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1 Introduction.

1.1 Motivation.

Cryptography is the study of secure communication over insecure channels in the presence of
adversaries. The ancient Romans already had methods for encrypting their messages for safe
communication. Julius Ceasar used a cipher for military messages which encoded messages by
a rotational alphabetic shift of a fixed number (encoding ‘a’ to ‘b’, ‘b’ to ‘c’, etc.). At this point
in history, this was already more than enough security as at that moment most people weren’t
able to read at all. Nowadays, cryptographic schemes are much more involved and harder to
break. We roughly distinguish modern cryptographic systems into two categories: symmetric
and asymmetric cryptography.

First, In symmetric cryptographic systems the encryption and decryption is done with the same
key, possibly with a small transformation between the two keys. In order to safely communicate
with someone, a parties need to set up a shared secret with the party they wish to communicate
with.

Second, Asymmetric- or public-key- cryptography makes use of a pair of keys that don’t have
an easy transformation between them, namely: a public key and a private key. As the name
may suggest, the public key is available to everybody interested, including the adversary. On
the other hand, The private key is only known to the owner. Any person can encrypt any
message using the public key, and can send it to the private key holder. With the private key
the message can be decrypted. It is very important that an adversary cannot recover the private
key from the public information available, and cannot decrypt a ciphertext without knowlegde
about the private key.

Both types of cryptography have their own advantages and disadvantages. In general, symmet-
ric cryptographic communication can be calculated more efficiently, making it more interesting
when lots of data have to be encrypted. Asymmetric cryptography (given that the system is
well-designed) has the advantage that for secure communication we only need to ensure that
the private key is kept private. This can be achieved easily, as we only need the private key
in one place and it doesn’t need to be transmitted in any way. This makes key management
very easy. The public key, only used to encrypt messages, is safe for anyone to have. The main
disadvantage of asymmetric cryptography is that it is relative slow compared to symmetric
cryptography.

In practice, one could combine these two forms of cryptography to benefit from the advantages
of both types, which is called a Key Encapsulation Mechanism (KEM). Two parties can agree
on a shared secret using asymmetric cryptography, only requiring the integrity of the public
key. With this shared secret they can encrypt the larger data using the faster symmetric
cryptography. In this way we have established a way to encrypt fast, with easy key management.

The safety of most currently used cryptosystems relies on the fact that there is no currently
known efficient algorithm to solve a certain problem. Examples of these kind of problems
are the factoring problem (split a composite number n into its prime factors) or the discrete
logarithm problem (solve ab ≡ c mod p for b). However, in 1994 Peter Shor came up with an
algorithm [50] that runs on a quantum computer, which can break many of these cryptosystems.
The value of this algorithm was at this point in time purely theoretical, as a working large
scale quantum computer did not exist. This however, increased the importance of developing
quantum computers. As time passed by, and the development of quantum computers did not
stop, the urge for cryptosystems that are secure under the attack of a quantum computer became
large. Even at this point in time, there is still no publicly known working quantum computer
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available that has sufficient processing power to be a serious threat to modern cryptography.
Hence the cryptographic systems that we currently use are still considered safe. However,
it is not unreasonable to assume that in a couple of decades there is a working large scale
quantum computer. As a consequence, an adversary collecting encrypted messages that contain
information that still has to be secret even after decades, can all of a sudden decrypt these
messages using this quantum computer. Because of that, there is urge to develop cryptographic
systems that are safe under the attack of a quantum computer.

In 2017, based on this quantum threat, the National Institute of Standards and Technology
(NIST) started a post quantum cryptography standardization process [41]. This is an open
contest, where cryptographers can submit their proposed quantum resistant encryption meth-
ods. At this point in time, several post quantum cryptosystems were proposed. The aim of the
standardization process was to do further research into these proposals to increase confidence
in their security which should ultimately lead to new cryptographic standards.

The security of proposed cryptosystems for the NIST competition relies on the hardness of
several different problems. The most important categories are: Lattice based Cryptography,
Multivariate Cryptography, Code based Cryptography and Supersingular Elliptic Curve isogeny
Cryptography. In this paper I study the Learning With Errors (LWE) problem and cryp-
tosystems that are based on this problem, which is the most common problem on which the
candidates are based. This is a form of Lattice based Cryptography.

In this thesis I first present an overview of the available literature. Next, two of the best known
attacks, making use of lattice techniques are introduced and applied. After that, I consider some
variants of the problem that are considered optimizations for cryptographic purposes and how
they affect the security of these systems. Some examples of the cryptographic improvements
these optimizations acquire are faster encryption and decryption, reduced public key sizes or
ciphertext sizes and reduced memory usage. Most of the thesis will be used to describe the
effect of sparse secretes. The NIST candidates Lizard [22] and nRound2 [12] are examples that
uses this optimization. Furthermore, the effect on the security of the choice of polynomial
modulus is discussed. The reader of this thesis should keep in mind that the goal of the thesis
is to discuss these optimizations and to describe the tradeoff between security and efficiency.

1.2 Outline.

This thesis started with this section, where I described the urgency of the problem and put
it in context. In section 2 common notation and terminology is listed that is used througout
this thesis, that might differ slightly from other literature. Next, I start introducing the LWE
problem in section 3. Based on a cryptosystem that can be reduced to the LWE problem,
practical applications of the LWE problem are introduced. In this section I will also define
some different forms of the LWE problem that occur in practice and how they correlate. As it
turns out, the best currently known attacks against the LWE problem use methods to reduce
the problem to a lattice problem. In section 4, I introduce lattices and generate a toolbox to
perform lattice based attacks on the LWE problem. With this toolbox we use section 5 to
describe two important attacks that are considered to be the most competitive known attacks,
the primal and dual attack. In this section I also discuss conditions that are imposed on the
attack parameters in order to be successful and test the heuristics that are used to determine
these parameters. Then in section 6 I discuss some optimizations of the LWE problem that
make the LWE problem more suitable for cryptographic purposes. The main optimization that
is discussed is the use of secrets with low Hamming weight (i.e., the number of nonzero entries
of the secret). Aditionally, I will also introduce a hybrid attack that exploits this low Hamming
weight, and might outperform the primal and dual attack. In section 7 I further analyze this
attack and answer the question how low a designer of a parameter set can go in Hamming
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weight without losing too much security. Finally, In section 8 I discuss the value of my work
and place the results in context.

1.3 My contributions

In this thesis I try to introduce the reader to as much as possible different forms of and at-
tacks against the LWE problem. I have attempted to explain the existing literature as easily
as possible to a reader unfamiliar with the problem or applications. First, In sections 3-5 I
have summarized and combined some important literature on the LWE problem, the relevant
literatature on lattices and two of the most important attacks against the LWE problem. In
these sections I tried to make the literature intuitively understandable for the reader with small
scale examples and justifications of the given heuristics. Second, In section 5 I also applied the
known attacks to LWE problems with parameters chosen in such a way that the attacks are
still feasible for a simple computer. At the end I also applied my toolbox to make estimates on
the cost of an attack against the parameters of NIST candidates and compared them against
the security claims of the authors of the proposed cryptosystems. Finally, in sections 6 and 7
I introduce and discuss an LWE optimization: sparse secrets. After reading these sections, the
reader should have some feeling on how these sparse secrets affect the general security of the
system. The aim of these sections is to show that the reader can properly pick a sparse enough
Hamming weight, without losing too much security.
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2 Terminology and Notation.

The following terminology and notation is used throughout this whole paper:

Znq Set of n-dimensional vectors with integer coefficients modulo q.
n Dimension of the LWE problem.
m Number of Samples.
q Modulus.
h Hamming weight of a vector, i.e. number of nonzero entries.
σ Standard deviation.
β Block size of a BKZ algorithm.
δ0 Hermite factor.
k Hybrid dimension.
log(x) Logarithms are base 2, unless clearly indicated otherwise.
χ Some probability distribution centered around 0.
e←$ χ e is a random sample from the probability distribution χ.
A← Func() Assignment of the result of the function Func() to A.
A Matrices denoted by capital boldface letters.
ai i-th column of A.
aij Entry of A in the i-th row and j-th column.
a Vectors denoted by boldface lowercase letters.
ai i-th entry of a.
a · b Inner product between a and b: aTb.
||a|| Length of the vector a:

√
a · a.

AT Transponentiation of matrix A.
In n-dimensional identity matrix.
0m×n m times n all zero matrix. In case the context makes the dimension obvious, the

subscript is omitted.
(A||B) The matrix obtained by appending B to A. With slight abuse of notation we will

use this also for appending two column vectors underneath each other.
dxc Rounding a real number x ∈ R to the nearest integer.
B(x, R) A ball in Rn centered at x of radius R.
U(S) Uniform probability distribution over a finite set S.
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3 Learning with Errors.

3.1 LWE based Cryptosystems.

To introduce the Learning with Errors (LWE) problem and its practical relevance, I start by
describing a supposedly quantum secure encryption scheme. As it turns out later in this section,
one is able to reduce the problem of breaking this cryptosystem to solving the Learning with
Errors problem. This problem is better described in the publicly available literature. I picked
one of the alternative round 3 submissions for the NIST post-quantum standardization process
[41], FrodoKEM. This is a key encapsulation mechanism that relies on the hardness of one of
most basic forms of the LWE-problem. A brief simplified version of encryption and decryption
is described below.

The cryptosystem uses two functions encode ec(·) and decode dc(·) that encode and decode a
message k into a integer matrix (with some modulus q) such that dc(ec(k) +N) = k for a small
enough integer error matrix N. The system uses matrices that have dimensions n, n̄, m̄, where
n̄, m̄ ≡ 0 mod 8. Alice constructs a private key, a matrix S ∈ Zn×n̄q . Also she constructs the
public key consisting of two matrices, (A,B = AS + E) ∈ Zn×nq × Zn×n̄q , where E ∈ Zn×n̄q is a
small random matrix.

Algorithm 1: Frodo.KeyGen()

Input: None;
A←$ generateUniformMatrix();
S,E←$ generateSmallMatrix();
B← AS + E;
Output: Public key pk ← (A,B), Secret key sk ← S;

Bob encrypts a message µ by creating three small matrices S′,E′ ∈ Zm̄×nq ,E′′ ∈ Zm̄×n̄q and
computing B′ = S′A + E′ and V = S′B + E′′. The ciphertext he sends to Alice is then the
pair (C1,C2) = (B′,V + ec(µ)).

Algorithm 2: Frodo.Enc()

Input: Public Key pk, Message µ ;
S′,E′,E′′ ←$ generateSmallMatrix();
B′ ← S′A + E′;
V← S′B + E′′;
Output: Ciphertext (C1,C2)← (B′,V + ec(µ));

Alice can decode this message by calculating dc(C2 −C1S).

Algorithm 3: Frodo.Dec()

Input: Ciphertext(C1,C2), Secret Key sk ;
Output: Plaintext µ′ ← dc(C2 −C1S);

This gives correct decoding with high probability as

dc(C2 −C1S) = dc(V + ec(µ)− S′AS−E′S)

= dc(S′B + E′′ + ec(µ)− S′AS−E′S)

= dc(S′AS + S′E + E′′ + ec(µ)− S′AS−E′S)

= dc(S′E + E′′ + ec(µ)−E′S)
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So for small enough E,E′,E′′,S,S′, we have correct decoding.
For the full detailed description of this algorithm see [6]. A reader willing to become more
familiar with encoding and decoding can use the Sage implementation as stated in Appendix
A.1.

Now I explain how this relates to the LWE problem. Stated extremely simply, the LWE problem
is solving an m-dimensional system of linear equations modulo q in n variables, where a small
random portion of noise is added to each equation. To see that the security of FrodoKEM relies
on the (later to be formalized) LWE problem, a reduction of FrodoKEM to the LWE-problem
is stated.

Proposition 1. An algorithm that solves the LWE-problem, breaks Frodo Encryption.

Proof. An algorithm can break the system, if given the public key pk = (A,B) it can output
the secret key sk = S. Let ((A,B),S)← Frodo.KeyGen(A). Split the matrices B,S,E into n̄
column vectors with n entries:

(
b1 b2 . . . bn̄

)
= A

(
s1 s2 . . . sn̄

)
+
(

e1 e2 . . . en̄
)

Now for each i, bi = Asi + ei is a system of n equations in n variables with some small error
ei,j in each equation, which in fact is the LWE problem. Hence, an adversary capable of solving
the LWE problem is capable of finding the secret key sk of the system, which concludes the
reduction.

Attacking Frodo using exhaustive search. An interested reader may wonder how hard
it is to simply search through all possible secrets. The following paragraph explains that this
is very hard for parameters used in practice. However, it might be somewhat confusing at this
point in the thesis, as some results from later in the thesis are already used to describe this.
For the proposed parameters for 128-bit security in [6] (n = 640, q = 215, σ = 2.8), we see that
exhaustive search with success probability ε as described in Theorem 44 needs

m =
log(1− ε)− n log(2tαq + 1)

log(2tα)

=
log(1− ε)− 640 log(2 · 3√log 640 · 2.8 ·

√
2π + 1)

log(2 · 3√log 640 · 2.8·
√

2π
215 )

=
log(1− ε)

log(2 · 3√log 640 · 2.8·
√

2π
215 )

− 640 log(2 · 3√log 640 · 2.8 ·
√

2π + 1)

log(2 · 3√log 640 · 2.8·
√

2π
215 )

≈ log(1− ε)
−7.99

+ 562

(1)

samples. For ε = 0.99, the first term rounded up is 1, thus one needs 563 + 640 samples and
the attack has time complexity 1203(2 · 3√log 640 · 2.8 ·

√
2π + 1)640 · 1280 ≈ 24509. This is

really far from the best known attack that is mentioned in the paper of Frodo, which has time
complexity 2145. An alternative approach could be taking smaller values for ε and repeating
this experiment until a solution is found. However, the first term in equation 1 gets smaller by
decreasing ε and this term will always fall between 0 and 1. Hence, this has a negligible effect
on the number of samples needed and hence a negligible effect on the runtime. On the other
hand, Increasing ε to approach 1 does increase the expected runtime.

3.2 Introduction to the LWE problem.

Many presumably quantum-proof cryptographic systems are based on the Learning with Errors
problem [46]. The original paper on the LWE problem was published by Oded Regev in 2009
[45].
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In the LWE problem, an adversary is challenged to solve a m-dimensional system of linear
equations in n variables, with some modulus. The constant term in each equation is called the
error term. In this problem the error distribution χ of the error term plays a major role. Every
probability distribution that is centered around zero can be used for this. Typically, one uses
for χ the gaussian distribution with mean µ = 0 and standard deviation σ, where each sample
is rounded to the nearest integer.

Definition 2 (LWE-Distribution). Let n, q ∈ Z and χ a probability distribution. Given a
secret s ∈ Znq , denote by Ln,q,χ the LWE-Distribution on Znq × Zq. That is, the probability
distribution by taking a ∈ Znq uniformly at random, e according to χ and output sample
(a,a · s + e) ∈ Znq × Zq.
Remark. In other literature, it is sometimes common to define the gaussian distribution based
on a parameter α such that the standard deviation of the gaussian distribution is αq/

√
2π.

Definition 3 (Search LWE-problem). Given m LWE-samples (ai,ai · s + ei), we form a matrix
and vector where each sample corresponds to a row, i.e.:

(A,As + e) =







a1

a2

...
am


 ,




a1 · s + e1

a2 · s + e2

...
am · s + em





 ∈ Zm×nq × Zmq .

An algorithm that given this pair can output the vector s ∈ Znq , is said to solve the Search
LWE-problem.

Example 4. An example of the LWE problem for q = 101, n = 5,m = 7 and χ the rounded
gaussian distribution with σ = 1 is solving the following:




2 86 96 39 57
15 73 62 6 96
56 22 4 26 19
10 68 92 83 51
5 63 56 47 38

80 59 99 63 55
28 88 46 96 74




˙




s1

s2

s3

s4

s5



≈




65
49
24
99
59
26
8




It has solution s = (60, 63, 11, 8, 4)T . Once this solution is found, one can deduce with simple
linear algebra that the error term was e = (1, 1, 0, 1,−2,−2, 1)T .

An implementation of this problem in Sage can be found in appendix A.2. The hardness of this
problem lies in the small error term. If not for the error term e, one could simply apply gaussian
elimination to solve this problem. However, the small error term yields huge differences in the
solution.

Example 5. Suppose I try to solve the above problem, ignoring the small error. In order to
apply gaussian elimination, I only need n samples, so I discard the latter m− n. A quick Sage
calculation yields the following:

1 sage : A
2 [ 2 86 96 39 57 65 ]
3 [ 15 73 62 6 96 49 ]
4 [ 56 22 4 26 19 24 ]
5 [ 10 68 92 83 51 99 ]
6 [ 5 63 56 47 38 59 ]

1 sage : A. eche lon form ( )
2 [ 1 0 0 0 0 15 ]
3 [ 0 1 0 0 0 97 ]
4 [ 0 0 1 0 0 73 ]
5 [ 0 0 0 1 0 19 ]
6 [ 0 0 0 0 1 16 ]

From this I conclude s = (15, 97, 73, 19, 16)T . Comparing this with the actual secret from which
I generated the samples, I see that only a small error term resulted in a huge mistake in the
solution.
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3.3 Variations on the LWE problem.

The LWE problem occurs in several slightly different forms in the literature. The following
section is used to define some forms of the problem, and to sketch the resemblance between the
different versions.

3.3.1 Search LWE versus Decision LWE.

A slightly different version of the search LWE problem is the decision LWE problem.

