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Abstract

We use visual working memory to temporarily store visual information about our en-
vironment. However, our environment is mostly visually static and as such, memory
can often be ‘offloaded’ onto the environment. This leads to a trade-off between choos-
ing to internally store information or to externally sample it. In this thesis we explored
how this storage/sampling trade-off changes as reliability of access to the environ-
ment changes, by submitting participants to a copying task. In this task, participants
were instructed to copy a layout of stimuli on the left side of a computer screen to the
right side of the screen. The example layout intermittently appeared and disappeared
throughout a trial, the timing of which we varied across conditions. We found that,
as the example layout disappeared for greater amounts of time, participants sampled
it less often (and thus likely memorised more items at once) than in the baseline con-
dition, in which the example layout was always visible. We then designed and ran
a computational cognitive model, with which we attempted to simulate the partici-
pants’ behaviour in such a way that that we could compare the model’s results to be-
havioural observations. The model explored different combinations of possible strate-
gies, namely regarding the number of stimuli it attempted to remember with each gaze
toward the example layout, and regarding how many times a stimulus was rehearsed
in memory after its first encoding. We then compared human data and model data on
three outcome variables: (1) the number of crossings from the right side of the screen to
the example layout on the left side; (2) the completion time of trials; and (3) the num-
ber of fixations per second. A model was found that fits well to participants’ completion
time and number of fixations per trial, but less strongly on the number of crossings per
trial. Our findings suggest that there may indeed occur a shift in in the usage of visual
working memory when reliability of visual access changes, which leads us to believe
a storage/sampling trade-off also exists in environments with varying reliability of vi-
sual access. We conclude by recommending that future research endeavours take into
account a storage/sampling trade-off in conditions with varying reliability of visual
access.
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1 Introduction

We live in a visually rich environment. In order to interpret and process visual informa-
tion, the objects that we see around us can be temporarily stored in visuospatial working
memory; a short-term, quick-access form of memory, considered to be part of the general
working memory system (Baddeley & Herring, 1983; Salway & Logie, 1995). In turn, vi-
suospatial working memory consists of two closely related components: spatial working
memory (SWM) and visual working memory (VWM). SWM is thought to be responsi-
ble for encoding location pointers to visual information in the world, whereas VWM is
thought to encode and maintain visual features of stimuli in memory (Baddeley, 2000;
Baddeley & Hitch, 1974).

There is ongoing debate about what the constraints and capacity of VWM are and
whether the capacity is a rigid number of discrete units that can be stored either accurately
or not at all (e.g., Luck & Vogel, 2013), or whether it is limited by available resources in
general working memory and the quality of stimuli (e.g., Ma, Husain, Bays, & de Soissons,
2014). Nevertheless, these discussions all describe VWM as a storage medium of limited
capacity, such that when a new stimulus needs to be remembered, an old one often needs
to make way.

Clearly, it would be very costly to constantly erase and write visual stimuli into VWM,
as it not only requires attentional resources (Cowan, 2016), but internal representations
may also be encoded incorrectly or be subject to decay (Baddeley & Hitch, 1974). The high
cost of internal storage may especially be applicable in repetitive tasks where more objects
are present than can be stored and where some of them need to be used frequently. Think
of laying a puzzle, where it can be useful to memorize what the edge pieces look like, but
still needing to visually sample the inner pieces. By any current theory, even a 100-piece
puzzle contains more objects than can be reliably stored in VWM, and thus items need to
be sampled, stored, retrieved, and resampled often.

1.1 Storage versus sampling

However, while at the grocery store, taking a stroll through the park, or sitting behind a
desk, it is safe to assume that most, if not all, elements will still be there after looking away
for a few seconds. The peanut butter on the store shelf, the trees, and the picture frame
will still look the same and they will not have moved. With that in mind, O’Regan (1992)
proposed that the real world may be used as external memory in order to reduce the cost
of handling internal memory.

Nevertheless, using the world as an external memory source requires saccades to be
made towards the desired object every time its information needs to be retrieved, which
may be considered too costly as compared to storing information internally or vice versa.
Therefore, there must be some internal function which models the cost of using the real
world as external storage and thus to make more saccades, versus when to store stimuli in
VWM (“external sampling” and “internal storage” respectively; Van der Stigchel, 2020).
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Previous research into this storage/sampling trade-off has often taken the form of a
copying task, in which an example array of stimuli on one side of the screen needed to
be copied to a workspace on the other side of the screen (Ballard, Hayhoe, & Pelz, 1995;
Gray, Sims, Fu, & Schoelles, 2006; Inamdar & Pomplun, 2003; Melnik, Schüler, Rothkopf,
& König, 2018; Somai, Schut, & Van der Stigchel, 2020). It was shown that generally, when
instructed to perform quickly and accurately, making more saccades (and thus externally
sampling) was participants’ preferred strategy. This preference towards external sampling
is in accordance with Wilson (2002), who posed that cognition is time-pressured and often
offloaded onto the environment. However, when the cost of saccades was increased – e.g.,
by increasing the distance between example and workspace (Ballard et al., 1995; Inamdar &
Pomplun, 2003), or by delaying the appearance of the example (Gray et al., 2006; Melnik et
al., 2018; Somai et al., 2020) the dominant strategy shifted towards making fewer saccades,
and thus storing more information internally in VWM. These findings conform with earlier
research which has demonstrated or argued for the adaptive nature of strategy selection
by participants (e.g., Brumby, Howes, & Salvucci, 2007; Cary & Carlson, 2001; Charman &
Howes, 2003; Howes, Duggan, Kalidindi, Tseng, & Lewis, 2016).

If we relate these findings to the example of the puzzle; if the puzzle is small enough in
size – say it were to fit on a dinner plate – there may be a dominant strategy of looking at a
corner piece and all other edge pieces in turn – every time seeing whether it fits the corner
piece by making a saccade back towards it. In contrast, if the puzzle is sufficiently large
such that all pieces spread out may occupy an entire dining table, the dominant strategy
may be to briefly store the features of the corner piece in VWM, then looking sequentially
at each edge piece and retrieving the corner piece’s features from VWM to see whether the
two fit together.

