
Deep Learning for Abstract
Argumentation Semantics

Dennis Craandijk

6002986

A thesis presented for the degree of
Master of Science

Supervisor: Floris Bex

Master Artificial Intelligence
Faculty of Science
Utrecht University
The Netherlands

2020

Contents

1 Introduction 1

2 Preliminaries 3
2.1 Computational argumentation . 3

2.1.1 Abstract argumentation . 4
2.1.2 Reasoning problems . 6

2.2 Deep learning on graphs . 9
2.2.1 Graph neural networks . 9
2.2.2 Applications . 12

3 Deep Learning for Abstract Argumentation Semantics 15
3.1 Problem Setup . 15
3.2 Argumentation Graph Neural Network 15

4 Experiments 17
4.1 Data . 17
4.2 Training . 18
4.3 Metrics . 18
4.4 Results . 20
4.5 Scaling . 20

5 Analysing AGNN Behaviour 22

6 Enumerating Extensions 24
6.1 Experimental Setup and Results . 25

7 Discussion 27
7.1 Related Work . 27
7.2 Neural-symbolic computing . 28
7.3 Conclusion . 29
7.4 Acknowledgements . 30

References 31

A Guided tree search algorithm 36

1 Introduction
Over the past few years an increasing amount of research effort has been directed
towards designing deep learning methods that learn on problems from symbolic do-
mains [21]. Deep learning methods have revolutionised areas such as natural language
processing, computer vision and game playing due to the ability to discover features
and patterns with little prior knowledge [36]. However, deep learning methods have
until recently shown to be incapable of handling the discrete nature of symbolic rea-
soning. Since both symbolic-based and learning-based methods have complementary
strengths and weaknesses, there has been a growing plea for combining these two pil-
lars of artificial intelligence [41, 59].

Recent progress has sparked interest in graph neural networks (GNNs), a novel
class of neural networks capable of performing computations over graphs. Graph-
based problems are normally solved symbolically by defining the relations in a graph
using a symbolic formalism, e.g. logic or mathematics. Such formalisms provide
methods, such as deduction or arithmetic, which enable reasoning about the relations
in a graph [34]. The design of symbolic algorithms however, requires significant spe-
cialised knowledge and trial-and-error. The appeal of using deep learning is that graph
computations can be learned from data, rather than specifying the computations in
advance. Whereas conventional machine learning methods struggle to capture the re-
lational structures of graphs, GNNs have shown to perform well on a range of graph-
based problems [61, 62] due to a strong relational inductive bias [5]. GNNs can for
instance be trained to solve constraint satisfaction problems which could previously
only be solved by symbolic solvers, such as boolean satisfiability [53] and Sudoku
puzzles [45].

One symbolic domain of artificial intelligence that is relatively unexplored with
respect to GNNs is computational argumentation. Argumentation is an important rea-
soning capacity which is present in many aspects of human reasoning and interaction.
The aim of computational argumentation is to understand and represent the mecha-
nism of argumentation, with a focus on the computational methods to determine the
validity of a claim based on the interactions between arguments and counterarguments.
The defeasible nature of computational argumentation allows the validity of a claim to
change based on new information. This property enables reasoning in environments
where conflicting or incomplete information exists. With applications in multi-agent
systems, decision-making tools, medical and legal reasoning, argumentation has be-
come a major subfield of artificial intelligence [2].

Much of the theory in computational argumentation is built on Dung’s [16] pio-
neering work on abstract argumentation frameworks. Dung’s formalism allows to arbi-
trate between conflicting arguments based on the attack relations between arguments.
Through a process of conflict resolution it is possible to determine which arguments
‘win’ and can thus be accepted. Dung introduced several acceptability semantics that
define which sets of arguments (extensions) can be reasonably accepted given an argu-
mentation framework (AF) of arguments and attacks between these arguments, often
represented as a directed graph. Thus, it can be determined if an argument can be ac-
cepted given an AF by looking at whether it is contained in some extensions (credulous
acceptance) or all extensions (sceptical acceptance) under a given semantics.

The process of determining which arguments can be accepted can suffer from high
computational complexity. Notably, finding the accepted arguments is shown to be
intractable in various settings [18]. Due to the computational complexity of determin-

1

ing which arguments can be accepted, the design of efficient methods for computing
extensions and acceptability constitutes an active research direction within the argu-
mentation community. Most current approaches solve acceptance problems by trans-
lating the problem to a symbolic formalism for which a dedicated solver exists, such as
constraint-satisfaction problems, propositional logic or answer-set programming [20,
12].

Since graphs are the basic representation of one of the most well-established for-
mal models of argumentation, it is natural to ask whether GNNs can be applied to solve
some of the computational problems of argumentation. In this thesis, an argumentation
graph neural network (AGNN) is proposed that learns to predict credulous and sceptical
acceptance of arguments under 4 well-known argumentation semantics. Furthermore,
a method is introduced to predict (multiple) extensions given an AF by using AGNN
to guide a search procedure. The learning-based approach to determining argument ac-
ceptance described in this thesis shows that sub-symbolic deep learning techniques can
accurately solve a problem that could previously only be solved by sophisticated sym-
bolic solvers. Moreover, by inspecting AGNN’s behaviour, it is observed that AGNN
learns to adhere to basic principles of argument semantics as identified in the litera-
ture [4].

The rest of this thesis is structured as follows. Chapter 2 discusses Dung’s [16] ab-
stract argumentation frameworks and graph neural networks [5]. Chapter 3 discusses
the problem setup and introduces the AGNN model. In Chapter 4 the experimental
setup (metrics, data and training) and results, also with respect to scalability, are dis-
cussed. Chapter 5 discusses the behaviour of the AGNN and how it relates to symbolic
algorithms for abstract argumentation. Chapter 6 discusses the experiments focusing
on finding multiple extensions. Finally, Chapter 7 discusses related research and con-
cludes the thesis.

The results of this research have been published as in the 29th International Joint
Conference on Artificial Intelligence (IJCAI 2020) [14]. Compared to the IJCAI paper,
this thesis includes extended preliminaries with more examples (Chapter 2); a detailed
description of the experiments (Chapter 4) and an elaborate discussion (Chapter 7). The
code to reproduce this research is published at https://github.com/DennisCraandijk/
DL-Abstract-Argumentation.

2

https://github.com/DennisCraandijk/DL-Abstract-Argumentation
https://github.com/DennisCraandijk/DL-Abstract-Argumentation

2 Preliminaries
In this chapter some concepts which are central to this thesis are discussed. First, an
overview is given of some concepts from computational argumentation, with a focus
on Dung’s abstract argumentation frameworks and semantics. Additionally, some cen-
tral reasoning problems from computational argumentation and how they are currently
solved are reviewed. Finally, this chapter discusses the basic concept of a graph neural
network and mention some current applications.

2.1 Computational argumentation
Approaches to computational argumentation focus on the representational and com-
putational aspects of argumentation and can be divided into abstract and structured
argumentation. The abstract argumentation formalism was introduced by Dung’s [16]
pioneering work in which he defined a set of formal properties to represent arguments
as argumentation frameworks (AFs). An AF consists of arguments and attacks between
these arguments and is generally represented as a directed graph where arguments are
nodes and the attack relations directed edges (see Figure 1).

In abstract argumentation there is no internal structure to an argument. Structured
argumentation provides a more detailed formalism by assuming a formal logical lan-
guage and specifying rules for the construction of arguments and counterarguments.
In structured argumentation the relationship between a claim and the reasons for this
claim are made explicit. This relationship can, for instance, be defined using logical
entailment. Multiple approaches to structured argumentation have been proposed, such
as Assumption-based argumentation (ABA) [17] and ASPIC+ [49].

Although both structured and abstract argumentation are relevant argumentation
formalisms, this research only covers abstract argumentation for two reasons. First,
structured argumentation is structurally more complex compared to abstract argumen-
tation. Whereas arguments are only connected through attack relations in abstract ar-
gumentation, in structured argumentation multiple types of relations exists. Due to the
simplicity of its graph structure, abstract argumentation can therefore more easily be
incorporated into existing GNN approaches without the need for much extra engineer-
ing effort. Secondly, since Dung’s formalism is the most well-established approach,
there exists a wide range of literature on reasoning problems and solvers relevant to
this research. Moreover, since structured argumentation approaches (such as ABA and
ASPIC+) are an instantiation of Dung’s abstract argumentation framework, the accept-
ability of ABA or ASPIC+ arguments can be determined with abstract argumentation
solvers. Therefore, abstract argumentation is a natural candidate for this research.

a b

c

d

Figure 1: Graph representations of the AF Fe.

3

2.1.1 Abstract argumentation
Central to abstract argumentation framework as defined by Dung [16] are notions of
argument, attack and defence.

Definition 1. An argumentation framework (AF) is a pair (A, R) where A is a (finite)
set of arguments and R ⊆ A×A is the attack relation. The pair (a, b) ∈ R means that
a attacks b. An argument a ∈ A is defended by c if, for b such that (b, a) ∈ R, there
exists a c such that (c, b) ∈ R. A set S ⊆ A is said to attack b if there is an a ∈ S, such
that (a, b) ∈ R. An argument a ∈ A is defended by S ⊆ A iff, for each b ∈ A such
that (b, a) ∈ R, S attacks b.

An argumentation framework is intuitively represented as a directed graph where
arguments are nodes and attacks are directed edges.

Example 1. Figure 1 illustrates the AF Fe = ({a, b, c, d}, {(a, b), (b, c), (b, d), (c, d),
(d, c)}), which serves as a running example.

Given an AF, it is possible to arbitrate between conflicting arguments. Arbitration
in abstract argumentation is based on the notion that ‘winning’ arguments are those
that collectively and adequately respond to all counterarguments [4]. This concept
is expressed through different semantics. Semantics define the properties which are
expected to be satisfied by a set of arguments in order to accept them as a single point
of view. The interplay between attack and defence relations determines which subset
of arguments can be accepted with respect to different semantics. For example, a basic
property of all semantics is that sets of arguments should be conflict free in order to be
accepted. This implies that no argument in the set is attacked by another argument in
the set. Two well-established approaches to evaluate argumentation semantics are the
extension-based approach and the labelling-based approach.

2.1.1.1 Extension-based semantics

In his original work, Dung [16] proposed to evaluate different argumentation semantics
based on extensions. Extensions are sets of arguments that can jointly be accepted and
represent some coherent view on the underlying AF. A semantics for argumentation
frameworks is defined as a function σ which assigns a set of extensions to each AF. This
research considers the admissible sets and the complete, preferred grounded and stable
extensions which are assigned by the following functions respectively adm, com, prf,
grd, stb.

