) and
[s′] = (s′1, . . . , s′n) corresponding to secrets s and s′, any F-linear combination a[s] + b[s′]
(i.e., the shares being given by asi + bs′i) is a secret sharing corresponding to the secret
as + bs′. Secret sharing schemes satisfying this property are called linear secret sharing
schemes (LSSS) and allow us to take a first step towards secure MPC, in that linear secret
sharing schemes let us perform secure multi-party computations on private inputs for
linear functions. MPC protocols designed in this fashion, “on top of a secret sharing
scheme”, are said to follow the share-compute-reveal paradigm: the players secret share their
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input, perform local computations on the shares they received from the other players and
finally reconstruct the function value publicly.

We conclude this brief overview on secret sharing schemes with a note on perform-
ing multiplications securely using Shamir’s secret sharing scheme. For this scheme we
have seen that in order to compute a linear function we can simply have each player add
shares or multiply them with a (publicly known) constant locally. This turns out to be
more difficult for secure multiplication of secrets. Consider an (n, t)-threshold Shamir
secret sharing of two secrets s and s′ with polynomials f and f ′ of degree t− 1. The i-th
player holds shares si and s′i. Our goal is to securely compute a secret sharing of the mul-
tiplication of the secrets, i.e., compute [s · s′]. In this setting, having each player multiply
the shares they hold, i.e., computing sis′i results in shares of the secret sharing [ss′] using
the polynomial f · f ′ of degree ≤ 2t − 2. Contrary to addition and multiplication with
a constant, the multiplication of two polynomials increases the degree so that at least
2t− 1 shares are necessary to reconstruct f · f ′ and recover ss′ = ( f · f ′)(0). To circum-
vent this issue, we convert the shares we have back into a valid shares of a secret sharing
of ss′ with reconstruction parameter t. Note that the interpolation function L that maps n
shares (evaluations) of a polynomial g of degree < t as L : (g(α1), . . . , g(αn)) 7→ g(0), is
a linear function and can therefore be securely evaluated locally. To see why, reconsider
the Lagrange polynomial:

Definition 2.1.7 (Lagrange polynomial). Given a set of k data points (x1, y1), . . . , (xk, yk) ∈
F2 for some finite field F, the Lagrange interpolation polynomial L ∈ F[x] is defined as

L(x) :=
k

∑
j=1

yjlj(x).

The lj are called the Lagrange base polynomials,

lj(x) = ∏
0<m≤k,

m 6=j

x− xm

xj − xm
.

Having every party compute the product of their shares pi = sis′i and secret share this
value among the other participants, party i ends up with n shares pi,j for j = 1, . . . , n. The
participants compute L(p1, . . . , pn) = ss′ locally and obtain a valid share of the secret ss′

with privacy parameter t each. Note that for the local interpolation using the Lagrange
polynomials above, the Lagrange base polynomials are available to each participant as
the evaluation points xi = αi are publicly known. The technique of bringing down the
degree of the polynomial that is used in the secret sharing of a multiplication is referred to
as degree-reduction, as implicitly the degree of the polynomial used in the secret sharing is
brought down from at most 2t− 2 to at most t− 1. More complicated protocols to perform
secure multiplication of secrets with Shamir’s scheme have been introduced earlier; the
above simplified technique was given by Rabin, Rabin and Gennaro in [GRR98]. Note,
however, that in order to be able to apply this technique, 2t < n has to be satisfied and
the degree reduction incurs additional communication cost.

We have seen that achieving multiplicativity comes at the price of additional required
communication and that it imposes bounds on the maximum privacy parameter that a
scheme can achieve. This observation in fact generalises to many MPC constructions; in
Section 2.6, we will analyse the theoretical limitations of secret sharing schemes and in
Section 3.4, that of secure MPC protocols.



Chapter 2. Secret sharing and error correction 21

2.2 Error correcting codes

The development of error-correcting codes (ECCs) was a large step forward for com-
puter science in the 20th century. Nowadays, ECCs are being used to protect information
from noise in storage devices or communication channels. Note that the theory of er-
ror correction does not physically prevent noise from occurring, but instead protects the
underlying information. In the following, we will discuss some of the main concepts of
classical error correction and will see that beyond their intended use, they can provide
valuable insight and efficient constructions for secret sharing schemes.

To protect information from noise, one adds redundancy to the data in order to make
it more “distinguishable”. The original data can then still be recovered should some er-
rors occur. Mathematically, data is represented as collections of symbols called words
over a given finite alphabet. For classical information, the alphabet typically is {0, 1} and
words are represented as binary strings. Codes that process and protect binary informa-
tion are therefore called binary codes. The process of modifying original data in a way
that later allows to detect and/ or correct errors is called encoding. Data is encoded into
words over the same alphabet (this may, in general, also be another target alphabet); the
resulting word is referred to as a codeword.

One generally distinguishes between two kinds of ECCs, block codes and convolutional
codes. Informally, block codes encode fixed sized blocks of information one by one with
fixed output size such that all codewords are of the same length. Convolutional codes
on the other hand can process information streams of arbitrary length. Since block codes
are more commonly used and all codes that occur in the following fall into that category,
we will restrict our attention to block codes and simply refer to them as (error-correcting)
codes hereafter. The following general introduction will be based mainly on [Lin98].

Definition 2.2.1 (Code). Let Q be a finite set and let n ∈ N. Then any subset C of Qn =
Q× · · · ×Q is a code of length n. The elements c ∈ C are called codewords over the alphabet
Q.

In order to distinguish codewords from each other, a distance function is defined on
Qn. Typically, this function is of the following form:

Definition 2.2.2 (Distance of a code). Let Q be an alphabet, n ∈ N and C ⊆ Qn be an
arbitrary code.

(1) For two words a = (a1, . . . , an), b = (b1, . . . , bn) ∈ Qn,

d(a, b) = |{ i | 1 ≤ i ≤ n, ai 6= bi}|

is called the Hamming distance (usually just referred to as distance) of a and b.

(2) Accordingly,
d(C) = min{ d(a, b) | a, b ∈ C, a 6= b }

is called the (minimum) distance of the code C. We sometimes denote d(C) by d or
dmin.

One can easily verify that d does indeed define a metric on Qn: non-negativity, iden-
tity of indiscernibles and symmetry follow directly from the definition, and the triangle
inequality can be proven by a simple induction over n.

In order to use a code C ⊆ Qn for error correction, an injective encoding procedure
needs to be defined that maps data words to codewords. Recovering a codeword from
a received word is called decoding. We say that a codeword is affected by an error in
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one or several positions, that is, coordinates of the codeword, if the symbols in those
positions are replaced by other ones. For instance, for binary codes, we can think of an
error as some bits being flipped. The goal of error correction is to protect information
against noise, so typically it is assumed that errors occur on uniformly random positions,
independent of each other, and affect each position in the codeword with some (small)
probability. To correct an error, we need to define an error correction procedure that maps
a received word x ∈ Qn back to the original codeword c ∈ C that can then be decoded
to the unique information word it represents. The minimum distance of a code defined
above gives us a first mean to determine the error-correcting capabilities of a code, i.e.,
the amount of changes in different positions of the codeword that can be reverted:

Theorem 2.2.1. If a code C ⊆ Qn has minimum distance d, then it can be used as an error-
correcting code that corrects b d−1

2 c errors.

Proof. If a code has minimum distance d and k ≤ b d−1
2 c errors occured so that some a =

(a1, . . . , an) ∈ Qn is received, then there exists a unique codeword c = (c1, . . . , cn) ∈ C
with distance d(a, c) = k to a: if there was a second codeword b ∈ C with distance
d(a, b) = k then we would find that d(b, c) ≤ d(a, b) + d(a, c) = d− 1 contradicting the
assumption on the minimum distance of C. We can recover c and therefore correct the
errors by computing c = arg min{ d(a, c′) | c′ ∈ C }.

A similar argument shows that a code C with minimum distance d can correct d− 1
erasure errors. An erasure error is an error that erases the information in a known coordi-
nate of a codeword. See, e.g., [Iñe20], Theorem 2.2.1 for a full proof.

The (binary) repetition code provides a first example for an error-correcting code that is
easily understood: in order to protect a bit b ∈ {0, 1} from noise, b is repeated n times, so
for n = 3, b is mapped to bbb. The code contains exactly two codewords, 0n and 1n, with
minimum distance n. Hence, up to b n−1

2 c errors (i.e., bit flips) can be corrected and the
error correction and decoding procedure takes a majority vote, i.e., it outputs the bit that
the majority of positions in the received bit string represents. Alternatively, the repetition
code corrects n− 1 erasure errors since every coordinate contains the full information on
the underlying word. The code length n is chosen based on the likelihood of an error
affecting a single bit. Even though the repetition code does not exhibit particularly good
error correcting capabilities and uses a lot of redundancy to encode a single bit, it pro-
vides a good example for understanding the relation of classical error correction to secret
sharing and quantum error correction, as we will see later.

Having covered these basic definitions, we will now shift our attention to codes that
exhibit some algebraic structure. In the following, we will consider alphabets Q given by
some finite field Fq where q = pr, r ≥ 1 for some prime p. Then Qn is the n-dimensional
vector space Fn

q . In light of this restriction on the underlying alphabet, we can define
the weight of a word x ∈ Fn

q as the number of positions in which it differs from the all
zero vector, w(x) = d(x, 0). Similar to the minimal distance of a code C, its minimum
weight is defined as the smallest weight of any non-zero codeword in C. We will later use
the weight of a vector to describe the errors that occured on a classical codeword, and
similarly in the quantum case.

Definition 2.2.3 (Linear codes). A q-ary linear code C is a linear subspace of Fn
q . If C has

dimension k, then we call C an [n, k]q code. If it is clear from the context we omit the
subscript and call C an [n, k] code.

In the following, we will refer to a k-dimensional, linear code of length n with mini-
mum distance d as an [n, k, d] code. For linear codes, it is easy to see that their minimum
distance is equal to their minimum weight.
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Lemma 2.3. For an [n, k, d] code, the minimum weight is equal to its minimum distance.

Proof. Let w denote the minimum weight of C. Since the code’s minimum distance is d,
there exist two distinct codewords a and b such that d(a, b) = d. Their difference a− b
will therefore have weight d so that w ≤ d. Conversely, if a codeword a has weight w,
then d(0, a) = w ≥ d.

Linear codes can be described in a very compact manner, by means of a generator
matrix:

Definition 2.3.1 (Generator matrix). A generator matrix G for a linear [n, k] code C is a
k× n matrix for which the rows form a basis of C, i.e., such that

C = { vG | v ∈ Fk
q }. (2.4)

Note that the generator matrix of a code simultaneously describes the encoding pro-
cedure for an information word v ∈ Fk

q. Alternatively, one can describe a linear code C by
means of a parity-check matrix: the parity-check matrix describes linear relations that any
codeword must satisfy. A word c ∈ Fn

q is in C if and only if it fulfills the relation HcT = 0
where H is a (n− k)× n parity check matrix for C. Neither the generator matrix G, nor
the parity check matrix H of a code are unique.

Now that we have seen the encoding procedure of some input data v ∈ Fn
q (apply G

from the right), we will give a short overview on some common decoding procedures as
well as their relation to error correction. Given a received word x ∈ Fn

q , decoding aims
at finding the underlying codeword c ∈ Fn

q . One general procedure that is often used
is called minimum-distance decoding, in which one picks the codeword c that is closest in
Hamming distance to the received word x (see the proof of Theorem 2.2.1) and therefore
the most likely to be the original codeword. In case that two or more codewords have the
same distance to the received word, one has to settle on a convention on how to break
such ties. For linear codes, there exists another, more efficient procedure called syndrome
decoding.

Definition 2.3.2 (Syndrome). Let C ⊆ Fn
q be an [n, k, d] linear code with parity check

matrix H. Then the syndrome of a word x ∈ Fn
q is defined as Hx.

Note that the syndrome of any codeword c ∈ C is the all zero vector, 0. In the setting
of linear codes, an error is modelled as adding an error pattern e ∈ Fn

q to the original
codeword c ∈ C, the resulting received word being x = c + e. Hence, upon receiving
x = c + e we find for the syndrome that

Hx = H(c + e) = Hc + He = 0 + He = He ∈ Fn−k
q .

We find the corresponding error pattern e with the lowest weight and recover c = x− e.
One can most easily see why minimum-distance decoding is rather inefficient compared
to syndrome decoding by looking at the size of the lookup tables that are used for both
decoding procedures. For simplicity, consider a binary linear code. Under the assump-
tion that at most t := b d−1

2 c errors occured we find that there are ∑t
i=0 (

n
i ) possible error

patterns. To determine which codeword a received word corresponds to, we therefore
need to search a table of size |C|∑t

i=0 (
n
i ) filled with the words obtained from adding

any possible error pattern to any codeword. By contrast, syndrome decoding requires a
lookup in a table of size 2 ∑t

i=0 (
n
i ), containg each possible error pattern and its syndrome.

To illustrate syndrome coding, consider the binary linear (7, 4) Hamming-code, named
after its inventor Richard Hamming ([Ham50]), defined by the generator matrix G and
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corresponding parity check matrix H,

G =


1 1 1 0 0 0 0

1 0 0 1 1 0 0

0 1 0 1 0 1 0

1 1 0 1 0 0 1

 and H =


1 0 1 0 1 0 1

0 1 1 0 0 1 1

0 0 0 1 1 1 1

 .

The code consists of the codewords C = {0000000, 1110000, 101100, 0111100, 0101010,
1011010, 1100110, 0010110, 1101001, 0011001, 0100101, 1010101, 1000011, 0110011, 0001111,
1111111} as can be verified by computing vG for all v ∈ {0, 1}4. The code has min-
imum distance 3, and can therefore correct at most one error. Now assume the word
r = (0110110) is received. By the above consideration, r = c + e for some codeword
c and some error e, and we see that HrT = HeT = (010)T. Searching the list of er-
ror syndromes, we find that the error with matching syndrome and minimum weight
is given by e = 0100000. It is therefore most likely to occur, so we correct the error to
c = r + e = 0010110 and recover the original message 1110. In Section 3.3, we will see
that the (7,4) Hamming code can in fact be used for quantum error correction.

To conclude this section, we present a simple upper bound on the minimum distance
of a linear code. The upper bound has been proven by Singleton in [Sin64] and is there-
fore referred to as the Singleton bound.

Theorem 2.3.1 (Singleton bound for linear codes). Let C be an [n, k, d] linear code over a
finite field F with q elements. Then the Singleton bound implies that d ≤ n− k + 1.

Proof. See, e.g., [Sin64].

We have already seen one example of a linear code that attains the Singleton bound,
namely the binary repetition code. We have seen that it has minimum distance d = n and
dimension k = 1. The above example, however, does not attain the bound: it has mini-
mum distance d = 3 and n− k = 7− 4 = 3. Singleton introduced the name maximum-
distance separable codes (or MDS codes) to denote codes that attain this upper bound, i.e.,
any [n, k, n − k + 1] code. In the next section, we will see another important family of
codes, so-called Reed-Solomon codes, that are MDS codes and have a strong connection to
Shamir’s scheme.

At this point, we have solely focussed on introducing basic concepts of error-correction
and have disregarded detailled analysis of time complexity or optimisation of encod-
ing and decoding procedures as well as space efficiency, that is, the tradeoff between
storage constraints (the length n of the codewords) and necessary redundancy in the
codeword to achieve error-correcting capacities. Spielman’s survey on the complexity of
error-correcting codes, [Spi97], gives a more detailed account of these issues. The main
focus of this section was to introduce the techniques and concepts of classical error cor-
rection that will be useful when discussing secret sharing schemes and that we will later
see in similar fashion when considering quantum error correction.

2.4 Constructing secret sharing schemes from ECCs

Having covered the basics of error-correcting codes, we will now move on to study the
connection between ECCs and secret sharing schemes, in particular the construction of
secret sharing schemes from ECCs. We can construct a code that corrects errors on known
positions, also known as erasure errors, from a (t, n) secret sharing scheme as follows:



Chapter 2. Secret sharing and error correction 25

consider the vector of n shares of a secret s as a codeword; then if less than n− t known
positions are affected by an error, the remaining greater or equal to t shares suffice for
reconstruction of the initial secret and therefore we can correct up to n− t− 1 errors on
known positions. What is of more interest to us is the opposite direction: how can we
use the more established theory and existing constructions of error-correcting codes to
construct (efficient) secret sharing schemes?

It can easily be seen that not all ECCs are suitable for secret sharing. Consider for
example the binary repetition code b 7→ bn and treat each coordinate as a share of a shar-
ing of a secret bit b. This code can correct up to b n−1

2 c arbitrary errors and n− 1 erasure
errors, and therefore any single share is sufficient to reconstruct and reveal the secret.
While such a construction formally satisfies the definition of a secret sharing scheme, it
is of little use in practice due to its poor privacy guarantees. Other codes, however, ap-
pear to be more suitable. Already in 1981, McEliece and Sarwate were the first to notice
the connection between error-correcting codes and secret sharing schemes. In [MS81]
they point out the relation between Shamir’s scheme, which we outlined in Definition
2.1.6, and Reed-Solomon error-correcting codes and that there are several advantages of
discussing the former in context of the latter.

A Reed-Solomon (RS) code C over a finite field F with q elements is defined by a code
length n and dimension k such that 1 ≤ k ≤ n ≤ q and some n ≤ q fixed, pairwise
distinct values α1, . . . , αn ∈ F. Then the corresponding RS code is given by

C = { ( f (α1), . . . , f (αn)) | f ∈ F[x], deg( f ) ≤ k− 1}. (2.5)

A word a = (a0, . . . , ak−1), ai ∈ Fk is encoded as the evaluations of the polynomial
fa(x) = a0 + a1x + · · ·+ ak−1xk−1 ∈ F[x] at the evaluation points αi,

a 7→ ( fa(α1), . . . , fa(αn)). (2.6)

Note that each such polynomial fa has at most k− 1 zeros, so every non-zero codeword
in C has weight at least n− k + 1. By Lemma 2.3 and the Singleton bound, this implies
that C is an [n, k, n− k + 1]q code and therefore an MDS code.

Now any codeword in such an RS code C can be viewed as a secret sharing of the
secret s = a0. If at least k of the shares are known, the codeword c = ( fa(α1), . . . , fa(αn))
and therefore s can be recovered by using an errors-and-erasures algorithm. Details of
the aforementioned algorithm, as well as Reed-Solomon codes can be found for example
in [McE02].

The above construction was generalised by Brickell in [Bri89] in terms of vector spaces.
We adopt the equivalent formulation proposed by [RD96] for arbitrary linear [n, k]q error-
correcting codes: let G be the generator matrix of an [n, k]q linear code, i.e., G is an k× n
matrix of rank k over Fq, and denote its columns by G1, . . . , Gn. In order to secret-share
s ∈ F, sample v2, . . . , vk ∈ Fq uniformly at random. Define v := (s, v2, . . . , vk) and
compute the corresponding codeword (c1, . . . , cn) = v · G. Then distribute the codeword
by giving each participant a share ci. Any set of participants {Tj1 , . . . , Tjm} can recover
the secret s if the unit vector e1 = (1, 0, . . . , 0)T is a linear combination of Gj1 , . . . , Gjm : if

e1 =
m

∑
i=1

xiGji
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for some xi ∈ F, then it follows that

s = ve1 =
m

∑
i=1

xivGji =
m

∑
i=1

xicji .

In [Bri89], Brickell further shows that the above condition indeed is necessary and suffi-
cient, and that the resulting scheme is a perfect secret sharing scheme realising the access
structure defined by that condition. Adding two secrets shared using the above construc-
tion as [s] = (s, v2, . . . , vk) ·G and [s′] = (s′, v′2, . . . , v′k) ·G, we furthermore obtain a secret
sharing of [s + s′] with uniformly random vi + v′i ∈ F, so that the construction in fact
gives a linear secret sharing scheme.