1.2 Reliability of access to visual information

It should be noted that the aforementioned strategies in the copying tasks depend on the
stimuli always being present – and in the same place – after a saccade. But what hap-
pens when the reliability of access to the environment decreases? For instance, in scenarios
with moving objects, a stimulus may no longer be present after a saccade has been made
elsewhere. In other cases, access to stimuli may be unreliable, such as when other objects
regularly move in front of the desired stimulus. For example, when driving, important
stimuli such as lane markers, traffic signs or crossing pedestrians may be obscured by
other vehicles, by the car’s blind spot, or roadside objects such as trees (Senders, Kristof-
ferson, Levison, Dietrich, & Ward, 1967). More generally applicable; rain, snow, or glare
from the sun may temporarily obstruct one’s view, as could a flickering light or a tall per-
son in front of you at a concert. In these scenarios, visual stimuli are temporarily blocked
or occluded, and the frequency of availability of stimuli, although somewhat predictable,
is often not known with complete accuracy at the level of milliseconds. We thus describe
these scenarios as having varying reliability of visual access.

Given the assumption that one is aware of the degree of reliability of access to the en-
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vironment, presumably there also exists a function which models the storage/sampling
trade-off in situations where visual access to the environment may only be intermittently
available. Therefore, we expect that decreasing the reliability of access to visual stimuli
modulates participants’ strategy selection in a similar manner to increasing the cost of
access as found in previous experiments. If so, we would expect participants to offload
memory to the environment as much as possible in a baseline environment, in which stim-
uli are always visible. Accordingly, low-reliability of access environments are expected to
give rise to approaches based more on internal storage.

1.3 Cognitive models

The difficulty of researching mental strategies, however, is that they cannot be directly de-
duced from observational data. For instance, we can neither directly measure how many
stimuli are stored in VWM, nor how accurately they are stored. Luckily, computational
cognitive models have been making headway in exploring, explaining and modeling cog-
nitive processes which are not directly observable (McClelland, 2009).

In cognitive process modeling, there are generally two approaches: (1) uncovering
strategies which lead to some optimal performance metric (such as the shortest completion
time) and comparing them to human performance, which then allows statements about the
(sub-)optimality of human performance; and (2) uncovering which strategies fit best to hu-
man performance, since it is held that humans are boundedly optimal performers (Lewis,
Howes, & Singh, 2014; Russell & Subramanian, 1995). The first approach is commonly
encountered in artificial intelligence research, where models are often built to perform as
optimally as possible on some task, regardless of how the performance is achieved. The
second approach is more human-centered; where models are built from a combination of
existing theories and newly observed traits of human cognition. Comparing a model’s
performance to human data then gives an indication of how well a theory explains human
behaviour. We define and test a human-centered model on a copying task in which the
reliability of access to the example grid is modulated throughout different conditions. The
reliability of access is manipulated across conditions by making the example grid disap-
pear and reappear at a different pace for each condition. We then explore how well the
model fits to human data under different strategy combinations.

In this thesis, we expect to find that low-reliability of access environments give rise to
a dominantly storage-based strategy, and vice versa. The objective of this thesis is then to
uncover the parameters of the strategies which may underlie this behaviour by designing
a computational cognitive model which approximates participants’ behaviour on a task
with varying degrees of reliability of access.

The first type of strategy we explore contains how many stimuli are encoded each time
the gaze shifts towards the example grid. The second type of strategy we explore is how
often an item is rehearsed in VWM after the first time it is encoded. By retrieving an
encoded item from memory, its activation strength is increased and it is therefore less likely
to be forgotten over time. Finally, we explore different combinations of parameters for
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memory encoding. Based on the ACT-R framework, we tune these parameters so that our
model can most accurately predict how long encoding items in VWM takes and how long
it takes to retrieve those items again (Anderson, 1996; Anderson & Schooler, 1991; Lovett,
Reder, & Lebiere, 2012).

Assuming the model’s parameters besides strategy – such as duration of saccades and
mouse movements – are in accordance with those exhibited by participants, it can be ar-
gued that the strategy which best fits to the observed data provides evidence towards
uncovering the participants’ prevalent strategy (Gershman, Horvitz, & Tenenbaum, 2015;
McClelland, 2009). We therefore model the duration of mouse- and eye movements to fit
to the data we observed from human participants in our experiment.

2 Methods

2.1 Participants

Participants were recruited via word-of-mouth. There were no prerequisite requirements
except that the participants should have normal or corrected to normal visual acuity and
could control a mouse and keyboard. We tested 14 participants, of which 7 female (mean
age = 31, SD = 13.8, range = 22-63). One participant was excluded on the basis of too many
missing data points, which we discuss in Section 2.5.

All participants signed an informed consent form and were compensated 7 euros per
hour. The experiment was approved by the Faculty Ethics Review Board of the Faculty of
Social Sciences, Utrecht University.

2.2 Apparatus and stimuli

Figure 1: Stimuli as adopted from Arnoult
(1956); Somai et al. (2020). There are 4 unique
shapes, each rotated at a multiple of 90 de-
grees, creating 16 stimuli in total.

The experiment was programmed in Python
3.7 (Python Core Team, 2019) using the
PyQt5 library (Riverbank Computing Lim-
ited, 2019) for visual presentation and in-
teraction with the mouse and keyboard.
PyGaze (Dalmaijer, Mathôt, & Van der
Stigchel, 2014) was used to interface with
an Eyelink 1000 eye tracker (SR Research
Ltd., Canada), which measured at a sam-
pling rate of 1 kHz. Data processing was
performed in Python 3.7, using the Pin-
gouin 0.3.8 package (Vallat, 2018) for sta-
tistical analyses.

The experiment was run on a Windows 10 Enterprise computer with an Intel Core i7-
4790 CPU and 16GB RAM, and displayed on a 27 inch ASUS PG278Q LCD monitor at a
resolution of 2560 × 1440 pixels @ 60Hz. Participants placed their heads in a fixed chin
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rest in a dimly lit room at 70 centimetres from the screen, such that each 100 × 100 pixel
stimulus occupied a visual angle of approximately 1.75◦ to 1.95◦ on both the horizontal
plane and the vertical plane, dependent on its position on the screen.

The stimuli used in this experiment were adopted from Arnoult (1956) (Figure 1). As
discussed in the original paper and in Somai et al. (2020), these stimuli were used in an
attempt to prevent participants from using mnemonic devices and to increase the reliance
on visual working memory. Additionally, they should have been novel enough that par-
ticipants had not yet acquired an internal representation through prior experience, since
prior experience could offload working memory (Arnoult, 1956; Wilson, 2002). Although
the set of stimuli contained 20 images, they consisted of five unique shapes, each shape
additionally mirrored horizontally, vertically, or both.