Definition 2. Let F = (A,R) be an AF. A set S ⊆ A is conflict-free (in AF), if there
are no a, b ∈ S, such that (a, b) ∈ R. The collection of sets which are conflict-free is
denoted by cf(F). For a conflict-free set S ∈ cf(F), it holds that:

• S ∈ adm(F), if each a ∈ S is defended by S;

• S ∈ com(F), if S ∈ adm(F) and for each a ∈ A defended by S it holds that
a ∈ S;

• S ∈ grd(F), if S ∈ com(F) and for each T ∈ com(F), T 6⊂ S;

• S ∈ prf(F), if S ∈ adm(F) and for each T ∈ adm(F), S 6⊂ T ;

• S ∈ stb(F), if for each a ∈ A \ S, S attacks a.

4

conflict-free set

admissible set

complete extension

preferred extension

stable extension

grounded extension

is a

is a is a

is a

is a

Figure 2: An overview of different extension-based semantics and their relations [4]

In other words, a set of arguments is said to be conflict-free if no argument in the
set is attacked by another argument in the set. A set of arguments is admissible if it
is conflict-free and can defend itself from all attacks. A set arguments is a complete
extension if it is admissible and includes each argument that it defends. The grounded
extension is the subset-minimal complete extension. A preferred extensions is a subset-
maximal admissible set. A set of arguments is stable if it attacks each argument which
does not belong to it. The different extension-based semantics are related as shown in
Figure 2.

Example 2. The extensions of Fe under the complete, grounded, preferred and stable
semantics are: com(F) = {{a}, {a, c}, {a, d}}; grd(F) = {a}; prf(F) = {{a, c},
{a, d}}; stb(F) = {{a, c}, {a, d}}.

2.1.1.2 Labelling-based semantics

Caminada [9] introduced an alternative way to evaluate the acceptance of arguments
based on labels. In order to determine argument acceptance with respect to a semantics,
each argument in an AF is assigned a label from the set {IN,OUT,UNDEC}.

Definition 3. Let F = (AR) be an AF. A labelling is a total function Lab : A →
{IN,OUT,UNDEC}. The set of arguments which are IN, OUT or UNDEC with re-
spect to a semantics σ is denoted by inσ(F),outσ(F),undecσ(F)

An argument is labelled IN if the argument is accepted and it is labelled OUT if it
is rejected. Whereas extension-based semantics only define if an argument is accepted
or not, labelling-based semantics permit the assignment of an intermediate status to
arguments by assigning the UNDEC label. An argument is undecided if it cannot be
accepted while there are also not enough reasons to reject it.

Example 3. The labelling of Fe under the grounded semantics is: ingrd(F) = {a},
outgrd(F) = {b},undecgrd(F) = {c, d}.

For all semantics used in this work there exists a one-to-one mapping from la-
bellings to extensions. An advantage of a labelling-based approach is that the label
of an argument has consequences for the label of its neighbours. An argument can

5

for example only be labelled IN if every attacker is labelled OUT. Similarly, when an
argument is labelled IN, all arguments it attacks should be labelled OUT. These pair-
wise relations and interactions make labelling-based approaches a convenient method
to compute the extensions of an AF. Modgil and Caminada [43] define what it is for an
argument to be assigned a legal labelling:

Definition 4. Let F = (AR) be an AF and L be a labelling for F . An argument a ∈ A
is said to be:

• legally labelled IN iff a is labelled IN and every b, such that (b, a) ∈ R, is
labelled OUT;

• legally labelled OUT iff a is labelled OUT and there exists at least one b, such
that (b, a) ∈ R, that is labelled IN;

• legally labelled UNDEC iff a is labelled UNDEC and not every b, such that
(b, a) ∈ R, is labelled OUT and there exists no b that is labelled IN.

2.1.2 Reasoning problems
Given an argumentation framework F and a semantics σ, there are a number of differ-
ent approaches to evaluate the acceptance of arguments. Evaluating the acceptance of
arguments requires computing the answer to some reasoning problem (i.e. computa-
tional problem) based on the given AF. Enumσ(F) enumerates all extensions of seman-
tics σ and Countσ(F) counts the number of extensions. Additionally since semantics
define which arguments can be accepted in a single point of view, one can be interested
whether there exists a position where in which a specific argument is accepted [43].
An argument a is said to be credulously accepted with respect to a semantics σ if it is
contained in some σ-extension. An argument is sceptically accepted if it is contained
in all σ-extensions. Credσ(a, F) and Sceptσ(a, F) denote whether an argument a is
respectively credulously or sceptically accepted with respect to σ. Finally, Verσ(S, F)
verifies whether a given set S is a σ-extension of F .

Definition 5. Given an AF F = (A,R), a semantics σ and an argument a ∈ A then:

• Enumσ(F) = σ(F)

• Countσ(F) = |σ(F)|

• Credσ(a, F) =

{
Yes if a ∈

⋃
E∈σ(F) E

No otherwise

• Sceptσ(a, F) =

{
Yes if a ∈

⋂
E∈σ(F) E

No otherwise

• Verσ(S, F) =

{
Yes if S ∈ σ(F)

No otherwise
.

Example 4. The solutions to common reasoning problems in AF Fe with respect
to the preferred semantics are: Enumprf(F) = {{a, c}, {a, d}};Countprf(F) = 2;
Credprf(c, F) = Yes; Sceptprf(c, F) = No; Verprf({a, b}, F) = No.

6

σ Credσ Sceptσ Verσ

adm NP-c trivial in P
com NP-c in P in P
grd in P in P in P
prf NP-c ΠP

2-c coNP-c
stb NP-c coNP-c in P

Table 1: Computational complexity of decision problems in abstract argumentation [18]

2.1.2.1 Complexity

For a number of semantics, computing the acceptance status of an argument is no trivial
task. We recall some basic concepts of computational complexity. Decision problems
(problems where the output is either Yes or No) can belong to one of several compu-
tational complexity classes. All problems solvable by a deterministic Turing machine
in polynomial time belong to the class P. The problems where the Yes (respectively
No) instances can be decided in polynomial time by a non-deterministic Turing ma-
chine belong to complexity class NP (resp. coNP). The problems NP (resp. coNP) in
NP to which all NP problems can be reduced to in polynomial time are NP-complete
(resp coNP-complete). Finally the class ΠP

2-c contains all problems verifiable in poly-
nomial time using an coNP-oracle. For a more extensive description of the different
complexity classes see Papadimitriou [46].

The reasoning problems described in definition 5 include three decision problems:
Credσ(a, F), Sceptσ(a, F) and Verσ(S, F). Different complexity studies have been
done on these decision problems [18]. Table 1 shows the complexity of the problems
under different semantics. Most notably, deciding credulous acceptance under the ad-
missible, complete, preferred and stable semantics is shown to be NP-complete (NP-c).

2.1.2.2 Direct computation

Algorithmic implementations for computational argumentation can be divided into
reduction-based and direct approaches. Direct implementations use a dedicated algo-
rithm for a specific reasoning problem. Most dedicated algorithms employ labellings
to determine the extensions of an AF [12]. Generally, labelling-based algorithms start
with assigning labels to uncontroversial arguments, and subsequently search for cor-
rect assignments of the remaining arguments. Based on different semantics, different
labelling rules are used. When all arguments are labelled, without any labelling con-
flict, a correct labelling-based semantics is found.

For example, Modgil and Caminada [43] describe how the grounded labelling can
be found by first labelling all arguments which are unattacked, or only attacked by
OUT arguments, as IN. Subsequently all arguments attacked by those labelled IN are
labelled OUT. These two steps are iterated until no new arguments are labelled IN
or OUT, after which all remaining unlabelled arguments a labelled UNDEC. In the
resulting grounded labelling all arguments labelled IN are the grounded extension.

Enumerating all preferred extensions with labelling-based algorithm is slightly more
complex. Modgil and Caminada [43] also provide a labelling-based algorithm for the
preferred extensions. The core idea behind this algorithm is to first label all arguments
as IN and subsequently re-label arguments as either OUT or UNDEC until the set of
IN arguments becomes admissible. The goal is to minimise the number of re-labelled

7

Figure 3: Reduction-based computation (source: Cerutti et al. [10])

arguments. By minimising the arguments which are OUT or UNDEC, the set of IN
arguments will be a subset-maximal admissible extension (i.e. a preferred extension).

2.1.2.3 Reduction-based computation

In a reduction-based approach, the problem is first reduced to a target formalism for
which a dedicated solvers exists. The solver is used to find a solution in target for-
malism, and afterwards this solution is decoded back to the original problem as illus-
trated in Figure 3. The overview by Charwat et al. [12] shows there exists a range of
reduction-based solvers using different target formalisms, such as constraint-satisfaction
problems, propositional logic or answer-set programming. Among these solvers, some
prominent approaches encode the problem to a Boolean expression (i.e. a proposi-
tional logic formula) and use a Boolean satisfiability (SAT) solver to find a solution.
A Boolean expression is built from Boolean variables, parentheses and the following
operators: ∧ (conjunction), ∨ (disjunction) and ¬ (negation). A SAT solver tries to
find satisfiable assignment of a Boolean expression. The formula is said to be satisfi-
able if the variables in the expression can consistently be replaced by Boolean values in
such a way that the expression evaluates to TRUE. By encoding an reasoning problem
as a Boolean expression, advanced SAT solvers can be used to solve argumentation
reasoning problems.

Consider an argumentation framework F = (A,R), and a set of arguments S ⊆ A.
In order to know if S is conflict-free, one should check that for every argument a ∈ S,
the attacking arguments b are is not in S. Thus, if the propositional logic formula∧

a∈S
(a ∧

∧
〈b,a〉∈R

¬b) (1)

is satisfiable, S is a conflict-free set. The logical formula essentially encodes the prop-
erties of a conflict-free set as satisfiability constraints. The formula for a conflict-free
set can be extended to encode the properties of admissible sets. This is done by adding
a conjunction which states that in order to accept a, for each attacker b, some defender
c must be accepted as well. Thus, if the propositional logic formula∧

a∈S
((a ∧

∧
〈b,a〉∈R

¬b) ∧ (a
∧

〈b,a〉∈R

(
∨

〈c,b〉∈R

c))) (2)

is satisfiable, S is an admissible extension. For a more extensive description of different
reduction-based methods see Charwat et al. [12].

