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Abstract

Matrix-tensor models give rise to a special type of Feynman graphs: the melonic
graphs. These graphs can all be obtained by repeatedly inserting a melon, which is
a certain fundamental building block, onto propagators in the graph. Matrix-tensor
models are connected to the quantum mechanical description of black holes.

In this thesis, we first introduce matrix-tensor models and their properties. Then,
we present a new set of interaction terms - the so-called MST interactions on a
complete graph - and prove that all the associated Feynman graphs are melonic.

Also, we introduce a new limiting procedure that in certain cases selects not only
the melonic graphs, but also graphs that can be embedded into surfaces of higher
genus. Finally, we discuss two combinatorial approaches to computing the two-point
function in theories with melonic graphs.
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1 Introduction

Since the theoretical discovery of the possibility of black holes following from Ein-
stein’s general theory of relativity, people have tried to confirm if these objects
actually exist in the universe. In the last ~100 years we have gained more theoreti-
cal and observational evidence and we can be quite sure that black holes exist. The
2020 Nobel Prize in physics was awarded to mark these achievements. The next step
in the study of black holes is to consider them in a quantum mechanical setting,
which is an ongoing subject of study in the theory of quantum gravity and string
theory.

One model for quantum gravity are the so-called tensor models, whose study
goes back to the study of matrix models by Gerard ’t Hooft in the 1970’s. If N
is the number of tensor indices and we take the limit N → ∞, then these tensor
models yield a specific type of Feynman graphs: the melonic graphs. These graphs
have a simple description: they can all be built in an inductive way by repeatedly
inserting a so-called melon - a “fundamental building block” - onto propagators in
a Feynman graph. In this way, one obtains all the possible Feynman graphs. See
Figure 1.1.

In 2015, Alexei Kitaev [5] proposed another model that exhibited properties of
a quantum black hole: the Sachdev-Ye-Kitaev (SYK) model. This model has the
disadvantage that it has quenched-disorder, meaning that the coupling constants
are in fact not constant, but are drawn from a probability distribution. Also, the
connection with this model to quantum gravity is not clear. It was noticed by
Edward Witten in 2017 [11] that the SYK model and tensor models in the limit
N → ∞ both yield melonic Feynman graphs. Since the connection with quantum
gravity in the tensor models was more clear, he suggested that these tensor models
could provide a better model for quantum black holes.

In this thesis we treat a special type of tensor model, the matrix-tensor model,
introduced by Frank Ferrari et al. [3], [4]. Here, we use tensors where we differentiate
between two different types of indices: two indices take values in 1, . . . , N and the
other indices take values in 1, . . . , D. We can use different interaction terms in this
model, and when we choose so-called MST terms we get melonic Feynman graphs in
the limit N,D →∞. However, there can also be non-melonic Feynman graphs that
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Figure 1.1: Melonic Feynman graphs. Starting from a single propagator loop (upper
left), we repeatedly insert so-called melons onto propagators to obtain all the possible
Feynman graphs.

need to be taken into account. We describe and prove a new result, namely that for
the class of MST interaction terms on the complete graph, the melonic graphs give
a complete description of the Feynman graphs involved.

Chapter 2 introduces concepts about (colored) graphs and their embeddings,
which we will need in the rest of the thesis. In Chapter 3, we explain what the
matrix-tensor model is and what the important properties are. Chapter 4 is the
central part of this thesis. Here we prove our result about a class of interaction
terms that give melonic Feynman graphs. Chapter 5 analyses a new large N,D
limit and the consequences this has for the Feynman graphs. Finally, in Chapter 6,
we present two different combinatorial methods to compute the two-point function
in theories that have melonic Feynman graphs.
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2 Mathematical Preliminaries

In this chapter we cover some mathematical preliminaries that are used in the rest
of the thesis. Section 2.1 introduces some concepts about (colored) graphs. Section
2.2 explains how we can embed graphs into surfaces.

2.1 Colored Graphs

Here we collect some basic definitions about graphs, as well as some more specific
notions that are used in this thesis. We start by giving a precise definition of a
graph.

Definition 2.1. A graph G is a pair (V,E), where V is a finite set of vertices
(singular: vertex) and E a finite set of edges, such that each edge e ∈ E is associated
with two distinct vertices v1, v2 ∈ V . We say that e is incident on v1 and v2, that
v1 and v2 are adjacent, and we write e = v1v2 or e = v2v1. The order of a vertex v
is the number of edges incident on v.

Note that we allow multiple edges to be incident on a pair of vertices. In some
texts, this type of graph is referred to as a multigraph.

Definition 2.2. A colored graph G is a graph G together with a set of colors, usually
taken to be {1, . . . , r}, and an assignment of a color to each edge of G.

Definition 2.3. A walk in a graph G is an ordered sequence v1, e1, v2, . . . , ek, vk+1
of alternately vertices vi and edges ei in G such that each edge is incident on the
preceding vertex and subsequent vertex. We say that the walk visits the vertices
and edges in the walk and the walk has length k. For a colored graph, a walk is
denoted by:

v1
c1− v2

c2− · · ·
ck− vk+1, (2.1)

where c1, . . . , ck are the colors of the corresponding edges.
A path is a walk where no vertices, except possibly the first and last, are repeated

(and hence also no edges are repeated). A cycle is a path where the first and last
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vertex are the same. For a colored graph G and two distinct colors i, j an (ij)-face
is a cycle in G such that the color of the visited edges alternate between i and j:

v1
i
− v2

j
− v3

i
− · · · v1. (2.2)

The number of distinct (ij)-faces in G is denoted by Fij(G).

The reason for using the term “faces” is that these correspond to the faces of an
embedding of the graph, as we will see further on.

Definition 2.4. We say that two vertices, two edges, respectively one edge and one
vertex, in a graph G are connected if there exists a walk that visits the two vertices,
two edges, respectively the edge and the vertex. A connected component of G is a
set of vertices and edges C that are pairwise connected, such that there is no set
C ′ with the same property for which C ( C ′. The number of distinct connected
components is denoted by c(G). If there is only one connected component, the graph
is called connected.

Definition 2.5. A graph is called k-regular if every vertex has precisely k edges
incident on it and complete if every vertex is adjacent to every other vertex. A bubble
is an r-regular colored graph, where r is the number of colors, such that every vertex
has precisely one edge of every color incident on it.

Bubbles will be the type of graph we deal with the most in this thesis, since
Feynman graphs are bubbles.

2.2 Graph Embeddings, the Genus and Euler’s Formula

This section discusses how to embed a connected graph onto a surface, or in other
words how to draw a connected graph on a surface such that no edges overlap. We
explain what the surfaces are onto which we can embed connected graphs. These
surfaces can be characterized by their genus, a non-negative half-integer. We explain
that the genus is related to some combinatorial properties of the graph via Euler’s
formula. In this section many statements will not be proved, since this would require
a much longer exposition and it is not essential to the rest of the thesis. However,
an intuitive understanding of these concepts is useful and therefore we will focus on
that. We refer to Chapters 3 and 4 in [6] for proofs and more details about some
notions we discuss here.

The Orientable and Non-Orientable Surfaces We start with the unit sphere
in R3, denoted by S0, and perform one of two operations on S0 to obtain other
surfaces. The first operation is inserting a handle, pictured in Figure 2.1 (a). Here,
the gray area represents a part of the surface of S0. We remove two disks from
the surface and glue the two circular edges onto each other, in such a way that the
directions of the two arrows agree. One sees that we indeed get a sphere with a
handle attached in this way, which is (homeomorphic to) the torus. We can perform
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(a) (b)

Figure 2.1: The gray areas represent part of a surface. (a): A handle. The two
circular edges should be glued to each other, respecting the orientation of the ar-
rows. (b): A crosscap. Here, the two edges shaped as half-circles should be glued,
respecting the orientation of the arrows.

this insertion of a handle multiple times on S0 and the surface obtained after k
handle insertions is denoted by Sk. The surfaces Sk are called orientable and S1 is
the torus, S2 the double torus et cetera.

The second operation on S0 is inserting a crosscap, pictured in Figure 2.1 (b).
Here, the gray area represents a part of the surface of S0 and we remove one disk
from the surface. Then, we glue all points on the circular edge that are on opposite
sides of the sphere. Or equivalently, we glue the two halves of the edge onto each
other, such that the directions of the two arrows agree, as in the figure. Note
that this surface cannot exist as a physical object in R3, but it is known that it is
possible to embed it in R4. However, the topological space is well-defined by the
gluing instructions, i.e. the identification of the points on the edge as we described.
As with the handle, one can insert the crosscap multiple times on S0. The surface
obtained after k crosscap insertions is denoted by Nk. The surfaces Nk are called
non-orientable and N1 is known as the projective plane and N2 as the Klein bottle.

We define the genus of Sg as the integer g, and of S2g as the (half-)integer g.

Graph Embeddings Let G be a connected graph with vertex set V and edge
set E. For every v ∈ V fix a cyclic permutation πv of the edges incident on v,
i.e. πv = (e1e2 · · · em), where e1, e2, . . . , em are all the edges incident on v. The
set π = {πv : v ∈ V } is called a rotation system. To each e ∈ E associate a sign
λ(e) = 1 or λ(e) = −1. The resulting map λ : E → {−1, 1} is called a signature.
The pair (π, λ) is called an embedding, for reasons we explain next.

Let Π = (π, λ) be an embedding of a connected graph G, v1 a vertex of G and e1
an edge incident on v. First, assume that λ is equal to 1 at all edges. The general
case will be treated next. Define the walk v1, e1, v2, e2, . . . , vk, ek, v1 as follows. Start
with v1 and continue along e1, to reach vertex v2. Then continue along the edge
e2 = πv2(e1), to reach vertex v3. Then continue along e3 = πv3(e2) and repeat this
procedure until we reach v1 again and πv1(ek) = e1, where ek is the edge preceding
v1. To see that this is well-defined, i.e. that we traverse e1 for a second time in
the same direction, note the following: since G is finite we eventually traverse some
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edge in the same direction for a second time, and one checks that the first edge that
we traverse in the same direction for a second time must be e1. The walk defined
this way is called a Π-face.

In the general case where λ is not necessarily equal to 1 at all edges we define a
Π-face in a slightly different way. We start at v1 in a positive mode. Every time we
traverse an edge e with λ(e) = −1 the mode is changed from positive to negative
or vice versa. When we traverse an edge e and reach a vertex v while in a negative
mode, we continue along the edge π−1

v (e). When reaching a vertex in a positive
mode we proceed along πv(e). Repeat this procedure until we reach v1 again while
in the positive mode and πv1(ek) = e1, where ek is the edge preceding v1. One checks
similarly as before that this is well-defined.

By starting with different vertices v1 and incident edges e1 we obtain all the
Π-faces of G (note that different choices of v1, e1 may yield the same walk, up to a
cyclic shift, but we consider the resulting Π-face to be the same). One can check
that each edge in G is either contained once in two distinct Π-faces, or contained
twice in a single Π-face.