2.3 Task

The experiment consisted of a copying task in which participants were asked to copy a
layout of 4 stimuli in a 3 × 3 grid on the left side of the screen to an empty 3 × 3 grid
on the right side of the screen. These areas are referred to as the ‘example grid’ and the
‘working grid’, respectively. The centres of both grids were located at a visual angle of 12◦

(635 pixels) from the centre of the screen, with each of the grids occupying approximately
7.3◦ × 8.8◦ (415 × 460 pixels) of the visual field. On the bottom right of the screen, the
same stimuli were presented as in the example grid, but in randomized order. We refer
to this area as the ‘resource grid’. The participants’ task was to recreate the layout of the
example grid in the working grid, by dragging stimuli from the resource grid to their
correct location in the working grid.

In the baseline condition (0), the example grid was always visible. In order to experi-
mentally manipulate the reliability of access, the example grid was either present or oc-
cluded at specified intervals throughout a trial. In the three experimental conditions the
example grid was (1) repetitiously visible for 4 seconds and subsequently occluded for 2
seconds, such that the reliability of access was high; (2) repetitiously visible for 3 seconds
and occluded for 3 seconds, such that the reliability of access was medium; (3) repetitiously
visible for 2 seconds and occluded for 4 seconds, such that the reliability of access was
low (see Table 1). Appearance and occlusion of the example grid were repeated until the
trial ended (see Figure 2). In order to further decrease reliability of access, the predeter-
mined visibility time was multiplied by a noise factor drawn from a Gaussian distribution
(µ = 1.0, σ = .1) for each trial, with the occlusion time being adjusted accordingly such
that the sum of visible time and occlusion time was always 6000 ms. As such, the visi-
ble/occluded times in the medium condition could, for example, be [2900, 3100] in one trial
and [3001, 2999] in the next – and so on.

A trial ended whenever the grid was fully copied or a predetermined timer of 20 sec-
onds ran out, the latter of which forced a sense of urgency on participants and is likely an
important factor in optimization of behaviour (Janssen & Gray, 2012; Melnik et al., 2018).

Each condition was tested in its own block of trials and the block order was random-
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Figure 2: Example overview of a partially completed trial in the high reliability of access
condition. In this example, three items have already been dragged to their correct posi-
tions, with the top-left one remaining.

ized between participants. In every trial, the example grid was randomly generated with
4 randomly chosen stimuli. In order to allow participants time to establish a (rough) es-
timation of the reliability of access within a condition, data of the first three trials of each
block were discarded from analysis.

2.4 Procedure

Participants were instructed about the goal of the task, how to control the task, and about
the 20-second limitation. They were also instructed that misplaced stimuli could be re-
moved from the working grid by either right-clicking the misplaced item or dragging the
correct item over top of it. Finally, participants were instructed to not move their head in
the chin rest after measuring had started. A short break could be taken after each block
of trials, with a longer 5-10 minute break halfway through the experiment. Additionally,
they could indicate whether they needed a quick break during a block of trials to relax
from their static posture.

Each participant was first subjected to five practice trials in the baseline condition (al-
ways visible). After confirming that they understood the task and were familiarized with

Table 1: Visibility of the example grid across conditions in terms of high, medium and low
reliability of access. As the example grid becomes occluded for longer, the reliability of
access decreases.

Condition
0 (baseline) 1 (high) 2 (medium) 3 (low)

Visible (ms) Always 4000 3000 2000
Occluded (ms) Never 2000 3000 4000
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the controls, they started the actual experiment. In the experiment, the four conditions
were presented in blocks of 35 trials. After each trial ended, a blank screen with a message
would appear. If the trial was correctly finished, the message would instruct the partici-
pant to press the space bar to continue to the next trial. If the trial was not completed in
time, it would read “You timed out,” paired with the standard message. After 35 trials, the
message indicated that the block was completed and that participants could take a break.

The eye tracking was calibrated and validated before the start of each block, and was
validated (and if necessary, re-calibrated) approximately every 3 minutes, and at the end
of each block. The experiment took approximately 45-90 minutes to complete, dependent
on task speed, calibration time, and the number and length of breaks.

2.5 Analysis

Due to a software bug in the experiment, the first seven participants experienced some
data loss. Participants were excluded if there was data from fewer than 15 trials remaining
in at least one of the conditions. One participant was excluded from analysis based on this
criterion.

We analyse six key variables for significantly different outcomes between conditions.
(1) The number of crossings, which is calculated by counting how many times within a trial
the participant made a saccade across the centre of the screen from the right side to the left
side of the screen. In effect, this variable represents how often participants sampled ex-
ternally, by looking toward the example grid after focusing on the working- and resource
area. (2) The total dwell time per crossing is measured in milliseconds, and is calculated
as the total fixation time on the left half of the screen, after each time the centre of the
screen is crossed from right to left. This variable acts as a proxy for how much information
participants took in each time they shifted their attention toward the example grid. (3)
Completion time (seconds). Although completion time is expected to increase as the occlu-
sion time increases, the time in which the example grid was occluded is not considered
lost. Participants could, for example, still drag stimuli to their correct spot or correct their
mistakes. Therefore we include the pure completion time. (4) The number of fixations per
second. (5) Median saccade velocity is calculated over a whole trial as a representation of
mental workload, since a decrease in (peak) saccade velocity has been shown to be linked
to an increase in mental workload (Di Stasi, Antolı́, & Cañas, 2011; Di Stasi et al., 2010).
Finally, (6) the number of errors per trial is defined, in which an error constitutes placement
of an item in an incorrect position.

These six variables first needed to be aggregated per participant, per condition. Since
the data for all but one of the variables was not normally distributed, we calculated the
median value of a variable over all trials a participant has performed within each condi-
tion. The exception is that the mean was calculated for number of errors, since using the
median drew results close to zero.

We report averages and standard deviations for each of the variables over all partici-
pants and perform a Shapiro-Wilk normality test and a Mauchly’s sphericity test. To test
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Table 2: Descriptive statistics for all variables, reported as ‘mean (SD)’. The highest value
for each variable is in bold.