8

Figure 4: Neighbourhood aggregation through message passing. To generate the embedding for
node A, the messages from A’s graph neighbours are aggregated. In turn, the messages coming
from these neighbours are based on the aggregated messages from their respective neighbours,
and so on. (source: Hamilton, Ying, and Leskovec [25])

2.2 Deep learning on graphs
Graphs – being the basic representation of argumentation frameworks – are known to
have complicated structures which contain rich underlying value [3]. The design of
algorithms to solve problems on graphs generally requires specialised knowledge and
trial-and-error. In recent years a considerable amount of research has been directed
towards designing deep learning algorithms for graph-based problems. The appeal
of using deep learning is that graph computations can be learned rather than hand-
crafted. Deep learning has revolutionised the field of machine learning. Deep learning
methods (such as convolutional neural networks (CNNs) [37], recurrent neural net-
works [50] (RRN) and auto-encoders [28]) have shown to be able to extract complex
latent representations from data. This has resulted in superior performance in many
machine learning tasks, which once relied on handcrafted features to extract useful in-
formation [36]. Until recently, existing machine learning methods have shown to be
incapable of handling the complexity of graph data. The non-Euclidean and complex
structure of graphs have caused some important deep learning operations to fail on
graphs. Inspired by the success of deep learning-based methods on images and text, a
substantial amount of research effort has been directed to apply ideas from CNNs and
RNNs to graphs. This has led to a wide range of literature on graph-based learning
systems called graph neural networks (GNNs) [61, 62]. Many different types of archi-
tectures have been proposed ranging from graph convolutional networks and recurrent
graph neural networks to graph auto-encoders. In general, these architectures take a
graph structure with node and edge attributes as input and output values for a specific
task. The output values can typically occur on either the node, edge, or global level. A
GNN can for instance be used classify nodes, predict missing edges or obtain a com-
pact representation of a complete graph. While deep learning methods for graphs are
relatively young, the overview by Zhou et al. [62] shows promising results on a range
of graph-based problems.

2.2.1 Graph neural networks
The basic concept of a GNN is that nodes aggregate information from their neighbours
using neural networks. Nodes are assigned a multidimensional embedding which rep-
resent some information about the node (e.g. a state, numerical value or some other
attribute). The representations are updated in an iterative fashion by propagating mes-

9

sages between the connected nodes in a process called message passing [24]. At each
message passing step, nodes send their embeddings to all connected nodes. Receiving
nodes aggregate the messages of their neighbours and compress these messages into
a new embedding using a neural network. The resulting embedding then becomes the
new representation of each node. With each iteration nodes thereby aggregate informa-
tion from further in the graph. Figure 4 shows a visual representation of this process.

Numerous variants on this message passing principle have been proposed. Whereas
most approaches pass messages between nodes, some operate on an edge or global
level. Battaglia et al. [5] unify a great number of variants into a single framework
called a graph network. The authors leave out the predicate ‘neural’ to emphasise
that a graph network can be implemented with other functions than neural networks.
However, since the aim of this thesis is to use neural networks, the term graph neural
network is used here. Battaglia et al. [5] describe the basic building blocks which are
used in various graph neural networks. The basic idea is that elements in a graph are
assigned multidimensional embeddings which are updated in computational steps.

2.2.1.1 Initialisation

Within a GNN, a graph is described as a tuple Gt = (ut, V t, Et), at computational
step t. ut is the global embedding, representing some global information. V t = {vti}
is a set of nodes, where vti is node i embedding at step t. Et = {etij} is a set of
edges, where each eij denotes an edge embedding between nodes i and j at step t.
A GNN is initialised such that relevant embeddings represent relevant information.
Embeddings are real-valued multidimensional vectors that can represent some node,
edge or global information contained in the graph. A node embedding can for instance
represent a node label, an edge embedding the distance between two nodes and a global
embedding a property of the graph. At t = 0 the GNN is initialised by mapping the
inputs to their respective embeddings with input functions on the edge xeij , node xvi
or graph xu level such that

e0ij = xeij

v0i = xvi

u0 = xu

(3)

2.2.1.2 Computational steps

After the initialisation the embeddings are updated by propagating information be-
tween connected elements. A computational step typically involves aggregating infor-
mation from connected elements and subsequently updating the embeddings based on
the aggregated information. These computational steps can be applied in an iterative
fashion, allowing information to propagate through the graph.

At each computational step t information propagates through the graph and the
attributes at each level are updated through the update functions (θe, θv, θu) and aggre-
gation functions (pe→v , pe→u, pv→u) according to

et+1
ij = θe(etij , v

t
i , v

t
j , u

t) mt
i = pe→v(EtN(i))

vt+1
i = θv(mt+1

i , vti , u
t) et = pe→u(Et)

ut+1 = θu(et+1, vt+1, ut) vt = pv→u(V t)

(4)

10

Figure 5: Update steps in a graph neural network. Blue indicates that an element is being updated
and black indicates elements which are involved in the update (source: Battaglia et al. [5])

whereEti denotes all edges which have a connection into node i. The update and aggre-
gation functions are the central elements of a graph neural network. The aggregation
functions define how to aggregate incoming information from multiple sources. Typ-
ically aggregation operations which are employed are summation, mean or maximum.
The update functions are learned differential functions that define how incoming infor-
mation should be used to update the attributes of interest. All functions are reused on
their respective embeddings, allowing GNNs to operate on graph of different sizes and
shapes. With these functions a GNN can be structured into three distinct updates steps.

• Edge update

– θe maps the edge embedding, the pair of nodes connected by the edge and
the global to new edge embedding.

• Node update

– pe→v aggregates the incoming edge embeddings (or ’messages’) for all
receiving nodes.

– θv takes the aggregated edge embeddings, along with the receiving node
embedding and a global embedding and computes an updated node em-
bedding.

• Global update

– pe→u and pn→u aggregate all edge and node embeddings.

– θv computes a global embedding based on the aggregated edge and node
embeddings.

The edge, node and global update steps are the building blocks which can be used
to build a GNN. Figure 5 shows which elements are involved at each update step.
For most tasks only some of the building blocks are necessary to build a GNN. The
update and aggregation functions used in the building blocks form a neural message
passing algorithm which determines how information propagates through the graph.
Since the update functions are learned differential functions (such as neural networks),
the parameters of the neural message passing algorithm can be optimised to perform
the desired task, thereby enabling learning capability on graph-based problems.

2.2.1.3 Readout

After each computational step the embeddings can be read out with a readout func-
tion. A readout function maps an embedding to a desired output, such as a label or a

11

ut

xu ou

vt1

xv1

otv1 vt2

xv2

otv2et21

xe21 oe21

Figure 6: A graph neural network with edge, node and graph embeddings, on a two node graph
with a directed edge from node 2 to node 1. The thick line indicates the edge between the nodes.
The thin lines show how information flows between the variables as described by the update,
aggregation, input and output functions (see Equations 4, 3 and 5). All variables within the
dotted box are effected by the update and aggregation functions. The variables outside the box
are determined by the input and readout functions and are used as a mapping between the GNN
and the task at hand.

numerical value. The readout functions can be edge-focused (re), node-focused (rv),
graph-focused (ru) or a custom mixture depending on the task at hand.

oteij = re(etij)

otvi = rv(vti)

otu = ru(ut)

(5)

The readout functions are also learned differential functions in order to learn a
mapping between the embeddings and their respective outputs.

Figure 6 shows how all the variables are interconnected through the functions de-
scribed in update and aggregation functions (Equation 4) and the input (Equation 3) and
readout functions (Equation 5). In summary, the input and readout functions provide a
mapping between the task and the GNN embedding, while the update and aggregation
functions define how information should propagate between those embeddings in order
to solve a task.

2.2.2 Applications
The recent developments in GNNs has enabled the use deep learning on graphs. This
has opened up the possibility to use learning-based methods on problems which could
previously only be solved with symbolic methods. This approach to graph-based prob-
lems has led to some learning-based breakthroughs in domains relevant to this research,
namely combinatorial optimisation and relational reasoning [22]. The performance of

12

Figure 7: An illustrative example from the CLEVR dataset of relational reasoning (source: San-
toro et al. [51])

most learning-based approaches is generally below that of symbolic handcrafted algo-
rithms (in terms of run time as well as accuracy). However, the goal of most authors
is not primarily to outperform symbolic algorithms but rather to show the potential for
learning-based methods in solving symbolic reasoning problems.

2.2.2.1 Combinatorial optimisation

A prominent graph-based combinatorial optimisation problem researchers have been
trying to solve with a GNN is the travelling salesman problem (TSP). The problem is to
find a cycle of minimum length where every node is visited only once. Most approaches
try to build a solution on the graph by sequentially adding unvisited nodes to the tour.
However, given the hard nature of determining the optimal tour, determining the best
node can involve algorithmic decisions that either require too much computing time or
are not mathematically well defined [6]. Li, Chen, and Koltun [38] therefore proposes
to use a GNN to estimate the likelihood whether a node is part of the optimal solution.
The GNN takes in the graph along with the current tour and tries to extract features
in the graph structure which are predictive for whether a node should be added tot the
tour. Experimental results show this method to perform on par with highly optimised
state-of-the-art heuristic solvers. Khalil et al. [31] use a similar architecture as a deep
reinforcement learning algorithm to learn a policy for selecting the next node in the
graph. Although the performance of this method is considerably lower compared to Li,
Chen, and Koltun [38], it shows the possibility of learning to solve graph problems end-
to-end. For an overview of the use of deep learning methods on other combinatorial
optimisation problems see Bengio, Lodi, and Prouvost [6]

2.2.2.2 Relational reasoning and constraint satisfaction

Graph neural networks have been used on a number of relational reasoning tasks, where
relational reasoning entails reasoning about interaction between entities [34, 26]. For
instance Santoro et al. [51] models images from the CLEVR visual question answering
dataset [30] (which contains relational questions as shown in Figure 7) as a graph by
representing the objects as nodes and the relations as edges. The authors use a GNN
to learn about the pair-wise relations between objects and show this method performs
well on the CLEVR dataset.

Palm, Paquet, and Winther [45] enhance the GNN by Santoro et al. [51] to enable
multi-step relational reasoning. This allows information to propagate through the graph
in multiple computational steps, allowing complex chains of interactions. Palm, Paquet,
and Winther [45] show this enables a GNN to solve Sudoku puzzles, a typical multi-
step relational reasoning task. Solving a Sudoku involves recursively filling cells with
a digit and checking how this influences other cells. The authors model this principle
by representing cells of a Sudoku grid as nodes with edges to and from each other cell

13

in the same row, column and box. Through the principle of message passing, a cell can
send its value and inform the connected cells not to take the same value. The proposed
GNN is effectively trained to develop a message passing strategy which models this
behaviour. This model was able to solve 96.6% of the hardest 9-by-9 Sudoku puzzles,
which can sometimes require op to 64 relational reasoning steps. For an overview of
other uses of GNN’s in relational reasoning tasks see Lamb et al. [35].