Next, for every Π-face we take a polygon (including its interior) with k edges,
where k is the number of edges (edges repeated twice are counted twice) in the
Π-face. These polygons are also called faces in the embedding. Consider all the
polygons we obtain from the Π-face. Every edge in a polygon has two corners of the
polygon at its ends, which correspond to vertices in the original graph. Each edge in
G corresponds to two edges in two distinct polygons or in a single polygon. We glue
these two edges together, orienting the polygon(s) such that each of the corners of
the glued edges are glued to a corner corresponding to the same vertex in G. In this
way, we obtain a connected surface and we say that the graph is embedded in the
surface. This surface is (homeomorphic to) one of the surfaces Sk or Nk introduced
above, which is the content of the following theorem. See Chapters 3 and 4 in [6]
for a proof.

Theorem 2.6. The surface into which a connected graph is embedded is either one
of the orientable surfaces Sg for g = 0, 1, . . . or one of the non-orientable surfaces
Ng for g = 1

2 ,
3
2 , . . ..

Figure 2.2, in the middle column, shows the faces obtained in three different
embeddings of K4. The embedding used is encoded in the so-called ribbon graphs
in the first column, which will be explained in the next section. We leave it as an
exercise to check that gluing these polygons using the procedure described above
yields the surface in the last column. In this column, the edges with the same type
of arrow are glued, respecting the direction of the arrows.

If a connected graph G has an embedding into a surface with genus g and this
choice of embedding is clear from the context, we say that G has genus g and denote
the genus by g(G). When a graph G has multiple connected components (i.e. is not
connected) we can have an embedding for each connected component and we define
the genus of G as the sum of the genera of these connected components. We refer
to the embeddings of the connected components together as the embedding of G.
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Figure 2.2: Three different embeddings of K4. The left column shows the ribbon
graphs. The middle column shows the faces in the embedding. The corners of the
faces are glued such that the labels of the vertices match up. The right column
shows the result of gluing these faces together. Here, the edges with the same type
of arrow are glued, respecting the direction of the arrows. The resulting surfaces
are, from top to bottom: the sphere (g = 0), the torus (g = 1) and the projective
plane (g = 1/2).

Figure 2.3: Illustration of obtaining the surface in which a graph is embedded by
“rolling a disk” along all the edges of the ribbon graph. The gray areas are the disks
and the arrows near the gray areas indicate the direction they are rolled.
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There is a relation between the genus of a graph, the number of vertices and
edges of the graph, and the number of faces of the embedding. This relation is
known as Euler’s Formula and is given below. See Chapters 3 and 4 in [6] for a
proof.

Theorem 2.7 (Euler’s Formula). Let G be a graph with genus g. Denote by V the
number of vertices of G, E the number of edges and F the number of faces in the
embedding. Then:

2c(G)− 2g = V − E + F. (2.3)

One can check that this relation is satisfied in the examples in Figure 2.2.

Ribbon Graphs A ribbon graph is a topological space obtained from a graph G
with an embedding (Π, λ) as follows. Every vertex is represented by a disk that has
a front and back side, and every edge by a rectangle called a ribbon. To each vertex v
is associated a counterclockwise ordering of the incident edges e, πv(e), π2

v(e), . . . , e,
where e is one of the incident edges. For each edge and the vertices it is incident on,
glue two sides of the corresponding ribbon to the sides of the corresponding disks,
such that:

1. For an edge e, if λ(e) = −1 the corresponding ribbon is twisted, and untwisted
if λ(e) = 1. With twisted we mean that when moving over a twisted ribbon
from the front side of one disk, one arrives at the back side of the other disk.
Moving over an untwisted ribbon one stays on the same side.

2. The counterclockwise ordering of the ribbons attached to every disk, when
viewed from the front side, respect the counterclockwise ordering of the inci-
dent edges of the corresponding vertex.

See the left column of Figure 2.2 for the ribbon graphs corresponding to three
different embeddings of K4.

Ribbon graphs provide a convenient way to think of the surface a graph is em-
bedded in, since we can use a ribbon graph to visualize the gluing process involved
in obtaining the surface of the embedding in an intuitive way. Pick any ribbon
in the ribbon graph and take a disk. We glue the disk to one of the edges of the
ribbon and “roll” the disk along this edge and along the edges of all the subsequent
disks associated with vertices and other ribbons. See Figure 2.3. Eventually we
return back to where we started gluing the disk and in this we have removed one
of the edges of the ribbon graph by gluing a face inside it. By gluing and rolling
disks along the remaining edges we eventually glue all the faces and end up with
a surface. One checks that this is the same surface obtained by the gluing process
involved in defining the embedding of the graph. Note that although we cannot
have non-orientable surfaces in R3, we can however have ribbon graphs in R3 yield-
ing non-orientable surfaces. In this way, the ribbon graphs offer a way to visualize
non-orientable surfaces.
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No Intersection of Edges One sees that when there is an embedding of a graph
into a surface, then one can draw this graph onto this surface, while respecting the
chosen cyclic ordering of the incident edges of every vertex and without any edges
intersecting. We will use this fact for g = 0 graph embeddings later.
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3 Matrix-Tensor Models and Scaling

Here, we introduce the matrix-tensor model and derive a condition for the Feynman
graphs that are selected by the large N,D limit. Our discussion is based on Sections
2 and 3 in [4].

3.1 Matrix-Tensor Models

We consider real N ×N -matrices Xµ1···µr labeled by r tensor indices µi, where each
tensor index can take D different values, i.e. µi ∈ {1, . . . , N}. Notation:

(Xµ1···µr)ab = Xµ1···µrab, a, b = 1, . . . , N and µi = 1, . . . , D for i = 1, . . . , r. (3.1)

Note that we can also consider Xµ1···µrab to be a real tensor with r+2 indices, where
the first r indices take D different values and the last two take N different values.

We will use the Einstein summation convention: in expressions involving these
matrices we sum over all repeated indices, i.e. if an index appears twice in an
expression we implicitly sum over this index while leaving out the summation sign.
For example:

XµX
T
µ =

D∑
µ=1

XµX
T
µ (3.2)

Xµρ1X
T
νρ2Xµρ3X

T
νρ4 =

D∑
µ=1

D∑
ν=1

Xµρ1X
T
νρ2Xµρ3X

T
νρ4 . (3.3)

When we sum over an index in this way we say that the index is contracted.
The action of the matrix-tensor model is:

S = NDr

[
tr(Xµ1...µrX

T
µ1...µr

) +
∑
a

τaIa(X)
]
. (3.4)

Here, the sum is over the interaction terms Ia(X) and associated coupling constants
τa that we include in the model. The interaction terms are of the following form:

Ia(X) = tr(X
µ

(1)
1 ···µ

(1)
r
XT

µ
(2)
1 ···µ

(2)
r
Xµ3X

T

µ
(3)
1 ···µ

(3)
r
· · ·XT

µ
(2k)
1 ···µ(2k)

r
), (3.5)
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where we multiply any even number of matrices and take the trace, and the in-
dices are contracted pairwise in the following sense: each index µ(l)

s in some matrix
X
µ

(l)
1 ···µ

(l)
r

or XT

µ
(l)
1 ···µ

(l)
r

above is contracted with the corresponding index µ(l′)
s in ex-

actly one other matrix X
µ

(l′)
1 ···µ(l′)

r
or XT

µ
(l′)
1 ···µ(l′)

r

(l 6= l′). Some examples of interaction
terms:

tr(XµX
T
ν XµX

T
ν ), tr(XµX

T
µXνX

T
ν ), tr(XµσX

T
νσXρτX

T
µτXνυX

T
ρυ) (3.6)

The model exhibits O(N)2×O(D)r symmetry, i.e. the action is invariant under
the following two types of transformation of the matrices:

A1, A2 ∈ O(N) : Xµ1···µr → A1Xµ1···µrA2, (3.7)
B1, . . . , Br ∈ O(D) : Xµ1···µr → (B1)µ1ν1

· · · (B1)µrνr
Xν1···νr (3.8)

This model was introduced by Ferrari et al. in [4], but a simpler model with
only one tensor index (r = 1) was introduced earlier by Ferrari in [3]. This simple
model was based on a model studied by Carrozza and Tanasa in [2].

3.2 Degree and Scaling

Colored Graphs Representing Interaction Terms An interaction term Ia(X)
as in (3.5) can be represented by a colored graph Ba in the following way. By writing
out the matrix multiplication and trace we get a product of 2k instances of Xµ1···µrab

where the r + 2 different indices are contracted pairwise. There are 2k vertices and
r + 2 colors in Ba. Each vertex represents one of the 2k instances of Xµ1···µrab. The
colors 1, 2 correspond to the two matrix indices a, b and the colors 2m. . . , r + 2
correspond to the r tensor indices µ1, . . . , µr. Two vertices are connected by a color
i if the corresponding indices of the two instances of Xµ1···µrab are contracted.

An example of the colored graphs corresponding to the first two interaction
terms in 3.6 (called the tetrahedral, respectively pillow, interaction term) are given
in Figure 3.1. Writing out the matrix multiplication and trace of these terms, we
get:

tr(XµX
T
ν XµX

T
ν ) = XµabXνcbXµcdXνad, (3.9)

tr(XµX
T
µXνX

T
ν ) = XµabXµcbXνcdXνad, (3.10)

for the tetrahedral, respectively pillow, interaction term. The two matrix indices
are colors 1, 2 (blue, red in the figure) and the single tensor index is color 3 (green
in the figure). Examples of colored graphs corresponding to interaction terms in
models with more than one tensor index can be found in Figure 4.4.

The graphs corresponding to interaction terms are bubbles, see Definition 2.5.
Therefore, we will sometimes refer to these graphs as interaction bubbles.
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Figure 3.1: The tetrahedral interaction term (left) and pillow interaction term
(right).

Degree When drawing the colored graph Ba corresponding to an interaction term
there is a choice of the cyclic ordering of the r+ 2 colored edges around each vertex.
There are (r+1)! choices for this cyclic ordering. We will introduce the degree of an
interaction vertex, which is associated with the different choices of cyclic ordering.

Fix a cyclic ordering σ = (c1 · · · cr+2) of the r+ 2 colors and a partition P of the
vertices of the graph into two sets: the vertices with counterclockwise ordering and
the vertices with clockwise ordering. We define a rotation system on the graph by
assigning the cyclic permutation σ to a counterclockwise ordered vertex and σ−1 to
a clockwise ordered vertex. Also, we define a signature on the graph by assigning
1 to an edge when it connects two vertices of opposite ordering and −1 to an edge
when it connects two vertices of the same ordering. The corresponding embedding
of this graph is called a jacket and is denoted by J (Ba, σ, P ). When one draws the
graph Ba one chooses a way to cyclically order the edges around each vertex, as we
did in Figure 3.1. Here, the counterclockwise or clockwise ordering of each vertex
was displayed as a filled or unfilled dot.

The jacket has a genus g(J (Ba, σ, P )). When we change the ordering of one of
the vertices from counterclockwise to clockwise or vice versa, and at the same time
change the sign of the edges incident on this vertex from 1 to −1 and from −1 to
1, we get a new jacket J (Ba, σ, P ′). One can check that this does not change the
genus. Hence, the genus of a jacket is independent of the partition P and we denote
a jacket by J (Ba, σ). Also, one checks that the genus of J (Ba, σ−1) is the same as
the genus of J (Ba, σ). We now define the degree of Ba as follows:

deg(Ba) = 1
2

∑
σ cyclic
ordering

g(J (Ba, σ)). (3.11)

The factor of 1/2 takes into account that the jackets corresponding to σ and σ−1

have the same genus. Note that when r = 1, there are only three colors and hence
two different cyclic orderings, which are each other’s inverse. Therefore in this case,
deg(Ba) is equal to the unique genus of any embedding of Ba.

