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Abstract

In this thesis, we give a formalized proof of correctness of both a ubiquitous
forward-mode and a continuation-based pseudo-reverse-mode automatic differentia-
tion algorithm. We repeatedly do this using logical relations arguments accompanied
by simple but effective language representations and denotational semantics. We
also discuss and prove sound various program transformations, which in the context
of efficient code generation for automatic differentiation, let forward-mode approach
the performance of reverse-mode algorithms. Finally, we make preliminary steps
towards a formalized proof of correctness of a real combinator-based reverse-mode
algorithm.
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1 Introduction
Automatic differentiation is a well-known technique within the scientific community
with diverse applications such as Bayesian inference and solving systems of non-linear
algebraic equations. It has received increased interest due to recent developments in
machine learning research, where solving optimization problems is the primary goal.
One of the algorithms involved in this area of research is known as backpropagation.
Backpropagation directly corresponds to reverse-mode automatic differentiation, which,
in most cases, is the most efficient method to compute the derivatives of a function,
critical in optimization problems. However, programming in an environment that allows
for automatic differentiation can be limiting.

Frameworks such as Tangent1 or autograd2 are define-by-run algorithms, whose
main tactic is to build up the derivative calculation dynamically during runtime. This
process can restrict which high-level optimizations one can apply to generated code.
Support for higher-order derivatives is also limited.

Programming language research has a rich history, with many well-known both
high and low-level optimization techniques such as partial evaluation and deforestation.
Exposing these optimization techniques to the world of automatic differentiation can
be very fruitful as these calculations are costly and often require significant computing
power to run. Through other concepts such as higher-order functions and type systems,
we would also get additional benefits such as code-reusability and correctness.

While much research has already been done to integrate programming language theory
with automatic differentiation, formalizations of these techniques are absent. In this
thesis, we aim to formalize an extensible correctness proofs of various implementations of
automatic differentiation on a simply-typed lambda calculus in the Coq proof assistant,
opening up further possibilities for formally proving the correctness of more complex
language features in the future. Our formalization is based on a recent proof by Huot,
Staton, and Vákár [49]. They proved, using a denotational model of diffeological spaces,
that their forward-mode emulating macro is correct when applied to a simply-typed
lambda calculus with products, co-products and inductive types.

With this thesis we make the following core contributions:

• Formalize the proofs of both the forward-mode and continuation-based automatic
differentiation algorithms specified by Huot, Staton, and Vákár [49] in Coq.

• Prove the semantic correctness of various useful compile-time optimizations tech-
niques in the context of generating performant code for automatic differentiation.

• Extend the proofs with the array types and compile-time optimization rules by
Shaikhha et al.[41].

• Analyze both the requirements of and issues involved with giving a formal proof
of correctness for the combinator-based reverse-mode automatic differentiation
algorithm by Vákár[51].

Section 2 includes a background section explaining many of the topics and techniques
used in this thesis. The formalization of the ubiquitous forward-mode automatic differen-
tiation is given in section 3, starting from a base simply-typed lambda calculus extended
with product types and incrementally adding new types and language constructs. Sec-
tions 4 and 5 give formalizations of optimization avenues through, respectively, program
1 https://github.com/google/tangent
2 https://github.com/HIPS/autograd 4
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transformations and a continuation-based automatic differentiation algorithms. Finally,
section 6 gives our attempt at a formal proof of the combinator-based reverse-mode
automatic differentiation algorithm. The proofs resulting from the development of this
work is available in an online repository[48].

As a notational convention, we will use specialized notation in the definitions them-
selves. Coq normally requires that pretty printed notations be defined separately from
the definitions they reference.

2 Background

2.1 Automatic differentiation

Automatic differentiation (AD) has a long and rich history, where its driving motivation
is to efficiently calculate the derivatives of higher-dimensional functions in a manner that
is both correct and efficient in terms of space and time[33]. There are several different
methods of implementing AD algorithms, such as source-code transformations or operator
overloading. These algorithms usually transform any program which implements some
function to one that calculates its derivative.

There are two main variants of AD, namely forward-mode and reverse-mode AD. In
forward-mode AD, we annotate every term in the function trace with their corresponding
derivative. These are also known as, respectively, the primal and tangent traces. So
calculating the partial derivatives of sub-terms is structural with respect to normal
calculations.

The core approach to forward-mode AD can be explained by what is mathematically
known as dual numbers, as these are, in essence, what we are calculating[33]. Dual
numbers are numbers in the form of

x + x′ε

where x, x′ ∈ R and ε is a formal construction, such that ε2 = 0 and ε 6= 0. Using
the standard ring axioms of addition and multiplication, we can uniquely evaluate any
polynomial containing ε into the form x + x′ε where neither x nor x′ contains ε. Notably,
both the primal and tangent values are tracked in this representation as x and x′. As an
example, we can see that this is true for both addition and multiplication:

(x + x′ε) + (y + y′ε) = (x + y) + (x′ + y′)ε
(x + x′ε)(y + y′ε) = (xy) + (xy′ + yx′)ε

Using the following scheme for function application,

f(x + x′ε) = f(x) + f ′(x)x′ε

we can also see that it follows the chain rule for function composition.

f(g(x + x′ε)) = f(g(x) + g′(x)x′ε))
= f(g(x)) + f ′(g(x))g′(x)x′ε

Using this, we can essentially calculate the derivative of any differentiable function by
interpreting any non-dual number x as its dual number counterpart. Respectively, we

5
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Figure 1: Computational graph of f(x, y) = x2 + (x− y)

Primal trace Tangent trace
v−1 = x = 2 v′

−1 = x′ = 1
v0 = y = 1 v′

0 = y′ = 0
v1 = v2

−1 = 4 v′
1 = 2 ∗ v−1 = 4

v2 = v−1 − v0 = 1 v′
2 = v′

−1 − v′
0 = 1

v3 = v1 + v2 = 5 v′
3 = v′

1 + v′
2 = 5

f = v3 = 5 f ′ = v′
3 = 5

Table 1: Primal and tangent traces of f(x, y) = x2 + (x− y)

interpret constant values as x + 0ε, while input variables we take the partial derivative
of, are interpreted as x + 1ε.

To give a more elaborate example of how forward-mode AD works graphically, take
the function f(x, y) = x2 + (x − y) as an example. The dependencies between the
terms and operations of the function is visible in the computational graph in fig. 1. The
corresponding traces are filled in table 1 for the input values x = 2, y = 1. We can
calculate the partial derivative δf

δx at this point by setting x′ = 1 and y′ = 0. Note that
the calculation of the traces is structural, which means that when we calculate the primal
value at a specific point, we can calculate the corresponding tangent value at that same
point.

Reverse-mode automatic differentiation takes a drastically different approach. It
starts by annotating one of the possibly many output variables ∂y

∂y = 1 and working in
the reverse direction, annotating each intermediate variable vi with their adjoint

v′
i = δyi

δvi

To accomplish this, we require two separate passes. Like the forward-mode variant,
a primal trace is needed. This first pass acts to determine the intermediate variables
and their respective dependencies. The second pass in the algorithm calculates the
partial-derivatives by working backwards from the output using the adjoints, also called
the adjoint trace. The adjoints of multiple usages of the same variables, also called
fan-out, are combined using addition in the adjoint trace.

The optimal choice between the automatic differentiation variants is heavily dependent
on the function under consideration. Preference is given for forward-mode AD when the
number of output variables exceeds the number of input variables, as it has to be rerun
for each partial derivative of the function. On the other hand, reverse-mode AD scales
with the number of output variables as it works backwards from each one. For example,
much machine learning research boils down to optimizing an objective function with just

6
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a single output variable, but many input variables. As such, reverse-mode AD is the
optimal choice.

Implementing reverse-mode AD is more problematic than the straightforward forward-
mode AD algorithms. Correctly creating the reverse pass such that it handles both fan-out
and zeroing in the reverse pass is complicated. As such, many frameworks targeting
non-theoretical applications such as deep learning focus on imperative languages, which
eases the process due to the additional concept of state.

There are two main styles of implementing reverse-mode AD, namely define-then-run
and define-by-run. Define-then-run attempts to create the static computational graph
during the compilation process that transforms the program to one that calculates
the derivative of the function the program describes. One significant benefit to this
approach is the added opportunity to apply optimization steps in the compilation process.
Define-then-run frameworks do, however, have the restriction that programs defined
within these frameworks are limited in their usage of intricate control flow as is apparent
in the expressive power of TensorFlow3 .

This restriction is lifted in the define-by-run style, which builds the computation
graph during runtime. As such, conditionals and loops can now be used freely in
the framework. On the other hand, as the computation graph is constructed during
runtime, define-by-run frameworks can be slower due to the missing opportunities to
apply optimizations. Frameworks using this style are Chainer4 and PyTorch5

2.2 Denotational semantics

Denotational semantics enables reasoning about programs using formal mathematics.
It also functions as a hotbed for new and innovative language designs and algorithms.
The most well-known example is the domain theory model given by Dana Scott and
Christopher Strachey[1] for lambda calculi. To be able to formalize non-termination
and partiality, they thought to use concepts such as partial orderings and least fixed
points[46]. In this model, programs are regularly interpreted as partial functions, and
recursive computations as taking the fixpoint of such functions. Non-termination, on the
other hand, is formalized as a value ⊥ that is lower in the ordering relation than any
other element.

Automatic differentiation introduces a challenge in constructing a denotational
semantics as the notion of differentiability needs to be included. If the language under
consideration were to be restricted to real-typed terms, Cartesian spaces would have
been sufficient as any well-typed term x1 : R, . . . , xn : R ` t : R could be interpreted as
the corresponding smooth function JtK : Rn →R. Note that we use R as the syntactic
type for real numbers, while R is its denotational counterpart. Using Cartesian spaces,
however, does not work when function types are added as their denotational equivalent,
function spaces, are not supported[49]. The original pen and paper proof of automatic
differentiation this thesis is based on by Huot, Staton and Vákár[49], remedies this issue
by using diffeological spaces as the underlying mathematical model.

For the purpose of this thesis, however, we were able to avoid using diffeological spaces
by directly encoding the property of differentiability in the logical relation itself. We
were also able to avoid domain theoretical models such as ω-cpos by excluding language
constructs such as recursion and iteration where non-termination and partiality come
into play. As a part of its type system, Coq contains a set-theoretical model available
under the sort Set in its type system, which is satisfactory as the denotational semantics
3 https://www.tensorflow.org/
4 https://chainer.org/
5 https://pytorch.org/
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elem n Γ = τ

Γ ` var n : τ
TVar

(σ, Γ) ` t : τ

Γ ` t : σ → τ
TAbs

Γ ` t1 : σ → τ Γ ` t2 : σ

Γ ` t1 t2 : τ
TApp

Figure 2: Type-inferrence rules for a simply-typed lambda calculus using De-Bruijn
indices

for our language.
Because we use real numbers as the ground type in our language, we also needed an

encoding of the real numbers in Coq. While support for real numbers in the standard
library in Coq has improved in recent times from one based on an axiomatic definition to
one involving Cauchy sequences6 , it is still insufficient for our purposes. We also need
a notion of differentiability which we will use to among others, phrase correctness of
our automatic differentiation macros. Instead of attempting to encode this by hand, we
opted for the more comprehensive library Coquelicot[34], which contains many useful
user-friendly definitions for doing calculus.

2.3 Coq

Coq is a proof assistant based on the calculus of constructions type theory created by
Thierry Coquand and Gérard Huet[3]. In the past 30 years since it has been released,
research has contributed to extending the proof assistant with additional features such as
inductive and co-inductive data types[4], dependent pattern matching[28] and advanced
modular constructions for organizing large mathematical proofs[25][31].