In [RD96], Renvall and Ding give an overview of security guarantees regarding the
above construction and show that using another, slightly more involved construction
can be used to obtain a (k, n) threshold scheme from any [n + 1, k, n− k + 2] MDS code.
For the special case of Reed-Solomon codes we have seen above that an [n, k] RS code
defines a (k, n) threshold scheme. Additionally, Nikova and Nikov note in [NN09] that
every (k, n) linear threshold secret sharing scheme is equivalent to some [n + 1, k + 1]
MDS code. A similar equivalence is also shown in [CDN15], Theorem 11.107. In that
same book, the authors study various constructions of secret sharing schemes from linear
codes. One particular noteworthy result relates the dual distance of a linear code to its
privacy as a secret sharing scheme. We first define the dual of some linear code C.

Definition 2.4.1 (Dual code). The dual code of an [n, k] linear code C is defined as

C⊥ = {x ∈ Fn
q | 〈x, c〉 = 0 ∀c ∈ C},

where the inner product is given by the dot product, 〈x, y〉 := ∑n
i=1 xiyi for x = (x1, . . . , xn) ∈

Fn
q , y = (y1, . . . , yn) ∈ Fn

q .

[CDN15] establishes the following relation between secret sharing schemes obtained
from linear codes and the code’s dual distance:

Theorem 2.4.1 ([CDN15], Theorem 11.91). Let n, k be positive integers and let C ⊆ Fn+k be
an F-linear code. If

dmin(C) ≥ k + 1 and dmin(C⊥) ≥ k + 1,

then C is a linear secret sharing scheme for Fk over F with t-privacy and r-reconstruction, where

t = dmin(C⊥)− k− 1 and r = n− dmin(C) + k + 1.

The above result also explains the poor privacy guarantees of the repetition code,
when treating the coordinates of a codeword bn+1 as shares: the repetition code’s dual
is given by the parity check code that consists of all length n + 1 binary words of weight
2. Thus, the dual’s distance is given by 2 and by the above theorem, we obtain t =
2− 1− 1 = 0 privacy.

In this section we have seen the close relation of error-correcting codes and linear
secret sharing schemes. In particular we observed the equivalence of Shamir’s scheme,
one of the most widely use secret sharing schemes, to Reed-Solomon codes. The follow-
ing sections will treat the quantum analogues of the above concepts: we will introduce
quantum secret sharing and error correction and discuss the differences and similarities
to their classical counterparts and will finally see how, just like in the present section,
there is a strong connection between quantum error correction and secret sharing.
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2.5 Quantum analogues

Since quantum secret sharing draws heavily on techniques from quantum error correc-
tion, we will first introduce the latter before discussing the former. During the introduc-
tion of quantum secret sharing schemes we will then see the connection to quantum error
correction.

2.5.1 Quantum error-correcting codes

In order to harness the power of quantum computations, it is necessary to be able to
protect quantum information from noise that could occur during storage, transmission
or processing of the quantum information. In the early stages of research in quantum
computation, researchers feared that it might be impossible to protect the fragile physical
systems used to implement the quantum computations from too much noise. In modern
classical computers, the failure rate is typically kept below one error per 1017 operations.
Classical computers use error-correcting codes based on the theory outlined in Section 2.2
to preserve information despite noise. For quantum codes, three main obstacles present
themselves that gave rise to the doubts that researchers in the field initially had:

• No-cloning: due to the quantum no-cloning theorem, simple constructions like the
repetition code in the classical world are impossible.

• Measurement destroys quantum information: note that even if cloning of quantum
states was possible, measuring the received quantum data generally disturbs the
state and thereby partially destroys information; this is in sharp contrast to classi-
cal ECC, where received data is observed during the error correction process.

• Continously many errors: in contrast to classical information encoded in bits, quan-
tum information can be found in continously many states and continously many
errors are possible; protecting information against such an infinite range of possi-
ble errors appears to require infinite resources.

We will not delve into the details of quantum error correcting codes or too many ex-
amples. Instead, we will give an overview of the necessary formalism and present some
of the main results that we will need for later sections. The results presented here are
standard results from the theory of quantum error correction and are based on [NC16],
[Got09] and [Pre99].

Generally, quantum error correction (QEC) resembles its classical counterpart in various
ways. In order to protect quantum information from noise, a state is encoded by a unitary
operation into a codeword in a larger Hilbert space. The original information is said to
be contained in the logical qubits while the encoded state is said to consist of physical
qubits. The distinction between logical and physical qubits will also play an imporant
role in the theory of MPQC, Chapter 3. The code is then defined as the set of codewords
and it is a linear subspace of the Hilbert space. To start the error correction procedure,
a measurement is performed on the received state in order to determine what, if any,
error occured. Similarly to Section 2.2, this information is called the error syndrome. Based
on the outcome of that measurement, a recovery procedure is applied that maps back the
erroneous word to the initial codeword, which can then be decoded to the underlying
information word. Formally, a quantum error-correcting code can be defined as follows,
according to [Got06]:
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Definition 2.5.1 (Quantum error-correcting code). Let H be a 2n-dimensional Hilbert
space (consisting of n qubits), and C be a k-dimensional subspace of H. Then C is an
((n, k)) quantum error-correcting code (QECC) correcting the set of errors E = {Ea} if and
only if there exists a CPTP mapR such that (R ◦ Ea)(|ψ〉) = |ψ〉 for all Ea ∈ E , |ψ〉 ∈ C.

The map R is also called the decoding or recovery operation. Note that similarly, quan-
tum error correction can be described over arbitrary sized quantum systems instead of
qubits, and that qubit-based quantum error-correcting codes are sometimes called binary.
Before discussing an example of a simple error correcting code, we will address the prob-
lem of the continous spectrum of possible quantum errors.

Modelling quantum errors

Quantum errors are typically assumed to occur on individual qubits independently. This
corresponds to the assumption in classical error correction that errors occur indepen-
dently on individual bits with a certain probability. Common errors that are considered
are bit flip and phase flip errors as well as a combination of the two. These correspond to
the unitaries X, Z and Y = iXZ that we have already seen in Section 1.1. With the help
of the following example we will see that being able to correct these two types of errors
turns out to be very powerful.

Shor’s 9-qubit code

Shortly after his seminal work on a quantum algorithm for efficient prime factorization
[Sho94], Peter Shor addressed the problem of quantum error correction and introduced
one of the first quantum error-correcting codes, also known as Shor’s 9-qubit code. We will
discuss this example of a quantum error-correcting code, as it provides insight into the
various parts and techniques of QEC and in a sense is similar to the repetition code we
have seen earlier. To start with, suppose we are given a state |φ〉 = α |0〉 + β |1〉. The
encoding procedure is defined on the computational basis states and maps

|0〉 7→ |0̄〉 :=
1

2
√

2
(|000〉+ |111〉)(|000〉+ |111〉)(|000〉+ |111〉), (2.7)

|1〉 7→ |1̄〉 :=
1

2
√

2
(|000〉 − |111〉)(|000〉 − |111〉)(|000〉 − |111〉), (2.8)

where implicitly, eight ancilla qubits have been added to the initial state. The encoding of
|φ〉 then is a linear superposition of these two states, α |0̄〉+ β |1̄〉, and |0̄〉 and |1̄〉 form a
basis of the code space. Note that this encoding does not violate the no-cloning theorem,

α |0̄〉+ β |0̄〉 6= [α(|000〉+ |111〉) + β(|000〉 − |111〉)]⊗3.

Shor’s code protects against single bit flip and phase flip errors or a combination of the
two, as can be seen by the following. A single bit flip error can be thought of as applying
a 9-fold tensor product of single-qubit unitaries, eight of which are the identity matrix,
the other one being an X-gate. For example, I ⊗ X ⊗ I⊗7 is a bit flip on the second qubit
and we sometimes abbreviate it as X2. Assume a bit flip occurred on the second qubit. To
detect such an error, we examine the three blocks of qubits block by block. For example,
we examine the first block of qubits by comparing two subsequent qubits at a time. We
first measure the observable Z1Z2 = (|00〉〈00|+ |11〉〈11|)− (|01〉〈01|+ |10〉〈10|) to deter-
mine whether a bit flip has occurred, and then do the same with the observable Z2Z3.
Both measurements return the outcome -1 and since we assumed that at most one error
occured, we conclude that the second qubit was flipped. We correct the error by flipping
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the erroneous qubit back to its original state. Similarly, we can correct bit flip errors on
any of the nine qubits in a codeword.

For phase flip errors, the three blocks of qubits are compared with each other, as we
observe that a phase flip error on any single qubit within a block has the same effect on
that block. The corresponding syndrome measurement that determines the block that
has been affected by a phase flip error is given by the observables X1X2X3X4X5X6 and
X4X5X6X7X8X9.

The error correction procedures for bit flips and phase flips are independent so that by
applying both, we can also correct their product XZ. We can in fact generalise even more
and claim that Shor’s 9-qubit code protects against arbitrary single-qubit errors. Suppose
an arbitrary error affected the second qubit only - the error can have any form, from
a small rotation up to replacing the qubit by some generic state. Recall from Chapter
1 that such noise can be described by a quantum channel E . We decompose E into an
operator-sum representation with operation elements {Ei} according to Definition 1.1.5;
then the encoded state |φ̄〉 = α |0̄〉+ β |1̄〉 after the error occured is given by E(|φ̄〉〈φ̄|) =
∑a Ea |φ̄〉〈φ̄| E†

a . It is easiest to analyse the error correction procedure on a single operation
element Ea. We noted in Section 1.1 that the Pauli matrices form a basis of all single-qubit
matrices (not only unitaries), so Ea can be decomposed into a linear combination of I,
X, Z and Y gates affecting the second qubit only,

Ea = ea0 I + ea1X2 + ea2Z2 + ea3X2Z2. (2.9)

Ea |φ̄〉 therefore is a superposition of |φ̄〉, X2 |φ̄〉, Z2 |φ̄〉 and X2Z2 |φ̄〉. Measuring the error
syndrome collapses this superposition into one of these states which can then be cor-
rected by applying the appropriate gate, and similarly for the other operation elements
Ei, which proves the claim. The above does not only hold for the Pauli group but any
linear combination of correctable errors, as stated in Theorem 2 of [Got09]:

Theorem 2.5.1 (Discretisation of quantum errors). If a quantum code corrects errors E and
F, then it also corrects any linear combination of the two.

The importance of this result cannot be understated, as it limits the amount of errors
that the code needs to be able to correct to a finite set, for example merely the four Pauli
gates. For codes that can correct errors in the Pauli group, i.e., tensor products of unitary
gates, all of which are single qubit Pauli gates, this implies the following: define the
weight of a Pauli error as the number of tensors in the tensor product different from the
identity, such that, e.g., I ⊗ X ⊗ Y ⊗ I has weight 2. Using Theorem 1.1.1 and Theorem
2.5.1, we obtain the following corollary.

Corollary 2.5.1. If a quantum error-correcting code corrects any weight-t Pauli errors then it
corrects arbitrary t-qubit errors.

Hence, we see that quantum error correction indeed is very similar to classical error
correction in the sense that it is sufficient to protect against a certain finite set of errors.
Moreover, we use the error syndrome of a received state to detect what error occured and
how to correct that error. It is important to note that the syndrome measurement in QEC
only reveals information on the error that occured but not on the encoded information
and therefore does not cause any disturbance.

The interested reader is referred to [Got09] or Section 10.3 in [NC16] for a more de-
tailled treatment of general errors as well as errors that occur on multiple qubits. What is
more important in our context is a formulation of requirements on error-correcting codes
in general, as these will play an important role in the context of quantum secret sharing
schemes.
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Necessary and sufficient conditions

In [Got09], necessary and sufficient conditions for quantum error-correcting codes are
given that simplify the analysis of such codes and in particular help in the analysis of
quantum secret sharing schemes, as we will see in the following section. Originally, these
are due to [KL97].

Theorem 2.5.2. Let E be a linear space of errors acting on a Hilbert space H. Then a subspace
C of H is a quantum error-correcting code correcting the errors in E , if, and only if, for all errors
Ea, Eb ∈ E we have

〈ψi| E†
a Eb

∣∣ψj
〉
= Cabδij. (2.10)

where Cab is a Hermitian matrix and depends only on the errors Ea, Eb, not on the |ψi〉 ,
∣∣ψj
〉
, and

the {|ψi〉} form a basis of C.

Proof. See, e.g., [Got09] or [Pre99].

It is important to note that the above conditions for quantum error correction hold
only for exact error correction. If we only require the reconstructed state to be close to
the original codeword, then these conditions fail. A detailed treatment of approximate
quantum error correction is out of the scope of this work but can be found in [SW02] and
[CvL14]. In Section 2.6 we will see how this distinction can be exploited to improve the
privacy guarantees of quantum secret sharing schemes.

For quantum error-correcting codes, several bounds on the codes’ parameters have
been derived similar to those in the classical case. Here, we outline some of them. One
important bound on the parameters of QECC codes concerns a special subset called non-
degenerate codes. We call a QECC non-degenerate, if any two errors in the set of cor-
rectable errors, E , can be perfectly distinguished, that is, if every two errors Ea, Eb in a E
map each basis codeword |ψ〉 to a mutually orthogonal subspace of C. Otherwise, there
exist two error operators that act the same on any codeword, and we call such quantum
codes degenerate. Formally, it can be shown a quantum error-correcting code is degen-
erate, if and only if Cab is singular, that is, if it has vanishing eigenvalues ([Gai08], p.
74).

An example of a degenerate code is Shor’s 9 qubit code, as, for example, Z errors on
a single qubit within any 3-qubit block of a codeword have the same effect on the overall
codeword. The concept of degeneracy is in contrast to classical codes, for which every
error has to be mapped to an orthogonal subspace: in a sense, degenerate quantum codes
allow to “pack more information” ([NC16], Section 10.3.3) into the code space.

For non-degenerate codes, the quantum Hamming bound applies: assume that a quan-
tum code encodes k qubits into n qubits and corrects any number less or equal to t of
errors. For each j ≤ t there are (n

j) possible locations on which the errors may occur. On
each such location there are three possible errors, the Pauli matrices X, Y and Z, that may
occur resulting in a total of 3j possible errors. Overall, this amounts to

t

∑
j=0

(
n
j

)
3j

possible errors. Since we assumed the code to be non-degenerate, each of these errors
must correspond to a 2k-dimensional, orthogonal subspace of the 2n-dimensional total
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space available. This leads to the inequality

2k
t

∑
j=0

(
n
j

)
3j ≤ 2n, (2.11)

known as the quantum Hamming bound. For Shor’s 9-qubit code we have t = k = 1 and
n = 9, clearly satisfying the bound. However, we mentioned that the 9-qubit code is an
example of a degenerate code, and in fact [DSS98] is an example of a degenerate code
that violates the quantum Hamming bound.

Following [Got09], we furthermore define the distance d of a quantum error-correcting
code that corrects up to t errors as d = 2t + 1, as it takes d errors to change one codeword
in C to another. A code that encodes k qubits into n qubits with distance d is called an
[[n, k, d]] code, the double brackets emphasizing the use of a quantum code. For example,
Shor’s code is a [[9, 1, 3]] code. Furthermore, [EM96] showed that [[n, k, d]] codes exist
whenever the stricter lower bound on n,

2k
d−1

∑
j=0

(
n
j

)
3j ≤ 2n, (2.12)

is satisfied. This is known as the quantum Gilbert-Varshamov bound. Note the difference
to (2.11), where the sum only goes to up to t instead of 2t. Last but not least, a quantum
analogue to the Singleton bound that we presented in Section 2.2 was proven by Knill
and Laflamme in [KL97] that applies even to degenerate [[n, k, d]] codes,

2d ≤ n− k + 2. (2.13)

Similar to the classical case, a QECC that satisfies the Knill-Laflamme- (or quantum Single-
ton) bound is called a quantum MDS code. Shor’s 9-qubit code, for example, does not attain
the quantum Singleton bound, as 6 < 9− 1+ 3 = 11, but in Section 3.3 we will encounter
a QECC that does. A large amount of work on constructing quantum MDS codes exists
(see, e.g., [RGB04]) but it seems like, at the time of writing, no general construction for
quantum MDS codes exists.

While a full proof for the Knill-Laflamme bound can be found in [KL97], we note that
the proof for codes encoding a single qubit, k = 1, provides some interesting insight into
employing quantum error-correcting codes as secret sharing schemes. For this partial
proof we need a specific kind of error, in particular studied by Grassl et al. in [GBP97]:

Definition 2.5.2 (Quantum erasure error). An erasure error is a general error on a known
position (qubit). While the type of error that occured is unknown, we can think of it as
replacing the coordinate with some state |err〉 orthogonal to the regular Hilbert space.

Using the above conditions for a quantum error-correcting code, Grassl et al. proved
the following relation between general errors and erasure errors.

Theorem 2.5.3. A quantum error-correcting codes corrects t arbitrary single-qubit errors if and
only if it corrects 2t erasure errors.

Proof. Consider condition (2.10). For an error-correcting quantum code of length n that
corrects t arbitrary single-qubits errors, all error operators Ea have at most weight t, i.e.,
their tensor factors are equal to the identity in at least n− t positions. For a quantum code
that corrects t erasure errors, these at most t positions are known, i.e., occur on the same
positions, so the product E†

a Eb also has weight at most t. Since the Ea form a basis for
arbitrary weight-t errors, the product E†

a Eb can again be written as a linear combination
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of the {Ea}. Hence, Eq. (2.10) simplifies and we get a necessary and sufficient condition
for quantum codes that correct t erasure errors,

〈ψi| Ea
∣∣ψj
〉
= C′aδij, (2.14)

the Ea being exactly the same Ea that form a basis for arbitrary weight-t single-qubit
errors. From this relation we can immediately see that Eq. (2.10) for t-error operators Ea
implies (2.14) for 2t-error operators and vice versa.

Theorem 2.5.4 (Knill-Laflamme bound, [KL97]). Any [[n, k, d]] QECC (encoding k qubits
into n qubits with distance d = 2t + 1) must satisfy 2d ≤ n− k + 2.

Proof. By Theorem 2.5.3, an [[n, k, d]]-code corrects d− 1 = 2t erasure errors. Now assume
the quantum Singleton bound was violated, which for the case k = 1 implies n ≤ 2d− 2.
Then we can split the qubits of a codeword encoding a single qubit into two sets, each
containing at most d− 1 qubits. Both these sets can be considered as a codeword from
which at most d − 1 qubits are missing in known positions, i.e., where at most d − 1
erasure errors occured. We can correct for these errors in both sets independently, thereby
reconstructing two copies of the encoded qubit. This, however, violates the no-cloning
theorem. A general proof can be found in [KL97].

Note that by the same reasoning, Theorem 2.5.3 implies a general bound on quantum
error-correcting codes: no quantum error-correcting code can correct n/4 arbitrary errors
or more, as this would imply the ability to correct n/2 erasure errors or more, again col-
liding with no-cloning. In the next section we will see that in a similar fashion, quantum
no-cloning imposes a lower bound on the threshold in quantum secret sharing schemes.

2.5.2 Quantum secret sharing

Quantum secret sharing (QSS) describes the theory of sharing classical or quantum infor-
mation using quantum computations. First steps towards a theory of quantum secret
sharing have been taken in [HBcvB99], while Cleve, Gottesman and Lo presented the
first fundamental results in their seminal paper in 1999, [CGL99]. The following intro-
duction into the topic will be based mainly on [CGL99] as well as a subsequent survey by
Gottesman, [Got00]. Before discussing fundamental results and constructions of quan-
tum secret sharing, we have to specify the setting for quantum secret sharing that we
will consider.

Similarly to the introduction in Section 2.1, a (quantum) secret will be encoded into
shares that the dealer then distributes among a number of participants in the quantum
secret sharing protocol. In the theory of quantum secret sharing schemes, it is generally
assumed that the secret is a pure quantum state |ψ〉, such as a single qubit, that is possibly
unknown to the dealer. However, better security and efficiency results can be achieved
when secret sharing classical information using QSS schemes, as, e.g., Gottesman points
out in [Got00]. As in Section 2.1 on classical secret sharing, we assume private point-
to-point (quantum) communication channels and focus on the security of the proposed
scheme itself. Furthermore, we will consider information theoretic security and do not
impose any computational restrictions on the adversary. We adopt the definition given
in [CGL99] and say that an unauthorised set of shares does not contain any information
about the secret if its partial trace (Def. 1.1.4) is independent of the value of the secret. A
quantum information theoretic approach to quantum secret sharing schemes is given in
[IMN+05] that confirms the results of [CGL99]. For the purpose of this introduction on
QSS, [CGL99] is sufficient.
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Similarly to classical secret sharing schemes, we will focus on threshold schemes with
n participants, any number t ≤ n of which can reconstruct the secret perfectly, while any
number ≤ t− 1 cannot deduce any information at all about the secret. We denote such a
scheme as a ((t, n)) threshold scheme, the double brackets indicating the use of quantum
information. The secret is an arbitrary pure quantum state and the shares consist of a
number of qubits or possibly higher-dimensional states.