Condition
baseline high medium low

Number of crossings 5.0 (0.68) 4.62 (0.92) 4.54 (0.91) 3.65 (0.82)
Dwell time per crossing (ms) 293 (67.0) 319 (96.0) 314 (76.0) 430 (159)

Completion time (s) 6.89 (1.53) 7.14 (1.80) 8.10 (2.06) 9.21 (2.33)
Fixations per second 3.80 (0.51) 3.76 (0.52) 3.64 (0.56) 3.46 (0.53)

Saccade velocity 165.1 (27.5) 152.7 (17.6) 148.4 (18.6) 137.2 (14.9)
Errors per trial 0.11 (0.07) 0.20 (0.13) 0.29 (0.18) 0.38 (0.25)

whether there is a significant effect of condition on each of the variables, we report the re-
sults of a Repeated Measures ANOVA per variable. However, if the assumption of either
normality or sphericity are violated for at least one of the conditions within a variable, we
report the results of a Friedman Chi-squared test, which is considered the nonparamet-
ric counterpart to the Repeated Measures ANOVA (Friedman, 1937). η2 and Kendall’s W
are calculated as indications of effect sizes for the ANOVA and Friedman’s tests respec-
tively. As a post-hoc analysis to observe precisely between which conditions variables dif-
fer significantly, we report either a one-tailed paired samples t-test or a one-tailed Wilcoxon
signed-rank test for each condition pair, dependent on normality. We perform one-tailed
post-hoc tests because we expect directional effects across conditions.

Figure 3: Box-and-whisker plots for each variable, per condition. N = 13 for all conditions
and all variables. Data was first aggregated per participant by calculating the median
value over all trials (except for Errors, for which the mean was calculated.
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3 Results

Of 13 participants performing 32 trials per condition (1,664 trials total), data of 81 trials
(4.9%) were lost. On average, data of at least 31 trials remained for each condition except
low reliability of access, where on average 28 trials remained. We report the means and
standard deviations for each of the six outcome variables in Table 2. In Figure 3 we report
the box-and-whisker plots for each variable, per condition. We give an overview of our
findings in Table 3 and Table 4.

3.1 Nonparametric tests

A significant effect of condition on the number of crossings was found, χ2 = 23.0, p < .001.
This effect is considered medium to large, Kendall’s W = .59. Post-hoc Wilcoxon signed-
rank tests showed that, at significance level α = .05, there was a difference in distribution
between conditions (baseline, medium). At α = .01 there was a difference between condi-
tions (high, low) and (medium, low), and at α = .001 there was a difference between con-
ditions (baseline, low). This means the number of crossings was significantly affected by
reliability of access, and there was a significant drop in the number of crossings in the low
reliability of access condition as compared to the baseline, high and medium conditions, as
well as between the high and low reliability conditions.

The effect of condition on median dwell time per crossing was significant, χ2 = 22.0,
p < .001. This effect is considered medium to large, Kendall’s W = .56. Although the
assumption of sphericity was violated, the data showed no violation of normality. As
such, post-hoc paired samples t-tests were used to show that, at significance level α = .01

there was a difference between conditions (baseline, low), (high, low) and (medium, low). This
means the time participants viewed the example grid after each crossing was significantly
affected by reliability of access, and there was a significant increase in dwell time in the
low reliability of access condition as compared to the baseline, high and medium conditions.

Lastly, a significant effect of condition on errors per trial was found, χ2 = 18.7, p < .001.
This effect is considered medium, Kendall’s W = .48. Since the assumption of normality
was not violated, t-tests for paired samples were used as post-hoc tests. These tests show
that, at significance level α = .05, there was a difference in distribution between conditions
(baseline, high), (high, low) and (medium, low). At α = .01 there was a difference between
conditions (baseline, medium) and (baseline, low). This means there was a significant effect
of condition on the number of errors per trial, and the number of errors significantly in-
creased between all conditions but the high and medium reliability of access conditions.

3.2 Parametric tests

The last four variables showed no violation of normality or sphericity, and were therefore
tested with Repeated Measures ANOVAs and one-tailed t-tests for paired samples.

Firstly, a significant effect of condition on trial completion time was found, F = 22.3,
p < .001. This effect is considered large, η2 = .65. Post-hoc paired samples t-tests show

11



Table 3: Friedman (χ2) and Repeated Measures ANOVA (F) results, respectively. Effect
sizes are reported as Kendall’s W for the Friedman test, and as η2 for the Repeated Mea-
sures ANOVA.

χ2 F df p W η2

Number of crossings 23.0 3 < .001 .59
Dwell time per crossing 22.0 3 < .001 .56

Completion time 22.3 3 < .001 .65
Fixations per second 17.7 3 < .001 .60

Saccade velocity 17.8 3 < .001 .60
Errors per trial 18.7 3 < .001 .48

that, at significance level α = .01 there was a difference between conditions (high, medium)
and (medium, low), and at α = .001 there was a difference between conditions (baseline,
medium), (baseline, low) and (medium, low). This means the total time participants needed
to complete a trial was significantly affected by reliability of access, and there was a sig-
nificant increase in completion time between all conditions except for between the baseline
and high reliability of access conditions.

Secondly, the effect of condition on the number of fixations per second was significant,
F = 17.7, p < .001. This effect is considered large, η2 = .60. Post-hoc paired samples t-
tests show that, at significance level α = .05 there was a difference in distribution between
conditions (high, medium). At α = .01 there was a difference between conditions (baseline,
medium) and (medium, low), and at α = .001 there was a difference between conditions
(baseline, low) and (high, low). As such, the number of fixations per second within trials was
significantly affected by reliability of access, and there was a significant decrease in the
number of fixations per second between all conditions except for between the baseline and
high reliability of access conditions. This implies that participants either fixated for greater
amounts of time or made slower saccades as reliability of access decreased.

Finally, there was a significant effect of condition on median saccade velocity, F = 17.8,
p < .001. This effect is considered large, η2 = .60. Post-hoc paired samples t-tests show
that, at significance level α = .01 there was a difference between conditions (baseline, high),
(baseline, medium) and (medium, low), and at α = .001 there was a difference between condi-
tions (baseline, low) and (high, low). This means the average velocity of each saccade within
a trial was significantly affected by reliability of access, and participants made slower sac-
cades as reliability of access decreased, except for between the high and medium reliability
of access conditions.

3.3 Discussion of results

We have shown that there was a clear effect of condition on each of the six variables. This
finding lends support for our hypothesis that there is a significant change in participants’
behaviour depending on the condition of the task. When we delve deeper, we find that
only saccade velocity and peak velocity showed a difference in distributions between con-
ditions baseline and high. There was also little overall effect across variables between high
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Table 4: Post-hoc Wilcoxon test W-values and T-test values for each condition pair. Super-
scripted a, b and c signify p < .05, p < .01 and p < .001 respectively. Empty cells were not
found to be significant and are therefore not reported.