Definition 6 (Decision LWE-problem). Given m pairs (ai, bi) ∈ Znq × Zq either all from the
LWE-distribution Ln,q,χ or from the uniformly random distribution: U(Znq × Zq). An algo-
rithm is said to solve the decision LWE-problem if it can distinguish whether the samples were
uniformly random samples or LWE-samples.

Definition 7 ((Adversary’s) Advantage). The advantage ε of an adversary A in a distinguishing
attack between outcome Ln,q,χ and U(Znq × Zq) is defined

ε =
∣∣Pr
[
A(Lmn,q,χ)|Lmn,q,χ

]
− Pr

[
A(Lmn,q,χ)|U(Znq × Zq)m

]∣∣

where Pr
[
A(Lmn,q,χ)|U(Znq × Zq)m

]
should be interpreted as the probability that the adver-

sary decides that the samples are from the LWE distribution, given samples from the uniform
distribution.

Remark. An advantage of 0 implies that an adversary can do no better than random guessing,
an advantage of 1 implies that an adversary can perfectly distinguish between the cases.

Given a pair (a, b) from the LWE-distribution and x, y ∈ Zq uniformly random. Denote by si
the i-th coordinate of s. Consider the pair

(a′, b′) :=
(

(a1, a2, . . . , ai−1, ai + x, ai+1, . . . , an) , b+ xy
)
.

Consider two cases:

� y = si: Then the pair (a′, b′) is a pair from the LWE-distribution.

� y 6= si: If q is a prime, then the pair (a′, b′) is a uniformly random sample, as a′, b are
uniformly random, and multiplication by y maps uniformly random samples to uniformly
random samples.

Proposition 8. Let 2 ≤ q ≤ poly(n) be a prime number. An algorithm that solves the decision
LWE problem in polynomial time, can solve the search LWE problem in polynomial time.

Proof. Given m LWE samples (ai, bi). For each of the n coordinates of s and each pair (ai, bi),
feed them transformations (a′i, b

′
i) = (ai+(0, . . . , 0, x, 0, . . . , 0), bi+xy) as above to the algorithm

that solves the decision LWE problem for all q possible values of y. For each coordinate j, let
y′j be the value of y for which the algorithm decides that these are LWE-samples. Pick sj = y′j
for each j, and the secret s = (s1, s2, . . . , sn) is recovered in polynomial time.

For this proof, q is required to be prime to ensure that b+ xy is uniformly random for y 6= si.
In practice, a composite q will also suffice for this property: see lemma 1 of [9] or lemma 3.3 of
[42].

Proposition 9. Given an adversary that solves search LWE, an adversary can solve decision
LWE.

Proof. Suppose an adversary is given access to an algorithm that given m LWE samples returns
the secret vector s. Given m samples (ai, bi), either LWE or uniformly random, and feed these
to our algorithm. If it returns a secret s, do the following m calculations: ei = ai · s − bi and
checks whether this was sampled from the error distribution or not. If it was sampled from
the error distribution, the samples were LWE samples, if the algorithm returns no vector s or
the values ei are not from the error distribution, the adversary was given uniformly random
samples.
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3.3.2 Secret Distribution.

In the definition of this problem, the secret s was chosen from the uniform distribution. At
first sight, taking the secret s from the uniform distribution on Znq yields a safer system than
taking the secret s sampled from χ. This is because there are fewer possibilities for each entry
in the latter distribution and hence fewer possible secrets. It turns out that this is not the case,
see chapter 3 of [46]. Intuitively, this can be viewed in the following way: given n samples of
the LWE-distribution in matrix form, (A,b), we have s = A−1(b− e). Hence finding the error
(which is sampled from χ) is equivalent to finding the secret. Note that if A is not invertible,
one could replace samples until it is.

If there is a reference to LWE or uniform secret LWE, the LWE problem has a secret distributed
under a uniform distribution. If the secret is drawn from the same distribution as the error, it
is called (Hermite) normal form LWE. A third form of LWE that can be found in literature,
is small-secret LWE. In this version each coordinate of the secret is drawn from a (small) set,
say {−1, 0, 1}. We could either have that the probability of sampling a 1 or a −1 equals p,
the probability of sampling a 0 is 1 − 2p for some p ∈ [0, 1

2 ], or that the vector s has a fixed
Hamming weight h (i.e. the number of nonzero entries of s).

Reduction from Uniform Secret LWE to LWE normal form. For simplicity, suppose
matrix multiplication can be done in O(n3) operations (actually, one can do better, see for
example [52]). In lemma 1 of [5] one could find a way to reduce a uniform secret LWE problem
to a problem in LWE normal form:

Lemma 10. At the cost of 2n2 operations, loss of ≈ n uniformly random samples and a
precomputation of O(n3), one could construct n LWE normal form samples.

Proof. Given n uniform secret LWE samples,

(A,b) = (A,A · s + e) ∈ Zn×nq × Znq

If the matrix A is not invertible, replace samples until it is. Then precompute A−1, at the cost
of O(n3). Now take n new uniformly random samples:

(A′,b′) = (A′,A′ · s + e′) ∈ Zn×nq × Znq

Compute

A′A
−1

b− b′ = A′A
−1

(As + e)−A′s− e′

= A′s + A′A
−1

e−A′s− e′

= A′A
−1

e− e′

Then n small secret samples are constructed:

(A′A
−1
,A′A

−1
b− b′) = (A′A

−1
,A′A

−1
e− e′)

These are normal form LWE samples, as e is the error vector from the LWE samples. Note
that the error distribution is symmetric around zero, hence the minus sign doesn’t affect the
distribution of the error.

Remark. Solving the new normal form LWE problem yields the solution of the original prob-
lem, as the secret of this new problem is exactly the error term of the original uniform secret
LWE problem. With this error term we can calculate s = A−1(b− e) and recover the secret of
the original problem.

More on secret distribution and equivalence between the several options can also be found for
example on page 600 of [9].
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3.4 Ring-LWE.

For a cryptographic system, at least n LWE samples (a, b) = ((a0, a1, . . . , an−1), b) ∈ Znq × Z
are required. This implies that public key sizes are of order at least n2. A possibility to reduce
this, is to add some structure in the public key. Define an operation

σ : (a0, . . . , an−1) 7→ (−an−1, a0, . . . , an−2).

One could take only one LWE sample (a, b) = ((a0, a1, . . . , an−1), b), and take for the n − 1
samples the following: (ai, bi) = (σi(a), σi(a) · s + ei) with ei distributed according to the error
distribution. In the following paragraph I explain that this is equivalent to replacing the ring
Znq with Zq/〈xn + 1〉.

Let f(x) = xn + 1, where n is a pure power of 2, to ensure this polynomial is cyclotomic.
A cyclotomic polynomial has several nice properties that have been proven useful for crypto-
graphic purposes [38]. Some more on the choice of polynomial is found in Section 6.1. With
this particular form, the polynomial is maximally sparse and polynomial arithmetic modulo
f(x) can be done efficiently. We let q ≡ 1 mod 2n a sufficiently large prime modulus, to ensure
that the noise is small relative to the modulus.

Let Rq = Zq[x]/〈f(x)〉 denote the ring of polynomials with coefficients in Zq modulo f(x).
Analogous to the LWE problem, let s = s(x) ∈ Rq be the secret, and let a RLWE sample
consist of a pair (a, a · s + e), where a ∈ Rq uniformly random, and each coordinate of e in-
dependent identically distributed by χ. The original article on RLWE was written in 2010 by
Lyubashevsky, Peikert and Regev [37].

Example 11. Take n = 4, q = 17. Then an example of the RLWE problem is solving the
following equation in R17 = Z17/〈x4 + 1〉

(6x3 + 6x2 + 4x+ 11) · (s3x
3 + s2x

2 + s1x+ s0) ≈ (9x3 + 2x2 + 4x+ 1)

Here, the solution would be s = 15x3 + 12x2 + 13x + 10, and the small error term would be
e = −2x3 + x2 − 1.

To sketch the reduction from RLWE to LWE with the samples as earlier in this paragraph, I
wrote out the two for a small n, e.g. 4: Then LWE is instantiated by (A,A · s + e):




a0 a1 a2 a3

−a3 a0 a1 a2

−a2 −a3 a0 a1

−a1 −a2 −a3 a0


 ·




s3

s2

s1

s0


 ≈




b3
b2
b1
b0




From which I obtain the following equations:

a0s3 + a1s2 + a2s1 + a3s0 ≈ b3
−a3s3 + a0s2 + a1s1 + a2s0 ≈ b2
−a2s3 − a3s2 + a0s1 + a1s0 ≈ b1
−a1s3 − a2s2 − a3s1 + a0s0 ≈ b0

(2)

Conversely, RLWE is instantiated by polynomials (a(x), a(x)s(x) + e(x)), where a(x) = a0 +

11



a1x+ a2x
2 + a3x

3 ∈ Rq, s(x) = s0 + s1x+ s2x
2 + s3x

3 ∈ Rq. Then

a(x)s(x) =(a0 + a1x+ a2x
2 + a3x

3)(s0 + s1x+ s2x
2 + s3x

3)

=a0s0 + a0s1x+ a0s2x
2 + a0s3x

3 + a1s0x+ a1s1x
2 + a1s2x

3 + a1s3x
4

+ a2s0x
2 + a2s1x

3 + a2s2x
4 + a2s3x

5 + a3s0x
3 + a3s1x

4 + a3s2x
5 + a3s3x

6

=a0s0 + a0s1x+ a0s2x
2 + a0s3x

3 + a1s0x+ a1s1x
2 + a1s2x

3 − a1s3

+ a2s0x
2 + a2s1x

3 − a2s2 − a2s3x+ a3s0x
3 − a3s1 − a3s2x− a3s3x

2

=(a0s0 − a1s3 − a2s2 − a3s1) + (a0s1 + a1s0 − a2s3 − a3s2)x

+ (a0s2 + a1s1 + a2s0 − a3s3)x2 + (a0s3 + a1s2 + a1s2 + a2s1 + a2s0)x3

≈b0 + b1x+ b2x
2 + b3x

3

(3)

If I compare the coefficients of equation 3, I perfectly obtain the equations in 2. A simple
implementation of RLWE can be found in appendix A.3.
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4 Lattices.

The most efficient known attacks to the LWE problem make use of the fact that solving the
LWE problem can be interpreted as certain lattice problems. I use this section to explain how
to reduce the LWE problem to several lattice problems. I mainly follow the approach of [15].

4.1 Lattices.

In order to discuss lattices, a few definitions are stated.

Definition 12. An m-dimensional lattice Λ ⊂ Zm is a full-rank additive subgroup of Zm.1

The distance between a lattice Λ and a point a ∈ Rm is defined d(a,Λ) := minx∈Λ ||a − x||.
Furthermore λ1(Λ) := mina∈Λ\{0} ||a|| is the length of a smallest nonzero vector in the lattice.

Definition 13 (Bounded Distance Decoding Problem). Given a lattice Λ, a point a ∈ Zm such
that d(a,Λ) < 1

2λ1(Λ). The Bounded Distance Decoding (BDD) problem is finding the lattice
point x ∈ Λ closest to a.

In practice, the hardness of the bounded distance decoding problem increases rapidly as the
dimension grows. For illustrational purposes, an example of the BDD problem in two dimensions
is given which is considered computationally “easy”.

Example 14. Given the lattice Λ :=

{
a ·
(

2
2

)
+ b ·

(
2
−2

)
|a, b ∈ Z

}
⊂ R2, see figure 1.

The point a is closer than half the minimum distance to the lattice, and hence the Bounded
Distance Decoding problem is reducing this point to the point (2, 2) ∈ Λ, the closest point to a
in the lattice.

LWE problem in lattices. Definitions 15 and 16 form the basis of the connection between
Lattices and the LWE problem.

Definition 15. For a matrix A ∈ Zm×nq with m ≥ n such that the first n rows form an
invertible matrix, we define the lattice

L(A) := { z ∈ Zm | ∃s ∈ Zn : z = As mod q } ⊂ Zm

Note that indeed this produces a subgroup: as z, z′ ∈ L(A) implies z = As mod q, z′ = As′

mod q for some s, s′ ∈ Zm. Therefore z + z′ = As + As′ = A(s + s′) mod q, and s + s′ ∈ Zn.
Hence L(A) is closed under addition. Trivially associativity holds, 0 ∈ L(A) and for any
z ∈ L(A) we also have −z ∈ L(A).
To show that this defines indeed a lattice, it remains to check that it is full-rank (i.e. m) . To

do so, split the matrices into blocks. Let A =

(
A1

A2

)
with A1 ∈ Zn×nq ,A2 ∈ Z(m−n)×n

q where

we suppose A1 is invertible. Similar to this, z =

(
z1
z2

)
with z1 ∈ Znq , z2 ∈ Zm−nq . Suppose a

point lies in our lattice: z ∈ L(A). Then, by definition there exists s ∈ Znq such that z = As
mod q. In block form, such a point satisfies both

z1 = A1s mod q

z2 = A2s mod q.

But then s = A1
−1z1 mod q and hence z2 = A2A1

−1z1 mod q. From the latter equation, I
conclude that there exists a v ∈ Zm−nq such that

z2 = A2A1
−1z1 + qv

1In other literature, it is common to define a lattice as a subgroup of Rm. For the purposes of this thesis, it
suffices to define a lattice as a subgroup of Zm.
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(0,0)

(0,4)

(2,2)

(4,0)

(4,4)

(6,2)

1
2
λ1(Λ)

a

d(a,Λ)

Figure 1: The Bounded Distance Decoding problem visually.

Now the columns of the following matrix form a basis for L(A):

B =

(
In 0

A2A1
−1 qIm−n

)
(4)

As

B

(
z1
v

)
=

(
z1

A2A1
−1z1 + qv

)
=

(
z1
z2

)

I conclude that B is indeed an m-dimensional basis of L(A).

Suppose one is given m LWE samples in matrix form: (A,As + e) ∈ Zm×nq × Zmq . Then
x = As is an element of the lattice L(A). As the error term follows a gaussian distribution, the
error is very likely to fall into the first several standard deviations away from the mean. For
LWE parameters typically used for cryptographic purposes, this is significantly smaller than
λ1(L(A)) [15]. Therefore, with high probability the closest lattice point to As+e is x. This can
be seen as a BDD problem. If one is able to solve this, the error term in the original problem is
eliminated and hence if A is invertible one is able to recover the secret vector s and thus solve
the search LWE problem.

Definition 16. For a matrix A ∈ Zm×nq , define the lattice

L⊥(A) := { (yT ||zT )T ∈ Zn × Zm | yT = zTA mod q } ⊂ Rm+n

Proposition 17. The dual lattice L⊥(A) is generated by the columns of

B =

(
qIn AT

0m×n Im

)
.

Proof. Let

Λ(B) :=

{
B

(
b1

b2

)
| b1 ∈ Zn,b2 ∈ Zm

}
=

{(
qb1 + ATb2

b2

)
| b1 ∈ Zn,b2 ∈ Zm

}

14



To show that any

(
v
w

)
=

(
qb1 + ATb2

b2

)
∈ Λ(B) is also an element of L⊥(A), consider

vT −wTA = (qb1 + ATb2)T − b2
TA

= qb1
T + b2

TA− b2
TA

= qb1
T

Hence I conclude that vT = wTA mod q, and thus Λ(B) ⊆ L⊥(A). On the other hand let
(vT ||wT )T ∈ L⊥(A), thus there exists x ∈ Zn such that

vT = wTA + qxT . (5)

Pick b1 = x,b2 = w. Then

B

(
b1

b2

)
= B

(
x
w

)
=

(
qx + ATw

w

)

Combining with the transposed version equation 5 I conclude that (vT ||wT )T ∈ Λ(B). Thus
L⊥(A) ⊆ Λ(B), and hence conclude that L⊥(A) is spanned by the columns of B.

Definition 18 (Short Integer Solution Problem). Given a matrix A ∈ Zm×nq , the short integer

solution (SIS) problem is finding a vector 0 6= v ∈ Zm such that vTA = 0 mod q and ||v|| ≤ β
for a given β < q ∈ Z.

Proposition 19. An algorithm that solves the BDD problem solves the SIS problem.

Idea behind Proof. Given basis B := {b1, . . . ,bn}, define Bi := {b1, . . . ,bi−1, 2bi, . . . ,bn}.
For each 1 ≤ i ≤ n, solve the BDD problem for lattice L⊥(Bi) and vector bi and call the given
output vector xi. Then, pick the smallest vector from the set {xi − bi} to obtain the smallest
vector in the lattice B.

As this proposition is only used to describe the similarity between the BDD and SIS problem
and the complete proof doesn’t add any relevant information for the purpose of this thesis, the
details are omitted. An interested reader can find them in [39].

Proposition 20. Given an algorithm that solves the SIS problem and an algorithm that dis-
tinguishes m Gaussian samples from uniformly random samples, one can solve decision LWE.

Proof. Suppose there are m samples given, written in matrix form (A,b) ∈ Zm×nq ×Zmq , where
either b = As + e or b is uniformly random. Now, by assumption, the algorithm finds a
small vector v ∈ L⊥(A). In case b is uniformly random, v · b is also uniformly random (
For composite q, this is not exactly uniformly random, but in practice we can assume it is).
In case b = As + e, and v is a lattice point, v · b = v · As + v · e = v · e. As e follows a
Gaussian distribution, by assumption one could distinguish this from uniform and solve the
decision problem.
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4.2 Bounded Distance Decoding.

In the next section, the Gram-Schmidt orthogonalization process is used several times.