A first example of a ((2, 3)) threshold scheme, due to [CGL99], is the following: let
the secret state |φ〉 be an arbitrary three-dimensional quantum state (sometimes denoted
a qutrit), |φ〉 = α |0〉 + β |1〉 + γ |2〉 with |α|2 + |β|2 + |γ|2 = 1. Then encode the secret
into shares of three qutrits each by applying the (unnormalised) mapping

α |0〉+ β |1〉+ γ |2〉 7→ α(|000〉+ |111〉+ |222〉)
+β(|012〉+ |120〉+ |201〉)
+ γ(|021〉+ |102〉+ |210〉)︸ ︷︷ ︸

:=|ψ〉

,
(2.15)

where we implicitly appended eight ancilla qutrits to |ψ〉. We denote the three partici-
pants by A, B and C and each receives one of the three qutrits as a share. To see that for
this scheme, each individual participant’s reduced density matrix is a complete mixture
of the states |0〉 , |1〉 and |2〉, we examplarily trace out the second and third party. Define
the global state of the shares as |ψ〉. Then the state held by player 1 is given by

TrBC
[
|ψ〉〈ψ|

]
= TrBC

[
|α|2(|000〉〈000|+ |000〉〈111|+ . . . + |222〉〈222|)

+αβ̄ (|000〉〈012|+ |000〉〈120|+ . . . + |222〉〈201|)
+ . . .

+|β|2(|012〉〈012|+ |012〉〈120|+ . . . + |201〉〈201|)
+ . . .

+|γ|2(|021〉〈021|+ |021〉〈102|+ . . . + |210〉〈210|)
]

= (|α|2 + |β|2 + |γ|2)︸ ︷︷ ︸
=1

(|0〉〈0|+ |1〉〈1|+ |2〉〈2|)

= |0〉〈0|+ |1〉〈1|+ |2〉〈2| ,

independent of the initial input amplitudes α, β and γ. Note again that, for the sake of
readibility, we omitted normalisation factors. On the other hand, any two out of three
players can reconstruct the initial state. For instance, if players A and B collaborate, they
can (unitarily) add the (computational basis state) value of the first share to the second
and afterwards add the value of the second share to the first, both calculations performed
modulo 3. For details on how to perform such classical arithmetic operation unitarily, see,
e.g., [VBE95]. A simple calculation shows that this results in the global state

(α |0〉+ β |1〉+ γ |2〉)⊗ (|00〉+ |12〉+ |21〉),

i.e., after these operations, player A holds the initial state. Note that it is impossible for
both players to hold a copy of the secret after reconstruction due to no-cloning. Similarly,
any other two players can obtain the secret jointly from their shares, showing that the
scheme indeed is a ((2, 3)) quantum threshold scheme.

We can construct a ((2, 2)) secret sharing scheme from (2.15) by discarding, i.e., tracing
out one share. This leaves the global state of the two shares in a mixed state, the encoding
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procedure being defined by mapping the pure basis states onto mixed states,

|0〉〈0| 7→ |00〉〈00|+ |11〉〈11|+ |22〉〈22|
|1〉〈1| 7→ |01〉〈01|+ |12〉〈12|+ |20〉〈20|
|2〉〈2| 7→ |02〉〈02|+ |10〉〈10|+ |21〉〈21| .

Cleve et al. denote a QSS scheme that encodes pure state secrets into global pure states,
such as (2.15), a pure state schemes while schemes for which the encoding of a pure state
is in a globally mixed state, such as (2.16), are referred to as mixed state schemes. They
also note that the technique of discarding a share generalises, resulting in the following
theorem.

Theorem 2.5.5. From any ((t, n)) quantum secret sharing scheme with t < n, a ((t, n − 1))
scheme can be derived by discarding one share.

As we have already hinted when discussing Theorem 2.5.4, processing quantum in-
formation imposes limitations on possible thresholds in quantum secret sharing schemes.
In Section 2.1 we have shown that, e.g., Shamir’s scheme can be used as a (t, n) threshold
scheme for any t ≤ n. For quantum schemes, the no-cloning theorem puts a lower bound
on the threshold t.

Theorem 2.5.6 ([CGL99]). No threshold quantum secret sharing scheme exists for t ≤ n/2.

Proof. We have already used a similar technique for proving the quantum Singleton
bound. If a ((t, n)) scheme existed for some t ≤ n/2 then two disjoint subsets of par-
ticipants could independently reconstruct a copy of an arbitrary secret quantum state.
This effectively implements a cloning operation of arbitrary quantum states, violating
the no-cloning theorem.

Hereafter, the authors of [CGL99] proceed to show that beyond this lower bound on
the threshold, essentially no restrictions on the parameters exist for ((t, n)) QSS schemes.
Since the constructions they use draw so heavily on quantum error-correcting codes, we
will as well move on to discussing the relation between QEC and QSS before concluding
this section with the main results of Cleve et al.

2.5.3 QSS and QEC

The relation between quantum error-correcting codes and secret sharing schemes is an
asymmetric one: on one hand, every quantum secret sharing scheme in a sense is an
error-correcting code, as the global state of shares can be viewed as a codeword that
protects the encoded information against erasure errors in certain, known positions, just
like we have noted in Section 2.4. What is more interesting for us, however, is the inverse
direction. Not all QECCs are useful as secret sharing schemes, as the latter additionally
require complete hiding of the secret encoded state. This is illustrated by the following
example, due to [GBP97]. Consider the encoding

α |0〉+ β |1〉 7→ α(|0000〉+ |1111〉) + β(|0011〉+ |1100〉), (2.16)

and assume each of the four qubits constitutes one share of the secret α |0〉 + β |1〉. In
[GBP97] it is shown that this code can correct one erasure, thus allowing any three par-
ties to reconstruct the secret. On the other hand, two colluding parties might very well
learn partial information about the secret. For instance, holding the first and third qubit
allows to perfectly distinguish the secrets |0〉 and |1〉, and, more generally, to obtain sta-
tistical information on the relative size of the amplitudes α and β. Hence, we see that one
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has to be careful when constructing QSS schemes from quantum codes. Overall, how-
ever, the theory of quantum error correction provides useful insight for quantum secret
sharing. For example, the theory of QEC tells us that there does not exist a ((2, 3)) thresh-
old scheme that encodes a single qubit into single-qubit shares, as this would constitute
an error-correcting, three-qubit code that corrects single qubit erasure errors which is
proven to be impossible in [GBP97]. By contrast, we have discussed above that a ((2, 3))
quantum secret sharing scheme exists that encodes qutrits into qutrit-shares. Hence, we
see that the minimum dimension the shares of a quantum secret sharing scheme depends
on the number of participants in the protocol. Moreover, we note that Gottesman shows
in [Got00] that the dimension of each share of a quantum secret sharing scheme must be
at least as large as that of the secret. A detailed study of such “efficiency”-properties of
quantum secret sharing schemes, however, is outside of the scope of this work.

Cleve et al. ([CGL99]) furthermore make the following observation about the strong
relation between QECCs and quantum secret sharing schemes:

Proposition 2.5.1. Any quantum error-correcting code of length 2k− 1 that corrects k− 1 era-
sure errors is a ((k, 2k− 1)) threshold scheme by treating each position in a codeword as a share
in the secret sharing scheme.

Proof. Suppose k shares are given. Then the remaining k− 1 shares can be treated as era-
sures which can be corrected for in order to reconstruct the secret. On the other hand,
suppose ≤ k − 1 shares are given. By the information-implies-disturbance principle
([BBM92]), any information that is gained from a measurement of these shares would dis-
turb the information in the remaining k qubits and therefore lead to a contradiction.

Hence, we see that, while for classical error-correcting codes, we need to determine
the dual distance of the code to determine its privacy properties (Theorem 2.4.1), the
nature of quantum information provides privacy “for free”. Nonetheless, a theoretical
investigation into a possible quantum analogue of the dual distance of a classical code
that might explain this behaviour seems worthwile. Together with Theorem 2.5.3 and
Theorem 2.5.5, the above theorem implies the following corollary:

Corollary 2.5.2. A ((k, n)) quantum threshold scheme can be constructed from a [[2k− 1, 1, k]]
error-correcting code for any k > n/2.

In Section 2.4 we have discussed the equivalence between Reed-Solomon error-correcting
codes and Shamir’s scheme and the similarity of MDS codes and threshold schemes in
general. For quantum schemes, Rietjens et al. proved equivalence between quantum
MDS codes ((2.13)) and quantum threshold schemes in [RST05]:

Theorem 2.5.7. A ((k, 2k− 1)) quantum secret sharing scheme can be translated into a [[2k−
1, 1, k]] quantum MDS code and vice versa.

Finally, Cleve et al. prove the existence of quantum secret sharing schemes for any
k > n/2 by constructing suitable error-correcting [[2k − 1, 1, k]] codes and applying the
above corollary.

Theorem 2.5.8. For any k > n/2, a ((k, n)) threshold scheme exists.

Beyond the relation between QEC and QSS that is exploited in the proof of the above
theorem, another relation is notable, namely that of quantum and classical error-correcting
codes. So-called CSS codes, owing their name to their inventors Calderbank, Steane and
Shor, are constructed from linear ECCs and provide a rich and widely studied set of
quantum codes. In Section 3.3 we will formally introduce these codes and see how they
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can be used for constructing secret sharing schemes and, eventually, a protocol for secure
multi-party quantum computation.

In this section we have seen that, analogously to the classical case, there is a strong
connection between quantum error-correction codes and secret sharing schemes. The
use of quantum information in fact seems to simplify the construction of the latter from
the former, as Corollary 2.5.2 and Theorem 2.5.7 suggest. This observation combined
with the fact that quantum error-correcting codes have been studied far more extensively
than QSS schemes explains the frequent use of quantum error-correcting codes when
constructing MPQC protocols.

2.6 Feasibility of (quantum) secret sharing

Following the above introduction on classical and quantum secret sharing schemes, we
will now discuss some general feasibility results in terms of the number of corrupted
parties that a protocol can tolerate. We will see that here, too, the theory of error correc-
tion will prove useful in establishing and understanding the bounds on the parameters of
the scheme. Besides (threshold) secret sharing, we will also discuss two stronger notions
called robust secret sharing and verifiable secret sharing that are typically used to achieve se-
curity against active adversaries that might deviate from the procotol, in particular when
constructing MP(Q)C protocols based on (quantum) secret sharing schemes.

The general focus will be kept on security in the information-theoretical model, and
we will highlight the differences between quantum and classical protocols, as well as
active and passive adversaries. In the information-theoretical model, the availability of
secure and authenticated communication channels between each pair of participants in
the protocol is assumed. This is often referred to as point-wise secure and authenticated
communication. In some situations, the availability of a broadcast channel is additionally
assumed, which allows participants to broadcast messages securely to all other parties,
such that it is guaranteed that all parties receive the same message. We will mention
whenever we make this assumption, as the availability of a broadcast channel is generally
considered a strong assumption. We recall from the introduction that we consider a single
adversary that corrupts a number t of parties out of the n participants in the protocol.
The adversary has complete control over all corrupted parties’ in- and outputs, as well
as their actions. Throughout this work, and in particular in this section, we consider the
adversary to be static, that is, to choose which parties to corrupt at the beginning of the
protocol. Nonetheless, we remark that many of the results below are conjectured or even
proven to hold in the presence of a so-called adaptive adversary that can choose which
parties to manipulate during the protocol, but proving security in this model is generally
considered a harder task. Finally, we assume a non-rushing adversary unless explicitly
stated otherwise. In an interactive protocol, messages are exchanged round by round,
and in each round a party might send and receive messages. A rushing adversary is one
that is able to choose its messages after seeing the honest parties’ messages within the
same round of communication. In any scenario, the adversary is able to see past messages
received by other parties, as long as the no-cloning theorem is not violated for quantum
information. In the case of a secret sharing reconstruction protocol, these messages could
for example be their shares.

First, results on the feasibility of classical secret sharing protocols will be presented
alongside explanations of the adversarial model and the relevant literature. Then we
will consider the quantum versions of these tasks and compile in a final table (Table
2.4) an overview of the feasibility of classical and quantum secret sharing schemes in
different adversarial settings. As mentioned before, the focus on this work, including
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the present section, is put on information-theoretical security. For schemes that rely on
computational assumptions, better feasibility results might be possible.

Feasibility of classical secret sharing

We recall that the literature on secret sharing that has been discussed in the previous
section focussed on threshold schemes in which any number k of n participants can re-
construct the secret jointly from their shares, while any number of up to k − 1 shares
cannot obtain any information on the secret based on their shares. In this setting, we
assumed the adversary to be passive, such that the corrupted parties try to derive infor-
mation on the secret based on the shares in their joint possession, but do not deviate from
the protocol and, in particular, do not modify their shares. We also assumed the dealer to
honestly perform the share generation and distribution such that the shares correspond
to a unique secret. For threshold secret sharing schemes, we have seen that essentially
any number of passively corrupted parties smaller than n can be tolerated, since Shamir’s
scheme achieves this task. Clearly, one cannot expect any secrecy guarantees if all parties
in the protocol are corrupted.

Before we start presenting the further feasibility results for classical secret sharing
schemes, we will introduce some additional notation that will provide some consistency
when discussing the limitations of secret sharing schemes in different adversarial set-
tings. Recall from Section 2.1 that we denoted the set of participants in a secret sharing
protocol by T = {T1, . . . , Tn}. We defined the access structure Γ ⊆ P(T ) of a protocol to
be the set of subsets of parties that are able to reconstruct the secret jointly, based on their
shares, and we referred to elements in Γ as authorised sets. Naturally, we required Γ to be
monotone such that any superset of an authorised set is authorised as well. We have so
far focussed on threshold schemes that are characterised by a single threshold parameter
k ≤ n such that any subset of parties larger or equal to k is able to reconstruct the secret
based on their shares. We also noted that threshold schemes are perfect secret sharing
schemes for which any unauthorised set is a privacy set, and we referred to k as the re-
construction parameter and k− 1 as the privacy parameter. In particular, a passive adver-
sary that corrupts any number of parties of cardinality less than k in a k-threshold scheme
cannot obtain any information on the secret. Formally, we characterised an adversary by
an antimonotone adversary structure A ⊆ P(T ) and for the case of (k, n)-threshold se-
cret sharing schemes, we saw that the adversary is given by A = {A ⊆ T : |A| ≤ k− 1},
while the access structure Γ is given by Γ = {A ⊆ T : |A| ≥ k}.

In this work and in particular in the context of feasibility results, we will restrict our-
selves to such threshold access or adversarial structures in which all shares are considered
equally important. We are thus interested in how many corruptions a scheme can tolerate
against an adversary with certain abilities, regardless of which parties are corrupted. We
will use t to denote the maximum number of corruptions by a specified adversary that a
scheme can tolerate, that is, with an adversary structure given byA = {A ⊆ T : |A| ≤ t}.
Furthermore, we will use r to denote the reconstruction parameter. A scheme with recon-
struction parameter r has Γ = {A ⊆ T : |A| ≥ r} as its access structure, meaning that
any subset of parties of size larger or equal to r can reconstruct the secret based on their
shares alone.

In later parts of this section we will also discuss the number of actively corrupted par-
ties that a secret sharing scheme can tolerate. An active adversary has complete control
over the corrupted parties and might deviate from the protocol arbitrarily. For example,
an active adversary might have some of the corrupted parties hand in faulty shares for
reconstruction or withhold them altogether. In order to clarify the distinctions between
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Parameter Property

t defines threshold adversary structure

r defines threshold access structure

p defines the privacy threshold

d defines the robustness threshold

Table 2.1: Overview of the different parameters that are used to characterise secret sharing
schemes in Section 2.6.

active and passive adversaries, we have to distinguish between the privacy and the ro-
bustness of a scheme. In particular, we will use p as the privacy parameter, that is, any
subset of parties of size up to and including p does not contain any information on the se-
cret. On the other hand, we will use the parameter d to denote the robustness-parameter. A
scheme with robustness parameter d maintains correctness during reconstruction (which
we will later define more formally) despite the presence of up to d arbitrary, actively
corrupted parties. In particular, in the case of a passive adversary, the parameter t that
characterises the adversary structure coincides with the privacy parameter p, while in the
case of an active adversary, t coincides with min(p, d). An overview of the parameters
used hereafter can be found in Table 2.1.

For instance, for threshold-k schemes for some k ≤ n, we have that the maximal tol-
erable adversary structure is given by t = k − 1, while the reconstruction parameter r
coincides with k. In order to compile feasibility results for different types of adversaries,
we are interested in finding the maximum number of tolerable corruptions, i.e., the maxi-
mal t < n. We have seen earlier that in the case of a passive adversary, threshold schemes
such as Shamir’s scheme exist that can tolerate up to n− 1 corruptions. Thus for secret
sharing schemes according to Definition 2.1.4, the theoretical limit of passively corrupted
parties is t < n and this bound is tight.

Tolerating active adversaries

In the context of threshold schemes it is assumed that precisely k (arbitrary) shares are
available for reconstruction and that these are perfectly intact, in the sense that they have
not been tampered with by any adversary and are equal to the shares that have been
handed out initially. In the following, we will consider more general types of attacks
on the secret sharing protocol. In particular, active security will be considered in which
the corrupted parties might modify their shares, thus possibly preventing a correct re-
construction of the secret. We again consider the worst-case-scenario in which arbitrary
deviations from the protocol on behalf of the adversary are allowed. For now, we will as-
sume the dealer to honestly perform the share generation and distribution. Additionally,
we will later consider protocols that achieve privacy and correctness even in the presence
of a corrupted dealer that might try to distribute an inconsistent sharing of a secret.

We will start our discussion with an informal note on the feasibility of actively secure
threshold secret sharing schemes, that is, secret sharing schemes that fulfill Definition
2.1.4 in the presence of an active adversary that may perform arbitrary operations on the
shares in her possession. For such schemes, the possibility of some of the shares that are
used for reconstruction deviating from the ones that have been handed out by the dealer
has not been considered thus far. In particular, Lipinska et al. ([LMRW20]) note that what
they define as a strong threshold scheme is impossible:
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Definition 2.6.1 (Strong threshold scheme). A strong threshold scheme for some k ≤ n is a
scheme where, despite the presence of t ≤ n actively corrupted parties:

(1) Any set of k− 1 or less shares does not reveal any information about the secret state.

(2) The secret can be reconstructed from any k shares.

A simple reasoning shows that such strong threshold schemes are possible only if
t = 0 (Proposition 1 in [LMRW20]):

Proposition 2.6.1. It is impossible to construct a strong threshold secret sharing scheme accord-
ing to Definition 2.6.1.

Proof. Assume that a strong secret sharing scheme according to Definition 2.6.1 exists that
tolerates some number of t active cheaters. If k shares are given, then by property (2) of
2.6.1 the secret can be reconstructed from these shares, even if t < k of them are provided
by corrupted parties. Since these parties are allowed to perform arbitrary computations
on their shares, we can replace these shares by some arbitrary state, implying that the
secret can be constructed from the remaining k− t shares. On the other hand, property
(1) says that no k− 1 or less shares reveal any information on the secret. Hence, we obtain
k− t > k− 1 and therefore t = 0.

