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Figure 1: Some example shortest paths in a generated simple polygon
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1 Introduction

Recently a new I/O-efficient algorithm has been developed for computing short-
est path problems in simple polygons [2]. In this thesis we explore the practical
applicability of this algorithm. Normally, algorithms are optimized to use as
few as possible CPU cycles to complete. However, when the data on which the
algorithm operates does not fit into fast main memory the execution time of the
algorithm will be dominated by the time it takes to transfer data between slow
hard drives and fast main memory:

”Because mechanical movement is involved, the typical read or write time is
on the order of milliseconds. By comparison, the typical transfer time of main
memory is a few nanoseconds—a factor of 10° faster!” [3]

An I/O-efficient algorithm is an algorithm that is optimized to use as few as
possible I/O operations. The standard model to analyse I/O-efficient algorithms
is the I/O model introduced by Aggarwal and Vitter [4]. This model abstracts a
computer in three components: a CPU, a limited amount of main memory and
a conceptually infinite amount of disk space. The data on which I/O-efficient
algorithms operate generally does not fit in the limited main memory. When
data is requested that is not stored in the main memory it is transferred from
the disk to the main memory in fixed-size blocks. Each such transfer is called an
I/O operation or simply an I/O. The performance of an algorithm is measured
in how many I/O operations performed. The following variables are used to
quantify this measure.

N = amount of records;

M = records that can fit into internal memory;

B = records that can be transferred in a single block;

D = the number of disks, for simplicity this is usually kept at one disk of con-
ceptually unlimited size;

Two common notations in the I/O model are the scanning and sorting of records.
In the I/O model N records can be sequentially scanned in O(%) 1/Os, denoted

as Scan(N). The optimal bound of sorting is O(%) I/0s, denoted as

Sort(N) [4].

A simple polygon P with N vertices is a polygon without any loops or holes
and has a clear definition of what is inside and outside of the polygon. All the
approaches assume the polygon is saved as a triangulation 7. A triangulation is
a way to divide a simple polygon into triangles without introducing new vertices,
it can be calculated in O(N) time as described by Chazelle [5]. The triangulation
T is saved as a binary tree where each node is a triangle and each edge is a link
to a neighbouring triangle, see figure 2. The I/O-efficient algorithm assumes T
is saved in post order for I/O-efficient access. A shortest path is defined as the
path that covers the smallest possible distance between two points while being



entirely within the polygon. Most approaches to solving shortest path problems
pre-process the polygon in order to create a shortest path tree. A shortest
path tree is a data structure containing every vertex of the polygon where each
vertex has a reference to the next vertex on the shortest path towards a single
vertex, the source vertex. This means it contains the shortest paths from every
vertex in the polygon to a single starting point. The I/O-efficient approach
uses a sparse shortest path tree which is a data structure that only contains the
shortest paths from a limited number of vertices to the source vertex.

Palygon P

Als

Figure 2: Triangulation of a simple polygon and its dual tree, taken from [6]

In order to determine whether the new approach of Agarwal et al. [2] has
practical applicability it will be compared to a similar existing algorithm. Three
other approaches will be considered by Guibas et al. [7], Hershberger and
Snoeyink [1] and Guibas and Hershberger [8]. The approach of Guibas et al.
pre-processes the polygon to create a shortest path tree in O(N) time where N
is the amount of vertices in the polygon. The approach makes use of a more
complex data structure, the finger tree data structure [9]. The approach of Her-
shberger and Snoeyink is very similar to that of Guibas et al. It has the same
algorithmic complexity of O(N) and creates the same shortest path data struc-
ture but does not require the complicated finger tree data structure. The last
approach by Guibas and Hershberger also has the same algorithmic complexity
of O(N) but results in a different data structure. Instead of a shortest path
tree it splits the polygon into subpolygons and prepares data for these subpoly-
gons to efficiently be able to query shortest paths. The major contribution of
this approach is that it works for any source vertex. Where a shortest path
tree only supports querying for a single source vertex this approach can query
shortest paths between any two points within the polygon. The downside of
the approach is that it uses a lot of extra and very complicated data structures
in order to split the polygon in the subpolygons and to store the pre-processed
data for these subpolygons. In this thesis we will be comparing the new ap-
proach of Agarwal et al. to that of Hershberger and Snoeyink because these are
more similar and not overly complex to implement. Both the approaches result
in a shortest path tree and only allow querying for one source vertex.