Theorem 21 (Gram-Schmidt Orthogonalization method). Given a basis {b1, . . . ,bm} of an
m-dimensional subspace of Rn, define

b∗1 = b1

b∗2 = b2 − µ2,1b1 where µ2,1 =
b2·b∗1
b∗1·b∗1

...

b∗m = bm −
∑
i<m µm,ibi where µm,i =

bm·b∗i
b∗i ·b∗i

Then {b∗1, . . . ,b∗m} is an orthogonal basis of the same subspace.

Proof. See [44].

Remark. These bases span the same subspace over Rn, but these bases do not necessarily span
the same lattice.

Babai’s Nearest Planes. A simple algorithm for solving the BDD problem is the Babai
Nearest Plane Algorithm as described in algorithm 4. There are several claims in this section
that are not proven. The literature that is followed in this section are [51] and [26]. The first
step of the algorithm is to apply the LLL algorithm to the basis. The reader will become
familiar with this concept in section 4.3.1

Algorithm 4: Babai’s nearest plane Algorithm

Input: Basis vectors {b1, . . . ,bn},a ∈ Znq ;

Step 1: Apply the LLL algorithm to the basis {b1, . . . ,bn};
Step 2: Compute the corresponding Gram-Schmidt basis {b∗1, . . . ,b∗n};
an ← a for i = n to 1 do

`i ← ai · b∗i /||b∗i ||2;
yi ← d`icbi;
ai−1 ← ai − (`i − d`ic)b∗i − d`icbi;

end
return b = y1 + . . .+ yn;

Claim 22 (Runtime of Babai’s algorithm). Given a basis {b1, . . . ,bn} of a lattice Λ with
B := max{||b1||2, . . . , ||bn||2} and a point a ∈ Λ. Then algorithm 4 runs in O(n5(logB)2)

Claim 23 (Correctness of Babai’s algorithm). Given a basis {b1, . . . ,bn} of Λ and a ∈ Rn. If
there exist a vector b ∈ Λ such that ||a − b|| ≤ 1

2 min{||b∗i ||}, then algorithm 4 outputs b on
input a.

Note that this implies that the decoding of b = As + e to As is correct if ||As + e −As|| =
||e|| ≤ 1

2 min{||b∗i ||}. The correctness of decoding using this algorithm is thus dependent on
the (standard deviation of the) error distribution and the length of the shortest vector in the
Gram-Schmidt basis of the lattice.

Proposition 24. Given a basis {b1, . . . ,bn} of Λ and a ∈ Rn. The output b ∈ Λ of algorithm
4 lies in the parallelepiped

{
a +

n∑

i=1

`ib
∗
i | `i ∈ R, with |`i| ≤

1

2

}
.
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(0,0)

(2,2)

a

b1b2

(a) Initial Problem

(-2,2)

(0,0)

(2,2)

a2

a1b1b2
`2b2

(b) Round 1, `2 = −0.875,y2 = −b2

(-2,2)

(0,0)=a0

(2,2)

a2

b1b2b2 `1b1

(c) Round 2, `1 = 0.725,y1 = b1

(-2,2)

(0,0)

(2,2)

ba2

b1b2

(d) Output: b = d`1cb1 + d`2cb2

Figure 2: Example of Babai’s nearest plane algorithm.

Proof. In each step of the algorithm, ai−1 = ai− (`i−d`ic)b∗i −d`icbi (and a0 = 0). Therefore

0 = a0 = a−
n∑

i=1

(`i − d`ic)b∗i − d`icbi

As b =
∑n
i=1d`icbi, conclude that

b = a−
n∑

i=1

(`i − d`ic)b∗i

Where clearly |`i − d`ic| ≤ 1
2 for each 1 ≤ i ≤ n.

Corollary 25. Given a basis {b1, . . . ,bn} of Λ and a ∈ Rn. The output b ∈ Λ of algorithm 4
satisfies ||a− b|| ≤ 1

4

∑n
i=1 ||b∗i ||.

Proof. This follows immediately from proposition 24.

Another way to find a point in a lattice that is close to the target point is the Babai’s
rounding technique. Let {b1, . . . ,bn} be a basis of lattice Λ ⊂ Zn, given a ∈ Zn write
a =

∑n
i=1 cibi, with ci ∈ R as a linear combination over the real numbers of the basis

vector. The babai’s rounding technique is rounding each coefficient to the nearest integer:
a′ =

∑n
i=1dcicbi ∈ Λ

Claim 26. Given an orthogonal basis of a lattice Λ. Then Babai’s nearest plane algorithm and
Babai’s rounding technique both give a correct solution to the BDD problem.

Example 27. Given lattice Λ := {a · (2, 2)T + b · (−2, 2)T |a, b ∈ Z} and a = (3.2,−0.3) ∈ R2.
The steps of the Babai’s nearest plane algorithm are given in figure 2.

4.3 Lattice Reduction.

Now that LWE can be considered as a lattice problem, techniques used on lattices can be used
to solve the LWE problem. A lattice is not uniquely determined by it’s basis: Different bases
can refer to the same lattice. Typically, a lattice problem is hard because it doesn’t have a nice
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(0,0)
v1

v2

u1

u2

Figure 3: Basis Reduction of a two dimensional lattice and their corresponding fundamental
parallelepipeds.

basis. To easily do calculations on lattices , one prefers a lattice with as small as possible basis
vectors, as close as perpendicular as possible to each other. Now I formalize what it is to be a
good basis.

Definition 28 (Fundamental paralellepiped). For a lattice with basis B = {b1,b2, . . . ,bn},
the fundamental paralellepiped is defined as

P (B) := { B · x | x ∈ [0, 1)n }

The volume of the fundamental paralellepiped is defined vol(P (B)) :=
√

det(BTB).

To valuate perpendicularness of a basis, is to compare the product of the length of the basis
vectors to the volume of the fundamental paralellepiped they define. This is done by the
Hermite factor.

Definition 29 (Hermite factor). The Hermite factor δn0 of a lattice with basis B, which has
shortest basis vector b1, is defined as

δn0 =
||b1||

vol(P (B))1/n
.

δ0 is referred to as the root Hermite factor, and log δ0 as the log root Hermite factor.

Example 30. For a visual representation of this example, see figure 3. Given the lattice
spanned (with integer coefficients) by v1 = (18, 1)T ,v2 = (34, 3)T . This basis has Hermite
factor δ2

0({v1,v2}) ≈ 4. A nicer basis for the same lattice would be {u1 = (−2, 1)T ,u2 =
(4, 8)T }, which has Hermite factor δ2

0({u1,u2}) = 0.5 and much smaller basis vectors.

4.3.1 LLL Algorithm.

In 1982, Lenstra, Lenstra and Lovász found an algorithm that reduces a basis of a lattice into
a nice basis. They qualify a nice basis if it is an LLL-reduced basis. See [35].

Definition 31 (LLL-reduced basis). Let B = {b1, . . . ,bn} a basis for a lattice Λ, B∗ =

{b∗1, . . . ,b∗n} its corresponding Gramm-Schmidt orthogonal basis and let µi,j :=
bj·b∗i
b∗i ·b∗i

. B

is said to be LLL-reduced if :

1. For all 1 ≤ j < i ≤ n we have µi,j ≤ 1
2 .

2. For each 1 ≤ i < n, ||b∗i+1 + µi+1,ib
∗
i ||2 ≥ 3

4 ||b∗i ||2. 2

LLL-reduced bases have certain nice properties that are stated (not proven) below.

2More general definitions of LLL reduced basis can be found in literature, with a parameter 0 < δ < 1. For
simplicity we use the specific case δ = 3

4
.
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Claim 32. If {b1, . . . ,bn} is a LLL-reduced basis for the lattice Λ, then the following state-
ments hold:

(1) ||b1|| ≤ 2
n−1
2 λ1(Λ).

(2)
∏n
i=1 ||bi|| ≤ 2

n(n−1)
4 det(B)

By this, an LLL-reduced basis has a basis vector that differs at most an exponential factor in
the dimension of the lattice from the actual shortest vector in the lattice.

Algorithm 5: LLL Algorithm

Input: Basis vectors {b1, . . . ,bn};
Step 1: Make the algorithm nearly orthogonal ;
for i = 1 to n do

for k = i− 1 to 1 do
bi ← bi − bµi,kebk

end

end
Step 2: Check condition (2);
for i = 1 to n− 1 do

if ||b∗i+1 + µi+1,ib
∗
i ||2 < 3

4 ||b∗i ||2 then
swap bi with bi+1;
Restart step 1 with this new basis;

end

end
Output: LLL-reduced basis {b1, . . . ,bn};

Claim 33 (LLL-algorithm). Given a basis {b1, . . . ,bn} with B := max{||b1||2, . . . , ||bn||2}.
Then algorithm 5 runs in O(n6(logB)3) and reduces this basis to an LLL-reduced basis. [35]

The LLL algorithm constantly updates the basis of a lattice, while it leaves the lattice it defines
unchanged. There are several operations to change a basis, but keep the lattice untouched.
Three of them are, given basis {b1, . . . ,bn}:

(1) Swap two vectors in the basis.

(2) Replace a basis vector bi with −bi.

(3) Replace a basis vector bi, with bi +
∑
j 6=i ajbj where aj ∈ Z. That is, add a integer linear

combinaton of the other basis vectors to it.

Once again this problem is visually illustrated in two dimensions, but keep in mind that this is
not a hard problem in two dimensions.

Example 34. Given lattice Λ spanned by basis B0 := {b1 := (6,−2)T ,b2 := (10,−2)T } ⊂
Z2, see figure 4. Compute µ2,1 = 8

5 6≤ 1
2 , hence this basis isn’t LLL-reduced. Apply the

first round of LLL (with corresponding orthogonal basis {b∗1 = (6,−2)2,b∗2 = (2
5 ,

6
5 )}, and

replace b2 with b2 − 2b1 to obtain the new basis {b1 := (6,−2)T ,b2 = (−2, 2)T }. This basis
however, doesn’t satisfy the second condition, and thus both basis vectors are swapped. We
start the second round with basis B1 = {(−2, 2)T , (6,−2)T }, with corresponding orthogonal
base {(−2, 2)T , (2, 2)T }. As this vector is also in the lattice, the basis is updated to the exact
same basis. It turns out that this basis satisfies the conditions, which may not be a surprise as
this basis was orthogonal.
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(a) First round of the LLL-algorithm
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b∗2

(b) Second round of the LLL-algorithm

Figure 4: LLL algorithm in two dimensions

1 sage : load ( ’ pr ima lat tack . sage ’ )
2 sage : s = gene ra t eSe c r e t ( )
3 sage : A = generateSamples ( )
4 sage : E = generateError (1 )
5 sage : b = A* s + E
6 sage : r e c o v e r S e c r e t (A, b)
7 [ 7 2 ]
8 [ 4 6 ]
9 [ 7 0 ]

Listing 1: Solving a small scale LWE-problem

Example 35. the following Sage code is an example of solving the LWE problem with Babai’s
nearest plane method and LLL-basis reduction. For the file primalattack.sage, see the code
in appendix A.4. However, without seeing the code, one can intuitively guess what each Sage
call in Listing 1 should do. We start with our public key:

pk = (A,As + e) =







95 73 82
98 21 94
26 36 81
55 94 68
13 79 11



,




82
60
7

16
87







From which one makes the lattice spanned by the rows of matrix B (and/or corresponding
LLL-reduced basis B′)

B =




1 0 0 30 39
0 1 0 94 24
0 0 1 16 55
0 0 0 101 0
0 0 0 0 101




B′ =




0 −2 −1 −2 −2
4 0 −1 3 0
0 −3 5 0 1
−3 −3 −2 0 4
10 1 0 −10 10




Which is fed to the Babai nearest plane algorithm with input point As + e. This algorithm

will output As =
(

81 58 7 15 88
)T

. If it is multiplied on the left with (ATA)−1AT ,

the solution is found: (ATA)−1ATAs = s =
(

72 46 70
)T

which was indeed the solution
of the problem.

4.3.2 BKZ Algorithm.

An algorithm that improves the LLL algorithm is the Block Korkin-Zolotarev (BKZ) algorithm.
I use the next section to explain the algorithm and to discuss the properties, following [8] and
[20].
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Definition 36. Given lattice with basis B := {b1, . . . ,bn} Denote by

πi : Rm 7→ span(b1, . . . ,bi−1)⊥

the projection onto the space orthogonal to span(b1, . . . ,bi−1) , where π1 is the identity map.

To get an intuitive understanding of the map πi, refer to the three dimensional example in
figure 5.

Proposition 37. The resemblance between the Gram-Schmidt vectors b∗i of theorem 21 and
the map πi on the basis vectors is the following:

πi(bj) =

{
b∗j −

∑
i≤`<j µ`,ib` if i ≤ j

0 if i > j

Remark. In particular, πi(bi) = b∗i .

Definition 38. Denote a local block L[i,j] by the projective sublattice

L[i,j] := { aiπi(bi) + ai+1πi(bi+1) + . . .+ ajπi(bj) | a` ∈ Z } ⊂ Rn

Note that in this definition the order of the basis vectors really can change the projective
sublattice, as illustrated in Figure 5.

Definition 39 (BKZ-reduced). A lattice basis B = {b1, . . . ,bn} is said to be BKZ reduced
with blocksize β, or BKZβ-reduced, if it is LLL-reduced and for each 1 ≤ j ≤ n it has ||b∗j || =
λ1(L[j,k]) with k = min(j + β − 1, n).3

Remark. The critirium for being LLL reduced is very similar to BKZ2 reduced. In some
definitions used in other literature, they even coincide. See [47].

The BKZ algorithm that outputs a BKZ-reduced basis is given in pseudocode in algorithm 6.
Some more explaination is done in the following paragraph.

This algorithm depends on a block size β, which is constant all the time. Now j denotes the
starting point of the current block, k = min(j + β − 1, n) the endpoint of the current block
and h = min(k + 1, n) denotes the endpoint of the next block. The algorithm begins with the
LLL-algorithm on the basis {b1, . . . ,bn}. After that, it iteratively reduces each local block
L[j,k] such that the first vector of each block is the shortest in the corresponding projective
lattice.

In each iteration, the BKZ algorithm is looking for a vector v ∈ Zk−j+1 that satisfies

||πj(
k∑

i=j

vibi)|| = λ1(L[j,k]).

How this vector is found is described in section 4.3.2, for now it is interpreted as a SVP oracle
that returns without failure the shortest vector in the projected lattice.

� if ||b∗j || > λ1(L[j,k]) then a new vector b :=
∑k
i=j vibi is inserted in the basis between

bj−1 and bj. Now the linear dependence, that is added by this vector is removed by
calling again the LLL algorithm on this generating set {b1, . . . ,bj−1,b,bj, . . . ,bh} to
obtain an LLL reduced basis. Also µ is updated in accordance to the new LLL-reduced
basis. In this case the enumeration was successful.

� If not, apply LLL on the basis {b1, . . . ,bh} and update µ

3Another common used definition in literature is to replace the latter condition for δ||b∗j || ≤ λ1(L[j,k]) for

some 0 < δ < 1
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Figure 5: Projection on the space orthogonal to basis vectors.
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Note that the condition ||b∗j || = λ1(L[j,k]) is equivalent to v = (1, 0, . . . , 0), since λ1(L[j,k]) =

||πj(
∑k
i=j vibi)|| = ||πj(bj)|| = ||b∗j || At the end of each iteration the basis {b1, . . . ,bn} is such

that {b1, . . . ,bh} is LLL reduced. j runs cyclically through all values of n, unless none of the
enumerations were successful. Then the algorithm terminates.

Algorithm 6: BKZ Algorithm

Input: Basis vectors B := {b1, . . . ,bn}, block size β, Gram Schmidt constants
µ = (µi,j) and ||b∗1||, . . . , ||b∗n||;
z ← 0;
j ← 0;
B, µ← LLL(B, µ);
while z < n− 1 do

j ← (j mod n− 1) + 1;
k ← min{j + β + 1, n};
h← min{k + 1, n};
v← Enum(µj,k, ||b∗j ||, . . . , ||b∗k||);
if v 6= (1, 0, 0 . . . , 0) then

z ← 0;

{b1, . . . ,bh}, µ← LLL({b1, . . . ,bj−1,
∑k
i=j vibi,bj, . . . ,bh}, µ);

end
else

z ← z + 1;
{b1, . . . ,bh}, µ← LLL(b1, . . . ,bh, µ);

end

end
Output: BKZβ-reduced basis {b1, . . . ,bn};

In each round the BKZ algorithm is looking for the smallest vector in the projected lattice
L[j,k]. This is a shortest vector problem (SVP) in a lattice of dimension ≤ β.

Enumeration. A way to solve this lower dimension SVP problem is by enumeration, as in
[55] and [49].