The core of this type theory is based on constructive logic and so many of the laws
known in classical logic are not provable. An example includes the law of the excluded
middle, ∀A, A ∨ ¬A. In most cases they can, however, be safely added to Coq without
making its logic inconsistent. Many of these axioms are readily available in the standard
library. Due to its usefulness in proving propositions over functions, we will make heavy
use of the functional extensionality axiom in Coq, which states that functions are equal
if they are extensionally equivalent, (∀x, f x = g x)→ f = g.

2.3.1 Language representation

When choosing a representation for a simply-typed lambda calculus, there are two main
possibilities[44]. The arguably simpler variant, known as the extrinsic representation,
is traditionally the one introduced to new students learning Coq. In the extrinsic
representation, the terms themselves are untyped and typing judgments are defined
separately as relations between the terms and types included in the language. A basic
example of working with this is given by Pierce et al.[37]. This approach, however,
requires additional lemmas and machinery to be implemented and proved to be able to
work with both substitutions and contexts as these are defined separately. As an example,
the preservation property, which states that reduction does not change the type of a term,

6 https://coq.inria.fr/library/Coq.Reals.ConstructiveCauchyReals.html 8
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needs to be proven explicitly. The other approach, also called an intrinsic representation,
makes use of just a single well-typed definition. Ill-typed terms are made impossible by
the type checker, and consequently, the preservation property we had to explicitly prove
in the extrinsic representation, we now get for free. This representation, while beneficial
in the proof load, however, complicates much of the standard machinery involved in
programming language theory. One example is how one would define operations such as
substitutions or weakening.

Nevertheless, even when choosing an intrinsic representation, the problem of variable
binding persists. Much meta-theoretical research has been done on possible approaches to
this problem, each with their advantages and disadvantages. The POPLmark challenge
gives a comprehensive overview of each of the possibilities in various proof assistants[16].
One example of such an approach is the nominal representation where every variable is
named. Code snippet 1 gives an example of how one would define a simply-typed lambda
calculus in such a representation. While this does follow the standard format used in
regular mathematics, problems such as alpha-conversion and capture-avoidance appear.

Inductive ty : Type :=

| unit : ty

| ⇒ : ty → ty → ty.

Inductive tm : Type :=

| var : string → tm

| abs : string → ty → tm → tm

| app : tm → tm → tm.

Code snippet 1: Simply typed λ-calculus using an nominal extrinsic representation.

The approach used in the rest of this thesis is an extension of the De-Bruijn repre-
sentation, which numbers variables relative to the binding lambda term. A significant
benefit, and major reason for its heavy usage as an internal representation in compilers,
is that we can avoid the problems of capture avoidance and alpha equivalence. As an
alternative, instead of using numbers to represent the distance, indices within the typing
context can be used to ensure that a variable is always well-typed and well-scoped.
While the idea of using type indexed terms has been both described and used by many
authors[11][14][17], the specific formulation used in this thesis using separate substitution
and renaming operations was fleshed out in Coq by Nick Benton et al.[29], and was also
used as one of the examples in the second POPLmark challenge which deals with logical
relations[39]. While this does avoid the problems present in the nominal representation,
it, unfortunately, does have some problems of its own. Variable substitutions now have
to be defined using two separate renaming and substitution operations, as we have to
be explicit in the weakening of typing contexts of terms. Renaming is formulated as
extending the typing context of variables, while substitution swaps the variables for
terms. Due to using indices from the context as variables, some lifting boilerplate is
required to manipulate contexts.

9
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Inductive ∈ : Type :=

| Top : ∀ Γ τ, τ ∈ (τ::Γ)
| Pop : ∀ Γ τ σ, τ ∈ Γ → τ ∈ (σ::Γ).

Inductive tm Γ τ : Type :=

| var : ∀ Γ τ, τ ∈ Γ → tm Γ τ
| abs : ∀ Γ τ σ, tm (σ::Γ) τ → tm Γ (σ ⇒ τ)
| app : ∀ Γ τ σ, tm Γ (σ ⇒ τ) → tm Γ σ → tm Γ τ.

Code snippet 2: Basis of a simply-typed λ-calculus using the strongly typed intrinsic
formulation.

2.3.2 Dependently-typed programming in Coq

In Coq, one can normally write function definitions using either case-analysis as is done
in other functional languages, or using Coq’s tactics language. Using the standard
case-analysis functionality can cause the code to be complicated and verbose, even
more so when proof terms are present in the function signature. This complexity has
historically been caused by the poor support in Coq for dependent pattern matching.
Using the return keyword, one can vary the result type of a match expression. But due
to requirement Coq used to have that case expressions be syntactically total, this could
be very difficult to work with. One other possibility would be to write the function as a
relation between its input and output. This approach also has its limitations as you then
lose computability as Coq treats these definitions opaquely. In this case, the standard
simpl tactic which invokes the reduction mechanism is not able to reduce instances of
the term. Instead the user is required to write many more proofs to be able to work with
such definitions.

As an example, we will work through defining a length indexed list and a corresponding
head function limited to lists of length at least one in code snippet 3. Using the Coq
keyword return, it is possible to let the return type of a match expressions depend on
the result of one of the type arguments. This makes it possible to define an auxiliary
function which, while total on the length of the list, has an incorrect return type. We
can then use this auxiliary function in the actual head function by specifying that the
list has length at least one. It should be noted that more recent versions of Coq do not
require that case expressions be syntactically total, so specifying that the input list has
a length of at least zero is enough to eliminate the requirement for the zero-case.

Mathieu Sozeau introduces an extension to Coq via a new keyword Program which
allows the use of case-analysis in more complex definitions[19][20]. To be more specific,
it allows definitions to be specified separately from their accompanying proofs, possibly
filling them in automatically if possible. While this does improve on the previous situation,
using the definitions in proofs can often be unwieldy due to the amount of boilerplate
introduced. This makes debugging error messages even harder than it already is in a
proof assistant. This approach was used by Benton in his formulation of strongly typed
terms.

Sozeau further improves on this introducing a method for user-friendlier dependently-
typed pattern matching in Coq in the form of the Equations library[28][43]. This

10
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Inductive ilist : Type → nat → Type :=

| nil : ∀ A, ilist A 0

| cons : ∀ A n, A → ilist A n → ilist A (S n)

Definition hd' {A} n (ls : ilist A n) :=

match ls in (ilist A n) return

(match n with

| O => unit

| S _ => A end) with

| nil => tt

| cons h _ => h

end.

Definition hd {A} n (ls : ilist A (S n)) : A := hd' n ls.

Code snippet 3: Definition of a length indexed list and hd using the return keyword,
adapted from Certified Programming with Dependent Types[30].

Equations hd {A n} (ls : ilist A n) (pf : n <> 0) : A :=

hd nil pf with pf eq_refl := {};

hd (cons h n) _ := h.

Code snippet 4: Definition of hd using Equations

introduces Agda-like dependent pattern matching with with-clauses. It does this by
using a notion called coverings, where a covering is a set of equations such that the
pattern matchings of the type signature are exhaustive. There are two main ways to
integrate this in a dependently typed environment, externally where it is integrated as
high-level constructs in the pattern matching core as Agda does it, or internally by using
the existing type theory and finding witnesses of the covering to prove the definition
correct, which is the approach used by Sozeau. Due to the intrinsic typeful representation
this paper uses, much of this was invaluable when defining the substitution operators as
the regular type checker in Coq often had difficulty unifying dependently typed terms in
certain cases.

2.4 Logical relations

Logical relations arguments are a proof technique often employed when proving pro-
gramming language properties of statically typed languages[42]. There are two main
ways they are used, namely as unary and binary relations. Unary logical relations, also
known as logical predicates, are predicates over single terms and are typically used
to prove language characteristics such as type safety or strong normalization. Binary
logical relations on the other hand are used to prove program equivalences, usually in
the context of denotational semantics as we will do. There have been many variations
on the versatile technique from syntactic step-indexed relations which have been used to

11
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Equations SN {Γ} τ (t : tm Γ τ): Prop :=

SN unit t := halts t;

SN (τ ⇒ σ) t := halts t ∧
(∀ (s : tm Γ τ), SN τ s → SN σ (app Γ σ τ t s));

Code snippet 5: Example of a logical predicate used in a strong normalization proof in
the strongly-typed intrinsic representation

reason about recursive types and general references[18], to open relations which enable
working with terms of non-ground type[47][49]. Logical relations in essence are relations
between terms defined by induction on their types. A logical relations proof consists of 2
main steps. The first states the terms for which the property is expected to hold are
in the relation, while the second states that the property of interest follows from the
relation. The second step is easier to prove as it usually follows from the definition of
the relation. The first on the other hand, will often require proving a generalized variant,
called the fundamental property of the logical relation. In most cases this requires that
the relation is correct with respect to applying substitutions.

A well-known logical relations proof is the proof of strong normalization of well-typed
terms, which states that all terms eventually terminate. An example of a logical relation
used in such a proof using the intrinsic strongly-typed formulation is given in code
snippet 5. Noteworthy is the case for function types, where one needs to prove that
applying a function preserves the strong normalization property. If one were to attempt
the proof of strong normalization without using logical relations, the proof would get
stuck in the cases dealing with function types. More specifically when applying a function
term to an argument term which terminates, the induction hypothesis is not strong
enough to prove that substituting the argument into the body of the abstraction results
in a terminating term.

2.5 Related work

AD Formalizations. While there exists proofs of forward-mode AD algorithms[49][47][38]
and many more implementations[41][40] in a functional setting, there have been relative
few attempts at formalized proofs in proof assistant. In 2002, Mayero gave a formalized
correctness proof of an AD framework implemented in Fortran in Coq[13]. Their minimal
core language included assignments and sequences as language constructs, and excluded
all forms of non-sequential control flow. They also restricted the terms in their language
to first-order types.

Programming Language Metatheory. Much meta-theoretical research has been done
on encoding programming languages in proof assistants[16]. Examples include the weak
higher-order abstract syntax approach worked out in Coq by Despeyroux et al.[8], which
shallowly embeds abstractions as functions abs : (var → tm) → tm. The parametric
HOAS variant by Chlipala[21], is an interesting polymorphic generalization of this
technique. PHOAS, like the strongly-typed terms representation used in this thesis,
avoids the problems of alpha-conversion and capture avoidance while still being somewhat
user-friendly. The locally nameless approach introduced by many various authors[9][7][15]
takes a hybrid approach and preserves names for free variables while using the De-Bruijn

12
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representation for bound variables.
With regards to denotational semantics, both Benton et al.[26] and Dockins[32]

present domain-theoretical libraries in Coq. Proof-wise, Huot, Staton and Vákár use
diffeological spaces in their pen-and-paper correctness proof of automatic differentiation
on a simply-typed lambda calculus. Contrastingly, Abadi and Plotkin use the more
conventional ω-cpos to be able to support partiality[38].

Forward-Mode AD. The earliest found description of an approach for forward-mode
AD on functional languages is by Karczmarczuk[10], on first-order terms. Siskind and
Pearlmutter presented a nestable variant of the forward-mode AD algorithm using
the dual numbers representation[23]. This same algorithm is used in the F# library,
DiffSharp[33]. A nearly identical variation, implemented in Haskell, is given by Elliott[27].
This uncontroversial implementation of forward-mode AD is also discussed in the survey
by Baydin et al.[33].

Reverse-Mode AD. There are many interpretations of reverse-mode AD on functional
languages. Most well-known is the one by Pearlmutter and Siskind[24], which is one of
the first attempts at reverse-mode AD in a functional context and introduces the practice
of using various first-class operations to calculate derivatives. These operations very
often involve maintaining some notion of state to keep track of adjoints. The specific
approach by Pearlmutter and Siskind uses non-local program transformations as their
primitive construct of choice. In the trend of define-by-run algorithms, whose main
strategy involves building up the reverse pass of the algorithm during runtime, their
primitive

←−
J uses reflection to perform reverse-mode AD at runtime.

Define-by-run algorithms, however, lose much of the optimization opportunities
provided by the explicit compilation process involved with programming languages. As
an improvement on the approach by Pearlmutter and Siskind, Wang et al.[45] negate some
of the issues associated with define-by-run algorithms by using multi-stage programming
to reclaim some optimization opportunities. Their algorithm makes heavy usage of both
delimited continuations as well as state by way of references.