Scaling of Coupling Constants We take the coupling constants τa associated
with an interaction term Ba appearing in the action 3.4 to be dependent on D, but
not N . This D dependence is as follows:

τa = D
2

(r+1)! deg(Ba)λa, (3.12)
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where λa is independent of N,D. This defines the scaling of the coupling constants.

3.3 Free Energy Expansion and Large N,D Limit

Amplitude of Feynman Graphs A Feynman graph is a connected graph con-
sisting of any number of copies of the interaction terms connected by propagators.
More precisely, each vertex has one incident propagator, and this propagator is in-
cident on a second vertex in either the same or a different interaction term. All
possible ways of connecting copies of interaction terms by propagators such that the
graph is connected give all possible Feynman graphs, although as we will see later a
subset of these are selected by the large N,D limit. For notational convenience, we
will consider propagators to be edges of color 0. Hence, since we have r + 2 colors
inside interaction terms, the number of colors in a Feynman graph is r + 3. Note
that Feynman graphs are bubbles, just like the copies of interaction terms contained
in them.

Recall how a Feynman graph encodes the way the indices of the different copies
of Xµ1···µrab involved are contracted. A Feynman graph represents a sum over all
these contracted indices. Two vertices that are connected by an edge of color 1, . . . , r
correspond to two copies ofXµ1···µrab that have a contracted index. Also, two vertices
that are connected by a propagator correspond to two copies of Xµ1···µrab that have
all indices contracted. Therefore, it follows that all copies of Xµ1···µrab represented
by vertices encountered on a (0i)-face (i = 1, . . . , r; recall that a (0i)-face is a loop
of alternating colors 0, i) have the index corresponding to the color i contracted.
Hence each (01)-face or (02)-face gives a factor of N and each (0i)-face for i ≥ 3
gives a factor of D.

Furthermore, it follows from the action (3.4) and the scaling (3.12) that an
interaction term Ba contributes a factor of NDr+ 2

(r+1)! deg(Ba), and each propagator a
factor of (NDr)−1.

For a Feynman graph B, denote by v, p, f, φ the number interaction bubbles
(a.k.a. interaction terms) within B, the number of propagators, the number of (01)-
faces and (02)-faces, and the number of (0i)-faces for any i ≥ 3, respectively. The
total N,D dependence of B is then:

N v−p+fDvr+ 2
(r+1)!

∑
Ba in B deg(Ba)−pr+φ = N2−hDr+h− `

r+1 , (3.13)

where the numbers h, ` appearing on the right hand side are defined by this relation,
and the sum is over all interaction bubbles Ba appearing in B (in particular repeated
interaction terms are counted with multiplicity). The reason we have introduced h, `
in this way is because they have a convenient interpretation in terms of certain genera
associated with B, as we show next.

Interpretation of h It follows from (3.13) that:

h = 2− v + p− f. (3.14)
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Consider B(012) and an embedding where we use as faces all the (01)-, (02)- and
(12)-faces. Denote by Fij the number of (ij)-faces. Since each interaction bubble
contributes precisely one (12)-face (representing the matrix trace) we have F12 = v.
Also, because each vertex in B(012) has precisely one incident edge of every color,
there are 2p vertices and 3p edges. Euler’s Formula (Theorem 2.7) then implies:

2− 2g(B(012)) = 2p− 3p+ F01 + F02 + F12 = −p+ f + v. (3.15)

Comparing this to (3.14) yields:

h = 2g(B(012)). (3.16)

In particular, h is a non-negative integer.
Often one draws a less precise Feynman graph by replacing each interaction

bubble by a single vertex with n incident propagators, where n is the number of
vertices inside the interaction bubble. (Note that some of these n incident edges
could have both ends attached to the same vertex, and in such case we count this
edge with multiplicity two.) Topologically, this comes down to gluing a disk inside
every (12)-face. Hence, it follows that the genus of this less precise Feynman diagram
is equal to g(B(012)) and we will denote this specific genus from now on as g. Note
that g is the genus of the Feynman graph when we “forget” the tensor indices, hence
corresponds to the genus in matrix models.

Interpretation of ` For a Feynman graph B define the following expression, called
the index of B:

ind0(B) =
∑

1≤i<j

(
g(B(0ij)) + Fij(B)− c(B(0ij))− v + 1

)
. (3.17)

One can show that Fij(B) − c(B(0ij)) − v + 1 ≥ 0 for all colors i, j ≥ 1. Since the
genus is also non-negative, we see that the index is non-negative. We will now show
that h = 2 ind0(B). Other important properties of the index will become clear in
the rest of this chapter.

First, we rewrite (3.17), using in the first step Euler’s Formula, and in the second
step the relation 3V (B) = 2E(B(0ij)):

2 ind0(B) =
∑

1≤i<j
(2c(B(0ij))− V (B) + E(B(0ij))− Fij(B)− F0i(B)− F0j(B)

+ 2Fij(B)− 2c(B(0ij))− 2v + 2)

= (r + 1)(r + 2)
2

(1
2V (B)− 2v + 2

)
+

∑
1≤i<j

Fij(B)

− (r + 1)
r+2∑
i=1

F0i(B) (3.18)

Next, we rewrite the definition of the degree (3.11) of an interaction term Ba.
Denote by Fσ the number of faces associated with the embedding with cyclic per-
mutation σ = (c1 · · · cr+2) of the r + 2 colors. We see that:

Fσ = Fc1c2 + Fc2c3 + . . . Fcr+2c1 . (3.19)
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Observe that the term Fij for some fixed i, j appears in Fσ for precisely 2r! different
cyclic permutations σ. Also observe that the total number of cyclic permutations σ
is (r + 1)!. Using these two facts, the relation (r + 2)V (Ba) = 2E(Ba) and Euler’s
Formula, we find:

2 deg(Ba) = 1
2

∑
σ cyclic
ordering

(2− V (Ba) + E(Ba)− Fσ)

= (r + 1)!
(

1 + r

4V (Ba)
)
− r!

∑
1≤i<j

Fij(Ba). (3.20)

Summing this equality over all v interaction bubbles in B:

2
∑
Ba in B

deg(Ba) = (r + 1)!
(
v + r

4V (B)
)
− r!

∑
1≤i<j

Fij(B) (3.21)

Then, we first deduce an expression for `
r+1 from (3.13), and in the second step

we substitute the expression (3.14) for h and rewrite f, φ in terms of the Fij. In the
third step we use the relation V (B) = 2p. This gives:

`

r + 1 = r − vr + pr + h− φ− 2
(r + 1)!

∑
Ba in B

deg(Ba)

= r − vr + pr + 2− v + p−
r+2∑
i=1

F0i(B)− v − r

4V (B) + 1
r + 1

∑
1≤i<j

Fij(B)

= r + 2
2

(1
2V (B)− 2v + 2

)
−

r+2∑
i=1

F0i(B) + 1
r + 1

∑
1≤i<j

Fij(B) (3.22)

Comparing this with (3.18) we obtain:

` = 2 ind0(B). (3.23)

Free Energy Expansion and Large N,D Limit It follows from the above discus-
sion that we can classify all Feynman graphs according to the non-negative integers
h, ` ∈ N0 associated with a Feynman graph. Furthermore, from the definition (3.17)
of the index, the relation h = 2g(B(012)) and the fact that Fij(B)−c(B(0ij))−v+1 ≥ 0
for all colors i, j ≥ 1, it follows that:

h ≤ `. (3.24)

Using this classification of the Feynman graphs, it follows from (3.13) that we
can write the free energy as follows:

F = N2Dr
∑

h,`∈N0

N−hDh− `
r+1Fh,`, (3.25)

where Fh,` is independent of N,D and represents the contribution of all Feynman
graphs with fixed h, `.
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B̃2 B̃2B̃1B̃1

B1 B2 B

Figure 3.2: The insertion of two Feynman graphs B1,B2 into each other to obtain a
new graph B. The dashed lines represent propagators.

Now we want to take the limit N,D → ∞ of the expression F/(N2Dr) and
see which Feynman graphs are selected. Notice that the power of D in the factor
Dh− `

r+1 becomes positive when h is sufficiently close to `. Hence, if we first take the
limit D → ∞ the free energy will diverge. Therefore, the large N,D limits do not
commute and we first have to take the large N limit and then the large D limit.
First taking N →∞ selects all Feynman graphs with h = 0. Then, taking D →∞
gives the extra condition ` = 0.

Since h ≤ ` and ` = 2 ind0(B), the conditions h = ` = 0 for a Feynman graph
B are equivalent to ind0(B) = 0. Solving this equation for a specific choice of
interaction terms will be the subject of the next chapter. We will call the Feynman
graphs B satisfying ind0(B) = 0 lowest order (LO) Feynman graphs.

3.4 Feynman Graph Insertion and MST Interactions

Inserting Feynman Graphs into Each Other Given two Feynman graphs B1
and B2, we can create a new graph B by the following procedure: select one prop-
agator in B1 and one in B2 and cut them open to obtain the so-called two-point
graphs B̃1, B̃2. Then, attach one end of the cut propagator in B̃1 to one end of the
cut propagator in B̃2, and do the same for the remaining two ends. This process
is called insertion and is pictured in Figure 3.2. Note that in general there are
multiple ways to insert two Feynman graphs into each other, since there is a choice
in the propagators to be cut open and there are also two ways to attach these cut
propagators to each other.

A very convenient property of the index is that the index of the new graph B is
the sum of the indices of B1,B2. This is the content of the following Proposition.
This is Proposition 2.5 in [4] and a proof can be found there.
Proposition 3.1. Let B1,B2 be two Feynman graphs and B the graph obtained after
insertion of B1,B2 into each other. Then:

ind0(B) = ind0(B1) + ind0(B2). (3.26)

A useful consequence of this Proposition is that if we can find just one LO
Feynman graph B (i.e. ind0(B) = 0), then we can generate an infinite family of LO
Feynman graphs using B: First we can insert two copies of B into each other and the
resulting graph will still have index equal to zero (this insertion can in general be
done in multiple ways). Then, we can repeatedly insert copies of B into this graph
to obtain an infinite number of index zero graphs.
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Figure 3.3: Example of an elementary mirror melon. The interaction term used
here is the unique (up to isomorphism) MST coloring of the complete graph with
10 vertices. Two copies of this graph, mirrored images of each other, are connected
by propagators.

MST Interaction Terms We will consider the following type of interaction term,
which has some interesting properties and will play an important role in the next
chapter.

Definition 3.2. An interaction term is maximally single trace (MST) if for any pair
of distinct colors i, j there is only one (ij)-face.

In other words, for every pair of distinct colors i, j, there is an (ij)-face that
visits all the vertices in the interaction term. This type of interaction term was
introduced in [4]. We have already seen an example of an MST interaction term:
the tetrahedral interaction term is MST, but the pillow interaction term is not.
Examples of MST interactions with 10 and 16 vertices are shown in Figure 4.4.