We note that the above reasoning holds for both classical and quantum secret sharing
schemes. In light of this result, we see that in order to allow for active cheaters in the
protocol, we will have to consider a specific class of secret sharing schemes that do not
satisfy the strict definition of a threshold scheme. Hence, in order to maintain the ability
to correctly reconstruct the secret in the presence of an active adversary, we will have
to add some redundancy when collecting shares for reconstruction. More formally, this
means that whenever active security is considered for a secret sharing scheme, we will
necessarily find a gap between the privacy parameter p, and therefore also the adversary
structure t, and the reconstruction parameter r, i.e., t ≤ p < r. In Section 2.1 we have
already noted that schemes that exhibit such a gap between privacy and reconstruction
parameters are referred to as ramp schemes, and have first been introduced as a generali-
sation of threshold schemes by Blakley and Meadow ([BM84]). Ramp schemes typically
consider passive security and possibly leak (partial) information for subsets of shares in
the gap between privacy and reconstruction parameter. Even though any secret sharing
scheme that can tolerate an active adversary in particular has passive security, we will
refrain from using the term in this context to avoid confusion. Since we are interested in
finding the maximum number of tolerable corruptions, we will in the following assume
that all shares are collected for reconstruction, including potentially faulty ones, thus fol-
lowing, e.g., [CFOR12], [CGS02] and [LMRW20]. In the literature, one often speaks of
“reconstruction by any set containing k honest parties”, even though means to distin-
guish honest from dishonest parties (or correct from faulty shares) are not always given.
Formally, we thus consider schemes with reconstruction parameter r = n hereafter.

We also remark that typically, the privacy parameter for schemes with active security
is higher than the robustness parameter. Note, however, that this property is not trivially
satisfied. Consider for example the n-fold repetition code which can tolerate up to b(n−
1)/2c corrupted shares using a majority vote as the reconstruction procedure, but has
0-privacy.

Secret sharing schemes that tolerate active adversaries who might provide faulty
shares for reconstruction are oftentimes called robust or error-tolerant secret sharing schemes
([TW88], [CDF01], [CFOR12]) and guarantee privacy and reconstruction despite a num-
ber of t < n actively corrupted parties within the protocol. As for secret sharing schemes
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discussed in the previous sections, robust secret sharing schemes consists of a sharing and
a reconstruction phase, denoted Share and Rec. In the sharing phase, the dealer encodes
her secret s ∈ S into n shares and sends each participant Ti one share si ∈ Si. In the
reconstruction phase, every participant, including all corrupted parties, sends her shares
s′i to a reconstructor R, who performs the reconstruction and produces a secret s′. Since
we consider an active adversary, the corrupted parties shares are considered to be ele-
ments of {Si ∪⊥} where ⊥ describes a party withholding her share from reconstruction.
Adopting the definition of [CFOR12], we can quantify the robustness of a secret sharing
scheme against an active adversary as follows:

Definition 2.6.2 ((t, δ)-robust secret sharing). We say that an n-player secret sharing
scheme Share with reconstruction procedure Rec and secrets in a finite field F is (t, δ)-
robust, where t < n and δ < 1/2, if the following properties hold for any s ∈ F in the
presence of an active adversary corrupting up to t parties.

• Privacy: Every subset of shares of size ≤ t satisfies perfect privacy in the sense of
Definition 2.1.4.

• Reconstructability: At the end of Rec, the reconstructor R outputs s′ = s with proba-
bility ≥ 1− δ.

Here, we require 1− δ > 1/2 since otherwise the reconstruction is no better than a
blind guess on part of the reconstructor (remember that we always require that |F| ≥ 2).
We say that a robust secret sharing scheme has exact reconstruction or zero error-probability
if δ = 0. For robust secret sharing protocols, the dealer is assumed to be honest and,
therefore, to hand out consistent shares of some secret state in the sharing phase. Note
that, generally, cheaters that withhold their shares from reconstruction are handled more
easily than those that provide faulty shares since the withholding cheaters’ identities are
revealed immediately; compare, e.g., the discussion on erasure errors in Section 2.5.1 or
[MS81].

In this model, two bounds on the feasibility of robust secret sharing schemes are well-
known ([Cev11]) and we present them in the form of the following two lemmas.

Lemma 2.7. There does not exist an n-party (t, δ)-robust secret sharing scheme (Share, Rec) for
which t ≥ n/2.

Proof. Assume a secret sharing scheme with t-privacy that tolerates t ≥ n/2 actively
corrupted parties. Then, if the t cheaters all supply bogus shares (or withhold their shares
completely) for reconstruction, then this implies that only n − t ≤ t intact shares are
available for reconstruction. By t-privacy, these shares do not contain any information on
the secret and thus have the same probability distribution for all secrets s ∈ F. Denote by
V ′s the vector of all shares of a secret sharing of a secret s that is sent to the reconstructor,
with shares coming from corrupted parties replaced by ⊥. Then the best that Rec can do
is output a blind guess and we find

∑
s∈F

Pr
[
Rec(V ′s ) = s

]
≤ 1.

Therefore, Pr[Rec(V ′s ) = s] ≤ 1/|F| ≤ 1/2 for some s ∈ F, so the scheme is not robust.

We can furthermore show that if we require the reconstruction to have zero error
probability, then at most t < n/3 active corruptions can be tolerated.
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Lemma 2.8. There does not exist an n-party (t, δ) robust secret sharing scheme (Share, Rec) for
which t ≥ n/3 and δ = 0.

Proof. We argue towards contradiction and assume that such a scheme existed. Let t ≥
n/3 and split the index set of participants, {1, 2, . . . , n}, into a partition I ∪ I′ ∪ J such that
|I| = |I′| = t and |J| = n− 2t ≤ t. By the t-privacy property, the probability distribution
on the shares indexed by set J is independent of the shared secret, so there exist two
secrets s, s′ such that the shares generated by the secret sharing scheme agree on the index
set J. Now recall that we denote a secret sharing of s by [s], i.e., Share(s) = [s] and define
a vector of “shares” V that has the shares of [s] on the positions indexed by J (equal to
those of [s′]), the positions in I filled with the shares of [s] and the positions in I′ filled
with the shares of [s′]. Such a vector differs from the secret sharings [s] and [s′] in at most t
positions each. Now V can be obtained by two different strategies of an adversary, either
corrupting a sharing of s or of s′. In each case, only t active corruptions are required.
Hence, we have that either Rec(V) 6= s or Rec(V) 6= s′ so one of these pairs has non-zero
error probability δ, that is, exact reconstruction is impossible for t ≥ n/3.

Tompa and Woll ([TW88]) were the first to note that “out-of-the-box” Shamir’s scheme
with reconstruction procedure described below Definition 2.1.6 cannot tolerate any active
corruptions, see also [CFOR12]. On the other hand, for any t < n/3 robust secret shar-
ing with exact reconstruction is possible, namely by using Shamir’s secret sharing with
Reed-Solomon error correction as the reconstruction procedure ([MS81]), showing that
this bound is tight, even against a rushing adversary [Che19]. Furthermore, Rabin and
Ben-Or give a robust secret sharing scheme that tolerates a strict minority of actively cor-
rupted parties and probability of error during reconstruction that decreases exponentially
with the size of the shares in [RB89] (as did [CDF01], [Che19] and [CDD+15]), proving
that this bound is tight, too. [CFOR12], [MSV20] and [FY20] even achieve the same re-
sult in presence of a rushing adversary. In particular [Che19] and [MSV20] present an
overview of robust secret sharing scheme constructions.

Verifiable secret sharing

In particular in the context of secret sharing based MPC, an active adversary might not
just corrupt recipients of the shares but also the dealer, causing inconsistent shares to be
handed out in the sharing phase that do not reconstruct to a unique secret. This situa-
tion is covered by the notion of verifiable secret sharing (VSS) and was first introduced in
[CGMA85]. Similar to the ordinary definition of secret sharing protocols, a verifiable se-
cret sharing protocol consists of a sharing phase in which the secret is shared by a dealer
D, as well as a reconstruction phase in which the secret is recovered by a reconstructor R.
Additionally, a verification phase is included in which the participants jointly verify their
shares as consistent. If at the end of the verification phase the participants conclude that
their shares correspond to one unique secret we say that the dealer passed the verification
phase. Otherwise, the dealer will be detected as dishonest and the protocol typically is
aborted. A VSS scheme is therefore defined by a triple of procedures (Share,Rec,Verify).
Therefore, verifiable secret sharing schemes are robust secret sharing schemes with an
additional verification procedure. The participants’ ability to verify the consistency of
their shares implies that the dealer is committed to the secret she shared, which is why
the sharing phase of a VSS is sometimes referred to as the commitment phase. Overall, we
require a verifiable secret sharing scheme to satisfy the following requirements despite
the malicious actions of t actively corrupted parties:

• Soundness: If R is honest and the dealer passes the verification phase successfully,
then there is a unique secret that can be recovered by R.



Chapter 2. Secret sharing and error correction 42

• Completeness: As long as the dealer D is honest, she always passes the verification
phase. If additionally R is honest, then the secret that R recovers is exactly D’s
secret.

• Privacy: As long as D is honest, no group of p ≥ t parties learns any information
about the secret before reconstruction.

As a special case of robust secret sharing, the same upper bounds on the maximum
number of active corruptions hold for VSS schemes, namely t < n/3 without any error
probability during reconstruction and t < n/2 for non-zero error probability. [BGW88]
gives a verifiable secret sharing protocol that satisfies the bound of t < n/3 without any
further assumptions. In order to surpass the bound of t < n/3 for the particular task of
VSS, one needs to assume the existence of a so-called broadcast channel in addition to the
secure point-to-point network already in place.

Definition 2.8.1 (Broadcast, [LSP82]). A broadcast channel allows each participant in
an n-party protocol with point-to-point authenticated communication channels to send
a message to all other participants with the following guarantees despite the malicious
actions of an active adversary corrupting some t ≤ n parties:

(1) Consistency: Even if the sender is dishonest, the same message is received by all
parties.

(2) Validity: If the sender is honest then the message that is received by the honest
parties is equal to the sender’s original message.

Broadcast (in the presence of some t out of n actively corrupted parties) is known to
be equivalent to the problem of Byzantine Agreement (BA) which was first described and
shown to be possible, if and only if, t < n/3 by works of Pease et al. in [LSP82], [PSL80].
In Byzantine Agreement1, n parties that are connected via a point-to-point authenticated
network each start with some private input vi and at the end of the protocol, they each
output a value ci. It is then required that on one hand, for each pair of honest parties i, j
we have ci = cj, and that if all honest parties start with the same initial value, that is,
vi = vj = v for all honest i, j and some value v, then we also have ci = cj = v. Verifiable
secret sharing can be used to implement broadcast by treating the message to be sent as
the input to the VSS. Hence, if there was a protocol that implemented VSS for n/3 ≤ t <
n/2, then this would imply a broadcast channel and therefore a Byzantine Agreement
protocol secure against n/3 ≤ t < n/2 active cheaters, leading to a contradiction. The
availability of a broadcast channel is therefore assumed for VSS (and, moreover, for MPC
solutions) whenever t ≥ n/3. Note that in the literature, the term broadcast is used
ambiguously and does not always allow for a dishonest sender. Sometimes, the term
secure broadcast or consensus broadcast ([CDN15]) is used instead.

We remark that, as we have previously seen, even the weaker task of robust secret
sharing requires some probability of error for the reconstruction phase, which thus also
extends to the task of VSS. A broadcast channel and therefore a BA protocol that is re-
alised from such a VSS protocol would also exhibit some error probability in the sense
that, while consistency is satisfied, validity might only hold with some error probabil-
ity. But even such a weaker form of BA is shown to be impossible in [LSP82] and, in a
simpler form, [FLM86]. Further work can also be found in [GY89], [FM89] and [CPS20]

1An interesting fact about Lamport et al.’s seminal work on the Byzantine generals problem, [LSP82],
is that in many protocols for secure, distributed computations (e.g., [BGW88], [CDN15]), active security is
described as tolerating Byzantine faults that are assumed to be strategically placed by corrupted parties in the
worst way possible, resembling the actions of malicious Byzantine generals.
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who reference unpublished work by Yao and Karlin that supposedly explicitly shows
the impossibility of any form of Byzantine Agreement with some non-zero probability of
error. Therefore, we see that, while robust secret sharing with some probability of error
might be possible for n/3 ≤ t < n/2 (and, in fact, is [RB89]), the impossibility of Byzan-
tine Agreement for t ≥ n/3 extends to the task of VSS. In the literature it is therefore
commonly seen that a broadcast channel is added as an assumption in the information-
theoretical model whenever t ≥ n/3.

In [RB89], Rabin and Ben-Or give a protocol that achieves VSS with exponentially
small probability of error given a strict honest majority and assuming the existence of a
broadcast channel, while more recent results by Garay et al. achieve the same task, even
secure against a rushing adversary [GGOR13].

Altogether, we discussed the feasibility of (classical) secret sharing for different ad-
versarial settings. An overview of these characterisations can be found in Table 2.2. We
remark that various other adversarial settings have been considered in the theory of se-
cret sharing. In this work, we focus on the most prominent adversarial models. A survey
and classification of the different settings and existing work on (classical) secret sharing
schemes can be found in [Mar08]. Furthermore, Table 2.3 gives a summary of the feasi-
bility results of classical secret sharing protocols in different adversarial settings that we
have compiled in this section.

Scheme Adversary Dealer

Threshold secret sharing passive honest

Robust secret sharing active honest

Verifiable secret sharing active dishonest

Table 2.2: Characteristics of the adversary for different types of secret sharing schemes.

Scheme Maximal corruptions

Threshold secret sharing t < n

Robust secret sharing with exact
reconstruction

t < n
3

Robust secret sharing t < n
2

Verifiable secret sharing with exact
reconstruction

t < n
3

Verifiable secret sharing with non-zero
error probability

t < n
3 (t < n

2 with broadcast)

Table 2.3: Feasibility of classical secret sharing with unconditional security. All bounds are tight.
Here, t denotes the number of tolerable corruptions (depending on the adversary, see Table 2.2)).

Feasibility of quantum secret sharing

In our discussion of quantum secret sharing schemes, too, the focus has so far been on
threshold schemes. For such schemes we have seen that by Theorem 2.5.6, the maximum
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number of passively corrupted parties is limited to be strictly smaller than n/2. Further-
more, we have seen that by Theorem 2.5.8, this bound is tight.

QSS in the presence of active adversaries

When considering an active adversary, we find that the theory of quantum error correc-
tion discussed in Section 2.5.1 provides a strict upper bound on the number of tolera-
ble corruptions: by Theorem 2.5.3 as well as the quantum no-cloning theorem we know
that the number of actively corrupted parties is bounded to be strictly smaller than n/4,
since otherwise such a quantum secret sharing scheme would constitute a quantum error-
correcting code that can correct ≥ n/2 erasure errors, leading to a contradiction. Since
the construction used in the proof of Theorem 2.5.8 by Cleve et al. [CGL99] was based on
quantum error-correcting codes with maximal distance in the first place, these automati-
cally provide optimal robustness for any adversary structure characterised by a threshold
t < n/4. Here, again, we assume that all shares, including potentially corrupted ones,
are used for reconstruction, that is, we impose a reconstruction threshold of r = n.

We have noted below Theorem 2.5.2 that the necessary and sufficient conditions for
quantum error correction, and therefore Theorem 2.5.3, break down when considering
approximate quantum error correction. As a result, Crépeau et al. were able to show
in [CGS05] that approximate quantum error-correcting codes exist that can correct up
to t = b(n − 1)/2c errors with the guarantee that the fidelity (Def. 1.1.8) of the recon-
structed state to the initial state is exponentially close to 1, depending on the size of the
quantum registers of the code. Their construction immediately yields a robust quantum
secret sharing scheme under the assumption that the dealer is honest which tolerates up
to t = b(n− 1)/2c corruptions by an active adversary and for which the reconstructed
secret is exponentially close to the initial secret, depending on the size of the shares. This
highlights the similarity between classical secret sharing and quantum error correction
(as well as quantum secret sharing), namely that relaxing the requirement of exact recon-
struction of the secret to approximate reconstruction, or reconstruction with some small
probability of error, allows tolerating up to a strict minority of actively corrupted parties,
both for robust classical and quantum secret sharing schemes. The analogy is also explic-
itly pointed out by [CGS05]. Nonetheless, this raises the question whether approximate
quantum error-correcting codes can be used to surpass the quantum no-cloning bound
of t < n/2 that only applies to perfect copies of quantum states. We conjecture that the
result of t < n/2 active corruptions that is achieved in [CGS05] is optimal if one requires
that the fidelity of any reconstructed state can be made arbitrarily close to the secret, as
we have seen in previously mentioned constructions. If an approximate QECC, or secret
sharing scheme, for that matter, existed that tolerated a number t ≥ n/2 active corrup-
tions then this would constitute a universal quantum cloning machine (UQCM): similar to
what we have seen in the proof of Theorem 2.5.4, we could use such an encoding and
split the set of shares into two disjoint sets, each of which could be used to create an ap-
proximate copy of the secret. For such UQCMs, constant bounds on the optimal fidelity
of the cloned states to the initial state are known that would prevent an arbitrarily close
approximation. A review of approximate quantum cloning can be found in [SIGA05] and
[RZLZ18] contains many more references on recent results on the topic.

Verifiable quantum secret sharing

Finally, we also discuss the feasibility of verifiable quantum secret sharing (VQSS) schemes
in which we also consider a potentially dishonest dealer. Similar to the previous discus-
sions, there is a dealer D who shares a quantum state ρ in her possession in the sharing
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(commitment) phase. A verification phase allows the participants to verify their shares
as corresponding to one unique secret or detect whether a sharing is inconsistent. In the
latter case, the protocol is typically aborted. Essentially, what is shown in the literature on
VQSS schemes (e.g. [CGS02], [LMRW20]) is that after the verification phase, if the proto-
col verification procedure did not abort, then the sharing is close to a consistent sharing,
or the protocol aborts with high probability. For more details, see, e.g., Appendix A of
[LMRW20]. As described earlier for classical VSS, we require soundness, completeness
and privacy to hold in the presence of a malicious, active adversary corrupting an arbi-
trary subset of up to t parties. In the reconstruction (recovery) phase, there is a designated
reconstructor R that collects all shares and reconstructs the secret state.

As a special instance of the quantum secret sharing schemes we have considered thus
far, VQSS also satisfies the known bounds on its parameters, such as the no-cloning the-
orem for privacy against a passive adversary with up to p < n/2 corruptions and ro-
bustness (with exact reconstruction) against up to d < n/4 actively corrupted parties.
Hence, we find that the maximum number of tolerable corruptions for a VQSS protocol
with exact reconstruction is given by t < n/4.

In [CGS02], Crépeau et al. explicitly prove the upper bound of t < n/4 that also holds
for verifiable quantum secret sharing schemes with exact reconstruction. Based on ideas
of [CCD88], they construct a VQSS scheme that satisfies this bound, with probability of
not detecting a dealer handing out inconsistent shares (soundness) exponentially close
to 1 in a security parameter that describes the iterations of a subroutine of the verifica-
tion procedure. They call such a VQSS scheme that includes some probability of error
a statistical VQSS scheme. They also assume the presence of a broadcast channel since a
classical VSS scheme is used as a subprotocol, but note that this is in fact not necessary
since t < n/4 < n/3 and thus broadcast can be implemented securely. The same result
is achieved by Lipinska et al. in [LMRW20]. In fact [CGS02] and [Smi01] remark the con-
struction of a VQSS for t < n/4 with zero probability of error as an open problem and to
the best of our knowledge, this seems to still be the case at the time of writing.

In [BCG+06], the ideas of [CGS05] are used to devise a VQSS scheme with exponen-
tially low probability of error that is secure against an active adversary corrupting any
strict minority of parties, that is, t < n/2. Their result holds even in the presence of a
rushing adversary. Again, since the number of corrupted parties surpasses n/3, the ex-
istence of a classical broadcast channel is assumed. Similar to the reasoning above, we
conjecture that a strict minority of active corruptions is optimal due to the bounds on
approximate quantum cloning.

We have now compiled a list of feasibility results for both classical and quantum secret
sharing for different types of adversaries (passive or active, honest or dishonest dealer)
and with different requirements on the scheme itself (exact reconstruction or admitting
a small probability of error). Table 2.4 displays these results and shows the differences
between classical and quantum secret sharing schemes in most adversarial settings.