Let {b1, . . . ,bn} be a basis of a lattice Λ. Suppose one is looking for a shortest vector x =
x1b1 + . . .+ xnbn, xi ∈ Z in this lattice. One could do this by enumerating all vectors y in the
lattice inside a ball of radius R: ||y|| ≤ R, where R = ||b1||. A shortest vector in this lattice
satisfies ||πi(x)|| ≤ R, for all 1 ≤ i ≤ n. In particular, ||πn(x)|| ≤ R. From that, conclude

R ≥ ||πn(x)||
= ||πn(x1b1 + . . .+ xnbn)||
= ||x1πn(b1) + . . .+ xnπn(bn)||
= ||xnπn(bn)||
= |xn| · ||b∗n||

Hence we found a bound on the absolute value of the n-th coefficient of the shortest vector:
|xn| ≤ R

||b∗n|| . This implies we have finite options for choosing our xn. Now for all possible
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values of xn, we have

||πn−1(x)|| = ||πn−1(x1b1 + . . .+ xnbn)||
= ||x1πn−1(b1) + . . .+ xnπn−1(bn)||
= ||xn−1πn−1(bn−1) + xnπn−1(bn)||
= ||xn−1b

∗
n−1 + xnπn−1(bn)||

= ||xn−1b
∗
n−1 + xn(b∗n − µn,n−1b

∗
n−1)||

= ||(xn−1 − xnµn,n−1)b∗n−1 + xnb∗n||
≤ R

From which is concluded

|xn−1µn,n−1 − xn| · ||b∗n−1|| = ||(xn−1 − xnµn,n−1)b∗n−1||
= ||(xn−1 − xnµn,n−1)b∗n−1 + xnb∗n − xnb∗n||
≤ ||(xn−1 − xnµn,n−1)b∗n−1 + xnb∗n|| − ||xnb∗n||
≤ R− |xn| · ||b∗n||

From this, conclude that xn−1 also lies in a interval of finite length. One can continue this way
all the way up to x1, where each xi lies in a bounded interval:

|xi +

n∑

j=i+1

µj,ixj | · ||b∗i || ≤ R−
n∑

j=i+1

|xj +
∑

`>j

µ`,jx`| · ||b∗i ||

If one wants to find the vector of smallest norm out of this, one can compare the norm of
the vectors that are obtained in the way described above. One way to do this is to create
an enumeration tree: the root node has exactly one child for each possible value of xn. On
their turn, each child has one child for each possible value of xn−1 and so on. At depth n of
this search tree, all possible lattice points y ∈ Λ that have norm ≤ R. If one naively searches
all leaves of this tree for the point with smallest norm, the smallest vector problem is solved.
However, this method is not very efficient. In order to reduce the runtime of this subroutine,
a technique called pruning is used. The main idea of this technique is that it is most likely
for each xi that it lies in the middle of the finite interval. For the search tree that is created,
this implies that the branches that correspond to the extremes of each interval, are “pruned”
to avoid unnecessary large growth of the search tree. This is of course at the cost of the risk of
losing the desired solution, in case the actual solution was pruned. Further reading on pruning
can be found for example in [27].

Sieving. Another technique for solving a shortest vector problem is via sieving. The main
idea behind sieving is to start with a list of vectors in the lattice, and combine these vectors to
smaller vectors, making the lengths of the vectors in the list iteratively smaller.

More formally, let L be a list of N vectors. Let R be a bounding constant such that ||x|| ≤ R
for all x ∈ L and let γ be a constant < 1. Create a new list L′. Then, for all pairs x,y ∈ L2,
x 6= ±y, if ||x± y|| < γR, add this vector (with the corresponding sign) to the list L′.

Definition 40 (Independent Identical Distributed vector heuristic). Each time the Sieving algo-
rithm is called, the vectors x/||x|| for x the output of the algorithm are i.i.d. uniform distributed
points on the unit sphere.

The goal of each iteration is to find vectors of length at most γR. Now for each pair x,y ∈
L, assume they are of length approximately R. (This assumption is reasonable, one could
immediately add them to L′ if they aren’t.) For a given x, the condition ||x−y|| < γR is equal
to y ∈ B(0, R) ∩ B(x, γR) =: B. If the heuristic from Definition 40 holds, the probability for
y of falling in the region B is equal to the relative mass of the region B to the sphere B(0, R).
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log(Cost estimate) Model SVP oracle
0.292β [14] Sieving
0.265β [34] Sieving
0.2075β + o(β) [7] Sieving
0.3366β + 12.31 [5] Sieving
0.187β log β − 1.019β + 16.1 [5] Enumeration
0.000784β2 + 0.366β − 0.9 [31] Enumeration

Table 1: Cost estimate models for BKZβ reduction used in several NIST proposals.

As typically γ is picked close to 1, this probability is p ≈ sinn(π/3) = ( 3
4 )n/2. In each step

we want the list L to not drastically reduce in size. Hence we want to cover the entire sphere
B(0, R) with balls similar to B around vector points in the list, thus (assuming the intersections
between the spheres are negligible) at least approximately 1/p ≈ ( 4

3 )n/2 points in the list are

needed to cover the entire sphere. To conclude, if one uses a list of length poly(n) · ( 4
3 )n/2, with

high probability, a vector can be reduced with at at least one of the other vectors in the list.
Thus, in order to cover at least 1− c of the sphere, pick N such that

N ·
(

3

4

)n/2
≥ 1− c

If γ = 1− 1/n is chosen, it is ensured that only a polynomial number of iterations is needed to
go to a list of vectors of norm almost λ1(L(A)). I conclude that a memory complexity N and
time complexity N2 are necessary for this. [13].

There is currently no closed formula known that describes the cost of BKZβ reduction. The
cost of the BKZβ algorithm depends on the number of rounds the algorithm runs, and on the
cost of finding the smallest vector in each round of the algorithm, via enumeration or sieving
(or any other technique). Sieving is asymptotically faster, but enumeration seems to perform
quite good in practice for the relatively small β used in practice. [5].

There are many different estimates for the cost of BKZβ reduction, some more conservative
than others. All estimates that authors of NIST proposals adapt in their security analysis are
listed in Table 1 with reference. More on these cost models can be found in [3].

Quality estimation of BKZβ reduction. The next part is used to define some heuristics
that later on are used to estimate the quality of BKZ reduced bases.

Definition 41 (Geometric Series Assumption). A sufficiently reduced basis has the property
that the Gram Schmidt vectors satisfy ||b∗m−i|| ≈ ||bm

∗|| · δ2i
0 . [48, 36]

Definition 42 (Gaussian Heuristic). The Gaussian Heuristic is an estimate for the shortest
vector in a m-dimensional lattice: [5]

λ1(Λ) ≈
√

m

2πe
det(Λ)1/m

In Figure 6, one can see that after a certain point this approximation for the shortest vector
isn’t accurate anymore. Under the gaussian Heuristic and Geometric assumption, the following
holds for BKZβ reduced lattices [19, 18].

lim
n→∞

δ0 ≈
(

β

2πe
(πβ)1/β

) 1
2(β−1)
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Figure 7: Comparing the actual Hermite factor to a heuristically chosen.

The latter is also often approximated by β1/2β or even more simple 21/β . In Figure 7 one can
find how these relate to the actual δ0 of a random (50,100)-dimensional lattice, that is BKZβ
reduced. A lattice as the primal lattice with AT random is considered a random modular
lattice. Examples [5, 15], show that this estimation can also be used for finite m.
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5 Known attacks against LWE.

In this section I describe three known attacks against the LWE problem. For reference, I
describe the cost of exhaustive search. Note that it is known that the primal and dual attack
perform quite well for attacking general LWE problems. However, currently there exist more
attacks that also achieve good results on the LWE problem. For example attacks based on
linearization [10], other algebraic techniques [1] or combinatorial based attacks [4, 33, 29]. For
this thesis I focus only on the lattice based primal and dual attack.

5.1 Exhaustive search.

One might wonder what the cost is of just trying all possible secrets, in order to find the correct
one. Of course the idea behind this is that it is easy to verify whether a guess is correct or not.
Lemma 4 and theorem 1 of [5] are the following:

Lemma 43. Let χ be a gaussian distribution with standard deviation σ = αq√
2π

and mean 0.

For a constant C > 0 it holds

Pr[e←$ χ : |e| > Cσ] ≤ 2

C
√

2π
exp(−C

2

2
)

Proof. For t > Cσ it holds t
Cσ > 1. Then

Pr[e←$ χ : |e| > Cσ] = 2

∫ ∞

Cσ

1

σ
√

2π
exp(− t2

2σ2
)dt

=
2√
2π

∫ ∞

Cσ

1

σ
exp(− t2

2σ2
)dt

≤ 2√
2π

∫ ∞

Cσ

t

Cσ2
exp(− t2

2σ2
)dt

=
2

C
√

2π
exp(−C

2

2
)

which completes the proof.

Theorem 44. Exhaustive search of the LWE problem with success probability ε has time
complexity m · (2tαq + 1)n · 2n, memory complexity n and needs n+m samples, where

m =
log(1− ε)− n log(2tαq + 1)

log(2tα)

and t = 3
√

log n.

Proof. In lemma 1 of [5], one needs n samples to transfer a uniformly random secret LWE
problem to a normal LWE problem. By lemma 43, we have that the secret has a high probability
to fall in the range {−tαq, . . . , tαq}, hence each component of the secret is estimated to fall in
this range. Hence (2tαq + 1)n possible secrets are needed to check to find the correct s. For
a correctly guessed s, it holds that |ei| = |ai · s − bi| ≤ tαq with high probability. For wrong
guessed s, this will produce random elements ei = ai · s − bi in Znq . A wrong element falls in

the range {−tαq, . . . , tαq} with probability 2tαq+1
q ≈ 2tα. In order to accept a wrong guess,

ei has to fall in this range for all samples m. This happens with probability of about (2tα)m.
There are (2tαq + 1)n wrong choices for s. By union bound, the probability of a false positive

is pf ≤ (2tα)m · (2tαq + 1)n. If pf = 1− ε is picked, and take m ≥ log(pf )−n log(2tα+1)
log(2tα) samples,

the proof is complete.

It should be clear that this attack is rather inefficient, even tough it might be optimized to
perform better. For example, by starting the exhaustive search with the smallest secret. The
next sections describe better methods for solving the LWE problem.
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5.2 Primal Attack.

Now try to run the BKZ algorithm (algorithm 6) in combination with the Babai nearest plane
method (algorithm 4) with target point b = As + e on the lattice from definition 15:

L(A) := { z ∈ Zm | ∃s ∈ Zn; z = As mod q } ⊂ Zm.

The runtime of solving an LWE instance for fixed n = 20 with different m is described in figure
8a and 8b, for two values of β. A correct solution of the method is denoted with a dot, while
an incorrect solution is denoted with a cross.

Remark. For an LWE problem, it is easy to verify whether an outcome s′ = s is indeed the
correct solution. In this experimental setup, I check this by directly comparing the outcome
with the secret key. In practice, an adversary does not have access to this secret as in that case
there is no need to do an attack on the cryptosystem.

From these figures we can see that the runtime increases as m increases, which may be no
surprise as that is exactly the dimension of the lattice we are attacking. If m is close to n, the
attack results in a wrong solution. Choosing m thus has to be done carefully. One could see in
Figure 8c and 8c that there is a certain value for m such that if at least m samples are used,
the probability of correct decoding is nearly 1.4

Optimal number of samples. One could try to find a suitable value for m, given the value
of n. Take for example the q, σ as in the FrodoKEM specification. Then, to find a suitable m
for each n, pick m = n, run 100 times the algorithm and if at least p = 50 resp. p = 99 of the
found secrets are correct, accept that as corresponding m value. Otherwise increase m by 1.
The corresponding code can be found in Listing 2 and the corresponding results in Figure 12.

1 sage : m = 1
2 sage : r e s = matrix (100 ,2 )
3 sage : for n in range (1 ,100) :
4 . . . . : c = 0
5 . . . . : e s c = 0
6 . . . . : print (n)
7 . . . . : while c < 100 :
8 . . . . : i f generateAndRecover ( ) == False :
9 . . . . : i f e sc == 0 :

10 . . . . : e s c = esc +1
11 . . . . : else :
12 . . . . : c = 0
13 . . . . : e s c = 0
14 . . . . : m = m +1
15 . . . . : print (m)
16 . . . . : else :
17 . . . . : c = c + 1
18 . . . . : r e s [ n , 0 ] = n
19 . . . . : r e s [ n , 1 ] = m

Listing 2: Finding suitable m for a given parameter set q, σ, n

In order to analyze the runtime of recovering the secret vector s, the following experimental
setup is used. Start with n = m = 1. Then for each 1 ≤ n ≤ 120, do the following:

4When A1 is not invertible, this counts as a failure. The matrix can be made nonsingular artificially in
several ways. For example by tweaking one value in the matrix and hoping it becomes nonsingular (hoping this
doesn’t affect the solution) or by replacing a random sample by a new one. As the probability of A1 being
singular is in practice very low, these tricks are omitted.

28



20 40 60 80 100
0

5

10

15

20

m

T
im

e
(s

)

Correct solution
Incorrect solution

(a) q = 1009, σ = 1, n = 20, β = 2

20 40 60 80 100
0

20

40

60

m

T
im

e
(s

)

Correct solution
Incorrect solution

(b) q = 1009, σ = 1, n = 20, β = 20

20 25 30 35 40
0

0.2

0.4

0.6

0.8

1

m

S
u

cc
es

s
p

ro
b

a
b

il
it

y

(c) q = 1009, σ = 1, n = 20, β = 2
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(d) q = 1009, σ = 1, n = 20, β = 20
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(e) q = 1009, σ = 1, n = 10, β = 2
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(f) q = 1009, σ = 1, n = 10, β = 10

Figure 8: Solving the LWE problem with different (small scale) parameter sets using the
primal attack.
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Figure 9: n = 10, q = 1009, σ = 1
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Figure 10: n = 10, q = 32771, σ = 10
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Figure 11: n = 20, q = 32771, σ = 2.8
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Figure 12: q = 32771, σ = 2.8, finding minimal m for different n such that at least p out of
100 attacks are successful. The same line is plotted in both graphs for reference.

(1). Generate m samples divided over two matrices (of n respectively m− n samples each) :

A =

(
A1

A2

)
∈ Zm×nq

and generate an m-dimensional error vector e ∈ Znq

(2). Generate the basis B from equation 4 to which one of the lattice reduction algorithms
(LLL/BKZ) is applied:

B =

(
In 0

A2A1
−1 qIm−n

)
∈ Zm×mq

(3). Apply a Bounded Distance Decoding Algorithm to the lattice B with vector As + e to
find a lattice point s′ and check whether this is the correct solution. (i.e s′ = s or As′ is
distributed according to χ.) If the solution is correct, go to step (5).

(4). If the solution is incorrect, add one more sample: Generate a new sample a ∈ Z1×n
q , a new

error e ∈ Zq according to χ and update

A←
(

A
a

)
∈ Z(m+1)×n

q , e←
(

e
e

)
∈ Zm+1

q ,B←




In 0 0

A2A1
−1 qIm−n 0

aA−11 0 q


 ∈ Z(m+1)×(m+1)

q

Now update m← m+ 1, to have the desired form of the lattice back. Go to step (3).

(5). Update n← n+ 1, start again at step (1).

This procedure can be found in Listing 8. Results of the smallest m for which the procedure
succeeds and runtime of the corresponing lattice reduction and decoding can be found in Figure
13. Here LLL, BKZ5 and BKZ20 are used in the reduction step. Later in this section a heuristical
method in used to theoretically estimate the required m, which is also plotted in Figure 13a.
As one might notice, the minimal required m for correct decoding seems to grow rapidly for
fixed β. Actually, for LLL, BKZ5 and BKZ20, this experiment was not able to find a correct
solution for increasing m after m = 100,m = 112,m = 124 respectively.
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Figure 13: Solving the LWE problem for q = 32771, σ = 2.8

Limitations on the number of samples. Despite the fact that in cryptographic settings
an adversary wouldn’t have access to infinitly many samples, the rest of this paragraph is used
to show the limitations of solely increasing the number of samples for solving an LWE problem.

From Claim 23 one concludes that there is correct decoding if ||e|| ≤ 1
2 min{||b∗i ||}. From

Lemma 43, it holds with high probability that

||e|| ≤ 2σ
√
m. (6)

From the Geometric Series assumption, one could conclude that

min{||bi
∗||} = ||b∗m|| ≈ ||b1|| · δ−2m

0

Thus, assuming the Geometric series assumption and the Gaussian Heuristic, one needs to solve

||e|| = 1

2
q(m−n)/mδ−m0 (7)

If this is combined with the assumption from equation 6, it requires a log root hermite factor
that satisfies

4σ
√
m ≤ q1−n/mδ−m0 . (8)

Which can be solved numerically. In [7] this bound is optimized to

σ
√
β ≤ q1−n/mδ2β−m−1

0 (9)

In Figure 13a the corresponding required m is plotted against experimentally found m. One can
see that actually in practice the algorithm requires a bit fewer samples, due to the optimistic
approximation of the length of the error vector.
From equation 9 one can also conclude that for a given parameter set, with fixed β there is a
maximum n that it is able to solve. This is made visual in Figure 14.

Remark. In Figure 14 one can see that the maximum is achieved for m =
√
n log q/ log δ0,

which we will use later on more often as optimal number of samples.
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For larger n, this quantity will stay negative hence obtaining no solution in the primal attack.

The primal attack applied to NIST candidates. From [36], assume the optimal number
of samples is m =

√
n log q/ log δ0. Thus, for a successful primal attack, find the minimal β

that satisfies both: {
m =

√
n log q/ log δ0

σ
√
β ≤ q1−n/mδ2β−m−1

0

(10)

This is done easily numerically, the results of this are shown in Table 2. I chose the most
conservative cost function from the point of view of the designer. One can conclude that
this primal attack comes quite close to the claimed security of the cryptosystems, except for
the Frodo parameters. This is because the authors [6] make some additional conservative
assumptions on the developments of the attack in the future.