If we include only MST interaction terms, the expression for the index of a
Feynman graph B becomes very simple. Since for every pair of colors i, j we
have Fij(B) = v (one (ij)-face for each of the v interaction bubbles inside B) and
c(B(0ij)) = 1 (the (ij)-face in an interaction bubble visits every vertex in the bubble,
hence B(0ij) remains connected) (3.17) gives:

ind0(B) =
∑

1≤i<j
g(B(0ij)). (3.27)

Let BMST be an MST interaction term. The elementary mirror melon associated
with BMST is the Feynman graph Bmirror consisting of two copies of BMST, where
each vertex in one copy is attached via a propagator to the equivalent vertex in the
other copy. See Figure 3.3 for an example.

It turns out that Bmirror is a LO Feynman graph. To see this, we substitute the
two equations below in (3.18) to find ind0(Bmirror) = 0. For the first equation below,
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note that there are precisely two (ij)-faces in Bmirror for every pair of colors i, j (one
in each copy of BMST), and that there are (i+1)(i+2)

2 possibilities for the pairs of colors
i, j. For the second equation below, note that each (0i)-face corresponds to one edge
of color i in each copy of BMST, hence

∑r+2
i=1 F0i(Bmirror) is the number of edges in

BMST. Also, 2E(BMST) = (r + 2)V (BMST) and V (BMST) = 1
2V (Bmirror).

∑
1≤i<j

Fij(Bmirror) = (r + 1)(r + 2) (3.28)

r+2∑
i=1

F0i(Bmirror) = r + 2
4 V (Bmirror) (3.29)

One can also show the reverse implication: if the elementary mirror melon corre-
sponding to an interaction term is LO, then the interaction term must be MST. We
refer to

Now that we know that Bmirror is LO, we can generate an infinite family of graphs
by starting with Bmirror and repeatedly inserting new copies of Bmirror. We call the
graphs obtained in this way melonic. All melonic graphs are LO Feynman graphs,
but it is not clear if they constitute all of the LO graphs: there could be LO graphs
that are not obtained by this process of repeated insertion of Bmirror. In the next
chapter, we introduce a certain class of MST interaction terms for which we can
prove that the melonic graphs are all the LO Feynman graphs.

Optimal Scaling Why would we want to use the scaling (3.12) and not something
else? The following proposition partly answers this question.

Proposition 3.3. If an interaction term Ba appears in some LO Feynman graph,
then the scaling corresponding to Ba is optimal in the following sense: raising or
lowering the power of D in the scaling (3.12) would result in a theory where Ba can
never appear in a LO graph.

Proof. Consider a LO graph B containing Ba. We can create an infinite family of
LO graphs by starting with B and repeatedly inserting copies of B onto propagators.
Hence we get LO graphs containing arbitrarily many of copies of Ba. For the scaling
(3.12) the powers of D in such leading order graphs exactly cancel. If we would
raise the power of D in the scaling, then the infinite family of graphs generated by
B would contribute terms to the free energy scaling with arbitrarily high powers of
D. Hence in the D →∞ limit the free energy diverges. If we would lower the power
of D in scaling, B would no longer be leading order.

Since MST interaction terms always appears in some LO Feynman graph (the
elementary mirror melon associated with an MST interaction is always LO), we
deduce from this Proposition that the scaling (3.12) is optimal for at least all the
MST interactions.
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4 MST Colorings of Complete Graphs and
Melonic Feynman Graphs

In this chapter we will show that a theory using an MST coloring of a complete
graph as the interaction term, yields melonic LO Feynman graphs. Recall that the
complete graph Kn is the graph with n vertices where each vertex is adjacent to
every other vertex. Note that the fact that each vertex should have precisely one
edge of every color incident on it requires that the number of colors r + 2 equals
n−1. As we saw in the previous chapter, after performing the large N and D limits
we obtain all Feynman graphs whose parameters satisfy h = ` = 0. In the following
we will call such graphs lowest order (LO) Feynman graphs.

Recall that, by definition, an interaction term is MST if for all distinct colors
i, j there is a unique (ij)-face (cycle of alternating colors i, j). As a consequence,
the (ij)-face visits every vertex in the graph. Also, recall that an interaction term
is MST if and only if its corresponding elementary mirror melon is a LO Feynman
graph. One can generate an infinite family of Feynman graphs by beginning with
the propagator loop and repeatedly inserting an elementary mirror melon onto a
propagator. Graphs that can be obtained in this way are called melonic. A melonic
graph is also a LO Feynman graph, but the converse is not necessarily true. Showing
that this is true for an MST coloring of a complete graph is the main result of this
chapter:

Theorem 4.1. If the interaction term is a maximally single trace coloring of a
complete graph, then all lowest order Feynman graphs are melonic.

The proof of this theorem will be given in Section 4.2. We will rely on an
important property, the so-called odd-even property, which we show is satisfied by
an MST coloring of a complete graph in Section 4.1. Section 4.3 contains background
information about MST colorings of a complete graph.

Theorem 4.1 implies that we can completely describe all LO Feynman graphs
in the theory, and the description is simple: the LO Feynman graphs are precisely
all the graphs that one can create by repeated insertions of the elementary mirror
melon.
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In a paper by Ferrari et al. [4] a certain coloring of the complete graph Kp+1
was defined. It was shown that this interaction term is MST if and only if p is an
odd prime. Furthermore, it was shown that when using this interaction term all LO
Feynman graphs are melonic. The strategy used to prove Theorem 4.1 in Section 4.2
is based on Section 4 in [4], but adapted to use the odd-even property and thereby
proving a more general result.

4.1 The Odd-Even Property

We introduce the odd-even property and show that any MST coloring of the complete
graph Kn for even n ≥ 6 satisfies this property.
Definition 4.2. Let B be a colored graph. We will say that an edge v1v2 is indexed
at length n ∈ Z≥1 by two distinct colors i, j if there exists a path of length n (i.e.
n edges in the path) between v1 and v2 with edges of alternating colors i, j. We
will say that B satisfies the odd-even property if the following holds: for any two
distinct edges v1v2 and w1w2 with the same color k there exist distinct colors i, j,
both unequal to k, such that v1v2 is indexed at an even length by i, j and w1w2 is
indexed at an odd length by i, j, or vice versa.
Theorem 4.3. Let Kn be a maximally single trace coloring of the complete graph
Kn for even n ≥ 6. Then Kn satisfies the odd-even property.

Proof. In the following we will often implicitly use that every vertex in Kn is incident
on every other vertex, and that every color occurs exactly once among the edges of
any vertex.

Let v1v2, w1w2 be distinct edges with the same color k. See (a) in Figure 4.1.
Let j 6= k be the color of the edge v1w1, and z the vertex incident on v2 via the edge
of color j. Note that z 6= w2, else the (kj)-face v1v2w2w1v1 does not visit all ≥ 6
vertices in Kn, contradicting the MST property (see (b) in the figure). Let i 6= j be
the color of the edge zw2.

Consider the (ij)-face, which visits all vertices by the MST property. Starting
with the edge of color i incident on vertex v1, this face visits the vertices z, w1, w2, v2
in some order before returning to v1 and we treat four separate cases depending on
which vertex is visited first. The number of each case corresponds to one of the
numbered insets in the figure.

1. First z: This is impossible since z already has edges of color i, j incident on
w2, respectively v2.

2. First w1: This is impossible since the (ij)-face does not visit v2, w2, z.

3. First w2: Notice that there is a path of alternating colors i, j from v1 starting
with an edge of color i and ending at v2 with an edge of color j. Hence this
path has even length and therefore v1v2 is indexed at even length by i, j. There
is a path of alternating colors i, j starting at w1 with color j and ending at w2
with color j. Hence w1w2 is indexed at odd length by i, j.
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4. First v2: Similarly as in the previous case, we now see that v1v2 is indexed at
odd length by i, j and w1w2 is indexed at even length.

We conclude that Kn satisfies the odd-even property.

Distinguishable Edges and Vertices The odd-even property implies that we
can always distinguish between two edges of the same color. Indeed, one of the
edges is indexed at odd length by a pair of colors i, j and the other edge is indexed
at even length by i, j, which gives a way to distinguish the edges.

The same is true for two vertices v1, v2. To see this, let k be the color of the edge
v1v2 and choose any color i 6= k. Then, consider the two distinct edges of color i
that are adjacent to v1 and v2. These edges can be distinguished from one another,
hence also the vertices v1, v2. Intuitively, the odd-even property implies that the
interaction term has very little symmetry. Section 4.3 contains more information
about MST colorings of a complete graph.

v1

v2

k

w1

w2

k

z

j i

j v1

v2

k

w1

w2

k

z

j i

j

i

i or j
(a) case 1

v1

v2

k

w1

w2

k

z

j i

j
i

case 2

i

v1

v2

k

w1

w2

k

z

j i

j

i

case 3

v1

v2

k

w1

w2

k

z

j i

j

case 4

j

i

i

v1

v2

k

w1

w2

k

j

(b)

j

Figure 4.1: See the proof of Theorem 4.3. Note that not the entire graph is shown,
only the parts that are relevant for the proof. The dotted lines represent paths of
alternating colors i, j and do not visit any of the vertices displayed as a dot.
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4.2 Structure of LO Feynman Graphs

In this section, B will denote a LO Feynman graph in a theory with an interaction
term equal to any MST coloring Kn of the complete graph with n vertices, where
n ≥ 4 is even. We will prove a number of properties of B, leading to a description
of the general structure of B in Proposition 4.9. The odd-even property will play a
role in the proofs. Finally, we use Proposition 4.9 to prove Theorem 4.1. The proof
strategy of this section is based on Section 4 in [4], adapted to our more general
setting.

The LO Feynman graphs are precisely those graphs B that satisfy ind0(B) = 0.
By (3.27), this is equivalent to:

g(B(0ij)) = 0 for all colors i, j. (4.1)

We can derive an equivalent condition as follows. Note that:
∑

1≤i<j
Fij(B) = (r + 1)(r + 2)

2 v, (4.2)

since there is one (ij)-face for each of the v interaction bubbles in B, and (r+1)(r+2)
2

pairs of colors i, j. Using this equation, and the fact that r + 2 = n − 1 and
V (B) = nv, (3.18) and ind0(B) = 0 give the following condition:

∑
i

F0i = 1
4(n− 1)(n− 2)v + n− 1, (4.3)

which is equivalent to (4.1).
Condition (4.1) means that the graph consisting of only the propagators and the

edges of any two distinct colors is planar. We will use this fact in relation to the
following lemma:

Lemma 4.4. A planar 3-bubble cannot have cycles of odd length.

Proof. Note that there are precisely two cyclic orderings of three colors. The planar
embedding of the 3-bubble corresponds to a rotation system, i.e. each vertex is
assigned one of the two cyclic orderings of the three colored edges. By our definition
of the genus, the faces of the embedding are all the possible cycles of two distinct
alternating colors. Thus, the fact that the embedding is planar implies that two
vertices connected by an edge must have opposite cyclic orderings assigned to them.
This induces a partition of the vertices in two sets that makes the graph bipartite.
It is clear that a bipartite graph cannot have cycles of odd length, concluding the
proof.

The following two lemmas give information about how the interaction bubbles
within B can be connected by propagators.

Lemma 4.5. In a (0i)-face in B for any color i, two distinct edges of color i lie in
two distinct interaction bubbles.
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Proof. Consider the following (0i)-face:

v1
i
− v2

0
− · · ·

0
− v2k+1

i
− v2k

0
− · · ·

0
− v1, (4.4)

where v1v2, v2k+1v2k are two distinct edges of color i in the same interaction bubble.
Then v2k+1 and v1 are connected by an edge of color j 6= i. Then the cycle:

v1
i
− v2

0
− · · ·

0
− v2k+1

j
− v1 (4.5)

lies in B(0ij) and has odd length. This contradicts Lemma 4.4 applied to B(0ij), which
is planar according to (4.1).