Abadi and Plotkin[38] also make use of reverse-mode AD primitives, but do so in
the context of a define-by-run trace-based algorithm. Their reverse-mode primitive is
given special treatment in their operational semantics, essentially symbolically evaluating
terms into so-called trace terms, which are devoid of control-flow constructs.

One significant issue with defining define-then-run reverse-mode algorithms is how to
treat many of the various control-flow constructs such as conditionals, loops or higher-
order types. Elliott[36] gave an interesting principled approach to reverse-mode AD from
the perspective of category theory by formulating the algorithm as a functor. Their
method, though, is still limited to first-order programs. An extension to higher-order
types by Vákár[51] is further discussed in section 6.

3 Formalizing Forward-Mode AD
We will explain our formalization of the forward-mode automatic differentiation macro
in the following sections. The formal proof will start from a base simply-typed lambda
calculus extended with product types and incrementally add both sum and array types.
Also included in the final language are natural number types with a primitive recursion
principle. Many of the theorems and lemmas introduced in section 3.1 do not change, as
they are independent of the specific types and terms included in the language.

13
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elem n Γ = τ

Γ ` var n : τ
TVar

(σ, Γ) ` t : τ

Γ ` abs t : σ → τ
TAbs

Γ ` t1 : σ → τ Γ ` t2 : σ

Γ ` app t1 t2 : τ
TApp

Γ ` t1 : τ Γ ` t2 : σ

Γ ` tuple t1 t2 : τ × σ
TTuple

Γ ` t : τ × σ

Γ ` first t : τ
TFst

Γ ` t : τ × σ

Γ ` second t : σ
TSnd

r ∈ R
Γ ` rval r : R

TRVal

Γ ` r1 : R Γ ` r2 : R
Γ ` add r1 r2 : R

TAdd
Γ ` r1 : R Γ ` r2 : R

Γ ` mul r1 r2 : R
TMull

Figure 3: Type-inference rules for the base simply-typed lambda calculus

3.1 Simply Typed Lambda Calculus

As mentioned in the background section 2.3.1, we will make use of De-Bruijn indices
in an intrinsic representation to formulate our language. We include both addition and
multiplication as example operations on the real numbers, but the proofs are easily
extensible to other primitive operations. Our base language consists of the classic
simply-typed lambda calculus with product types and real numbers.

Both the language constructs and the typing rules for this language are common
for a simply-typed lambda calculus. These are shown as typing judgments in fig. 3. As
expected, we include variables, applications, and abstractions in the language using,
respectively, the var, app, and abs terms. We work with projection products, whose
elimination rules are encoded in the first and second terms. The tuple term is used
to represent the introduction rule. For real numbers, rval is used to introduce real
numbered constants and add and mul will be used to respectively encode addition and
multiplication. The included operations are chosen for their simplicity, but the proof is
able to accommodate any operation so long as it is total and differentiable.

These can be translated into Coq definitions in a reasonably straightforward manner,
with each case keeping track of both how the typing context and types change. In the
var case, we need some way to determine what type the variable is referencing. Like
many others previously[29][6], instead of using indices into the list accompanied by a
proof that the index does not exceed the length of the list, we make use of an inductively
defined type evidence to type our variables as shown in code snippet 2. The cases for
app and abs are as expected, where variables in the body of abstractions can reference
their respective arguments.

Note that in the original proof by Huot, Staton, and Vákár [49], they made use of
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Inductive tm (Γ : Ctx) : ty → Type :=

...

(* Binary projection products *)

| tuple : forall τ σ,
tm Γ τ →
tm Γ σ →
tm Γ (τ × σ)

| first : forall τ σ, tm Γ (τ × σ) → tm Γ τ
| second : forall τ σ, tm Γ (τ × σ) → tm Γ σ
(* Operations on reals *)

| rval : forall r, tm Γ R

| add : tm Γ R → tm Γ R → tm Γ R

| mul : tm Γ R → tm Γ R → tm Γ R

Code snippet 6: Terms in our language related to product and real types.

−→
D (R) = R× R

−→
D (τ × σ) = −→D (τ)×−→D (σ)
−→
D (τ ⇒ σ) = −→D (τ)⇒ −→D (σ)

−→
D (rval n) = tuple (rval n) (rval 0)
−→
D (add n m) = tuple (add n m) (add n′ m′)
−→
D (mul n m) = tuple (mul n m)

(add (mul n′ m) (mul m′ n)))

Figure 4: Macro on base simply-typed lambda calculus

n-ary products accompanied by pattern matching expressions. We opted to implement
binary projection products, as these are conceptually simpler while still retaining much
of the same functionality expected of product types. The code for implemented products
and included operations on real numbers is given in code snippet 6.

We use the same inductively defined macro on types and terms used by many previous
authors to implement the forward-mode automatic differentiation macro[10][23][41]. The
forward-mode macro,

−→
D , keeps track of both primal and tangent traces using tuples as

respectively its first and second elements. In most cases, the macro simply preserves the
structure of the language. The cases for real numbers such as addition and multiplication
are the exception. Here, the element encoding the tangent trace needs to contain the
proper syntactic translation of the derivative of the operation.

Due to the intrinsic nature of our language representation, the macro also needs to be
applied to both the types and typing context to ensure that the terms remain well-typed.
In other words, for any well-typed term Γ ` t : τ , applying the forward-mode macro
results in a well-typed term in the macro-expanded context,

−→
D (Γ) ` −→D (t) : −→D (τ).

Applying the macro to a term gives the syntactic counterparts of both their primal
and tangent denotations as a tuple. These terms can be accessed with projections
to implement the various derivative implementations of the operations on real terms
included in the language. Note that applying the macro to the case for variables does
nothing as the macro is also applied to the typing context, so variables implicitly already
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JRK = R
Jτ × σK = JτK ? JσK

Jτ ⇒ σK = JτK→ JσK

JTopK = hd

JPop vK = JvK ◦ tl

Jvar vK = λx.lookup JvK x

Japp t1 t2K = λx.(Jt1K(x))(Jt2K(x))
Jabs tK = λx y.JtK(y :: x)

Jadd t1 t2K = λx.Jt1K(x) + Jt2K(x)
Jmul t1 t2K = λx.Jt1K(x) ∗ Jt2K(x)

Jtuple t1 t2K = λx.(Jt1K(x), Jt2K(x))
Jfirst tK = λx.fst(JtK(x))

Jsecond tK = λx.snd(JtK(x))

fst = λx.let (x, y) := JtK(x) in x

snd = λx.let (x, y) := JtK(x) in y

Figure 5: Denotations of the base simply-typed lambda calculus

reference macro-applied terms. The macro on types as well as real numbered values is
given in fig. 4.

As we restrict our language to total constructions and excluding concepts such as
general recursion and iteration, it suffices to give our language a set-theoretic denotational
semantics. In this case the types R,⇒,× directly correspond to their Coq equivalent,
respectively R,→, ?. Well-typed terms of type τ , given typing context Γ, will denotate
to functions JΓK→ JτK.

Denotating the terms in our language now corresponds to finding the appropriate
inhabitants in the denotated types. As typing contexts, Γ, are represented by lists of
types. The appropriate way to denotate these would be to map the denotation function
over the list. The resulting heterogeneous list contains the denotations of each type in
the list in the correct order. The specific implementation of heterogeneous lists used in
the proof corresponds to the one given by Adam Chlipala[30]. In this implementation,
heterogeneous lists consist of an underlying list of some type A and an accompanying
function A→ Set, which in our use case are, respectively, the typing context and the
denotation function.

When giving the constructs in our language their proper denotations, most of the
cases are straightforward. Notable is the case for variables, where we made use of the
inductively defined type evidence to type our terms. Remember that to type variables in
our term language, we have to also give the exact position of the type we are referencing
in the typing context. Similarly as denotations, we are able to transform this positional
information to generate a specialized lookup function, which given a valid typing context,
gives a term denotation with the correct type. Essentially, we do a lookup into the
heterogeneous list of denotations corresponding to the typing context. The denotations
for the various types and terms in our base language is shown in fig. 5

Equations denote_v Γ τ (v: τ ∈ Γ) : JΓK→ JτK :=

denote_v (Top Γ τ) := hd;

denote_v (Pop Γ τ σ v) := denote_v v ◦ tl.
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Example 1 (Square). abs (mul (var Top) (var Top)) denotates to the square function
λx.x ∗ x.

Proof. This follows from the definition of our denotation functions.

Jabs (mul (var Top) (var Top))K []
≡ λx.Jmul (var Top) (var Top)K [x]
≡ λx.Jvar TopK [x] ∗ Jvar TopK [x]
≡ λx.x ∗ x

Using the denotation rules in fig. 5, syntactically well-typed terms in our language
of the form x1 : R, . . . , xn : R ` t : R can be interpreted as their corresponding smooth
functions f : Rn →R. Intuitively, the free variables in the syntactic term t correspond
to the parameters of the denotation function f .

Although Barthe et al.[47] gave a syntactic proof of correctness of the macro, our
formal proof follows the more denotational style of proof given by Huot, Staton and
Vákár[49]. Likewise, our proof of correctness will follow a similar logical relations
argument. While both approaches have their merits, the proof using the denotational
semantics requires less technical bookkeeping of open and closed terms.

Informally, the correctness statement of the forward-mode macro will consists of the
assertion that the denotation of any macro-applied term of type x1 : R, . . . , xn : R ` t : R
will result in a pair of both the denotation of the original term and the derivative of that
denotation. Note that while both the free variables and result type of the term t are
restricted to type R, t itself can consist of subterms of higher-order types.

Proving this correctness statement directly by induction on the structure of our small
language, however, does not work. Instead, we use logical relations argument. The logical
relation will ensure that both the smoothness and the derivative calculating properties
are preserved over higher-order types. As expected, when a logical relations argument is
required, the indicative issue lies in the cases for function application. To be specific,
the induction hypothesis would indicate that both the argument and the function terms
would satisfy our notion of correctness. The induction hypothesis, however, would be
too weak to establish this property for the result of the application. To get the proof to
go through, we need to strengthen the induction hypothesis at function types to include
precisely the assertion that if the argument of our function application is valid with
respect to the logical relation, then the result, too, is valid.

We define the logical relation as a type-indexed relation between denotations of both
terms and their macro-applied variants, so for any type τ , Sτ is the relation between
functions R→ JτK and R→ J

−→
D (τ)K. For our ground types, R, the logical relation should

establish that the macro-applied term should be denotationally equivalent to the original
denotation and its corresponding derivative. Some care has to be taken when defining
the relation for product types. Notably, the denotations of the subterms, R → JτK
and R→ JσK, should be existentially quantified as these are dependent on the original
denotation R→ Jτ × σK. One also has to supply proofs that both subterms also satisfy
the logical relation.

Definition 1. (Logical relation) Denotation functions f and their corresponding derivatives
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g are inductively defined on the structure of our types such that they follow the relation

Sτ (f, g) =



smooth f ∧ g = λx.(f(x), ∂f
∂x (x)) : τ = R

∃f1, f2, g1, g2, : τ = σ × ρ
Sσ(f1, f2), Sσ(g1, g2).
f = λx.(f1(x), g1(x))∧
g = λx.(f2(x), g2(x))

∀f1, f2. : τ = σ ⇒ ρ
Sσ(f1, f2)⇒
Sρ(λx.f(x)(f1(x)), λx.f(x)(f2(x)))

The next step involves proving that the well-typed terms, which correspond to
functions Rn →R, are semantically correct with respect to the logical relation. In other
words, the relation needs to be proven valid for any term x1 : R, . . . , xn : R ` t : R and
argument function f : R → Rn such that Sτ (JtK ◦ f, J

−→
D (t)K ◦ −→Dn ◦ f). This proposition

is what we will use to derive our final correctness statement once we generalize it to
arbitrary types, contexts and implicitly, substitutions. If this were a syntactic proof, one
would need to show that the relation is preserved when applying substitutions consisting
of arbitrary terms, possibly containing higher-order constructs. In this style of proof,
however, the same concept needs to be formulated in a denotational manner.