5.3 Dual Attack.

The Dual attack is a distinguishing attack on the LWE normal form based on a shortest vector
problem in the dual lattice L⊥(A) as in Definition 16:

L⊥(A) := { (y||z) ∈ Zn × Zm | yT = zTA mod q } ⊂ Rm+n

See [2] and [5]. Recall that for a distinguishing attack the adversary is given a tuple (A,b) either
LWE samples or uniformly random. The main strategy is to find a short vector (y||z) ∈ L⊥(A)
and check whether z · b is small. This is a useful property, as in the uniformly random case
the vector b is uniformly random, and hence the inner product with z yields a relatively large
value. If (A,b) are LWE samples, it holds

z · b = z · (As + e) = z ·As + z · e = zTAs + z · e = yT s + z · e = y · s + z · e

where the rightmost expression is a inner product between vectors that are all small. One
concludes that if the error and secret are small enough, one could distinguish between the two
cases. The general approach will be

(1). Given m LWE samples as (A,b) ∈ Zm×nq × Zmq , generate

B =

(
qIn AT

0 Im

)
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Frodo, [6] 1 640 32768 2.75 480 1379 127.2 103
Frodo, [6] 3 976 65536 2.30 705 2021 186.8 150

NewHope, [7] 1 512 12289 2.00 384 1086 101.8 101
NewHope, [7] 5 1024 12289 2.00 886 2077 234.8 233

KCL-RLWE, [54] 5 1024 12289 2.83 968 2147 256.5 255
BabyBear, [30] 2 624 1024 1.00 577 1188 152.9 152

MamaBear, [30] 5 936 1024 0.94 902 1715 239.0 237
PapaBear, [30] 5 1248 1024 0.87 1219 2220 323.0 320

CRYSTALS-Dilithium, [24] 1 768 8380417 3.74 342 1664 90.6 91
CRYSTALS-Dilithium, [24] 2 1024 8380417 3.15 485 2168 128.5 125
CRYSTALS-Dilithium, [24] 3 1280 8380417 2.00 598 2613 158.5 158

CRYSTALS-Kyber, [16] 1 512 7681 1.58 385 1060 102.0 102
CRYSTALS-Kyber, [16] 3 768 7681 1.41 612 1529 162.2 161
CRYSTALS-Kyber, [16] 5 1024 7681 1.22 829 1974 219.7 218

Table 2: Analysis of the primal attack applied to parameters of NIST candidates with cost
function 0.265β. Displayed are the smallest possible β and corresponding number of samples

m.
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(2). Apply basis reduction BKZβ or LLL to the lattice generated by B.

(3). By definition the first basis vector b1 = (y||z) ∈ Zn × Zm of the reduced basis is the
shortest basis vector.

(4). Calculate z · b and decide whether this is small enough.

An adversary has to come up with suitable values for m,β and some kind of boundary value
such that z · b is accepted as LWE samples.

I start byfinding a suitable number of samples m, which is a delicate matter. Too few samples
will yield a lattice that doesn’t contain short enough vectors, in case of too many samples the
lattice reduction algorithms are not able to find short vectors due to the high dimension [40].

Remark. We are always able to find a vector of length q in the lattice L⊥(A), as (q, 0, 0, . . . , 0)
is a vector in this lattice for all A.

From this and the Gaussian Heuristic, conclude that a lattice reduction algorithm is able to find
a shortest vector of length approximately min{q, (det(Λ)1/(m+n)δm+n

0 } = min{q, qn/(m+n)δm+n
0 }.

The expression qn/(m+n)δm+n
0 for m is minimized for optimality. Acquired with differentiation

of this expression with respect to m, one concludes that a minimum is achieved when

m =

√
n log q

log δ0
− n. (11)

Next, find a suitable value for finding a boundary such that one could conclude that z · b is
indeed small enough so that we accept it as an LWE sample. Suppose b = As + e. Then

z · b = y · s + z · e = (y||z) · (s||e)

The vector b1 = (y||z) has length approximately qn/(m+n)δm+n
0 , thus

n+m∑

i=1

(b1)i ≤ qn/(m+n)δm+n
0

√
n+m. (12)

and each entry of c := (s||e) is from a gaussian distribution χ with standard deviation σ.
According to lemma 43 with probability around 95% it holds,

|ci| ≤ 2σ. (13)

Combining equation 12 and 13 gives that with high probability,

|z · b| =
∣∣∣∣∣
n+m∑

i=1

(b1)i · ci
∣∣∣∣∣ ≤

n+m∑

i=1

|(b1)i · ci| ≤
∣∣∣qn/(m+n)δm+n

0

√
n+m · 2σ

∣∣∣ . (14)

The next example shows how strong this result is.

Example 45. Given the parameter set q = 32771, n = 50. Pick β = 20 such that one expects
after BKZβ reduction we get a basis with δ0 ≈ 1.0133 (experimentally obtained). For picking

the optimal m, pick m =
√

n log q
log δ0

− n ≈ 150. Using the result above, one expects to find

|z · b| ≤ 14904 for LWE samples. This is not a very strong result, as it is already very close to
q
2 . In Table 3 it can be seen that already for much smaller m one is able to find much smaller
values of |z ·b|. This figure shows the average value of |z ·b| in 100 randomly instantiated LWE
problems with the given paramater set of this example.

From [5].

Claim 46. Given LWE instance with parameters n, α, q and vector v. Then the advantage of
distinguishing v · e from random is approximately exp(−π||v||2α2).
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Figure 15: Histogram of output of value z · b. q = 32771, σ = 2.8, n = 10,m = 10, β = 2.
Dark-colored bars are from an LWE distribution, light colored are uniformly random. Each
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m β = 5 β = 10 β = 15 β = 20 β = 25 β = 30
5 7249 8544 7812 8630 8995 8441

10 9299 8519 7245 7700 9152 7763
15 7587 8891 8167 7198 7474 9029
20 8056 8048 7293 8332 7353 6819
25 7012 6255 6222 6083 5378 5165
30 5533 4358 3992 3507 4161 3346
35 3288 3239 3154 2738 2558 2985
40 2792 2807 2306 2151 2028 1738
45 2029 2007 1906 1825 1778 1538
50 2055 1707 1543 1399 1278 1431
55 1773 1358 1202 1262 1197 926
60 1567 1379 1136 1077 881 808
65 1253 903 898 731 786 632
70 1154 878 890 648 643 564

Table 3: Average value of |z · b| for several values of m,β. n = 50, q = 32771, σ = 2.8
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m β = 5 β = 10 β = 15 β = 20 β = 25 β = 30
5 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

10 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
15 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
20 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
25 0.0000 0.0068 0.0018 0.0194 0.1273 0.1599
30 0.1036 0.2833 0.3393 0.4135 0.3135 0.4381
35 0.4470 0.4545 0.4675 0.5311 0.5587 0.4934
40 0.5229 0.5206 0.5972 0.6209 0.6398 0.6841
45 0.6396 0.6430 0.6584 0.6708 0.6780 0.7147
50 0.6356 0.6889 0.7140 0.7360 0.7545 0.7311
55 0.6788 0.7423 0.7661 0.7569 0.7669 0.8083
60 0.7103 0.7390 0.7762 0.7852 0.8152 0.8264
65 0.7583 0.8119 0.8126 0.8382 0.8298 0.8533
70 0.7735 0.8157 0.8139 0.8509 0.8516 0.8637

Table 4: Approximation of the advantage ε of the adversary based on the values of Table 3

m 10 20 30 40 50 60 70
ε̃ 0.0000 0.0000 0.4135 0.6209 0.7360 0.7852 0.8509
ε 0.0000 0.0000 0.0143 0.2294 0.5291 0.7217 0.8262

Table 5: Theoretical advantage ε against the approximated advantage ε̃, for β = 20
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Corollary 47. To obtain a success probability of ε of solving an LWE instance parametrized

by n, α, q using the dual attack, we require a vector v of norm ||v|| = 1
α

√
ln 1

ε /π

Proof. Straightforward Calculus.

Corollary 48. Given an LWE problem with a corresponding dual lattice that is BKZβ reduced,
parametrized by n, α, q and given access to m samples, an adversary has an advantage of

ε :=
1

exp(π(αqn/(n+m)δn+m
0 )2)

in distinghuising LWE samples from uniformly random.

Definition 49 (Half normal distribution). Given X that is normal distributed with mean µ = 0
and σ. Then Y = |X| follows the half normal distribution with mean µ = σ

√
2/π. Hence a

sample from the half normal distribution is within two standard deviations of 0 with probability
approximately 95%

Given a parameter set, the data from Figure 15, assuming that z·b follows a normal distribution,
one can interpret |z · b| as a half normal distribution. From that, we approximate the value of
σ̃ = |z · b| ·

√
π/2. Given such an σ̃ for a parameter set, we conclude that for

Pr[|z0 · b| < 2σ̃] ≈ 0.95

Now with this information one can make an distinguishing attack on the LWE problem. Mul-
tiply each table entry of Table 3 with

√
2π and use that value as critical value for accepting a

pair (A,b) as LWE samples.
Now the advantage of the adversary, given bound critical value c < q

2 , is given by |0.95 − 2c
q |.

This translates the average values of Table 3 into the advantage in Table 4.

Lemma 50. An LWE instance parametrized by n, q, α that achieves, using lattice reduction
algorithms, a log-root hermite factor

log δ0 =
log2( 1

α

√
ln 1

ε /π)

4n log q
,

can be distinguished with advantage ε using the dual attack.

Proof. By definition of the hermite factor, it holds δm+n
0 = ||b1||/qn/(n+m). On the other hand,

recall from Corollary 47 that in order to get an advantage ε one needs to find a vector satisfying

||b0|| = 1
α

√
ln 1

ε /π. Combining these gives

δm+n
0 qn/(n+m) =

1

α

√
ln

1

ε
/π.

Now recall from Equation 11 that the optimal number of samples to use is m =
√

n log q
log δ0

− n.
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Fill this in and work out to get

δm+n
0 qn/(m+n) = 1

α

√
ln 1

ε /π

⇔ δ

√
n log q
log δ0

0 q
n/(
√
n log q
log δ0

)
= 1

α

√
ln 1

ε /π

⇔ log

(
δ

√
n log q
log δ0

0 q
n/(
√
n log q
log δ0

)

)
= log

(
1
α

√
ln 1

ε /π
)

⇔ log

(
δ

√
n log q
log δ0

0

)
+ log

(
q
n/(
√
n log q
log δ0

)
)

= log
(

1
α

√
ln 1

ε /π
)

⇔
√

n log q
log δ0

log (δ0) + n√
n log q
log δ0

log (q) = log
(

1
α

√
ln 1

ε /π
)

⇔
√
n log(q)

√
log(δ0) +

√
log(δ0)

√
n log(q) = log

(
1
α

√
ln 1

ε /π
)

⇔ 2
√
n log(q)

√
log(δ0) = log

(
1
α

√
ln 1

ε /π
)

⇔
√

log(δ0) =
log
(

1
α

√
ln 1

ε /π
)

2
√
n log(q)

⇔ log(δ0) =
log2

(
1
α

√
ln 1

ε /π
)

4n log(q)

Which completes the proof.

Definition 51. Let Cn,q,α(ε) denote the log cost of the lattice reduction that is required for
achieving advantage ε in a dual lattice corresponding to an LWE problem with parameters
n, q, α as determined in Lemma 50.

By the Chernoff bound [23], for a distinguishing attack with advantage ε, after 1/ε2 repetitions,
one has a distinguishing attack with a success probability of almost 1.

Now for the cost of solving the LWE problem with the dual attack, note that this dual attack is
a distinguishing attack. So repeat this attack nq times as described in Proposition 8 to recover
the secret. Conclude that the log cost of the dual attack is

min
0<ε<1

{
Cn,q,α(ε) + log

1

ε2
+ log(nq)

}

Numerically, one could solve this for a parameter set. I applied this to some of the NIST
proposals. The results of this can be found in Table 6. As the reader may conclude from this
Table, the expected costs of this attack are much higher than the claimed security. This could
be explained by the fact that a dual attack can be used to get information about a few elements
of the secret and after that apply a primal-like attack on the remaining unknown elements.
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Frodo, [6] 1 640 32768 2.75 2−12 585 206.2 103
Frodo, [6] 3 976 65536 2.30 2−15 856 284.6 150

NewHope, [7] 1 512 12289 2.00 2−8 492 171.6 101
NewHope, [7] 5 1024 12289 2.00 2−22 1081 355.9 233

KCL-RLWE, [54] 5 1024 12289 2.83 2−24 1188 388.3 255
BabyBear, [30] 2 624 1024 1.00 2−18 718 247.4 152

MamaBear, [30] 5 936 1024 0.94 2−24 1139 371.8 237
PapaBear, [30] 5 1248 1024 0.87 2−26 1582 494.4 320

CRYSTALS-Dilithium, [24] 1 768 8380417 3.74 2−5 410 153.1 91
CRYSTALS-Dilithium, [24] 2 1024 8380417 3.15 2−7 577 201.8 125
CRYSTALS-Dilithium, [24] 3 1280 8380417 2.00 2−8 710 239.6 158

CRYSTALS-Kyber, [16] 1 512 7681 1.58 2−8 497 172.3 102
CRYSTALS-Kyber, [16] 3 768 7681 1.41 2−16 750 255.1 161
CRYSTALS-Kyber, [16] 5 1024 7681 1.22 2−20 1017 334.3 218

Table 6: Analysis of the dual attack applied to parameters of NIST candidates with cost
function 0.265β. Displayed are the smallest possible β and corresponding number of samples

m.
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6 LWE Optimizations.

In the study of the LWE problem, one finds many different versions of the problem all with some
different optimizations. The goal of these optimizations is to make encryption and decryption
faster, reduce public key sizes, decrease ciphertext size, reduce memory usage or lower the
probability of incorrect decoding without losing too much security. In this section I will discuss
some of these optimizations.

6.1 Choice of RWLE modulus.

One could generalize RLWE by allowing more general rings rather than Zq[x]/〈xn + 1〉. One
could take many other polynomials instead of xn + 1. In this section I describe some insecure
choices for the polynomial f(x) [17, 25, 43], for which an attack to decision LWE exists.

Proposition 52. Given a polynomial f(x), α ∈ Zq such that f(α) ≡ 0 mod q. Then evaluation
at α induces a ring homomorphism

evα : Rq → Zq, g(x) 7→ g(α).

Proof. Let g ∈ Rq. Then clearly evα(g) ∈ Zq as α ∈ Zq. Now the only thing that is left to
prove is evα(f(x)) = 0. But that is true by the assumption that α is a root of f . Hence the
evaluation is a homomorphism.

Suppose f(α) ≡ 0 mod q for some known α. With proposition 52, consider the following
method to solve decision RLWE. For each possible s ∈ Zq, calculate the error as evα(b(x)) −
evα(a(x))s. In case s = evα(s(x)), this calculation yields the error term under the evalua-
tion homomorphism evα(e(x)) for RLWE samples, which has a small gaussian distribution by
assumption. For uniformly random samples this expression is still uniformly random.
To be successful the following requirements are needed:

(1) f(α) ≡ 0 mod q for some known α ∈ Zq.

(2) q shouldn’t be too large, we need to go through all of the s ∈ Zq to find the correct one.

(3) One needs to be able to distinguish evα(e(x)) from the uniform distribution over Zq.

Example 53. To demonstrate how powerful this attack is, consider the following example. Let
n = 64, then f(x) = x64−1 is a polynomial satisfying the required conditions. Let q = 41, σ = 1.
Now for each guess g ∈ Zq calculate b(1)−a(1) ·g for 10000 samples. Results of these are shown
in Figure 17. One can easily verify that this data is uniformly distributed, except for g = 29.
Note that this is not a very time consuming process, but require quite a lot samples in order
to correctly distinguish the two. For greater q, distinguishing the two is easier, but one needs
to go through more values to find the correct guess g.

6.2 Small Secret LWE.

Recall that small secret LWE is the version where the secret s is drawn from a small set. Pick
{−1, 0, 1}, where the probability of sampling a 1 or a −1 equals p, the probability of sampling
a 0 is 1− 2p for some p ∈ [0, 1

2 ].5

Each coordinate of s is from the set {−1, 0, 1}, where the vector has a fixed Hamming weight
h. This version is actually used in a few proposed cryptosystems. For example Lizard [22] or
Round5 [11].

5This optimization is commonly used in proposed cryptosystems, see for example [3].
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Figure 17: Solving RLWE for an insecure choice of quotient polynomial: f(x) = xn − 1.
q = 41, n = 64, σ = 1. Color indicates the relative occurrence.

6.2.1 Primal attack.

The success of the primal attack relies on the correct decoding of As + e to As. Recall from
Claim 23 that there is correct decoding if ||e|| ≤ 1

2 min{||b∗i ||}. As the secret distribution has
neither effect on the length of the Gram Schmidt basis vectors nor on the error distribution,
one could conclude that the smaller secret gives no advantage for an adversary when using the
primal attack.

Remark. For n LWE samples, one could interchange the role of the error distribution with the
secret distribution: Given n LWE samples in the form (A,b) ∈ Zn×nq ×Znq , then (A−1,A−1b) ∈
Zn×nq × Znq are LWE samples where the role of the distributions are interchanged.

The previous remark translates the conditions from equation 10 into the following conditions
for correct decoding. {

m =
√
n log q/ log δ0

2
√
h ≤ q1−n/mδ2β−m−1

0

(15)

Again, numerically one could find the smallest β that satisfies both conditions. The result of
this is found in Table 7.

However, one could tweak the primal attack in such a way that we may get an advantage
[32, 53]. The key idea is to guess k values of the short vector we want to find, and find a shorter
vector in a lattice of smaller dimension. Pick k ∈ Z such that with high probability k << h.

