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ABSTRACT

Argumentation is a reasoning approach in Artificial Intelligence, which is ap-
proached by extension-based methods as well as gradual approaches. In the
literature one is often vague about the type of argument strength that is studied
and it is mostly approached avoiding structured argumentation. Thereby, as-
sumptions are made on abstract level that do not always hold at the structural
level.

In this work we answer the question how a semantics for dialectical argument
strength in structured approaches to argumentation can be developed and eval-
uated. To that end two new semantics will be proposed using ASPIC+, one
for argumentation frameworks with only attacks, one for argumentation frame-
works with only supports. Both of these semantics will be evaluated by the
postulates proposed in the literature as well as by postulates proposed in this
work. Existing semantics will also be evaluated by the new postulates.
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1. INTRODUCTION

Argumentation is a reasoning approach in Artificial Intelligence, which started
at the end of the twentieth century with the work of Lin & Shoham (1989),
Pollock (1987, 1992), Vreeswijk (1993, 1997) and Simari & Loui (1992). The idea
is to use reasoning to construct arguments and evaluate them to say something
about validity of an argument.

Most recent work builds on the theory from Dung (1995) about abstract argu-
mentation frameworks (AFs). These AFs can be seen as directed graphs, where
the nodes in these graphs represent the arguments and the attack relations are
represented by the arrows.

These AFs are used to examine the acceptability of arguments. Methods
with this purpose are called argumentation semantics. Dung (1995) proposed
four extension-based semantics, namely, complete semantics, grounded seman-
tics, stable semantics and preferred semantics. These semantics are expanded
with a lot of different semantics, for example, recursive semantics (Baroni et al.,
2005), semi-stable semantics (Caminada, 2006b) and ideal semantics (Dung
et al., 2007). A more complete overview can be found in (van der Torre & Vesic,
2017). These extension-based methods give a scientific notion to the principle
of “The one who has the last word laughs best”.

In extension-based semantics a justified argument kills any argument it at-
tacks. However, is some cases killing is too much and one would only like to
weaken an argument. For example, an argument ”"we should by that car, be-
cause our current car is old”, should not be killed by the argument ”we should
not buy that car, because it is expensive,” but only weakened (Delobelle, 2017).
So, one of the main objections against the extension-based approaches is that
acceptability should be a gradual (Delobelle, 2017), while, extension-based se-
mantics are limited by only a small degree of acceptability'. Graduality could be
achieved in two ways: one could assign a value, which represents the strength,
for every argument or one could provide a preorder on the set of arguments i.e.
for any argument a and b it is determined if @ is ranked higher, lower or equal
to b. The first type of semantics are weighting semantics, the second one is
called ranking semantics. And trivially each weighting semantics is a ranking
semantics.

In the literature different approaches to add graduality are proposed and eval-
uated against postulates proposed by for example Amgoud & Ben-Naim (2013)
and Baroni et al. (2018). Some papers captured graduality using extension
based semantics (Cayrol & Lagasquie-Schiex, 2005b; Caminada & Wu, 2010;
Bonzon et al., 2018); these are examples of ranking semantics. Other exam-
ples are Discussion-based Semantics and Burden-based Semantics (Amgoud &
Ben-Naim, 2013), Iterated Graded Defense (Grossi & Modgil, 2015) and Prop-
agation Semantics (Bonzon et al., 2016a). There are many weighting seman-
tics. The general idea of weighting semantics is that they give a value to an
argument based on the score of its direct attackers. Examples of weighing se-
mantics are Categoriser-based Semantics (Besnard & Hunter, 2001), Max-based
Semantics (Amgoud et al., 2017), Social Semantics (Leite & Martins, 2011), a-
burden-based Semantics (Amgoud et al., 2016), Tuples-based Semantics (Cayrol

n extension-based arguments in the extension are ranked higher than arguments outside
the extension.
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& Lagasquie-Schiex, 2005b), Matt & Toni (Matt & Toni, 2008), Fuzzy Labelling
(da Costa Pereira et al., 2011), Counting Semantics (Pu et al., 2015) or Weighted
h-categorizer, Weighted Max-based and Weighted Card-based Semantics (Am-
goud et al., 2017) and many others.

Besides argumentation frameworks with only attack relations, there are bipo-
lar argumentation frameworks (BAFs). These frameworks can be seen as direc-
tional graphs with two types of arrows. As in BAFs the nodes represent the
arguments and the arrows represent the attack and support relations between
those arguments.

Cohen et al. (2018) defined four notions of such support-relations, namely
conclusion support, premise support, intermediate support and sub-argument
support. An argument a is conclusion-supported by argument b if argument b
has the same conclusion as the conclusion of argument a. An argument a is
premise-supported by argument b if argument b has the same conclusion as a
premise of argument a. An argument a is intermediate-supported by argument
b if the conclusion of argument b is equal to a sub-conclusion of a (which is
not the conclusion or a premise). An argument a is sub-argument-supported by
argument b if argument b is a sub-argument argument a.

There are various gradual semantics for BAFs. Also for BAFs there are
weighting semantics that give a value to each argument and ranking seman-
tics that only rank arguments. Examples of weighting semantics for BAF's are
Euler-based restricted semantics (Amgoud & Ben-Naim, 2018) and the quadratic
energy model (Potyka, 2018). Examples of ranking semantics for BAFs are the
extension-based ranking semantics (Cayrol & Lagasquie-Schiex, 2005b; Bonzon
et al., 2018) which are applied on a framework with additional attacks (Cayrol
& Lagasquie-Schiex, 2013), for example if a attacks b and b supports ¢, then an
attack from a to c is added.

The above mentioned semantics are all based on abstract argumentation,
thereby neglecting the structure of arguments. The only paper about struc-
tured argumentation is the paper by Pollock (2001). Recent papers only discuss
abstract argumentation. Ignoring the structure of arguments or the nature of
their relations may result in odd or undesirable results. For example, for abstract
argumentation one makes often assumptions which do not hold for structured
argumentation (Prakken, 2020). A second problem with the recent literature is
discussed by Prakken (2021). Prakken (2021) distinguishes three aspects of ar-
gumentation strength: logic strength, dialectic strength and rhetorical strength.
According to Prakken (2021) logical argument strength divides into inferential
argument strength (how well do the premises support the conclusion if one only
looks at the argument’s premises, inferences and conclusion) and contextual
argument strength (contextual argument strength is about how well the con-
clusion of an argument is supported if one looks at the context of all relevant
arguments). " Dialectical argument strength looks at how well defended an argu-
ment is in the context of an ongoing or terminated critical discussion” (Prakken,
2021) and ”"Rhetorical argument strength looks at how capable an argument is
to persuade other participants in a discussion or an audience”. (Prakken, 2021).

Many of the earlier mentioned papers do not mention which kind of argument
strength their semantics describes. However, as argued by Prakken (2021), there
are three different types of argument strength. Therefore, it is very unlikely that
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the same set of postulates would fit each of these types of argument strength. For
example, unattacked arguments have a very strong logical argument strength,
but not necessarily a strong dialectical argument strength. This could lead to
problematic results.

In this paper two new semantics will be proposed for structured approaches
to argumentation, one for argumentation frameworks with only attacks, one for
argumentation frameworks with only supports. Both of these new semantics
will be semantics for dialectical argument strength. Both of these semantics will
be evaluated by the postulates proposed by respectively Amgoud & Ben-Naim
(2013) and Amgoud & Ben-Naim (2016a). Furthermore, we will discuss to what
extent each postulates fits for dialectical argument strength. Also additional
postulates will be proposed.

In this research project the question we aim to answer is: "How can a weigh-
ing semantics for dialectical argument strength in structured approaches to ar-
gumentation be developed and evaluated?”

To answer this question the following three research questions will be an-
swered:

R1 What properties of ASPIC+ can be utilized to create new semantics for
dialectical argument strength?

R2 What postulates defined on an abstract level hold for structured argu-
mentation i.e. when instantiated in ASPIC+7?

R3 What are good postulates for dialectical strength?

R4 What postulates are satisfied by different semantics?

The paper is organised as follows. Section 2 gives the background of argu-
mentation frameworks, introduces (gradual) semantics formally and consists of a
description for structured argumentation using ASPIC+. In section 4 intuitions
for a new semantics are discussed and a new semantics is proposed for argu-
mentation frameworks with only attacks. Subsequently, in section 5 this new
semantics will be evaluated by existing postulates as well as new postulates,
which will be proposed in that section. Then, section 6 contains intuitions and
a definition of a semantics for argumentation frameworks with only supports.
These semantics will be evaluated on existing postulates as well as postulates
proposed in section 7. The final section concludes.

2. PRELIMINARIES

This section starts by recalling the definition of Dung’s argumentation frame-
works and adaptations of this framework and the extension-based semantics
(Dung, 1995). Then, (weighted) bipolar argumentation frameworks will be in-
troduced. Finally, ASPIC+ will be recalled.

2.1. Argumentation Frameworks.

As mentioned before, most recent work builds on the theory from Dung (1995)
about abstract argumentation frameworks (AFs). These AFs can be seen as
directed graphs, where the nodes in these graphs represent the arguments and
the attack relations are represented by the arrows, see Definition 1.

Definition 1 (Abstract Argumentation Frameworks). An abstract argumenta-
tion framework (or graph) is a tuple (A, R), where A is a set of arguments and
R C A x A a binary attack relation on A. For arguments a,b € A, (a,b) € R
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or aRb means that a attacks b. Furthermore, R~ (a) denotes the set of attackers
of a and R*(a) denotes the set of arguments that are attacked by a.

In other papers adaptations of these argumentation frameworks are used.
This are the semi-weighted abstract argumentation frameworks (resp. weighted
abstract argumentation frameworks), where nodes (resp. nodes and edges) have
an initial weight.

Definition 2 (Semi-weighted Abstract Argumentation Frameworks). (Amgoud
et al., 2017) A semi-weighted abstract argumentation framework (or graph) is
a tuple (A,w,R), where A is a set of arguments, w : A — [0,1] is a function
which maps each argument to its initial weight and R C A x A a binary attack
relation on A.

Definition 3 (Weighted Abstract Argumentation Frameworks). (Amgoud &
Doder, 2019) A weighted abstract argumentation framework (or graph) is a tuple
(A,w, R, ), where A is a set of arguments, w : A — [0,1] is a function which
maps each argument to its initial weight, R C A X A a binary attack relation on
A, m: A—[0,1] is a function which maps attack to its weight.

2.1.1. Eztension-based Semantics.

These AFs are used to examine the acceptability of arguments. Methods with
this purpose are called argumentation semantics. Dung (1995) describes four
extension-based semantics. In these extension-based methods arguments are
skeptically acceptable, credulously acceptable or not acceptable?. He defines
acceptability of arguments in terms of conflict-free sets and in terms of defending.
Each extension represents a different set of arguments that are acceptable.

Definition 4 (Conflict-free). A set S of arguments is said to be conflict-free if
VAe S AB € S : A attacks B.

Definition 5 (Defends). Let AF = (A, R) be an argumentation framework. A
set S C A of arguments is said to defend argument a € A iff Vb € A bRa implies
that 3c € S : cRb.

Definition 6. (Dung, 1995) Let AF = (A, R) be an argumentation framework
and S C A a conflict-free set. Then:

e S is a complete extension iff it defends all its elements and contains any
argument it defends.

o S is a grounded extension iff it is a minimal (w.r.t. set inclusion) com-
plete extension.

e S is a preferred extension iff it is a maximal (w.r.t. set inclusion) com-
plete extension.

e S is a stable extension iff it attacks any argument in A\S.

Definition 7. For each semantics an argument is skeptically acceptable if it
belongs to all extensions; an argument is credulously acceptable if it belongs to
at least one extension, but not to all extensions; an argument is not acceptable
if it belongs to no extension.

20ther paper sometimes use the terms ’acceptable’, 'undecided’ and ’not acceptable’ or in
recursive semantics they use the terms 'undefeated’, ’provisionally defeated’ and ’'defeated’
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2.2. Bipolar Argumentation Frameworks and Corresponding Seman-
tics.

Besides argumentation frameworks with only attack relations, there are bipo-
lar argumentation frameworks. These frameworks can be seen as directional
graphs with two types of arrows. As in BAFs the nodes represent the argu-
ments. Moreover, the arrows represent the attack and support relation between
those arguments. There are also semantics that use weighted bipolar abstract
argumentation frameworks.

Definition 8 (Bipolar Argumentation Frameworks). (Cayrol & Lagasquie-Schiez,
2005a) A bipolar abstract argumentation framework is a triple (A, R,S), where
A is a set of arguments and R (resp. S) is a binary attack (resp. support)
relation on A.

For a,b € R (resp. S§) aRb (resp. aSb) means that a attacks (resp. sup-
ports) b. Furthermore, R — (a) (resp. S~ (a)) denotes the set of attackers (resp.
supporters) of a.

Definition 9 (Weighted Bipolar Abstract Argumentation Frameworks). (Am-
goud & Ben-Naim, 2018) A weighted bipolar abstract argumentation framework
(or graph) is a tuple (A,w,R,S), where A is a set of arguments, w : A — [0, 1]
is a function which maps each argument to its initial weight and R C A x A
(resp. S C Ax A) a binary attack (resp. support) relation on A. For arguments
a,be A, (a,b) € R or aRb means that a attacks b and (a,b) € S or aSb means
that a supports b. We write w = x if w(a) = x for all arguments a € A.

2.2.1. Eztension-based Semantics.

In the literature different interpretations of support i.e. semantics for BAF's
are presented. General support (Cayrol & Lagasquie-Schiex, 2005¢) adds attack-
relations in terms of supported attack (i.e. if @ supports b and b attacks ¢, then
a support attacks ¢) and indirect attack (i.e. if a supports b and ¢ attacks
a, then c indirect attacks b). Also set-support (A set-supports b if there is a
sequence of arguments (aq,...,a,),a1 € A,a, = b, where a; supports a;+1) as
addition to defending is added. Boella et al. (2010) add mediated attacks (i.e.
if a supports b and c attacks b, then ¢ mediated attacks a). More details for the
interpretations can be found in (Cohen et al., 2014) as well as a more complete
survey. On the basis of these ’added’ attack relations extension-based semantics
can be used in terms of conflict-freeness and defending (set-support included as
defending)(Cayrol & Lagasquie-Schiex, 2013).

2.3. ASPIC+.

ASPIC+ is a framework for structured argumentation that generates abstract
argumentation frameworks in the sense of Dung (1995) as described before, which
defines the relations between arguments as well as the structure of arguments.
The ASPIC+ framework (Prakken, 2010; Modgil & Prakken, 2014) is a formal
argumentation framework with attack relations, where there is a distinction
between strict (or deductive) inference rules and defeasible inference rules. Strict
rules are rules that are deductively valid and so are unattackable. Defeasible
rules are rules that have exceptions and so are attackable. The rules, combined
with a logical language £ form an argumentation system.

Definition 10 (Argumentation Systems). An argumentation system is a tuple
AS = (L,R,n,<) where:



e L is a logical language with negation symbol —.

e R =RsURy is a set of strict (Rs) and defeasible (Rq) inference rules
of the form @1,...,0n — @ and @1,...,0n = @ respectively (where
©i,p are meta-variables ranging over well-formed formula in L), and
RsNRy = 0.

e n is a partial function such thatn : Rs — L,

e < is a partial preorder on Ry.

We write o = — just in case b = - or p = ).

These argumentation systems can be combined with knowledge bases con-
sisting of axiom premises and ordinary premises, to build arguments. Axiom
premises are unattackable, ordinary premises are attackable. An argumentation
system supplemented with a knowledge base form a argumentation theory.

Definition 11 (Knowledge Bases). A knowledge base in an Argumentation Sys-
tem AS = (L, R,n,<) is a set K C L consisting of two disjoint subsets IC,, (the
azioms) and IC,, (the ordinary premises).

Definition 12 (Argumentation Theory). An argumentation theory is a tuple
AT = (AS,K) where AS is an argumentation system and K is a knowledge base
in AS.

In ASPIC+ an argument is either an element of the knowledge base K, or
a subset of the knowledge base, combined with a sequence of rule applications
that leads to a conclusion.

Definition 13 (Argument). An argument A on the basis of an argumentation
theory with a knowledge base KC and an argumentation system (L,R,n, <) is any
structure obtainable by applying one or more of the following steps finitely many
times:
(1) ¢ is an argument if ¢ € K with Prem(A) = {¢}, Conc(A) = ¢, Sub(A) =
{¢}, DefRules(A) = 0, TopRule(A) = undefined.
(2) Ai,..., Ay — ¢ is an argument if Ai,..., A, are arguments such that
there exists a strict rule Conc(Ay),...,Conc(4,) — ¢ in Rs.
Prem(A) = Prem(A;) U--- UPrem(A4,),
Conc(A) = v,
Sub(A) = Sub(A;) U---USub(,) U{A4},
DefRules(A) = DefRules(A;) U - - - U DefRules(A4,,),
TopRule(A) = Conc(A,),...,Conc(4,) — ¢
(3) A1,...,An = 1 is an argument if Aq,..., A, are arguments such that
there exists a defeasible rule Conc(Ay),...,Conc(4,) = ¥ in Ry.
Prem(A) = Prem(A;) U--- UPrem(4,),
Conc(A) = 1,
Sub(A) = Sub(A;) U---USub(A,) U{A},
DefRules(A) = DefRules(A;)U- - -UDefRules(A4,,)UConc(A4;), ..., Conc(A,) =

v,
TopRule(A) = Conc(A4;),...,Conc(A,) = 9

Where Prem (resp. Conc, TopRule, Sub) returns all the premises (resp. the
conclusion, the last rule in the argument, all the sub-arguments of a given ar-
gument). We write A(AT) to denote the set of arguments from argumentation
theory AT.
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An argument in ASPIC+ is strict and firm if it all its premises are axiom
premises and it has no defeasible inference rules.

Definition 14 (Argument Properties). An argument a is
e strict if DefRules(a) = ()
e defeasible if DefRules(a) # ()
o firm if Prem(a) C K,
o plausible if Prem(a) € Iy,

In ASPIC+ there are three kind of attacks, to know rebuttal attack, under-
cutting attack and undermining attack. Rebuttal attack is an attack on the
conclusion of an argument, undercutting attack is an attack on a defeasible rule
of an argument and an undermining attack is an attack on an ordinary premise
of an argument. Arguments with a strict TopRule can not be rebutted, only
arguments with a defeasible TopRule can be rebutted.