Condition pair

Test
baseline,

high
baseline,
medium

baseline,
low

high,
medium

high,
low

medium,
low

N. of crossings W 39.0a 91.0c 55.0b 64.5b

Dwell time p/crossing T −3.1b −3.9b −2.7b
Completion time T −4.8c −6.3c −3.4b −5.7c −2.8b

Fixations p/second T 3.8b 5.8c 2.3a 6.7c 3.7b

Saccade velocity T 3.0b 3.9b 5.4c 5.3c 3.1b

Errors per trial T −2.6a −3.2b −3.6b −2.6a −2.3a

and medium reliability of access conditions. Not unexpectedly, the effects became more
pronounced as the difference in reliability of access between conditions became more pro-
nounced. For instance, the results in the low condition were found to differ significantly
from all other conditions and on all variables. This may imply that the difficulty in the low
condition passed some threshold such that a larger change of behaviour was required as
compared to between other conditions.

As reliability of access decreased, the data showed a slight increase in the mean number
of uncompleted placed items per trial. However, we found the number of unfinished trials
to be negligibly low (22 unfinished trials overall), and as such this variable could not be
analysed with valid statistical results.

4 Modeling trade-off strategies

Our observational data provides support for the hypothesis that participants adapt their
memory strategies as reliability of access changes. However, we cannot directly observe
what each of those strategies exactly entail. For example, we cannot directly infer from eye
tracking data how many items are encoded in visual working memory at any given mo-
ment. To that end, we designed and ran a computational cognitive model, which attempts
to simulate participants’ behavioural processes which underlie performance on the task. It
approaches this problem by breaking down human behaviour into several small processes
– such as making an eye movement or encoding an item in VWM – which are executed
serially. By varying the model’s strategies in terms of a storage/sampling trade-off, we
can uncover which strategies lead to outcomes that are most similar to those outcomes
observed by measuring human participants.

Our model was designed as a rational performer with systematically controlled vari-
ations, based around both theoretical frameworks of memory and observed motor func-
tions. In the following paragraphs, we first describe how the model’s parameters were
established and subsequently describe the model in general and how the parameters fit in.
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Table 5: A subset of all 35 encoding schemes. Encoding schemes range from k = 1 to k = 4
and are constrained by the rule that, as reliability of access decreases, k may only be greater
than or equal to k in the preceding condition.

Condition
baseline high medium low

Scheme 1 [ 1 1 1 1 ]
Scheme 2 [ 1 1 1 2 ]
Scheme 3 [ 1 1 1 3 ]

... ... ... ... ...
Scheme 33 [ 3 3 4 4 ]
Scheme 34 [ 3 4 4 4 ]
Scheme 35 [ 4 4 4 4 ]

4.1 Encoding schemes

Our hypothesis is that in high reliability of access conditions, participants’ dominant strat-
egy would be to internally store few items at once and to rely on external sampling. How-
ever, in the condition where the reliability of access is low, behaviour would likely shift
towards a strategy of relying more on internal storage and memorizing multiple items at
once.

An encoding scheme represents, per condition, the amount of items k which a participant
attempts to memorize while looking at the example grid. In Table 5 a subset of the finite
amount of possible encoding schemes is represented, with the limitation that the m-th
value of a scheme must always be either greater than, or equal to, them−1-th value, as we
expect that more items would be internally stored in low-reliability of access conditions
than in high-reliability conditions. In the case of four conditions and k ranging from 1 to
4, there exist 35 unique strategies.

4.2 Memory parameters

The storage capacity and speed of storage in, and retrieval from, working memory is
highly dependent on context, such as task difficulty, item complexity and storage recency.
As such, we used a simplified form of the memory theory as described in the ACT-R cog-
nitive architecture and which has shown good results in comparison to different memory
theories (Anderson & Schooler, 1991; Gray, Schoelles, & Myers, 2003; Gray et al., 2006;
Lovett et al., 2012). In this theory, encoded items are subject to decay, activation noise and
a linear latency factor, such that the time it takes to retrieve an item RTi follows

RTi = F × e−ai (1)

in which F is a factor by which the reaction time is scaled dependent on activation, such
that items with low activation tend to require longer retrieval times. The value ai is then
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the activation value of item i, which is calculated as

ai = logn(
n∑

j=1

t−d
j ) + ε2 (2)

in which, for each time j the item was activated in memory, t is the time since its activation,
which is influenced by decay factor d, which causes items to fade from memory over time.
Finally, ε is added as a noise component such that the activation of an item can fluctuate
over time. This noise component is drawn over a logistic distribution, centered around 0,
and where the variance of the distribution is the parameter to be explored. For simplicity,
ε will be used to denote the variance of this factor.

Finally, the memory theory returns whether a retrieval was successful or not, based on
whether activation ai is above a specified threshold T . In case of a failed retrieval, RTi is
still calculated in order to reflect the time that failed retrieval took.

We explore F in the range of (.1, .4) with steps of .1, d in the range of (.5, .9) with steps
of .1, threshold T in the range of (.175, .275) with steps of .025, and we explore the variance
of ε in the range of (.26, .30) with steps of .02. The first encoding of an item is set to 50 ms,
as defined by Lovett et al. (2012).

4.3 Memory rehearsals

As an item is encoded into memory, it may be retrieved one or more times in order to in-
crease its activation in working memory. We expect that, as reliability of access decreases,
the importance of correctly memorizing an item increases. Therefore, we explore the op-
tion that the number of rehearsals after encoding an item varies across conditions. With
the same limitations as in generating the encoding schemes, and the maximum number of
rehearsals r = 3, we create a set of 15 unique rehearsal schemes.

4.4 Eye- and mouse movements

4.4.1 Eye movements

In order to model the duration of eye movements, we fitted a linear regression to sac-
cade duration as a function of Euclidean distance (in pixels) between the start of a saccade
and the end of a saccade, based on observational data. Since we found in Section 3 that
participants’ mean saccade velocity and peak velocity varied across conditions, we fitted
a linear model on saccade data from each condition separately. Accordingly, when the
model makes a saccade over a certain distance, the duration of that saccade is calculated
as

Duration = (a+ b× distance)× ε (3)

where a and b are taken from the linear model and ε is a noise parameter drawn from a
gaussian distribution with µ = 1.0 and σ = .25.