Let A` ∈ Z(m−n)×k
q ,Ar ∈ Z(m−n)×(n−k)

q such that A2A1
−1 = (A`||Ar). Now define

T :=

(
In−k 0(n−k)×(m−n)

Ar qIm−n

)
∈ Z(m−k)×(m−k)

q , C :=

(
0(n−k)×k

A`

)
∈ Z(m−k)×k

q

Then the basis of L(A) can be written as

B =

(
Ik 0k×(m−k)

C T

)
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Lizard, [22] 1 536 2048 140 449 1056 119.0 130
Lizard, [22] 1 663 1024 128 603 1244 159.8 131
Lizard, [22] 3 816 2048 200 724 1547 191.9 193
Lizard, [22] 3 952 2048 200 847 1772 224.5 195
Lizard, [22] 5 1088 4096 200 899 2023 238.2 257
Lizard, [22] 5 1300 2048 200 1158 2330 306.9 264

nRound2.PKE, [12] 1 442 2659 74 268 818 71.0 74
nRound2.PKE, [12] 2 556 3343 88 346 1014 91.7 97
nRound2.PKE, [12] 3 576 2309 108 385 1046 102.0 106
nRound2.PKE, [12] 4 708 2837 140 485 1273 128.5 138
nRound2.PKE, [12] 5 708 2837 140 485 1273 128.5 138

Table 7: Analysis of the primal attack applied to parameters of NIST candidates with sparse
secrets with cost function 0.265β. Displayed are the smallest possible β and corresponding

number of samples m.

Now observe that for a small vector v = (vg||vl)
T ∈ L(A),vg ∈ Zkq ,vl ∈ Zm−kq , it holds that

v =

(
vg

vl

)
= B

(
vg

x

)
=

(
vg

Cvg + Tx

)

for some x ∈ Zm−k. Now Cvg = −Tx + vl. This means that Cvg lies only a small error
vector vl away from a lattice point of L(T). For sufficiently reduced bases, one hopes to find
this point via the nearest plane method in the lattice L(T) on input Cvg. For a correct guess
of vg, this yields a lattice problem in a m− k-dimensional lattice, instead of an m dimensional
lattice.

However, the goal of the primal attack is decoding the point b = As + e to As, not finding
small vectors in the lattice L(A). This can be worked around by making a small adjustment in
the lattice that is attacked. One knows b − e ∈ L(A), where e is the small vector that needs
to be found to solve the search LWE problem. Thus b− e = Bx for some x ∈ Zmq . Define

B′ :=

(
1 01×m
b B

)
∈ Z(m+1)×(m+1).

Then (1||eT )T ∈ L(B′) as

B′
(

1
−x

)
=

(
1

b−Bx

)
=

(
1
e

)

Next find this vector (1||eT )T using the same approach as before. Let (1||vg
T ||v`T )T ∈ L(B′)

be the short vector one wants to find. Then (using a suitable subdivision of b),



1
vg

v`


 =




1 01×k 01×(m−k)

b0 Ik 0k×(m−k)

b1 C T






1
vg − b0

x


 =




1
vg

b1 + C(vg − b0) + Tx



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Lizard, [22] 1 536 2048 140 449 1056 0 119.0 130
Lizard, [22] 1 663 1024 128 589 1244 15 159.5 131
Lizard, [22] 3 816 2048 200 724 1547 0 191.9 193
Lizard, [22] 3 952 2048 200 841 1772 6 224.3 195
Lizard, [22] 5 1088 4096 200 885 2023 16 237.9 257
Lizard, [22] 5 1300 2048 200 1094 2330 72 304.3 264

nRound2.PKE, [12] 1 442 2659 74 316 872 9 85.5 74
nRound2.PKE, [12] 2 556 3343 88 402 1076 12 108.7 97
nRound2.PKE, [12] 3 576 2309 108 453 1112 8 121.8 106
nRound2.PKE, [12] 4 708 2837 140 571 1354 5 152.4 138
nRound2.PKE, [12] 5 708 2837 140 571 1354 5 152.4 138

Table 8: Analysis of the hybrid primal attack applied to parameters of NIST candidates with
sparse secrets with cost function 0.265β. Displayed are the smallest possible β, the

corresponding number of samples m and the optimal k.

for some x ∈ Zm−kq . Similar as before, now guess vg and in case we guessed correctly, apply
lattice algorithms on L(T) to find vl. Note that C(vg−b0)+b1 = −Tx+v`. And hence is only
a small error v` away from the lattice L(T). Thus one hopes to find on input b1 + C(vg −b0)
correctly the error vector v`, when applied to the lattice L(T) using Babai’s nearest plane
method.
An implementation of this attack can be found in Appendix A.5. For the consequent guesses
of vg the values of f(x) are used for ascending x, where

f : {0, . . . , 3k − 1} → {0,±1}k, x 7→
(⌊ x

30

⌋
mod 3,

⌊ x
31

⌋
mod 3, . . . ,

⌊ x

3k−1

⌋
mod 3

)
.

For the modulo 3 calculation representatives 0,±1 are used.
To analyze the cost of this hybrid primal attack, note that in this hybrid attack one needs to
solve a lattice problem in dimension m − k. The determinant in unchanged and will remain
qm−n. Hence, translate the second condition of 15 into the following (while maintaining the
same m).

2
√
h ≤ qm−nm−k δ2β−m+k−1

0 (16)

Now the probability that vg = 01×k is indeed the correct guess, is equal

p =
n− h
n
· n− h− 1

n
· · · n− h− k + 1

n
=

k−1∏

i=0

n− h− i
n

=
(n− h)!

(n− h− k)!nk

Thus the expected cost of the attack is the cost of lattice reduction multiplied by 1/p. For
several k, the expected costs are shown in Figure 18. This translates the cost of the hybrid
attack as described in Table 8.
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Figure 18: Expected cost of the hybrid primal attack for several values of k.

6.2.2 Dual attack.

First let’s take a look what happens if one simply ignores the small secret and follows the same
approach as described in section 5.3. Recall from equation 14 that with high probability in case
of LWE samples (in normal form) it holds that

|z · b| =
∣∣∣∣∣
n+m∑

i=1

(b1)i · ci
∣∣∣∣∣ ≤

n+m∑

i=1

|(b1)i · ci| ≤
∣∣∣qn/(m+n)δm+n

0

√
n+m · 2σ

∣∣∣ .

If one changes the secret vector distribution from a Gaussian distribution to the small distri-
bution we have that with high probability a fraction of m

m+n entries are multiplied with an
absolute value of at most 2σ. The n

m+n remaining fractions are multiplied with at most ±1.
Therefore when changing from LWE normal form to small secret LWE, one expects to find
vectors of length

|z · b| =
∣∣∣∣∣
n+m∑

i=1

(b1)i · ci
∣∣∣∣∣ ≤

n+m∑

i=1

|(b1)i · ci| ≤
∣∣∣∣qn/(m+n)δm+n

0

√
n+m · ( m

m+ n
2σ +

n

m+ n
2p)

∣∣∣∣ .

That is, one finds vectors of a factor m+n
m+np

σ
smaller, which isn’t a huge improvement.

Dimension versus Error tradeoff. Following the reasoning in [2] and [21], with a sparse
secret it is reasonable to assume that the last k indices6 of the secret vector are 0. With this
assumption, one is able to parse the public and secret part of our LWE problem in the following
way

A = (A1||A2), A1 ∈ Zm×(n−k)
q , A2 ∈ Zm×kq , s = (s1||s2), s1 ∈ Zn−kq , s2 ∈ Zkq .

Now the assumption that the last k indices are zero translates to s2 = 0k. Now for LWE
samples it holds that b = As + e = A1s1 + A2s2 + e = A1s1 + e. Now for the dual attack
instead of finding short vectors in L⊥(A) one could search for short vectors in L⊥(A1). In other
words, one translated the (m + n)-dimensional lattice problem to a (m + n − k)-dimensional
lattice problem. Of course this lattice problem is easier to solve, however, at the cost of a false
assumption on s. The probability of a incorrect assumption is (1− 2p)k.

6An adversary can pick any k indices to be zero, multiplication with a suitable permutation matrix P gives
back the desired form of this attack.
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A weaker assumption on the last k indices of s is to assume that it has at most h nonzero
entries. It holds that

b = As + e = A1s1 + A2s2 + e.

Now for a short vector (y1, z1) ∈ L⊥(A1), one has in case of LWE samples

z1 · b = z1
TA2s2 + z1

TA1s1 + z1
Te

= z1
TA2s2 + y1 · s1 + z1 · e︸ ︷︷ ︸

relatively small

Now as s2 is assumed to be of small weight, one could instead of checking whether z1 · b is
sufficiently small, check whether z1 · b − z1 ·A2s2 is sufficiently small for each possible s2 of
Hamming weight at most h. For this attack, one reduced the dimension of the lattice attack at
the cost of losing the correct solution for an incorrect assumption.
Similar to Claim 46, one has the following proposition.

Proposition 54. Given LWE instance with parameters n, q, h and vector v. Then the advan-

tage of distinguishing v · e from random is approximately 1− 2h||v||
q
√
m+n

.

Proof. Assuming the length of vector ||v|| is approximatly equally distributed, i.e. |vi| ≈ ||v||√
m+n

.

Then one expects that v · e =
∑m+n
i=1 viei ≤ h||v||√

m+n
with probability close to 1. For uniformly

random samples, we accept them with probability of 2h||v||√
m+n

/q. Then by definition of the

adversary advantage one has

ε = 1− 2h||v||
q
√
m+ n

Corollary 55. To obtain a success probability of ε of solving an LWE instance parametrized

by n, α, q using the dual attack, an adversary require a vector v of norm ||v|| = q(1−ε)√m+n
2h

Proof. Straightforward calculus.

Lemma 56. An LWE instance with sparse ternary secret parametrized by n, q, h that achieves,
using lattice reduction algorithms, a log-root hermite factor

log δ0 =
log
(
q(1−ε)√m+n

2h

)
− n

m+n log q

m+ n
,

can be distinguished with advantage ε using the dual attack with m samples.

Proof. Equivalent to the proof of Lemma 50, where one replaces 1
α

√
ln 1

ε /π with q(1−ε)√m+n
2h ,

an adversary needs to apply lattice reduction that satisfy

qn/(m+n)δm+n
0 =

q(1− ε)√m+ n

2h

to find short enough vectors for distinghuising with advantage ε. This happens if and only if

n
m+n log q + (m+ n) log δ0 = log

(
q(1−ε)√m+n

2h

)

⇔ log δ0 =
log
(
q(1−ε)√m+n

2h

)
− n
m+n log q

m+n

Definition 57. Let Cn,q,h,m(ε) denote the log cost of the lattice reduction that is required
for achieving advantage ε in a dual lattice corresponding to sparse secret LWE problem with
parameters n, q, h and m samples as determined in Lemma 56.
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Lizard, [22] 1 536 2048 140 2−5 818 248.2 130
Lizard, [22] 1 663 1024 128 2−6 1189 347.2 131
Lizard, [22] 3 816 2048 200 2−6 1490 428.6 193
Lizard, [22] 3 952 2048 200 2−6 1767 502.5 195
Lizard, [22] 5 1088 4096 200 2−6 1771 504.5 257
Lizard, [22] 5 1300 2048 200 2−6 2486 694.0 264

nRound2.PKE, [12] 1 442 2659 74 2−4 499 161.7 74
nRound2.PKE, [12] 2 556 3343 88 2−4 666 207.2 97
nRound2.PKE, [12] 3 576 2309 108 2−5 795 242.1 106
nRound2.PKE, [12] 4 708 2837 140 2−5 1052 311.0 138
nRound2.PKE, [12] 5 708 2837 140 2−5 1052 311.0 138

Table 9: Analysis of the dual attack applied to parameters of NIST candidates with sparse
secrets with cost function 0.265β and m = 2n samples. Displayed are the smallest possible β

and the optimal ε.

Conclude that the log cost of attacking a sparse secret LWE problem with a dual attack that
has m samples is

Cd(n, q, h,m) := min
0<ε<1

{
Cn,q,h,m(ε) + log

1

ε2
+ log(nq)

}
.

I applied this cost function to NIST proposals, the results can be found in Table 9.

Improvement of hybrid dual attack. The hybrid improvement (of k guesses) of the dual

attack searches for a small vector in L⊥(A1) ∈ Zm×(n−k)
q instead of L⊥(A) ∈ Zm×nq . By

proposition 17, this lattice L⊥(A1) has basis
(

qIn−k A1
T

0m×(n−k) Im

)
∈ Z(m+n−k)×(m+n−k)

q

Therefore, the hybrid attack searches for a short vector in a (m + n − k)−dimensional lattice
that has determinant qn−k. That implies that the cost of the lattice part of a hybrid dual
attack with parameter k are C(n− k, q, h,m). There are 3k possible different vg that needs to
be checked, thus the estimated cost of this attack are

Chk(n, q, h,m, k) := Cd(n− k, q, h,m) + k log 3 (17)

However, this expected cost can be optimized if an adversary does not try all possible 3k

possibilities, but instead tries only vg = 0k. Then as the probability of a correct guess would

be (n−h)!
(n−h−k)!nk

, the expected cost will be

Chk(n, q, h,m, k) := Cd(n− k, q, h,m) + log

(
(n− h− k)!nk

(n− h)!

)
(18)
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(a) Hybrid attack improving dual.
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(b) Hybrid attack barely improving dual.

Figure 19: Expected cost of the hybrid dual attack for several values of k.
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Lizard, [22] 1 536 2048 140 0 817 248.2 130
Lizard, [22] 1 663 1024 128 3 1186 346.7 131
Lizard, [22] 3 816 2048 200 0 1489 428.6 193
Lizard, [22] 3 952 2048 200 1 1764 502.3 195
Lizard, [22] 5 1088 4096 200 0 1770 504.5 257
Lizard, [22] 5 1300 2048 200 21 2448 689.5 264

nRound2.PKE, [12] 1 442 2659 74 2 496 161.7 74
nRound2.PKE, [12] 2 556 3343 88 7 657 206.8 97
nRound2.PKE, [12] 3 576 2309 108 0 793 242.1 106
nRound2.PKE, [12] 4 708 2837 140 0 1050 311.0 138
nRound2.PKE, [12] 5 708 2837 140 0 1050 311.0 138

Table 10: Analysis of the hybrid dual attack applied to parameters of NIST candidates with
sparse secrets with cost function 0.265β and m = 2n samples. Displayed are the smallest

possible β and optimal k.
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7 Sparse Secrets

In this section I discuss the constraints on the value of h when choosing a secure parameter set.
I will illustrate how this parameter influences the attack cost of a hybrid primal or dual attack.

For sparse ternary secrets, the hybrid attack is for some parameter sets faster then a regular
primal or dual attack. This depends on how sparse the secret is, i.e. how low the value of h is
relative to n. When one wants to create a parameter set, it is interesting how sparse a secret
can be without losing too much security. With lower h we have smaller secrets and hence a
lower probability of decryption failure, but the tradeoff for the guessing in the hybrid attack
can be more viable for an adversary. This is the case when the reduction of cost due to the
dimensional reduction is less than 1/p where p is the probability of a correct guess.

7.1 Primal attack.

In figure 20, one can find the estimated expected cost of the primal attack as a function of k.
This is plotted for several different values of h. Observe that for smaller h, the function attains
a nontrivial minimum (for larger h the function attains a minimum at k = 0). For smaller h,
this minimum is attained at larger k, yielding more advantage for an adversary.
A question that naturally arises is how the Hamming weight of the secret is chosen. For the
Lizard parameters, the estimated expected cost of the primal attack and the hybrid attack
(with corresponding k) are plotted in Figure 21.
One might demand of a parameter set that the hybrid attack won’t improve the primal attack.
This is the case when the optimal k = 0.

Theorem 58. Assume δ0 is approximated by 21/β , and assume the logarithm of the cost for
BKZβ reduction is 0.265. Then the hybrid attack improves the primal attack if

log( n
n−h )

0.265
≤ m+ 1

m−n
m log q − log(2

√
h) + 2

− m
m−n
m−1 log q − log(2

√
h) + 2

(19)

Proof. Note that a hybrid attack that does improve the primal attack (i.e. optimal k ≥ 1) has
expected cost that is is multiplied by 1/p where p is the probability of a correct guess. Thus,
for a secret with fixed Hamming weight h, one has that for compensating the guess of one entry

(k = 1) we add a term of log( (n−h−k)!nk

(n−h)! ) = log( n
n−h ) to the estimated logarithm of the cost.

Now assume δ0 = 21/β . Then, the second line of equation 15 translates into

2
√
h ≤ q1−n/m

(
21/β

)2β−m−1

= q1−n/m22−m+1
β

Hence, for a successful primal attack, pick the smallest βp that satisfies

2
√
h ≤ qm−nm 2

2−m+1
βp

⇔ log(2
√
h) ≤ m−n

m log q + 2− m+1
βp

⇔ log(2
√
h)− m−n

m log q − 2 ≤ −m+1
βp

⇔ m−n
m log q − log(2

√
h) + 2 ≥ m+1

βp

⇔ βp ≥ m+1
m−n
m log q−log(2

√
h)+2

Likewise, for a successful hybrid attack with parameter k, one picks the smallest βhk that
satisfies

βhk ≥
m− k + 1

m−n
m−k log q − log(2

√
h) + 2

Hence, the improvement in required β due to the dimensional reduction is

βp − βhk ≈
m+ 1

m−n
m log q − log(2

√
h) + 2

− m− k + 1
m−n
m−k log q − log(2

√
h) + 2
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(a) n = 663, q = 1024
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(b) n = 536, q = 2048

Figure 20: Expected cost of the hybrid primal attack for several values of k, h with Lizard
parameters.
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(a) Optimal k in the Hybrid primal attack.
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(b) Expected cost of the hybrid primal attack for
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attack.