Definition 15 (Attacks). A attacks B iff A undercuts, rebuts or undermines
B, where:

o A undercuts argument B (on B') iff Conc(A) = —n(r) for some B’ €
Sub(B) such that B'’s top rule r is defeasible.

e A rebuts argument B (on B') iff Conc(A) = —¢ for some B’ € Sub(B)
of the form BY,..., Bl = ¢.

e A undermines B (on ¢) iff Conc(A) = —¢ for an ordinary premise ¢ of
B.

Premises can have a ranking and also defeasible rules can have an ranking in an
argumentation system. The ranking of arguments in structured argumentation
frameworks can be defined by these rankings.

Definition 16 (Structured Argumentation Frameworks). Let AT = (AS, K) be
an argumentation theory. A Structured Argumentation Framework (SAF) is a
triple (A, Rat, =), where A is the set of all finite arguments constructed from
K in AS, Rau is the attack relation ((a,b) € Ray iff a attacks b), and = is a
preference ordering on A. We write a < b iff a X b, but b £ a.

Definition 17. A defeats B iff A undercuts B, or if A rebuts/undermines B
on B" and A £ B'.

This notion of defeat is similar to the notion of attack-relation from Argumen-
tation Frameworks of definition 1, more precisely, the defeat-relation is a subset
of the attack-relation.

2.3.1. Instantiations.

ASPICH+ is used to instantiate Dung’s abstract approach with a general account
of the structure of arguments and the nature of the defeat relation (Prakken,
2010) as well as BAFs (Cohen et al., 2018). For argumentation frameworks this
can be done by defining an argumentation framework in terms of a SAF (see
Definition 18). There is a ordering for the ordinary premises, there is in ASPIC+
also the possibility to raise these to orderings for the defeasible inference rules.

Definition 18 (Argumentation frameworks). (Modgil & Prakken, 2014) An
argumentation framework corresponding to a SAF = (A, Rau, =) is a pair
(A, Raey) such that Raey is the defeat relation on A defined by (A, Rau, <).
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3. GRADUALITY

In this section we will look at different kind of gradual semantics. For some of
the semantics examples are provided to increase understanding of semantics and
increase understanding of the difference between different semantics. Firstly,
the semantics for frameworks with only attacks will be discussed. Then, the
semantics for frameworks with both attacks and supports will be discussed.

Graduality could be achieved in two ways, one could assign a value, which
represents the strength, for every argument or one could provide a preorder on
the set of arguments i.e. for each argument a,b € A is determined if a is ranked
higher, lower or equal to b. The first type of semantics are weighting semantics,
the second one is called ranking semantics. And trivially each weighting semantic
is a ranking semantic. All of the semantics discussed below are displayed in Table
2.

3.1. Graduality in Extension-based Semantics.

One could argue, as Cayrol & Lagasquie-Schiex (2005b), that arguments could be
uni-acceptable (skeptically acceptable), cleanly-acceptable, exi-acceptable (cred-
ulously acceptable) and not-acceptable according to the terminology of Pinkas
& Loui (1992) and Cayrol & Lagasquie-Schiex (2005b). Uni-accepted means
belonging to each extension; cleanly accepted means belonging to at least one
extension but not all and all attackers do not belong to any extension; exi-
excepted means belonging to some extension but not all; not-accepted means
not belonging to any extension.

Another attempt to capture graduality in the extension-based methods is
from the work of Bonzon et al. (2018) elaborating on (Caminada & Wu, 2010).
Using the labeling-approach from Caminada (2006a), to label arguments with
labels ’in’, ’out’ or 'undec’ where an argument is labelled ’in’ iff the argument is
accepted for the labelling, it is labelled ’out’ iff the argument is rejected, and it
is labelled 'undec’ iff the argument is undecided. Using the complete labelling,
arguments could have multiple labels. On the basis of these labellings, the
arguments could be ranked, where {in} > {in, undec} ~ {in, out} ~ {undec}, ~
{in, out, undec} > {out, undec} = {out}.

Both of the above semantics are ranking semantics.

3.2. Weighting Semantics for AFs.
Weighting semantics are semantics that assign a value, which represents the
strength, from a fixed ordered scale for every argument in the graph (Amgoud,
2019). The strength of an argument a is dependent on its direct attackers
b1, ...,by. First the strengths of the direct attackers is aggregated by a function
g. Which then represents how strongly a is attacked. Then an influence function
f takes into account the strength of the attacks (Amgoud, 2019). For acyclic
argumentation frameworks is it straight forward how to apply this. For cyclic
argumentation frameworks more sophisticated methods are needed, for example
fixed-point methods in (Amgoud et al., 2016) or other solutions like the one
presented in (Potyka, 2018).

The strength is for argumentation framework AF = (A, R) and semantics IT
and can be defined by Deg'i. : A — [0, 00):

Deglir(a) = f(g(Degiip(b1), . .., Deglip(bn))). (1)
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Examples of such weighting semantics are categoriser-based semantics (Besnard
& Hunter, 2001), maxed-based semantics (Amgoud et al., 2017), social semantics
(Leite & Martins, 2011), a-burden-based semantics (Amgoud et al., 2016) tuples-
based semantics (Cayrol & Lagasquie-Schiex, 2005b), Matt & Toni (Matt &
Toni, 2008), Fuzzy labelling (da Costa Pereira et al., 2011), Counting semantics
(Pu et al., 2015) or weighted h-categorizer, weighted max-based and weighted
card-based semantics (Amgoud et al., 2017) and many others.

There are many weighting semantics. The general idea of weighting semantics
is that they give a value to an argument based on the score of its direct attackers
z1,...,2;, which are on their turn are based on the score of their direct attackers.
Categoriser based semantics (Besnard & Hunter, 2001) is as in Equation 1 with
fz) = 1+ and g(x1,...,2,) = >y Deglyp(x;). So the higher the score of the
direct attackers of a, the lower the score of argument a and vice-versa. If the
attackers of argument b are strict subset of the attackers of argument a, then
argument b’s score is strictly higher then a’s. In contrast we have the max-based
semantics (Amgoud et al., 2017) which as underlying function for Equation 1 has
f(z) = IJ%I and g(z1,...,2,) = max{Deg’ p(z;)|i € [1,...,n]}. This semantics
differs from the previous one in the sense that addition of attackers to argument
a does not necessarily change the score of argument a.

Categoriser-based semantics was initially for acyclic argumentation frame-
works. Later is shown that also cyclic argument frameworks have categoriser-
based rankings. These are obtainable using a system of non-linear equations
(Cayrol & Lagasquie-Schiex, 2005b). Pu et al. (2014) show existence and unique-
ness of a solution of the categoriser equations and show how to find them using
a fixed-point technique. Max-based semantics is also usable for cyclic argumen-
tation frameworks using a fixed-point method (Amgoud et al., 2017).

Example 1. Consider the argumentation framework AF = (A, R), where A =

{a,b,c,d,e, f,g,h,i} and R = {(c,a),(d,b),( e,b), (f,b), ( d), (h,e), (i, f)}. Then
for categoriser-based semantics DegA ta) =1L and DegAF (b) = 2. For mazed-

Max(a) _ MaCCZ(b)

based semantics Deg 5 and Deg

So in categoriser-based semantics the value of a is higher than the value of b
and with max-based semantics it is the contrary. So categoriser-based semantics
favours the number of attacks, while max-based semantics favours the quality of
the attacks. One could choose for quantity or one could choose for quality or even
something in between. Then the question arises how many weak arguments are
equally strong as one strong argument? Amgoud et al. (2016) present a-burden-
based semantics, with f(z) =1+ x and g(x1,...,z,) = (Z?:l(m)a)l/a-
This is a theory to decide on the number of how many weak arguments can
compensate one strong argument and based on that calculate a weighting by
choosing a value for « in the function g, using a fixed-point method to calculate
the values for cyclic argumentation frameworks.

Example 2. Consider the argumentation framework AF = (A, R), with A =
{a,b,c,d,e} and R = {(a,d),(b,a),(b,c),(c,d),(d,e),(e,a)} as illustrated in
Figure 1. If o = 2, then Deg572(a) =~ 2.18, Deg372(b) = 1, DegS72(c) =
2, DegS72(d) ~ 1.68 and Deg7%(e) ~ 1.60. Depending on the value of o the
outcome differs, for different values of o there are different rankings. There are
tipping points at ap = 0.7879 and ag ~ 3.0258.
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FI1GURE 1. Attack relations for Example 2. After the example of
Bonzon et al. (2016b).

Another weighting semantics is counting semantics (Pu et al., 2015), with
fx) = 1 -z and g(z1,...,2,) = Y ;q ¥ Deghp(x;), where N denotes the
number of attacks of the most attacked argument. Again the value of o could
affect the weighting and ranking of arguments, where the argument framework
is fold out like a tree per node. For illustration see Figure 2.

A next step in complexity is that some weighting semantics use semi-weighted
argumentation frameworks in which arguments have an initial strength w. One
semantics using this weighted argumentation frameworks is weighted max-based
semantics (Amgoud et al., 2017). This is almost equal to the previously seen
max-based semantics, it is this value multiplied by the initial weight of the
argument.

Example 3. Consider the semi-weighted argumentation framework AF = (A,w, R),
with A = {a,b,c}, w(a) = 0.5, w(b) = w(c) =1 and R = {(a,b), (b,c)}. Then
Deglip(a) = 0.5, Deg';.(b) = 2 and Deg'ip(d) = 2. And thus b = ¢ = a.

One step further there are also semantics that account for varied-strength of
attacks (Amgoud & Doder, 2019), with use of weighted argumentation frame-
works. First they propose a family S* of gradual semantics and then show how
to change existing semantics for semi-weighted argumentation frameworks into
semantics. For example, weighted-max-based semantics for weighted argumen-
tation frameworks, would be defined by the function:

Deglip(a) = '
egAF(a) 14 MaX,eR - (a) 7I'(b, CL)DeggF(b)

w(a)

This varied-strength attacks accounts for the fact that some argument a could
be a strong attack on argument b and the same argument could be a weaker
attack on argument c.

Example 4. Consider the weighted argumentation framework AF = (A,w, R, 7
with A = {a,b,c,d}, w=1, R ={(a,b), (a,d),(c,d)} and 7(a,b) =1, m(a,d)
0.8, m(c,d) = 0.6. Then DegYp(a) = Deglin(c) = 1, Deglp(b) = 3 and
Deg}}F(d) = 8. And thus a ~c > d > a.

3.3. Ranking Semantics for AFs.
There are also ranking semantics. Ranking semantics do not necessarily give a

~—
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(AF) (a) (b) (©) (d)

FiGurge 2. Illustration of unfolding the argumentation frame-
work AF = (AR), with A = {a,b,c,d} and R =
{(a,b), (b,c), (b,d),(¢c,b),(c,c)} (Pu et al., 2015). In this picture
on the left AF, shows the argumentation framework, (a), shows
the unfolding from node a, (b) shows the unfolding from node b
etc. The dots under the node ¢ mean that the tree continues as
after each ¢, splitting into a b and a c etc. The vertical lines are
borders to make clearer separation between the trees.

value to each argument, but return a total preorder on the set of arguments i.e.
for each pair of arguments a,b € A is determined if a is ranked higher, lower
or equal to b. Examples of ranking semantics are the previously seen extension-
based methods of Cayrol & Lagasquie-Schiex (2005b) and Bonzon et al. (2018)
or discussion-based semantics and burden-based semantics (Amgoud & Ben-
Naim, 2013), Iterated graded defense (Grossi & Modgil, 2015) and propagation
semantics (Bonzon et al., 2016a). It is trivial that all weighting semantics can
be used as ranking semantics, after all, the assigned values can be used to rank
arguments.

The discussion-based semantics and burden-based semantic (Amgoud & Ben-
Naim, 2013) are rankings based on the discussion counts and burden numbers.
These are both methods that compare arguments step-wise. With discussion
counts the argumentation framework or graph is converted to trees for each
argument as illustrated in Figure 23, these trees have infinitely long branches
if the argumentation framework is cyclic. A linear discussion is an argument
game where each next node attacks the previous one. The different numbers of
nodes at each level determine the ranking between to arguments. The burden

3this is similar for counting semantics(Pu et al., 2015).
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number of an argument is the score of that argument. These scores are updated
recursively and used to compare arguments until all arguments are ranked. In
cyclic graphs some arguments may have an equal number of nodes on each level
of the tree, these are thus ranked equally.

Definition 19 (Linear discussion). Let AF = (A, R) an argumentation frame-
work and a € A. A linear discussion for a in A is a sequence s = (a1, ...,ay) of
elements of A (where n is a positive integer) such that a; = a and Vi € {2,...,n}
a;Ra;—1. The length of s is n. We say that: s is won iff n is odd; s is lost iff n
is even.

Definition 20 (Discussion counts). Let AF = (A,R) be an argumentation
framework, a € A, i a positive integer and let N be the number of linear discus-
sions for a of length i. We define that:

N ifiis odd:
Dis. (a) :{ if 1 is odd;

N if i is even.
Definition 21 (Burden numbers). Let AF = (A, R) be an argumentation frame-
1 if i =0;
1 .
1+ ZbeR*(b) Bur;_1(b) otherwise.

Example 5. Let F' = (A, R) be an argumentation framework with A = {a, b, ¢, d, e}
and R = {(a,e), (b,a), (b, c), (c,e),(d,a),(e,d)} as illustrated in Figure 1.

Linear discussions for argument a with length < 3 are (a), (a,b), (a,e) and
(a,e,d), the only linear discussion for argument b is the one of length 1: (b),
etc.

For an overview see Table 1.

work. Then Bur;(a) = {

iHa\b\c\d\e i\\a\b\c\d\e
10 -11|-1|-1]|-1|-1 o 1 [1]1]1]1
201021011\ 2] 1 11 3 [1]12] 3|2
3 -110|0)|-3|-2 2|25(1|2| 4|4

TABLE 1. On the left discussion counts (Dis;) and on the right
burden numbers (Bur;) for Example 5.

For step 0 all arguments have Burg = 1. Argument a has two defeaters,
namely so Bury(a) = 3. Argument b has no defeaters so, Buri(a) =1 etc., the
calculation give the result as displayed in Table 1.

On the basis of these counts we can conclude, using Definition 43 and 44 that
we can rank the arguments for both semantics as follows

b=e>=c>=d*>a.

One of the main consequences of both of these semantics is that arguments
that have more attacks, are ranked lower than arguments that have fewer attacks.
This on itself looks likes a reasonable property, but that is not always desirable.
After all, one argument a, could have only 1 attacker, but a strong unattacked
one, and argument b could have multiple attackers, which are all attacked by
one or more unattacked arguments (as for example in Figure 3) as also briefly
discussed with a-burden-based semantics.
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FiGUrE 3. Example of one strong attack vs all defence, where ¢
attacks a and d and e attack b, but b is defended by f, g, h and 1.

3.4. Weighting and Ranking Semantics for BAFs.

There are various semantics for BAFs. Also for BAFs there are weighting se-
mantics that give a value to each argument and ranking semantics that only
rank arguments. Examples of weighting semantics for BAFs are Euler-based re-
stricted semantics (Amgoud & Ben-Naim, 2018) and the quadratic energy model
(Potyka, 2018). Examples of ranking semantics for BAFs are the extension-
based ranking semantics (Cayrol & Lagasquie-Schiex, 2005b; Bonzon et al., 2018)
as described in Section 3.1 combined with the semantics for BAFs (Cayrol &
Lagasquie-Schiex, 2013) as described in section 2.2.1.

Euler-based semantics (Ebs) is a weighting semantics for acyclic non-maximal
(i.e. not every node is connected) argumentation frameworks based on the def-
inition of weighted bipolar argumentation frameworks. These are bipolar argu-
mentation frameworks with initial weighting for the arguments.

For any acyclic non-maximal weighted bipolar argumentation framework BAF =
(A,w,R,S), the Euler-based semantic defines the strength of an argument a € A
by

1 —w(a)?
Deofinte) = 1= e = 3 el 30 Desflin(o)
€S~ (a) z€R~(a)

Both attacks and supports are taken into account in an exponent of e. This
ensures that the more and the stronger the attackers the the higher the exponent
and therefore the lower strength. The opposite holds for stronger and more
supporters, then the exponent is lower and therefore the strength is higher.

Example 6. Let BAF = (A,w,R,S) be a weighted bipolar argumentation
framework with A = {a,b,c,d}, w(a) = w(b) = w(c) = 0.5 and w(d) = 0.6,
R ={(b,a),(d,c)} and S = {(b,c)} as illustrated in Figure 4.

Applying the Euler-based semantics on this framework results in the ranking
d >gf’43F b >-gbAsF c >_§le a. The attack of d is stronger than the support from b
for argument ¢, because of the higher initial value of d compared to b. However
the support partly compensates for the attack. Therefore ¢ is ranked higher than
a. Changing the initial values could give a totally different ranking.
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FIGURE 4. The weighted bipolar argumentation framework from
Example 6. For any node x € A the first line tells the name of
the node ’x’, followed by a colon, followed by the initial value

w(x), the second line shows DegEb . (z).

3.5. Defeasible Reasoning with Variable Degrees of Justification.

One of the first contributions on gradual acceptability is from Pollock (2001). Al-
though his research is from far before most recent work, it is almost neglected.
Pollock discusses gradual acceptability for structured argumentation. He de-
scribes the graduality of acceptability in term of probabilities and argues for
example for the previously discussed Weakest Link Principle.

3.6. Wrap-up.

A lot of semantics have been discussed. All ranking or weighting semantics
discussed above, are displayed in 2. In some of the lines, the semantic is not
included because the naming of the proposed semantics was unknown to me.