To summarise, we have observed in this section that classical and quantum secret
sharing schemes differ fundamentally with regard to the tolerance of adversaries with
different abilities, most importantly because of the quantum no-cloning theorem that, in
the case of secret sharing schemes, limits the capacities of quantum protocols. On the
other hand, we have also seen that classical and quantum protocols exhibit similar fea-
tures: for robust classical and quantum schemes as well as the more specific notion of
V(Q)SS we observed that allowing for a small probability of error during reconstruction
of the secret allows to drastically increase the number of tolerable corrupted parties. In
this work, we have focussed on feasibility in the broadest sense, disregarding efficiency
which in this case concerns communication complexity as well as share size. To find
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Scheme Classical Quantum

Threshold secret sharing t < n t < n
2

Robust secret sharing
with exact reconstruction

t < n
3 t < n

4

Robust secret sharing t < n
2 t < n

2

Verifiable secret sharing
with exact reconstruction

t < n
3 t < n

4

Verifiable secret sharing
with non-zero error

probability

t < n
3 (t < n

2 with
broadcast)

t < n
3 (t < n

2 with
broadcast)

Table 2.4: Feasibility of classical and quantum secret sharing with unconditional security. Except
for VQSS with zero error probability, all bounds are tight. t denotes the number of tolerable

corruptions (passive for threshold secret sharing, active else, compare also Table 2.2)).

out more about the efficiency of secret sharing in different adversarial models, we rec-
ommend consulting, e.g., [Bei11], [HLKB16], [MSV20], [Che19], [FGG+06] for classical
schemes or [SS19], [SS20] and [LMRW20] for quantum schemes.
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3. Multi-party quantum computation

In this final chapter, the focus will be on multi-party computation, in particular on multi-
party quantum computation. Classically, MPC protocols have been built on essentially
three different kinds of primitives: garbled circuits, homomorphic encryption and (verifi-
able) secret sharing (see, e.g., [Yao82], [AJL+12], [GMW87], [CDvdG87], [BGW88]). They
can be categorised by the different types of adversaries they can tolerate, and in particular
we can distinguish between computational and information-theoretical security. Security
for computationally bounded adversaries is based on the assumed computational hard-
ness of some problem, while information-theoretical (or unconditional) security makes
no assumption on the computational capacities of the adversary. In this work, we focus
on unconditionally secure protocols which are typically constructed from secret sharing
schemes. In Section 3.3 we will formalise this notion of security for MPQC protocols.

Recall the discussion in Section 2.1, showing that a linear secret sharing scheme can
be used to securely implement addition of secrets by having the parties locally add their
shares and that, with some additional work, multiplication of shares can be performed
securely as well. MPC protocols of this type are said to follow the share–compute–reveal
paradigm. All inputs of the participants are shared using a secret sharing scheme and
local computations effectively implement the computation on the underlying secrets. Af-
terwards, shares are gathered and the final output is reconstructed. In the following,
we discuss the quantum equivalent of (secret sharing-based) MPC, multi-party quantum
computation, and point out conceptual similarities and differences.

MPQC has first been introduced in 2002 in [CGS02], [Smi01] and since then, proto-
cols that essentially follow two types of constructions have been proposed. In [CGS02],
[BCG+06] and [LMRW20], information-theoretically secure MPQC protocols have been
proposed, while [DNS10], [DNS12] and [DGJ+20] achieve computationally secure MPQC
mainly using so-called quantum authentication codes. We focus on the former type of
information-theoretically secure protocols. [CGS02], [BCG+06] and [LMRW20] are all
based on VQSS schemes and this chapter will be devoted to analysing this approach fur-
ther. We will therefore introduce the computational model for quantum computations,
introduce important techniques for VQSS-based MPQC protocols and discuss the most
recent MPQC protocol in [LRW20] in more detail. In the final section, Section 3.4, we
discuss and compare feasibility results for MPC and MPQC.

3.1 Universal computation

Before diving into particular MPQC protocols, we need to clarify what computational
tasks we try to accomplish and how we model them. The focus of this work and the
discussed literature is that of arbitrary (quantum) computation as opposed to specific
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tasks in distributed quantum computation, for which better results in terms of efficiency
or privacy guarantees might be feasible.

The arithmetic circuit model

Classical MPC protocols are typically defined in the arithmetic circuit model in which ev-
ery function can be expressed in terms of addition and multiplication gates over some
pre-defined finite field F. In this model, each party i = 1, . . . , n is typically assumed to
provide some input xi ∈ F and the goal of the protocol is to compute some function
f : Fn → Fm on the inputs that consists of a number of internal addition and multiplica-
tion gates as well as additions and multiplications by constant values from F. Hence,
addition and multiplication gates are universal in the arithmetic circuit model, in the
sense that any MPC protocol that achieves to implement both addition and multiplica-
tion securely in a distributed manner can be used to compute arbitrary arithmetic circuits.
Considering arithmetic circuits comes without loss of generality, as it is known that any
computable function can be specified as a polynomial-size Boolean circuit, which in turn
can be simulated using an arithmetic circuit. See [CDN15], Section 3.3.1 for a detailed
introduction to the arithmetic circuit model.

Universal quantum computation

Similarly, in multi-party quantum computation, it is our goal to perform universal quan-
tum computation in a distributed, secure manner. In this context, a distributed quantum
computation has multiple quantum states as inputs that are provided by different parties
and some quantum state as its output. The goal of MPQC is to perform the computation
securely, that is, typically without sacrificing correctness of the computation, or leaking
information to some adversary that corrupts a certain subset of parties. In Section 3.3 we
specify the notion of security for MPQC protocols further.

We have already discussed a number of operations that can be performed on quan-
tum states, such as unitary evolution or measurement of the state, in Chapter 1. In this
section, we specify the model of computation that is often used for quantum compu-
tations further. In particular, we will consider the quantum circuit model of computation
first introduced by David Deutsch ([Deu89]), which at of the time of writing is the most
prominent and most widely studied model of quantum computation. The introduction
we provide in the following will be based mainly on [NC16], who also give a detailed
overview of further references on the topic.

In the quantum circuit model, the basic unit of computation is that of a qubit, i.e., a
two-dimensional quantum state. The state space therefore is a 2n-dimensional complex
Hilbert space in which product states of the form |x1, . . . , xn〉 with binary xi denote the
computational basis states of the state space, as discussed in Section 1.1. A quantum
circuit R is then comprised of a sequence of unitary gates acting on an arbitrary number
of qubits and single-qubit measurements in the computational basis. Finally, it is required
to be able to introduce quantum states (so-called ancilla qubits) in the computational 0
state |0n〉, often abbreviated as |0〉, into the circuit.

What is particularly important to discuss is the ability to perform arbitrary unitary
gates on the qubits. There are continuously many such gates and it would be impractical
to strive for being able to implement any gate with perfect precision. Instead, one focuses
on a certain subset of gates that are universal for quantum computation, which says that any
unitary operation may be approximated up to arbitrary accuracy by a sequence of gates
from that subset. The approximation error of a unitary V approximating another unitary
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U acting on the same state spaceH is defined as

E(U, V) := max
|ψ〉
‖(U −V) |ψ〉 ‖,

where the maximum is taken over all normalised states |ψ〉 ∈ H and ‖ · ‖ denotes the
norm induced by the inner product, ‖ |φ〉 ‖ =

√
〈φ|φ〉. In [NC16] it is shown that this

measure of error can indeed be understood as the difference in the measurement statistics
for any measurement and any state |ψ〉 after U or V are applied.

In order to achieve universal multi-party quantum computation of arbitrary quan-
tum circuits, one therefore needs to show that the designated MPQC protocol is suited
to implement the above mentioned functionalities in a secure, distributed manner. In
particular, it is typically shown that

(1) a universal set of unitary gates can be implemented,

(2) single-qubit measurement (in the computational basis) is possible, and;

(3) ancilla qubits in the state |0〉 can be prepared.

If we can perfom the above operations securely in the presence of a specified adver-
sary, then we can do so for arbitrary quantum computations. Note that by the principle of
deferred measurement1 we can postpone all measurements to the end of the circuit. There-
fore, when working in the quantum circuit model, we typically see that it is implicitly
assumed that the circuit itself consists only of gates from the universal set, as well as
the introduction of ancilla qubits, potentially followed by single-qubit measurements at
the end of the computation. We also note that the quantum circuit model is of sufficient
generality: as we have mentioned earlier, using qubits as the smallest unit of compu-
tation is rather a matter of convention (and possibly of physical implementation), since
qubits can be used to simulate higher-dimensional quantum states. Furthermore, restrict-
ing to unitary gates and orthogonal measurements comes without loss of generality, as
these, performed on an extended system using ancilla qubits, can be used to implement
arbitrary completely-positive trace-preserving maps and the most general forms of mea-
surement. For more information on the generality of the quantum circuit model, see, e.g.,
[Pre99].

Universal sets of unitaries

Various universal sets of gates are known. One prominent example is the set consisting
of all single qubit gates combined with the two-qubit CNOT gate discussed in Section
1.1. In fact, any unitary may be expressed exactly (as opposed to an approximation) as
a combination of these gates. Another example mentioned in [NC16] is that containing
the Hadamard gate, phase gate (denoted S or P), CNOT gate and T gate (also denoted
π/8 gate) which demonstrates that a discrete, in fact even a finite set of gates suffices
for arbitrarily accurate approximations of any unitary. Note, however, that no finite set
of gates is rich enough to implement arbitrary unitaries exactly ([Smi01]). Furthermore,
approximating circuits for any given unitary may require large numbers of gates from
the universal set (some gates are even known to require exponentially many gates for
approximation, see [NC16]). Thus, the choice of MPQC protocol with the accompanying
universal set of gates may well influence the efficiency of the computation. This dis-
cussion, however, is out of scope for this work, just like the discussion of complexity in

1The principle of deferred measurement tells us that any quantum circuit R can be represented as R =
P ◦ U , where P is a measurement, and U can be decomposed into unitary gates ([NC16], Section 4.4).
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classical MPC is. We also note that similar results for discrete sets of universal gates hold
for higher-dimensional quantum states, called qudits or qupits, as discussed in [ABO08].
[SI05] gives a succinct overview of universal sets of gates.

In order to achieve universal quantum computation, it would therefore suffice to be
able to implement any such universal set of gates (in addition to measurements and an-
cilla preparation). In the context of MPQC, certain sets of gates are known to be easily
realisable in a secure, distributed manner, especially for well-studied constructions based
on quantum error-correcting codes. The reasons for this are discussed in Section 3.2. One
particular set of gates that often occurs in this context is the set of Clifford gates, also
known as the Clifford group. The Clifford group contains a rich, but not a universal set
of gates. Due to its frequent occurrence in the literature of MPQC ([BCG+06], [DNS10],
[DNS12], [DGJ+20], [LRW20]) we will discuss some of its properties that will then be
used in the next section for an explicit example of an MPQC protocol.

Definition 3.1.1 (Clifford group). The Clifford group is defined as the set of unitary op-
erators acting on n qubits which fix the Pauli group Pn under conjugation. That is, the
Clifford group is defined as the normalizer, N(Pn) := {V ∈ U (2n) | VPnV† = Pn}, of
the Pauli group in the group of n-qubit unitaries U (2n).

The Clifford group indeed is a group, as the conjugation operation N 7→ UNU† is a
multiplicative group homomorphism,

MN 7→ UMNU† = (UMU†)(UNU†). (3.1)

The Clifford group, among others, contains the single-qubit Hadamard transform H, the
phase gate P, as well as the two-qubit controlled-NOT gate. In fact, the set of tensor prod-
ucts of these three unitaries generates the full Clifford group (Theorem 10.6 in [NC16]).
Being able to compute Clifford circuits, however, is in itself not of much value since by
the Gottesman–Knill theorem ([Got98a]) we know that any quantum circuit comprised
solely of preparation of computational basis states, unitary gates from the Clifford group,
as well as measurements in the computational basis, can be efficiently simulated classi-
cally.

As noted above, the set {H, P, CNOT, T}, i.e., the set of Clifford gates combined with
the T-gate, forms a universal set of gates, and it is frequently used in the literature on
MPQC. This universal set is typically denoted Clifford+T and we will adopt this nota-
tion. In fact, adding any non-Clifford gate to the Clifford group constitutes a universal
set of gates ([NRS01]), but in our context, simple gates such as the T gate are more well-
studied and techniques are known that facilitate the secure distributed implementation
of such gates. Without going into too much detail yet, we remark that for many MPQC
constructions, especially those based on quantum secret sharing and therefore quantum
error-correction techniques, implementing arbitrary Clifford gates as well as measure-
ments in a secure, distributed manner is cheap, and the difficulty lies in implementing
a gate that completes a universal set of gates. Thus, for implementing complementary
gates such as the T gate, additional techniques are required to overcome this obstacle.
The rich theory of fault-tolerant quantum computation (FTQC) provides means to under-
stand these difficulties as well as methods to study and implement secure, distributed
quantum computations.

3.2 Fault-tolerant quantum computation

While quantum error correction aims at coping with noise that might affect quantum
states, the theory of fault-tolerant quantum computation looks at the bigger picture and is
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concerned with finding methods that limit the effect of noise or faulty hardware on whole
quantum circuits, such as noise that might occur due to faulty measurements or quantum
gates. For instance, in order to implement a quantum circuit in a noisy environment, one
could encode the inputs using a quantum error-correcting code, and, for every quantum
gate in the circuit, decode the state, apply the gate, and encode it again afterwards. Such
an approach, however, could blow up the complexity of the circuit, might introduce new
errors during encoding or decoding, and leaves the decoded state prone to errors. In
FTQC, each gate or measurement in the original circuit is replaced by an encoded gate or
procedure that implements the desired operation on the underlying, encoded state directly
on the encoding itself. As for the theory of QEC, the quantum state that contains the
information, and that we want to perform a computation on is called the logical state
or logical qubit, while the qubits in which the state is encoded into are called physical
qubits. Hence, an encoded gate acts on the physical qubits and transforms them into an
encoding of the logical state on which the desired logical gate has acted, and similarly for
measurements.

An important property that such an encoded gate should have is that it prevents po-
tential errors from propagating to other qubits through the application of the gate. The
simplest example of this phenomenon is a CNOT gate with a control qubit and a target
qubit. If the control qubit is hit by an error, applying a CNOT gate to both qubits poten-
tially propagates the single initial error to both qubits, even though no additional noise
has occured. In order to prevent this, one tries to perform most computations locally,
that is, only within individual blocks of physical qubits. As a consequence, errors remain
local, correcting them remains feasible and so does successfully performing the overall
quantum computation.

FTQC for MPQC

Recall from the beginning of this chapter that some MPQC protocols follow a quantum
version of the share–compute–reveal paradigm, and that quantum error-correcting codes
can be used as quantum secret sharing schemes by treating the individual blocks of qubits
of the encoding as shares. As a result, we can transfer techniques from FTQC and quan-
tum error correction to the design of secret-sharing based MPQC protocols. The error
model in MPQC is quite different to that of FTQC: while in the latter, errors are typically
assumed to occur independently and randomly with some fixed probability, in MPQC we
have to assume that an active adversary strategically places errors through the corrupted
parties in the worst way possible. Nonetheless, techniques from fault-tolerant quantum
computation can be used for the design of MPQC protocols in a straightforward man-
ner. The most important technique in our context is that of transversality. We say that a
logical gate is transversal with respect to some quantum error-correcting code, if it can be
implemented by local operations on the encoding such that each operation only acts on
qubits within the same block. It is important to note that the transversal implementation
of a logical gate may not be a simple tensor product of the logical gate, but it may very
well be the case that unitaries different from the desired logical gate have to be applied
to the individual blocks, and similar for measurements. Accordingly, a logical version of
a quantum circuit R implements R on the logical qubits, but may apply different oper-
ations on the physical qubits. By contrast, we have observed that for instance for linear
secret sharing schemes, local addition of shares implements a “logical” addition of the
secrets.

Given a quantum secret sharing scheme based on an error-correcting code with which
the parties in an MPQC protocol shared their inputs, this would mean that in order to im-
plement some quantum gates on their inputs, each party can locally apply some suitable
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quantum gates on the shares in their possession. This is beneficial for the design of MPQC
protocols in two ways: potential errors introduced by the adversary cannot spread to par-
ties outside of the adversary’s control, and no additional communication between parties
is needed that might leak further information.

In the design of MPQC protocols that are based on quantum secret sharing schemes,
we can therefore draw on the theory of both quantum error correction and fault-tolerant
computation: many MPQC constructions realise a verifiable quantum secret sharing
scheme using a quantum error correcting code. For specific classes of QECCs it is well
known that certain sets of gates can be implemented transversally. However, for any
quantum error correcting code, it is impossible to perform universal quantum computa-
tion using only transversal gates, which is known as the Eastin–Knill theorem.

Theorem 3.2.1 (Eastin–Knill, [EK09]). There does not exist a quantum error-correcting code
for which a universal set of gates is transversal.

The Eastin–Knill theorem therefore also provides an intuition as to why for some
quantum error-correcting codes, a large class of gates (such as the Clifford gates) might be
applied transversally “out of the box”, while additional work or possibly further restric-
tions are required to complete a universal set of gates (e.g., Clifford + T). This distinction
between easy and difficult gates to implement therefore resembles that in classical MPC
between addition and multiplication as discussed, e.g., for Shamir’s scheme in Section
2.1.

We will see in the following section that for certain classes of codes, all Clifford gates
can be applied transversally. An additional gate such as the T gate completes the uni-
versal set and the theory of FTQC provides techniques to apply the T gate using Clifford
gates and measurements using so-called gate teleportation. The basic idea of gate tele-
portation is to apply a quantum gate to a quantum state through quantum teleportation
([GC99]). More concretely, in order to effectively implement the T gate on some arbitrary
qubit |ψ〉, one prepares the so-called magic state |m〉 := 1√

2
(|0〉 + eiπ/4 |1〉), performs a

CNOT gate with |m〉 as control and |ψ〉 as target, and then measures |ψ〉. Depending
on the classical measurement outcome, a correction operation is applied to the ancilla,
resulting in the desired state T |ψ〉. The corresponding quantum circuit is depicted in
Figure 3.1.

|ψ〉

|m〉 • I or XP† T |ψ〉

Figure 3.1: Quantum circuit describing gate teleportation for the T gate for some arbitrary initial
state |ψ〉. Single wires describe quantum wires while the double wires are classical and corre-

spond to the classical measurement outcome.

This technique reduces the problem of implementing a T gate on some arbitrary state
to that of preparing the magic state 1√

2
(|0〉+ eiπ/4 |1〉). Note that other magic states ex-

ist that can be used for gate teleportation of gates other than the T gate. In particu-
lar in the context of MPQC, this technique is sometimes used to implement the T gate,
given that measurements in the computational basis can be performed securely in a dis-
tributed manner and (classically controlled) Clifford gates can be performed transver-
sally. The magic state is independent of the initial state |ψ〉, meaning that preparation
of such states can be pushed to an offline phase before executing the MPQC protocol
(given that we have sufficient capacities to store them reliably). Choosing an appropriate
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quantum error-correcting, for which, e.g., the Clifford group is known to be transversal,
therefore concentrates most of the remaining difficulty on finding a way to implement an
additional gate, such as the T gate, securely.

3.3 On VQSS-based MPQC protocols

As noted earlier, one of the main goals of this work is to dissect and analyse the contruc-
tion of information-theoretically secure MPQC protocols from verifiable quantum secret
sharing schemes and compare these with classical constructions. In the classical case,
multiple constructions for information-theoretically secure MPC exist (e.g. [BGW88],
[CCD88], [Bea89]) and they typically follow the same approach: one uses linear secret
sharing scheme (in the case of active security, this is chosen to be a verifiable secret shar-
ing scheme) and shows that both addition and multiplication of inputs can be realised
through operations on the shares of the scheme, as these gates form a universal set. Af-
terwards, shares are collected and the function output is reconstructed, typically apply-
ing techniques from error-correction. By linearity of the secret sharing scheme, addition
typically is the “easy” part as it is inherently satisfied, while multiplication requires some
work and, for example, imposes restrictions on the number of corrupted parties (Section
2.1) or requires the successful completion of an offline-phase before the protocol ([Bea91]).
We will see that for quantum protocols, similar heuristics apply, and devote this section
to discussing a recent proposal for a multi-party quantum protocol based on verifiable
quantum secret sharing given by Lipinska, Ribeiro and Wehner [LRW20].