14

3 Deep Learning for Abstract Argumentation
Semantics

Given the recent progress in using GNN on graph-based problems, this thesis attempts
to show that it is possible to learn to reason about an argumentation framework with
a graph neural network. Reasoning about AFs requires reasoning about the relations
between arguments and satisfying the constraints of argumentation semantics. Sec-
tion 2.2.1 discussed how GNN’s exhibit both relational reasoning and constraint sat-
isfaction capabilities on different types of problems. The main goal of this research
is to explore the capabilities and limits of a GNN when used on reasoning problems
from computational argumentation. Specifically, this thesis examines whether a GNN
is able to learn general procedures which enable it to reason about the interactions
between arguments in a fashion similar to symbolic algorithms. In order to test the
main hypothesis, a number of prominent reasoning problems is selected and a GNN
architecture to solve these problems is proposed.

3.1 Problem Setup
Deciding the sceptical and credulous acceptance of arguments are among the most
prominent reasoning problems in abstract argumentation [10]. These problems have
been studied widely and as a result many solvers exist [12]. As shown in Section 2.1
most of these problems suffer from high computational complexity, making them chal-
lenging to solve within a limited amount of computational steps. While such reasoning
problems generally demand discrete and exact solutions, neural networks can only out-
put continuous approximations. In order to solve argument acceptability problems with
a GNN the reasoning problems are posed as classification problems. Consider an AF
F = (A,R) and a semantics σ. The goal is to approximate a function fσ mapping
the input F to a binary labelling fσ(F) denoting the acceptability of all arguments in
A under semantics σ. The function is approximated by producing a value for each ar-
gument in the interval [0, 1] - representing the likelihood whether an argument can be
accepted - which is rounded to produce a binary answer (accept or reject).

3.2 Argumentation Graph Neural Network
In this section the argumentation graph neural network (AGNN) model is introduced.
An AGNN maps an AF to a graph representation with arguments as nodes and at-
tacks as directed edges and AGNN assigns a multidimensional embedding to all nodes.
These embeddings are then iteratively updated by performing a number of message
passing steps. At each iteration nodes broadcast their embeddings by exchanging mes-
sages with their neighbours and subsequently update their embedding based on the
incoming messages. After each iteration those embeddings can be read out to produce
the predicted likelihood of the respective argument being accepted.

More formally, G is an AF graph representation in which arguments are nodes and
attacks are directed edges. Each node i is assigned an embedding, denoted by vti at step
t. The node embedding represents the initial state of an argument in the argumentation
framework. Each node is initialised by a learned embedding xi such that

v0i = xi (6)

15

After initialising all node attributes, the attributes are updated recurrently in T mes-
sage passing steps. Each message passing step the embeddings are updated according
to two steps. First the messages are computed according to:

mt+1
i =

∑
j∈Ns(i)

Ms(vti , v
t
j)+∑

k∈Nt(i)

M t(vti , v
t
k)

(7)

where Ns(i) and N t(i) denote all nodes which have a connection with node i and
for which i is the source or target node respectively. The message functions Ms and
M t are multilayer perceptrons (MLPs) which learn to compute a message to send along
edges based on the embeddings of the nodes it connects. Ms computes a message from
the source node to the target node and M t vice versa. Messages from all neighbours
are subsequently aggregated through summation to form the incoming message mt

i.
Two message functions are used to handle the directed nature of edges in an AF graph
representation. This enables nodes to discriminate between messages from neighbours
with which it has an incoming or outgoing connection. After computing the messages,
the node embeddings are updated according to:

(vt+1
i , ht+1

i) =U(hti,m
t+1
i , xi) (8)

where the update function U is a Recurrent Neural Network (RNN) which learns how
to update a node given the incoming message and the node’s input feature, where hti
is the RNNs hidden state. By updating the node embeddings recurrently while also
accounting for the input features, AGNN is able to iteratively refine embeddings with-
out forgetting any potentially relevant information. The message and update functions
form the core of the AGNN model. Together, the functions yield a neural message
passing algorithm whose parameters can be optimised.

After each iteration the embeddings can be read out with the readout function R.
R is an MLP that learns to map a node’s embedding vti to a logit probability

otvi = R(vti) (9)

representing the likelihood of the respective argument being accepted. The logit proba-
bility can subsequently be converted to a likelihood in the interval [0, 1] using a sigmoid
function. Together, the readout and sigmoid function provide a mapping between the
multidimensional node embeddings and the desired output.

With respect to the general GNN architecture described in Section 2.2.1, AGNN is a
node-focused GNN consisting of a node update building block specifically designed to
handle the directed nature of attacks in an AF. In terms of argumentation AGNN learns
how to initialise arguments with an embedding; recurrently update these embeddings
by exchanging messages between arguments over the attack relations; and map the
argument embeddings to a likelihood of that argument being accepted. By using neural
networks for the message and update functions, AGNN learns how arguments should
exchange information in order to iteratively work towards a solution.

16

4 Experiments
In this chapter the reasoning capabilities of an AGNN are evaluated on problems in
argumentation through empirical experimentation. A dataset of argumentation frame-
works is generated and AGNN is trained to solve various argument acceptance prob-
lems. Afterwards the trained model is evaluated and assessed on whether the learned
message passing algorithm has learned a procedure that scales to larger argumentation
frameworks. The code to reproduce the experiments is published at https://github.com/
DennisCraandijk/DL-Abstract-Argumentation.

4.1 Data
A variety of challenging argumentation frameworks is generated by sampling from the
following AF generators from the International Competition on Computational Models
of Argumentation [20]:

• AFBenchGen2. A random AF generator using Barabasi-Albert [1], Erdös-Rényi [19]
or Watts-Strogatz [60] graph generation methods [11].

• AFGen Benchmark Generator. A random AF generator with a ‘variety of algo-
rithmic and probability behaviours’ [56].

• GroundedGenerator. A random AF generator that generates AFs that (likely)
possess a large grounded extension [58].

• SccGenerator. A random AF generator that generates AFs that (likely) posses
many strongly connected arguments (i.e. arguments that are connected to every
other argument) [58].

• StableGenerator . A random AF generator that generates that (likely) possess
many stable, preferred, and complete extensions [58].

Since two isomorphic argumentation frameworks contain identical extensions, each
AF is checked for isomorphism with Nauty [42] and duplicates are removed. Ground-
truth labels are determined based on extensions obtained with the sound and complete
µ-toksia solver [44]. A test and validation dataset are generated, consisting of size 1000
with AFs containing |A| = 25 arguments. A training dataset is generated consisting of
a million AFs where the number of arguments per AF is sampled randomly between
5 ≤ |A| ≤ 25. AFs of different sizes are included in the training dataset to accelerate
the learning. Table 2 shows characteristics of the AFs in the test dataset under different
semantics.

Characteristic grd prf stb com

Extensions per AF 1.0 2.1 1.6 6.3
Arguments per extension 4.7 9.5 11.8 8.0
Scept. accepted arguments per AF 4.8 5.9 5.8 4.8
Cred. accepted arguments per AF 4.8 8.0 7.9 8.0

Table 2: AF characteristics averaged over all AFs the test dataset.

17

https://github.com/DennisCraandijk/DL-Abstract-Argumentation
https://github.com/DennisCraandijk/DL-Abstract-Argumentation

4.2 Training
The AGNN model is instantiated with one hidden layer and a rectified linear unit for
non-linearity for the MLPs Ms, M t and R, a Long Short-Term Memory [29] for U
and a shared random embedding xi for all nodes. The dimensions of the embedding
and all hidden neural layers are d = 128. The model is run for T = 32 message
passing steps. The approach described by [54] is used to determine the learning rate
and `2 regularisation. The AGNN model is trained in batches containing 50 graphs
(approximately 750 nodes) using the AdamW optimiser [39] with a cyclical learning
rate [55] between 2e−4 and 1e−7, `2 and regularisation of 1e−9. The model is trained
by minimising the binary cross entropy loss between the predicted likelihood and the
ground-truth binary label. Given he set of target values Y = {yi} and all corresponding
nodes in the graph V t = {vi}, the loss at message passing step t is

losst =
1

|V t|
∑
vti∈V t

yi · log(otvi) + (1− yi) · log(1− (otvi)) (10)

The loss is minimised at every step t (rather than only on the final step) for two rea-
sons. First by accounting for the loss at every step, the model is encouraged to learn an
efficient and convergent message passing strategy. Each message passing step should
bring the network closer to the solution. In addition, accounting for every step prevents
the risk of vanishing gradients [45]. Due to the recurrent nature of an AGNN, training
an AGNN may cause its gradients to vanish or explode [47]. Since node attributes are
updated recurrently over multiple steps, information passes through the same neural
layers multiple times. Updating these recurrent neural networks through backpropaga-
tion is known to cause some of the gradients to become vanishingly small or extremely
large. This can result in an unstable learning process, or even stop the gradients from
updating completely. By minimising the loss over every step, the gradients are update
more directly rather than indirectly through a chain of recurrent connections, prevent-
ing gradients to vanish. Exploding gradients are prevented by clipping the gradients by
global norm with a 0.5 clipping ratio [47].

4.3 Metrics
A metric is needed to test these reasoning capabilities of an AGNN. Accuracy and
F1 are metrics which are often used for classification problems. Although accuracy
an easy to interpret metric, it can be also be misleading when used on problems with
imbalanced classes. As showed in Table 2, an AF generally contains more rejected
arguments than accepted arguments. In other words there is an imbalance between the
accepted and rejected class. Consider classifying the sceptically accepted arguments
under the grounded semantics. Since on average 4.8 of the 25 arguments are accepted,
a classifier can achieve a 80.8% accuracy simply by predicting all arguments to be
rejected. This shows it is possible to achieve a high accuracy on imbalanced problems,
without actually solving the problem.