15



4.4.2 Mouse movements

Fitts’ law is a widely used measure for modeling human mouse movement. In the Shannon
and Weaver (1949) formulation this law is defined as

ID = log2(
D

W
+ 1) (4)

where D is distance to target and W is the width of the target (Fitts, 1954). ID then rep-
resents the difficulty of making a movement towards the target, which increases with dis-
tance to the target, but decreases with size of the target. Additionally, Shannon’s law in full
contains an extension which allows calculation of the expected duration of a movement.
We calculate movement time MT as

MT = (a+ b× ID)× ε (5)

where a, b and ε are the intercept, coefficient and noise parameters, respectively. Shan-
non’s variant of Fitts’ law is the preferred formula as it provides a better fit to human
data than the original (e.g., MacKenzie, 1989, 1992; Shannon & Weaver, 1949; Soukoreff
& MacKenzie, 2004). The values for a and b were obtained by fitting a linear model over
mouse movement data, for each condition independently. Additionally, ε is drawn from a
gaussian distribution with µ = 1.0 and σ = .25. Clicking and releasing a click are both set
to 150 ms, as defined in Gray et al. (2006).

4.5 Computational cognitive model

The proposed computational cognitive model describes a step-by-step theoretical model
of how a human performer may execute a trial within the copying task. The model starts
by selecting how many items to encode at once and how many rehearsals to perform after
encoding, based on the condition and the current encoding- and rehearsal schemes. It will
then start the simulation of a trial. A trial consists of two main sub-tasks which repeat
until all items are placed correctly or time runs out. See Algorithm 1 for a pseudo-code
overview of the proposed model.

Sub-task (1): Encode k items, starts with shifting the gaze to the centre of the example
grid, the duration of which is calculated with Eq. (3). Then, k items are chosen randomly
– as long as they have not been placed yet – in which k is based on the encoding scheme.
For each of the chosen items, the gaze is shifted from its current position to the centre of
the new item, and the item is encoded in memory (50 ms). The item is then rehearsed in
memory r times, based on the rehearsal scheme. The duration of rehearsals is calculated
with Eq. (1).

Once k items have been stored or if the example grid disappears, the model moves
on to sub-task (2): Place encoded items. This sub-task starts with shifting the gaze to the
resource grid. Then it retrieves each of the items i which were stored in sub-task (1), and
tries to match it to one of the items in the resource grid. It does this by moving its gaze to
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an item on-screen, retrieving item i from VWM, and checking whether there is a match. If
there is no match, or if the retrieval is unsuccessful, the gaze is shifted to the next on-screen
item, and so on, until an item is found which matches i.

Once a match is found, the model moves the computer mouse to the matching item (Eq.
5), picks the item up by clicking on it (150 ms), and moves both the mouse and the gaze to
the appropriate location in the workspace grid, where it is dropped (150 ms). Realistically,
the process of moving both the mouse and the gaze to the same position would likely not
be sequential, but somewhat parallel. However, modeling that process is outside the scope
of this research. Once an item is successfully placed, the model retrieves the next item i

from VWM and tries to match it to an item again.
Finally, if the example grid is not visible, the model will attempt to place items which

are already stored in VWM. If there are no items to place and the example grid is not vis-
ible, the model waits until the example grid becomes visible again. In reality, participants
may sometimes be going over the placed items once more while waiting, but since the
array of options during this waiting period is so extensive, we did not model this for the
sake of simplicity.

4.6 Error modeling

Since we found that the number of errors per trial increased as the reliability of access
decreased, we implement a probability of error into the model. We consider the mean
number of errors per trial for each condition (as reported in Table 2) as the probability that
an error is made within a trial. The probability of an error for a single item is then the
probability of error for the entire trial, divided by the number of items to be placed.

If an item is placed incorrectly, the model takes steps to fix it. However, modeling
the method participants used to correct errors is difficult, as there is a large variation in
possible strategies. Participant could realize their mistake immediately, they could notice
at the end of the trial, or they could notice halfway through a trial. We simplify approach
and assume that a participant notices their mistake immediately.

After a mistake, the incorrectly placed item is right-clicked (150 ms) in order to remove
it from the working grid. the gaze is shifted toward the example grid, where the relevant
item is again encoded in memory. The gaze and mouse then shift back to the resource grid,
from where the item is dragged to its correct position. The model then resumes its process
from the point where the mistake was made.

4.7 Modeling methods

The computational cognitive model was designed, run and analysed in Python 3.7.
Our goal was to find which encoding schemes and rehearsal schemes provided results

most similar to those observed from human participants. However, the parameters re-
quired in the ACT-R theory of memory are not constant throughout different tasks; e.g.,
memorizing colored blocks may be quicker than memorizing abstract stimuli. Therefore,
all parameter combinations needed to be explored by the model. With 35 unique encoding
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schemes, 15 rehearsal schemes, and 4 × 5 × 5 × 3 = 300 memory parameter options, the
entire search space consisted of 35× 15× 300 = 157, 500 parameter combinations. Simple
grid search was implemented to find the optimal combination of parameters.

Each parameter combination was run 32 times to account for implemented noise and to
produce statistically relevant results. We then compared three outcome variables between
participants and the model: (1) number of crossings, (2) completion time in seconds, and (3)
number of fixations per second.

Observed data was scaled between 0 and 1 for each outcome variable and each condi-
tion separately, to which the simulated data was then matched by mapping it to the same
scale. This scaling step was performed in order to standardize the outcome metric for each
of the three variables and allow their metrics to be directly compared to each other.

The squared error was calculated per condition for each variable. As such, we could
calculate the scaled Root Mean Squared Error (sRMSE) over all four conditions, for each
of the three variables. The analysis thus provided three sRMSE values (one per outcome
variable), and the model fit for each parameter combination is reported as the mean of
these three sRMSE values.

We report the result of the three best models and the worst performing model. More-
over, our goal was to uncover which encoding- and rehearsal schemes provided the best
model fit, and finding the ACT-R memory parameters were not directly part of this goal.
To ensure the best model’s performance was not merely a result of accurate approximation
of the memory parameters, we report how the best performing model compares to the
mean performance of all other models with the same memory parameters but indifferent
of encoding- and rehearsal schemes.