The algorithm proposed by Agarwal et al. [2] is a purely theoretical algo-



rithm. It is unclear whether it is also efficient in practice. In order to conclude
whether it is efficient in practice we can answer the following three questions.

1: Does the theoretical algorithmic complexity of creating the sparse
shortest path tree of the proposed 1/0-efficient algorithm hold up in
practice.

2: Does the theoretical algorithmic complexity of creating the shortest
path tree of competing state of the art internal memory algorithms
hold up in practice.

3: Does the I/O-efficient algorithm become faster than the internal
memory algorithms for larger problems.

In the research questions we mention testing the performance for creating the
(sparse) shortest path tree. The experiment will be extended to also test the
performance of calculating a single shortest path without any pre-processing for
the I/O-efficient method and the internal memory method.

The algorithmic complexity of the proposed I/O-efficient algorithm is de-
signed with large problems in mind, so the hypothesis is that this complexity
will hold up in practice. We expect this is not the case for the internal memory
variants. The expectations are that these algorithms will become significantly
slower when they require more memory than there is RAM. The proposed algo-
rithm will have practical value when it is faster than competing internal mem-
ory algorithms for certain sized problems. Usually I/O-efficient algorithms are
slower than similar internal memory algorithms for small problems because the
constant cost of operations is much higher and algorithmic complexity is often
worse. However if the hypotheses for research questions 1 and 2 are correct we
expect that for some problem size the I/O-efficient algorithm will become faster
than its internal memory competitors.

Besides finding out how the proposed algorithm of Agarwal et al. behaves
in practice this thesis makes another contribution by improving their approach
slightly. As mentioned the approach uses a sparse shortest path tree which
allows a limited number of shortest paths to be stored. The amount is limited

by how much main memory is available. Agarwal et al. reach a limit of O( %),

the way we propose to implement it we can get to O(%) shortest paths.

First we will discuss the concepts relevant to shortest path algorithms and
the approach of Hershberger and Snoeyink in section 2 and then some pre-
liminary I/O-efficient concepts in section 3. In section 4 we will describe the
I/O-efficient approach by Agarwal et al. Then in section 5 we will highlight im-
plementation specific details of the approaches. The experiment specific details
will be given in section 6 and then finally the results, discussion of the results
and the conclusion will be given in section 7, 8 and 9.



2 Internal shortest path algorithm

In this section we will discuss the concepts used by shortest path algorithms.
Given a polygon P with N vertices, a triangulation 7" and a source vertex s
the goal is to create a shortest path tree containing shortest paths from every
vertex towards s. Firstly we will discuss funnels, the key concept used by all the
shortest path algorithms. Then we will go into more detail about the shortest
path algorithm proposed by Hershberger and Snoeyink [1].

2.1 Funnels

The concept of funnels is introduced by Lee and Preparata [6] and is used to
find a shortest path, from a source point s to a target point ¢, using the triangles
of T'. The points s and t are both vertices of P. It is easy to extend funnels to
support source and target points in the interior of P but this is not necessary to
understand the concept of funnels. A funnel is a region inside P that starts at
a vertex called the apex and two chains extending left and right from the apex.
The left and right chain extend to both end points of a diagonal d that is an
edge of a triangle in T'. Initially the apex is s and the left and right chains will
extend to the other two vertices of the triangle containing s. See figure 3a for
an example of a funnel.