A better approach is to use a metric based on a confusion matrix. A confusion
matrix gives insights in the true positives (TP), true negatives (TN), false positives (FP)
and false negatives (FN) as shown in Figure 8. Prominent metrics in this context are

18

True
positiveYes

Yes

False
negative

No

False
positiveNo

True
negative

ta
rg

et

prediction

Figure 8: Confusion matrix for decision problems

precision p, recall r and the F1-score

p =
TP

TP + FP
r =

TP

TP + FN
F1 = 2 · p · r

p+ r
(11)

F1 score is often used in Information Retrieval to measure the performance of clas-
sifying a specific active class of interest (i.e. the class that should be retrieved). In
this work however, there is no active class since argument acceptance and rejection are
equally important. A more encompassing metric for unbalanced binary classification
with no active class of interest is the Matthews Correlation Coefficient (MCC)

MCC =
TP × TN − FP × FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(12)

This metric is regarded as one of the most balanced metrics for evaluating binary
classification performance [48].The MCC is a correlation coefficient between the pre-
dicted and actual binary classifications. This correlation coefficient is expressed as a
value between -1 and 1. A value of -1 represents a perfect disagreement between pre-
dicted and target values, while 1 represents a perfect agreement. A value of 0 indicates
the classification results are no better than random. The MCC metric accounts for both
classes equally, independent from the class balance. Even if one class is dispropor-
tionately over-represented, a high MCC value means that both classes are predicted
well [48].

For this research, time is not used as an evaluation metric. The goal is of this
research is not to design a solver which operates faster than existing symbolic ap-
proaches. Rather, the goal is to test how well a graph neural network can learn to
solve argumentative reasoning tasks. In addition, it is not straightforward how to com-
pare performance between neural and symbolic approaches. Neural networks operate
most efficiently on a graphic processing unit (GPU), while symbolic algorithms oper-
ate most efficiently on a central processing unit (CPU). Thus even if the aim of this
research would be to compare run times, there is no fair or straightforward method to
compare both approaches on common hardware.

19

Sceptσ Credσ

Metric Model grd prf stb com grd prf stb com

GCN 0.17 0.18 0.20 0.16 0.17 0.17 0.39 0.36
MCC FM2 0.64 0.54 0.55 0.64 0.63 0.57 0.55 0.57

AGNN 1.00 0.997 0.997 1.00 1.00 0.998 0.998 0.999

MAE AGNN 3e−8 5e−4 9e−4 3e−8 3e−8 6e−4 4e−4 3e−4

Table 3: Argument acceptance results on the test dataset.

4.4 Results
AGNN is trained on the AFs in the training dataset for each acceptance problem and se-
mantics described in Section 2.1 and use the Matthews Correlation Coefficient to eval-
uate the binary classification performance on the AFs in the test dataset. The AGNN
model is compared to a graph convolutional network (GCN) [32] baseline and a repro-
duction of the FM2 model of Kuhlmann and Thimm [33]. Both are single forward pass
classifiers, where FM2 is a GCN with the number of incoming and outgoing attacks
per argument added as input features (see Section 7.1 for more information on FM2).
Table 3 reports the MCC scores for all models on deciding sceptical and credulous
acceptance. AGNN performs considerably better than GCN or FM2, and achieves a
perfect score on all problems which belong to complexity class P. On all other prob-
lems (belonging to NP or surpassing) AGNN is able to correctly predict the acceptance
of arguments almost perfectly. The problem complexity thus seems to impact the per-
formance of the model. The outputs of AGNN is inspected on AFs where some argu-
ments were classified incorrectly in order to find a common pattern in the errors, but
none were found.

In addition to the classification performance of the model, the confidence of its
predictions are of interest for this research. As a measure of prediction confidence the
mean absolute error (MAE) between the predicted likelihoods and the binary ground-
truth labels is used. An MAE of 0.01 implies that on average the predicted likelihood
deviates 1 percentage point from the ground-truth label. A low MAE thus indicates
predictions are made correctly and with high confidence. Table 3 shows that predictions
are overall made with high confidence. Most notably AGNN predictions deviate only
3e−6 percentage points from the true label on all problems for which it achieved a
perfect classification score.

4.5 Scaling
Even though AGNN is trained on AFs of size 5 ≤ |A| ≤ 25, it is able to determine
acceptability in much larger AFs. In order to test how well the trained model scales to
larger instances extra test datasets are generated with 1000 AFs containing |A| argu-
ments for each |A| ∈ {50, 100, 200} . Figure 9 illustrates the MCC scores for predict-
ing the credulous acceptance under the preferred semantics on different sized AFs as
a function of the number of message passing steps T . The figure shows AGNN con-
tinues to improve its predictions on large AFs by running for more iterations. Notably
the performance on |A| = 200 AFs still improves after hundreds of iterations (which is
not surprising considering that those AFs on average contain 5e3 attacks and up to 9e5

20

101 102 103

0.7

0.8

0.9

1

Number of message passing steps

M
C

C
sc

or
e

|A| = 25

|A| = 50

|A| = 100

|A| = 200

Figure 9: MCC score for Credprf on AFs of different size as a function of the number of message
passing steps T . The performance for the first few message passing steps mainly reflects how
well AGNN is able to anticipate the status of arguments before convergence. Because AFs are
randomly generated the performance during this anticipation phase may vary between datasets,
hence the crossing lines for |A| = 100 and |A| = 200.

extensions). This indicates that, while only being trained to perform 32 message pass-
ing steps, AGNN has learned some general and convergent message passing procedure
which scales to larger AFs by performing more iterations.

AGNN exhibits similar behaviour on all problems of the same complexity as Credprf.
On all problems belonging to complexity class P, AGNN is able to correctly classify
all arguments in AFs with |A| = 200 when run for 32 message passing iterations. All
together the results are supportive to the hypothesis that AGNN is able to learn some
general procedure which enable it to reason about argument acceptance in an argumen-
tation framework based on the interactions between arguments.

21

5 Analysing AGNN Behaviour
Chapter 4 showed the AGNN model learns a message passing algorithm which enables
it to predict the acceptance status of arguments in an AF. The process of iteratively
updating arguments by exchanging messages can be understood as performing a se-
quence of relational inferences between connected arguments. Since the computations
underlying those inferences are learned by neural networks, it is hard to interpret ‘how’
those inferences enable the model to predict acceptance. In this sections the outputs of
each iteration are inspected in order to infer how the model works towards a solution.

AGNN exhibits similar behaviour on all AFs in the test dataset. Arguments are
initialised with a low confidence prediction. At each iteration the likelihoods change
based on the incoming messages, until arguments ‘decide’ on their status by converg-
ing to a high confidence likelihood close to 0 or 1. Generally, the convergence of an
argument directly affects the prediction of adjacent arguments in the next iteration.
As information is exchanged between arguments, convergence propagates through the
graph until the model stops evolving and the likelihoods stay more or less constant.

Focusing on on acceptance under the grounded semantics allows to gain a better un-
derstanding of this behaviour. As shown in Table 3 AGNN is able to correctly predict
the acceptance of all arguments with extremely high confidence. Inspecting how argu-
ments in an AF converge over consecutive iterations (as shown in Figure 10) reveals
three consistent patterns:

1. unattacked arguments converge to accept;

2. any argument attacked by an argument which is converged to accept, converges
to reject;

3. any argument which is only attacked by arguments which are converged to reject,
converges to accept.

Any argument which is not affected by these procedures converges to reject over
the course of multiple iterations. Interestingly, each procedural pattern seems to encode
some principle of the grounded semantics. Pattern 1 corresponds to the notion that
the defence of arguments included in the grounded extension is ‘rooted’ in unattacked
arguments [4]; pattern 2 corresponds with the principle of conflict-freeness; and pattern
3 corresponds with the principle of defence. Since AGNN exhibits these patterns with
extremely high confidence predictions (MAE of 7e−7) on every AF, it seems the model
has learned to encode these principles as procedural rules into its message passing
algorithm. The procedural rules also correspond with those used in a well-established
symbolic labelling algorithm which can be used to find the grounded extension [43] (as
described in Section 2.1.2.2). This algorithm applies the same principles as described
in the three observed patterns. It seems AGNN has learned to encode the principles
of the grounded semantics and applies these as procedural rules to determine which
arguments are contained in the grounded extension.

IT is also observed that AGNN tries to anticipate the acceptance status of arguments
in an opportunistic fashion. Arguments which have not yet converged try to anticipate
their status based on information about their neighbourhood. At the first message pass-
ing step, only unattacked arguments have enough information to converge. For all other
arguments a negative correlation between the degree of incoming attacks and the pre-
dicted likelihood of being accepted is observed. Statistically seen, the more incoming

22

t

AF F 1 2 3

a

b c

d

A

R R

R

A

R R

A

A

R R

A

Figure 10: The acceptance predictions AGNN makes after the first three message passing itera-
tions on the AF F = ({a, b, c, d}, {(a, b), (a, c), (b, c), (b, d), (c, b), (d, c)} with respect to the
grounded semantics. The label and colour of each arguments denote whether the argument is
predicted to be A accepted (blue) or R rejected (red) where a darker colour indicates a higher
confidence prediction. At t = 1 argument a converges to accept while the other arguments an-
ticipate reject with a confidence that positively correlates with the amount of incoming attacks.
At t = 2 arguments b and c converge to reject while d adjusts its anticipation to accept since all
its neighbours anticipated reject. At t = 3 d converges to accept after which the model stops
evolving.

attacks an argument has, the higher the chance that it is not defended against one of
those attacks1. It seems that AGNN has learned to infer the amount of incoming at-
tacks from the incoming message and uses this information to anticipate the predicted
likelihoods. Additionally, anticipating arguments affect unconverged neighbouring ar-
guments according to the same procedure as mentioned above. An argument attacked
by arguments which anticipate reject will for instance anticipate accept or lower its
confidence in anticipating reject.

1This encodes the ideas behind ranking-based semantics, in which the numbers of attackers and defenders
are used to rank arguments [8].

23

6 Enumerating Extensions
Motivated by AGNN’s ability to predict argument acceptance almost perfectly, in this
chapter the scope of this research is extended to the extension enumeration problem.
The observations from Chapter 5 showed that AGNN is able to predict the accep-
tance of arguments under grounded semantics by learning a procedure to enumerate the
grounded extension. Since an AF always has one grounded extension, there is a one-
to-one mapping between enumerating the extension and deciding acceptance. It seems
plausible that AGNN is able to learn a similar procedure under the preferred, stable and
complete semantics. However, under these semantics an argument can be contained in
multiple extensions and as AGNN can only output a single value per argument there is
no straightforward way to directly use AGNN to enumerate all extensions.

To facilitate enumeration under multi-extension semantics enumeration is posed as
a search problem and use AGNN to guide a basic search. Starting from an empty set
of arguments S a search tree is constructed by incrementally adding arguments to S
that extend S into becoming an extension. When no argument can extend S any further
the search procedure backtracks, selects a new argument to extend S and continues
the search. Finding extensions with this procedure requires iteratively solving which
arguments can extend S into becoming an extension and verifying when S becomes
an extension. To address these problems with AGNN the constructive acceptance task
Constrσ is proposed.