Paper Semantic AF W/R IS | WA

(Pollock, 2001) AF | weighting | No | No
(Besnard & Hunter, 2001) Categoriser-based AF | Weighting | No | No
(Cayrol & Lagasquie-Schiex, 2005b) Tuples-based AF | Ranking | No | No
(Matt & Toni, 2008) Matt & Toni AF | Weighting | No | No
(Caminada & Wu, 2010) AF | Ranking | No | No
(da Costa Pereira et al., 2011) Fuzzy Labeling AF | Weighting | No | No
(Amgoud & Ben-Naim, 2013) Burden-based AF | Ranking | No | No
(Amgoud & Ben-Naim, 2013) Discussion-based AF | Ranking | No | No
(Cayrol & Lagasquie-Schiex, 2013) BAF | Ranking | No | No
(Grossi & Modgil, 2015) Iterated Graded Defense | AF | Ranking | No | No
(Pu et al., 2015) Counting AF | Weighting | No | No
(Amgoud et al., 2016) a-burden-based AF | Weighting | No | No
(Bonzon et al., 2016a) Propagation AF | Weighting | Yes | No
(Amgoud et al., 2017) Max-based AF | Weighting | No | No
(Amgoud et al., 2017) Weighted h-categoriser | AF | Weighting | Yes | No
(Amgoud et al., 2017) Weighted max-based AF | Weighting | Yes | No
(Amgoud et al., 2017) Weighted card-based AF | Weighting | Yes | No
(Amgoud & Ben-Naim, 2018) Euler-based BAF | Ranking | No | No
(Bonzon et al., 2018) AF | Ranking | No | No
(Potyka, 2018) Quadratic Energy Model | BAF | Weighing | Yes | No
(Amgoud & Doder, 2019) AF | Weighting | Yes | Yes

TABLE 2. An overview of the discussed semantics in this paper. In the first column (Paper) the reference. In the
second column (Semantic) the name of the semantic. All papers talk about abstract argumentation except for Pollock
(2001), which is about structured argumentation. In the third column (AF) if it regards AFs of BAFs. In the fourth
column (W/R) if it is a weighting or a ranking semantic. In the fifth column (IS) if the semantic uses initial strengths.
In the last column (WA) if the method uses weighted attacks or supports.

8T
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4. DIALECTICAL SEMANTICS

As discussed above, many semantics have been proposed over the years. Most
of the proposed semantics discuss abstract argumentation, thereby neglecting
the structure of arguments. Ignoring the structure of arguments or the nature
of their relations may result in odd or undesirable results. A second prob-
lem with the recent literature is discussed by Prakken (2021). Prakken (2021)
distinguishes three aspects of argumentation strength: logic strength, dialectic
strength and rhetorical strength. Authors do not explicitly state which kind of
argumentation strength is modelled.

In this section the intuitions of dialectical argument strength will be described
and a definition of dialectical argument strength will be provided by proposing
a new semantic for dialectical argument strength.

4.1. Intuitions.

Zenker et al. (2020) describes dialectical argument strength in terms of move
space: ”argument strength can be operationalized as the (un)availability of par-
ticipant moves that constrain further interlocutor moves.” The more attacking
moves an argument allows to a possible opponent in a discussion, the lower the
dialectical argument strength. Zenker et al. (2020) also claims that ”it cannot
be assumed that material that goes unchallenged is accepted.” This suggests
that the number of possible attacking points of an argument is a good indicator
of the dialectical argument strength, i.e. arguments that have fewer attacking
points should have a higher degree of acceptability in a dialectical context.

In the same line of argumentation, to the idea of Prakken (2021), if an argu-
ment has refuted some doubts, then it is stronger than if the argument has not
refuted some doubts. This suggests that besides the number of attacking points,
the number of survived attacks is also important , i.e., arguments that survived
more attacks, should have a higher degree of acceptability in a dialectical con-
text.

4.2. Definition.
In this subsection dialectical argument strength will be defined.

As Prakken (2021) describes, dialectical strength has both static and dynamic
aspects. The static aspect is given by the outcome of a critical discussion and
is about how well-defended an argument is in the discussion? First of all this
means that accepting an argument in a discussion is better than rejecting it.
Furthermore, this means if an argument argument survives more attacks, it
will increase the degree of acceptability. The dynamical aspect is given by the
opponent’s possibilities to attack. If an argument has more attacking points,
then this will decrease the degree of acceptability.

4.3. Possible New Semantics.
Below a possible new gradual semantics will be presented. To that end, an
alternative for Definition 7 will be provided and attacking points of an argument
and the number of survived attacks of an argument in a specific argumentation
framework will be defined as well as the counting of these.

The difference between skeptically acceptable, credulously acceptable and not
acceptable will be extended. Firstly, the skeptically acceptable arguments, will
be divided into two groups: the undoubtedly acceptable arguments (those that
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are strict and firm) and the provisionally acceptable arguments (those that in
the future can change status). Secondly, the not acceptable arguments will be
divided into two groups: the provisionally unacceptable arguments (those that
in the future can change status) and the undoubtedly unacceptable arguments
(those that can never change status).

Definition 22. Let AF = (A, R) be an argumentation framework. An argument
acAis

o Undoubtedly acceptable iff it is strict and firm.

e Provisionally acceptable iff it is skeptically acceptable, but is not strict
and firm.

e Probably acceptable iff it is credulously acceptable.

e Provisionally unacceptable iff it is not acceptable and non of its attackers
18 strict and firm.

o Undoubtedly unacceptable iff one of its attackers is strict and firm.

Note that these statuses are complementary, e.g. if argument a is not undoubt-
edly acceptable, provisionally acceptable, probably acceptable or provisionally
unacceptable, then it is undoubtedly unacceptable. This follows right from the
definition.

There are three kinds of attacks that an argument can receive, undermining
of the premises, undercutting of inference rules and rebutting of sub-arguments.
Undermining is possible on exactly those premises that are in the set of ordinary
premises of a. Undercutting is possible on all defeasible inference rules of a.
Rebutting is possible on each conclusion of a sub-argument that has a defeasible
toprule.

Definition 23 (Attacking Point). For any argumentation theory AT = (AS, K),
with AS = (L, R,n,<) an argumentation system, for any argument a € A, the
attacking points of a are the points where a can be undermined, undercut and
rebut. These are defined by the sets

e Undermining: Um(a) = {x € K, N Prem(a)}.

e Undercutting: Uc(a) = {DefRules(a)}.

e Rebutting: Rb(a) = {Conc(b)|b € Sub(a) and TopRule(b) € DefRules(a)}.
The set of attacking points is defined by AP(a) = Um(a) UUc(a) U Rb(a)

Definition 24 (Number of Attacking Points). For any argumentation theory
AT = (AS,K), with AS = (L,R,n,<) an argumentation system, with AF =
(A, R) the corresponding argumentation framework, for any argument a € A the
number of attacking points (the number of places where an attack can happen)
on an argument is defined by |AP(a)|.

Example 7. Consider argumentation system AS = (L,R,n,<). with L =
{aj,r1,7a;,~r1} and R = {ry : a1,a2 = aq;as,as — as}. Let AT = (AS,K) be
an argumentation theory, where K = K UK, with K,, = {a1} and KC,, = {a2,b3}.
This leads to the argumentation framework AF = (A,R), with A = {A} and
R = 0. This is displayed in Figure 5, where dashed lines are defeasible inference
rules, solid lines are deductive inference rules, dotted boxes display ordinary
premises and solid boxes display axiom premises. Then, this argument can be
attacked by arguments that have conclusion —ag, —as, —r1 or —ay. In this example
Um(A) ={azg,a3}, Uc(A) = {r1} and Rb(A) = {a4}.
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as as

Ficure 5. ASPIC+ argumentation explaining the attacking
points of argument A. To the left the argument A, to the right
the argument A with arrows pointing to the attacking points.

The number of attacking points can also be defined by counting the number
of ordinary premises (undermining) and two times the number of defeasible
inference rules. It is two times the number of defeasible inference rules, because
the rules can be attacked (undercutting) and the conclusion of the defeasible
inference rule can be rebutted.

Proposition 1. For any argumentation theory AT = (AS,K), with AS =
(L,R,n,<) an argumentation system, with AF = (A, R) the corresponding
argumentation framework, for any argument a € A it holds that AP(a) =
|IC, N Prem(a)| + 2 - [DefRules(a)|.

Proof.
AP(a) = |Umf(a)|+|Uc(a)| + |Rb(a)|
= |Um(a)| + |Uc(a)| 4+ |[{Conc(b)|b € Sub(a) and TopRule(b) € DefRules(a)}|
= |Um(a)| + |Uc(a)| + |[{DefRules(a)]
|+

= |K, N Prem(a)| + 2 - |DefRules(a)|

d

A survived attack is an attack that is defended, i.e., it is an attack that is
counter-attacked, such that the attacker is provisionally unacceptable or un-
doubtedly unacceptable. We define the survived attacks of argument a as the
attackers of a that are provisionally unacceptable or undoubtedly unacceptable.
The survived attacking points are all attacking points that are only attacked
by survived attacks. So, if an argument is attacked on one attacking point by
an provisionally unacceptable argument and by a provisionally acceptable argu-
ment, then this attacking point is no survived attacking point. The intuition
behind this is as follows. Suppose there are two arguments, one weak argument
A and one strong argument B with the same conclusion z, which attack argu-
ment C' with conclusion —z. It would be odd to say that the weak argumentation
of A would bring down the impact of B on C. Otherwise adding weak attacks
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would increase the degree of acceptability of unacceptable arguments. Therefore
when multiple attacks happen at the same attacking point, only the strongest
attacker is used. Example 8 illustrates this. The number of survived attacking
points is determined by counting the survived attacking points.

It only takes a unique set of conclusions, to avoid counting attacks on one
attacking point double. SA(:) is the set of defended attackers. SAP(-) ensures
that attacking points that encounter multiple attacks, but where not are not all
attacks are defended, are not counted and in addition ensures that attacking
points are not counted multiple times.

Definition 25 (Survived Attacks). For any argumentation theory AT = (AS,K),
with AS = (L, R,n,<) an argumentation system, with corresponding argumen-
tation framework AF = (A, R), for any argument a € A the survived attacks
(attacks that are successfully counter-attacked) are defined by SA(a) = {b €
R~ (a)|b is unacceptable}.

Definition 26 (Survived Attacking Point). For any argumentation theory AT =
(AS,K), with AS = (L, R,n,<) an argumentation system, with corresponding
argumentation framework AF = (A, R), for any argument a € A, for any at-
tacking point x € AP(a), = is a survived attacking point iff Vb € R~ (a) it holds
that if Conc(b) = —x, then b € SA(a).

Definition 27 (Survived Attacking Points). For any argumentation theory AT =
(AS,K), with AS = (L, R,n,<) an argumentation system, with corresponding
argumentation framework AF = (A, R), for any argument a € A, the attacking
points are defined by the set SAP(a) = {x € AP(a)|x is a survived attacking point}.

Definition 28 (Number of Survived Attacking Points). For any argumentation
theory AT = (AS,K), with AS = (L, R,n, <) an argumentation system, for any
argument a € A the number of survived attacking points (the number of places

where attacks happened that are successfully counter-attacked) of an argument is
defined by |SAP(a)|.

Example 8. The following example illustrates the ’disappearance’ of a survived
attacker (ATy), when two attacks happen at the same point versus the situation
in which they happen on different attacking points (ATs). Furthermore, we will
see that there is no difference in strength of arguments C' in ATy and ATy.

Consider argumentation system ASy = (L1, R1,n1,<). with L1 = {u1,...,y1,
T1, UL, ..., Y1, 71} and Ry = {r1 : 721 = wi,u; — —w,v1 — T1,Y1 —
xz1}. Let ATy = (AS1,K1) be an argumentation theory, where K1 = Ky, =
{u1,v1,~x1,y1}. This leads to the argumentation framework AF; = (A1, R1),
with .Al == {Al, Bl, Cl, Dl} and Rl == {(Al, Cl), (Bl, 01), (Dl, Al)}

Consider argumentation system ASs = (L3, R3,n3, <). with L3 = {us,...,ys,
r3, U3, ..., Y3, r3} and Ry = {rs : ~x3 = ws,uz — —w3,v3 —> T3,Yy3 —
—~ws}. Let ATz = (AS3,K3) be an argumentation theory, where K3 = Kgp, =
{us, vs, xs,ys}. This leads to the argumentation framework AF3 = (As, R3),
with Ag = {Ag, B3, Cg, Dg} and Rg = {(Ag, Cg), (Bg, 03), (Dg, Ag)}

Consider argumentation system ASy = (L4, R4, n4,<). with L4 = {wy, x4, Y4,
T4, DWWy, DX, Ys, s} and Ry = {ry @ x4 = wa,ys — x4}. Let ATy =
(AS4,K4) be an argumentation theory, where Ky = Kap = {—x4,y1}. This
leads to the argumentation framework AFy = (A4, R4), with Ay = {B4,C4} and
Ry = {(B4,C4)}. All are displayed in Figure 6, where arrows represent attacks.
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The number of attacking points for each argument is |AP(A;)| = |AP(B;)| =
|AP(D;)| = 1 and |AP(C;)| = 3 fori = 1,3 or 4. The survived attacks are
SA(A»L) = SA(BZ) = SA(DI) = @, SA(Cl) = {Al}, SA(Cg) = {Ag} and
SA(Cy) = 0. However, SAP(C1) = 0, because there is a non-defended attack,
B, on —x1. Furthermore, SAP(C3) = {—x3} and SAP(Cy) = 0.

We see that Degih(C’l) = Deg:zlp4 (Cy4) = £. So, the presence of an attacker
with the same conclusion (although survived) does not matter.

U1 T w1 r1
|
r1
|
1
(51 U1 Tl U1

U3 x3 w3 4—— w3 wy x4

us U3 T3 Y3 Xy Ya
D3 A3 03 Bg 04 B4

FI1GURE 6. ASPIC+ argumentation with argumentation frame-
works AFy, AF3 and AFy comparing double undermining with
undermining and rebutting.

The semantics that will be defined, makes a further distinction between argu-
ments in grounded semantics. The first thing that is ensured is that undoubtedly
unacceptable arguments are always ranked lower provisionally unacceptable ar-
gument, which are always ranked lower than credulously acceptable arguments,
which are always ranked lower than provisionally acceptable arguments, which
are always ranked lower than undoubtedly acceptable arguments. This is done
by mapping each of these to a separate interval between 0 and 1. In this case
it is arbitrarily chosen to map the undoubtedly unacceptable arguments in the

interval (0, i), the provisionally unacceptable arguments in the interval (%, %),
13

5,3) and the provisionally acceptable
arguments in (%, 1). Because these values are not re-used to calculate the degree
of acceptability of other arguments, these intervals can be chosen arbitrarily.
There is chosen to map all undoubtedly acceptable arguments to 1.

Then the percentage of attacking points that are unsuccessfully attacked is

calculated. The number of attackers that are unacceptable increased by 1 is

the credulously acceptable arguments in (
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divided by the number of attacking points increased by 2. This increment with
1 ensures that there is a difference in unattacked and undefended argument based
on the number of attacking points, the increment with 2 ensures two things, i)
there is never a division by 0 and ii) arguments that are not strict and firm never
reach value 1.

There is a separate case for undoubtedly acceptable arguments; these have
a degree of acceptability of 1. So, if an argument is strict and firm, it has
a degree of 1. Otherwise, when an argument is provisionally acceptable and
unsuccessfully attacked on all its attacking points, then it has degree slightly
smaller than 1. All is based on the dialectical principles i) the more attacks an
argument survives, the more acceptable it is and ii) the more attacking points
an argument has, the weaker it is.

Definition 29. We define the following semantics Sy, called Grounded Dialec-

tical Semantics for every argumentation framework AF = (A, R), for every
x e A:
1 if © is undoubtedly acceptable,
% + i . % if x is provisionally acceptable,
DegilF(a:) = % + i . % if x is credulously acceptable,
i + i . % if x is provisionally unacceptable,
i . % if © is undoubtedly unacceptable,

5. POSTULATES FOR DIALECTICAL STRENGTH

For gradual notions of argument strength several sets of postulates have been
proposed, postulates that good semantics should satisfy. Other terms used for
postulates are properties or principles. In this section we will look at some of
postulates proposed in the literature, more specifically in (Amgoud & Ben-Naim,
2013). Firstly, we will provide the definitions and postulates from Amgoud &
Ben-Naim (2013) accompanied by the intuitions of each postulate and we will
discuss the postulates and critically review them in the context of ASPIC+ (i.e.
see if they still are desirable in structured argumentation). Subsequently, we will
investigate whether Grounded Dialectical Semantics S satisfies the postulates.
Then, we will propose some new postulates that should hold for semantics that
describe dialectical strength and show that S; satisfies these new postulates.

Theorem 1. Semantics Si satisfies postulates (In), (APS), (SAP) and (SP)
and does not satisfy postulates (Ab), (VP), (CP), (QP), (DP), (DDP), (CT),
(SCT) and (TSAP).

Proof. The proof consist of all proofs of Claim 1 till Claim 13. O

5.1. Definitions and postulates.

Definition 30 (Ranking). (Amgoud & Ben-Naim, 2013) A ranking on a set A
is a binary relation < on A such that: < is total and transitive.

Definition 31 (Ranking-based Semantics). (Amgoud & Ben-Naim, 2013) A
ranking-based semantics is a function S that transforms any argumentation
framework AF = (A, R) into a ranking on A, (a,b) € S(AF), means b < a.
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5.1.1. Abstraction.
The intuition behind abstraction is that two equivalent argumentation frame-
works should have equivalent rankings. This is defined as follows.

Definition 32 (Isomorphism). (Amgoud & Ben-Naim, 2013) Let AF = (A, R)
and AF" = (A", R’) be two argumentation frameworks. An isomorphism from A
to A’ is a bijective function f : A — A’ such that Va,b € A, aRb iff f(a)R'f(b).

Postulate 1 (Abstraction). (Amgoud & Ben-Naim, 2013) A ranking-based se-
mantics S satisfies abstraction (Ab) iff for any two frameworks AF = (A, R)
and AF' = (A", R'), for any isomorphism f : A — A’, we have that Ya,b €
A, (a,b) € S(AF) iff (f(a), f(b)) € S(AF").

If abstraction holds, this implies that any two unattacked arguments are al-
ways ranked equally high. This seems undesirable for some notions of argument
strength. For dialectical strength, as well as for inferential argument strength as
described in (Prakken, 2021), the attackability of an argument plays a role, after
all, there is a difference in strict and defeasible inference rules and a difference in
axiom and ordinary premises. Thus for these notions of strength this postulate
would be a problem. Notice that semantics 57 does not satisfy abstraction.