The initial case of a funnel, a single triangle, is very simple to understand.
One of the vertices is s, the other two vertices are the end points of d. The
left and right chains are the edges from s to the end points of d. A funnel can
be extended with a triangle that shares edge d. Now d becomes an edge of
the newly added triangle that is closer to ¢, it is assumed it is known which
edge of the new triangle to choose, this is the responsibility of the shortest path
algorithm and not of the funnel. Since d is updated, the left and right chain
need to be updated, this is symmetrical for both end points. This is done by
scanning the existing funnel for a vertex that is tangent with the new end point,
a point for which the line through itself and the end point touches the chain only
in that point and never crosses the chain, again see figure 3a for an example of
a tangent line (the blue dotted line). Start by scanning from the outer side of
the left chain towards the apex, if it contains a point p that is tangent with the
end point all the scanned points are removed from the left chain and the new
end point is added with p as its predecessor. If the left chain does not contain a
tangent point continue with scanning the right chain away from the apex until a
tangent point p is found. This means all the shortest paths from s to the current
d are identical up to p and diverge there, thus p is the new apex of the funnel,
both chains are updated accordingly. A simple example of a funnel starting as
a triangle and extending multiple steps through a triangulated polygon is given
in figure 3b. The thick line segments are the boundary of P, the line segments
labelled d, are the diagonals added to the funnel and the dotted line segments
are the chains showing the shortest path from the apex to the end points of the
diagonal. The process described here gives a method to calculate the shortest
path from s to ¢t in O(NN) time given the order of triangles to traverse.
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2.2 Shortest path algorithm, Hershberger, Snoeyink [1]

Remember the definitions of a simple polygon P with N vertices and a source
vertex s on the boundary of P. The shortest path from s to v is denoted by
7(s,v) where v is a vertex of P. The goal of this paper [1] is to construct a data
structure, a shortest path tree, in O(N) time that can be used to query m(s,v)
for any v on P in O(log, N + k) time. O(logy N) time for locating v and O(k)
time to report the path from v to s by traversing through the k vertices where
the path makes a turn. The key concept used in this algorithm is a funnel. As
seen before a funnel can be used to find a shortest path by starting at s and
extending it towards a target point ¢t. In the process of finding one shortest
path the funnel actually finds all the shortest paths to the vertices it passes.
This means it is possible to find all the shortest paths by making the funnel
branch through the entirety of P, and thus T passing over all N vertices. This
can be done by rooting 7" at the triangle containing s and visiting every node
of the tree. An efficient way to save a shortest path is to save the predecessor
on the shortest path towards s for every vertex in P. The complete shortest
path can then be reconstructed by recursively moving backwards from ¢ to its
predecessor until it reaches s, this is the factor k in the query time. Saving all
the shortest paths in this way constructs a shortest path tree where every node
is a vertex with a link to its parent in the tree, which is the next vertex on the
shortest path towards s.

A funnel is initialised with apex s and both chains pointing towards an
arbitrary adjacent vertex v;. The initial edge (s,v;) is treated like a diagonal.
The funnel is then extended recursively. Every step the funnel is extended by
taking the most recently added diagonal and finding an adjacent vertex so that
it forms a complete triangle that has not been processed yet. Note that this adds
two new edges to the funnel, one edge from both the end points of the diagonal



to the adjacent vertex. In order to do this the funnel is split into two separate
funnels every step. Then both new funnels recursively extend themselves only
if the newly added edge is a diagonal in P and not a boundary edge of P. This
means for every degree-2 node in T the funnel is split into two, but one of the
new funnels will be a boundary edge and will not recurse further. For every
degree-3 node in T the funnel is split and both new funnels will recurse further
so the entire polygon will be processed. See figure 4 for an example how a
funnel can be extended. The only not trivial part of this algorithm is how to
split funnels in an efficient way.

Figure 4: Tllustrates how a funnel can be split, taken from [1]

Hershberger and Snoeyink [1] propose a way to split a funnel using very basic
data structures, a stack and a double-ended queue (deque) both implemented
using an array for direct access. The stack is used to track the history of the
funnel, allowing it to be restored to previous states. The deque stores the
vertices of the funnel and supports five operations:

Length(deque) Return the number of items in the deque.