5 Model results

The best model achieved a mean scaled RMSE score of .1695, with sRMSE = .187 for num-
ber of crossings, sRMSE = .150 for completion time, and sRMSE = .171 for fixations per
second. This best performing model used encoding scheme [1, 1, 2, 3], rehearsal scheme
[2, 2, 2, 3] and memory parameters F = .1, d = .9, T = .175, ε = .30. Thus, the best model
encoded one item after each crossing and rehearsed the item twice in the baseline and high
reliability of access conditions. Subsequently, it attempted those place that single item in
the workspace grid before shifting its gaze toward the example grid again. In the medium
condition it switched to an approach where it encoded two items per crossing, rehearsed
them twice, and attempted to place both of those items in the workspace grid. In the low
reliability of access condition, the model encoded three items after each crossing and re-
hearsed each item three times in memory. It then attempted to place those three encoded
items in the workspace grid before shifting its gaze toward the example grid again. See
Figure 4 for a comparison of observational data and the best model’s results. We report the
results and parameter combinations of the best three models and the worst model in Table
6 and Table 7.
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Table 6: Mean of scaled RMSE over all three outcome variables for the best three models
and the worst model.

Scaled RMSE
Rank Mean N. of crossings Completion time Fixations p/s

1 .1695 .187 .150 .171
2 .1751 .219 .127 .179
3 .1769 .156 .178 .197
... ... ... ... ...

157,500 .6101 .254 .903 .673

Table 7: Parameter combinations for the best three models and the worst model.

Rank Encoding scheme Rehearsal scheme F d T ε

1 [1, 1, 2, 3] [2, 2, 2, 3] .1 .9 .175 .30
2 [1, 1, 2, 3] [1, 2, 2, 2] .1 .8 .250 .30
3 [1, 1, 1, 4] [1, 1, 1, 2] .1 .8 .20 .26
... ... ... ... ... ... ...

157,500 [1, 1, 1, 1] [3, 3, 3, 3] .4 .5 .275 .26

Taking the results of all models with the same memory parameters as in the best model
but disregarding encoding- and rehearsal schemes (N = 525), we found their average
performance was worse, sRMSE=.226 (SD=.016). Comparing the best model to all mod-
els with both the same memory parameters and the same rehearsal scheme, but disre-
garding encoding scheme (N = 35), their average performance was worse than that of
the best model, sRMSE=.224 (SD=.016). Finally, comparing the best model to all models
with the same memory parameters and the same encoding scheme, but disregarding re-
hearsal schemes (N = 15), we found their average performance was also slightly worse,
sRMSE=.212 (SD=.016). This tells us that disregarding encoding- and rehearsal schemes
would deteriorate model performance. Additionally, disregarding the encoding schemes,
but with a fixed rehearsal scheme and fixed memory parameters, would decrease the mod-
els’ average performance more strongly than if the encoding scheme was fixed and the
rehearsal schemes were varied.

6 Discussion

We investigated whether reliability of access to visual information influences a trade-off
between internal storage and external sampling. Relying on internal storage entails that
stimuli are encoded in visual working memory (VWM), whereas external sampling relies
on offloading VWM and choosing to sample from the environment instead. Previous stud-
ies have provided support for the theory that people generally prefer to externally sample
from the environment when the cost of making saccades is relatively low, but that reliance
on internal storage increases as the cost of making saccades increases (Ballard et al., 1995;
Gray et al., 2006; Inamdar & Pomplun, 2003; Melnik et al., 2018; Somai et al., 2020).

In order to investigate a storage/sampling trade-off in conditions with varying relia-
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Figure 4: Comparison of observed results versus the best model’s results for each of the
three outcome variables, per condition.

bility of access to visual information, we designed a study in which participants were sub-
jected to a copying task. In this task, participants copied an example grid to a workspace
grid. During a trial, the example grid would disappear and reappear at a set interval. We
manipulated the reliability of visual access across conditions by varying the interval with
which the example grid disappeared and reappeared.

In this thesis we provide support for our theory that there is an effect of reliability of
visual access on the storage/sampling trade-off, which we find to be similar to how vary-
ing the cost of saccades affects the storage/sampling trade-off. In our baseline condition,
where stimuli were always visible, participants shifted their gaze towards the example
grid often and fixated on it for relatively short amounts of time. In the condition with
the lowest reliability of visual access, participants shifted their gaze towards the example
grid less often than in the baseline condition, but fixated on it for greater amounts of time.
This suggests that participants relied primarily on external sampling in the baseline con-
dition, but as reliability of visual access decreased across conditions, participants’ reliance
on external sampling decreased and they shifted towards relying on internal storage more
strongly.

Our second goal in this thesis was to investigate whether a computational cognitive
model could be designed to uncover how this storage/sampling trade-off evolved across
conditions. We hypothesized that the best model we could find would vary the number
of items it encoded – and the number of times it rehearsed those items after encoding –
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across conditions.
We designed our cognitive model to as closely mimic human behaviour on the copying

task as possible. We then tested each model by comparing the outcomes of three variables
between human results and model results. We found that, in the baseline condition, our
best-fitting model encoded one item from the example grid and then directly placed it in
the workspace grid before shifting its gaze back to the example grid and encoding the
next item. In contrast, the same model encoded three items at a time in the low reliability
of access condition. It would attempt to place those three items in the workspace grid
and then shift its gaze back to encode and place the remaining item. We pose that this
supports the theory that external sampling is the preferred strategy in conditions with
high reliability of access, but that the strategy shifts towards reliance on internal storage
as reliability of access decreases. Furthermore, in the baseline condition, this best model
rehearsed each item twice in memory after encountering it for the first time. In the low
reliability of access condition, it rehearsed each item three times, which implies that the
accuracy of encoding items also plays a role in the storage/sampling trade-off.

We found that models with different encoding- and rehearsal schemes than that of the
highest-ranked model performed worse overall. This finding provides evidence that the
inclusion of storage/sampling strategies was an important factor in our model. Further-
more, we noticed that models with no internal variation within their encoding scheme
tended to perform worse than those that did have internal variations in in their encoding
scheme. These findings lead us to believe that encoding- and rehearsal strategies indeed
change dependent on reliability of visual access within the environment.

We found that the best model slightly overestimated the completion time of trials, but
that it did accurately reflect the increase in completion time as the reliability of access
decreased. The model approximated the number of fixations per second participants made
in the task fairly well, and did somewhat accurately capture the decrease of fixations per
second as reliability of access decreased. For a better fit on completion time and fixations per
second, the latency scaling factor F would need to be smaller than .1, the decay rate dwould
need to be greater than .9, or both. However, we could find no experimental evidence for
values in that range.