Claim 1. Abstraction does not hold for semantics Si.

Proof. Consider argumentation system AS = (£, R, n, <), with £ = {a, b, —a, —b}
and R = (). Let AT = (AS, K) be an argumentation theory, where K = KC,, UK,
with K, = {a} and K, = {b}. This leads to the argumentation framework
AF = (A,R), with A = {4, B} and R = 0. Then, Deg3i(A) = 2 and
DegfllF(B) = 1. So, S1 does not satisfy abstraction. O

5.1.2. Independence.

The intuition behind independence is that the question whether an argument a
is at least as acceptable as an argument b should be independent of any argument
c that is neither connected to a nor to b (Amgoud & Ben-Naim, 2013). This is
defined as follows.

Definition 33 (Weak Connected Component). (Amgoud & Ben-Naim, 2013)
A weak connected component of an argumentation framework A is a maximal
subgraph of A in which any two vertices are connected to each other by a path
(ignoring the direction of the edges). We denote by Com(A) the set of every
argumentation framework B such that B is a weak connected component of A or
the graph union of several weak connected components of A.

Postulate 2 (Independence). (Amgoud & Ben-Naim, 2013) A ranking-based
semantics S satisfies independence (In) iff for every argumentation framework
AF,VB € Com(AF), Ya,b € Arg(B), (a,b) € S(A) iff (a,b) € S(B).

There is no reason why independence should not hold for dialectical argument
strength. Notice that semantics S satisfies independence.

Claim 2. Independence holds for semantics Sy.

Proof. Let AF = (A,R) be an arbitrary argumentation framework, let B €
Com(AF) arbitrary. Then for every a € B holds that Degg} (a) = DegfllF(a).
After all, AP(-) only depends on the number of ordinary premises and defeasible
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inference rules. Further more SAP(-) only depends on its attackers, and these
do not differ in both graphs. Which is the same reason why arguments do not
change in status, i.e., undoubtedly acceptable, provisionally acceptable, cred-
ulously acceptable, provisionally unacceptable and undoubtedly unacceptable.
So, (a,b) € S(AF) iff (a,b) € S(B). So, S satisfies independence. O

5.1.3. Void Precedence and Cardinality Precedence.

The intuition behind void precedence is that attacks harm the degree of accept-
ability regardless of the acceptability of the attacker. So, non-attacked argu-
ments are always ranked higher than attacked arguments. The intuition behind
cardinality precedence is that more attackers is always worse than having fewer
attackers regardless of the acceptability of the attackers®. This is defined as
follows.

Postulate 3 (Void Precedence). (Amgoud & Ben-Naim, 2013) A ranking-based
semantics S satisfies void precedence (VP) iff for every argumentation framework
AF = (A, R), Va,be A, if R—(b) # R (a) =0, then (b,a) € S(AF).

Postulate 4 (Cardinality Precedence). (Amgoud é Ben-Naim, 2013) A ranking-
based semantics S satisfies cardinality precedence (CP) iff for every argumen-
tation framework AF = (A, R), Ya,b € A, if |[R™(b)| > |R(a)|, then (b,a) &
S(AF).

For an argumentation framework AF = (A, R), where A = {a,b,c,d} and
R ={(b,a),(c,b)}. VP states that argument a is ranked lower than argument d.
However, if d consists of ordinary premises and defeasible inference-rules and ¢
consists of axioms and strict inference rules, this is not undoubtful. In terms of
dialectical strength, argument b has overcome one of its attackers, so one could
argue that argument b should be ranked higher than argument a.

Another argument against Void Precedence is that arguments that survived an
attack, i.e. arguments that are provisionally acceptable despite having at least
one attacker, have covered possible weaknesses. On the other hand arguments
without any attacks could be vulnerable for future attacks.

Notice that semantics S; does not satisfy void precedence and cardinality
precedence.

Claim 3. Void precedence does not hold for semantics St.

Proof. Consider argumentation system AS = (£, R,n, <), with £ = {a, b, ¢, d—a,
—b, =, ~d} and R = {—=b — —a;c — b}. Let AT = (AS,K) be an argumenta-
tion theory, where K = K, = {a,—b,c,d}. This leads to the argumentation
framework AF = (A,R), with A = {A,B,C,D} and R = {(C,B),(B,A)} as
displayed in Figure 7. Then, Degilp(a) = % and DegilF(d) = %. So, S7 does
not satisfy void precedence. O

Claim 4. Cardinality precedence does not hold for semantics Si.

Proof. Since CP implies VP and VP does not hold, also CP does not hold. [

4Cardinality precedence is not a necessary postulate, one gives precedence to either cardi-
nality or quality.
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FicUure 7. ASPIC+ argumentation as counterexample against
void precedence.

5.1.4. Quality Precedence.

The intuition behind quality precedence is that if an argument a has an attacker
with a higher degree of acceptability than all attackers of argument b, then b
should be ranked higher than a. This is defined as follows.

Postulate 5 (Quality Precedence). A ranking-based semantics S satisfies qual-
ity precedence (QP) iff for every argumentation framework AF = (A, R), Ya,b €
A, if 3¢ € R (b) such that ¥Yd € R™(a) holds that (d,c) ¢ S(AF), then
(bya) & S(AF).

Quality precedence is not a postulate that should hold for every type of argu-
ment strength. For example, it should not hold for dialectical argument strength.
Consider two arguments a and b, with both one attacker respectively ¢ and d,
where c is ranked slightly higher than d. According to QP b should be ranked
higher, but if a has only 1 attacking point and b has a lot, then QP is at least
questionable in terms of dialectical argument strength. Notice that semantics
S1 does not satisfy quality precedence.

Claim 5. Quality precedence does not hold for semantics Sy.

Proof. Consider argumentation system AS = (£, R,n,<) , with £ = {a;,r1, 72,
—a;, 11, re} and R = {r1 : a1 = ag;re : mag = aq;a2 — az;as — ag}. Let
AT = (AS,K) be an argumentation theory, where K = K, = {a1, ~ag3, a5, nag}.
This leads to the argumentation framework AF = (A, R), with A = {A, B,C, D}
and R = {(A4,B),(C,D)} as displayed in Figure 8. Then, DegfllF(A) = %,
Degn(C) = 2, Degi(B) = & and Deg3-(D) = 1. So, 3¢ € R™(B),
namely A, such that ¥d € R~ (D), namely C holds that (4,C) ¢ S(AF) and
(D,B) € S(AF). So, Sp does not satisfy quality precedence. O

5.1.5. Defense Precedence.

The intuition behind defence precedence is that being defended is better than
not being defended (assuming the number of attackers is the same) (Amgoud &
Ben-Naim, 2013). This is defined as follows.

Definition 34. Let AF = (A, R) be an argumentation framework. For any
argument a € A the set of defenders is defined as Def(a) = Upcr-(o)R™(b).
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F1GURE 8. ASPIC+ argumentation as counterexample against
Quality Precedence.

Postulate 6 (Defence Precedence). (Amgoud & Ben-Naim, 2013) A ranking-
based semantics S satisfies defense precedence (DP) iff for every argumentation
framework AF = (A, R), Ya,b,€ A, if |R™(a)] = |R™(b)|, Def(a) # Def(b) =
0, then (b,a) € S(A).

Defence precedence is not a postulate that should hold for semantics for dialec-
tical argument strength. Consider two arguments B and F' such that argument
F has one provisionally unacceptable attacker, but is itself undoubtedly unac-
ceptable, because of one undoubtedly acceptable attacker and argument B has
two provisionally unacceptable attackers. According to Defence precedence ar-
gument F' should be ranked higher. However, F' is rebutted by a strict and firm
argument G and so F is for sure not true, while B could be true, only not the
right arguments were used. Argument F' has fewer possibilities to move, since F'
can never be provisionally acceptable and B can (by attacking arguments A and
C. So, the dialectical argument strength of F' should be ranked lower than B.
For a sketch of the ASPIC+ argumentation, see Figure 9. Notice that semantics
S1 does not satisfy defence precedence.

—\bl b -/ —e1 ﬂfl f ‘7 _lf
\ 7“1/ 7'2:

ai by C1 dy €1 fi 0n

A B C D E F G

FiGURE 9. ASPIC+ argumentation as counterexample of de-
fence precedence.
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Claim 6. Defence Precedence does not hold for semantics St.

Proof. Consider argumentation system AS = (£, R,n,<). with £ = {a1,...91,71,0,
f, —\al,...ﬂgl,—ﬂ"l,—'b, —|f} and R = {7”1 by = byrg f1 = f;CLl — by —
—ri;dy — —erzer — —f1;91 — —f ). Let AT = (AS,K) be an argumentation
theory, where K = IC,,UKC,, with K,, = {¢1} and K, = {a1,b1,¢1,d1,e1, f1}. This
leads to the argumentation framework AF' = (A, R), with A= {A,B,C,D, E, F,G}
and R = {(A,B),(C,B),(D,E),(E,F), (G, F)} as displayed in Figure 9. Then,
Deg(B) = & and Deg3-(F) = &. Furthermore, |R~(F)| = |R~(B)| and
Def(F) # Def(B) = 0, but (B,F) € S(AF). So, S; does not satisfy Defence
Precedence. 0

5.1.6. Distributed Defense Precedence.

The intuition behind distributed defence precedence is, when comparing two
arguments with the same number of attackers and defenders, where each defender
attacks exactly one attacker, then the argument where each defender attacks a
distinct attacker is the best(Amgoud & Ben-Naim, 2013). This is defined as
follows.

Definition 35. (Amgoud & Ben-Naim, 2013) Let AF = (A, R) be an argumen-
tation framework. The defense of a € A is simple iff every defender of a attacks
exactly one attacker of a.

Definition 36. (Amgoud & Ben-Naim, 2013) Let AF = (A, R) be an argumen-
tation framework. The defense of a € A is distributed iff every attacker of a is
attacked by at most one argument.

Postulate 7 (Distributed Defense Precedence). (Amgoud € Ben-Naim, 2013)
A ranking-based semantics S satisfies the postulate distributed defense prece-
dence iff for every argumentation framework AF = (A, R), Ya,b € A such that
IR™(a)] = |R™(b)| and |Def(a)| = |Def(b)|, if the defense of a is simple and
distributed and the defense of b is simple but not distributed, then (b,a) ¢ S(AF).

Figure 10 shows the intuitions of DDP. According to DDP argument a should
be ranked higher than argument b, because all of a’s attacks are defended and
only one of b’s attacks is defended. However, the ranking of a and b is not clear
for dialectical argument strength. If 7,5 and k are strict and firm and f and
g are defeasible and plausible then b should be ranked higher. After all, it is
impossible to make argument a provisionally acceptable, while b with a counter
argument for f is acceptable. Moreover, when g and f are strict and firm and
1,7 and k are defeasible and plausible, then a should be ranked higher. After all,
argument b is undoubtedly unacceptable and argument a is only provisionally
unacceptable and is provisionally acceptable if one finds a counter argument for
k. Notice that semantics S does not satisfy distributed defence precedence.

Claim 7. Distributed Defence Precedence does not hold for semantics S1.

Proof. Consider argumentation system AS = (£, R,n,<) , with £ = {a;, ~a;}
and R = {a1 — —ag;as — —ag;aq — —as;as — —ag;ag — Tas; a7 — Oag; ag —
—ag; ag — —ap; a1l — —ao). Let AT = (AS,K) be an argumentation theory,
where K = K, = {a1, a2, a3, a4, as, as, ar, ag, ag, a1, a11 }. This leads to the argu-
mentation framework AF = (A,R), with A = {A,B,C,D,E,F,G,H,I,J, K}
and R = {(4,B),(B,C),(D,C),(E,D),(F,E),(G,I),(H,I),(I,J),(K,J)} as
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F1GURE 10. Argumentation framework describing distributed
defense precedence (Amgoud & Ben-Naim, 2013).

displayed in Figure 11. Then, DegilF(C) = % = DegilF(J). Furthermore,
|[R~(C)| =|R™(J)| and Def(C) = Def(J), the defense of C' is simple and dis-
tributed, the defense of J is simple and not distributed, but (J,C) € S(AF).
So, S1 does not satisfy Distributed Defence Precedence. OJ
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Ficure 11. ASPIC+ argumentation as counterexample of Dis-
tributed Defence Precedence.

5.1.7. Counter-Transitivity.

The intuition behind (strict) counter-transitivity is that the more numerous and
acceptable the attackers of an argument a, the less the degree of acceptability
of a (Amgoud & Ben-Naim, 2013). This is defined as follows.

Definition 37 (Group Comparison). (Amgoud & Ben-Naim, 2013) Let < be a
ranking on a set A of arguments. For all A,B C A, (A, B) € Gr(=X) iff there
exists an injective function f from B to A such that Va € B, f(a) < a.

Definition 38 (Strict Group Comparison). (Amgoud & Ben-Naim, 2013) Let
= be a ranking on a set A of arguments. For all A,B C A, (A, B) € Sgr(=) iff
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there exists an injective function f from B to A such that i) Va € B, f(a) < a
and i) |B| < |A| or 3a € B such that a Z f(a).

Postulate 8 ((Strict) Counter-Transitivity). (Amgoud & Ben-Naim, 2013) A
ranking-based semantics S satisfies the postulate counter-transitivity (CT) iff for
every argumentation framework AF = (A,R), Va,b € A, if (R™(b),R (a)) €
Gr[S(AF)|, then (a,b) € S(AF). Semantics S satisfies the postulate strict
counter-transitivity (SCT) iff for every argumentation framework AF = (A, R),

Ya,be A, if (R™(b), R~ (a)) € Sgr[S(AF)], then (b,a) ¢ S(AF).

Counter-transitivity is also a postulate that not necessarily applies for dialecti-
cal strength. For example, consider the argumentation framework AF = (A, R),
with A = {a,b,¢,d} and R = {(b,a), (c,b)}. According to counter-transitivity
argument d is always ranked higher than argument a. However, when arguments
a and d are equally attackable, i.e., they have the same number of attacking
points, then, argument a should be ranked higher, after all, argument a has
overcome one of its attackers.

Since strict counter-transitivity implies VP (Bonzon et al., 2016b) (which is
not satisfied for dialectical argument strength), this means that also SCT is not
satisfied for dialectical argument strength. Notice that semantics S; does not
satisfy counter-transitivity and strict counter-transitivity.

Claim 8. Counter-transitivity does not hold for semantics Sy.

Proof. Consider argumentation system AS = (£, R, n, <), with £ = {a, b, ¢, d—a,
—b, ¢, —~d} and R = {-b — —a;c — b}. Let AT = (AS,K) be an argumenta-
tion theory, where K = K, = {a,-b,c,d}. This leads to the argumentation
framework AF = (A,R), with A = {A,B,C,D} and R = {(C,B),(B,A)}
as displayed in Figure 7. Then, DegfllF(A) = % and DegilF(D) = % So,
(R~ (A),R~ (D)) € Gr[S(AF)] and (A,D) € S(AF). So, S does not satisfy
counter-transitivity. (|

Claim 9. Strict counter-transitivity does not hold for semantics S7.

Proof. Since SCT implies VP and VP does not hold, also CP does not hold. [

5.2. New Postulates.

The first postulate for dialectical strength that we propose, is attacking point
sensitivity, which intuitively ensures that an argument is ranked lower if it has
more attacking points. This is defined below and involves ASPIC+ properties
Prem(-) and DefRules(:) (see Definition 13). It says that if an argument has
the same attackers, at least as many ordinary premises, at least as many defea-
sible inference rules and the total number of ordinary premises plus defeasible
inference rules is strictly larger, then it should be ranked higher.

Postulate 9 (Attacking Point Sensitivity). A semantics S satisfies attacking
point sensitivity (APS) iff, for all argumentation frameworks AF = (A, R) and
Va,b € A it holds that if i) 3f : R™(a) — R™(b), such that f is bijective and
Deg(f(a)) = Deg(a), %) |Prem(a) N Kpy| > |Prem(b) N ICp|, 44) |DefRules(a)| >
|DefRules(b)| and iv) |Prem(a)NKCpy|+|DefRules(a)| > |Prem(b)NiC,|+|DefRules(b)|,
then Deg -(a) < Deg p(b).
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The first condition, i.e. R~ (a) = R~ (b), is a very restrictive condition, but also
a necessary condition. Only the number of ordinary premises and the number
of defeasible inference rules is not enough to compare arguments. Take the
argumentation framework AF = (A, R), with A = {a,b,c} and R = {(¢,b)}.
Suppose a and b have the same number of ordinary premises and the same
number of defeasible inference rules. According to condition ii) and iii) only,
arguments a and b should be ranked equally high. However, if argument c is strict
and firm, then argument b should have strictly lower degree of acceptability than
argument a, since a is undoubtedly unacceptable or provisionally unacceptable
and b is provisionally acceptable.

Another way of defining postulates for dialectical strength, is by using the
concept of the more attacks an argument survived the better. This have we
formalised in the following postulates, without using ASPIC+-properties.

Then the following postulates intuitively state that if an argument has at
most the same number of attackers that are skeptically acceptable according to
the grounded semantics and at least the same number of attackers that are not
acceptable according to the grounded semantics then it is ranked higher. The
difference between the Postulate 10 and Postulate 11 is the handling of cred-
ulously acceptable arguments. Postulate 10 considers a credulously acceptable
attacker as a flaw, Postulate 11 considers a it as a victory. Both postulates can
be satisfied together, but they are designed as a choice, where one of these two
postulates should hold.

Definition 39 (Uncontested Attackers). Let AF = (A, R) be an argumentation
framework. For any argument a € A the set of uncontested attackers of a is

defined as
Uncon(a) = {b € R (a)|b is in the grounded extension}.

Definition 40 (Questionable Attackers). Let AF = (A, R) be an argumentation
framework. For any argument a € A the set of questionable attackers of a is

defined as

Quest(a) = {b € R (a)|b is credulously acceptable in grounded semantics}.

Definition 41 (Defeated Attackers). Let AF = (A, R) be an argumentation
framework. For any argument a € A the set of defeated attackers of a is defined
as

Defeat(a) = {b € R (a)|b is unacceptable in grounded semantics}.