Definition 6. Given an AF F = (A,R), a semantics σ, a set of arguments S ⊆ A
and an argument a ∈ A, a is said to be constructively accepted w.r.t. S if S ∪ {a} ⊆⋃
E∈σ(F) E

An argument can only be constructively accepted w.r.t. a set which is subset equal
to an extension. Given such a set S, an argument a is constructively accepted if it is
either contained in S or if adding a to S yields a larger set which is also subset equal
to an extension.

Example 5. Given the set of arguments S = {a} in Fe, arguments a, c and d are
constructively accepted w.r.t. S under preferred, complete and stable semantics while
only argument a is constructively accepted under grounded semantics.

Consider AF F = (A,R) and semantics σ. Starting from the empty set S is ex-
tended S into an extension by recursively computing which arguments are construc-
tively accepted w.r.t. S and adding one of these arguments to S. AGNN is used to
approximate the function fσ mapping F and S to a binary labelling fσ(F, S) indicat-
ing for each argument in A if it is constructively accepted w.r.t. S. AGNN is informed
which arguments are currently in S by initialising the corresponding nodes with a sep-
arate embedding xi. The computed likelihoods are rounded for each argument to a
binary answer.

Each time a constructively accepted argument is added, S is extended into a larger
subset of an extension until at some point it becomes equal to an extension. Verifying
when S becomes equal to an extension is straightforward under the grounded, preferred
and stable semantics. Under these semantics no extension can be a subset of another
extension. Therefore S is an extension when all constructively accepted arguments are
included in S and no argument can extend it any further. Those extensions are thus
found in the leaf nodes of the search tree (as shown in Figure 11). Under the complete
semantics this principle does not hold for all extensions. Since a complete extension

24

{}

{a, c, d}

{a}

{a, c, d}

{a, c}

{a, c}

add: c

{a, d}

{a, d}

add: d

add: a

{c}

{a, c}

{a, c}

{a, c}

add: a

add: c

{d}

{a, d}

{a, d}

{a, d}

add: a

add d

Figure 11: The search tree for enumerating the preferred extensions of the AF Fe. Each tree
node illustrates a set S in the top half and the set of arguments which are constructively accepted
w.r.t. S in the bottom half. At each step down the tree a constructively accepted argument is
included in S until S becomes an extension (i.e. no constructively accepted argument can extend
S any further).

can also be a subset of another complete extension, exhaustively extending S until it
becomes an extension will find some, but not all extensions.

Since AGNN provides an approximation, somewhere in the tree search an argu-
ment a might falsely be labelled as constructively accepted w.r.t. S, yielding the illegal
set S ∪ {a}. An illegal set is not subset equal to any extension and therefore cannot
be extended into a extension. Due to the branching nature of a tree search, a sin-
gle mislabelled argument early in the search procedure may spawn many illegal sets
thereby increasing the risk of an incorrectly enumerated extension. To mitigate this
risk while constructing the search tree, the search procedure stops extending any set
S when AGNN’s output indicates that S contains a constructively rejected argument
(since as long as S is subset equal to an extension all argument in S should be construc-
tively accepted by Definition 6). Appendix A shows the complete search procedure in
pseudo-code.

6.1 Experimental Setup and Results
The training dataset described in Section 4.1 is altered to supervise AGNN in learning
to predict which arguments are constructively accepted w.r.t. a set of arguments. For
each AF a set of arguments S is generated, such that S is subset equal to a randomly
selected extension to serve as input feature. The ground-truth labels are determined by
taking the union of all extensions which contain S and label each argument as accepted.
To train AGNN in recognising illegal sets, in addition a set of arguments is generated
which is not subset equal to any extension. The ground-truth label of each argument in
this set are set to reject. Table 4 shows exemplary training examples for an AF. During
training AGNN thus gets an AF and a set of arguments S (which are either subset
equal to an extension or an illegal set) and is asked to predict which arguments are
constructively accepted with respect to S. AGNN is trained with the same procedure
and parameters as described in Section 4.2.

For each AF in the test dataset AGNN is used to construct a search tree and return
the sets found in the leaf nodes. Table 5 shows AGNN is able to enumerate extensions

25

S Constrprf(F, S)

1 {} {a, c, d}
2 {a} {a, c, d}
3 {c} {a, c}
4 {a, c} {a, c}
5 {a, d} {a, d}
6 {b} {}

Table 4: Exemplary training examples generated for deciding constructive acceptance in Fe

under the preferred semantics, where S denotes a set of arguments and Constrprf(F, S) the set
of arguments that are constructively accepted w.r.t. S. Note that in the fourth and fifth example
the sets S are extensions, since all constructively accepted arguments are included in S. Also
note that in the final entry S is an illegal set it contains an argument which is not constructively
accepted.

Enumσ

Metric grd prf stb com

Precision 1.00 0.999 1.00 1.00
Recall 1.00 0.998 0.999 0.41

Table 5: Extension enumeration results on the test dataset.

almost perfectly under most semantics. As anticipated the recall under the complete
semantics is relatively low since the search procedure cannot find extensions which are
a subset of another extension. However when a verification algorithm [7] is included
to enable the identification of such extensions, the recall increases to 0.91. The ver-
ification algorithm is employed to verify at which steps in the search tree the set S
becomes an complete extension. The resulting increased recall indicates AGNN has
indeed learned the principles of constructing complete extensions but many are not
identified as such due to the nature of the search procedure.

26

7 Discussion
This chapter discusses related research and compare it to the approach of this research.
Additionally, this chapter reflects on the difference between symbolic and learning-
based approaches to artificial intelligence and how this thesis fits in the broader attempt
to bridge the two paradigms. Finally the thesis is concluded.

7.1 Related Work
Existing research on (deep) learning based approaches to argumentation focus mainly
on argument mining – that is, extracting arguments or attacks from natural language
text [13] – rather than solving acceptability problems. The exception is recent work
by Kuhlmann and Thimm [33], who carried out a feasibility study on the use of a
graph convolutional neural network to approximate the credulous acceptance of argu-
ments under the preferred semantics. Kuhlmann and Thimm [33] report achieving 80%
overall accuracy on predicting credulous argument acceptance under the preferred se-
mantics. Closer inspection of their results however, show this metric to not accurately
reflect the performance of their model. The authors report around 96% accuracy on
predicting rejected arguments and only 25% on accepted arguments. Since on average
an AF contains more rejected than accepted arguments, it is possible to achieve a high
accuracy simply by predicting most arguments to belong to the majority class (i.e. re-
jected) as discussed in Section 4.3. However, the low accuracy on predicting accepted
arguments shows how the reported 80% accuracy can be misleading.

For this thesis, the FM2 model is reproduced in order to compare FM2 to AGNN
on a more representative metric. The experiments described in Section 4.4 showed that
AGNN greatly outperforms FM2 on all tasks. This result may be explained by the fact
that AGNN learns a general message passing procedure while FM2 only learns to per-
form a statistical inference. First, the proposed FM2 model operates as a conventional
single forward pass classifier. In other words the authors map the input to the output
in a single computational step. In contrast, AGNN learns to perform a sequence of
relational inferences, enabling it to reason about multi-step interactions and long range
dependencies between arguments. Additionally, Kuhlmann and Thimm [33] incorpo-
rate handcrafted input features to improve the classification performance. In FM2 the
number of incoming and outgoing attacks are added to each argument as input features.
Adding these features encourages the model find a correlation between the amount of
incoming and outgoing attacks of an argument’s neighbourhood and the likelihood of it
being accepted. Although this might enhance the predictive power of the model (since
a node with a high number of incoming attacks will most likely have a higher proba-
bility of being rejected) it does not represent the interactions between arguments in an
AF. In constrast, AGNN predicts the acceptance of an argument solely based on the
attack structure of an AF.

Besides Kuhlmann and Thimm [33], Malmqvist [40] reports on using a deep rein-
forcement learning algorithm for his submission in the Third International Competition
on Computational Models of Argumentation [20]. Malmqvist [40] states his model is
able to learn to solve argument enumeration problem under several semantics. How-
ever, since the actual model is not described it could not be reproduced, preventing
comparison to the the current study.

From a machine learning perspective the AGNN model is close to Palm, Paquet,
and Winther [45] and Gilmer et al. [24]. Both describe GNNs that learn neural message

27

passing algorithms on problems from symbolic domains. The model from the current
study differs since two message functions are employed in order to distinguish between
messages sent from attack source to target or vice versa. A thorough search of relevant
literature has not yielded any other GNN implementation using this method. In addition
this research shows how GNNs can be used to guide a basic search on problems for
which multiple solutions exist. Li, Chen, and Koltun [38] combines GNN with tree
search in order to solve the travelling salesman problem. The authors use the tree
search to explore multiple tours, before selecting the optimal tour. In contrast, in this
study the tree search is used for an enumeration problem where multiple solutions exist.
To the best of this authors knowledge this study is the first to combine a tree search with
a GNN for an enumeration problem.

7.2 Neural-symbolic computing
This thesis fits in a broader attempt to bridge symbolic-based and learning-based meth-
ods in a paradigm called neural-symbolic computing [23, 21, 22]. The aim of neural-
symbolic computing is to integrate the ability to learn from experience and the ability
to reason from what has been learned [59]. Symbolic-based and learning-based ap-
proaches have shaped the field of artificial intelligence, but have been largely developed
by distinct research communities [22]. Symbolic approaches to reasoning have been
dominant during most of the history of AI. Symbolic approaches attempts to capture
reasoning in a systematic fashion by representing information such as facts, objects,
rules and relations as abstract symbols. By representing knowledge and reasoning in
a structured symbolic fashion, symbols can be manipulated to express or infer knowl-
edge. Such manipulations are typically expressed through formalisms such as logic or
mathematics, which provide various operators which describe how symbols can be ma-
nipulated. Through proof methods it is possible to provide theoretical guarantees about
symbolic operations (such as soundness and completeness). Moreover, due to the lan-
guage like, propositional character these statements are interpretable and explainable to
humans. In addition, the abstract symbolic representation allows for generalisation and
re-use, while also allowing elementary symbols to be combined through connectives to
form higher order abstractions.

The drawback to symbolic approaches is that they are dependent on explicit on
handcrafted knowledge. In the history of artificial intelligence it has proven to be very
difficult to represent knowledge explicitly through symbols2. In addition, critics have
questioned where symbolic representations should come from in the first place. Harnad
[26] describes this as the symbol grounding problem. Symbolic representations should
be grounded in something to have a meaning. After all they are only representations
of something. Symbols cannot simply be grounded in other symbols, since this would
lead to a circular meaningless regress. According to Harnad [26], grounding symbols
in other symbols would be similar to learning Chinese from a Chinese/Chinese dictio-
nary (analogical to Searle’s Chinese Room argument [52]). Therefore symbols have
to be grounded in something extrinsic, thus a mere symbolic approach to reasoning is
insufficient from a philosophical perspective.