Recall from the introduction that in classical MPC, the goal is to find a protocol
that lets some n parties jointly compute some function on their private inputs. Each
party is typically assumed to provide some input xi ∈ F, and the goal is to compute
f (x1, . . . , xn) = y ∈ Fm for some m, such that each party receives the output y. More gen-
erally, one can require that selected parties obtain parts of the full output y = (y1, . . . , ym) ∈
Fm, for instance some yi. Note that the latter approach implies the former. Despite the
presence of an adversary with some pre-defined abilities corrupting a certain set of par-
ticipants, the protocol should remain correct and private. Correctness implies that despite
the actions of the adversary, the honest parties obtain the correct output of the compu-
tation. Privacy implies that the adversary does not learn anything on the honest parties’
inputs but what can be inferred from the (adversary’s) output of the computation. A for-
mal definition of correctness and privacy of MPC protocols can be found in [CDN15]. In
the current literature on MPQC, we find a subtle difference in the desired functionality.

[CGS02] and subsequent work define the goal of MPQC protocols as follows: in a
network of n parties 1, . . . , n, each party starts off with one, possibly unknown quantum
state ρi. The parties then jointly perform some arbitrary quantum circuit R on their in-
puts, resulting in some global output state ω. Recall that due to the no-cloning theorem,
for arbitrary quantum circuits we cannot hope for all parties to hold a copy of the output
state at the end of the computation. Instead, after executing the protocol, each party is
supposed to hold the i-th part ωi of the output. At least for the task of multi-party quan-
tum computation, we then require the following to hold despite the presence of an active
adversary controlling some t < n parties:

• Correctness and Soundness: The adversary cannot affect the outcome of the com-
putation for the honest parties beyond the ability to choose the corrupted parties’
inputs.
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• Privacy: The adversary does not learn anything about the privat inputs or outputs
of the honest parties beyond what can be inferred from the adversary’s own input
and output.

This is in contrast to classical MPC, where it is commonly assumed that all parties ob-
tain the full output of the computation. However, it is possible to use an MPQC protocol
to simulate classical MPC, since any classical computation can be simulated by a quan-
tum circuit, and we can in fact clone computational basis states (representing classical
values, e.g., in F) using only CNOTs, as noted below Theorem 1.1.2.

More formally, the authors of [LRW20] base their security definition for MPQC pro-
tocols on the work of [Unr10], [Can01], [MR92] and [Bea92], using a simulator-based
security definition (Definition 3.3.1). The general idea is that a protocol is considered se-
cure, if one cannot distinguish between a real execution of the MPQC protocol and that
of an ideal MPQC protocol. Here, the real protocol could for example correspond to the
MPQC protocol outlined at the end of this section, Protocol 4.

In the ideal model, all parties interact with an incorruptible oracle that perfectly im-
plements the MPQC task. More specifically, all honest parties only interact with the or-
acle in a simple manner: they forward their input of the computation to the oracle, and
later output whatever they receive from the oracle. The corrupted parties can apply any
joint operation to their inputs before sending them to the oracle and similarly can apply
arbitrary operations to their inputs after receiving them back from the oracle and before
outputting a state.

As in the previous chapters, we consider a computationally unbounded, static quan-
tum adversaryA that selects up to t parties that she has complete control over. We denote
the adversary in the real protocol by Areal and that in the ideal protocol by Aideal . Then
we denote an MPQC protocol as ε-secure, if it satisfies the following property.

Definition 3.3.1 (ε-security of MPQC protocols, according to [LRW20]). We say that an
MPQC protocol Π is ε-secure if, for any input state ρ and any real adversary Areal , there
exists an ideal adversary Aideal , such that the output state ωreal := Πreal(ρ) of the real
protocol is ε-close with respect to the trace distance (Def. 1.1.7) to the output of the ideal
protocol ωideal := Πideal(ρ),

1
2‖ωreal −ωideal‖1 ≤ ε.

Note that proving security according to Definition 3.3.1 automatically proves correct-
ness, soundness and privacy for MPQC protocols as defined in the beginning of this sec-
tion. We remark that the security of an MPQC protocol proven according to Definition
3.3.1 follows the paradigm of sequential composability as opposed to the stronger notion of
universal composability. The former guarantees that the protocol remains secure under se-
quential composition of the protocol, while universal composability guarantees security
under concurrent execution with arbitrary other protocols (see [Lin17]).

Comparison to previous work

To the best of our knowledge, there exist three protocols that achieve universal multi-
party quantum computation based on secret sharing techniques in a setting similar to
ours (assuming, for example, a complete and private network for classical and quantum
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communication, no trusted third party, the possibility to compute arbitrary quantum cir-
cuits, etc.).2 In [CGS02], the task of multi-party quantum computation is first introduced.
A verifiable quantum secret sharing scheme based on a quantum error-correcting code is
proposed and it is shown how to implement a universal set of gates, ancilla preparation
and measurements on the shares held by the different parties securely. In [BCG+06], the
authors use quantum authentication codes and approximate quantum error-correcting
codes ([CGS05]) to construct a verifiable secret sharing scheme and then show how to
securely implement a universal set of gates. Recently, Lipinska et al. proposed an MPQC
scheme based on [CGS02] with the aim of improving the efficiency of the earlier protocol.

Due to the fact that the first and the most recent protocol, [CGS02] and [LRW20], are
closely related and conceptually slightly differ from [BCG+06], we focus on the former
two and start with a high-level discussion of some of their similarities and differences.

In both works, before running the protocol, the parties fix a quantum error-correcting
code C that forms the basis of their VQSS scheme. This will be a so-called Calderbank–
Shor–Steane (CSS) code C with n-dimensional codewords as well as certain additional
properties. Each party encodes their input state using C, thus creating n shares, and
sends one to each of the other parties, keeping one for themselves. The parties then
jointly verify the encoding of each input using the verification procedure of the VQSS
scheme. To compute some quantum circuit R on their inputs, they perform local op-
erations on their shares to evaluate a logical version of the circuit. Finally, each party
receives the shares corresponding to their part of the output and locally reconstructs ωi
using the error-recovery and decoding procedures of the code C.

One important difference between the two protocols is the “unit of computation”:
Crépeau et al. ([CGS02]) work with p-dimensional quantum systems for prime p, for
which the set {|a〉 | a ∈ Zp} forms a basis, while Lipinska et al. ([LRW20]) work with sin-
gle qubits. In this work we have generally focussed on the latter formalism and have for
example discussed universal computation in terms of single and two-qubit gates. Note
that we can always simulate higher-dimensional systems using qubits. The universal set
of gates ([ABO08]) that is used in [CGS02] is defined on p-dimensional computational
basis states, while Lipinska et al. use the set Clifford+T that is defined on single and
two-qubit states.

In both protocols, the quantum operations necessary for universal quantum compu-
tation can be split into transversal and “almost transversal” operations, as the authors in-
formally put it. The transversal operations can be implemented through local operations
by the participants that do not require any communication by properties of the quantum
error-correcting code C that is used. The respective operations are listed in Table 3.1.
The “almost transversal” operations require some additional effort by the parties. For
instance, a logical measurement may be implemented using just classical communication
and local computations, or the implementation of a gate that does not have a transversal
implementation may be reduced to the preparation and verification of a special ancilla
state. In essence, for both protocols the hardness of implementing universal multi-party
quantum computation is reduced to finding a secure distributed implementation of a
gate that completes a universal set. In [CGS02], this is the (generalized) Toffoli gate while
in [LRW20], it is the T gate. On a high level, these can be thought of as the quantum
equivalent of a multiplication gate in classical MPC and we see that, in contrast to the
classical case, various different approaches and gates exist. Some of the main similarities
and differences between the two protocols can be found in Table 3.1.

2For example, [SGW20] uses Shamir’s scheme to share classical information and assumes the existence
of a trusted server that aids in the sharing and computation phase.
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Phase Techniques Crépeau, Gottesman,
Smith ’02

Lipinska, Ribeiro,
Wehner ’20

Sharing &
Verification

Unit of
computation

p-dimensional for
prime p 2-dimensional (qubit)

VQSS CSS code (Reed–Solomon
code) CSS code

3 encoding-levels 2 encoding-levels

Computation Transversal gates Xc, (c− X), Sc, Zc Clifford group

“Almost
transversal”

Fr, Toffoli,
measurement, ancilla

verification

T, measurement, ancilla
verification

Reconstruction Collect shares and
decode

Error-correction
procedure and decoder

of CSS code

Error-correction
procedure and decoder

of CSS code

Table 3.1: Comparison of some key characteristics of the MPQC protocols proposed in [CGS02]
and [LRW20].

In the following, we will discuss the protocol proposed by Lipinska et al. in [LRW20]
in some more detail and analyse the mechanisms at play. Our choice of this example is
motivated by the fact that [LRW20] is the more recent paper and is based on [CGS02]. It
uses single qubits instead of higher-dimensional states and claims to achieve better secu-
rity guarantees. However, we note that we found some issues regarding the distributed
implementation of the T gate in [LRW20] that at the time of writing remain unsolved. In
personal communication with the authors, the inconsistency has been confirmed and it
has been announced that a fix will soon be published.

MPQC with few qubits ([LRW20])

In the following, we will consider each party’s input ρi to be a single qubit state, as do
[LRW20]. Recall from Section 3.1 that a universal set of gates can be used to approximate
any quantum circuit arbitrarily close and that by the principle of deferred measurement,
all measurements can be moved to the end of the circuit. We therefore assume w.l.o.g.
that any quantum circuit R on up to n inputs be composed of gates from the univer-
sal set (in this case the set Clifford+T) and that any party can locally apply all gates in
that universal set. The assumptions that are made on the network are that each pair
of participants is connected via both classical and quantum private and authenticated
communication channels ([Can04], [BCG+02]) and that all parties have access to an au-
thenticated classical broadcast channel ([CGI+99]) and a public source of randomness.
Note that we will at any point in the following assume that the number of corrupted
parties is restricted by t < n/4 (< n/3) so that the former is feasible (Section 2.6), while
the latter can be implemented via a classical MPC protocol (e.g., [RB89]). With respect to
the security of classical protocols against quantum adversaries such as the classical MPC
used as a subroutine here, [BCG+06] notes that universally composable classical proto-
cols remain secure in the quantum universal composability model, as established by the
works of [Can01], [KLR10] and [Unr10]3.

3We remark that in a recent work on computationally secure MPQC by Dulek et al. ([DGJ+20]), the in-
stantiation of a post-quantum secure classical MPC was left as an open problem and that only very recently,
the first such protocol has been proposed in the setting of computational security in [ABG+20].
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In their paper [LRW20], Lipinska et al. additionally assume that each party can locally
process O(n2) qubits. For the sake of completeness, we therefore add this assumption,
as well as the assumption that each party can process and store classical information per-
fectly, even though our focus in this work is not the efficiency of any particular protocol.
As mentioned above, we assume the adversary to corrupt some t < n parties actively, al-
lowing them to perform arbitrary (joint) quantum operations on their joint state, possibly
including quantum side information. Thus, no computational assumptions are made on
the adversary. Lastly, we assume the adversary to statically corrupt some chosen parties,
meaning that the corrupted parties are determined at the beginning of the protocol and
stay fixed during the execution.

Throughout this section we will see how various results of the previous chapters flow
into the construction and help us understand the different techniques. In the following,
the different ingredients and subroutines for the protocol will be discussed before giving
a final succinct description of the protocol.

High-level description of the protocol

The construction in [LRW20] follows the high-level description outlined at the beginning
of this section. The parties agree on a CSS quantum error-correcting code C, and share
and verify their inputs using the VQSS proposed in [LMRW20]. They compute a logi-
cal version of the circuit R before sending their shares to the designated recipient within
participants, who then reconstructs her part of the output of R using error-recovery tech-
niques of C.

One important detail to be aware of is that throughout the protocol, a public set B is
used to accumulate the positions of apparent cheaters, that is, indices of players for which
erroneous behaviour (such as faulty sharings) has been detected. If B contains more than
t apparent cheaters, the protocol aborts. This allows the adversary to force an abort of
the protocol by introducing sufficiently many errors. Thus, in any of the following sub-
routines, the set B can be assumed to contain the indices of apparent cheaters of previous
subroutines. B is initiated as an empty set at the beginning of the protocol, and is first
used during the sharing phase of the parties’ inputs using the VQSS scheme.

We will now introduce the different ingredients and subroutines of the above outline
of the protocol. In particular, we will discuss:

I. CSS codes;

II. transversal operations for CSS codes;

III. some aspects of the VQSS;

IV. ancilla preparation;

V. a protocol for distributed gate teleportation, and;

VI. a protocol for the verification of magic states.

I. CSS codes

CSS codes, owing their name to their inventors Robert Calderbank, Peter Shor and An-
drew Steane ([Ste96], [CS96]) are quantum error-correcting codes that draw on the theory
of classical error-correcting codes. A CSS code C is defined by two classical binary linear
codes V and W for which the dual code V⊥ of V satisfies V⊥ ⊆ W. Then C, sometimes
also denoted by CSS(V, W), can informally be defined as C := V ∩FW, the set of n-qubit
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states that yield a classical codeword in V when measured in the standard basis, and a
codeword in W when measured in the Fourier basis4.

CSS codes are part of the larger class of quantum error-correcting codes called stabi-
lizer codes. The stabilizer formalism was developed by Daniel Gottesman [Got96] and we
refer the reader to sources such as [Got06] or [NC16] for a more in-depth introduction.
Even though stabilizer codes are less general than arbitrary quantum error-correcting
codes, their mathematical structure helps studying their properties. Instead of defining
the quantum error-correcting code by means of an encoding procedure, stabilizer codes
are defined by a stabilizer S that is an abelian subgroup of the Pauli group Pn acting on
n qubits.

Definition 3.3.2 (Stabilizer code). Let S ⊆ Pn be an abelian subgroup of the Pauli group
that does not contain −I or ±iI. Let C(S) := {|ψ〉 : M |ψ〉 = |ψ〉 ∀M ∈ S}. Then C(S)
is a stabilizer code and S is its stablizer.

By definition, the codewords of a stabilizer code are exactly those states that are in the
+1–eigenspace of all elements of the stabilizer. An error E acting on a codeword moves
the codeword into the −1–eigenspace of any stabilizer element that anticommutes with E:
two operators U and V are said to anticommute if UV = −VU. Therefore, for an error E
and a stabilizer element M we have

M(E |ψ〉) = −EM |ψ〉 = −E |ψ〉 .

Thus, measuring the eigenvalues of the elements M ∈ S gives us information about the
error that occured. The full set of eigenvalues resulting from such a measurement can
be represented as a binary vector and is called the error syndrome, similar to what was
discussed in Section 2.5.1. Note that the error syndrome does not reveal any information
about the codeword but only about the error that occured.

In the stabilizer formalism, CSS codes are defined as follows. Recall from Definition
2.2.3 that for a binary classical [n, k, d] linear code, the parity check matrix H is a (n −
k)× n binary matrix and every classical codeword v must satisfy Hv = 0. Now, as noted
above, a CSS code is defined by two binary linear codes V and W with parity check
matrices HV and HW . Then we can define a stabilizer of a quantum code by converting
the rows of the two parity matrices into Pauli operators as follows: for each row in each
matrix, replace each 0 by an identity matrix. For rows in HV replace each 1 with a Z
operator, while replacing each 1 in HW by an X operator. Using this construction, the Z
generators (obtained from HV) provide the ability to correct bit flip (X) errors, while the
X generators can be used to correct phase flip errors (Z).

Definition 3.3.3 (CSS code). Let V be an [n, k1, d1] binary linear code with associated
parity check matrix H1, and let W be an [n, k2, d2] binary linear code with parity check
matrix H2 such that V⊥ ⊆ W. Then transforming the rows of the parity check matrices
H1 and H2 as described above defines the stabilizer generators of a [[n, k1 + k2 − n, k]]
stabilizer code, that is, a quantum error-correcting code that encodes k1 + k2 − n qubits
into n qubits and minimum distance k, where k ≥ min(d1, d2).

4The Fourier basis is the basis of n qubit states given by applying the Fourier-transform F to the standard
basis given by { |j〉 | j = 0, . . . , n− 1},

F |j〉 :=
1√
2n

2n−1

∑
k=0

ω jk |k〉 , where ω = exp2πi/2n
.

Recall from Section 1 that for n = 2 the standard single qubit basis is given by {|0〉 , |1〉} and the Fourier
basis by {|+〉 , |−〉}.
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In the above definition, the condition V⊥ ⊆ W ensures that the stabilizer elements
commute. An example of a CSS code is Shor’s 9–qubit code discussed in Section 2.5.1,
with its stabilizer generators given be the observables sketched in that section. Another
famous example is Steane’s 7-qubit code, which, as we will see in this section, has the
properties required for Lipinska et al.’s MPQC construction. Its stabilizer is derived from
the parity check matrix H of the [7, 4, 3] Hamming code (Section 2.2) for both V and W,
and the resulting stabilizer is depicted in Table 3.2.

H :=


1 0 1 0 1 0 1

0 1 1 0 0 1 1

0 0 0 1 1 1 1



Element Operator

S1 XIXIXIX

S2 IXXIIXX

S3 I I IXXXX

S4 ZIZIZIZ

S5 IZZIIZZ

S6 I I IZZZZ

Table 3.2: Parity check matrix of the [7, 4, 3] Hamming code and the corresponding generators of
the stabilizer of Steane’s 7-qubit code.

II. Transversal operations for CSS codes

For any CSS code, certain logical gates can always be implemented transversally. In
the following, we list some of the most important ones. The following description of
transversal gates is with respect to a single layer of encoding using a fixed CSS code C.
However, as noted in Table 3.1, the MPQC protocol in [LRW20] and in particular the un-
derlying VQSS scheme ([LMRW20]) use a two-layer encoding, such that each share of a
secret is again secret-shared among the parties using the same code C, as explained in
more detail in the next subsection. Regarding the application of transversal gates, how-
ever, this does not change much: to implement a certain logical gate U, each party locally
applies those gates that correspond to a transversal implementation of U in the first layer
of encoding. Hence, in this section it is sufficient to discuss transversal gates for one
layer of encoding, since in the VQSS scheme, both layers of encoding are performed us-
ing the same code C. For a detailed discussion on what the transversal implementations
of the following logical operations are, we refer the interested reader to [Got96], [Got06]
or [NC16].

• Pauli gates: any operator in the Pauli group can be implemented transversally
by locally applying Pauli gates for any stabilizer code [Got06]. Note again that the
transversal implementation of some Pauli gate U is not necessarily U⊗n, but might
be the tensor product of some other single qubit gates.5

• CNOT: The logical CNOT gate between two logical qubits is transversal for any
CSS code ([Got98b]) and can be implemented by applying CNOT gates to the cor-
responding qubits in the encodings of two different states.

5The transversal implementation (if possible) of any specific logical gate often involves some choice, as a
stabilizer code is defined only as a code space, instead of defining a mapping that determines the encoded
basis vectors ¯|0〉 and ¯|1〉 ([Got98b]). Moreover, any encoded operation on codewords of a stabilizer code is
only unique up to multiplication by elements in the stabilizer, since for any operation E, any element M ∈ S
and any codeword |ψ〉, we have ME |ψ〉 = M |ψ〉.
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Intuitively, multi-qubit gates such as the two-qubit CNOT gate should be prone to
errors propagating “through the gate”, as discussed in Section 3.2. The fact that any CSS
code allows for a transversal implementation of the CNOT gate is one of the reasons
that these codes are frequently used in the context of fault-tolerant computation as well
as multi-party quantum computation ([CGS02], [LRW20]). Indeed, it can be shown that
CSS codes are the only type of codes from the larger class of stabilizer codes that allow
for a transversal CNOT implementation ([Got98b]). Figure 3.2 illustrates what we mean
by applying CNOT gates transversally, i.e., qubit-wise, to the physical qubits.

ρ̄1 •
ρ̄2 •
ρ̄3 •
ρ̄4 •
ρ̄5 •
ρ̄6 •
ρ̄7 •

σ̄1

σ̄2

σ̄3

σ̄4

σ̄5

σ̄6

σ̄7

Figure 3.2: Transversal implementation of the logical CNOT gate for Steane’s 7-qubit code on two
encoded logical qubits ρ̄ and σ̄. Here, ρ̄i (and σ̄i, respectively) denotes the single-qubit share of
the encoding of ρ̄ (and σ̄) held by player i. We see that all operations can be performed locally by

player i on her shares.