Postulate 10 (Survived Attacks Precedence). A semantics S satisfies sur-
vived attacks precedence (SAP) iff, for all argumentation frameworks AF =
(A, R) and Ya,b € A it holds that if i) Uncon(b) C Uncon(a), i) Quest(b) C
Quest(a), iii) Defeat(a) C Defeat(b), iv) |Prem(a) NICy| = |[Prem(b) NK,| and
|DefRules(a)| = |DefRules(b)|, then Degp(a) < Deg5 . (b).

Postulate 11 (Totally Survived Attacks Precedence). A semantics S satis-
fies totally survived attacks precedence (TSAP) iff, for all argumentation frame-
works AF = (A,R) and Ya,b € A it holds that if i) Uncon(b) C Uncon(a),
ii) Quest(a) C Quest(b), iii) Defeat(a) C Defeat(b), iv) |Prem(a) NIC)| =
|Prem(b) N KC,| and |DefRules(a)| = |DefRules(b)|, then Deg3p(a) < Degi p(b).
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The next postulate uses the status of an argument using grounded and pre-
ferred extensions, as defined in Definition 6 and Definition 7. The postulate
demands that not acceptable arguments are never ranked higher than credu-
lously acceptable arguments, which are never ranked higher than skeptically
acceptable arguments.

Postulate 12 (Status Precedence). A semantics S satisfies status precedence
(SP) iff, for all argumentation frameworks AF = (A, R) and Ya,b € A it holds
that

e if argument a is skeptically acceptable according to both grounded and
preferred semantics, and b is credulously acceptable or unacceptable ac-
cording to both grounded and preferred semantics, then a is ranked higher
than b.

e if argument a is credulously acceptable according to both grounded and
preferred semantics, and b is unacceptable according to both grounded
and preferred semantics, then a is ranked higher than b.

Notice that semantics 57 satisfies all new postulates.

5.2.1. Attacking Point Sensitivity.

Claim 10. Attacking point sensitivity holds for semantics S1.

Proof. Let AT = (AS, K) be an arbitrary argumentation theory for arbitrary ar-
gumentation system AS = (£, R,n,<). Let AF = (A, R) be the corresponding
argumentation framework. Let a,b € A arbitrarily. If 3f : R~ (a) — R~ (b), such
that f is bijective and DegilF(f(a)) = Degi%(a), |Prem(a) N Kp| > [Prem(b) N
Kp| and |DefRules(a)| > |DefRules(b)| and |Prem(a) N K,| + |DefRules(a)| >
|Prem(b) N K| + |DefRules(b)|, then arguments a and b have the same sta-
tus, i.e., both are provisionally acceptable, credulously acceptable, provision-
ally unacceptable or undoubtedly unacceptable, except if argument b is un-

doubtedly acceptable and argument a is provisionally acceptable. Further-
more, SAP(a) = SAP(b) and AP(a) > AP(b). If b is undoubtedly accept-

able, then DegilF(a) <1= Degi},(b), Else DegilF(a) =+ i . 124;544;1)3(%) <
T+ % . %If((lg) = Degilp(b), with = % if the arguments are provisionally

acceptable, x = % if the arguments are credulously acceptable, z = i if the

arguments are provisionally unacceptable and x = 0 if the arguments are un-
doubtedly unacceptable. So, S; satisfies attacking point sensitivity. 0

5.2.2. (Totally) Survived Attacks Precedence.

Claim 11. Survived attacks precedence holds for semantics Si.

Proof. Let AT = (AS,K) be an arbitrary argumentation theory for arbitrary
argumentation system AS = (L, R,n,<). Let AF = (A, R) be the correspond-
ing argumentation framework. Let a,b € A arbitrarily. If [Prem(a) N IC,| =
|Prem(b) N KCp| and |DefRules(a)| = |DefRules(b)|, then arguments AP(a) =
AP(b). If Defeat(a) C Defeat(b), then SAP(a) < SAP(b). If also Uncon(b) C
Uncon(a) and Quest(b) C Quest(a), then there are 7 different scenario’s:
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(1) Argument b is undoubtedly acceptable, or

(2) Argument a and b are both provisionally acceptable, or

(3) Argument b is provisionally acceptable and argument a is credulously
acceptable or provisionally unacceptable, or

(4) Argument a and b are both credulously acceptable, or

(5) Argument b is credulously acceptable and argument a is provisionally
unacceptable, or

(6) Argument a and b are both provisionally unacceptable, or

(7) Argument a is undoubtedly unacceptable.

In case of (1), then
DegilF(a) < Degi};(b) =1.
In case of (2), (4) and (6), then

1 1+ SAP(a) 1 14 SAP(b) g
Deg3 = I WA Y Z. — Dedt.(b
0ar(@) =Tt g b)) =" 3 arapp) - D9ar®)
with  respectively 2, £ and 0. In case of (3) and (5), then
1 14 SAP(b)
Degilp(a) <z<z+ 3" m = Degilp(b),

with x is respectively 2 and 1. In case of (12), then
DegilF(a) = DegilF(b) =0.

So, DegilF(a) < DegfllF(b). So, Sy satisfies survived attacks precedence. [
Claim 12. Totally Survived Attacks Precedence does not hold for semantics Sy.
Proof. Consider argumentation system AS = (£, R,n,<) , with £ = {a;, ~a;}
and R = {a1 — —as;ay — -aj;a3 — —az}. Let AT = (AS,K) be an
argumentation theory, where K = K, = {a1,a2,a3,a4}. This leads to the
argumentation framework AF = (A,R), with A = {A,B,C,D} and R =
{(B,A),(C,B),(A,C)} as displayed in Figure 12. Then, DegilF(A) =35 <

= Degf‘lF(D). Furthermore, Uncon(D) = Uncon(A) = 0, Quest(A) = {B} C
) = Quest(D) and Defeat(A) = Defeat(D). So, S1 does not satisfy Totally

Survived Attacks Precedence. O
-ag —ay —ag a4
D
al ag as
A B C

Ficure 12. ASPIC+ argumentation as counterexample of To-
tally Survived Attacks Precedence.
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5.2.3. Status Precedence.

Claim 13. Status precedence holds for semantics St.

Proof. Let AT = (AS,K) be an arbitrary argumentation theory for arbitrary
argumentation system AS = (£, R,n,<). Let AF = (A, R) be the the corre-
sponding argumentation framework. Let a,b € A arbitrarily. If argument a is
skeptically acceptable according to both grounded and preferred semantics and
argument b is credulously acceptable or unacceptable according to both grounded
and preferred semantics. Then, DegilF(a) > 2> DegilF(b). If argument a is
credulously acceptable according to both grounded and preferred semantics and
argument b is unacceptable according to both grounded and preferred semantics.
Then, DegilF(a) > 1> DegfllF(b). So, S; satisfies status precedence. O

5.3. Existing Semantics.

In this section Max-based Semantics, Categoriser-based Semantics, Discussion-
based Semantics, Burden-based Semantics and grounded semantics will be com-
pared with Grounded Dialectical Semantics.

Table 3 gives an overview of the postulates satisfied by respectively Max-based
Semantics, Categoriser-based Semantics, Discussion-based Semantics, Burden-
based Semantics, grounded semantics and our proposed semantics.

A cross x means that the postulate is not satisfied, a checkmark v'means that
the postulate is satisfied. Cells highlighted in grey are the results already proven
in the literature. Cells highlighted in red are proven below, non-highlighted cells
are proven in section 5.1 and 5.2.

] Properties \ Max \ Cat \ Dbs \ Bbs \ Grounded \ S1 \
Ab

In
VP
CP
QP
DP

DDP
cT
SCT

APS
SAP
TSAP

SP X X v
TABLE 3. Postulates satisfied by the semantics in the literature
and the new semantics.

XXX SIS XN X XSS S
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X
v
X
X
X
X
X
X
X
v
v
X

NIX XXX N X XN X NSNS
N XX XX N X XN X X NS

X

5.3.1. Maz-based Semantics.
Max-based Semantics (Amgoud & Ben-Naim, 2018) is for argumentation frame-
work AF = (A, R), for any a € A, defined as in Equation 2.

1
DegMor(q) = 2
9AE ) = e o (Deg 2 () @
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FIGURE 13. Argumentation Framework as example against de-
fence precedence for Max-based Semantics.

Claim 14. Abstraction holds for Max-based Semantics.

Proof. Consider arbitrary argumentation frameworks AF = (A, R) and AF' =
(A',R')and let f : A — A’ be an isomorphism. Then, Va € A, Deg[Ma"”AF](a) =
Deg[M‘“”AF’ |(f(a)). After all, the strength of any argument only depends on

the attacker with the highest degree of acceptability. Therefore, (f(a), f(b)) €
S(AF"). So, Max-based Semantics satisfies abstraction. O

Claim 15. Independence holds for Maz-based Semantics.

Proof. Let AF = (A,R) be an arbitrary argumentation framework, let B €
Com(AF) arbitrary. Then for every a € B holds that Deg¥%%(a) = DegM‘””( ).
After all, the strength of an argument only depends on the degree of acceptability
of its attackers. So, Max-based Semantics satisfies independence. O

Claim 16. Void precedence holds for Mazx-based Semantics.

Proof. Consider arbitrary argumentation framework AF = (A, R) and let a,b €
Aarbitrary If R~ (a) # R~ (b) = 0, then Deghs®(a) = 1 _
I4max ¢ p— o) (Degi'p @ <

DegM‘” (b). So, Max-based Semantics satisfies void precedence. O

Claim 17. Cardinality precedence does not hold for Mazx-based Semantics.

Proof. Consider argumentation framework AF = (A, R) with A = {a,b,c,d, e}
and R = {(c,a),(d,a), (e,b)}. Then Deghls®(a) = 3 = Deg’la®(b). So, Max-
based Semantics does not satisfy cardinality precedence O

Claim 18. Quality precedence does hold for Max-based Semantics.

Proof. Consider arbitrary argumentation framework AF = (A, R) and let a,b €
A be arbitrary. If 3¢ € R™(b) such that Vd € R~ (a) holds that (d,c) ¢ S(AF),
then, by definition, Deghle¥(a) > Degl#*(b). So Max-based Semantics satisfies
quality precedence. O

Claim 19. Defence precedence does not hold for Mazx-based Semantics.

Proof. Consider argumentation framework AF = (A, R), with A = {a,b,¢,d, e, f, g}
and R = {(c,a),(d,a),(e,b),(f,b),(g,f)}, as displayed in Figure 13. Then
|R=(a)| = |R~(b)| and Def(b) # Def(a) = 0, but Deghla®(a) = Deg’la®(b).
So, Max-based Semantics does not satisfy defence precedence. O
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FIGURE 14. Argumentation Framework as example against dis-
tributed defence precedence for Max-based Semantics.

Claim 20. Distributed defence precedence does not hold for Maz-based Seman-
tics.

Proof. Consider argumentation framework AF = (A, R), with A = {a,b,c¢,d, e,
£,9,hi. ik, 1} and R = {(c,a), (d, a), (e, 0), (£,b). (g,8), (b, (i, ), (j, ), (k. f),
(I, f)}, as displayed in Figure 14. Then |R™ (a)| = |R(b)| and |Def(a)| =
|Def(b)| and the defense of a is simple and distributed and the defence of b
is simple and not distributed, but Deghi4*(a) = Degila®(b). So, Max-based
Semantics does not satisfy distributed defence precedence. O

Claim 21. Counter-transitivity holds for Maz-based Semantics.

Proof. Consider arbitrary argumentation framework AF = (A, R) and let a,b €
A be arbitrary. If (R (a), R~ (b)) € Gr[S(AF)], then

1
Degais®(b) =
1 + max.er- ) Deghis®(c)
1
> > Deghle™(a).
1+ max ey Deghia (f(c))
So, Max-based Semantics satisfies counter-transitivity. 0

Claim 22. Strict counter-transitivity does not for Maz-based Semantics.

Proof. Consider argumentation framework AF = (A, R), with A= {a,b,c,d, e}
and R{(c,a), (d,a), (e,b)}. Then (R~ (a), R~ (b)) € Sgr[S(AF)], but Deghls*(a) =
Deg%?x(b). So, Max-based Semantics does not satisfy strict counter-transitivity.

O
Claim 23. Attacking point sensitivity does not hold for Mazx-based Semantics.

Proof. Consider argumentation system AS = (£,R,n,<), with £ = {a,b,c}
and R = {b — c¢}. Then for argumentation theory AT = (AS,K), with
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K = K, UK,, where £, = {a} and K, = {b}, this leads to argumentation
framework AF = (A, R), where there are two argument a (A) and b — ¢ (B).
There are no attacks, so the first condition of the postulate is satisfied trivially.
Furthermore, the three other conditions are satisfied, after all, [Prem(A)NIC,|+
|DefRules(A)| = [Prem(A) N IC,| =1 > 0 = |Prem(B) N /C,| + |DefRules(b)| and

Deghte*(a) = Degla®(b). So, Max-based Semantics does not satisfy attacking
point sensitivity. Il

Claim 24. Totally survived attacks precedence nor survived attacks precedence
holds for Maz-based Semantics.

Proof. Consider argumentation framework AF = (A, R), with A = {a,b,c,d}
and R = (c¢,b),(d,c). Then, even if |Prem(a) N KCp| = |[Prem(b) N ICp| and
|DefRules(a)| = |DefRules(b)|, Degid®(a) > Deghla®(b). So, Max-based Se-
mantics does not satisfy (totally) survived attacks precedence. O

Claim 25. Status precedence holds for Maz-based Semantics.
— 1 holds

Proposition 2. For the sequence defined by ag = 1 and a, = T
I4an 1

ap > % 5 — %
Proof. We will proof by induction. As base step we see that 1 > % S5 — %
Suppose a,, > %\f — % Then,

1 1 1 1 1
Ap4+1 — 5\/7-— - = 44444147._‘7\/7__ —_

2 1+ 5 2 2
a1 1 5 1
C an+2 2 2
1 1 1
= 1— — 5=
an+2 2 2
> 1 ! ! 5 ! 0
TI 1.9 V2T oW
Is-lr2 2V 2
By the Principle of Mathematical Induction holds that a, > % 5 — % O
Proposition 3. For the sequence defined by ag = % and a, = ﬁ holds
1+a,_1

an<% 5—%.

Proof. We will proof by induction. As base step we see that % < %\/5 —
Suppose a, < % 5— % Then,

1 1 1 1 1
T . N/

D=

2 L+ 7 2 2
. an+1_} _1
 ap+1 2 2
1 1 1
anp+2 2 2
1 1 1
< 1—#—*\/5—*20
sVh—5+2 2 2

By the Principle of Mathematical Induction holds that a, < % 5 — % O
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Proof. Let AF = (A, R) be an arbitrary argumentation framework. Since ev-
ery skeptically acceptable argument can be is either not-attacked or attacked

by one or more not acceptable attackers, the degree of acceptability of all these
1

arguments can be described by the sequence ag = 1 and a,, = F—— and
1+an_1
the not acceptable arguments can be described by the sequence by = % and
_ 1 Max _ 1 :
b, = 71+1+bln—1' After all, for n > 0, Deg4'#*(an) = T Deg e oy with
DegMax(bn,l) = m. Furthermore a,, > 5\/5— %, see Proposition 2
and b, > l 5 — 5, see Proposition 3.
Credulously acceptable argument a the degree of acceptability is Deg{/4%(a) =
1 M _
e 5o Dediit”(@) = 5V5 -3

So, skeptically acceptable arguments always get a degree of acceptability in
the interval (%\/5 — %, 1]. Credulously acceptable arguments always get a degree
of acceptability of I\f l and not acceptable argument always get a degree
of acceptability in the 1nterva1 [2, 5VH — %) So Max-based Semantics satisfies
status precedence. Il

5.3.2. Categoriser-based Semantics.

Categoriser-based Semantics (Besnard & Hunter, 2001) is for argumentation
framework AF' as in Equation 3, where by, ..., b, are attackers of a. Categoriser-
based Semantics is only defined for a-cyclic argumentation frameworks. However,
for cyclic argumentation framework solving a system of linear equations could
provide a solution.

1
1+30, Degcat(b )

Claim 26. Attacking point sensitivity does not hold for Categoriser-based Se-
mantics.

Degit(a) = (3)

Proof. Consider argumentation system AS = (£, R,n, <), with £ = {a, b, ¢} and
R = {b — c}. Then for argumentation theory AT = (AS, K), with K = I,, UK,
where C;, = {a} and K, = {b}, this leads to argumentation framework AF =
(A, R), where there are two argument a (A) and b — ¢ (B). There are no attacks,
so the first condition of the postulate is satisfied trivially. Furthermore, the
three other conditions are satisfied, after all, [Prem(A4) N KCp| + [DefRules(A)| =
[Prem(A) N KCp| = 1 > 0 = [Prem(B) N K,| + |DefRules(b)| and Deg§¥(a) =
Degcat(b). So, Categoriser-based Semantics does not satisfy attacking point
sensitivity. O

Claim 27. Totally survived attacks precedence nor survived attacks precedence
holds for Categoriser-based Semantics.

Proof. Consider argumentation framework AF = (A, R), with A = {a,b,c,d}
and R = {(¢,b),(d,c)}. Then, even if |Prem(a) N Kp| = |Prem(b) N KCp| and
|DefRules(a)| = |DefRules(b)], Degcat(a) > Degcat(b). So, Categoriser-based
Semantics does not satisfy (totally) survived attacks precedence. 0

Claim 28. Status precedence does not hold for Categoriser-based Semantics.
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FI1GURE 15. Argumentation Framework as example against sta-
tus precedence for Categoriser-based Semantics.

Proof. Consider argumentation framework AF = (A, R), with A = {a,b,¢,d, e},
with R = {(b,a), (c,a),(d,a),(e,b),(e,c),(e,d)}, as in Figure 15. Then, argu-
ment a is skeptically acceptable and argument b is not acceptable. However,

Degq#(a) = 2 < L = DegQ%(b). So, Categoriser-based Semantics does not
satisfy status precedence. O

5.3.3. Discussion-based Semantics.

The Discussion-based Semantics(Amgoud & Ben-Naim, 2013) is a ranking based
on the discussion counts. These compare arguments step-wise and count the
number of linear discussion that end with these argument. Two arguments can
be compared lexicographically based on their discussion counts, i.e., a jgg? b, if
Dis(b) =jer Dis(a).