A natural candidate for the grounding representations in experience is connection-
ism [26]. The strength of connectionism, specifically neural networks, is to learn rep-
resentations from data with little or no prior knowledge. Neural networks are able to

2Notably, the symbolic expert systems (in 1980 seen as a promising AI approach) did not live up to their
expectations due to this problem [27].

28

discover features in high-dimensional real-valued noisy data. As a result, deep learn-
ing methods have revolutionised areas such as natural language processing, computer
vision and game playing [36]. Despite these breakthroughs, deep learning has attracted
a lot of criticism with respect to its reasoning capabilities. The main criticism on deep
learning is that it cannot learn through explication, but needs thousands of examples to
learn something [41]. Additionally, neural networks have a limited capacity to transfer
concepts. Neural networks are able to perform well on a single problem, but can hardly
transfer learned concept to other problems. The learned representations thus lack the
general and reusable character of symbolic representations. Finally, neural networks
are not transparent nor exact. Neural networks are black-box models which provide ap-
proximation. As a result, both the model and the output are generally hard to interpret
for humans.

The symbolic and connectionist approaches to artificial intelligence thus seem to
have complementary strengths and weaknesses. A hybrid system could benefit from
the interpretability and structure of symbolism combined with the learning capabilities
and flexible representations of connectionism. The learning-based approach to deter-
mining argument acceptance described in this research fits in the broader attempt to
integrate symbolic and neural models into a single framework. This thesis shows that
sub-symbolic deep learning techniques can accurately solve a problem from compu-
tational argumentation that could previously only be solved by sophisticated symbolic
solvers. Specifically, this research demonstrates that a GNN is able to represent and
reason about the relations between arguments in an AF in a sub-symbolic fashion.

There are still some limit to the performance of the proposed AGNN model. AGNN
does not provide the same theoretical guarantees as a symbolic algorithm and can thus
make erroneous predictions. The appeal is that it is able to learn a message passing
algorithm, which exhibits behaviour similar to a symbolic algorithm, without the expert
knowledge of a human designer. Currently, the approach in this study is still dependent
on the availability of labelled training data however. The labelled data can only be
obtained with a sound and complete symbolic solver. In other words, a solver has to
exist in order to train AGNN to be a solver. This dependency could be removed by
using AGNN in a reinforcement learning (RL) setting [57]. In an RL environment, the
model is not trained with labelled data but explores the solution space until a correct
solution is found. Learning to solve reasoning problems in an RL environment thus
only requires a method to verify when a correct solution is found (which is trivial
in most cases as described in Section 2.1.2.1), thereby removing the dependency on
preexisting solvers. This would enable the use of an AGNN on yet unsolved reasoning
problems. This direction is left for future research.

7.3 Conclusion
This thesis presents a learning-based approach to determining acceptance of arguments
under abstract argumentation semantics, proposing AGNN, which learns a message
passing algorithm to predict the likelihood of an argument being accepted. AGNN
can almost perfectly predict the acceptability under different semantics and scales well
for larger argumentation frameworks. Furthermore, AGNN can also enumerate all ex-
tensions under different semantics very well - for multi-extension semantics, AGNN
is used to extend a set of arguments such that it becomes an extension. Analysis of
AGNN’s behaviour shows that it learns to adhere to basic principles of (ranked) argu-
ment semantics as identified in the literature [4, 8], and behaves similarly to a well-

29

known symbolic labelling algorithm for grounded semantics [43].
Although AGNN does not provide the same theoretical guarantees as a symbolic

algorithm, the appeal of a learning-based approach is that it generalises to different
problems without needing the expert knowledge of human algorithm designers [38].
AGNN is a single architecture that can solve different argumentation problems (Cred,
Scept, Constr) for different semantics (grd, prf, stb, com) and on AFs larger than seen
during training in constant time, simply by running for more iterations. Additionally,
by solving the constructive acceptance problem, AGNN can guide a basic tree search
which enumerates extensions.

In short this thesis showed it is possible to learn to reason about the interactions
between arguments in an argumentation framework with a graph neural network. This
research opens up new research directions on neural-symbolic computing with respect
to computational argumentation. For future work, the author aims to look at employ-
ing AGNN for dynamic argumentation [15], looking at whether AGNN can learn, for
example, which arguments or attacks should be added or removed to enforce a certain
argument’s acceptability.

7.4 Acknowledgements
I would like to thank my supervisor, Florix Bex, for his guidance through each stage
of the process; Annemarie Borg for her feedback; SURFsara for the support in using
the Lisa Compute Cluster; Utrecht University for their support in using the Gemini
Compute Cluster; Weights and Biases for using their experiment tracking tool. Finally
I would like to pay my special regards to my girlfriend and mother, who have been
supportive and patient throughout all of my academic endeavours.

30

References
[1] Réka Albert and Albert-László Barabási. “Statistical mechanics of complex net-

works”. In: Reviews of Modern Physics 74.1 (2002), pp. 47–97.

[2] Katie Atkinson, Pietro Baroni, Massimiliano Giacomin, Anthony Hunter, Henry
Prakken, Chris Reed, Guillermo Ricardo Simari, Matthias Thimm, and Ser-
ena Villata. “Towards Artificial Argumentation”. In: AI Magazine 38.3 (2017),
pp. 25–36.

[3] Albert-László Barabási and Márton Pósfai. Network science. Cambridge: Cam-
bridge University Press, 2016.

[4] Pietro Baroni, Martin Caminada, and Massimiliano Giacomin. “An introduction
to argumentation semantics”. In: Knowledge Engineering Review 26.4 (2011),
pp. 365–410.

[5] Peter W. Battaglia, Jessica B. Hamrick, Victor Bapst, Alvaro Sanchez-Gonzalez,
Vinicius Zambaldi, Mateusz Malinowski, Andrea Tacchetti, David Raposo, Adam
Santoro, Ryan Faulkner, Caglar Gulcehre, Francis Song, Andrew Ballard, Justin
Gilmer, George Dahl, Ashish Vaswani, Kelsey Allen, Charles Nash, Victoria
Langston, Chris Dyer, Nicolas Heess, Daan Wierstra, Pushmeet Kohli, Matt
Botvinick, Oriol Vinyals, Yujia Li, and Razvan Pascanu. Relational inductive
biases, deep learning, and graph networks. 2018. arXiv: 1806.01261 [cs.LG].

[6] Yoshua Bengio, Andrea Lodi, and Antoine Prouvost. Machine Learning for
Combinatorial Optimization: a Methodological Tour d’Horizon. 2018. arXiv:
1811.06128.

[7] Philippe Besnard and Sylvie Doutre. “Checking the acceptability of a set of ar-
guments”. In: Proceedings of the 10th International Workshop on Non-Monotonic
Reasoning (NMR). 2004, pp. 59–64.

[8] Elise Bonzon, Jérôme Delobelle, Sébastien Konieczny, and Nicolas Maudet. “A
comparative study of ranking-based semantics for abstract argumentation”. In:
Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence. 2016,
pp. 914–920.

[9] Martin Caminada. “On the Issue of Reinstatement in Argumentation”. In: Pro-
ceedings of the 10th European Conference Logics in Artificial Intelligence (JELIA).
2006, pp. 111–123.

[10] Federico Cerutti, Sarah Alice Gaggl, Matthias Thimm, and Johannes Peter Wall-
ner. “Foundations of Implementations for Formal Argumentation”. In: FLAP 4.8
(2017).

[11] Federico Cerutti, Massimiliano Giacomin, and Mauro Vallati. “Generating Struc-
tured Argumentation Frameworks: AFBenchGen2”. In: Proceedings of Compu-
tational Models of Argumentation (COMMA). 2016, pp. 467–468.

[12] Günther Charwat, Wolfgang Dvorák, Sarah Alice Gaggl, Johannes Peter Wall-
ner, and Stefan Woltran. “Methods for solving reasoning problems in abstract
argumentation - A survey”. In: Artificial Intelligence 220 (2015), pp. 28–63.

[13] Oana Cocarascu and Francesca Toni. “Identifying attack and support argumen-
tative relations using deep learning”. In: Proceedings of the 2017 Conference on
Empirical Methods in Natural Language Processing (EMNLP). 2017, pp. 1374–
1379.

31

https://arxiv.org/abs/1806.01261
https://arxiv.org/abs/1811.06128

[14] Dennis Craandijk and Floris Bex. “Deep Learning for Abstract Argumentation
Semantics”. In: Proceedings of the Twenty-Ninth International Joint Confer-
ence on Artificial Intelligence, IJCAI 2020 [scheduled for July 2020, Yokohama,
Japan, postponed due to the Corona pandemic]. ijcai.org, 2020, pp. 1667–1673.

[15] Sylvie Doutre and Jean-Guy Mailly. “Constraints and changes: A survey of
abstract argumentation dynamics”. In: Argument & Computation 9.3 (2018),
pp. 223–248.

[16] Phan Minh Dung. “On the Acceptability of Arguments and its Fundamental Role
in Nonmonotonic Reasoning, Logic Programming and n-Person Games”. In:
Artificial Intelligence 77.2 (1995), pp. 321–358.

[17] Phan Minh Dung, Robert A. Kowalski, and Francesca Toni. “Assumption-Based
Argumentation”. In: Argumentation in Artificial Intelligence. 2009, pp. 199–
218.

[18] Wolfgang Dvorák and Paul E. Dunne. “Computational Problems in Formal Ar-
gumentation and their Complexity”. In: FLAP 4.8 (2017).

[19] P. Erdős and A. Rényi. “On the evolution of random graphs”. In: The Structure
and Dynamics of Networks. Princeton University Press, Oct. 2011, pp. 38–82.

[20] Sarah Alice Gaggl, Thomas Linsbichler, Marco Maratea, and Stefan Woltran.
“Design and results of the Second International Competition on Computational
Models of Argumentation”. In: Artificial Intelligence 279 (2020).

[21] Artur S. d’Avila Garcez, Tarek R. Besold, Luc De Raedt, Peter Földiák, Pas-
cal Hitzler, Thomas Icard, Kai-Uwe Kühnberger, Luıs C. Lamb, Risto Miikku-
lainen, and Daniel L. Silver. “Neural-Symbolic Learning and Reasoning: Con-
tributions and Challenges”. In: Proceedings of the 2015 AAAI Spring Symposia.
2015.