The key in formulating these denotationally lies in the argument function f : R→ Rn.
Previously, the function was used to indicate the open variables or function arguments.
Generalized to Γ = x1 : τ1, . . . , xn : τn, this function can be interpreted as supplying for
each open variable x1, . . . , xn a corresponding denotated term with type Jτ1K, . . . , JτnK.
So the argument function now becomes the pair of functions s : R → JΓK and sD :
R→ J

−→
D (Γ)K, which intuitively speaking, form the denotational counterparts of syntactic

substitutions. Notably, for the functions s and sD to be valid with respect to the logical
relation, they are required to be built from the denotations of terms such that these
denotations also follow the logical relation. We phrase this requirement as a definition.

Definition 2. (Instantiation) Argument functions s : R→ JΓK and sD : R→ J
−→
D (Γ)K are

inductively defined such that they follow

instΓ(f, g) =



f = (λx.[ ]) ∧ g = (λx.[ ]) : Γ = [ ]
∀f1, f2, g1, g2. : Γ = (τ :: Γ′)
instΓ′(f1, g1) ∧ Sτ (f2, g2)
→ f = (λx.f2(x) :: f1(x))∧
g = (λx.g2(x) :: g1(x))

(1)

Using this notion of instantiations, we can now formulate our fundamental lemma.
Informally, this states that given the correct argument functions, any well-typed term is
semantically correct with respect to the logical relation.

Lemma 1 (Fundamental lemma). For any well-typed term Γ ` t : τ , and instantiation
functions s : R→ JΓK and sD : R→ J

−→
D (Γ)K such that they follow instΓ(s, sD), we have

that Sτ (JtK ◦ s, J
−→
D (t)K ◦ sD).

Proof. This is proven by induction on the typing derivation of the well-typed term t.
The majority of cases follow from the induction hypothesis. The case for var follows
from inst which ensures that any term referenced is semantically well-typed with respect
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to the relation. Proving the cases used to encode the operators on reals such as add and
mul involve proving both smoothness and giving the witness of the derivative.

We can now step-by-step specialize the fundamental lemma to our final correctness
theorem. The first step involves limiting the arguments of the functions to real numbers.
The previous need to use the instantiation relation to establish that the typing context
satisfies the logical relation disappears if we specialize these contexts to real numbers. In
its place, we have to manually establish the connection between real numbers and their
dual number counterparts. We establish this connection using a denotational translation
from real to dual numbers in the definition of

−→
D arg, as shown in definition 3. This

function couples each primal value with their corresponding tangent value.

Definition 3 (Initialization of dual number representations). For any n-length argument
function f : R→ JRnK, couple each argument with its corresponding tangent such that the
resulting transformed function becomes

−→
D arg

n (f, x) : R→ J
−→
D (R)nK. This can be defined

as the following higher-order function:

−→
D arg

n (f, x) =
{

f(x) : n = 0
((hd ◦ f)(x), ∂(hd◦f)

∂x (x)) :: −→D arg
n′ (tl ◦ f, x) : n = n′ + 1

Note that because we make use of the derivatives of our arguments, we also need to
require that every argument be differentiable. This requirement is non-negotiable and
will be present in the theorem. We formulate this requirement as definition 4.

Definition 4 (Differentiability of arguments). Any argument function f : R → JRnK with
arity n, is inductively constructed such that it follows the following proposition.

differentiablen(f) =


differentiable0(λx.[]) : n = 0
∀g, h.differentiablen′(g)→ : n = n′ + 1

smooth h→
f = (λx.h(x) :: g(x))

(2)

Corollary 1 (Fundamental property). For any term x1 : R, . . . , xn : R ` t : R, J
−→
D (t)K gives

the dual number representation of JtK, such that for any argument function f : R → Rn

that follows differentiablen(f), we have that Sτ (JtK ◦ f, J
−→
D (t)K ◦ −→Dn ◦ f).

Proof. This follows from the fundamental lemma. We lastly need to prove instRn . This
is proven by induction on n. If n = 0, the goal is trivial due to the argument function f
being extensionally equal to const [], which directly corresponds to inst[]. The induction
step is proven by both the induction hypothesis and the assumption that the denotations
of the arguments supplied are smooth.

The final step includes specializing the output variable of our functions to real
numbers. Simplifying the logical relation for R gives the correctness statement we set out
to prove.

Corollary 2 (Macro correctness). For any well-typed term x1 : R, . . . , xn : R ` t : R, J
−→
D (t)K

gives the dual number representation of JtK, such that for any argument function f : R→
Rn that follows differentiablen(f), we have that J

−→
D (t)K◦−→Dn ◦f = λx.(JtK◦f, ∂(JtK ◦ f)/∂x).
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Γ ` e : τ<+>σ Γ ` t1 : τ ⇒ ρ Γ ` t2 : σ ⇒ ρ

Γ ` case e t1 t2 : ρ
TCase

Γ ` t : τ

Γ ` inl t : τ<+>σ
TInl

Γ ` t : σ

Γ ` inr t : τ<+>σ
TInr

n ∈ N

Γ ` nval n : N
TNVal

Γ ` t : N
Γ ` nsucc t : N

TNSucc

Γ ` f : τ ⇒ τ Γ ` n : N Γ ` t : τ

Γ ` nrec f n t : τ
TPrim

Figure 6: Type-inference rules for language constructs for sum types and primitive
recursion

Proof. This is proven by showing that the goal follows from the logical relation which
itself is implied by corollary 1.

J
−→
D (t)K ◦ −→Dn ◦ f = λx.(JtK ◦ f, ∂(JtK ◦ f)/∂x)

 (By definition of SR with f := JtK ◦ f and g := J
−→
D (t)K ◦ −→Dn ◦ f)

SR(JtK ◦ f, J
−→
D (t)K ◦ −→Dn ◦ f)

 (Fundamental property (corollary 1))

3.2 Adding Sums and Primitive Recursion

Now that correctness has been verified for the base simply-typed lambda calculus, the
next goal will be to add in sum types. In the interest of testing the flexibility of both the
representation and the proof technique, we also add natural number types and primitive
recursion. The inference rules for the new language constructs added for sum and number
types are given in fig. 6, while their intrinsic representations are shown in code snippet 7.

Binary sum types are included in the language using inl and inr as introducing
terms. The case term encodes case-analysis given a function term for each possibility.
Primitive recursion is implemented using simple integers, where a endomorphic function
is recursively applied a bounded number of times to a start value. For convenience, an
additional successor function is added in the form of the nsucc term.

In terms of denotations, case expressions will follow the same lines as app as they
both involve applying a function to an argument. Note that we first destruct the sum
term to be able to determine which function branch to apply. Both inl and inr will map
to their Coq counterparts. For nrec, the number of applications should be dependent on
the input integer. The specific denotations chosen is given in fig. 7.

Both sums and integer terms are structure-preserving with respect to the forward-
mode macro. Note that we only take the derivative of values of type R, so when integers
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Inductive tm (Γ : Ctx) : ty → Type :=

...

(* Sums *)

| case : forall τ σ ρ,
tm Γ (τ <+> σ) →
tm Γ (τ ⇒ ρ) →
tm Γ (σ ⇒ ρ) →
tm Γ ρ

| inl : forall τ σ,
tm Γ τ → tm Γ (τ <+> σ)

| inr : forall τ σ,
tm Γ σ → tm Γ (τ <+> σ)

(* Primitive recursion *)

| nval : forall n, tm Γ N

| nsucc : tm Γ N → tm Γ N

| nrec : forall τ,
tm Γ (τ ⇒ τ) → tm Γ N → tm Γ τ → tm Γ τ

Code snippet 7: Terms in our language related to sum types.

. . .

Jτ<+>σK = JτK + JσK
JNK = N

Jcase e t1 t2K = λx.

{
(Jt1K(x))(t) : JeK(x) = inl(t)
(Jt2K(x))(t) : JeK(x) = inr(t)

Jinl tK = λx.inl(JtK(x))
Jinr tK = λx.inr(JtK(x))

Jnval nK = n

Jnsucc tK = λx.JtK(x) + 1
Jnrec f i tK = λx.fold(JfK(x), JiK(x), JtK(x))

fold(f, i, t) =
{

t : i = 0
f(fold(f, i′, t)) : i = i′ + 1

Figure 7: Denotations of the sum and integer terms
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. . .
−→
D (τ<+>σ) = −→D (τ)<+>

−→
D (σ)

−→
D (N) = N

−→
D (inl t) = inl

−→
D (t)

−→
D (inr t) = inr

−→
D (t)

−→
D (case e t1 t2) = case

−→
D (e) −→D (t1) −→D (t2)

−→
D (nval n) = nval n

−→
D (nsucc nm) = nsucc

−→
D (n)−→D (m)

−→
D (nrec f i t) = nrec

−→
D (f) −→D (i) −→D (t)

Figure 8: Macro on the sum and integer terms

are encountered, these are largely ignored. More specifically, we do not keep track of
derivatives at natural number types as the tangent space is 0-dimensional. For a similar
reason, the logical relation at integer types only needs to establish that the denotations of
integer terms tracked by the logical relation, which will be of type R→ N , are constant.
For sum terms, the functions tracked are either the left or right tag of the sum, which
we can neatly define using a logical disjunction.

Sτ (f, g) =



. . .
f = g ∧ ∃n.f = const(n) : τ = N

(∃f1, f2,
Sσ(f1, f2) ∧ f = inl ◦ f1 ∧ g = inl ◦ g1)
∨ : τ = σ<+>ρ

(∃f1, f2,
Sρ(f1, f2) ∧ f = inr ◦ f1 ∧ g = inr ◦ g1)

(3)

The only lemma or theorem that requires extension to deal with these new terms
is the fundamental lemma, as the validity of every other statement is independent of
the types or terms added to our language. With terms of integer type, the proof for the
fundamental lemma is trivial using the definition of our denotation functions. The nrec

case for primitive recursion is only slightly more difficult as we have to do case-analysis on
the denotation of the iteration term. The 0 and n + 1 case are proven using the induction
hypotheses derived from, respectively, the initial and function terms. As expected with
the case term for sums, the denotation of the term under scrutiny needs to be destructed
to properly apply the two disjunct induction hypotheses to their corresponding cases.

3.3 Arrays

Automatic differentiation is rarely done on mono-valued real numbers, due to the massive
computational power available on GPUs in the form of array operations. So the next
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Γ ` f : Fin n→ tm Γ τ

Γ ` build n f : Array n τ
TBuild

Γ ` t : Array n τ Γ ` i : Fin n

Γ ` get i t : τ
TGet

Figure 9: Type-inference rules for array construction and indexing

Inductive tm (Γ : Ctx) : ty → Type :=

...

(* Arrays *)

| build : forall n τ (f : Fin n → tm Γ τ), tm Γ (Array n τ)
| get : forall n τ (i : Fin n), tm Γ (Array n τ) → tm Γ τ

.

Code snippet 8: The terms related to array types included in our language

extension worth considering in our language are array types. To be more specific, we
will be considering the pull array formulation used by Shaikhha et al.[41].

Pull-arrays are a well-known formulation which lends itself well to deforestation[5].
The most significant element of this concept is to encode arrays as functions, which in
some cases can be composed with other similarly encoded arrays. The two operations we
will be focussing on are build and get. Note that Ix represents some bounded integer
type which should correspond to the arity of the arrays the operations are used on.

build : (Ix→ A)→ [A]
get : Ix→ [A]→ A

get i (build f) ≡ f(i)

This formulation is straightforward to encode in the intrinsic representation, as shown
in code snippet 8. We are able to omit much of their cardinality and indexing type-level
considerations due to our shallow embedding of pull-arrays into the existing types in Coq.
The well-typed nature of our representation allows us to avoid much of the hairy details
associated with bounds checking for both indexing and array creation. We accomplish
this using the Fin n inductive datatype, which represents the range [1..n].