Figure 21: Comparison of primal attack versus hybrid attack as function of h for several
parameter sets.
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Figure 22: Expected cost of the hybrid dual attack for several values of k, h with Lizard
parameters.

An adversary multiplying this by 0.265 obtains the reduction in the logarithm of the attack cost.
Conclude that the hybrid attack gives improvement if the factor that is added to compensate
for the guess is smaller than the estimated cost reduction due to the smaller dimension, and
pick k = 1.

7.2 Dual Attack.

Similar to the approach in section 7.1, this section is used to make some statements on how the
Hamming weight of a sparse ternary secret affects the estimated cost of an attack.

In figure 22 the cost of the hybrid dual attack are given as function of k. For the parameters
of the Lizard [22] encryption scheme, but with different values of h.

Theorem 59. Assume δ0 is approximated by 21/β and assume the logarithm of the cost for
BKZβ reduction is 0.265. Let 0 < ε, ε′ < 1 be the advantages that Cn,q,h,m(ε)−2 log ε, Cn−1,q,h,m(ε′)−
2 log ε′ are minimized, respectively. Then the hybrid attack improves the dual attack if

log
(
ε2(n−1)
ε′2(n−h)

)

0.265
≤ m+ n

log
(
q(1−ε)√m+n

2h

)
− n

m+n log q
− m+ n− 1

log
(
q(1−ε′)√m+n−1

2h

)
− n−1

m+n−1 log q
(20)

Proof. Note that ε, ε′ that correspond to the minimal choice for Cd(n, q, h,m), Cd(n−1, q, h,m).
For a dual attack with advantage ε an adversary needs a δ0 that satisfies

log δ0 =
log
(
q(1−ε)√m+n

2h

)
− n

m+n log q

m+ n
.

With cost function 0.265β and δ0 = 21/β , the cost of a dual attack are estimated

Cd(n, q, h,m) =
0.265(m+ n)

log
(
q(1−ε)√m+n

2h

)
− n

m+n log q
− 2 log ε+ log(nq)

Similar for a hybrid attack with k = 1 the cost are estimated

Ch1(n, q, h,m) =
0.265(m+ n− 1)

log
(
q(1−ε′)√m+n−1

2h

)
− n−1

m+n−1 log q
− 2 log ε′ + log((n− 1)q) + log

(
n

n− h

)
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(a) Optimal k in the Hybrid dual attack.
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optimal k versus expected cost of the dual attack.

Figure 23: Comparison of dual attack versus hybrid attack as function of h for several
parameter sets.

There is an improvement if 0 ≤ Cd(n, q, h,m)−Ch1
(n, q, h,m), concluding that there is improve-

ment if

log
(
ε2(n−1)
ε′2(n−h)

)

0.265
≤ m+ n

log
(
q(1−ε)√m+n

2h

)
− n

m+n log q
− m+ n− 1

log
(
q(1−ε′)√m+n−1

2h

)
− n−1

m+n−1 log q
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8 Discussion

A designer of a cryptosystem that makes use of sparse secrets should be aware that there exist
hybrid attacks that possibly improve a primal or dual attack. It can be of interest for selecting
parameter to know for which h there is no improvement anymore. However, a better attack
then the primal or dual attack is not a huge problem, as long as the improvement is not too
big. If the advantage that the hybrid attack gives, is just a couple of bits security, the system is
not immediately broken or weak. A designer that has some specific reason to have very sparse
secrets, can for example compensate for this loss by taking a larger dimension.

However, a small side note is needed at the analysis of the hybrid attack. A designer should
keep in mind that the cost of the hybrid attack here are the expected estimated cost. It is
possible that an adversary, possibly with a really small probability, can make the correct guess
and hence be much faster than the expected estimated cost. A designer should also keep in
mind that for really sparse secrets, the cost of an exhaustive search may be lower than these
hybrid improvements.

My analysis of the LWE problem has a pure mathematical approach. There were no practical
constraints imposed on the attacks. For example, an adversary had access to infinitely many
samples. In practice this wouldn’t be possible. Also, for cryptographic applications, one should
keep in mind that the implementation shouldn’t allow for side channel attacks.

In conclusion, there is no reason to avoid using sparse ternary secrets in LWE based problems
based on the attacks described in this thesis, as long as the designer is aware of the fact that
improvements on primal and dual attacks exist. I would also like to stress that the attacks
covered in this thesis are not covering the complete package of attacks, as described at the start
of section 5. A designer should be aware of more attacks in order to make secure parameter
choices, including potential future improvements which are of course hard to predict.

To adapt (R)LWE based cryptographic schemes as the new standard, more research needs to
be done. For cryptographic purposes, the RLWE problem has better cryptographic properties
than LWE problem, which is at least as hard. It has smaller public key sizes, and polynomial
arithmetic can be easily done with this modulus. There is no known attack that exploits the
extra structure that is added to achieve these results, provided that a suitable polynomial is
chosen. However, that doesn’t mean that there exists no such an attack.

Similarly to for example the factoring problem, there is no proof that the LWE problem is
indeed a computationally hard problem. Also, there is no proof that a quantum computer
cannot break an LWE based cryptosystem (in fact, there even exist quantum improvements of
classical attacks, for example [28]). To increase confidence that the problem is hard enough to
base cryptographic systems on, the best thing that can be done is more research. There are
some questions for LWE problems that are still open: Does there exist an attack that exploits
the extra structure for RLWE? Is there any other way to exploit the sparsity of a secret to
break the system? Do there exist better attacks against the LWE problem?

If research yields more and better answers to these questions, the confidence in the hardness of
the (R)LWE problem is increased, making it more interesting for new cryptographic standards.
This doesn’t rule out that the post quantum cryptography based on other problems like Multi-
variate Cryptography, Code-based Cryptography and Supersingular Elliptic Curve Isogeny can
turn out to be a better option as a standard for post quantum cryptographic systems. However,
at this point in time (R)LWE-based cryptography is a very promising candidate for being the
future standard for encryption.
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A Code

A.1 Frodo

The following code is an implementation in Sage of the algorithms 1 (Frodo.Encode), 2
(Frodo.Decode), 9 (FrodoPKE.KeyGen), 10 (FrodoPKE.Enc) and 11 (FrodoPKE.Dec) of the
Frodo specification [6]. For simplicity, the algorithms don’t use hash functions like AES128 or
SHAKE to produce pseudorandom bitstrings, but uses the built-in Sage functions randint()

and get_random_element(). These should suffice for our purposes.

1 D = 15 ; # D <= 16
2 q = 2ˆD; #Modulus
3 n = 8 ; #n , m matrix dimensions
4 m = 8 ; #n 0 mod 8
5 B = 3 ; #number o f b i t s encoded in each matrix entry
6 l = B * n * m #l e n g t h o f the b i t s t r i n g encoded as m by n matr ices
7 R = I n t e g e r s ( q )
8 sd = 2 .8
9

10 D = 10 ; # D <= 16
11 q = 2ˆD; #Modulus
12 n = 1 ; #n , m matrix dimensions
13 m = 1 ; #n 0 mod 8
14 B = 1 ; #number o f b i t s encoded in each matrix entry
15 l = B * n * m #l e n g t h o f the b i t s t r i n g encoded as m by n matr ices
16 R = I n t e g e r s ( q )
17 sd = 10
18
19
20 def i n t2Bb i t ( x ) :
21 s = [ 0 for i in range (B) ]
22 i f x > 2ˆB :
23 return −1;
24 else :
25 for i in range (B−1,−1,−1) :
26 i f x >= 2ˆ i :
27 x = x − 2ˆ i ;
28 s [B−i −1] = 1 ;
29 s . r e v e r s e ( )
30 return s ;
31
32 def Bbi t2 int (b) :
33 b . r e v e r s e ( )
34 x = 0
35 for i in range (B) :
36 x = x + b [ i ] * 2ˆ(B−i −1) ;
37 return x
38
39 def ec ( k ) : return k * 2ˆ(D−B) ;
40
41 def dc ( c ) : return int (Mod(round( int ( c ) * ( (2ˆB) / q ) ) ,2ˆB) ) ;
42
43 def FrodoEncode ( k ) :
44 K = matrix (m, n) ;
45 for i in range (m) :
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46 for j in range (n) :
47 v = 0
48 for y in range (B) :
49 v = v + k [ ( i *n+j ) *B+y ]*2ˆ y ;
50 ec ( v )
51 K[ i , j ] = ec ( v )
52 return K
53
54 def FrodoDecode (K) :
55 k = [ 0 for i in range ( l ) ]
56 for i in range (m) :
57 for j in range (n) :
58 ks = dc (K[ i , j ] ) ;
59 kss = int2Bbi t ( ks ) ;
60 for y in range (B) :
61 k [ ( i *n+j ) *B+y ] = kss [ y ] ;
62 return k ;
63
64 def generateMatr ix (n ,m, sd ) :
65 A = matrix (R, n ,m)
66 T = Rea lD i s t r i bu t i on ( ’ gauss ian ’ , sd )
67 for i in range (n) :
68 for j in range (m) :
69 A[ i , j ] = R(round(T. get random element ( ) ) )
70 return A
71
72 def FrodoGen ( ) :
73 A = matrix (n , n)
74 for i in range (n) :
75 for j in range (n) :
76 A[ i , j ] = R. random element ( )
77 S = generateMatr ix (n , n , sd )
78 E = generateMatr ix (n , n , sd )
79 B = A*S+E
80 for i in range (n) :
81 for j in range (n) :
82 B[ i , j ] = R(B[ i , j ] )
83 pk = A,B
84 sk = S
85 printASEB (A, S ,E,B)
86 return pk , sk ;
87
88 def FrodoEnc (mu, pk ) :
89 A, B = pk
90 Sp = generateMatr ix (n , n , sd )
91 Ep = generateMatr ix (n , n , sd )
92 Epp = generateMatr ix (n , n , sd )
93 Bp = Sp * A + Ep
94 V = Sp * B + Epp
95 C1 = Bp
96 C2 = V + FrodoEncode (mu)
97 printSpEpBpEppV (Sp , Ep , Bp , Epp ,V)
98 return C1 , C2
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99
100 def FrodoDec (C1 , C2 , sk ) :
101 M = C2−C1* sk
102 printM (M)
103 return FrodoDecode (M)
104
105 def equa lB i tS t r i ng ( b1 , b2 ) :
106 i f len ( b1 ) != len ( b2 ) :
107 return False
108 for i in range ( len ( b1 ) ) :
109 i f b1 [ i ] != b2 [ i ] :
110 return False
111 return True ;
112
113 def randomBitString ( ) :
114 return [ rand int (0 , 1 ) for i in range ( l ) ]
115
116 def printASEB (A, S ,E,B) :
117 print ( ’A ’ )
118 print (A)
119 print ( ’S ’ )
120 print (S)
121 print ( ’E ’ )
122 print (E)
123 print ( ’B ’ )
124 print (B)
125 return
126
127 def printSpEpBpEppV (Sp , Ep , Bp , Epp ,V) :
128 print ( ’ Sp ’ )
129 print (Sp)
130 print ( ’Ep ’ )
131 print (Ep)
132 print ( ’Bp ’ )
133 print (Bp)
134 print ( ’Epp ’ )
135 print (Epp)
136 print ( ’V ’ )
137 print (V)
138 return
139
140 def printM (M) :
141 print ( ’M’ )
142 print (M)
143 return
144
145 pk , sk = FrodoGen ( )
146 k = randomBitString ( )
147 K = FrodoEnc (k , pk )
148 k1 = FrodoDec (K[ 0 ] , K[ 1 ] , sk )
149 print ( equa lB i tS t r i ng (k , k1 ) )

Listing 3: FrodoPKE.
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A.2 LWE.

The following code can be used to instantiate an LWE problem.

1 n = 5
2 q = 101
3 R = I n t e g e r s ( q )
4 sd = 3
5 m = 7
6
7 def gene ra t eSec r e t ( ) :
8 s = matrix (n , 1 )
9 for i in range (n) :

10 s [ i ] = R. random element ( )
11 return s
12
13 def generateSamples ( ) :
14 A = matrix (R,m, n)
15 for i in range (m) :
16 for j in range (n) :
17 A[ i , j ] = R. random element ( )
18 return A
19
20 def generateError ( sd ) :
21 E = matrix (R,m, 1 )
22 T = Rea lD i s t r i bu t i on ( ’ gauss ian ’ , sd )
23 for i in range (m) :
24 E[ i ] = R(round(T. get random element ( ) ) )
25 return E

Listing 4: Basic LWE.
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A.3 R-LWE.

The following code can be used to instantiate a RLWE problem.

1 n = 4 ;
2 q = next pr ime (n)
3 while mod(q ,2*n) != 1 :
4 q = next pr ime ( q )
5 R.<x> = PolynomialRing ( I n t e g e r s ( q ) )
6 f = R( xˆn+1)
7 Rq.<x> = R. quot i ent ( f )
8 sigma = 1
9

10
11 def genSecre t ( ) :
12 return Rq . random element ( )
13
14 def createSample ( s ) :
15 a = Rq . random element ( )
16 T = Rea lD i s t r i bu t i on ( ’ gauss ian ’ , sigma )
17 e = Rq ( [ round(T. get random element ( ) ) for i in range (n) ] )
18 b = a* s+e
19 return a , b , e

Listing 5: RLWE.
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A.4 Primal attack.

1 n = 3
2 q = next pr ime (100)
3 R = I n t e g e r s ( q )
4 sd = 2 .8
5 m = 5
6 beta = 5
7
8 def gene ra t eSec r e t ( ) :
9 s = matrix (n , 1 )

10 for i in range (n) :
11 s [ i ] = R. random element ( )
12 return s
13
14 def generateSamples ( ) :
15 A = matrix (R,m, n)
16 for i in range (m) :
17 for j in range (n) :
18 A[ i , j ] = R. random element ( )
19 return A
20
21 def generateError ( sd ) :
22 E = matrix (R,m, 1 )
23 T = Rea lD i s t r i bu t i on ( ’ gauss ian ’ , sd )
24 for i in range (m) :
25 E[ i ] = R(round(T. get random element ( ) ) )
26 return E
27
28 def gene ra t eBas i s (A) :
29 A1 = A. d e l e t e r o w s ( range (n ,m) ) ;
30 A2 = A. d e l e t e r o w s ( range (n) ) ;
31 I = matrix . i d e n t i t y (n) ;
32 zero = matrix (n , m−n) ;
33 i f A1 . i s s i n g u l a r ( ) :
34 return −1
35 A1inv = A1 . i n v e r s e ( ) ;
36 qI = q*matrix . i d e n t i t y (m−n) ;
37 B = block matr ix ( I n t e g e r s ( ) , [ [ I , z e ro ] , [ A2*A1inv , qI ] ] )
38 B. subd iv ide (None ) ;
39 return B. t ranspose ( )
40
41 def babaiNearestPlane (B, pt ) :
42 w = pt
43 B = B. LLL( )
44 Bg = B. gram schmidt ( ) ;
45 Bg = Bg [ 0 ] ;
46
47 y = matrix ( I n t e g e r s ( ) ,m,m) ;
48 for i in range (m−1,−1,−1) :
49 l = Bg [ i , : ] *w/(Bg [ i , : ] * Bg [ i , : ] . t ranspose ( ) )
50 y [ i , : ] = round( l [ 0 , 0 ] ) * B[ i , : ]
51 w = w − ( l [0 ,0 ]−round( l [ 0 , 0 ] ) ) * Bg [ i , : ] . t ranspose ( )−

round( l [ 0 , 0 ] ) *B[ i , : ] . t ranspose ( )
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52 v = matrix ( I n t e g e r s ( ) ,1 ,m)
53 for i in range (m) :
54 v = v + y [ i , : ]
55 return v . t ranspose ( ) ;
56
57 def minlength (Bg) :
58 mi = s q r t ( (Bg [ 0 , : ] *Bg [ 0 , : ] . t ranspose ( ) ) [ 0 , 0 ] )
59 for i in range (m) :
60 c = s q r t ( (Bg [ i , : ] * Bg [ i , : ] . t ranspose ( ) ) [ 0 , 0 ] )
61 i f c < mi :
62 mi = c
63 return mi . n ( )
64
65 def sumlength (Bg) :
66 sum = 0
67 for i in range (m) :
68 sum = sum + s q r t ( (Bg [ i , : ] * Bg [ i , : ] . t ranspose ( ) ) [ 0 , 0 ] )
69 return sum . n ( )
70
71 def r e c o v e r S e c r e t (A, b , sk ) :
72 b = matrix ( I n t e g e r s ( ) ,b )
73 B = gene ra t eBas i s (A)
74 i f B == −1:
75 print ( ’ Unable to generate Bas i s ’ )
76 return −1
77 pt = babaiNearestPlane (B, b)
78 i f (A. t ranspose ( ) *A) . i s s i n g u l a r ( ) == True :
79 print ( ’Aˆ t *A not i n v e r t i b l e in r e c o v e r S e c r e t ’ )
80 return −1
81 Ainv = (A. t ranspose ( ) *A) . i n v e r s e ( ) * A. t ranspose ( )
82 print ( Ainv*pt == sk )
83 return Ainv*pt
84
85 def generateExampleBasis ( ) :
86 B = matrix ( [ [ 1 , 2 , 3 ] , [ 3 , 0 , − 3 ] , [ − 3 , 7 , 3 ] ] )
87 pt = matrix ( [ [ 1 0 ] , [ 6 ] , [ 5 ] ] )
88 return B, pt
89
90 def generateAndRecover ( ) :
91 sk = gene ra t eSe c r e t ( ) ;
92 A = generateSamples ( ) ;
93 i f (A. t ranspose ( ) *A) . i s s i n g u l a r ( ) == True :
94 print ( ’Aˆ t *A not i n v e r t i b l e in generateAndRecover ’ )
95 return −1
96 A1 = A. d e l e t e r o w s ( range (n ,m) ) ;
97 i f A1 . i s s i n g u l a r == True :
98 print ( ’A1 not i n v e r t i b l e ’ )
99 return −1