[22] Artur d’Avila Garcez, Marco Gori, Luis C. Lamb, Luciano Serafini, Michael
Spranger, and Son N. Tran. Neural-Symbolic Computing: An Effective Method-
ology for Principled Integration of Machine Learning and Reasoning. 2019.
arXiv: 1905.06088 [cs.AI].

[23] Marta Garnelo and Murray Shanahan. “Reconciling deep learning with symbolic
artificial intelligence: representing objects and relations”. In: Current Opinion in
Behavioral Sciences 29 (2019), pp. 17–23.

[24] Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals, and George
E. Dahl. “Neural Message Passing for Quantum Chemistry”. In: Proceedings of
the 34th International Conference on Machine Learning (ICML). 2017, pp. 1263–
1272.

[25] William L. Hamilton, Rex Ying, and Jure Leskovec. “Representation Learning
on Graphs: Methods and Applications”. In: IEEE Data Engineering Bulletin
40.3 (2017), pp. 52–74.

[26] Stevan Harnad. “The symbol grounding problem”. In: Physica D: Nonlinear
Phenomena 42.1-3 (1990), pp. 335–346.

[27] James Hendler. “Avoiding another AI winter”. In: IEEE Intelligent Systems 2
(2008), pp. 2–4.

[28] Geoffrey E. Hinton and Richard S. Zemel. “Autoencoders, Minimum Descrip-
tion Length and Helmholtz Free Energy”. In: Advances in Neural Information
Processing Systems 6 (NIPS). 1993, pp. 3–10.

32

https://arxiv.org/abs/1905.06088

[29] Sepp Hochreiter and Jürgen Schmidhuber. “Long Short-Term Memory”. In: Neu-
ral Computation 9.8 (1997), pp. 1735–1780.

[30] Justin Johnson, Bharath Hariharan, Laurens van der Maaten, Li Fei-Fei, C. Lawrence
Zitnick, and Ross B. Girshick. “CLEVR: A Diagnostic Dataset for Compo-
sitional Language and Elementary Visual Reasoning”. In: Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2017,
pp. 1988–1997.

[31] Elias B. Khalil, Hanjun Dai, Yuyu Zhang, Bistra Dilkina, and Le Song. “Learn-
ing Combinatorial Optimization Algorithms over Graphs”. In: Advances in Neu-
ral Information Processing Systems 30 (NIPS). 2017, pp. 6348–6358.

[32] Thomas N. Kipf and Max Welling. “Semi-Supervised Classification with Graph
Convolutional Networks”. In: Proceedings of the 5th International Conference
on Learning Representations (ICLR). 2017.

[33] Isabelle Kuhlmann and Matthias Thimm. “Using Graph Convolutional Networks
for Approximate Reasoning with Abstract Argumentation Frameworks: A Fea-
sibility Study”. In: Proceedings of the 13th international conference on Scalable
Uncertainty Management (SUM). 2019, pp. 24–37.

[34] Brenden M. Lake, Tomer D. Ullman, Joshua B. Tenenbaum, and Samuel J. Ger-
shman. “Building machines that learn and think like people”. In: Behavioral and
Brain Sciences 40 (2017), p. 253.

[35] Luis C. Lamb, Artur Garcez, Marco Gori, Marcelo Prates, Pedro Avelar, and
Moshe Vardi. Graph Neural Networks Meet Neural-Symbolic Computing: A
Survey and Perspective. 2020. arXiv: 2003.00330 [cs.AI].

[36] Yann LeCun, Yoshua Bengio, and Geoffrey E. Hinton. “Deep learning”. In: Na-
ture 521.7553 (2015), pp. 436–444.

[37] Yann LeCun, Léon Bottou, Yoshua Bengio, and P. Haffner. “Gradient-based
learning applied to document recognition”. In: Proceedings of the IEEE 86.11
(1998), pp. 2278–2324.

[38] Zhuwen Li, Qifeng Chen, and Vladlen Koltun. “Combinatorial Optimization
with Graph Convolutional Networks and Guided Tree Search”. In: Proceedings
of the 32nd International Conference on Neural Information Processing Systems
(NIPS). 2018, pp. 537–546.

[39] Ilya Loshchilov and Frank Hutter. “Decoupled Weight Decay Regularization”.
In: Proceedings of the 7th International Conference on Learning Representa-
tions (ICLR). 2019.

[40] Lars Malmqvist. “Yonas: An Experimental Neural Argumentation Solver”. In:
International Competition on Computational Models of Argumentation (ICCMA).
2019.

[41] Gary Marcus. Deep Learning: A Critical Appraisal. 2018. arXiv: 1801.00631
[cs.AI].

[42] Brendan D. McKay and Adolfo Piperno. “Practical graph isomorphism, II”. In:
Journal of Symbolic Computation 60 (2014), pp. 94–112.

[43] Sanjay Modgil and Martin Caminada. “Proof Theories and Algorithms for Ab-
stract Argumentation Frameworks”. In: Argumentation in Artificial Intelligence.
Ed. by Iyad Rahwan and Guillermo R Simari. Springer, 2009, pp. 105–129.

33

https://arxiv.org/abs/2003.00330
https://arxiv.org/abs/1801.00631
https://arxiv.org/abs/1801.00631

[44] Andreas Niskanen and Matti Järvisalo. µ-toksia: SAT-based Solver for Static
and Dynamic Argumentation Frameworks. 2019. URL: https : / /bitbucket .org /
andreasniskanen/mu-toksia.

[45] Rasmus Berg Palm, Ulrich Paquet, and Ole Winther. “Recurrent Relational Net-
works”. In: Proceedings of the 32nd International Conference on Neural Infor-
mation Processing Systems (NIPS). 2018, pp. 3372–3382.

[46] Christos H. Papadimitriou. Computational complexity. Addison-Wesley, 2005.

[47] Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. “On the difficulty of
training recurrent neural networks”. In: Proceedings of the 30th International
Conference on Machine Learning (ICML). 2013, pp. 1310–1318.

[48] David M. Powers. “Evaluation: From precision, recall and F-measure to ROC,
informedness, markedness & correlation”. In: Journal of Machice Learning Tech-
nology 2 (2011), pp. 2229–3981.

[49] Henry Prakken. “An abstract framework for argumentation with structured ar-
guments”. In: Argument & Computation 1.2 (2010), pp. 93–124.

[50] David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. “Learning In-
ternal Representations by Error Propagation”. In: Parallel Distributed Process-
ing: Explorations in the Microstructure of Cognition. MIT Press, 1986, pp. 318–
362.

[51] Adam Santoro, David Raposo, David G. T. Barrett, Mateusz Malinowski, Raz-
van Pascanu, Peter W. Battaglia, and Tim Lillicrap. “A simple neural network
module for relational reasoning”. In: Advances in Neural Information Process-
ing Systems 30 (NIPS). 2017, pp. 4967–4976.

[52] John R. Searle. “Minds, Brains, and Programs”. In: The Philosophy of Artifi-
cial Intelligence. Oxford readings in philosophy. Oxford University Press, 1990,
pp. 67–88.

[53] Daniel Selsam, Matthew Lamm, Benedikt Bünz, Percy Liang, Leonardo de Moura,
and David L. Dill. “Learning a SAT Solver from Single-Bit Supervision”. In:
Proceedings of the 7th International Conference on Learning Representations
(ICLR). 2019.

[54] Leslie N. Smith. A disciplined approach to neural network hyper-parameters:
Part 1 – learning rate, batch size, momentum, and weight decay. 2018. arXiv:
1803.09820 [cs.LG].

[55] Leslie N. Smith. “Cyclical Learning Rates for Training Neural Networks”. In:
Proceedings of the IEEE Winter Conference on Applications of Computer Vision
(WACV). 2017.

[56] Billy Spelchan and Yong. Gao. “The AFGen Benchmark Generator”. In: In-
ternational Competition on Computational Models of Argumentation (ICCMA).
2019.

[57] Richard S. Sutton and Andrew G. Barto. Reinforcement learning - an introduc-
tion. Adaptive computation and machine learning. MIT Press, 1998.

[58] Matthias Thimm, Serena Villata, Federico Cerutti, Nir Oren, Hannes Strass,
and Mauro Vallati. “Summary Report of The First International Competition on
Computational Models of Argumentation”. In: AI Magazine 37.1 (2016), p. 102.

34

https://bitbucket.org/andreasniskanen/mu-toksia
https://bitbucket.org/andreasniskanen/mu-toksia
https://arxiv.org/abs/1803.09820

[59] Leslie G. Valiant. “Three problems in computer science”. In: Journal of the ACM
50.1 (2003), pp. 96–99.

[60] Duncan J Watts and Steven H Strogatz. “Collective dynamics of ‘small-world’
networks”. In: Nature 393.6684 (1998), p. 440.

[61] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and
Philip S. Yu. A Comprehensive Survey on Graph Neural Networks. 2019. arXiv:
1901.00596 [cs.LG].

[62] Jie Zhou, Ganqu Cui, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu, Lifeng Wang,
Changcheng Li, and Maosong Sun. Graph Neural Networks: A Review of Meth-
ods and Applications. 2018. arXiv: 1812.08434 [cs.LG].

35

https://arxiv.org/abs/1901.00596
https://arxiv.org/abs/1812.08434

A Guided tree search algorithm

Algorithm 1 AGNN guided tree search
Input: An AF F , a set of arguments S and a semantics σ
Output: The found extensions E

1: S ←− initialise with ∅
2: procedure EXTENDRECURSIVELY(F, S)
3: I ←− set of constructively accepted arguments according to AGNNσ(F, S)
4: if S 6⊆ I then
5: return ILLEGAL
6: else if S = I then
7: Add S to found extensions E
8: else
9: for each argument a ∈ I and a 6∈ S do

10: S′ ←− S ∪ {a}
11: EXTENDRECURSIVELY(F, S′)
12: end for
13: end if
14: end procedure

36

	Introduction
	Preliminaries
	Computational argumentation
	Abstract argumentation
	Reasoning problems

	Deep learning on graphs
	Graph neural networks
	Applications

	Deep Learning for Abstract Argumentation Semantics
	Problem Setup
	Argumentation Graph Neural Network

	Experiments
	Data
	Training
	Metrics
	Results
	Scaling

	Analysing AGNN Behaviour
	Enumerating Extensions
	Experimental Setup and Results

	Discussion
	Related Work
	Neural-symbolic computing
	Conclusion
	Acknowledgements

	References
	Guided tree search algorithm