Definition 42 (Linear discussion). Let AF = (A, R) an argumentation frame-
work and a € A. A linear discussion for a in A is a sequence s = (a1, ...,ay) of
elements of A (where n is a positive integer) such that ay = a and Vi € {2,...,n}
a;Ra;_1. The length of s is n. We say that: s is won iff n is odd; s is lost iff n
is even.

Definition 43 (Discussion counts). Let AF = (A, R) be an argumentation
framework, a € A, i a positive integer and let N be the number of linear discus-
sions for a of length i. We define that:

Dis . (a) —N  ifiis odd;
isa,(a) =
Ai N if 1 is even.

Claim 29. Attacking point sensitivity does mot hold for Discussion-based Se-
mantics.

Proof. Consider argumentation system AS = (£, R,n, <), with £ = {a, b, ¢} and
R = {b — c}. Then for argumentation theory AT = (AS, K), with K = I,, UK,
where C;, = {a} and K, = {b}, this leads to argumentation framework AF =
(A, R), where there are two argument a (A) and b — ¢ (B). There are no attacks,
so the first condition of the postulate is satisfied trivially. Furthermore, the
three other conditions are satisfied, after all, |[Prem(A4) N KCp| + [DefRules(A)| =
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(=

FIGURE 16. Argumentation Framework as example against sta-
tus precedence for Discussion-based Semantics.

[Prem(A) N Kyl = 1 > 0 = |Prem(B) N K,| + |DefRules(b)| and a ~5% b. So,
Discussion-based Semantics does not satisfy attacking point sensitivity. O

Claim 30. Totally survived attacks precedence nor survived attacks precedence
holds for Discussion-based Semantics.

Proof. Consider argumentation framework AF = (A, R), with A = {a,b,c,d}
and R = (¢,b),(d,c). Then, even if |Prem(a) N Kp| = |Prem(b) N K,| and

|DefRules(a)| = |DefRules(b)|, b <5% a. So, Discussion-based Semantics does
not satisfy (totally) survived attacks precedence. O

Claim 31. Status precedence does not hold for Discussion-based Semantics.

Proof. Consider argumentation framework AF = (A, R), with A = {a,b,c,d,e, f, g}
and R = {(c,a), (d,a),(e,b), (f,c),(g,d)}, as displayed in Figure 16. Then, ar-
gument a is skeptically acceptable and argument b is not acceptable. However,

a <£%3 b. So, Discussion-based Semantics does not satisfy status precedence. [

5.3.4. Burden-based Semantics.
Burden-based Semantics also compares arguments step-wise and assigns a Bur-
den number to each argument at each step ¢. Two arguments a and b can be

compared lexicographically based on their Burden numbers, i.e., a jjjﬁ,{f b, if
Bur(b) =jex Bur(a).

Definition 44 (Burden numbers). Let AF = (A, R) be an argumentation frame-

o 5 ( ) B 1 ifi = 0;
work. Lhen Buri(a) =9, ZbeR—(b) m otherwise.

Claim 32. Attacking point sensitivity does not hold for Burden-based Semantics.

Proof. Consider argumentation system AS = (£, R,n, <), with £ = {a, b, ¢} and
R = {b — c}. Then for argumentation theory AT = (AS, K), with K = ,, UK,
where C;, = {a} and K, = {b}, this leads to argumentation framework AF =
(A, R), where there are two argument a (A) and b — ¢ (B). There are no attacks,
so the first condition of the postulate is satisfied trivially. Furthermore, the
three other conditions are satisfied, after all, [Prem(A4) N KCp| + [DefRules(A)| =
[Prem(A) N Kyl = 1 > 0 = |Prem(B) N K| + |DefRules(b)| and a ~5% b. So,
Burden-based Semantics does not satisfy attacking point sensitivity. O

Claim 33. Totally survived attacks precedence nor survived attacks precedence
holds for Burden-based Semantics.
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Proof. Consider argumentation framework AF = (A, R), with A = {a,b,c,d}
and R = (c¢,b),(d,c). Then, even if |Prem(a) N KCp| = |[Prem(b) N ICp| and
|DefRules(a)| = |DefRules(b)|, b <55 a. So, Burden-based Semantics does not
satisfy (totally) survived attacks precedence. O

Claim 34. Status precedence does not hold for Burden-based Semantics.

Proof. Consider argumentation framework AF = (A, R), with A = {a,b,c,d,e, f, g}
and R = {(c,a), (d,a), (e, b), (f,c),(g,d)}, as displayed in Figure 16. Then, ar-
gument a is skeptically acceptable and argument b is not acceptable. However,

zf%s b. So, Burden-based Semantics does not satisfy status precedence. O

5.3.5. Grounded Semantics.
Claim 35. Attacking point sensitivity does not hold for grounded semantics.

Proof. Consider argumentation system AS = (£, R,n, <), with £ = {a, b, c} and
R = {b — c}. Then for argumentation theory AT = (AS,K), with K = K,,UKC,,
where K, = {a} and K, = {b}, this leads to argumentation framework AF =
(A, R), where there are two argument a (A) and b — ¢ (B). There are no attacks,
so the first condition of the postulate is satisfied trivially. Furthermore, the
three other conditions are satisfied, after all, [Prem(A) N KCp| + [DefRules(A)| =
|Prem(A)NK,| =1 > 0 = |Prem(B)NK,|+|DefRules(b)| and both argument are
in the grounded extension. So, grounded semantics does not satisfy attacking
point sensitivity. O

Claim 36. Totally survived attacks precedence nor survived attacks precedence
holds for grounded semantics.

Proof. Consider argumentation framework AF = (A, R), with A = {a,b,c,d}
and R = (c¢,b),(d,c). Then, even if |Prem(a) N KCp| = |[Prem(b) N ICp| and
|DefRules(a)| = |DefRules(b)|, argument a and b are both in the grounded
extension. So, grounded semantics does not satisfy (totally) survived attacks
precedence. O

6. DIALECTICAL SUPPORT SEMANTICS

In this section support argumentation frameworks are discussed. Like Am-
goud & Ben-Naim (2016b) we will discuss argumentation frameworks with sup-
ports only, i.e., AF = (A, S). Firstly, we will provide the definitions of premise
support and support argumentation frameworks. Then we will provide the in-
tuitions for a semantics that will be defined in the last part of this section.

6.1. Definitions.
Recall that an argument a is premise-supported by argument b if argument b
has the same conclusion as a premise of argument a, see Definition 45.

Definition 45 (Premise Support). (Cohen et al., 2018) Let AS = (L,R,n,<)
be an argumentation system and let AT = (AS,K) be an argumentation theory
and Ay, Ay € A(AT). Argument Ay provides premise support for Ag iff A1 # As
and Conc(Al) € Prem(A3).

A support argumentation framework is just like an abstract argumentation
framework, except there are no attackers but only supporters. For simplicity we
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will say ’argumentation framework’ instead of ’support argumentation frame-
work’.

Definition 46 (Support Argumentation Frameworks). A support argumentation
framework is a tuple (A,S), where A is a set of arguments and S C Ax A a
binary support relation on A. For arguments a,b € A, (a,b) € S or aSb means
that a premise supports b. Furthermore, S™(a) denotes the set of supporters of
a.

6.2. Intuitions.

We will discuss dialectical argument strength for premise support. An argument
consists of premises and inference rules (see Definition 13). For now we will
restrict ourselves to premise support. Therefore it is only relevant to look at the
differences between premises of arguments.

As described earlier, Zenker et al. (2020) described dialectical argument strength
in terms of the opponent’s availability to move. In terms of premise support pos-
sible moves are questioning why a certain premise holds. So, the fewer ordinary
premises an unsupported argument has, the better. As a baseline, each non-
supported argument a has as degree of acceptability m

Premise support in dialectical context is a good feature. Supporters should
not decrease the acceptability. Otherwise, the opponent can devalue an argu-
ment by adding a supporter. So, supporters of argument a do not break down
the argument strength of a, but supporters do not necessarily contribute to the
acceptability of argument a. What we mean by the latter is illustrated by Ex-
ample 9. Notice that more supporters is not necessarily better. A supporter is
only contributing when it is firm. After all, arguments with 1 or more ordinary
premises expand the number of possibilities for the opponent to move. Other-
wise, with a firm argument, the possibilities to move are decreased by 1. If in
Example 9 argument a was firm, i.e., a € K, then the opponent would have no
possibility to move.

Example 9. Consider argumentation system AS = (L,R,n,<), where L =
{a,b}, R = {a — b} and consider argumentation theory AT = (AS,K), with
K =K, = {a,b}. Then argument b is supported by argument a — b. However
the opponent than still has an option to question the argument, after all, a is
only an ordinary premises. In case of no support the opponent could ask “why
b?” Howewver, in the case of this example the opponent could ask "why a?”. So,
the number possibilities to move are equal.

6.3. Possible New Semantics.
One could involve the difference between strict and plausible inference rules and
argue that arguments with strict rules are better than argument with plausible
rules, if the number of ordinary premises is the same. However, this would make
the semantics more complicated than necessary. Moreover, there is no possibility
in ASPIC+ to support plausible inference rules. Therefore this will be ignored
in the following semantics.

Below we will present a possible new gradual semantics, which exactly meets
the intuitions above.

Definition 47. For argumentation framework AF = (A,S). The degree of
acceptability of an argument a € A, is one over one plus the number of weakly
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or unsupported premises, i.e.,
1
Deg>3(a) = . )
AF L+ > hetm(a) Miees—(a) (f5(¢))
where f, : A — (0,1] is defined by
0 , if Conc(z) =b and x is firm,
folx) = { 7 Conc(z) d

1 , otherwise.

If an argument a has no supports, i.e. S~ (a) = (), then this semantics is

equivalent to m After all, then
> min ()= Y 1=[Um(a)l
beUm(a) ¢ “ beUm(a)

So, the more ordinary premises an unsupported argument has, the lower its
degree of acceptability. Notice, this is also the minimal value.

Proposition 4. For any argumentation framework AF = (A,S), for any argu-
ment a € A always Deg’{(a) > m
Proof. Consider arbitrary argumentation framework AF = (A, S), then Va € A,
1
Deg52.(a) = -
Ar L+ petm(a) Miees—(a) (fo(c))
1 1
> —
L+ ZbEUm(a) 1 1+ ’Um(a)‘

g

The function f; ensures that only firm supporters contribute to the degree of
acceptability and that supporters only contribute to the degree of acceptability
for the premises they support.

Example 10. Consider argumentation system AS = (L, R,n,<) , with L =
{a;,—a;} and R = {a2 — a1;a1 — as;as,a6 — ag;a4 — a7}. Let AT = (AS,K)
be an argumentation theory, where K = KCp, U Ky, with K,, = {a2} and IC, =
{a1,a4,as5,a6}. This leads to the argumentation framework AF = (A,S), with
A={AB,C,D} and S = {(A,B),(C,D)}, see Figure 17, where double-lined
arrows represent supports. Then, DegiQF(A) =1 and

1
D6952 B) = i
AF( ) 1+ ZbeUm(a) mlnceg—(a)(fb(c))
IS
L+ fa(4) 1

Furthermore, Degi%(C) =1 and DegffF(D) =1

Notice, one can also construct an arguments E : (ag — a1) — ag and F :
(as,a6 — ag) — ag. Argument F would have DegffF(F) = 1, which is lower
than argument D. This is a desirable outcome, because the argumentation is
weaker than D. Argument E would have DegffF(E) = 1, which is equal to

DegiQF(B) .
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al Qa,
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FiGURE 17. ASPIC+ example where support by a firm argument
is compared to support by a plausible argument.

7. POSTULATES FOR SUPPORT SEMANTICS

In this section postulates from Amgoud & Ben-Naim (2016b) will be covered
as well as new postulates, which we will propose.

Amgoud & Ben-Naim (2016b) have proposed postulates for semi-weighted
support argumentation frameworks. These are defined as a regular support
argumentation framework, except with an extra initial weight, see Definition 48.
For simplicity, we will call them argumentation frameworks.

Definition 48 (Semi-weighted Support Argumentation Frameworks). A semi-
weighted support argumentation framework is a tuple (A,w,S), where A is a set
of arguments, w : A — [0, 1] is a function that maps each argument to its initial
weight and S C A X A a binary support relation on A. For arguments a,b € A,
(a,b) € S or aSb means that a premise supports b. Furthermore, S~ (a) denotes
the set of supporters of a.

7.1. Existing Postulates.

Amgoud & Ben-Naim (2016b) propose several postulates for semi-weighted sup-
port argumentation frameworks. Since we do not use initial weights explicitly,
we will work with for a € A with w(a) = m This seems justified, since
this is the value of each argument when & = (). By this assumption the postu-
late Minimality (see Postulate 13) is exactly satisfied. The formulation of the

postulates might slightly differ from (Amgoud & Ben-Naim, 2016b).

Postulate 13 (Minimality). (Amgoud & Ben-Naim, 2016b) A semantics F'
satisfies Minimality iff, for any argumentation framework AF = (A,w,S), Ya €
A if S~(a) = 0, then Deghip(a) = w(a).

Theorem 2. Semantics So satisfies postulates support independence, non-dilution,

dummy, monotony, coherence, strengthening soundness, boundedness, strict monotony,

Ind and firm counting and does not satisfy postulates anonymity, equivalence,
strengthening, counting, reinforcement, imperfection, cardinality precedence, qual-
ity precedence and compensation.

Proof. Since claim 37 up to and including Claim 55 are true, Theorem 2 is
true. 0
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7.1.1. Anonymity.
The intuition of the first postulate (anonymity) is that equivalent arguments are
ranked equivalently.

Definition 49 (Isomorphism). (Amgoud & Ben-Naim, 2016b) Let AF = (A,w,S)
and AF' = (A',u',8’) be two argumentation frameworks. An isomorphism from
AF to AF' is a bijective function f from A to A’ such that i) Va € A holds that
w(a) =w(f(a)) and ii) Ya,b € A holds aSb iff f(a)Sf(b).

Postulate 14 (Anonymity). A semantics F' satisfies anonymity iff, for any two
argumentation frameworks AF = (A,w,S) and AF' = (A',',8") for any iso-
morphism f from AF to AF', the following property holds: Ya € A, Degl-(a) =
Deglip(f(a)).

Anonymity is a debatable postulate for dialectical argument strength. It
simplifies to much, it does not account for multiple supporters with the same
conclusion. Notice that semantics Sy does not satisfy anonymity.

Claim 37. Anonymity does not hold for semantics Ss.

Proof. Consider argumentation systems AS = (£, R,n, <) and AS" = (L', R, n, <
), with £ = {a;}, £ = {b;} and R = {a1,a2 — a3z;ay — ai;as — az} and
R = {bl,bQ — b3;b4 — bl;bg, — bl} Let AT = (AS, lC) and AT = (AS/,IC/)
be argumentation theories, where K = K, U K,, K, = {a4,as5}, K, = {a1,a2}
and K' = K, UK}, Ky = {b4,b5} and K, = {b1,b2}. This leads to the argu-
mentation frameworks AF = (A, S) and AF' = (A, S'), with A = {Ay, Ay, A3},
.A/ = {Bl,BQ,Bg} and § = {(Al,Ag), (Ag,Ag)} and Sl = {(Bl,Bg), (BQ,Bg)},
see Figure 18. Take isomorphism f : A — A’, such that f(A;) = B;. However,

DegiQF(Ag) =1#3= DegfﬁF(Bg). So, Sy does not satisfy anonymity. O
al as a9
aq al a9 as
A1 A3 A2
bl bl b3
b5 b4 bl b2
By By Bs

FicUre 18. ASPIC+ argumentation as counterexample of anonymity.
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7.1.2. Support Independence.

The intuition of the next postulate (support independence) is that the degree of
acceptability of an argument a should be independent of any argument that is
not connected to a(Amgoud & Ben-Naim, 2016b).

Definition 50. For any two argumentation frameworks AF = (A,w,S) and
AF = (A, W', S"), AF® AF' is defined as the argumentation framework AF" =
(AUA',SUS’), where for a € A (respectively a € A') w"(a) = w(a) (respectively
w'(a) = w'(a))

Postulate 15 (Support Independence). A semantics F satisfies support in-
dependence iff, for any two argumentation frameworks AF = (A,w,S) and
AF' = (A, W', S") such that AN A = 0, the following property holds: Ya €
A, DegiF(a) = DegiF@AF, (a).

The intuitions of support independence are not debatable, but the definition
above is, most importantly because the definition of the ®-operator seems incom-
plete. What we mean by that is, when AF = ({a},0) and AF' = ({b},0), with
Conc(a) € Prem(b), then (a,b) € S” should hold according to independence, but
it does not. Notice that semantics Sy satisfies support independence.

Claim 38. Support independence holds for semantics So.

Proof. Consider arbitrary argumentation frameworks AF = (A, w,S) and AF' =
(A" W', 8", such that AN A = . Then, Va € A,

1
Deg32.(a) = .
A L+ petm(a) Milees— (a) (fo(c))
1 S
= . = Deg% (a).
L+ > petm(a) Mileesr-(a) (f5(c)) AF
So, Sy satisfies support independence. O

7.1.3. Non-dilution.
The intuition of the next postulate (non-dilution) is that supporting another
argument does not affect its own strength (Amgoud & Ben-Naim, 2016b).

Postulate 16 (Non-dilution). A semantics F' satisfies non-dilution iff, for any
two argumentation frameworks AF = (A,w,S) and AF' = (A, S), such
that 8" = S U {(a,b)} and ST(b) = 0, the following property holds: Vx €
A\{b}, Degli-(z) = Degh . ().

Non-dilution is one of the key intuitions for support relation in dialectical
argument strength and therefore a good postulate. Notice that semantics S
satisfies non-dilution.

Claim 39. Non-dilution holds for semantics So.

Proof. Consider two arbitrary argumentation frameworks AF = (A,w,S) and
AF = (A,uw',8'}), such that 8’ = SU{(a,b)} and ST(b) = 0. Then

1
DegSZ a) = i = DegSZ \a).
ar(@) 1+ 2 detm(a) Miees-(a) (fa(c)) Al

So, S5 satisfies non-dilution. O
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7.1.4. Dummy.
The intuition of the next postulate (dummy) is that zero-valued arguments do
not affect the acceptability of arguments by supporting another arguments.