In addition to the code C being a CSS code encoding single qubits, Lipinska et al. require
the following two properties:

(1) C uses the same classical code to correct X and Z errors, that is, V = W.

(2) The weight6 of the stabilizer generators of C is a multiple of 4, and the encoded
Pauli operators X̄ and Z̄ have weight 1 mod 4, or 3 mod 4.

Condition (1) ensures that the logical Hadamard gate H can be applied transversally
by having the players locally apply H on their single-qubit shares, while condition (2)
guarantees that the phase gate P can be applied transversally ([Got98b]).

Given a CSS code with the additional properties outlined above, we therefore see that
we can implement the logical gates H, P and CNOT by having all parties apply local
operations without requiring any communication. An example of such a code is given
by the 7-qubit code. By definition, it fulfills property (1), and we see from Table 3.2 that
each stabilizer generator has weight 4. Furthermore, the logical Pauli operators X and Z
can be implemented transversally by applying X⊗7 and Z⊗7, respectively, to the physical
qubits. Both operators have weight 3 mod 4.

As discussed in the previous section, these gates generate the Clifford group, so at
this point, any quantum circuit composed of Clifford gates can be computed by applying

6Recall from Section 2.5.1 that the weight of a Pauli operator denotes the number of non-identity tensors
in the tensor product.
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the transversal operations on the shares. In order to complete this set to a universal set of
gates, Lipinska et al. give a protocol for distributed T-gate teleportation similar to what
we described above, as we will see in part V of this section.

Finally, we already mentioned in Table 3.1 that in [LRW20], measurements in the
computational basis are considered “almost transversal”. What this means is that for
any CSS code, a logical measurement, that is, a measurement of the logical qubit, can
be performed by having the parties locally measure their shares, and broadcasting their
classical measurement outcome. For a CSS code based on classical codes V and W, the
encoding of a computational basis state is an equal superposition of all the words in some
particular coset of W⊥, such as ∑y∈W⊥ |x + y〉 /

√
|W⊥| for some x ∈ V. Measuring all n

qubits in such a codeword individually, in the computational basis, therefore gives a clas-
sical codeword in form of a binary string from that particular coset of W⊥. Broadcasting
the individual measurement results (in form of bits) allows the parties to locally recon-
struct the outcome of the logical measurement using the error correction and decoding
procedures of the underlying classical codes. Similarly, measuring the encoding of a su-
perposition of computational basis states α0 |0〉+ α1 |1〉 yields the coset corresponding to
|b〉 with probability |αb|2.

This operation is not transversal since it requires classical communication of the mea-
surement outcomes. However, note that by properties of the broadcast channel (Def.
2.8.1), corrupted parties cannot communicate differing measurement outcomes to dif-
ferent parties and by properties of the classical error-correcting codes, all honest parties
reconstruct the same logical measurement outcome. In the MPQC protocol, including the
VQSS protocol, we will see that these “almost transversal” measurements are exclusively
used for measuring ancilla qubits that are independent of the parties’ inputs or any in-
termediate computations and therefore neither reveal any information to the adversary
other than what she can already deduce from the shares in her possession, nor do they
disturb these states. See also [LMRW20], [Smi01] and [CGS02] for further information.

III. The VQSS scheme

In this section, we discuss some details of the VQSS used in [LRW20]. The scheme was
first introduced by Crépeau, Gottesman and Smith in [CGS02] and was subsequently
modified so as to require less qubits of workspace per participant in [LMRW20]. An
outline of the VQSS scheme can be found in Protocol 1.

Recall that a quantum error-correcting code with distance d corrects at most b d−1
2 c

errors, so that the above VQSS scheme tolerates at most t ≤ b d−1
2 c <

1
4 active corruptions.

As described in Protocol 1, the parties create a double-encoding of each input ρ. We
denote the double-encoded global state jointly held by the parties as ¯̄Ψ. We will follow
[LRW20] and use the index i = 1, . . . , n to denote the encoding performed by party i,
while l = 1, . . . , n is used to denote the share held by party l. Thus, ¯̄Ψil denotes the share
of the encoding done by i that is in possession of party l.

The verification of the encoding of an input ρ is described in detail in [LMRW20] and,
for the sake of brevity, we will omit a full description here, but will focus on the essential
steps. To verify an encoding, ancilla qubits are encoded with the same CSS code C. Joint
operations are performed on certain shares of the encoded input and ancillas that are se-
lected using the public source of randomness. The ancillas are measured and the classical
outcomes are broadcasted. Thus, the VQSS is one instance in the MPQC protocol where
the assumptions of a public source of randomness and a classical broadcast channel are
used.

The measurement outcomes of CSS-encoded states produce codewords in the clas-
sical code V when measured in the standard basis (W when measured in the Fourier
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Protocol 1 (VQSS in [LRW20], based on [CGS02], [LMRW20])
Input: Single-qubit state ρ of the dealer D, an [[n, 1, d]] CSS code C.
Output: An encoding of ρ, encoded twice with C, each party holding n single-qubit
shares of the encoding. A public set B′ containing positions of apparent cheaters in
the first level of encoding.

1. Sharing:
The dealer D encodes her input ρ using the encoding procedure of C, creating
n single-qubit shares, and sends the shares of the encoding to the other parties,
keeping one for herself. Then, each party again encodes each share they re-
ceived using the same code C, and sends the resulting n shares to the other par-
ties. At this point, each party holds n single-qubit shares for each single-qubit
input of a party in the protocol. A visualisation of the two-layered encoding
for some single input can be seen in Figure 3.3.

2. Verification:
The participants jointly verify that the encoding was performed correctly, that
is, that the sharing corresponds to a codeword of C. During the verification
procedure, a public set B′ is constructed in which a set of apparent cheaters that
correspond to positions of faulty shares in the first layer of encoding. The veri-
fication procedure is iterated s2 + 2s times, with s denoting the security param-
eter.

basis), so that applying an error correction procedure of the classical code allows the par-
ties to identify shares in the first level of encoding that carry errors. These positions are
recorded in the public set B′ of apparent cheaters. The size of B′ determines whether
the sharing is accepted or rejected. If |B′| ≤ t, the dealer passes the verification phase.
Indeed, note that in the first layer of encoding, there is no way to tell apart any errors
introduced by corrupted parties from those introduced by the dealer. If after the verifica-
tion procedure there are more than t apparent cheaters in the first encoding-layer, that is,
|B′| > t, the sharing is rejected. For the MPQC protocol, Protocol 4, this means that the
protocol aborts.

Now, since we assumed that there are at most t corrupted parties, these can introduce
at most t errors in each second-level encoding after the verification phase. Therefore,
we know that if the dealer passes the verification, then we can correct errors at both the
first and second level of encoding so that at the end of the protocol, there will be a state to
reconstruct. Using the verification procedure explained in detail in [LMRW20], preparing
and measuring ancilla qubits is repeated s2 + 2s times, s being the security parameter. The
security parameter s determines the probability with which a dishonest dealer is caught
(the soundness of the VQSS), which is given by 1− 2−Ω(s) ([LMRW20], Lemma 1).

In the context of the MPQC protocol, the VQSS scheme is used for the sharing and
verification of any inputs such as the initial inputs of the parties as well as for introducing
ancilla qubits into the circuit. Thus, if the VQSS protocol is used at any intermediate stage
of the circuit, the set of apparent cheaters B′ resulting from an execution of Protocol 1 is
used to update the global set of apparent cheaters of the MPQC protocol.

As remarked earlier, the adversary can force the protocol to abort by having a cor-
rupted party provide a faulty sharing of their input, or introducing too many errors
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ρ1

first-level encoding

second-level encoding

P1

P1 P2 P3 P4 P5 P6 P7

P2

P1 P2 P3 P4 P5 P6 P7

P3

P1 P2 P3 P4 P5 P6 P7

P4
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P6
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¯̄Ψ1

Figure 3.3: Schematic overview of the two-layered encoding of some single-qubit input ρ1 held
by party P1, as seen in [LMRW20]. The global state after the second layer of encoding is denoted
by ¯̄Ψ1. The colours represent the player that performs the encoding, or holds the final physical

qubit, and each dot represents a single-qubit share.

through the corrupted parties. Lipinska et al. note that introducing the possibility of
an abort allowed their construction to drastically reduce the amount of quantum com-
munication needed for the VQSS protocol. In [LRW20], they also discuss an approach
that would allow to remove the abort event at the cost of more quantum communication,
using ideas of [CGS02].

IV. Verification of logical 0

Part of the quantum circuit model for universal computation that is considered in this
work is the ability to introduce ancilla qubits in the logical 0 state, ¯̄|0〉 in our notation,
into the circuit. Lipinska et al. note that verifying whether a shared state is the logical 0
can be achieved using the VQSS without much further work. As we will see in the final
overview of the MPQC protocol, the idea is that a party that has not been recorded as
an apparent cheater is chosen at random using the public source of randomness, who
then prepares a sharing of the logical 0. The parties jointly verify that the shared state
indeed is ¯̄|0〉 by checking whether the classical measurement outcomes produced by the
VQSS all reconstruct to 0, see [CGS02], [Smi01], [LMRW20]. Note that if the measurement
outcomes do reconstruct to 0, then the post-measurement encoded state is ¯̄|0〉, too. The
modified verification procedure for ancilla qubits will be denoted by VQSS(0).

V. Distributed gate teleportation

We have discussed in the previous section that the set Clifford+T is universal and in
Part II of the current section we have seen that Clifford operations are transversal by
properties of the chosen CSS code C. In [LRW20], Lipinska et al. give a distributed version
of the circuit depicted in Figure 3.1 for implementing the T gate on some single qubit.
The underlying idea is that all gates and measurements in 3.1 are transversal for C, thus
reducing the problem of performing a T gate to the verification of the encoded magic
state ¯̄|m〉 that we will see in Part VI.

More specifically, the protocol for distributed gate teleportation works as follows (see
Protocol 2). We assume the double-encoded input states ¯̄Ψ and ¯̄|m〉 to be shared by the
same dealer D. All parties jointly apply the transversal implementation of the logical
CNOT gate with ¯̄Ψ as control and ¯̄|m〉 as target. The parties measure their shares of the
target qubit in the standard (Z) basis, and announce the measurement outcome using
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the classical broadcast channel. They publicly check whether the measurement has col-
lapsed the state to an encoded ¯̄|0〉 or ¯̄|1〉 by using the classical decoder associated to the
underlying classical code of C = CSS(V, V) twice, and checking whether the string of
measurement outcomes reconstructs to 0 or 1. If the outcome is 0, no correction is neces-
sary, while if the outcome is 1, the Clifford gate XP† is applied transversally to the control
qubit (note that XP† ∈ Clifford because of the group structure and X = HP2H).

Protocol 2 (Distributed gate teleportation, denoted GTele.)
Input: ¯̄Ψ, ¯̄|m〉 shared by D and verified by the parties using VQSS (Protocol 1). Set of
apparent cheaters B resulting from verification of ¯̄Ψ and ¯̄|m〉.
Output: Logical T gate applied to logical input state, T( ¯̄Ψ).

1. Transversal CNOT: each party l, for shares coming from party i:

(a) applies CNOT with ¯̄|m〉il
as control and ¯̄Ψil as target;

(b) measures the target qubit in the Z basis and broadcasts the classical result.

2. The broadcasted classical values yield words vi. The parties publicly check at
which positions errors occurred, using the decoder of the classical code under-
lying C and update B with new apparent cheaters. They decode and obtain a
classical value a:

(a) If a = 0, no correction is applied.

(b) If a = 1, the parties transversally apply the logical XP† to the control
qubit.

VI. Magic state verification

We now discuss the final missing ingredient for completing the MPQC protocol: the veri-
fication of the magic state that allows the parties to jointly and securely compute T gates.
As noted earlier, this is the part in [LRW20] that currently contains some inconsistencies
and for which the authors have announced to have found a fix in personal communica-
tion. We present the intended verification mechanism as described in the original paper,
[LRW20], and point out open questions.

In [LRW20], verifying that the state shared by some dealer D indeed is a sharing of the
magic state |m〉, i.e., that it indeed is ¯̄|m〉 relies on the idea of a stabilizer-measurements in
quantum error-correction. Consider the single-qubit gate XP† mentioned earlier that has
|m〉 as an eigenstate. Then a simple computation shows that |+〉 |m〉 is an eigenstate of
the controlled XP† gate, denoted C− XP†, where |+〉 is the control and |m〉 is the target
qubit. Lipinska et al. claim that the above are both +1 eigenstates and thus conclude that
if we prepare the control qubit as |+〉 = H |0〉, perform C− XP† and measure the control
qubit in the {|+〉 , |−〉} basis (or apply H and then measure in the standard basis), this
tells us two things: if the target qubit was the magic state in the first place, we will always
measure |+〉. On the other hand, if the target qubit was not the magic state to begin with,
then if we still measure |+〉, we know that the target qubit is projected onto |m〉. Thus,
obtaining the measurement outcome associated to |+〉we know that the target qubit is in
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state |m〉. Figure 3.4 depicts the quantum circuit for magic state verifiction as described
in [LRW20], and Protocol 3 describes the distributed version of that circuit.

|0〉 H • H 0

|m〉 XP† |m〉

Figure 3.4: The magic state verification circuit as described in [LRW20].

Protocol 3 (Verification of magic states for the T gate, denoted VMagic.)
Input: Single-qubit states |0〉 and |m〉 prepared by D, CSS code C, set of apparent
cheaters B.
Output: Verified encodings of logical states ¯̄|0〉 and ¯̄|m〉, updated global set B.

1. The parties run VQSS(0) with |0〉 as input, and VQSS with |m〉 as input. They
update B with the sets of apparent cheaters B0 from VQSS(0), and Bm from
verifying |m〉.

2. For all shares coming from party i, each party l:

(a) applies H to ¯̄|0〉il
;

(b) applies the local operation corresponding to the transversal implementa-
tion of C− XP† to their shares of ¯̄|0〉 and ¯̄|m〉;

(c) measures the shares of the control qubit in the Z-basis and broadcasts the
result using the secure broadcast channel.

3. Broadcasted values yield classical words vi. The parties publicly check at which
positions the errors occurred, using the classical decoder associated to C and
update B with the positions of errors. They decode the classical value a and:

(a) If a = 0, they continue.

(b) If a = 1, they set B = [n] (this will cause the MPQC protocol to abort after
the computation phase, see Protocol 4).

Now the authors note that this works, if C− XP† can be implemented transversally,
and that this works for all Clifford-stabilized states such as |m〉. This is where some clari-
fication is needed: to the best of our knowledge, the state |m〉 is not a +1 eigenstate of XP†

gate but has ei7π/4 as its eigenvalue, see also Appendix A for some calculations. This dif-
ference might already cause problems when applying the controlled version of the gate.
Furthermore, we think that the controlled XP† gate cannot be transversal for the chosen
CSS code for the following reason. We already noted that no quantum error-correcting
code allows for transversal implementations of a universal set of gates (Theorem 3.2.1).
Thus, we must have C−XP† ∈ Clifford. But any controlled gate can be decomposed into
successive controlled unitaries as C−XP† = CNOT · (C− P†), which by the group struc-
ture of the Clifford group implies that C− P ∈ Clifford. The latter gate is known not to
be part of the Clifford group which, in our opinion, would lead to a contradiction. At the
time of writing, a fix for these potential issues has not been published but is announced.
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The full MPQC protocol

Having discussed all subroutines and ingredients, we move on and put together the
pieces and describe the MPQC protocol proposed by [LRW20]. Recall that the goal of
the protocol is to perform some quantum circuit R on private, possibly entangled single-
qubit input states ρ1, . . . , ρn coming from parties 1, . . . , n. Following the choice of a uni-
versal set of gates, we require the circuit R to only include gates from the universal set
Clifford+T and, as discussed at the beginning of this section, we assume all measure-
ments to be single-qubit measurements performed on behalf of the parties after recon-
struction. As before, we assume the chosen CSS code to have distance d. A complete
description of the protocol is given in Protocol 4 and consists of the three phases Shar-
ing and verification, Computation, and Reconstruction, thus resembling the classical share–
compute–reveal MPC-paradigm.

Sharing and verification: In the first phase of the protocol, all parties share their inputs
ρi acting as dealers Di, and jointly verify for each dealer Di whether they honestly per-
formed the sharing, i.e., whether there are fewer or equal to t ≤ b d−1

2 c errors in the
first level of the encoding. First, for each i, a set containing the positions of apparent
cheaters Bi is publicly constructed by the parties, which are then merged to a global set
B. If |B| ≤ t, then the fact that B accumulates all apparent cheaters over all executions
of the VQSS scheme implies that each honest party holds shares with at most t errors in
the same positions in the first level of encoding of the respective shares, and the protocol
continues. If not, then all (honest) parties replace their shares with |0〉, which is necessary
for the security proof of [LRW20].

Computation: In the computation phase, the parties apply the gates in the circuit R suc-
cessively on the shares of the double-encoded and verified inputs, in the way described
previously. We remark again that the transversal implementation of a logical gate does
not have to be the local application of that same gate on each share. Instead, in order to
apply a transversal gate, each party locally applies those gates that translate to a transver-
sal implementation of the desired logical gate on the shares in the first level of encoding.
Furthermore, note that the set of apparent cheaters B is cumulative throughout the pro-
tocol and accumulates errors from the various subroutines such as VQSS(0), VMagic and
GTele. If at any point during the computation we have |B| > t, all parties replace their
shares with |0〉. If, after the computation phase, B contains more than t apparent cheaters,
the protocol aborts. Otherwise, the parties proceed with the reconstruction.

Reconstruction: After the sharing and verification of inputs, the adversary can still intro-
duce errors on shares held by corrupted parties. During the reconstruction phase, the
parties receive all shares corresponding to their output of the circuit. After the compu-
tation phase, the parties know that |B| < t, because otherwise the protocol would have
aborted. Furthermore, in this phase the adversary cannot force an abort anymore, since
the best the adversary can do is withhold or provide faulty shares to some recipient. Each
party applies the error-correction of C to identify any further errors in the first level of
encoding, of which at most t might occur. In particular, shares that are not received in the
first place are identified easily. Each party then randomly selects n− 2t of the shares that
have not been recorded in B and reconstructs their output.

For the sake of readability we use the following notation in the reconstruction phase of
Protocol 4. Let ωi := Tr[n]\i(ω), corresponding to the outcome of each party i. Moreover,
ω̄i denotes the global state in the first level of encoding, while ¯̄ωi denotes the global state
in the second level of encoding. ¯̄ωi consists of shares ¯̄ωij,l , with i, j = 1, . . . , n, where j
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means that the second encoding is performed by party j, and l describes the party that is
in possession of share ¯̄ωij,l . Similarly, ω̄i consists of shares ω̄ij = Tr[n]\j(ω̄i) for j = 1, . . . , n.

Protocol 4 (MPQC Protocol, [LRW20])
Input: Private input ρi for every party i ∈ [n], circuit R, CSS code C.
Output: Party i receives their output ωi, or the protocol is aborted.
Sharing and verification

1. Each party i runs the sharing of VQSS (Protocol 1) on their input ρi, acting as
dealer Di, creating logical ¯̄Ψi encoded twice with C.

2. For each input ¯̄Ψi, the parties publicly create sets Bi,l containing positions of
second-level errors resulting from the execution of the verification of VQSS. If
|Bi,l | > t, then party l is added to the set of apparent cheaters Bi for dealer Di.
After all n executions of VQSS, a global set B :=

⋃
i Bi of apparent cheaters is

created. If |B| > t then the parties know that they will abort the computation.
They replace all shares in their possession with |0〉.

Computation
3. For every Clifford gate C of R, the parties apply C transversally through op-

erations on their local qubits. For every T gate in R applied to the input of
Di:

(a) Di creates |0〉 and |m〉. The parties jointly run VMagic (Protocol 3) and
update B with apparent cheaters resulting from VMagic. If |B| > t, they
replace all their shares with |0〉.

(b) The parties run GTele (Protocol 2) on their shares of ¯̄Ψi and ¯̄|m〉. B is
updated with apparent cheaters from GTele. If |B| > t, they replace all
their shares with |0〉 and do not apply the correction operation (treating
the measurement outcome as 0, see Step 2, Protocol 2).