Lemma 4.6. Two distinct vertices in the same interaction bubble in B cannot be
connected by a propagator.

Proof. Assume v1, v2 are two distinct vertices in the same interaction bubble and are
connected by a propagator. Let v3 be any other vertex within the same interaction
bubble, and let i, j be the (distinct) colors of the edges v1v3, respectively v2v3. Then:

v1
i
− v3

j
− v2

0
− v1, (4.6)

has odd length in B(0ij), contradicting (4.1) and Lemma 4.4.

Denote by Fk the number of (0i)-faces of length 2k in B for any color i. Note
that there are no (0i)-faces of odd length, since otherwise some vertex will have two
distinct edges of the same color. The following lemma implies that there exists a
(0i)-face for some color i of length four, which we will use later.

Lemma 4.7. We have F2 ≥ 1
2n(n− 1).

Proof. Any (0i)-face of length 2k passes through k propagators. Also, each prop-
agator lies in n − 1 different (0i)-faces, one for each of the n − 1 colors i. This
implies:

∞∑
k=1

kFk = (n− 1)p, (4.7)

where p is the number of propagators. There are v interaction bubbles, hence vn
vertices. Each vertex has one propagator attached, hence 2p = vn. Thus the above
equation becomes:

∞∑
k=1

kFk = 1
2vn(n− 1). (4.8)

Notice that: ∑
i

F0i =
∞∑
k=1

Fk. (4.9)

It follows from Lemma 4.6 that F1 = 0, hence we see:

n

2

∞∑
k=1

Fk −
n− 2

4

∞∑
k=1

kFk = F2 + 1
4

∞∑
k=3

[2n− (n− 2)k]Fk. (4.10)
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Using the identity (4.9) in (4.3), we can substitute (4.3) and (4.8) into the left hand
side of the equality above, which yields 1

2n(n− 1). Then the equality above gives:

F2 = 1
2n(n− 1) + 1

4

∞∑
k=3

[−2n+ (n− 2)k]Fk. (4.11)

When n ≥ 6, we have −2n + (n − 2)k ≥ 0 for k ≥ 3, which finishes the proof in
these cases.

For n = 4, we show that F3 = 0. Since −2n+ (n− 2)k = −8 + 2k ≥ 0 for k ≥ 4,
this finishes the proof for this case. Assume that F3 > 0, i.e. there exists a (0i)-face
of length 6. We may assume i = 1 since the other cases are similar:

v1
1

1
− v1

2
0
− v2

1
1
− v2

2
0
− v3

1
1
− v3

2
0
− v1

1. (4.12)

By Lemma 4.5 the three edges of color 1 lie in three distinct interaction bubbles.
For each of these edges vi1vi2 we can find a third vertex wi such that vi1wi has color 2
and vi2wi has color 3. Here we used the fact that we know exactly which interaction
bubble we are dealing with: the MST interaction onK4 is unique, it is the tetrahedral
interaction. Then we have a cycle of odd length in B(023):

v1
1

2
− w1 3

− v1
2

0
− v2

1
2
− w2 3

− v2
2

0
− v3

1
2
− w3 3

− v3
2

0
− v1

1, (4.13)

contradicting (4.1) and Lemma 4.4.

Let v, w be two vertices in B lying in two distinct interaction bubbles. We say
that v and w are equivalent if they correspond to the same vertex in Kn. Also, we
say that two edges v1v2 and w1w2 in B, lying in two distinct interaction bubbles,
are equivalent if they correspond to the same edge in Kn. Recall the discussion at
the end of Section 4.1 about the fact that the vertices, as well as the edges, in Kn
can be distinguished from one another by the structure of the faces.

We are now ready to prove the following lemma, which tells us exactly what
a (0k)-face of length 4 looks like. This is where the odd-even property, which our
interaction term satisfies by Theorem 4.3, comes into play.

Lemma 4.8. Let
v1

k
− v2

0
− w2

k
− w1

0
− v1 (4.14)

be a (0k)-face of length 4 for any color k 6= 0. Then v1 and w1 are equivalent, and
v2 and w2 are equivalent.

Proof. By Lemma 4.5 the edges v1v2 and w1w2 lie in two distinct interaction bubbles.
Assume that these two edges are not equivalent. The odd-even property (Theorem
4.3) implies that there exist distinct colors i, j such that v1v2 is indexed at even
length and w1w2 is indexed at odd length, or vice versa. This gives us the following
cycle: first a path of alternating colors i, j from v1 to v2, then an edge of color 0,
then a path of alternating colors i, j from w2 to w1 and finally back to v1 via an
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P = · · ·

Figure 4.2: See the proof of Lemma 4.8. Dashed lines are propagators. Edges
labeled j/l or l/j can have either color, depending on the precise structure. (a):
The vertices v1, v2, w1, w2 lie in a (0i)-face of length four, and v1, w2 are equivalent
and v2, w1 are equivalent. This structure is shown to be impossible. P consists of
the section of the (0i)-face between v3 and w5 together with the (jl)-faces inside
every interaction bubble that it visits. (b): P together with the (distinct) (jl)-faces
in every visited interaction bubble. P can visit any number of interaction bubbles
(not just two as shown here). (c): A planar embedding of B(0jl). The vertices are
shown as (un)filled dots depending on the choice of cyclic ordering of the incident
edges. Only part of the graph B(0jl) is drawn. P ′ is P as in (b), but with the edges
of color i deleted. One checks that it is impossible to connect v1, w1 and to connect
v2, w2 by propagators without intersecting edges, leading to a contradiction.
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edge of color 0. This cycle has odd length and consists only of edges of colors 0, i, j,
contradicting (4.1) and Lemma 4.4. Hence v1v2 and w1w2 are equivalent edges.

Therefore, either v1, w1 are equivalent and v2, w2 are equivalent, or v1, w2 are
equivalent and v2, w1 are equivalent. Assume the latter. We show that this leads
to a contradiction, thereby finishing the proof. Choose a vertex v3 inside the same
interaction bubble as v1 and v2, but not equal to v1 or v2. See Figure 4.2 (a). Vertex
v3 corresponds to the (unique) equivalent vertex w3 inside the interaction bubble
that w1 and w2 belong to. Let i be the color of the edge v1v3. Since v1 and w2
are equivalent, the edge w2w3 is equivalent to v1v3 and therefore also has color i.
Similarly, v2v3 and w1w3 have the same color, say j. Let v4, respectively w4, be the
vertex adjacent to v1, respectively w2, via the edge of color j. Let v5, respectively
w5, be the vertex adjacent to v2, respectively w1, via the edge of color i. Finally, let
l be the color of the equivalent edges v2v4 and w1w4.

Consider the (0i)-face passing through w5, w1, v1, v3. Let P be the remaining part
of this (0i)-face between v3 and w5. Note that by Lemma 4.5 the vertices appearing
in P do not lie in the two interaction bubbles where v1, v2, w1, w2 lie in, and therefore
no edges in P are the same as the ones already pictured in inset (a). Also by this
lemma, each edge of color i within P lies in a different interaction bubble. In inset
(b) we show the (unique) (j, l)-face in each of these interaction bubbles.

Next, consider B(0jl). According to (4.1) this graph is planar. As explained in
the proof of Lemma 4.4, since the graph is a planar 3-bubble, the graph is bipartite:
one type of vertices has the cyclic ordering 0, j, l going counterclockwise for the three
adjacent colored edges and the other type of vertices has the cyclic ordering 0, j, l
going clockwise. Drawing the vertices and edges on a plane and respecting this
cyclic ordering yields an embedding where no edges intersect.

In inset (c) B(0jl) has been drawn, but some vertices and edges have been left out.
Clearly, after removing edges and vertices the resulting graph still has no overlapping
edges. Without loss of generality, we have made a choice in the cyclic ordering of
the incident edges of a vertex. The path P ′ is P as in inset (b), but without the
edges of color i. The vertices v1 and w1, as well as the vertices v2 and w2, should
be connected by an edge of color 0. One easily sees that this is impossible without
having intersecting edges. This yields the desired contradiction.

Define a two-point Feynman graph to be a Feynman graph with one of the prop-
agators cut open. Note that the simplest two-point Feynman graph is just one
propagator. The following proposition gives the general structure of B.
Proposition 4.9. B contains n two-point LO Feynman graphs and two distinct
interaction bubbles such that each of the two-point LO Feynman graphs is connected
to two equivalent vertices of the two interaction bubbles. Furthermore, the two-point
LO Feynman graphs are pairwise disjoint and at least two of them are equal to the
propagator. See Figure 4.3 (a).

Proof. By Lemma 4.7 there exists a (0k)-face for some color k:

v1
k
− v2

0
− w2

k
− w1

0
− v1, (4.15)
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Figure 4.3: Inset (a) depicts the structure of any LO Feynman graph. Dashed lines
are propagators and dotted lines are part of a face. There are two distinct interaction
bubbles A,B and n pairwise disjoint two-point LO Feynman graphs B̃a, such that
each B̃a is connected via propagators to a vertex va in A and the equivalent vertex
wa in B. At least two of the B̃a are equal to just the propagator. Note that in this
figure only the (ij)-faces of A,B are shown for simplicity and the structure of the
graph is the same for any choice of colors i, j. The other insets aid in the proof of
Proposition 4.9.
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and by Lemma 4.8 we know that v1 and w1 are equivalent, and v2 and w2 are equiva-
lent. Let A, respectively B, be the interaction bubble containing v1, v2, respectively
the interaction bubble containing w1, w2. A,B are the two distinct interaction bub-
bles mentioned in the statement of the Lemma. Let va be any vertex other than v1, v2
in A and let wa be the corresponding equivalent vertex in B. See Figure 4.3 (b). Let
i be the color of the equivalent edges v1va, w1wa and j the color of the equivalent
edges v2va, w2wa. In order to complete the (0i)-face passing through va, v1, w1, wa
the vertices va, wa must be connected via the remaining part of the (0i)-face, which
is a path P . Let B̃a be the subgraph of B consisting of P together with all edges
and vertices in B connected to P via a path that does not pass through va or wa.

According to (4.1) the 3-bubble B(0ij) is planar. Hence the graph is bipartite and
can be drawn on a plane, with one type of vertices having the cyclic ordering 0, i, j
going counterclockwise for the three adjacent colored edges and the other type of
vertices having the cyclic ordering 0, i, j going clockwise, with no edges intersecting.
In inset (c) we draw a part of B(0ij) using this embedding. Note that we can also
switch the cyclic ordering of all the vertices, but the figure will be similar. We deduce
that (B̃a)(0ij) does not contain any edges or vertices from the interaction bubbles
A or B, since otherwise an edge in (B̃a)(0ij) would intersect an edge in the cycle
v1, va, v2, w2, wa, w1, v1. Note that since the interaction bubbles are MST vertices
are connected via a path in B(0ij) if and only if they are connected via a path in
B. Hence, we find that B̃a is not connected to A or B via propagators except the
propagators adjacent to va and wa.