Postulate 17 (Dummy). (Amgoud & Ben-Naim, 2016b) A semantics F sat-
isfies dummy iff, for any argumentation framework AF = (A,w,S), Va,b € A
if i) w(a) = w(b) and i) S~(a) = S~ (b) U{x}, such that Degh.(x) = 0, then
Deglip(a) = Deglip(b).

Dummy seems a reasonable postulate. For semantics So arguments never have
a degree of acceptability of 0. So, this postulate is satisfied trivially.

Claim 40. Dummy holds for semantics Ss.

Proof. Consider arbitrary argumentation framework AF = (A,w,S). Then for
any a € A, 3n € N such that DegiQF(a) > % > 0. So, Sy satisfies dummy. O

7.1.5. Monotony.
The intuition of the next postulate (monotony) is that the more supporters an
argument has, the higher its degree of acceptability.

Postulate 18 (Monotony). (Amgoud & Ben-Naim, 2016b) A semantics F' sat-
isfies monotony iff, for any argumentation framework AF = (A,w,S), Va,b € A
if i) w(a) = w(b) and ii) S~ (a) C S~ (b), then Deghp(a) < Degh,(b).

Proposition 5. For any argumentation framework AF = (A,w,S), for any
a€ A,

B 1

1+ |{b € Um(a)|Vz € S~(a),Conc(z) # bV z is not firm}|’

Degii:(a)
Proof. Let AF = (A,w,S) be an arbitrary argumentation framework. Then,

Z min (fy(c))

beUm(a) €5~ @

) 0 ,if Conc(c) =b and c is firm,
= Z min i )
y |1 , otherwise.

Z 0 ,if3c € S (a),Conc(c) =b and c is firm,
B 1 , otherwise.

B Z {1 , if Ve € 87 (a), Conc(c) # b and c is not firm,

velim(a) 0 , otherwise.

= |{be Um(a)|Ve e S (a),Conc(c) # b and ¢ is not firm}|.
So,

1
T 1+ [{b € Um(a)|Vz € S~ (a),Conc(z) # bV x is not firm}|

Dego(a)
]

Claim 41. Monotony holds for semantics So.
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Proof. Consider arbitrary argumentation framework AF = (A,w,S). Then for
arbitrary a,b € Aifi) w(a) = w(b) and ii) S~ (a) € S~ (b). Since S~ (a) C S~ (b),
{c € Um(a)|Vz € S~ (a),Conc(z) # ¢V z is not firm}| > |{c € Um(b)|Vz €
S~ (b), Conc(z) # ¢V is not firm}|. So, Deghn(a) < Deghip(b). So, Ss satisfies
monotony. U

7.1.6. Equivalence.

The intuition of the next postulate (equivalence) is that the degree of accept-
ability of an argument depends on the acceptability of its direct supporters and
its initial strength (Amgoud & Ben-Naim, 2016b).

Postulate 19 (Equivalence). (Amgoud € Ben-Naim, 2016b) A semantics F
satisfies Equivalence iff, for any argumentation framework AF = (A ,w,S),
Va,b € A if i) w(a) = w(b) and #) If : S~ (a) — S (b), a bijective function,
such that Vo € 8~ (a), Degli(x) = Deghi-(f(x)), then Degln(a) = Deghi (D).

Equivalence is not a good postulate for dialectical argument strength. It
does not include the place of the support. If an argument has one premise
that is supported twice by firm arguments, then it should be ranked lower than
an argument that has two firm supporters on different premises. Notice that
semantics So does not satisfy equivalence.

Claim 42. FEquivalence does not hold for semantics So.

Proof. Consider argumentation systems AS = (£, R, n, <), with £ = {a;, b;} and
R = {a1,a2 — az;aq — ay;as — ag; by, by — bs;by — b1;05 — b1}, Let AT =
(AS,K) be an argumentation theory, where K = KC,, UK, K,, = {a4,as5,bs,bs}
and K, = {a1,ag,b1,b2} This leads to the argumentation framework AF =
(A,S), with A = {Al, Ay, A3, By, Bs, Bg} and S = {(Al, As), (A2, A3), (B1, Bs),
(B2, B3)}, see Figure 18. Then, DegiQF(Ag) =1+#3= Degi%(Bg). So, S does
not satisfy equivalence. O

7.1.7. Coherence.
The intuition of the next postulate (coherence) is that the impact of support is
proportional to the initial strength of its target (Amgoud & Ben-Naim, 2016b).

Postulate 20 (Coherence). (Amgoud & Ben-Naim, 2016b) A semantics F sat-
isfies Coherence iff, for any argumentation framework AF = (A,w,S), Va,b € A
if i) w(a) > w(b), i) Deghn(b) < 1 and iii) S~(a) = S~ (b), then Degh(a) >
Deghi1-(b).

Coherence seems a reasonable argument for dialectical argument strength.
After all, when an argument a has more weaknesses, i.e., ordinary premises,
than argument b and exactly the same supporters, then some of the weaknesses
of a are not supported. So, the number of unsupported weaknesses of a is greater
than the number of unsupported weaknesses of b. Notice, semantics Sy satisfies
coherence.

Claim 43. Coherence holds for semantics So.

Proof. Consider arbitrary argumentation framework AF = (A,w,S). Then for
any a € A if w(a) > w(b), Deghn(b) < 1 and S~(a) = S~ (b). w(a) > w(b), so
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In > 0,|Um(a)| +n = |Um(b)|. Then,
1
14+ |{c € Um(a)|Vz € S~(a),Conc(z) # ¢V x is not firm}|
1
1+ [{c € Um(a)|Vx € S~ (a),Conc(z) # ¢V x is not firm}| +n
1
1+ [{c € Um(b)|Vx € S~(b), Conc(z) # ¢V x is not firm}|

= Deg(b)

Degiﬁ;(a) =

So, SS9 satisfies coherence. O

7.1.8. Strengthening.
The intuition of the next postulate (strengthening) is that supporters strengthen
the arguments they support.

Postulate 21 (Strengthening). (Amgoud & Ben-Naim, 2016b) A semantics F
satisfies strengthening iff, for any argumentation framework AF = (A ,w,S),
Va € A if i) w(a) < 1 and i) 3b € S~ (a), such that Degh.(b) > 0, then
Deglip(a) > w(a).

Strengthening is not a good postulate for dialectical strength. After all, only
support by firm arguments strengthens the acceptability for dialectical argument
strength. Notice that semantics So does not satisfy strengthening.

Claim 44. Strengthening does not hold for semantics So.

Proof. Consider argumentation systems AS = (£,R,n, <), with £ = {a;} and
R = {a1 — ag;as — ag}. Let AT = (AS,K) be an argumentation theory, where
K = K, = {a1,a2} This leads to the argumentation framework AF = (A,S),
with A = {4, B} and S = {(4, B)}, see Figure 19. Then, Deg;(B) = 1 =
w(B). So, Sy does not satisfy strengthening. O

a2 as
al a9
A B

FI1GURE 19. ASPIC+ argumentation as counterexample of strengthening.

7.1.9. Strengthening Soundness.

The intuition of the next postulate (strengthening soundness) is that arguments
only gain strength by supporting the argument with an acceptable one (Amgoud
& Ben-Naim, 2016b).
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Postulate 22 (Strengthening Soundness). (Amgoud & Ben-Naim, 2016b) A
semantics F' satisfies strengthening soundness iff, for any argumentation frame-
work AF = (A,w,S), Ya € A if Deglip(a) > w(a), then 3b € S~ (a), such that
Deghi-(b) > 0.

Claim 45. Strengthening soundness holds for semantics So.

Proof. We will use a proof by contraposition. Consider arbitrary argumentation
framework AF = (A,w,S). Notice, Vb € A, Degh(b) > 0. Furthermore, if
S~ (a) = 0, then Degh(a) = w(a). So, Sy satisfies strengthening soundness. [

7.1.10. Counting.
The intuition of the next postulate (counting) is that the more supporters an
argument has, the stronger the argument. (Amgoud & Ben-Naim, 2016b).

Postulate 23 (Counting). (Amgoud & Ben-Naim, 2016b) A semantics F sat-
isfies counting iff, for any argumentation framework AF = (A,w,S), Va,b € A
if i) w(a) = w(b) and i) S™(a) = S7(b) U {y}, with Deghp(y) > 0, then
Degh-(a) > Degh(b).

Counting is not a good postulate for dialectical strength, because supporters
with the same conclusion do not necessarily have an effect on the degree of
acceptability. Notice that semantics So does not satisfy counting.

Claim 46. Counting does not hold for semantics Ss.

Proof. Consider argumentation systems AS = (£,R,n, <), with £ = {a;} and
R = {a1 — ag;az,a3 — ag;a5 — as;as,ag — ay}. Let AT = (AS,K) be an
argumentation theory, where K = IC,, UK, ), = {a5} and K}, = {a1, az, a3, as}.
This leads to the argumentation framework AF = (A, S), with A = {A, B,C, D}
and S = {(A, B), (C, B), (C, D)}, see Figure 20. Then, w(B) = & = w(D) and
S=(B) = S~(D) U {A}, with Degf(4) = 1 > 0. Furthermore, Deg%(B) =
% = DegiQF(D). So, So does not satisfy counting. Notice, this is due to the fact

that argument A is not firm. [l
az a4 as az
ay az as as as ae
A B C D

FiGUrE 20. ASPIC+ argumentation as counterexample of counting.
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7.1.11. Reinforcement.

The intuition of the next postulate (reinforcement) is that if argument a has one
different supporter from argument b, which is more acceptable, then argument
a has a higher degree of acceptability.

Postulate 24 (Reinforcement). (Amgoud & Ben-Naim, 2016b) A semantics F
satisfies reinforcement iff, for any argumentation framework AF = (A ,w,S),
Va,b € A if i) w(a) = w(b), i) Deghp(b) < 1, i) S~ (a)\S~(b) = {z},
w) ST(b)\S(a) = {y} and Degl () > Deghp(y) > 0, then Degli (a) >
Deghi1-(b).

Reinforcement does not match the intuition that arguments only contribute as
a supporter when they are firm. The impact of arguments with different strength
could all be nothing. Therefore semantics Sy does not satisfy reinforcement.

Claim 47. Reinforcement does not hold for semantics So.

Proof. Consider argumentation systems AS = (£,R,n, <), with £ = {a;} and
R = {ai1,aa — as;a3 — ag;a5 — ag;a¢ — ay}. Let AT = (AS,K) be
an argumentation theory, where K = K, = {a1, a2, a3,a5,as}. This leads to
the argumentation framework AF = (A,S), with A = {A,B,C,D} and § =
{(A, B), (C, D)}, see Figure 21. Then, w(B) = & = w(D), Deg5%(B) = 1 < 1,
ST(B\S™(D) = {A}, ST(D)\S(B) = {A} and DegP%(B) = L > 1 =
DegffF(A) > 0. However, Deg%F(B) = Degiﬁ;(D). So, So does not satisfy

reinforcement. O
as Q4 ag az
ay az as as ae
A B C D

F1GURE 21. ASPIC+ argumentation as counterexample of reinforcement.

7.1.12. Boundedness.

The intuition of the next postulate (boundedness) is that an argument which has
a maximal degree keeps the same degree if one of its supporters is strengthened
(Amgoud & Ben-Naim, 2016b).

Postulate 25 (Boundedness). (Amgoud & Ben-Naim, 2016b) A semantics F
satisfies boundedness iff, for any argumentation framework AF = (A,w,S),

Va,b € A if i) w(a) = w(b), i) S™(a)\S™(b) = {x}, i) S™(O)\S (a) = {y},
Deghi () > Deghi-(y) and Degh(b) = 1, then Degh(a) = 1.

Claim 48. Boundedness holds for semantics Ss.
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Proof. Consider arbitrary argumentation framework AF = (A,w,S). Then for
any a,b € A suppose w(a) = w(b), S™(a)\S™(b) = {z}, ST(L)\S (a) = {y},
DegiQF(x) > DegiQF(y) and Degi}(b) = 1. Since, DegiQF(x) > DegffF(y),
Degiﬁ;(y) < 1. Then for AF = (A\{z,y}, S\{(u,v)[uSvA (u=2Vu=yVov=
x Vv = y)}, holds that DegffF(b) = 1. Since, w(a) = w(b), each ordinary
premise of b has at least one firm supporter and all supporters of b also support
ordinary premises of a it holds that DegffF(b) > Degi},(b) = 1. So, S satisfies
boundedness. O

7.1.13. Imperfection.

The next four postulates are optional postulates according to Amgoud & Ben-
Naim (2016b), unlike the previous postulates, these were mandatory. The in-
tuition of the first optional postulate (imperfection) is that plausible arguments
never have the maximal value.

Postulate 26 (Imperfection). (Amgoud € Ben-Naim, 2016b) A semantics F
satisfies imperfection iff, for any argumentation framework AF = (A ,w,S),
Va € A if w(a) < 1, then Deghp(a) < 1.

Imperfection is an optional postulate. For dialectical argument strength it is
not preferable that imperfection holds, since this postulate ignores the fact that
arguments where each ordinary premise is supported by a firm argument are
unquestionable. Notice that semantics So does not satisfy imperfection.

Claim 49. Imperfection does not hold for semantics Ss.

Proof. Consider argumentation systems AS = (£, R,n, <), with £ = {a;} and
R = {a1 — az;a2 — az}. Let AT = (AS,K) be an argumentation theory,
where K = K, U K,, with K, = {a1} and K, = {a2}. This leads to the
argumentation framework AF = (A,S), with A = {4,B} and § = {(4, B)},
see Figure 22. Then, w(B) = % <1 and Degfé;(B) = 1. So, S does not satisfy

imperfection. O
as as
al a9
A B

Ficure 22. ASPIC+ argumentation as counterexample of imperfection.

7.1.14. Cardinality Precedence.

The intuition of the next postulate (cardinality precedence) is that an argument
a is stronger than an argument b if the acceptable supporters of a are more
numerous than those of b (Amgoud & Ben-Naim, 2016b).
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Postulate 27 (Cardinality Precedence). (Amgoud & Ben-Naim, 2016b) A se-
mantics F satisfies cardinality precedence iff, for any argumentation frame-
work AF = (A,w,S), Ya,b € A if i) w(a) = w(b), i) Deghp(b) < 1, iii)
0 < l{z € S (1) Deghp(z) > 0} < |{y € S (@)|Deghp(y) > 0} and iv)
3z € S~ (b)Vy € S~ (a)Deghp(x) > Degh(y), then Deghn(a) > Deghp(b).

Cardinality precedence is an optional postulate. For dialectical argument
strength it is not preferable that cardinality precedence holds, since this postu-
late ignores the fact that arguments that are not firm, should not contribute.
Furthermore, it ignores the fact that a second supporter for the same premise
does not have an effect. Notice that semantics So does not satisfy cardinality
precedence.

Claim 50. Cardinality precedence does not hold for semantics Ss.

Proof. Consider argumentation systems AS = (£,R,n, <), with £ = {a;} and
R = {a1,a2 — asz;a3 — aq;as,a6 — as;ay — ag;ag — ag}. Let AT = (AS,K)
be an argumentation theory, where K = K, = {a1, a2, a3, as,a¢,ar,ag}. This
leads to the argumentation framework AF = (A,S), with A = {A,B,C,D,E}
and S = {(A,B),(C,B),(D,E)}, see Figure 23. Then, w(B) = 3 = w(E),
Degip(E) = 5 < 1,0 <1 = |{z € S (E)|Deglp(x) > 0} <2 = [{y €
S~ (B)|Deglip(y) > 0} and Iz € S~ (E), namely D, such that Vy € S~(B),

DegffF(D) = 1 > Degli-(y). However, DegiQF(B) =1= DegffF(E). So, Sy

does not satisfy cardinality precedence. O
as a4 as as ag
a1 a2 as as ag ay as
A B C D E

Ficure 23. ASPIC+ argumentation as counterexample of car-
dinality precedence.

7.1.15. Quality Precedence.

The intuition of the next postulate (quality precedence) is that an argument
a is stronger than an argument b, if some supporter of a is stronger than any
supporter of b (Amgoud & Ben-Naim, 2016b).

Postulate 28 (Quality Precedence). (Amgoud & Ben-Naim, 2016b) A seman-
tics F' satisfies quality precedence iff, for any argumentation framework AF =
(A, w,S), Va,b € A if i) w(a) = w(b), ii) Deghp(b) < 1, i) 0 < [{z €
S (0)|Deghp(z) > 0} < [{y € S~ (a)|Deghp(y) > 0}| and iv) 3z € S™(b)Vy €
S~ (a)Deghi-(x) > Degh-(y), then Degh(a) > Degh(b).
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Quality Precedence is an optional postulate. For dialectical argument strength
it is not preferable that quality precedence holds, since this postulate ignores the
fact that a second supporter for the same premise does not have an effect. Notice
that semantics Sy does not satisfy quality precedence.

Claim 51. Quality precedence does not hold for semantics So.

Proof. Consider argumentation framework AF = (A,w,S), with A= {A, B,C,
D,E} and § = {(A,B),(C,B),(D,E)} as in the previous proof and in Fig-
ure 23. Then, w(B) = 1 = w(E), DegfﬁF(B) =3<1,0<1=|zc¢€
S™(E)|Deglip(x) > 0} < 2= [{y € S (B)|Deglip(y) > 0}| and Iz € S~(E),
namely D, such that Vy € S*(B)DegffF(D) = % > Degl(y). However,
DegffF(B) = % = Deg%F(E). So, Sy does not satisfy quality precedence. O

7.1.16. Compensation.
The intuition of the next postulate (compensation) is that a small number of
strong supporters compensates a greater number of weak supporters (Amgoud
& Ben-Naim, 2016b).

Postulate 29 (Compensation). (Amgoud & Ben-Naim, 2016b) A semantics
F satisfies Compensation iff, for any argumentation framework AF = (A,w,S),
Va,b € Aifi) w(a) = w(b), i) |S~(a)| < |S~(b)|, iii) Vo € S~ (a)Degh () = d,
w) Yy € S™(b)Deghn(y) = d’ and iv) 0 < d' < d, then Deghp(a) = Deghi (D).