Furthermore, the best model did not accurately estimate the number of crossings made
from the right side of the screen towards the example grid, although it did capture the
decrease in number of crossings as reliability of access decreased. Given the deviations
between model results and human performance, and that the memory parameters pushed
the limits of experimental evidence, we recommend that future research investigate re-
finements of the model in order to reduce the degree to which it simplifies the cognitive
process.

Analysis of the computational cognitive model was limited by the fact that we incor-
porated three different variables over which the mean error was calculated. This approach
did indeed find a model which performed the best overall, but we also found that mod-
els with different parameter combinations may have been optimised on different outcome
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variables. This is noticeable in Tables 6 and 7, where models with rank 1 and 2 scored
best on completion time, but the model with rank 3 scored best on number of crossings. Fur-
thermore, as the mean errors of these models lay very close together, and the model has
built-in noise components, it is not possible to say with confidence which of these mod-
els represents the cognitive processes underlying human performance most accurately. It
could be mere luck of the draw that one model performed slightly better than its successor.
Nonetheless, our findings provide an indication of what the true trade-off may be.

The variance exhibited in human behaviour was higher than the variance exhibited
by the model. This can be partially explained by the fact that there was a clear differ-
ence in performance between human participants; some were quicker than others and thus
showed lower completion times and a greater number of fixations per second. It is evident
that some participants were quicker at memorizing items, were more comfortable with
handling the computer mouse, or may have used different encoding- and rehearsal strate-
gies altogether. We did not model for the existence of between-participant differences;
the model results we discussed in this thesis were calculated over 32 trials per parameter
combination with the only variance intentionally being introduced by way of our noise
components.

Additionally, when fitting linear regressions to our observed saccade data, there were
small groups of saccades which spanned relatively short distances, but which had long du-
rations (e.g., 300 ms over a 10◦ visual angle). These observations could not be explained by
grouping them as smooth pursuit eye movements (i.e., dragging an item along the screen
and visually following it), nor could they be ascribed to one or two participants making es-
pecially slow saccades. Finally, we determined some of these saccades were ‘turn-around
saccades’; an eye movement that travels in multiple directions without a fixation being
detected in between. Since the prevalence of this type of saccade was relatively low, we
did not incorporate them in our model, but for more accurate findings it may bear future
incorporation.

We make two recommendations for future to the experiment discussed in this thesis.
In the current research, some participants, and in some trials, could memorize all four
stimuli with just one crossing from the right- to the left side of the screen. This seemed to
nudge those participants somewhat towards trying to complete trials with a single cross-
ing, which came at the cost of accuracy. The first of our recommendations is therefore to
explore the optimal number of stimuli within a trial where the condition with the lowest
reliability of access exceeds some threshold such that not all stimuli can be memorized at
once. Moreover, as mentioned in Section 3.3, the observed difference in behaviour between
the baseline and high reliability of access conditions and between the high and medium con-
ditions was less pronounced than between the medium and low conditions. This may imply
that the low reliability of access condition exceeded some threshold for a bigger change in
behaviour. Ideally, each condition passes such a threshold so that behavioural change can
be more distinctly observed. The second recommendation we therefore make is to explore
bigger variations in reliability of access between conditions.
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In conclusion, we found a clear effect of reliability of visual access on behaviour within
our copying task. Accordingly, we found that the performance of our best-fitting model
as compared to other models could be accounted for by the incorporation of this stor-
age/sampling trade-off. This implies that reliance on visual working memory changes as
the reliability of visual access changes. Although many computational cognitive models
already incorporate or explore some form of strategy selection, it bears taking into account
that humans may select memory strategies based on the reliability of visual access and that
this theory is incorporated in cognitive modeling efforts going forward.

The author would like to thank Stefan van der Stigchel and Tanja Nijboer for their advice
and supervision. The author thanks Sanne Böing, Roderic Hillege, Chris Janssen, Timo
Kootstra, Andre Sahakian, and the Attentionlab team for their feedback and advice, and
Son Luong for the lab support. The code for this thesis is publicly available at
https://github.com/higher-bridge/copying-task-uu
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A Appendix: Algorithm

Algorithm 1 Computational cognitive model

1: for EACH CONDITION do
2: SELECT k FROM encoding scheme BASED ON CONDITION

3: SELECT r FROM rehearsal scheme BASED ON CONDITION

4:

5: procedure TRIAL

6: SET LOCATION OF GAZE TO CENTRE OF SCREEN

7: repeat
8: if k > NUMBER OF REMAINING (UNPLACED) ITEMS then
9: k ← NUMBER OF REMAINING (UNPLACED) ITEMS

10:

11: procedure SUB-TASK 1: ENCODE k ITEMS

12: SHIFT GAZE TO EXAMPLE GRID . Eq. (3)
13: repeat
14: PICK A RANDOM UNPLACED ITEM

15: MOVE GAZE TO NEW ITEM . Eq. (3)
16: ENCODE ITEM IN VWM . 50 ms
17: REHEARSE ITEM IN VWM (r TIMES) . Eq. (1)
18: until k ITEMS STORED OR EXAMPLE GRID DISAPPEARS

19:

20: procedure SUB-TASK 2: PLACE ENCODED ITEMS

21: SHIFT GAZE TO RESOURCE GRID . Eq. (3)
22: for EACH STORED AND UNPLACED ITEM i IN VWM do
23: repeat
24: MOVE GAZE TO NEW ITEM ON SCREEN . Eq. (3)
25: TRY RETRIEVING ITEM i FROM VWM . Eq. (1)
26: until VIEWED ITEM AND ITEM i IN VWM MATCH

27: MOVE MOUSE TO TARGET STIMULUS . Eq. (5)
28: PICK UP ITEM [CLICK] . 150 ms
29: SHIFT GAZE TO WORKSPACE GRID . Eq. (3)
30: DRAG MOUSE TO WORKSPACE GRID . Eq. (5)
31: DROP ITEM [RELEASE CLICK] . 150 ms
32:

33: if PLACEMENT IS INCORRECT then FIX MISTAKE . Section 4.6
34:

35: if EXAMPLE GRID IS OCCLUDED AND NO UNPLACED ITEMS IN VWM then
36: WAIT UNTIL EXAMPLE GRID REAPPEARS

37:

38: until ALL ITEMS PLACED OR TIME RUNS OUT
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