The final iteration of our simply-typed lambda calculus including the array types is
an expansion of the F̃ language by Shaikha et al. as ours also includes sum types. We
can define the missing ifold and let constructs as syntactic sugar using the primitive
recursion terms we added in section 3.2. Note that due to our nameless representation,
let terms lose much of their original usefulness in writing programs.

let e t ≡ app (abs t) e

ifold f n d ≡ nrec (app (abs (app f (nsucc (var Top)))) (nval 0)) n d
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· · ·
−→
D (Array n R) = Array n

−→
D (R)

−→
D (build n f) = build n (−→D ◦ f)
−→
D (get i t) = get i

−→
D (t)

Figure 10: Macro on array construction and indexing terms

· · ·
JArray n τK = vector(n, JτK)
Jbuild n fK = λx.vect(n, JK ◦ f, x)

Jget i tK = λx.JtK(x) ! i

vect(i, f, x) =
{

[ ] : i = 0
f(i)(x) :: vect(i′, λj.f(j + 1), x) : i = i′ + 1

Figure 11: Denotations of the array construction and indexing terms

Both the macro and denotation functions deviate slightly from how the previous
terms were defined. When looking at the macro, while it previously sufficed to recursively
call the macro on subterms, this is not possible as the subterm of interest is now a
function. Instead, we substitute the function by a composition of itself combined with
the forward-mode macro, essentially applying the macro to every possible result of the
function.

Similarly for denotations, the denotation function, instantiated to the correct type,
has to be passed along to an auxiliary function that builds up a vector of denotation
terms. Appropriately, array types will denotate to vectors indexed by length. In fig. 11
we formulate this as vector(n, T ), where n indicates the length of the vector and T is
the contained type. There is some additional boilerplate necessary to circumvent the
structurally recursive requirement imposed by the Coq type checker. Note that in the
definition of vect, the Fin and nat types are treated interchangeably, where Fin n is
treated as the type level integer corresponding to a n : N . So every n : N is transformed
to 1 : Fin n, and any i : Fin n is transformed to n : N .

The logical relation for array types needs to exhibit the same behavior for both
construction and indexing in how it preserves the relation on subterms. This is accom-
plished by quantifying over the indices of the vector denotation. Next, the denotation
of each subterm needs to both preserve the relation and be extensionally equal to the
appropriate projection of the term.

Sτ (f, g) =



. . .
∀i.∃f1, g1. : τ = Array n σ
Sσ(f1, g1)∧
f1 = λx.f(x)!i∧
f1 = λx.g(x)!i

(4)
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As was the case for sum types, only the proof of the fundamental lemma needs to
be extended. The proof for the array terms proceeds as follows. The case for get is
straightforward as it simply follows from the induction hypothesis. For build, we first
do induction on n, the length of the array. The base case is trivial, as Fin 0 contains 0
inhabitants. For the induction step, we first do case-analysis on the indices, i, where
the (+1) case follows from the induction hypothesis. For i = 1 it suffices to give the
proper inhabitants using the induction hypothesis derived from the function used for
construction.

4 Optimizing through Program Transformations
Shaikhha et al. have presented a small system which has proven to be performant[41].
They empirically showed that it is possible for forward-mode AD to approach the
performance of reverse-mode AD, even if the forward-mode algorithm has to be executed
n times to calculate the n partial derivatives of a function. One of the key reasons their
system is performant is due to the usage of various program optimizations. In section 3.3
we already formalized one of the components of their system, namely their usage of
array types. Next, we will prove that the various program transformation rules they
use in their system are sound for our simple denotational semantics. Their seemingly
low-level transformations facilitate various algebraic identities on matrices and vectors.
The transformation rules consist of several algebraic identities on real numbers, along
with compile-time optimization techniques such as partial evaluation and deforestation
or loop fusion.

In this proof, we will reuse the denotational semantics from our proof of the forward-
mode macro in section 3. As a small deviation from the rules given by Shaikhha et al.[41],
we explicitly include a set of simplification rules in the style of a big-step operational
semantics. We use these simplification rules to facilitate partial evaluation on non-
functional terms. Note that partial evaluation on function terms is included as a separate
transformation rule. figs. 12 and 13 shows, respectively, the rewrite rules we included in
our language and the inference rules we used for our simplification rules.

Before we can prove soundness of our rewrite rules, we have to prove the soundness
of our natural semantics.

Lemma 2 (Soundness of natural semantics). For any well-typed terms t, t′ such that t ⇓ t′

holds, we have JtK = Jt′K.

Proof. This is proven by induction on the evaluation relation ⇓. All of the cases follow
from the induction hypotheses after simplification.

Theorem 1 (Soundness of program transformations). For any well-typed terms t, t′ such
that t ; t′ holds, we have JtK = Jt′K.

Proof. This is proven by induction on the rewriting relation ⇓. Most of the cases follow
from the induction hypothesis. The rewrite rule where we incorporated the evaluation
relation is proven by lemma 2. The rewrite rules associated with algebraic identities are
proven by exactly those identities after simplifying using the denotational semantics.

For the loop fusion rule, we first do induction on i, the index being accessed. For
i = 0, we use case-analysis on n along with simple rewriting to prove the goal. The
induction step is proven by the induction hypothesis. Similarly for the loop fission rule,
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add t1 t2 ; add t2 t1

add 0 t ; t

add t (−t) ; 0
mul t1 t2 ; mul t2 t1

add (mul t t1) (mul t t2)
; mul t (add t1 t2)
mul 0 t ; 0
mul 1 t ; t

(a) Algebraic laws

t ⇓ t′ → t ; t′

(b) Reuse rewriting rules from the evaluation
relation

t ; t′ → abs t ; abs t′

(c) Partial evaluation on functions

get i (build n f) ; f i

(d) Loop fusion

ifold (abs (abs (tuple
(app (app f (var (Pop Top))) (first (var Top)))
(app (app f (var (Pop Top))) (second (var Top)))))) i (tuple z1 z2)

; tuple (ifold f i z1) (ifold f i z2)

(e) Loop fission

Figure 12: Included rewrite rules for the simply-typed lambda calculus extended with
sum, product, number and array types
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t1 ⇓ abs t′
1 t2 ⇓ t′

2
app t1 t2 ⇓ substitute t′

2 t′
1

EVAppAbs

t ⇓ nval n

nsucc t ⇓ nval (n + 1)
EVSucc

t1 ⇓ t′
1 t2 ⇓ nval 0 t3 ⇓ t′

3
nrec t1 t2 t3 ⇓ t3

EVNRec0

t1 ⇓ t′
1 t2 ⇓ nval (n + 1) t3 ⇓ t′

3
nrec t1 t2 t3 ⇓ app t′

1 (nrec t′
1 (nval n) t′

3)
EVNRecS

t1 ⇓ rval r1 t2 ⇓ rval r2

add t1 t2 ⇓ rval r1 + r2
EVAdd

t1 ⇓ rval r1 t2 ⇓ rval r2

mul t1 t2 ⇓ rval r1 ∗ r2
EVMult

t1 ⇓ t′
1 t2 ⇓ t′

2
tuple t1 t2 ⇓ tuple t′

1 t′
2

EVTuple

t ⇓ tuple t1 t2

first t ⇓ t1
EVFst

t ⇓ tuple t1 t2

second t ⇓ t2
EVSnd

t ⇓ t′

inl t ⇓ inl t′ EVInl
t ⇓ t′

inr t ⇓ inr t′ EVInr

t ⇓ inl t′ t1 ⇓ t′
1 t2 ⇓ t′

2
case t t1 t2 ⇓ app t′

1 t′ EVCaseInl

t ⇓ inr t′ t1 ⇓ t′
1 t2 ⇓ t′

2
case t t1 t2 ⇓ app t′

2 t′ EVCaseInr

Figure 13: Inference rules for the evaluation relation
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−→
D c

n(R) = R× (R⇒ Array n R)
−→
D c

n(τ × σ) = −→D (τ)×−→D (σ)
−→
D c

n(τ<+>σ) = −→D (τ)<+>
−→
D (σ)

−→
D c

n(τ ⇒ σ) = −→D (τ)⇒ −→D (σ)
−→
D c

n(Array m τ) = Array m
−→
D c

n(τ)
. . .

−→
D c

n(rval r) = tuple (rval r)
(build (const (rval 0)) )

−→
D c

n(add r1 r2) = tuple (add r1 r2) (abs (vector_add
(app r′

1 (var Top)) (app r′
2 (var Top))))

−→
D c

n(mul r1 r2) = tuple (mul r1 r2) (abs (vector_add
(app r′

1 (mul r2 (var Top)))
(app r′

2 (mul r1 (var Top)))))

Figure 14: Continuation-based macro on the simply-typed lambda calculus extended
with array types

we have to do induction on the denotation of the term used to encode the number of
iterations. The base case is trivial and the induction step is proven by the induction
hypothesis.

5 Relating a Continuation-Based Algorithm
There exists a well-known continuation-based supposedly reverse-mode AD algorithm
whose origin can be traced back to a description given by Karczmarczuk[12]. While this
algorithm does indeed calculate gradients, it is not a true reverse-mode AD algorithm as
the final computation graph differs from what one would expect of reverse-mode AD[24].
The primary issue of which is the excess usage of primitive operations. Nonetheless, it is
useful to give a formal proof of correctness of this algorithm in terms of what we have
already established, to show the versatility of the proof technique used, and by extension,
our simple set-theoretic denotational semantics and language definitions.

The guiding principle in this algorithm is to build up the reverse pass as a continuation.
Like the forward-mode macro

−→
D , the continuation-based macro

−→
D c is structure-preserving

and works with tuples at ground type R. But unlike the forward-mode macro, which
uses these tuples to represent dual-numbers, the continuation-based macro pairs the
primal values with continuations calculating an array containing all of the accumulator
variables. It should be noted that because the continuation-based macro, shown in fig. 14,
calculates all of the accumulation values with respect to each of the input variables, it is
additionally indexed by the number of input variables.

As we will phrase correctness in terms of the forward-mode macro, the forward-mode
macro used in section 3.1 is slightly altered to calculate the partial derivatives with
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respect to all of the input variables. This change is slight and merely swaps what was
previously the tangent value for a vector of the tangent values corresponding to the input
variables. Correspondingly, we swap out each of the operations on real numbers for their
vector element-wise counterparts. The modified forward-mode macro is shown in fig. 15.

As we work with the same denotational semantics as in our proof in section 3.1, the
usage of an argument supplying function f : R → Rn makes a reappearance. Unlike
last time, however, the arguments have to be massaged to fit both the forward and the
reverse-mode macro. Note that for the forward-mode macro, input arguments we take
the partial derivative of are supplied in a dual number format where the tangent value is
equal to 1. Likewise, the tangent value of any other input argument should be set to 0.
So each of the input arguments for the forward-mode macro is essentially coupled with a
one-hot encoded vector.

−→
D arg

n

([
x1 x2 x3

])
→


(x1,

[
1 0 0

]
)

(x2,
[
0 1 0

]
)

(x3,
[
0 0 1

]
)


T

Each of the one-hot encoded vectors indicates which partial derivative to calculate. The
continuation-based macro requires a similar format, but instead of a one-hot encoded
vector containing the value 1, the identity function is used.

−→
D argc

n

([
x1 x2 x3

])
→


(x1, λx.

[
x 0 0

]
)

(x2, λx.
[
0 x 0

]
)

(x3, λx.
[
0 0 x

]
)


T

Using these two input massaging functions, we can state the correctness of our
continuation-based macro relative to our forward-mode macro.