Compensation is an optional postulate. For dialectical argument strength it
is not preferable that compensation holds, since this postulate ignores the fact
that arguments that are not firm, should not contribute. Furthermore, it ignores
the fact that a second supporter for the same premise does not have an effect.
Notice that semantics S9 does not satisfy compensation.

Claim 52. Compensation does not hold for semantics So.

Proof. Consider argumentation systems AS = (£,R,n, <), with £ = {a;} and
R = {a1 — ag;as — as;aqs — ag;as — ag;a¢ — ay}. Let AT = (AS,K)
be an argumentation theory, where K = K,, U KCp, with K,, = {as} and K, =
{a1,a2,a4,a¢}. This leads to the argumentation framework AF = (A,S), with
A ={A B,C,D,E} and S = {(A,B),(C,B),(D,E)}, see Figure 24. Then,
w(B) =1 =w(E), |ST(E)=1<2=|S"(B)|, Vo € S~ (E)Degn(z) = d =1,
Yy € S™(B)Deg%(y) = d = 1. s0d > d > 0. However, Deg5%(B) = T#£1=
DegiQF(E). So, S does not satisfy compensation. O

7.2. New Postulates.

Additional to those postulates that are proposed by (Amgoud & Ben-Naim,
2016b), we will propose three postulates for dialectical argument strength. The
first one is strict monotony, with the intuition that if argument a has a smaller
initial strength than argument b and b has a strict superset of supporters, then
b should be ranked strictly higher than a.

Postulate 30 (Strict Monotony). A semantics F satisfies strict monotony iff,
for any argumentation framework AF = (A,w,S), Va,b € A if i) w(a) < w(b)
and ii) S~(a) C S~ (b), then Degh.(a) < Degh(b).
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a2 as a2 ae az
al a9 ay as Qg
A B C D E

FiGURE 24. ASPIC+ argumentation as counterexample of compensation.

The second postulate we would like to propose is independence as in Postulate
2, which does avoid the trouble with the &-operator. Although this postulate is
a postulate for argumentation frameworks with attacks, this postulate also fits
argumentation frameworks with only supports® and can be defined equivalently.

Postulate 31 (Independence). (Amgoud & Ben-Naim, 2013) A ranking-based
semantics S satisfies independence (Ind) iff for every argumentation framework

AF,VB € Com(AF), Va,b € Arg(B), (a,b) € S(A) iff (a,b) € S(B).

The third and last postulate we would like to propose is based on the following
intuition. When two arguments are equally weak, but one has more premises
that are supported by firm supporters, then that one has a higher degree of
acceptability.

Postulate 32 (Firm Counting). A semantics I satisfies firm counting iff, for
any argumentation framework AF = (A,w,S), Ya,b € A if i) w(a) = w(b) and
ii) |[{Conc(z)|x € S™(a) and x is firm}| > |[{Conc(x)|x € S™(b) and x is firm}|,
then Degl-(a) > Deghi (D).

Notice that semantics S9 satisfies all these three postulates.
Claim 53. Strict monotony holds for semantics Ss.

Proof. Consider arbitrary argumentation framework AF = (A,w,S). Then for
arbitrary a,b € Aifi) w(a) < w(b) and ii) S™(a) C S7(b). Since w(a) < w(b) and
S7(a) C S7(b), [{c € Um(a)|Vz € S (a),Conc(z) # ¢V x is not firm}| > [{c €
Um(b)|Vz € S (b),Conc(z) # ¢V z is not firm}|. So, Deghp(a) < Deghp(b).
So, So satisfies strict monotony. O

Claim 54. Independence holds for semantics So.

Proof. Let AF = (A,S) be an arbitrary argumentation framework, let B €
Com(AF) arbitrary. Then for every a € B holds that Deg% (a) = DengQF(a).
After all, [Um(a)| only depends on the number of ordinary premises. Further-
more, Vo € S™(a) holds that x € B. So, Sy satisfies independence. O

Claim 55. Firm counting holds for semantics Ss.

Sthis is because the weakly connected component is defined in terms of edges and not
specifically in terms of attacks or supports.
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Proof. Consider arbitrary argumentation framework AF = (A, w,S), an ar-
bitrary Va,b € A. If w(a) = w(b) and |{Conc(z)lx € S~ (a)x is firm}| >
\{Conc( )|z € S™(a)x is firm}|. Notice |[{Conc(z)|z € S~ (a)x is firm}| > |Um(a)| =

w(a) —1. So,
Deglipp(a) = !
w(a) — |{Conc(z)|x € S~(a)x is firm}|
1 S
> = Deg(b).
w(b — {Conc(z)|x € S—(b)x is firm}| ¢9.47(b)
So, S5 satisfies firm counting. 0

7.3. Existing Semantics.

In this section Top-based Semantics, Reward-based Semantics and Aggregation-
based Semantics will be compared with semantics S3. For each of the proofs
below we will use for any a as initial weight w(a) = m

Table 4 gives an overview of the postulates satisfied by respectively Top-
based Semantics, Reward-based Semantics, Aggregation-based Semantics and
our proposed semantics Ss.

A cross x means that the postulate is not satisfied, a checkmark v'means
that the postulate is satisfied, a questionmark means that it is uncertain if this
postulate is satisfied. Cells highlighted in grey are the results already proven
in (Amgoud & Ben-Naim, 2016a). Cells highlighted in red are proven below,
non-highlighted cells are proven in section and .

7.3.1. Top-based Semantics.

The first semantics we will evaluate is Top-based Semantics (Amgoud & Ben-
Naim, 2016b). This semantics is semantics based on quality precedence. Each
argument has an initial strength and the strongest supporter determines the
final strength. Top-based Semantics uses a multiple steps scoring function, but
is proven to be equivalent to Equation 4, for argumentation framework AF =
(A, w,S), for any a € A.

Degffi(a) = w(@) + (1~ w(a)) - max Degf{(e). (4)

Claim 56. Strict monotony does not hold for Top-based Semantics.

Proof. Consider argumentation system AS = (£,R,n,<), with £ = {a;} and
R = {a1,a2,a3 — aq;a5 — as;as,as — ar,ag — ag}. Let AT = (AS,K) be an
argumentation theory, where KC = IC,, UIC,, k), = {as, ag}, Kp = {a1,a2,a3,a6}.
This leads to the argumentation framework AF = (A, S), with A = {4, AQ, Ag, A4}
and S = {(A2, A1), (A2, A3), (A4, A3)}, see Figure 25. Then, w(4;) = 1 < 1 =
w(As3) and S™(A1) C S™(A3). However, Deglb (A1) = 1 = Degi%¥(A3). So,
Top-based Semantics does not satisfy strict monotony. O

Claim 57. Independence holds for Top-based Semantics.

Proof. Let AF = (A,w,S) be an arbitrary argumentation framework, let B €
Com(AF) arbitrary. Then for every a € B holds that DegL¥(a) = DegTbs (a).
After all, the strength of an argument only depends on the initial strength and on
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] Properties \ Ths \ Rbs \ Gbs \

n
I\

Anonymity v v v | X
Support Independence v v v |V
Non-Dilution v v v |V
Monotony v v v |V
Equivalence v v v | X
Dummy v v v |V
Minimality v v v |V
Strengthening v v v | X
Strengthening Soundness | v v v |V
Coherence v v v |V
Counting X v v | X
Boundedness v v v |V
Reinforcement X v v | X
Imperfection X v v | X
Cardinality Precedence X v X X
Quality Precedence v X X X
Compensation X X v | X
Strict Monotony X v v |V
Independence v v v |V
Firm Counting X X X |V

TABLE 4. Postulates satisfied by the support semantics in the
literature and the new support semantics.

as as ar ag
a as as as as ag ag
Ay Ay As Ay

FiGure 25. ASPIC+ argumentation as counterexample of strict monotony.

the degree of acceptability of its supporters. So, Top-based Semantics satisfies
independence. 0

Claim 58. Firm counting does not hold for Top-based Semantics.

Proof. Consider argumentation system AS = (£,R,n,<), with £ = {a;} and
R = {al,aQ — as;a4 — ai; a5 — GQ;bl,bQ — b3;b4 — bl;b5 — bl}. Let AT =
(AS,K) an be argumentation theory, where K = K, U Kp,, K,, = {a4,as5,bs,bs}
and K, = {a1,az,b1,b2}, as displayed in Figure 18. Then, Deg}b(A3) =1 =

Deg%(B3). So, Top-based Semantics does not satisfy firm counting. O
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7.3.2. Reward-based Semantics.

The second semantics we will evaluate is Reward-based Semantics (Amgoud &
Ben-Naim, 2016b). The intuition is that an argument receives a reward for each
of its supporters. Reward-based Semantics uses a multiple steps scoring function,
but is proven to be equivalent, for argumentation framework AF = (A,w,S),
for any a € A, to Equation 5, where n = |{b € S~ (a)|Degh(b) # 0}| and

Ypes—(a) Pegiy (0)
- )

n—1
Deglit(a) = wia) + (1~ w(a)) - (X 7 + oo); )
7=1

Claim 59. Strict monotony holds for Reward-based Semantics.

Proof. Let AF = (A,w,S) be an arbitrary argumentation framework and sup-
pose w(a ) < w(b) and S7(a) C S7(b). Then, ng < np and Y72 ! =+ e <

St 4 gk After all,
1 ma ] 1 my
? 2na o Z 2] an
j=1 j=1
Mg my ol 1
T o2na 9w 27
J=nNa
1 my 1
< - v _ -
- 2 2M QM
1 I
< e  oma = 0

Call z := Z”ﬁ‘l 57 T gt and y = Z?i}l 2% gne. Notice,  and y are always
smaller than 1. After all, Vn < oo,

n—1 1 m n—1 1
> 27 + 27 < ]Z:; 27 Z — < 1.
Then, Degh%s(a) < Deghbs(b). After all,
DegRbS( ) DegRbS(b)
= w(a)+ (1 -w(a) v —-wb) - (1-wd)- y
< w(a) —wd) +y- (wb) —w(a)) <0.

So, Reward-based Semantics satisfies strict monotony. O

.

Claim 60. Independence holds for Reward-based Semantics.

Proof. Let AF = (A,w,S) be an arbitrary argumentation framework, let B €
Com(AF) arbitrary. Then for every a € B holds that Degh’s(a) = DegRbs( ).
After all, the strength of an argument only depends on the initial strength and
on the degree of acceptability of its supporters. So, Reward-based Semantics
satisfies independence. O

Claim 61. Firm counting does not hold for Reward-based Semantics.
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Proof. Consider the argumentation theory from the proof claim 58, displayed in
Figure 18. Then, Degk%(As) = 2 = Deg%(Bs). So, Reward-based Semantics
does not satisfy firm counting. O

7.3.3. Aggregation-based Semantics.

The third semantics we will evaluate is Aggregation-based Semantics (Amgoud
& Ben-Naim, 2016b). The intuition is that a small number of strong supporters
can compensate a large number of weaker supporters. Aggregation-based Se-
mantics uses a multiple steps scoring function, but is proven to be equivalent,
for argumentation framework AF = (A,w,S), for any a € A, to Equation 6,

where k=3 e - () Deg§bs(b).

k

Deg§¥(a) = w(a) + (1 — w(a)) - Tk

(6)
Claim 62. Strict monotony holds for Aggregation-based Semantics.

Proof. Let AF = (A,w,S) be an arbitrary argumentation framework and sup-
pose w(a) < w(b) and S~ (a) C S7(b). Then, k, < ks, after all,

kq ky
ko < kp o kg + ke -y <kp+kog kp & < .
a b a T Ka b b+ Ka b ]-+ka 1+kb
Call x := 5 i‘;c and y := 5 ill}fb Notice, z and y are always smaller than 1.

Then, Deg§%(a) < Deg§bs(b). After all,

Deg(i(a) — Degie (b)

= w(a)+ (1 -w(a) z—-wb)—(1-wd)-y
< w(a) —wb) +y- (wb) —w(a)) <0.

So, Aggregation-based Semantics satisfies strict monotony. OJ
Claim 63. Independence holds for Aggregation-based Semantics.

Proof. Let AF = (A,w,S) be an arbitrary argumentation framework, let B €
Com(AF) arbitrary. Then for every a € B holds that Deg§"(a) = DengS (a).
After all, the strength of an argument only depends on the initial strength and on
the degree of acceptability of its supporters. So, Aggregation-based Semantics
satisfies independence. O

Claim 64. Firm counting does not hold for Aggregation-based Semantics.

Proof. Consider the argumentation theory from the proof claim 58, displayed
in Figure 18. Then, DengS(Ag) =&t = DengS(Bg). So, Aggregation-based
Semantics does not Satlsfy firm countlng O

Thus we see that Independence is satisfied by all these semantics, that strict
monotony is satisfied by Reward-based Semantics and Aggregation-based Se-
mantics and that none of these semantics satisfy Firm Counting. This advocates
that these semantics are not good semantics for dialectical argument strength.
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8. CONCLUSION AND DISCUSSION

In our work we investigated dialectical argument strength, with the purpose
to select and create postulates that should be satisfied by semantics describing
dialectical argument strength for structured argumentation in ASPIC+. To that
end, we investigated the intuitions behind dialectical argument strength for both
attacks and support and proposed two dialectical semantics. We evaluated these
semantics using postulates proposed by Amgoud & Ben-Naim (2013) and Am-
goud & Ben-Naim (2016a). Furthermore we created some postulates ourselves.
We also evaluated other semantics. The main question we answered is: How can
a weighing semantics for dialectical argument strength in structured approaches
to argumentation be developed and evaluated?

8.1. Answering The Research Questions.

Our work is divided into two parts, one about argumentation frameworks with
only attacks and one about argumentation frameworks with only supports. Our
work started, in section 4, by proposing the Grounded Dialectical Semantics, as
a semantics for dialectical argument strength. This semantics utilizes different
properties of ASPIC+ to account for attacking points and survived attacks. The
properties that are utilized are about the structure of the argument, to use the
place of an attack. Furthermore, we used the fact if an argument is strict or
defeasible, and firm or plausible. This answers research question R1. This was
followed, in section 5, by checking postulates that have been proposed in the
literature. Although our proposed semantics only satisfies the postulate inde-
pendence (of these postulates from the literature), this was not a problem. This
has not weakened the position of the Grounded Dialectical Semantics, since we
argued that many of these postulates are not suitable postulates for semantics
describing dialectical argument strength, since these postulates do not meet the
intuitions for dialectical argument strength. Grounded Dialectical Semantics
satisfies three postulates we proposed, which meet the intuitions of dialectical
argument strength. Table 3 provided an overview of the postulates satisfied
by respectively Max-based Semantics, Categoriser-based Semantics, Discussion-
based Semantics, Burden-based Semantics, grounded semantics and our pro-
posed semantics.

To answer research question R2, a semantics for dialectical argument strength
should satisfy postulates (In), (APS),(SP) and either (SAP) or (TSAP) and
should not satisfy the other postulates discussed in this paper. Thus we have
seen that these semantics from the literature are not suitable semantics for dialec-
tical argument strength. After all, these semantics violate dialectical principles
from the proposed postulates, but also satisfy postulates that follow intuitions
that are in contradiction with intuitions about dialectical argument strength. For
example, Max-based, Categoriser-based, Discussion-based and Burden-based Se-
mantics satisfy void precedence, which should not apply for dialectical argument
strength or the postulate abstraction, that holds for each of the reviewed seman-
tics from literature, but neglects the structure of arguments.

In the second part of our work, starting in section 6, we proposed a simple se-
mantics for dialectical argument strength in support argumentation frameworks.
This simplified to frameworks where arguments only can be supported, where the
supports were only premise supports. This utilizes ASPIC+, to see whether a
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support is a premise support. Furthermore, our semantics utilizes ASPIC+ prop-
erties to check whether an argument is firm or plausible. This answers research
question R3. Once again our semantics was evaluated by postulates proposed in
the literature. In section 7 we have seen that some of these postulates hold and
some of them do not hold. This is not a problem at all. Some of the postulates
simplified too much, some were poorly formulated and some were not suitable
postulates for semantics for dialectical argument strength. We proposed new
postulates that meet the intuitions for dialectical argument strength. Table 4
gives an overview of the postulates satisfied by respectively Top-based Seman-
tics, Reward-based Semantics, Aggregation-based Semantics and our proposed
semantics S9. The existing semantics satisfy postulates that should not hold
for dialectical argument strength. When the existing semantics do not satisfy
a postulate, that do not match the intuitions for dialectical argument strength,
for example equivalence and counting, then this is because they simplify. They
ignore the structure of arguments, which can be problematic. To answer re-
search question R4, a support semantics for dialectical argument strength should
satisfy postulates Non-dilution, Monotony, Dummy, Strengthening Soundness,
Coherence, Boundedness, Strict Monotony, Independence and Firm Counting
and should not satisfy anonymity, equivalence and counting. Other postulates
covered in this paper are not mandatory, but also do not violate the intuitions
of dialectical argument strength.

8.2. Further Research.

A subject that was not studied in this work is the dynamics of a discussion. What
we mean by that, is that adding information to the knowledge base might change
the status of arguments. Baumann (2012) presents a pseudo-metric which gives
a value to the number of permutations needed to enforce a specific set in the
extension. This could be promising for a dialectical semantics and might also
expose weaknesses of the Grounded Dialectical Semantics.

Although the semantics So meets the intuitions for dialectical argument strength,
it could be improved by taking weaknesses in inference rules into account. One
of the challenging factors is how to value weaknesses in inference rules relative
to weaknesses in premises.

Another logical following step would be to combine both proposed semantics
into a semantics for bipolar argumentation frameworks. In doing so, one should
be careful, because we made the assumption that in the weighted support argu-
mentation framework only firm arguments contribute. However, when combined
with attacks, it is not so clear that this is a good assumption.

In this work we came up with some postulates for dialectical argument strength,
but there was no systematic way of creating postulates. Therefore, there might
be other postulates that should hold for dialectical argument strength. For
example, another type of independence one could consider, is formula indepen-
dence, where two arguments should be independent if they have no well-formed
formulas in common.

We briefly discussed different types of argument strength, logical, dialectical
and rhetorical argument strength. There are no semantics specifically for rhetor-
ical argument strength. It would be interesting to have a set of postulates to
evaluate if an semantics is a proper semantics for each type of argument strength.
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