Since we choose va to be any vertex in A other than v1, v2, we can repeat the
argument above for all the remaining vertices in A to get the subgraphs B̃a connected
to the equivalent vertices va, wa and not to any other vertices in A or B. Since v1, w1
and v2, w2 are both directly connected via a propagator, we can set the corresponding
B̃1, B̃2 to be equal to the propagator. Then we get the structure as in inset (a). Note
that in this figure the colors i, j and the labeling of the vertices is not necessarily
the same as in the proof above.

Observe that if any two B̃a, B̃b are not disjoint, then they would be connected
via propagators to A and B in two different ways: via va and wa and also via vb and
wb. But we showed that they are only connected via propagators to A and B in one
way. Hence the B̃a are pairwise disjoint.

It remains to show that each B̃a is a two-point LO Feynman graph, i.e. taking
B̃a and connecting the two external propagators (i.e. the ones adjacent to va and to
wa) yields a LO Feynman graph Ba. Using (4.1) this means that we have to show
that g((Ba)(0kl)) = 0 for all pairs of colors k, l. Fix a pair of colors k, l. We know that
B(0kl) is a planar 3-bubble. Hence, as before, we get an embedding defined by the
cyclic ordering of the incident edges of each vertex such that no edges overlap. Since
v1 and w1 are connected by a propagator, this means that they have opposite cyclic
ordering of the incident edges. In inset (d) we have chosen one of the two choices for
this cyclic ordering, the reasoning for the other choice is analogous. One sees that
the opposite cyclic ordering of v1 and w1 implies that va and wa also have opposite
cyclic ordering. This is illustrated by either of the two possible situations in inset
(d). Hence, when connecting the external propagators of (B̃a)(0kl) and deleting the
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rest of the graph outside (B̃a)(0kl), we are left with a planar embedding of (Ba)(0kl)
where the faces are the faces of alternating colors. This means that g((Ba)(0kl)) = 0,
finishing the proof.

We are now ready to prove the main result of this chapter, Theorem 4.1.

Proof of Theorem 4.1. We proceed by complete induction on the number of inter-
action bubbles v in a LO Feynman graph B.

Note that a LO Feynman graph cannot have only one interaction bubble, since
then all the propagators connect vertices within the same interaction bubble, which
is not allowed by Lemma 4.6. The elementary mirror melon associated with the
interaction bubble Kn is a LO Feynman graph with two interaction bubbles. In
fact, this is the only LO Feynman graph with two interaction bubbles, which follows
directly from Proposition 4.9: if A,B are the only interaction bubbles, then all B̃a
must be equal to the propagator, yielding the elementary mirror melon. We conclude
that all LO Feynman graphs with v = 1, 2 are melonic.

Assume the theorem is true for all LO Feynman graphs with v < v0 for some
fixed v0 ≥ 3 and let B be a LO Feynman graph with v0 vertices. Proposition 4.9
gives the structure of this graph. Each of the two-point LO Feynman graphs B̃a
does not contain A,B, and therefore has at most v0 − 2 interaction bubbles. Hence
by the induction hypothesis the LO Feynman graphs Ba are melonic. Also, there
exists at least one B̃a0 , connected between equivalent vertices va0 and wa0 , which is
a propagator.

We now explain how to obtain B by repeated insertions of the elementary mir-
ror melon, beginning with the propagator loop. Start with an elementary mirror
melon and call one interaction bubble A and the other B, and label the vertices
v1, . . . , vn and w1, . . . , wn as in B. Then, cut open the propagator between va0 and
wa0 in the elementary mirror melon and insert into the propagator loop. For each
of the remaining propagators between va and wa, a 6= a0, we can perform the same
insertions of the elementary mirror melon that are needed to obtain B̃a. Ultimately,
this process will yield B, hence B is melonic.

4.3 MST Colorings and Latin Squares

This section will review what is known about MST colorings and explain the relation
to latin squares.

4.3.1 MST Colorings

An MST coloring of a graph is known in the scientific literature as a perfect 1-
factorization. We collect some facts from [7], [8] on what is known about perfect 1-
factorizations, which is an active area of research. First we define some terminology.
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Figure 4.4: The unique (up to isomorphism) MST coloring of the complete graphK10
(left) and one of the 3155 (up to isomorphism) MST colorings of K16 (right). These
are examples of interaction terms for which all LO Feynman graphs are generated
by the elementary mirror melon of the interaction.

Definition 4.10. Let G be a graph. A 1-factor of G is a subset F of edges of G
that are pairwise disjoint (i.e. no two edges in F are incident on the same vertex)
such that every vertex in G has an edge in F incident on it. A 1-factorization of G
is a partition of the edges of G consisting of 1-factors. A 1-factorization is perfect
if the union of any two 1-factors in the 1-factorization defines a cycle that visits all
the vertices in G.

One checks that the notions of MST coloring and perfect 1-factorization coincide:
each color corresponds to a 1-factor and the fact that every (ij)-face visits all the
vertices corresponds to the fact that the union of every two 1-factors defines a cycle
visiting all vertices.

Since we proved that MST colorings of the complete graph yield melonic Feyn-
man graphs, we naturally want to know if such colored graphs exist. And if they
exist, how many there are. Perfect 1-factorizations on the complete graph Kn can
only exist for even n. Whether or not a perfect 1-factorization of Kn exists for all
even n is an open problem, but evidence suggests that this is the case, and their
existence was conjectured by Anton Kotzig.

There exist three different constructions of perfect 1-factorizations of Kn for an
infinite number of n: two constructions that work for n−1 equal to a prime, and one
that works for n = 2p, with p a prime. For the rest, there exist sporadic examples
of perfect 1-factorizations of Kn for n, using different methods. For all even n ≤ 54
there exists a perfect 1-factorization of Kn, but n = 56 is the smallest n for which
the existence is still an open question. Note that one of the two constructions for
n− 1 equal to a prime is used in [4] as the interaction term.
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It is also interesting to look at the number of non-isomorphic perfect 1-factorizations
of Kn that exist for fixed n. For n = 2, 4, 6, 8, 10, 12, 14, 16 this is known to be
1, 1, 1, 1, 1, 5, 23, 3155. See Figure 4.4 for examples of perfect 1-factorizations of K10
and K16.

4.3.2 Latin Squares

In the following we will show that a colored complete graph Kn+1 for any n ∈ N
can be represented by an n × n-matrix L(Kn+1), called a latin square. The MST
condition on Kn+1 will be shown to be equivalent to a certain condition on its
corresponding latin square. This is based on Theorems 1 and 2 in [9].
Definition 4.11. Let n ∈ N and Σ be a set of size n. The elements of Σ are called
symbols. A latin square of order n is an n × n-matrix with entries in Σ such that
every symbol appears exactly once in every row and every column.

Let L be a latin square. For any k ∈ Σ the permutation τk is defined by τk(i) = j
if Li,j = k (i.e. L has entry k in row i and column j). This is indeed a permutation
by the properties of a latin square. Next, for any k, l ∈ Σ define the permutation
σk,l := τk ◦ τ−1

l .
Any permutation can be written as a composition of cycles. We will call σk,l

Hamiltonian if it consists of just one n-cycle. If σk,l is Hamiltonian for all symbols
k, l, then L is called symbol-Hamiltonian.

Next, we show how one can associate a latin square to a colored complete graph.
For this it is necessary that the colored complete graph is rooted, meaning that one
vertex is singled out and called the root. We also require that there is some ordering
on the remaining vertices.
Definition 4.12. Let Kn+1 be a coloring of the complete graph Kn+1, with v the
root, and an ordering on the remaining vertices. Define the latin square L = L(Kn+1)
of order n as follows. The symbols Σ are the vertices of Kn+1 except v. Label the
rows and columns by the symbols in Σ, with the ordering inherited from the ordering
of the vertices. For a symbol k, let c be the color of the edge that connects k to v.
For all pairs of vertices i, j connected by the color c, set Li,j = k. Also set Lk,k = k.

The following theorem shows that the symbol-Hamiltonian property is the condi-
tion on a latin square that is equivalent to the MST condition on a colored complete
graph.
Theorem 4.13. Let Kn+1 be a coloring of the complete graph Kn+1 with root v and
an ordering on the remaining vertices. Then Kn+1 is MST if and only if L(Kn+1) is
symbol-Hamiltonian.

Proof. “⇒”: Let k, l be distinct symbols of L(Kn+1), and let c, d be the colors of
the edges connecting v to k, l, respectively. Since Kn+1 is MST, there is a single
(c, d)-face that passes through all vertices:

v
c
− (w1 = k)

d
− w2

c
− w3 · · ·wn−1

c
− (wn = l)

d
− v, (4.16)
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where w1, . . . , wn are all the vertices besides v. It follows from Def. 4.12 that for
m = 1, . . . , n−1

2 :
τl(w2m) = w2m−1, τk(w2m) = w2m+1, (4.17)

hence:
σk,l(w2m−1) = (τk ◦ τ−1

l )(w2m−1) = w2m+1. (4.18)
For m = 2, . . . , n−1

2 we have:

τl(w2m−1) = w2m, τk(w2m−1) = w2m−2, (4.19)

hence:
σk,l(w2m) = (τk ◦ τ−1

l )(w2m) = w2m−2. (4.20)
Also, τl(wn) = wn and τk(wn) = wn−1, hence σk,l(wn) = wn−1.

From the above we see that if we repeatedly apply σk,l starting with w1, we visit
the symbols in the following order:

w1, w3, w5, . . . , wn, wn−1, wn−3, wn−5, . . . , w2, (4.21)

hence all symbols are visited. This implies that σk,l consists of a single n-cycle,
hence is Hamiltonian. We conclude that L(Kn+1) is symbol-Hamiltonian.

“⇐”: Let c, d be two colors of Kn+1, and let k, l be the vertices (symbols of
L(Kn+1)) connected to v by the edges of color c, d, respectively. Since σk,l consists
of a single n-cycle, repeated application of σk,l starting with the symbol k will visit
every symbol once (hence all vertices of Kn+1 except v) in some order:

w0 = k, w1, w2, . . . , wn−1, (4.22)

where σk,l(wi) = wi+1 and wi 6= k for i 6= 0. Note that since σk,l = τk ◦ τ−1
l , this

means that for wi 6= l, the vertex wi is connected to some vertex ui+1 by an edge
of color d and ui+1 is connected to wi+1 by an edge of color c. Hence by repeated
application of σk,l starting with k and until we reach l gives the following (c, d)-face
in Kn+1:

v
c
− k

d
− u1

c
− w1 · · ·um−1

c
− wm−1

d
− um

c
− l

d
− v. (4.23)

Note that σk,l(l) = τk(l), hence σk,l(l) is connected to l by an edge of color c. From
the path above we see that we must have σk,l(l) = um. Similarly we see that we must
have σk,l(um) = um−1 and repeated application of σk,l will visit um−2, . . . , u1. Finally,
σk,l(u1) = k, where we started. Since we visit all symbols by repeated application
of σk,l, we deduce that k, w1, . . . , wm−1, l, um, um−1, . . . u1 are all the vertices of Kn+1
except v. Hence the (c, d)-face (4.23) visits all vertices. We conclude that Kn+1 is
MST.
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5 The Large N,D Limit for Fixed Ratio

In this chapter we introduce a new procedure for taking the large N,D limit. Instead
of just taking N → ∞ first and then D → ∞, we keep the ratio of some power of
D and N fixed while taking the limits:

Dq

N
= c, (5.1)

where q, c ∈ R. This will select different Feynman graphs in case r = 1, as we will
see below.