Proposition 1 (Correctness of continuation-based AD). For any well-typed term x1 :
R, . . . , xn : R ` t : R and function arguments ~x : JRnK we will take the partial derivatives
relative to, we have that snd(J−→Dn(t)K(−→D arg

n (~x))) = snd(J−→D c
n(t)K(−→D argc

n (~x)))(1).

Unfortunately, this statement cannot be proven directly. To see why, consider
multiplication where we would have to prove the following statement, where f and g

represent the generalization of
−→
D arg and

−→
D argc to arbitrary typing contexts.

snd(J−→D c
n(mul t1 t2)K ◦ f) = snd(J−→D c

n(mul t1 t2)K ◦ g)(1)

The expressions on both the left and the right hand side can be rewritten using the
definitions of our denotations.

λa.vect(n, λi, x.fst(J−→Dn(t2)K(x)) ∗ snd(J−→Dn(t1)K(x)) ! i +

fst(J−→Dn(t1)K(x)) ∗ snd(J−→Dn(t2)K(x)) ! i, a) =

λa.vect(n, λi, x.snd(J−→D c
n(t1)K(tl(x)))(fst(J−→D c

n(t2)K(x))) ! i ∗ hd(x) +

snd(J−→D c
n(t2)K(tl(x)))(fst(J−→D c

n(t1)K(x))) ! i ∗ hd(x), 1 :: a)

Note on the right-hand side, that the first projection of the macro on terms, which
contains the primal values, is passed along the continuation in the second projection. If
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−→
Dn(R) = R× Array n R

−→
Dn(τ × σ) = −→D (τ)×−→D (σ)
−→
Dn(τ<+>σ) = −→D (τ)<+>

−→
D (σ)

−→
Dn(τ ⇒ σ) = −→D (τ)⇒ −→D (σ)

−→
Dn(Array m τ) = Array m

−→
Dn(τ)

. . .
−→
Dn(rval r) = tuple (rval r) (build n (fun _ => 0))

−→
Dn(add r1 r2) = tuple (add r1 r2) (vector_add r′

1 r′
2)

−→
Dn(mul r1 r2) = tuple (mul r1 r2)

(vector_add (vector_scale r2 r′
1) (vector_scale r1 r′

2))

(a) Forward-mode macro calculating all partial derivatives

Definition vector_map Γ τ σ n ( f : tm Γ (τ ⇒ σ) )

( a : tm Γ (Array n τ) ) : tm Γ (Array n σ) :=

build n (fun i => app f (get i a)).

Definition vector_map2 Γ τ σ ρ n

( a1 : tm Γ (Array n τ) ) ( a2 : tm Γ (Array n σ) )

( f : tm Γ (τ ⇒ σ ⇒ ρ) ) : tm Γ (Array n ρ) :=

build n (fun i => app (app f (get i a1)) (get i a2)).

Definition vector_add Γ n

( a1 a2 : tm Γ (Array n R) ) : tm Γ (Array n R) :=

vector_map2 a1 a2 (abs (abs (add (var Top) (var (Pop Top))))).

Definition vector_scale Γ n ( s : tm Γ R )

( a : tm Γ (Array n R) ) : tm Γ (Array n R) :=

vector_map (abs (mul s (var Top))) a.

(b) Helper functions on array types

Figure 15: Consolidated forward-mode macro on the simply-typed lambda calculus
extended with array types
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we attempt to base our logical relation on proposition 1, however, the proof of this case
will fail. The corresponding induction hypothesis will only account for supplying the
value 1 to our continuations, which is too restricting. This issue implies that we require
some generalization in both our proof goal and logical relation.

To be specific, we need to establish equivalence between the macros regardless of the
argument we apply to the continuation-based macro, which corresponds to the coefficient
of our forward-mode macro. We bake this equivalence directly into the logical relation
in our proof. The logical relation we will use in this proof, for the most part, stays the
same as the one we used in the proof in section 3. The only case to differ significantly is
the type of real numbers, R. Also note that, like the macro functions, the logical relation
is also indexed by the number of input variables.

Sn,τ (f, g) =


. . .
fst ◦ f = fst ◦ g∧ : τ = R

∀x.λr.x ∗ snd(f(r)) = λr.(snd(g(r)))(x)
(5)

As a recurring theme, the definitions and lemmas we used in the proof in section 3
reappear in this proof. One of the main differences is that we now have to keep track of
the number of partial derivatives. So we still use an instantiation relation like the one
given in eq. (1) to establish that arbitrary typing context instantiations preserve the
logical relation.

The proof of the fundamental lemma proceeds in much the same manner as the
one given for lemma 1. As expected, the cases for the R-typed are exceptional. The
problem here is that the number of partial derivatives is tightly coupled to the number
of terms involved in the operations. This tight coupling can be solved for each of these
cases by proving the corresponding generalized variant. Proving these cases, along with
the corresponding fundamental property of the logical relation, results in the following
theorem.

Theorem 2 (Duality). For any well-typed term x1 : R, . . . , xn : R ` t : R, function arguments
~x : JRnK, and real number r, we have r∗snd(−→Dn(t)(−→D arg

n (~x))) = snd(−→D c
n(t)(−→D argc

n (~x)))(r)

Proof. This follows from the fundamental property of the logical relation in (eq. (5)).

This theorem is easily specialized to the original correctness statement we set out to
prove.

Corollary 3 (Correctness of continuation-based AD). For any well-typed term x1 :
R, . . . , xn : R ` t : R and function arguments ~x : JRnK we will take the partial derivatives
relative to, we have that snd(J−→Dn(t)K(−→D arg

n (~x))) = snd(J−→D c
n(t)K(−→D argc

n (~x)))(1).

6 Towards Formalizing Reverse-Mode AD
As mentioned in section 2.5, there have been many attempts at reverse-mode algorithms
that operate on functional languages. These algorithms, however, either fall short as
they make use of difficult to formalize semantics such as mutable state or delimited
continuations, or they do not perform true reverse-mode AD. Much of the problem with
defining an efficient reverse-mode algorithm on functional languages comes from the
difficulty with ensuring that fan-out, the various usages of a variable, in the forward
pass, correctly accumulate in the reverse pass.
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Eliott posed a novel and principled approach to defining an AD algorithm using
category theory[36]. They take the category theoretical hammer to the problem by
approaching it as an algorithm on categories, Cartesian closed categories (CCC) to be
exact, which are known to be equivalent to the simply-typed lambda calculi[35][2]. The
algorithm is, however, still restricted to first-order programs.

Vákár gives an extension of this technique to higher-order programs and types[51].
They first go through defining a small core combinator-based language. They then define
a reverse-mode macro along with an additional auxiliary target language enriched with
simple linear types. It is this extension which we attempt to prove correct.

6.1 Core Combinator Language

A well-known fact is the connection between CCC and simply-typed lambda calculi
and that it is possible to translate freely between these two forms[2]. We can define
a simple core combinator language inspired by the various categorical laws related to
CCC. The requirement for a combinator language to be able to do reverse-mode AD
comes from the need to make the contraction and weakening rules usually kept implicit
in the typing contexts of typed lambda calculi, explicit. Translating from a simply-typed
lambda calculus to the core combinator language necessitates a translation between the
implicit manipulation of the typing context to access variables, to one that is explicit in
its variable usage through specific combinators.

The core combinator language we will be using is shown in fig. 16. Note the combinator
language contains no typing context and are defined as terms c : comb τ σ, where τ and
σ are, respectively, the input and output types of the combinator c. As programming
in the combinator language can quickly become cumbersome and unreadable, we make
repeated usage of some syntactic niceties. We interchangeably use ;; as the infix version
of seq and 〈A, B〉 as a shortcut for dupl;;cross A B. We also use some helper functions
for moving elements around in products, as shown below.

Definition assoc1 {A B C} : comb ((A × B) × C) (A × (B × C)) :=

〈 exl;;exl, 〈 exl;;exr, exr 〉 〉.
Definition assoc2 {A B C} : comb (A × (B × C)) ((A × B) × C) :=

〈 〈 exl, exr;;exl 〉, exr;;exr 〉.
Definition sym {A B} : comb (A × B) (B × A) :=

〈 exr, exl 〉.

We will next describe a translation from a simply-typed lambda calculus to this
combinator language. Like the combinator language, the simply-typed lambda calculus
will be restricted to function types, product types, and types for real numbers, vectors
specialized to real numbers and unit, which is shown in fig. 17. Note that we omitted
the terms related to typing contexts, function types and product types, as these were
identical to the ones used in section 3.

Using the same technique as Curien[2], we make use of an auxiliary language to
smoothen the process. This auxiliary language, the typed categorical combinatory logic
(CCL), will contain terms related to both the combinator language and the simply-typed
lambda calculus. So it will also include usage of a typing context and related constructs
such as variable access and function abstraction. While this CCL can be used to facilitate
both back and forth translations, we will restrict our focus to only translating from the
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Inductive ty : Type :=

| R^ : nat → ty

| R : ty

| U : ty

| ⇒ : ty → ty → ty

| × : ty → ty → ty

.

Inductive comb : ty → ty → Type :=

(* Category laws *)

| id : forall A, comb A A

| seq : forall A B C,

comb A B → comb B C → comb A C

(* Monoidal *)

| cross : forall A B C D,

comb A B → comb C D → comb (A × C) (B × D)

(* Terminal *)

| neg : forall A,

comb A U

(* Cartesian *)

| exl : forall A B,

comb (A × B) A

| exr : forall A B,

comb (A × B) B

| dupl : forall A,

comb A (A × A)

(* Closed *)

| ev : forall A B,

comb ((A ⇒ B) × A) B

| curry : forall A B C,

comb (A × B) C → comb A (B ⇒ C)

(* Reals *)

| cplus : comb (R × R) R

| crval : forall (r : R), comb U R

| cmplus : forall n, comb (R^n × R^n) (R^n)

| cmrval : forall n (a : vector R n), comb U (R^n)

.

Figure 16: Core combinator language inspired by Cartesian closed categories
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Inductive tm (Γ : Ctx) : ty → Type :=

...

(* Operations on reals *)

| rval : forall r, → tm Γ R

| plus :

tm Γ R → tm Γ R → tm Γ R

(* Operations on real vectors *)

| mrval : forall n, vector R n → tm Γ (R^n)

| mplus : forall n,

tm Γ (R^n) → tm Γ (R^n) → tm Γ (R^n)

(* U *)

| it : tm Γ U

.

Figure 17: Simply-typed lambda calculus with unit and specialized real arrays

combinator language to the simply-typed lambda calculus.
The ccl_env combinator in CCL is most notable. In essence we transition each type

in the typing context to become an additional argument in the resulting function type.
Repeated usage of this specific combinator turns any previously open term into a closed
one.

The intrinsic representation we use in our definitions makes defining the exact
translations a breeze as it then becomes an exercise in type-directed programming. The
simply-typed lambda calculus to CCL translation specifically is straightforward, as the
CCL language still has access to a typing context. We translate abstractions, where
the argument type is added onto the typing context, using the ccl_env construct. In
cases where we introduce new values, we make use of the ccl_const construct to ensure
the terms fit the type signature. Note that an additional domain type of U is added in
the type signature of the translation function to accommodate the combinator-heavy
auxiliary language. This translation is shown in code snippet 9.

As with defining the denotations of variables, we also need to define a mechanism to
ensure the correct variable is still referenced when translating from the typed lambda
calculi to CCL. Consider that the typing context, previously a list, is isomorphic to
a single nested product type. Empty lists correspond to the built-in unit type while
concatenation becomes nested tupling. This isomorphism is what we use to translate the
typing contexts to the input and output type format used by the combinator language.

Fixpoint translate_context (Γ : Ctx) : ty :=

match Γ with

| nil => U

| τ :: Γ′ => τ × translate_context Γ′

end.