100 E = generateError (1 ) ;
101 pk = (A,A* sk+E) ;
102 pt = matrix ( I n t e g e r s ( ) ,A* sk+E)
103 return sk == r e c o v e r S e c r e t (A, pt , sk ) ;
104
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105 m = 1
106 r e s = matrix (50 ,2 )
107
108 for n in range ( 40 , 50) :
109 c = 0
110 esc = 0
111 print ( n )
112 while c < 100 :
113 i f generateAndRecover ( ) == False :
114 i f e sc < 1 :
115 e sc = esc +1
116 c = c + 1
117 else :
118 c = 0
119 esc = 0
120 m = m +1
121 print (m)
122 else :
123 c = c + 1
124 r e s [ n , 0 ] = n
125 r e s [ n , 1 ] = m
126 f = open( ’ pr imalattackbeta5p99 . csv ’ , ’w ’ )
127 f . wr i t e ( l a t e x ( r e s ) )
128 f . c l o s e ( )

Listing 6: Primal attack.
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A.5 Hybrid attack

1 n = 20
2 q = next pr ime (2ˆ15)
3 R = I n t e g e r s ( q )
4 sd = 1
5 m = 30
6 beta = 5
7 k = 3
8 p = 0 .1
9

10 def gene ra t eSec r e t ( ) :
11 s = matrix (n , 1 )
12 for i in range (n) :
13 s [ i ] = R. random element ( )
14 return s
15
16 def generateSamples ( ) :
17 A = matrix (R,m, n)
18 for i in range (m) :
19 for j in range (n) :
20 A[ i , j ] = R. random element ( )
21 return A
22
23 def generateError (p) :
24 P = [ p , 1−2*p , p ]
25 X = G e n e r a l D i s c r e t e D i s t r i b u t i o n (P)
26 E = matrix (R,m, 1 )
27 for i in range (m) :
28 E[ i ] = X. get random element ( )−1
29 return E
30
31 def gene ra t eBas i s (A, b) :
32 A1 = A. d e l e t e r o w s ( range (n ,m) ) ;
33 A2 = A. d e l e t e r o w s ( range (n) ) ;
34 I = matrix . i d e n t i t y (n) ;
35 zero = matrix (n , m−n) ;
36 i f A1 . i s s i n g u l a r ( ) :
37 return −1,−1
38 A1inv = A1 . i n v e r s e ( ) ;
39 qI = q*matrix . i d e n t i t y (m−n) ;
40 B = block matr ix ( I n t e g e r s ( ) , [ [ I , z e ro ] , [ A2*A1inv , qI ] ] )
41 B. subd iv ide (None ) ;
42 C = B. d e l e t e r o w s ( range ( k ) )
43 C = C. de l e t e co lumns ( range (k ,m) )
44 T = B. d e l e t e r o w s ( range ( k ) )
45 T = T. de l e t e co lumns ( range ( k ) )
46 return C. t ranspose ( ) , T. t ranspose ( )
47
48 A1 = A. d e l e t e r o w s ( range (n ,m) ) ;
49 A2 = A. d e l e t e r o w s ( range (n) ) ;
50 Ink = matrix . i d e n t i t y (n−k ) ;
51 zero1k = matrix (1 , k ) ;
52 zero1mk = matrix (1 ,m−k ) ;
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53 zerokmk = matrix (k ,m−k )
54
55 i f A1 . i s s i n g u l a r ( ) :
56 return −1,−1
57 A1inv = A1 . i n v e r s e ( ) ;
58 qI = q*matrix . i d e n t i t y (m−n) ;
59 B = block matr ix ( I n t e g e r s ( ) , [ [ I , z e ro ] , [ A2*A1inv , qI ] ] )
60 B. subd iv ide (None ) ;
61 return B. t ranspose ( )
62
63 def babaiNearestPlane (B, pt ) :
64 w = pt
65 B = B.BKZ( b l o c k s i z e = beta )
66 Bg = B. gram schmidt ( ) ;
67 Bg = Bg [ 0 ] ;
68
69 y = matrix ( I n t e g e r s ( ) ,m−k ,m−k ) ;
70 for i in range (m−k−1,−1,−1) :
71 l = Bg [ i , : ] *w/(Bg [ i , : ] * Bg [ i , : ] . t ranspose ( ) )
72 y [ i , : ] = round( l [ 0 , 0 ] ) * B[ i , : ]
73 w = w − ( l [0 ,0 ]−round( l [ 0 , 0 ] ) ) * Bg [ i , : ] . t ranspose ( )−

round( l [ 0 , 0 ] ) *B[ i , : ] . t ranspose ( )
74 v = matrix ( I n t e g e r s ( ) ,1 ,m−k )
75 for i in range (m−k ) :
76 v = v + y [ i , : ]
77 return v . t ranspose ( ) ;
78
79 def minlength (Bg) :
80 mi = s q r t ( (Bg [ 0 , : ] *Bg [ 0 , : ] . t ranspose ( ) ) [ 0 , 0 ] )
81 for i in range (m) :
82 c = s q r t ( (Bg [ i , : ] * Bg [ i , : ] . t ranspose ( ) ) [ 0 , 0 ] )
83 i f c < mi :
84 mi = c
85 return mi . n ( )
86
87 def sumlength (Bg) :
88 sum = 0
89 for i in range (m) :
90 sum = sum + s q r t ( (Bg [ i , : ] * Bg [ i , : ] . t ranspose ( ) ) [ 0 , 0 ] )
91 return sum . n ( )
92
93 def r e c o v e r S e c r e t (A, b , sk , vg ) :
94 b = matrix ( I n t e g e r s ( ) ,b )
95 C,T = gene ra t eBas i s (A, b)
96 i f C == −1:
97 print ( ’ Unable to generate Bas i s ’ )
98 return −1
99 b0 = b . d e l e t e r o w s ( range (k ,m) ) ;

100 b1 = b . d e l e t e r o w s ( range ( k ) ) ;
101 pt = C. t ranspose ( ) *( vg−b0 )+b1
102 pt = matrix ( I n t e g e r s ( ) , pt )
103 Tx = babaiNearestPlane (T, pt )
104 i f (A. t ranspose ( ) *A) . i s s i n g u l a r ( ) == True :
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105 print ( ’Aˆ t *A not i n v e r t i b l e in r e c o v e r S e c r e t ’ )
106 return −1
107 Ainv = (A. t ranspose ( ) *A) . i n v e r s e ( ) * A. t ranspose ( )
108 ep = block matr ix ( [ [ vg ] , [ pt−Tx ] ] )
109 ep . subd iv ide (None )
110 print ( Ainv *(b−ep ) == sk )
111 return Ainv *(b−ep )
112
113 def generateExampleBasis ( ) :
114 B = matrix ( [ [ 1 , 2 , 3 ] , [ 3 , 0 , − 3 ] , [ − 3 , 7 , 3 ] ] )
115 pt = matrix ( [ [ 1 0 ] , [ 6 ] , [ 5 ] ] )
116 return B, pt
117
118 def generateAndRecover2 ( ) :
119 sk = gene ra t eSe c r e t ( ) ;
120 A = generateSamples ( ) ;
121 i f (A. t ranspose ( ) *A) . i s s i n g u l a r ( ) == True :
122 print ( ’Aˆ t *A not i n v e r t i b l e in generateAndRecover ’ )
123 return −1
124 A1 = A. d e l e t e r o w s ( range (n ,m) ) ;
125 i f A1 . i s s i n g u l a r == True :
126 print ( ’A1 not i n v e r t i b l e ’ )
127 return −1
128 E = generateError (p) ;
129 pk = (A,A* sk+E) ;
130 b = matrix ( I n t e g e r s ( ) ,A* sk+E)
131 r e s u l t = Fal se
132 x = 0
133 print (E)
134 while ( r e s u l t == False ) & ( x < 3ˆk ) :
135 vg = in t 2 g u e s s ( x )
136 r e s u l t = ( r e c o v e r S e c r e t (A, b , sk , vg ) == sk )
137 x = x + 1
138 return r e s u l t ;
139
140 def i n t 2 gu e s s ( x ) :
141 vg = matrix ( I n t e g e r s ( ) , k , 1 )
142 for i in range ( k ) :
143 vg [ i , 0 ] = mod( f l o o r ( x/(3ˆ i ) ) , 3 )
144 i f vg [ i , 0 ] == 2 :
145 vg [ i , 0 ] = vg [ i , 0 ] − 3
146 return vg
147
148 vg = matrix ( I n t e g e r s ( ) , k , 1 )
149 sk = gene ra t eSe c r e t ( )
150 A = generateSamples ( )
151 e = generateError (p)
152 b = A* sk+e
153
154
155 def generateAndRecover ( ) :
156 vg= matrix ( I n t e g e r s ( ) , k , 1 )
157 sk = gene ra t eSe c r e t ( ) ;
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158 A = generateSamples ( ) ;
159 i f (A. t ranspose ( ) *A) . i s s i n g u l a r ( ) == True :
160 print ( ’Aˆ t *A not i n v e r t i b l e in generateAndRecover ’ )
161 return −1
162 A1 = A. d e l e t e r o w s ( range (n ,m) ) ;
163 i f A1 . i s s i n g u l a r == True :
164 print ( ’A1 not i n v e r t i b l e ’ )
165 return −1
166 E = generateError (p) ;
167 pk = (A,A* sk+E) ;
168 b = matrix ( I n t e g e r s ( ) ,A* sk+E)
169 print ( r e c o v e r S e c r e t (A, b , sk , vg ) ,E, sk )
170 return sk == r e c o v e r S e c r e t (A, b , sk , vg ) ;

Listing 7: Hybrid Primal attack.
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A.6 Attacking LWE

1 sage : m = 1
2 sage : for n in range (1 ,120) :
3 . . . . : i f m < n :
4 . . . . : m = n
5 . . . . : sk = gene ra t eSe c r e t ( ) ;
6 . . . . : A = generateSamples (m) ;
7 . . . . : E = generateError (1 ) ;
8 . . . . : pk = (A,A* sk+E) ;
9 . . . . : pt = matrix ( I n t e g e r s ( ) ,A* sk+E)

10 . . . . : B = gene ra t eBas i s (A)
11 . . . . : v1 = wal l t ime ( )
12 . . . . : r e s u l t = ( sk ==r e c o v e r S e c r e t (A, pt , sk ) )
13 . . . . : while r e s u l t == False :
14 . . . . : v2 = wal l t ime ( )
15 . . . . : m = m + 1
16 . . . . : ap = generateSamples (1 )
17 . . . . : A = block matr ix ( 2 , 1 , [A, ap ] )
18 . . . . : A. subd iv ide (None ) ;
19 . . . . : T = Rea lD i s t r i bu t i on ( ’ gauss ian ’ , sd )
20 . . . . : e = matrix (1 )
21 . . . . : e [ 0 , 0 ] = R(round(T. get random element ( ) ) )
22 . . . . : E = block matr ix ( 2 , 1 , [E, e ] )
23 . . . . : E . subd iv ide (None ) ;
24 . . . . : pk = (A,A* sk+E) ;
25 . . . . : pt = matrix ( I n t e g e r s ( ) ,A* sk+E)
26 . . . . : r e s u l t = ( r e c o v e r S e c r e t (A, pt , sk ) == sk )
27 . . . . : r e s [ n , 0 ] = n
28 . . . . : r e s [ n , 1 ] = m
29 . . . . : r e s [ n , 2 ] = wal l t ime ( v1 )
30 . . . . : r e s [ n , 3 ] = wal l t ime ( v2 )
31 . . . . : f = open( ’ t e s t c s v . csv ’ , ’w ’ )
32 . . . . : f . wr i t e ( l a t e x ( r e s ) )
33 . . . . : f . c l o s e ( )

Listing 8: Attacking the LWE problem
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A.7 Estimating the Primal attack.

1 def be ta tode l t a0 ( beta ) :
2 return ( ( ( beta /(2* pi *exp (1 ) ) ) *( p i *beta ) ˆ(1/ beta ) ) ˆ(1/(2* beta

−2) ) ) . n ( )
3
4 def minimalbeta (n , q , sigma ) :
5 beta = 40
6 de l t a0 = beta tode l t a0 ( beta )
7 m = round( s q r t (n* l og ( q ) / log ( de l t a0 ) ) . n ( ) )
8 while ( ( qˆ(1−n/m) * de l ta0 ˆ(2* beta−m−1)−sigma* s q r t ( beta ) ) . n ( )

< 0) :
9 beta = beta + 1

10 de l t a0 = beta tode l t a0 ( beta )
11 m = round( s q r t (n* l og ( q ) / log ( de l t a0 ) ) . n ( ) )
12 print ( ’ beta = ’ , beta , ’ , m = ’ , m)
13 print ( ’ & & ’ , n , ’& ’ ,q , ’& ’ , sigma . n( d i g i t s = 3) , ’& ’ , beta , ’& ’

,m, ’&’ , ( beta *0 .265) . n ( d i g i t s = 5) )
14 return beta
15
16 def minimalbetah (n , q , h ) :
17 beta = 40
18 de l t a0 = beta tode l t a0 ( beta )
19 m = round( s q r t (n* l og ( q ) / log ( de l t a0 ) ) . n ( ) )
20 while ( ( qˆ(1−n/m) * de l ta0 ˆ(2* beta−m−1)−2* s q r t (h) ) . n ( ) < 0) :
21 beta = beta + 1
22 de l t a0 = beta tode l t a0 ( beta )
23 m = round( s q r t (n* l og ( q ) / log ( de l t a0 ) ) . n ( ) )
24 print ( ’ beta = ’ , beta , ’ , m = ’ , m)
25 print ( ’ & & ’ , n , ’& ’ ,q , ’& ’ ,h , ’& ’ , beta , ’& ’ ,m, ’&’ , ( beta

*0 .265) . n ( d i g i t s = 5) )
26 return beta
27
28 def minimalbetahybrid (n , q , h , k ) :
29 beta = 40
30 de l t a0 = beta tode l t a0 ( beta )
31 m = round( s q r t (n* l og ( q ) / log ( de l t a0 ) ) . n ( ) )
32 while ( ( qˆ(1−n/m) * de l ta0 ˆ(2* beta−m−1)−2* s q r t (h) ) . n ( ) < 0) :
33 beta = beta + 1
34 de l t a0 = beta tode l t a0 ( beta )
35 m = round( s q r t (n* l og ( q ) / log ( de l t a0 ) ) . n ( ) )
36 print ( ’ Standard : beta = ’ , beta , ’ , m = ’ , m, ’ , l og ( co s t ) =’

, ( 0 . 265* beta ) . n ( d i g i t s = 5) )
37 beta = 40
38 de l t a0 = beta tode l t a0 ( beta )
39 while ( ( q ˆ ( (m−n) /(m−k ) ) * de l ta0 ˆ(2* beta−m+k−1)−2* s q r t (h) ) . n ( )

< 0) :
40 beta = beta + 1
41 de l t a0 = beta tode l t a0 ( beta )
42 p = f a c t o r i a l (n−h) /( f a c t o r i a l (n−h−k ) *nˆk )
43 print ( ’ Hybrid : beta = ’ , beta , ’ , m = ’ , m, ’ , l og ( co s t ) =’

, ( 0 . 265* beta+log (1/p) ) . n ( d i g i t s = 5) )
44 return (0 . 265* beta+log (1/p) ) . n ( d i g i t s = 5)
45
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46 def hybr idcos t (n , q , h) :
47 beta = 40
48 de l t a0 = beta tode l t a0 ( beta )
49 m = round( s q r t (n* l og ( q ) / log ( de l t a0 ) ) . n ( ) )
50 while ( ( qˆ(1−n/m) * de l ta0 ˆ(2* beta−m−1)−2* s q r t (h) ) . n ( ) < 0) :
51 beta = beta + 1
52 de l t a0 = beta tode l t a0 ( beta )
53 m = round( s q r t (n* l og ( q ) / log ( de l t a0 ) ) . n ( ) )
54 mincost = ( beta *0 .265) . n ( )
55 co s t = mincost
56 k = 1
57 mink = 0
58 count = 0
59 minbeta = beta
60 while not ( ( co s t > mincost ) & ( count >10) ) :
61 beta = 40
62 de l t a0 = beta tode l t a0 ( beta )
63 while ( ( q ˆ ( (m−n) /(m−k ) ) * de l ta0 ˆ(2* beta−m+k−1)−2* s q r t

(h) ) . n ( ) < 0) :
64 beta = beta + 1
65 de l t a0 = beta tode l t a0 ( beta )
66 p = f a c t o r i a l (n−h) /( f a c t o r i a l (n−h−k ) *nˆk )
67 co s t = (0 .265* beta+log (1/p) ) . n ( )
68 i f co s t < mincost :
69 mincost = cos t
70 count = 0
71 mink = k
72 minbeta = beta
73 else :
74 count = count + 1
75 k = k+1
76 print ( ’ c o s t : ’ , mincost , ’ , k =’ , mink )
77 print ( ’& ’ ,n , ’& ’ , q , ’& ’ ,h , ’& ’ , minbeta , ’& ’ ,m, ’&’ , mincost , ’& ’ )
78 return mincost , mink , minbeta ,m

Listing 9: LWE estimator.
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