5.1 Taking the Limit

Recall the expression for the free energy (3.25):

F = N2Dr
∑

h,`∈N0

N−hDh− `
r+1Fh,`. (5.2)

Here, Fh,` contains the contribution of all Feynman graphs with parameters h, `,
and is independent of N and D. Also, r is the number of tensor indices. Note that
` ≥ h for any Feynman graph.

Using the fixed ratio (5.1), the free energy becomes:

F = N2Dr
∑

h,`∈N0

chDh(1−q)− `
r+1Fh,`. (5.3)

In order for the limit D →∞ to exist there must be an upper bound on the powers
of D appearing in the terms above. Taking this limit then amounts to selecting the
term(s) with the maximal power of D. Whether the limit exists depends on whether
q is greater or less than r

r+1 :

• Limit exists for q ≥ r
r+1 . Using h ≤ `:

h(1− q)− `

r + 1 ≤ `(1− q − 1
r + 1) ≤ `(1− r

r + 1 −
1

r + 1) = 0, (5.4)

hence 0 is the maximal power of D.
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• Limit does not exist for q < r
r+1 . If h = `:

h(1− q)− `

r + 1 = `
(

1− q − 1
r + 1

)
︸ ︷︷ ︸
>1− r

r+1−
1

r+1 =0

, (5.5)

hence the power of D can get arbitrarily large.

Hence we will assume q ≥ r
r+1 in the following.

Notice that after taking the limit D → ∞ the h, ` = 0 term always contributes
to the free energy, irrespective of q. We show that this is in fact the only term that
contributes, unless q is precisely equal to r

r+1 .

• q > r
r+1 : For any h, ` not both equal to 0 we have ` 6= 0 (since h ≤ `), and

therefore the inequality in (5.4) becomes strict. This means that only the
h, ` = 0 term survives:

F = N2DrF0,0. (5.6)

• q = r
r+1 : In order for the power of D in the free energy to be 0 we must have:

0 = h(1− q)− `

r + 1 = h− `
r + 1 , (5.7)

hence all terms with h = ` will contribute to the free energy after taking the
limit:

F = N2Dr
∑
h∈N0

chFh,h. (5.8)

5.2 Finding the LO Feynman Graphs for q = r
r+1

We see that only for the choice q = r
r+1 we get an extra contribution to the free

energy, compared to the simple large N,D limit discussed before, which only yields
the h = ` = 0 Feynman graphs. In the case of an MST interaction term we have for
any Feynman graph B that h = 2g and ` = 2 ind0(B). Hence the condition h = ` is
equivalent to g = ind0(B). The free energy then potentially contains contributions
from all possible genera.

Note that the value q = r
r+1 is exactly on boundary of convergence/divergence of

the limit D →∞ of the free energy (5.3). Higher values of q yield only the h = ` = 0
Feynman graphs, while for lower values the free energy diverges.

It is interesting to characterize all Feynman graphs with h = `. The simplest
case would be to consider MST interaction terms such that this condition becomes
g = ind0(B). Dario Benedetti et al. [1] work out the same limit as we presented
here, but only for the case r = 1 (one tensor index). Also, they computed which
Feynman graphs satisfy g = ind0(B) for one specific interaction term: the tetrahedral
interaction, which corresponds to the unique MST coloring of K4. The Feynman
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graphs can then all be generated inductively, like melonic graphs, but the process
is more complicated: not only elementary mirror melons have to be inserted, but
to get graphs with non-zero genus also so-called ladders have to be inserted in a
specific way. Note the two different definitions of ` in [4] and [1]: calling ` in [4]
(same conventions as in this thesis) `F and ` in [1] `B, one checks that `F = `B + 2g.

We now show that when using an MST interaction term, the limit with fixed ratio
does not yield any new Feynman graphs when r ≥ 2. Denote by Fg the Feynman
graphs B satisfying g = ind0(B) for some genus g. We already know something about
F0: all the melonic graphsM (i.e. all the graphs created by melonic insertions of
the elementary mirror melon of the interaction term) satisfy g = ind0(B) = 0. In
the specific case of an MST complete graph we showed that these are also all the
g = ind0 B = 0 graphs: M = F0. But for a generic MST interaction there might be
other non-melonic g = ind0(B) = 0 graphs: M⊂ F0. In the following we show that
when r ≥ 2 there are no other LO graphs with genus g > 0, i.e. Fg = ∅ for all g > 0
when r ≥ 2. In contrast, when r = 1 and when using the tetrahedral interaction
there exist such higher genus graphs, as shown in [1].

Recall that for a Feynman graph B in a theory with an MST interaction:

ind0(B) =
∑
i<j

g(B(0ij)), (5.9)

where g(B(0ij)) is the genus of the subgraph consisting of only the propagators and
edges of color i, j in B. Recall that the genus g referred to before is actually equal
to g(B(012)), i.e. the genus of B if we only consider the propagators and the two
matrix indices (colors 1, 2) contractions. Using (5.9), one sees that the condition
g = ind0(B) is equivalent to:

g(B(0ij)) = 0 for all distinct colors i, j such that i 6= 1, 2 or j 6= 1, 2. (5.10)

We now show that there are no Feynman graphs with g > 0 satisfying (5.10)
when r ≥ 2. Let B be a Feynman graph with v copies of an MST interaction term,
with n the number of vertices in the interaction term. For any two distinct colors
a, b the graph B(0ab) has E = 3

2nv edges, V = nv vertices and F = F0a + F0b + Fab
faces. Using Euler’s Formula g(B(0ab)) = 1

2(E − V − F ) + 1 and Fab = v (since B is
MST):

g(B(0ab)) = −1
2(F0a + F0b) + 1

4(n− 2)v + 1. (5.11)

Since r ≥ 2, there exist two distinct colors i, j both unequal to 1 or 2. Using the
equation above, one finds:

g(B(01i)) + g(B(02j)) = g(B(012)) + g(B(0ij)). (5.12)

The left hand side equals 0, according to (5.10). Hence g = g(B(012)) = 0, which is
what we wanted to show.
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6 The Two-Point Function

The two-point function is the sum over all two-point Feynman graphs. Recall that a
two-point Feynman graph is a Feynman graph with one propagator cut open. If the
Feynman graphs are melonic, then we can use combinatorial methods to calculate
the two-point function in zero dimensions. We will treat two such methods, one using
trees and Cayley’s Formula, and another using the Lagrange Inversion Theorem.

We consider a matrix-tensor theory with an MST interaction term on the com-
plete graph with n ≥ 6 vertices, with coupling constant λ. Recall that such in-
teraction terms yield melonic Feynman graphs. We require n ≥ 6 because these
interaction terms have distinguishable vertices, as explained on page 25. This has
consequences for some combinatorial factors we will encounter. The case n = 4 (the
tetrahedral interaction) can be treated using the same methods, but has slightly
different combinatorial factors since its vertices are not distinguishable. We point
out that the combinatorial factors encountered in the literature can differ. As also
noted in [4], in some papers these factors sometimes seem to be incorrect. However,
correcting these factors often amounts to changing the coupling constant λ to cλ for
some combinatorial factor c, hence does not drastically change the results.

Both methods will lead to the two-point function expressed as a power series in
the coupling constant λ:

G =
∞∑
k=0

(nk)!(2n)k
k!((n− 1)k + 1)!λ

2k. (6.1)

This power series is actually the generating function of two-point melonic Feynman
graphs with k insertions. It has a radius of convergence λ0 equal to:

λ0 =
√

1
2n

(n− 1)n−1

nn
. (6.2)

Consequently, the two-point function diverges when the coupling constant exceeds
λ0.
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6.1 Method Using Trees and Cayley’s Formula

We will show how to assign a certain tree to a two-point Feynman graph and then
use Cayley’s Formula, which counts trees with labeled vertices, to calculate the two-
point function. By definition, a tree is a graph such that for every two vertices there
is a unique path for which the two points lie at the beginning and end points of the
path. First we state and prove Cayley’s Formula, making use of so-called Prüfer
sequences.

Theorem 6.1 (Cayley’s Formula). The number of trees with n ≥ 2 labeled vertices
1, . . . , n such that vertex i has degree di is:

(n− 2)!∏n
i=1(di − 1)! . (6.3)

Proof. Let S ⊂ N have n ≥ 2 elements. We first establish a bijection pS between
the set TS of labeled trees with n vertices and labels in S, and the set of sequences
(a1, . . . , an−2) of length n−2, where all ai ∈ S. (Note that since there are nn−2 such
sequences, this bijection shows that |TS| = nn−2.)

Let T ∈ TS. Define a1, . . . , an−2 as follows. Remove the leaf with the lowest label
from T and set a1 equal to the (unique) vertex adjacent to this leaf. Also remove the
edge connecting the removed leaf and a1. Next, from what remains of T , remove the
leaf with the lowest label and set a2 equal to the vertex adjacent to this leaf. Also
remove the edge connecting the removed leaf and a2. Continue this process until
only two vertices are left. This defines the Prüfer sequence pS(T ) = (a1, . . . , an−2).
Observe the following fact, which follows from this construction:

Fact (∗): If a vertex in T has degree d, then its label appears d − 1 times in the
sequence pS(T ).

To prove that pS is a bijection (i.e. for every sequence (a1, . . . , an−2) with ele-
ments in S, there exists a unique T ∈ TS such that pS(T ) = (a1, . . . , an−2)), we use
induction on n = |S|. For n = 2, note that there is only one labeled tree with 2
vertices and one (empty) sequence, hence this case is true.

To prove that pS is a bijection for n ≥ 3, assume it is for n−1. Let (a1, . . . , an−2)
be a sequence with elements in S. Since this sequence has length n − 2, there are
at least two integers in S that do not appear in the sequence. Let b be the smallest
integer not appearing in the sequence. By the induction hypothesis there exists a
unique T ∈ TS\{b} such that pS\{b}(T ) = (a2, . . . , an−2). Add to T a leaf b and an
edge incident on both b and a1. Let T ′ ∈ TS be the resulting tree. Note that b is the
leaf with the lowest label in T ′, by our choice of b and Fact (∗) (leaves are precisely
the labels that do not appear in the Prüfer sequence). Then, after removal of b and
the edge connecting it to a1 from T ′ we get back T . Thus by following the procedure
to obtain the Prüfer sequence, we find that pS(T ′) = (a1, . . . , an−2).

To see that T ′ is the unique tree satisfying pS(T ′) = (a1, . . . , an−2), note the
following. Such a tree has b as leaf with lowest label and after its removal one
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Figure 6.1: Representing melonic Feynman graphs as trees. Every insertion of the
elementary mirror melon corresponds to adding n new leaves with labels 1, . . . , n,
which indicate n possible positions where one can insert another elementary mirror
melon. The dashed line indicates the root edge.

obtains a tree in TS\{b} with Prüfer sequence equal to (a2, . . . , an−2). This can only
be T by our induction hypothesis. We conclude that pS is bijective.