Doing a lookup in such a nested product type then reduces to applying the correct
projection combinator.
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Inductive ccl (Γ : Ctx) : ty → Type :=

(* Variables *)

| ccl_var : forall τ,
τ ∈ Γ → ccl τ

(* Reals *)

| ccl_plus : ccl (R × R ⇒ R)

| ccl_rval : R → ccl R

| ccl_mplus : forall n,

ccl (R^n × R^n ⇒ R^n)

| ccl_mrval : forall n, vector R n → ccl (R^n)

(* Category laws *)

| ccl_id : forall A, ccl (A ⇒ A)

| ccl_seq : forall A B C,

ccl (A ⇒ B) → ccl (B ⇒ C) → ccl (A ⇒ C)

(* Cartesian *)

| ccl_exl : forall A B,

ccl (A × B ⇒ A)

| ccl_exr : forall A B,

ccl ((A × B) ⇒ B)

(* Monoidal *)

| ccl_cross : forall A B C,

ccl (A ⇒ B) → ccl (A ⇒ C) → ccl (A ⇒ B × C)

(* Closed *)

| ccl_ev : forall A B,

ccl ((A ⇒ B) × A ⇒ B)

| ccl_env : forall A B C,

@ccl (A::Γ) (B ⇒ C) → @ccl Γ ((B ⇒ A ⇒ C))

(* Const *)

| ccl_const : forall A B,

ccl A → ccl (B ⇒ A)

.

Figure 18: Auxilliary categorical combinatory logic language used in the translations
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Fixpoint stlc_ccl {Γ τ} (t : tm Γ τ) : ccl Γ (U ⇒ τ) :=

match t with

(* Base *)

| var v => ccl_const (ccl_var v)

| app t1 t2 => 〈 stlc_ccl t1, stlc_ccl t2 〉 ;; ccl_ev

| abs t' => ccl_env (stlc_ccl t')

(* Products *)

| tuple t1 t2 => 〈 stlc_ccl t1, stlc_ccl t2〉
| first t' => stlc_ccl t' ;; ccl_exl

| second t => stlc_ccl t ;; ccl_exr

(* Reals *)

| plus t1 t2 => 〈 stlc_ccl t1, stlc_ccl t2〉 ;; ccl_plus

| rval r => ccl_const (ccl_rval r)

| mplus t1 t2 => 〈 stlc_ccl t1, stlc_ccl t2〉 ;; ccl_mplus

| mrval r => ccl_const (ccl_mrval r)

(* Unit *)

| it => ccl_id

end.

Code snippet 9: Simply-typed lambda calculus to CCL translation

Fixpoint fetch Γ τ (v : τ ∈ Γ) : comb (translate_context Γ) τ :=

match v with

| Top => exl

| Pop v' => exr ;; fetch v'

end.

We also define additional functions to correctly model weakening in the combinator
language.

Definition weaken τ ρ σ (c : comb τ ρ): comb (σ × τ) ρ := exr ;; c.

Fixpoint weaken_ctx Γ τ (c : comb U τ): comb (translate_context Γ) τ :=

match Γ with

| nil => c

| τ ′ :: Γ′ => weaken τ ′ (weaken_ctx Γ′ c)

end.

The final translation function is the composition of both the translation functions in
code snippets 9 and 10. Note that we have to remove the extra U type we added in the
STLC-to-CCL translation.

Definition stlc_ccc Γ τ : tm Γ τ → comb (translate_context Γ) τ :=

fun t => 〈 ccl_ccc (stlc_ccl t), neg 〉 ;; ev.
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Fixpoint ccl_ccc Γ τ (c : @ccl Γ τ) : comb (translate_context Γ) τ :=

match c with

(* Base *)

| ccl_var v => fetch v

(* Reals *)

| ccl_plus => curry (exr ;; cplus)

| ccl_rval r => weaken_ctx Γ (crval r)

| ccl_mplus => curry (exr ;; cmplus)

| ccl_mrval r => weaken_ctx Γ (cmrval r)

(* Category laws *)

| ccl_id => curry exr

| ccl_seq t1 t2 =>

〈 ccl_ccc t2, ccl_ccc t1〉 ;; curry (assoc1 ;; cross id ev ;; ev)

(* Cartesian *)

| ccl_exl => curry (exr ;; exl)

| ccl_exr => curry (exr ;; exr)

(* Monoidal *)

| ccl_cross t1 t2 =>

〈 ccl_ccc t1, ccl_ccc t2 〉 ;;

curry (〈 〈 exl;;exl, exr〉, 〈 exl;;exr, exr 〉 〉;; cross ev ev)

(* Closed *)

| ccl_ev => curry (exr ;; ev)

| ccl_env t' =>

curry (curry (sym ;; assoc2 ;; cross (ccl_ccc t') id ;; ev))

(* Const *)

| ccl_const t' => ccl_ccc t';; curry exl

end.

Code snippet 10: CCL to CCC translation
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6.2 Defining the Macro and Target Language

The reverse-mode macro we will discuss in this chapter splits any type τ into pairs
(τ1, τ2), where τ1 and τ2 represent primal and adjoint values. Reverse-mode AD gives an
idea as to the mapping of τ to their corresponding adjoint, τ2. Essentially, start-
ing from an input vector and the derivative of the output variable, reverse-mode
AD calculates the derivatives of each of the input variables. On the type level, this
can be formulated as transforming combinators comb τ σ into a tuple of combinators
(comb (fst(←−D (τ))) (fst(←−D (σ))), comb (fst(←−D (τ))× snd(←−D (σ))) (snd(←−D (τ)))).

Defining this transformation poses an issue, however, as we will illustrate with an
example. Consider the combinators exl, exr and dupl from section 6.1. Attempting to
fill this in using type-directed programming following the type signature we mentioned
previously, leads to the following:

←−
D (exl) = (exl, dupl;;cross exr (neg;;0̄))
←−
D (exr) = (exr, dupl;;cross (neg;;0̄) exr)
←−
D (dupl) = (dupl, exr;;+̄)

Note the usages of the (0̄, +̄) combinators. While 0̄ is used to explicitly zero out the
unused terms in both exl and exr, +̄ is used to recombine terms in dupl.

As mentioned in the previous section, these combinators encode the dual structures
to the contraction and weakening rules present in programming language inference rules.
They also appropriately encode how we treat the fan-out problem, where +̄ : comb (τ×τ) τ
combines two terms of type τ generically. Likewise, 0̄ : comb U τ formulates how to zero
out variables of arbitrary type τ . We can define these combinators by induction on their
types, where ~0 is the vector consisting of just zeroes.

0̄τ =



crval 0 : τ = R

cmrval ~0 : τ = R^n

neg : τ = U

〈0̄σ, 0̄ρ〉 : τ = σ × ρ
curry (exl;;0̄ρ) : τ = σ ⇒ ρ

Defining 0̄τ is straightforward as we only need to ensure that it preserves the structure
of our types. For ground types R and R^n, we generate their respective interpretations of
zero. For function types, we can ignore the input of argument type and recursively call 0̄
on the result type.

+̄τ =



cplus : τ = R

cmplus : τ = R^n

neg : τ = U

〈〈exl;;exl, exr;;exl〉;;+̄σ, : τ = σ × ρ
〈exl;;exr, exr;;exr〉;;+̄ρ〉

curry

(〈〈exl;;exl, exr〉;;ev, : τ = σ ⇒ ρ
〈exl;;exr, exr〉;;ev〉;;+̄ρ)

With +̄τ , we can make recursive usage of the operator to combine subterms. For
tuples, this involves creating a new tuple where the left and right components consist
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of, respectively, the combinations of all left and right projections. With function types,
both the left and right input functions need to be evaluated separately before they can
be combined.

We can reuse the same reasoning we used to derive how the combinators should be
transformed for reverse-mode, to define the behavior of our macro on function types.
This reasoning leads to the incomplete definition of

←−
D (τ ⇒ σ) = (fst(←−D (τ))⇒ (fst(←−D (σ))× (snd(←−D (σ))⇒ snd(←−D (τ)))),

fst(←−D (τ))× snd(←−D (σ))) (6)

In a sense, the adjoint value at function types keeps track of the adjoints currently
calculated so they can be accumulated with other usages down the line. Remember that
in reverse-mode AD, the problem of fan-out involves combining each usage of a variable
in the reverse pass. While we solved the issue of combining variable usages using the +̄
combinator, but still have to find something to keep track of which terms to combine.

In eq. (6), we attempt to keep track of the adjoints using product types, which are
easily combined using +̄. This, however, does not ensure that the linear properties of
both (0̄, +̄) are preserved. Indeed, for any program consisting of combinators such that
it has type comb τ R, if J0̄τ K is given as input in the denotational sense, the resulting
program should correspond to 0. Similarly, J+̄τ K on inputs a and b should correspond to
some notion of addition between a and b.

Vákár poses the usage of an auxiliary target language with a limited variant of linear
types as the result of evaluating the reverse-mode macro[51]. The linear types used
include both linear function types, (, and tensor products, !(−) ⊗ (−). This target
language would be almost identical to the source combinator language described in
section 6.1. The added types and terms are shown in fig. 19.

Because we extended the target language with both linear functions and tensor
products, we also have to extend both (0̄, +̄) with these types.

0̄τ =


. . .
curry_l (exl;;0̄) : τ = σ ( ρ
mempty : τ =!σ ⊗ ρ

+̄τ =



. . .
curry_l

(〈〈exl;;exl, exr〉;;ev_l, : τ = σ ( ρ
〈exl;;exr, exr〉;;ev_l〉;;+̄ρ)

mplus : τ =!σ ⊗ ρ

Using these additional constructs, we can finally define the macro as shown in fig. 20.

6.3 Attempt at a Formalized Proof

Temporarily ignoring the issue of denotational semantics of our target language, we
can formulate the proof as a logical relations argument, as we have done in previous
proofs. Unlike the previous proofs, however, we are this time working with a combinator
language. Using a separate combinator language has the convenient consequence that
we do not have to worry about typing contexts or substitutions in the proof of the
fundamental lemma of our logical relation.
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Inductive ty : Type :=

...

| !_⊗_ : ty → ty → ty

| ( : ty → ty → ty

.

Inductive target : ty → ty → Type :=

...

(* Linear *)

| ev_l : forall A B, target ((A ( B) × A) B

| curry_l : forall A B C,

target (A × B) C → target A (B ( C)

(* Tensor *)

| mempty : forall A B,

target U (!A⊗B)

| msingleton : forall A B,

target (A × B) (!A⊗B)

| mplus : forall A B,

target ((!A⊗B) × (!A⊗B)) (!A⊗B)

| mfold : forall A B C,

target (!A⊗B × (A × B ( C)) C
.

Figure 19
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←−
D (τ ⇒ σ) = (fst(←−D (τ))⇒ (fst(←−D (σ))× (snd(←−D (σ)) ( snd(←−D (τ)))),

!fst(←−D (τ))⊗ snd(←−D (σ)))
←−
D (id) = (id, exr)

←−
D (t1;;t2) = (d1;;d2, (cross dupl id;;assoc1;;

(cross id (cross d1 id));;(cross id (d′
2;;d′

1))))
←−
D (cross t1 t2) = (cross d1 d2, assoc1;;cross id (assoc2;;

(cross sym id);;assoc1);;assoc2;;cross d′
1 d′

2)
←−
D (neg) = (neg, exr;;0̄)
←−
D (exl) = (exl, dupl;;cross exr (neg; ; 0̄))
←−
D (exr) = (exr, dupl;;cross (neg; ; 0̄) exr)
←−
D (dupl) = (dupl, exr;;+̄)
←−
D (ev) = (ev;;exl, 〈〈exl;;exr, exr〉;;msingleton,

cross (ev;;exr;;curry ev_l) id;;ev〉)
←−
D (curry t) = (curry (〈d, curry d′

;;exr〉),
cross id (〈id, neg;;curry exr〉;;mfold);;assoc2;;d′

;;exl)

Figure 20: Macro on the combinator language

As previously, we can formulate our logical relation as a type indexed relation between
the curves related to our macro.