4. For every ancilla qubit |0〉 required for R, a party i /∈ B is chosen at random
using the public source of randomness. Party i runs VQSS(0) as the dealer,
creating a verified ¯̄|0〉. She updates B with the set of apparent cheaters resulting
from VQSS(0). If |B| > t, the parties replace all their shares with |0〉.

5. If |B| > t, the protocol aborts. Otherwise, continue.
Denote the global outcome of the computation by ¯̄ω and let ¯̄ωi := Tr[n]\i( ¯̄ω), corre-
sponding to the outcome of each party i.
Reconstruction

6. Each party sends all her shares of ¯̄ωi she holds to Di.
7. Each Di:

(a) For each share ¯̄ωij,l , l ∈ [n], coming from the encoding of party j /∈ B, Di

runs the error-correcting circuit of C. She creates a set of errors B̃i,j such
that Bi,j ⊆ B̃i,j. For each k ∈ [n], if B̃i,j ≤ t, then the errors are correctable.
Di corrects them and decodes, thus obtaining the k-th share ω̄i,k of ω̄i.
Otherwise, Di adds j to the global set B.

(b) For all j /∈ B, Di randomly selects n − 2t shares of ω̄i, and applies an
erasure-recovery circuit, obtaining ωi.

In light of the unanswered questions regarding the protocol VMagic we omit the se-
curity proof of [LRW20].
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3.4 Theoretical feasibility of MP(Q)C

We devote the last section of this chapter and of this work to the discussion of feasibility
results of both classical MPC and MPQC. For the former task, feasibility results are well-
known for various adversarial settings, and we will provide an overview and references
to the relevant results. For multi-party quantum computation, fewer results are known.
We will present these and relate them to existing work on MPQC in general and (verifi-
able) secret sharing-based protocols in particular, as well as point out some bounds that
still remain to be established.

Same as for the earlier sections, we restrict ourselves to information-theoretically se-
cure protocols, and assume private and authenticated communication channels between
each two parties. For classical MPC we only assume classical (private, authenticated)
channels while for MPQC protocols, both classical and quantum communication chan-
nels are available. We assume all communication to be synchronous so that the time passed
before a message is received is bounded by some constant. This ensures that messages are
sent and received within the same round of communication. In Section 2.6, we discussed
that assuming the availability of a classical broadcast channel is a strong assumption, as it
allows for better feasibility results for interactive protocols, such as verifiable secret shar-
ing schemes. As we will see, the same holds for MP(Q)C protocols, and we will explicitly
mention when we add this assumption here. Furthermore, we again discuss different
adversarial models such as semi-honest (passive) and malicious (active) adversaries, but
will always assume the adversary to be static, that is, that the set of corrupted parties
is fixed at the beginning of the protocol and remains the same throughout its execution.
Finally, we do not make any assumptions on the computational (or storage) capacities of
either a classical or quantum adversary for MPC or MPQC protocols.

Feasibility results for classical MPC

Upper bounds on the maximum number of corrupted parties for various types of adver-
saries are well-known for classical MPC protocols. These have been established in a series
of papers in the late 1980s in, e.g., [GMW87], [CDvdG87], [BGW88] and [CCD88]. Again,
note that these results apply to MPC protocols that can implement arbitrary arithmetic
circuits. For specific classical functions, better results might be feasible.

Recall from the discussion on the feasibility of secret sharing schemes in Section 2.6
that we distinguish between passive and active adversaries corrupting a number t < n
of parties. For passive (semi-honest) adversaries, it is known that general secure multi-
party computation is feasibile, if, and only if, at most a strict minority of parties is cor-
rupted. In order to tolerate an active (malicious) adversary, at most t < n/3 corruptions
can be tolerated without adding any further assumptions, and protocols are known that
attain this bound. It has also been shown that relaxing the security requirements, or
making additional assumptions on the available resources, can increase these bounds.
Recall from Section 3.3 that we require a general MPC protocol to satisfy correctness and
privacy. In particular, correctness guarantees that the honest parties receive the correct
output from the computation despite any malicious actions on part of the adversary. In
the context of MPC, in the presence of active adversaries, this property is also called guar-
anteed output delivery or robustness. It can be shown that, if one relaxes the requirements
from robustness to fairness, that is, guaranteeing that corrupted parties only receive their
output if the honest parties do, too, then the upper bound can be lifted from t < n/3
to t < n/2 ([FGMvR02], [CL17]). Alternatively, one can make additional assumptions
to lift the bound. As discussed earlier, assuming the existence of a broadcast channel
can be used to increase the number of tolerable corruptions for verifiable secret sharing
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schemes. Similarly, assuming the availability of broadcast channel increases the feasibil-
ity of information-theoretically secure MPC from t < n/3 to t < n/2 ([Bea89], [RB89]).
Lindell provides a succinct overview of techniques, definitions and feasibility results for
classical MPC in [Lin20]. Table 3.3 provides an overview of bounds presented above.

Classical MPC
Passive

adversary
Active adversary

Unconditional
security

t < n/2
t < n/3

(t < n/2 either without robustness
or assuming broadcast)

Table 3.3: Parameter restrictions for different levels of security for MPC protocols for arbitrary
arithmetic circuits, as established in [GMW87], [CDvdG87], [BGW88], [CCD88]. All bounds in

this table are tight.

Feasibility results for quantum MPQC

For quantum protocols, some general impossibility results are known for the case of two-
party quantum computations that extend to general unconditionally secure MPQC proto-
cols. The most important result in this regime concerns the feasibility of unconditionally
secure quantum bit commitment.

In (classical) bit commitment, two parties Alice and Bob run a protocol that consists
of two phases. In the commit phase, Alice commits to some chosen bit b, which she can
then later open to Bob in the opening phase. Such a protocol is called binding, if Alice
cannot change her mind after the commit phase, and it is called hiding, if Bob cannot
learn the bit b from the information he is given during the commit phase. An example
of a physical protocol for this task is given by Alice writing her secret bit b on a piece
of paper which she then locks into a safe. She sends the safe to Bob, keeping the key to
complete the commit phase. In the opening phase, Alice simply sends the key to Bob,
who unlocks the safe and obtains b. The goal of quantum bit commitment is to realise the
above protocol (still with a classical bit b as input to one of the players) by using quantum
communication and computation, secure in the presence of a quantum adversary. Initial
security claims were thought to prove an advantage of quantum protocols over classical
protocols (see, e.g., [BCJL93]). Soon after publication of these results, however, Lo, Chau
([LC97], [Lo96]) and Mayers ([May97]) showed that the purported proofs of security were
wrong, and that unconditionally secure quantum bit commitment as well as other, more
general classes of quantum two-party computations are impossible altogether if one of
the parties is actively corrupted.

These results can be used to show the impossibility of a general, unconditionally se-
cure MPQC protocol that realises arbitrary quantum circuits in the presence of an active
adversary controlling a dishonest majority, i.e., t ≥ n/2, as remarked in [CGS02] and
[LRW20]. First, consider the case of a two-party protocol, n = 2. Suppose there is an un-
conditionally secure MPQC protocol Π secure against one actively corrupted party. Then
Π can be used to implement quantum 1-out-of-2 oblivious transfer (quantum OT, [LC98]).
Similar to quantum bit commitment, the goal of quantum OT is to solve a problem from
classical cryptography using quantum means, secure against a quantum adversary. The
desired functionality can be described as follows: Alice starts off with bits a0 and a1 and
Bob with a single bit b. Bob’s bit b indicates his choice of bit of Alice that he would like
to receive from Alice without Alice learning which bit Bob requested and received, and
without Bob learning both bits in Alice’s possession. That is, at the end of the protocol,
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we want Bob to be in possession of ab without having Alice learn b and without Bob
learning ab⊕1.

Theorem 3.4.1 (MPQC implies quantum OT). Let Π be an unconditionally secure MPQC
protocol for two parties that is secure against a dishonest majority, that is, against an adversary
that actively corrupts one of the two parties. Then Π implies the existence of an unconditionally
secure quantum 1-out-of-2 oblivious transfer protocol.

Idea of the proof, due to [Kar20]. We use Π to implement quantum OT between two parties
Alice and Bob. At the beginning of the protocol, Alice holds two bits a0 and a1 and Bob
holds a bit b indicating his bit of choice in Alice’s possession. The two parties jointly
compute the classical function f (a0, a1, b, b1) := ab ⊕ b1 where b1 is an auxiliary input
provided by Bob. Since any classical computation can be simulated by a quantum circuit,
Π can be used to implement f . Now, if Bob randomises the selection of b1, then Bob’s
choice of bit ab0 is completely hidden from Alice by this one-time pad construction, and
the two parties can safely reconstruct the outcome of the computation publicly. On the
other hand, Bob knows b1 and can thus recover his bit of choice ab0 .

Now it is known that in the quantum world, quantum 1-out-of-2 OT implies quantum
bit commitment (in fact it can be shown that they are equivalent ([Unr10], [BS16]), which
does not hold for their classical counterparts), thus showing the impossibility of general
two-party MPQC that tolerates an actively corrupted party. Alternatively, [Lo96] explic-
itly proves the impossibility of unconditionally secure quantum OT without using the
equivalence to quantum bit commitment. This impossibility result for a dishonest major-
ity can be extended to multi-party protocols (n > 2) by splitting the full set of parties into
two sets of size at least n/2, and having each set simulate the action of one participant in
a two-party quantum OT protocol.

Note that this impossibility result only applies to general, unconditionally secure
MPQC protocols, for which no relaxation of security requirements like fairness or se-
curity with abort has been allowed. In a setting where we do allow for such relaxations,
better results might be feasible. We are not aware of any theoretical work analysing such
relaxations, but do note that [CGS02] obtains general MPQC with robustness tolerating
at most t < n/6 active corruptions while [LRW20] claims to achieve up to t < n/4 ac-
tive corruptions and allows for an abort event forced by the adversary. The significance
of this observation, however, is unclear, as we still await an update on the potential in-
consistencies in [LRW20] pointed out in Section 3.3 and, as the authors note themselves,
the relaxation to security was chosen to improve efficiency of the protocol. Moreover, if
we relax from information-theoretical security to computational security, then protocols
for general MPQC exist that allow for up to n − 1 actively corrupted parties ([DNS12],
[DGJ+20]). Note again that for specific multi-party quantum computations, better results
might be feasible, but these are outside the scope of this work.

We are not aware of any work on unconditionally secure MPQC protocols that con-
sider a passive adversary. However, any of the previous protocols in [CGS02], [BCG+06]
and [LRW20] are in particular secure against a passive instead of an active adversary. As-
suming a passive adversary should also allow us to relax from a VQSS to a quantum se-
cret sharing scheme and should therefore in particular allow us to tolerate up to t < n/2
corrupted parties (Theorem 2.5.6). In contrast, [CGS02] (and [LRW20]) tolerate up to
t < n/6 (t < n/4 if the open problem pointed out in Section 3.3 can be solved) active cor-
ruptions using quantum error-correcting codes for the VQSS, and [BCG+06] tolerates up
to t < n/2 active corruptions using approximate error-correcting codes. We remark that
all three of the above MPQC protocols add the assumption of a classical broadcast chan-
nel, but in fact only [BCG+06] requires this assumption, since for the other two protocols,
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it is assumed that t < n/6 < n/4 < n/3 parties are corrupted and therefore broadcast
can be implemented, as explained in Section 2.6. Table 3.4 gives an overview of the feasi-
bility results for MPQC which resembles that of Table 3.3. However, possible benefits of
further relaxations, such as relaxing the requirement of guaranteed-output-delivery seen
in Table 3.3, remain to be established.

MPQC
Passive

adversary
Active adversary

Unconditional
security

t < n/2
t < n/3

(t < n/2 assuming broadcast)

Table 3.4: Parameter restrictions for different levels of security for MPQC protocols for arbitrary
quantum circuits. All bounds in this table are tight, as achieved by [BCG+06].

Finally, we note that any MPQC protocol based on (verifiable) quantum secret sharing
schemes trivially has to satisfy the feasibility bounds outlined in the previous chapter, Ta-
ble 2.4. A direct reduction from an MPQC protocol that is unconditionally secure against
an active adversary to a VQSS scheme (or a passively secure MPQC protocol to a quan-
tum secret sharing scheme) would immediately imply these results, and we expect such a
reduction to hold. We conclude with an overview of the tolerable number of corruptions
in previous work on unconditionally secure MPQC protocols7.

Protocol Number of active corruptions

[CGS02], [Smi01] t < n/6

[BCG+06] t < n/2 (assuming broadcast)

[LRW20]* t < n/4

Table 3.5: Existing work on unconditionally secure MPQC against an active adversary. [LRW20]
remains to be confirmed, as pointed out in Section 3.3.

7For [LRW20], a complete proof of security was not available at the time of writing, see Section 3.3 for a
discussion.
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4. Discussion and open questions

The goal of this work was to create an extensive analysis of the existing work on multi-
party quantum computation and contrast it with classical MPC, with a focus on uncon-
ditionally secure protocols and their building blocks. In the first part of this analysis,
Chapter 2, we have seen that one of the fundamental primitives used for classical MPC,
secret sharing, exists in a very similar form in the quantum world and that by the laws
of quantum information, these can be derived from quantum error-correcting codes in a
straightforward manner. This view has also been confirmed in the study of MPQC pro-
tocols in Chapter 3. Furthermore, we have contrasted feasibility results for classical and
quantum secret sharing schemes and its variants (e.g., verifiable secret sharing) and we
observed that, for quantum protocols, the no-cloning theorem frequently determined the
amount of tolerable corruptions (Table 2.4).

In the context of secure multi-party classical and quantum computations, we ob-
served a general structural similarity, but also some subtle differences. One important
difference is that for classical MPC, every party is typically expected to learn the final
outcome of the computation, and it is required that no party may learn any more infor-
mation than what can be inferred from their input and the output of the function. More
generally, one can require that only dedicated participants receive parts of the final out-
put. Such a protocol would immediately imply the existence of the first approach in
which the final function value is known to all parties. The quantum no-cloning theorem
generally prevents every party from learning the same quantum state that results from
the joint computation, as this would require the ability to copy arbitrary quantum states.
Instead, in MPQC, each party is expected to obtain a certain part of the output and may
not learn any more about the other parties’ in- or outputs other than what can be inferred
from their own (or all of the adversary’s) in- or output (Section 3.3).

The design of information-theoretically secure MPQC protocols, however, exhibits
strong similarities to that of classical MPC protocols (Section 3.3). At the time of writing,
all proposed unconditionally secure MPQC protocols follow a quantum share–compute–
reveal paradigm that starts off with a verifiable quantum secret sharing scheme for which
it is shown that arbitrary quantum circuits can be implemented securely. In particu-
lar when comparing the classical gates of addition and multiplication to quantum gates
(unitaries), we see that for many current constructions, a large set of operations (e.g., the
Clifford gates) can be implemented securely, in a distributed manner, on top of the VQSS
scheme, thus resembling the inherent linearity of linear secret sharing schemes. To com-
plete such sets to a universal set (Section 3.1), just like the multiplication complements
addition to a universal set of classical gates, we see that oftentimes only one additional
gate has to be implemented securely for which more complex constructions are required
(Section 3.2). In fact, this gap between “easy” and “hard” gates can also be observed
in other MPQC constructions for computationally secure protocols such as [DNS12] and
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[DGJ+20] who also use the special commutation rules of the Clifford group to show how
the universal set Clifford+T can be implemented securely. Finally, we observed that fea-
sibility results for general MPQC seem to resemble those of classical MPC but still require
some investigation into whether security relaxations might lift these bounds (Section 3.4).

Open topics

We conclude with a list of topics that are open for further research, with a focus on and
around the design and security of (existing) MPQC protocols. We begin with possible
improvements of existing protocols and note that we have discussed in Section 2.6 that
current constructions for VQSS all bear some probability of error. We are not aware of
any no-go theorem that would prevent an error-free solution. In [CGS02] and [Smi01],
the design of an error-free protocol for the task of VQSS is left as an open question, merely
noting that techniques used for the design of a classical VSS scheme with zero error in
[BGW88] may not apply to the quantum case. As seen in subsequent work in [LMRW20]
and [LRW20], this question seems to remain unanswered. In Chapter 3 and in partic-
ular in Section 3.3, we have focussed almost exclusively on the secure implementation
of the universal set of gates Clifford+T. However, other universal sets of unitaries, or
even other models of quantum computation, remain to be studied. The choice of a differ-
ent class of quantum error-correcting codes and, therefore, of a different universal set of
gates might lead to interesting, possibly more efficient MPQC protocols, in particular be-
cause different universal sets of gates might be more efficient in approximating arbitrary
unitaries than others.

Lipinska et al. note in [LRW20] that the effect of noise in quantum communications,
computations and storage needs to be analysed carefully, in particular with respect to the
effect on the feasibility and security of MPQC protocols. Recently, [Iñe20] proposed an
analysis of VQSS schemes in noisy quantum networks and its effects on the maximum
number of tolerable cheaters. The authors of [LRW20] expect these results to generalise
to the MPQC setting. Furthermore, assuming noisy or bounded quantum storage on
part of the adversary has proven fruitful in the design of other quantum-cryptographic
primitives, see, e.g., [STW09], [DFSS05]. Both of the above references study information-
theoretically secure protocols in which, e.g., a fixed amount of noise is assumed to occur
on any stored qubit. By contrast, one could also study a storage model in which the
quality of stored quantum information decays progressively with time, which suggests
a shift from unconditional to computational security. We are not aware of any work in
this setting, nor of any work on general MPQC in the noisy or bounded quantum storage
model.

On a more fundamental level, we have noted in Section 2.5.3 that privacy for quan-
tum secret sharing schemes is more readily obtained from QECCs than for their classical
analogues, and that it would be interesting to study whether there is a form of quantum
equivalent to the dual distance of ECCs that determines the secret sharing scheme’s pri-
vacy. Furthermore, we have seen in Section 3.4 that the knowledge of feasibility results
for MPQC protocols remains rather limited compared to those for classical MPC. In par-
ticular, a rigorous investigation into the effects of relaxing security requirements for the
task of MPQC, such as allowing the adversary to force an abort of the protocol, appears
to remain open.
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A. Appendix

Frequently used unitaries

Common single and two-qubit unitary gates used in this work:

I =

1 0

0 1

, X =

0 1

1 0

, Y =

 0 i

−i 0

, Z =

1 0

0 −1

,

H =
1√
2

1 1

1 −1

, P =

1 0

0 i

, T =

1 0

0 ei π
4

.

Note that in the literature, the P gate can also be found as S gate and that, for historical
reasons, the T =

√
P gate is sometimes referred to as π/8 gate. According to [NC16], the

reason for this is that up to a global phase of eiπ/8, it has e−iπ/8 and eiπ/8 on its diagonal.
We also used the CNOT gate,

CNOT =


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

.

Moreover, for any unitary U =

u1 u2

u3 u4

, the controlled version, denoted C−U, is

a two-qubit unitary that is given by

C−U =


1 0 0 0

0 1 0 0

0 0 u1 u2

0 0 u3 u4

,

and applies U to the second qubit if the first qubit is |1〉 and I else (similarly for reversed
control- and target qubits).
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Issue in MPQC paper, Section 3 of [LRW20]

We have that

X =

0 1

1 0

, P =

1 0

0 i

, P† =

1 0

0 −i

,

and therefore

XP† =

0 −i

1 0

.

Moreover,

|m〉 = 1√
2
(|0〉+ ei π

4 |1〉),

so that

XP† |m〉 = 1√
2
(|1〉 − iei π

4 |0〉)

= −iei π
4

1√
2
(|0〉+ ei π

4 |1〉)

= −iei π
4 |m〉

= ei 7π
4 |m〉 .

Hence, the outcome of circuit 3.4 is given by:

ei 7π
4 |m〉 ,

so we see a global phase of c := ei 7π
4 . This might cause a problem when applying (C −

XP†) to |+〉 |m〉:

(C− XP†) |+〉 |m〉 = 1√
2
((C− XP†) |0〉 |m〉+ (C− XP†) |1〉 |m〉) = 1√

2
(|0〉 |m〉+ c |1〉 |m〉).
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