Fact (∗) together with the bijectivity of pS imply that trees with n labeled vertices
with labels in S = {1, . . . , n} and having vertex degrees d1, . . . , dn are in one-to-one
correspondence with sequences of length n− 2 such that label i occurs di− 1 times,
for all 1 ≤ i ≤ n. The number of such sequences are:(

n− 2
d1 − 1

)(
n− 2− (d1 − 1)

d2 − 1

)
· · ·

(
n− 2− (d1 − 1)− . . .− (dn−1 − 1)

dn − 1

)
(6.4)

= (n− 2)!∏n
i=1(di − 1)! ,

finishing the proof.

The process of repeatedly inserting an elementary mirror melon to obtain all
melonic graphs can be captured by representing melonic Feynman graphs as trees.
The propagator (the most simple melonic Feynman graph) is represented by one
root edge, connecting two vertices. The Feynman graph with one insertion of the
elementary mirror melon is represented by the root edge together with n new leaves
having labels 1, . . . , n. See the left part of Figure 6.1. Here, the labels 1, . . . , n refer
to the n different positions on the Feynman graph with one insertion that we can
insert a second copy of the elementary mirror melon into. If we insert a copy of the
elementary mirror melon into position i, we add n new leaves with labels 1, . . . , n
to the leaf labeled i in the tree. For every new copy of the elementary mirror melon
we insert, we add n leaves in this way. In the right part of Figure 6.1 we give an
example of a Feynman graph with two insertions and its tree. Note that if we want
to do a third insertion at position 2 in this graph, then we add n leaves to the leaf
2 that was added during the second insertion.

We have for the two-point function:

G =
∞∑
k=0

Ckλ
2k, (6.5)

where Ck is the number of melonic two-point Feynman graphs with k insertions of
the elementary mirror melon. Consider the structure of the trees representing these
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Feynman graphs for some fixed k. One checks that such trees have k vertices with
degree n+ 1 (the vertices representing the insertions) and (n− 1)k+ 2 vertices with
degree 1 (the leaves that are still free for further insertions, and one leaf at the root).
According to Cayley’s Formula, the number of trees with labeled vertices with these
degrees is:

(nk)!
(n!)k . (6.6)

However, since we need to count trees with labeled edges and a root vertex and
not trees with labeled vertices, we need to compensate with two extra factors. First,
since each of the k vertices representing insertions have n labeled edges, we have
to multiply with a factor (n!)k. Second, there are k! ways to label the k vertices
representing the insertions and ((n− 1)k + 1)! ways to label the (n− 1)k + 1 leaves
that are still free for further insertions (note that we fix the one leaf at the root).
Hence we have to divide by a factor k!((n− 1)k + 1)!.

Furthermore, note that for every insertion we can choose out of n vertices to
cut open in the elementary mirror melon, and can then insert the cut edges in two
different ways. Hence we should multiply by a factor (2n)k.

Including these three factors in 6.6, we conclude:

Ck = (nk)!
(n!)k

(n!)k(2n)k
k!((n− 1)k + 1)! = (nk)!(2n)k

k!((n− 1)k + 1)! . (6.7)

6.2 Method Using Lagrange Inversion Theorem

Here we calculate the two-point function by using another method. We will derive
the Schwinger-Dyson equation, which is an equation for the two-point function.
Then, we will obtain a solution by using the Lagrange Inversion Theorem, which we
state here. A proof can be found in e.g. [10].

Theorem 6.2 (Lagrange Inversion Theorem). Let φ(u) be a formal power series in
u such that φ(0) = 1. Then there exists a unique formal power series u(t) such that:

u(t) = tφ(u(t)). (6.8)

Furthermore, for this solution the coefficients ck of f(u(t)) = ∑∞
k=0 ckt

k, where f(u)
is any formal power series in u, are given by:

ck = 1
k!

d

duk−1

(
f ′(u)(φ(u))k

)∣∣∣∣∣
u=0

. (6.9)

First, we derive the Schwinger-Dyson equation. Below, we represent the two-
point function G by a gray circle with two outgoing propagators. The most simple
two-point Feynman graph is the propagator itself. All other Feynman graphs contain
at least one insertion of the elementary mirror melon. We can obtain all graphs
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having at least two insertions by starting with the graph with one insertion and
then doing insertions on n different positions. This leads to the following equation:

G = + GG

G

G (6.10)

Note that we have drawn only four copies of G on the right hand side, but it is left
implicit (by the dots) that there should be n copies. In symbols, this equation is:

G = 1 + nλ2Gn. (6.11)

Here, the factor 2n takes into account that for every insertion there are n propagators
in the elementary mirror melon that we can cut and then two ways to attach the
cut edges.

The Schwinger-Dyson equation in this form is different from the equation solved
by the Lagrange Inversion Theorem. Therefore, we derive an equivalent equation in
a form such that we can apply this theorem, using the self-energy Σ defined as:

Σ := G

G

G

= 2nλ2Gn−1

(6.12)

Then:

G := G

G

G

+ . . .+ G

G

G

G

G

G

+

(6.13)

Or in symbols:
G = 1 + Σ + Σ2 + . . . = (1− Σ)−1. (6.14)

Combining this with (6.12), we find:

Σ = 2nλ2

(1− Σ)n−1 . (6.15)

This equation is of the form needed to use the Lagrange Inversion Formula:
using φ(u) = (1 − u)−n+1, f(u) = (1 − u)−1, u = Σ, t = 2nλ2 we can compute the
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coefficients in the power series expansion f(u(t)) = ∑∞
k=0 ckt

k:

ck = 1
k!

d

duk−1

(
(1− u)−2−nk+k

)∣∣∣∣∣
u=0

= 1
k! (nk − k + 2)(nk − k + 3) · · · (nk)

= (nk)!
k!((n− 1)k + 1)! . (6.16)

Since G = f(u(t)) = ∑∞
k=0 Ckλ

2k, we have:

Ck = (2n)kck = (nk)!(2n)k
k!((n− 1)k + 1)! , (6.17)

which is the same as obtained by the method using Cayley’s Formula.

6.3 Attempting to Solve for Non-Zero Dimension

We make two attempts at computing the two-point function in the case of non-zero
dimension. In the first method, we introduce an operator that encodes the integra-
tions over spacetime involved for non-zero dimension, and rewrite the Schwinger-
Dyson equation. A second method involves discretizing spacetime in one dimension
and writing down the equations from the first method in this setting.

6.3.1 Using an Operator on Functions

Unlike the Schwinger-Dyson equation in zero dimensions (6.11) or (6.15), this equa-
tion in higher dimensions involves integrals over spacetime. Also, the two-point
function G(x1, x2) and the quantity Σ(x1, x2) now depend on two spacetime points
x1, x2 (but note that by translational symmetry they actually only depend on the
difference x2−x1). We will write the Schwinger-Dyson equation in a form involving
some kind of operator, but it’s not clear how to solve the equation.

Define the following function in two spacetime points:

Σ(x1, x2) = 2nλ2(G(x1, x2))n−1. (6.18)

Let G0(x1, x2) be the propagator. Define the linear operator O on the space of
functions in two spacetime points by:

(Of)(x1, x2) =
∫∫

dydzG0(x1, y)Σ(y, z)f(z, x2), (6.19)

where f is any function in two spacetime points and both integrals are over space-
time. Intuitively, this means that we “glue” a propagator and Σ to one side of f
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and integrate the two new vertices inside Σ over spacetime. Pictorially:

ff = G

G

G

O
x1 x2 x1 y z x2

(6.20)

Using the fact that melonic insertions generate all the LO Feynman graphs, one
finds:

G(x1, x2) = G0(x1, x2) + (OG0)(x1, x2) + (O2G0)(x1, x2) + . . . . (6.21)

Recognizing this as the geometric series, we find:

G = (I +O +O2 + . . .)G0 = (I − O)−1G0, (6.22)

where I is the identity operator. Here we assume that it is possible to use the
formula for the geometric series for O. Another way to arrive at this equation is to
observe the following, where we use that applying O to G yields all Feynman graphs
with at least one insertion (hence all graphs except the propagator):

(OG)(x1, x2) = G(x1, x2)−G0(x1, x2), (6.23)

from which (6.22) follows. Inserting (6.22) into (6.18):

Σ = 2nλ2((I − O)−1G0)n−1. (6.24)

Inserting this into (6.19):

(Of)(x1, x2) = 2nλ2
∫∫

dydzG0(x1, y)(((I − O)−1G0)(y, z))n−1f(z, x2). (6.25)

6.3.2 Discretizing Spacetime, Case of One Dimension

We now consider the case of one dimension and discretize spacetime intoN spacetime
points x1, x2, . . . , xN , where xi+1 − xi = ∆. We will rewrite the formulas of the
previous section in a discretized form. Σ is now an N×N -matrix defined in analogy
with (6.18):

(Σ)xi,xj
= 2nλ2(Gxi,xj

)n−1. (6.26)
O is now a linear operator on the space of N×N -matrices, and integration becomes
summation. In analogy with (6.19), O is defined by:

(Of)xi,xj
=
∑
k

∑
l

(G0)xi,xk
(Σ)xk,xl

(f)xl,xj
= (G0Σf)xi,xj

, (6.27)

where f is any N × N -matrix. Hence, O is just left multiplication by G0Σ. Then,
the analogue of (6.21) and (6.22) is:

G = G0 +OG0 +O2G0 + . . . = (I −G0Σ)−1G0. (6.28)
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Inserting this into (6.26):

Σ = 2nλ2((I −G0Σ)−1G0)(n−1). (6.29)

Here, the (n − 1) in the superscript of the matrix means that we take every entry
in the matrix to the power n− 1 (and not the power n− 1 of the matrix by matrix
multiplication).
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7 Conclusions and Outlook

In this thesis we were able to show that a certain general set of interaction terms
leads to melonic Feynman graphs in the matrix-tensor model proposed by Ferrari
et al. These melonic graphs appear in both tensor models and the SYK model, and
are believed to be able to capture the physical description of quantum black holes.

Besides the new set of interaction terms, we also touched upon two other topics:
a different large N,D limit and combinatorial methods to compute the two-point
function in zero dimensions.

We saw that for the case of MST interactions, the different large N,D limit does
not yield anything new as compared to the standard limit when the number of tensor
indices is at least two. However, when the number of tensor indices is one, this limit
does potentially yield interesting new Feynman graphs, besides the melonic graphs.
This was explored only for the case of the tetrahedral interaction in [1]. A potential
direction for future research would be to consider other MST interaction terms using
one tensor index. These types of terms might yield non-melonic Feynman graphs
similar to those in [1], containing ladders or a generalization thereof.

The generating function associated with two-point melonic Feynman graphs (6.1)
has a finite radius of convergence (6.2), implying that the two-point function diverges
for a sufficiently large coupling constant. As seen in [1], generating functions asso-
ciated with more complex Feynman graphs (e.g. involving ladders) can also show
this kind of behavior. It would be interesting to explore similar behavior if we are
able to compute the Feynman graphs in a theory with one tensor index and an MST
interaction term different from the tetrahedral term.

The two-point function in zero dimensions is particularly easy to solve using
combinatorial methods (Cayley’s Formula for trees and the Lagrange Inversion The-
orem). We made an effort to rewrite the Schwinger-Dyson equation for the case of
non-zero dimension in two different ways: by introducing an operator that encodes
the integration over spacetime that has to be performed for higher dimensions, and
by discretizing spacetime in one dimension. One could try to solve these equations
by (the higher dimensional version of) the Lagrange Inversion Theorem. Progress
in this direction would give another way to compute the two-point function, besides
the numerical Fourier transform method that is often used.
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