Sτ : (R→ JτK)→ (R→ Jfst(←−D (τ))K)→ (R ? Jsnd(←−D (τ))K→R)→ Prop

Note that we index the logical relation by the types of our source language. The most
exceptional case, which will also give a clue as to where the difficulty with this proof
lies, is the case for functions. Namely, we additionally have to establish that the second
argument of the third curve of our relation is linear in its behavior with respect to (0̄, +̄).
This requirement comes from the idea that the third curve, intuitively, is tracking the
transposed derivatives of the respective function. As a consequence, its arguments should
also obey the linearity of differentiation. We formulate this requirement as definition 5.

Definition 5. Any transposed derivative calculating function is linear in its second
argument such that it follows:

linear_secondτ (h) =(∀r.h(r, J0̄τ Ktt) = 0)∧
(∀r, a, b.h(r, J+̄τ K(a, b) = h(r, a) + h(r, b)).

Definition 6. (Logical relation) Denotation functions f and their corresponding primal
and adjoint variants g and h are inductively defined on the structure of our types such
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that they follow the relation

Sτ (f, g, h) =



f = g ∧ h = λx.0 : τ = U

smooth f ∧ f = g∧ : τ = R

h = λx.(∂f
∂x (fst(x))) ∗ snd(x)

(∀i.smooth (λx.(f(x)) ! i)) ∧ f = g∧ : τ = R^n

h = λx.(∂f
∂x (fst(x))) · snd(x)

∃f1, f2, f3, g1, g2, g3, : τ = σ × ρ
Sσ(f1, f2, f3), Sσ(g1, g2, g3).
f = λx.(f1(x), g1(x))∧
g = λx.(f2(x), g2(x))∧
h = λx.(f3(fst(x), fst(snd(x)))+

g3(fst(x), snd(snd(x))))
∀f1, f2, f3. : τ = σ ⇒ ρ

linear_second(h)
Sσ(f1, f2, f3)⇒
Sρ(λx.f(x)(f1(x)), λx.fst(g(x)(f2(x))),

λx.h(fstx, f2(fst(x), snd(x)))+
f3(fst(x), snd(g(fst(x))(f2(fst(x))))(snd(x))))

A useful property is that our notion of linearity in the second argument of the curve
tracking the transposed derivatives, linear_second, follows from our logical relation.

Lemma 3. For any type τ and argument functions f : R → JτK, g : R → Jfst(←−D (τ))K
and h : R ? Jsnd(←−D (τ))K→R such that they follow Sτ (f, g, h), then linear_second(h).

Proof. This lemma is proven by induction on the type τ . The cases for R and R^n

are proven by the distributive law, while the rest follows regularly from the induction
hypotheses.

We can plot down the skeleton of what the proof would likely require. We can state
the correctness of the reverse-mode algorithm as the following proposition. Note the
usage of the sum function to combine all partial derivatives linearly. We additionally use
a macro-specific initialization function

←−
Dn for our arguments akin to definition 3 used

in section 3. The initialization function is only altered slightly to return a tuple of the
original primal value and the adjoint value defined as in definition 3.

←−
Dn(f) =


(f, f) : n = 0
(λx.(fst(f(x)), fst(←−Dn′(snd ◦ f))(x)), : n = n′ + 1

λx.∂(fst◦f)
x (x), snd(←−Dn′(snd ◦ f))(x))

We can now state correctness of the combinator-based macro as the assertion that
the sum of the derivative values of the macro is equal to the gradient of the original
function.

Proposition 2 (Correctness of reverse-mode AD). For any well-typed term x1 : R, . . . , xn :
R ` t : R and argument function f : R → Jtranslate_context(Rn)K such that it fol-
lows differentiablen(f), then (λx.sum(Jsnd(←−D (stlc_ccc(t)))K(fst(←−Dn(f))(fst(x)), 1))) =
(λx.∂(Jstlc_ccc(t)K ◦ f)/∂x(fst(x)) ∗ snd(x))
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As was the case for the proofs in sections 3 and 5, this statement follows from the
fundamental lemma of the logical relation. We can state this lemma as:

Proposition 3 (Fundamental lemma). For any well-typed combinator c : comb τ σ, and
instantiation functions f : R→ JτK, g : R→ Jfst(←−D (τ))K and h : R ? Jsnd(←−D (τ))K→R
such that they follow Sτ (f, g, h), we have that Sσ(JcK ◦ f, Jfst(←−D (c))K ◦ g, λx.h(fst(x),
(Jsnd(←−D (c))K(g(fst(x), snd(x)))))).

The main issue we encountered was during the proof of proposition 3. As a first
attempt, lists of products and regular functions were used as the denotations of, respec-
tively, !_⊗_ and (. As expected, however, both of these choices were insufficient to
complete the proof. To be specific, we encountered issues with the case of curry, mainly
in the proof of linear_second, whose goals are:

∀r.h(r, Jsnd(←−D (curry c))K(gr, [])) = 0 (7)

∀r, a, b.h(r, Jsnd(←−D (curry c))K(g(r), a ++ b)) =
h(r, Jsnd(←−D (curry c))K(gr, a)) + h(r, Jsnd(←−D (curry c))K(gr, b))

(8)

Simplifying these statements we can see that we essentially have to prove that Jsnd(←−D (c))K
is linear with respect to the denotations of (0̄, +̄).

linear(Jfst(←−D (c))K) ∧ linear(Jsnd(←−D (c))K) (9)

The (linear : (JτK → JσK) → Prop) proposition encodes our notion of linearity in the
context of the types in our combinator language.

Definition linear τ σ (f : JτK → JσK) : Prop

:= f (J0̄K tt) = J0̄K tt /\

forall a b, f (J+̄K (a, b)) = J+̄K (f a, f b).

Attempting to prove eq. (9) by induction on the combinator c lays bare the issues
underlying the denotations we chose. As the denotation of (, we picked regular functions.
This choice proved much too unrestricted, as it does not ensure the linear behavior of
the denotations of our monoidal combinators. The lists we used as the denotation of the
tensor types were much more problematic. A better denotation would have been map
types with some additional restrictions, which we can be state as the following. Note
that

{x : J0̄K} ≡ ∅ (10)
{x : a} ∩ {x : b} ≡ {x : a J+̄K b} (11)

m1 ∪ ∅ ≡ m1 (12)
m1 ∪m2 ≡ m2 ∪m1 (13)

m1 ∪ (m2 ∪m3) ≡ (m1 ∪m2) ∪m3 (14)

Of these, the list type denotations we used in the incomplete proof only satisfies eqs. (12)
and (14). Transitioning from lists to maps or bags would improve this situation by also
satisfying eq. (13).
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Equations (10) and (11), however, pose a unique difficulty in Coq. Note that we
defined both J0̄K and J+̄K on the types of our target language, which includes these same
tensor types. So when using these maps as the denotations of our tensor types, we require
a notion of equivalence that is itself also dependent on those same denotations. This
recursive definitional requirement is problematic in the total language of Coq. Another
obstacle is the fact that maps require decidable equality on the types used as keys.
Equality on both functions or real numbers is not generally decidable, and as such,
cannot be used as keys in our maps denotations.

One presumed solution to the first problem is to use proper domains using canonical
structures and setoids as the denotational semantics of our language. One would then
be able to attach, at each type, an element corresponding to J0̄K. We could then take
eqs. (10) and (12) into account in the corresponding equivalence relation. Embedding
such a zero-element into the denotations directly, seemingly solve the first issue. How to
concretely solve or avoid the second issue in a proof assistant is still unknown.

7 Discussion
In the original proof of correctness by Huot, Staton and Vákár[49], they encoded the
smoothness requirements in the denotational semantics. This method meshed well with
the existing mathematical literature about diffeological spaces. In contrast, we were able
to encode this requirement directly within the logical relation used in the proof, while
keeping the denotational semantics we needed as simple as possible. In retrospect, this
reduced a significant amount of the proof load needed as we did not have to redefine
many of the properties of functions on smooth functions. Unfortunately, however, the
set-theoretic denotational semantics limits the proof possibilities to total programming
languages.

The added value of creating the formalized correctness proof of the forward-mode
automatic differentiation macro is immediately visible in the fact that we were able to
simplify the fundamental lemma in the original pen-and-paper proof. The exclusion of as
much syntactic constructions as possible, such as substitutions, was critical in ensuring
that the proof went smoothly. If formulated incorrectly, the additional complexity
involved with typing contexts and variable management muddies the corresponding cases
of app and abs in the proof of the fundamental lemma. We spent an unfortunate amount
of time in this hybrid approach consisting of both syntactic and denotational structures,
before focussing on the full denotational approach.

Shaikhha et al.[41] showed that the performance of forward-mode AD can approach
that of reverse-mode AD given the right optimizations. It is useful to realize that the
various macros discussed in this thesis all ultimately calculate the same values, but do so
using different expressions. These expressions differ merely in the number of primitive
operations, and as such, are equal modulo the distributive law. It may then be reasonable
to suggest that an appropriately intelligent compiler would be able to, in a sufficiently
generic sense, optimize a forward-mode based gradient algorithm to the performance
expected of a reverse-mode algorithm.

Vákár[51] gave a novel extension to the categorical approach to automatic differen-
tiation by Elliott[36]. Unfortunately, however, we were unable to finish a formalized
proof of correctness in time. One of the principal issues was the difficulty in applying the
simple set-theoretic denotational semantics we have used so vehemently throughout our
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other proofs. Presumably, departing from this to a one based on quotient types using,
for example, setoids, may be more fruitful, but more research is required.

8 Future Work
There are several extensions possible on both the proof discussed in this thesis, and
directions of new proofs in the same vein.

Recursion and Iteration. Due to the limited nature of our chosen simply-typed
lambda calculus, our contributions with respect to practical programming is still very
limited. Both iteration and recursion are indispensable in practice. Their omission
severely limits the usefulness of any functional programming language. As the set-
theoretic denotational semantics we used in our proof is only able to support total
languages, substituting this for the more domain-theoretical denotational semantics with
ω-cpos would be an significant improvement in this direction. On the more mathematical
side, Vákár[50] extends the original proof by Huot, Staton, and Vákár[49] with iteration
and recursion, which should give an indication as to which steps are necessary in future
corresponding formal proof. Also relevant is the proof given by Abadi and Plotkin[38],
as their language also includes partial constructs.

Polymorphism and Impredicativity. The intrinsic representation we used in this
thesis was derived from the presentation by Benton et al.[29]. One language aspect
they also discussed, but we did not use, was polymorphism. Extending the proof to
include polymorphic types or any other higher-order concepts such as rank-n types
would help determine the feasibility of using this representation in eventual extensions
to impredicativity. Due to the interactions between substitution and renaming, this may
prove problematic with the proof load. In this case, alternatives representations like the
one described by Chlipala[22] or even an extrinsic one may be a solution.

Reverse-Mode AD. Reverse-mode AD was briefly discussed in section 6, but we were
unable to finish the proof. A possible research direction would be to give a completed
formalized proof of correctness of the algorithm described by Vákár[51]. This algorithm
has the added benefit of being a define-then-run algorithm, which further increases the
value of such a formal proof. Other reverse-mode algorithms, such as the one described
by Wang et al.[45], may also be possible valuable proof targets.

9 Conclusion
With this thesis, we were able to successfully give a formalized correctness proof of
a ubiquitous forward-mode automatic differentiation algorithm. We were also able to
expand this proof to include array types, oft used in practice, especially in GPU-based
environments. Additionally, we proved that various relevant compile-time optimizations
in the context of efficient code-generation for functional languages are correct with respect
to our denotational semantics. As we have demonstrated with the correctness proof of
the continuation-based algorithm, this proof implementation lends itself well to other
algorithms. While we were unfortunately unable to finish the formalized correctness
proof of the reverse-mode combinator-based algorithm, we have identified multiple issues
and requirements for a proper future formalized proof. The final proofs are simple, both
in terms of definitions and proof strategy, and can easily be modified at numerous points
to extend the language used or the algorithm proven correct.
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