Index(deque, i) Return the ith item in the deque.

Add(f, deque, x) Add the item z to the f (front) or b (back) of the
deque.

Split(f, deque, i) Return the items in f or b of and including item ¢

and discard the other half of the deque.
Undo(deque) Undo the most recent Add() or Split() operation.

Code examples for the front of the deque can be found in figure 5, it also
shows that all the operations can be performed in constant time. The algorithm



Length(deque) Index (deque, i)
return last — first + 1 check 0 < i < Length (deque)
return deque[i + first]
Add(f, deque, x)

decrement first Undo (deque)
push (add, {, deque [ first]) to stack if stack top is (add, f, x)
set deque| first] + x set deque[ first] « x
increment first
Split (f, deque, i) else stack top is (split, f, i)
check 0 < i < Length(deque) set last « i

push (split, f, last) to stack
set last « i + first

Figure 5: Table that shows code examples for the front of the deque, taken from

1]

starts at the root of T and covers the entire tree in a DFS manner. Going
downwards toward the leafs of the tree the funnel is extended by an Add()
followed by a Split(). Each add operation adds a history node to the stack
containing the previous value (vertex) on the place in the deque where the new
vertex is added. For every node visited the splitting index ¢ is calculated once.
This is the point of tangency of the funnel and the newly added end point as
discussed when introducing funnels. The splitting index ¢ is the predecessor of
the end points used to construct the shortest path tree. This splitting index ¢ can
be found efficiently by using exponential search on the funnel until it passes the
new end point and then performing binary search between the two last indexes
to find the exact tangency point. Each split also adds a history node to the stack
containing the index i where the funnel has been split, effectively removing a
part of the funnel. When the algorithm reaches a leaf it proceeds to backtrack
using the Undo() operation until it reaches a degree-3 node where it has not
yet explored the right child. This time it will traverse the right child until it
reaches a leaf. In this fashion the entirety of T' (and thus P) will be processed
and for every vertex a predecessor on the shortest path towards s will be known,
forming the shortest path tree. Undoing an add operation restores one element
in the deque containing the funnel to a previous state. Then undoing a split
restores the boundaries of the deque used to represented the funnel to a previous
state.

This results in a shortest path tree constructed in O(N) time. In order to
query a shortest path in the promised O(log, N + k) time a point location data
structure is needed that finds target points in O(logy N) time. This has been
extensively researched by Kirkpatrick [10] and Edelsbrunner et al [11]. Actually
reporting the shortest paths is then trivial. Use the point location data structure
to locate the desired vertex in the shortest path tree and then recursively call



its predecessor until reaching the source point s.

3 1/O-efficient preliminaries

In this section we will discuss some I/O-efficient techniques that are relevant to
the I/O-efficient shortest path algorithm proposed by Agarwal et al [2]. First we
will discuss I/O-efficient stacks and deques that are necessary for representing
an I/O-efficient funnel. Then some techniques for I/O-efficient tree traversal
will be discussed, this is necessary for efficient traversal of the triangulation
and for reporting shortest paths from a shortest path tree. Then finally we will
discuss I/O-efficient sorting.

3.1 I/O-efficient stacks and deques

A stack is the most simple data structure that allows values to be pushed and
popped from the top in constant time. The internal memory variant is usually
implemented with an array and an index counter. A push inserts a value at
the index counter and increase the index counter by one. A pop will decrease
the index counter by one and read the value at the index counter. This can
obviously be done in constant time per push or pop. The only issue arises when
too many items are added and the underlying array needs to be resized, this
needs O(N) time, amortised over N inserts makes this implementation O(1)
amortised. This data structure is trivial to make I/O-efficient. Remember that
memory is read and written from and to disk in blocks of size B at a time.
Two buffers of size B are kept in main memory. These buffers allow inserts and
removes without any I/Os. There are two cases where an 1/O happens. When
a push is done and both buffers are full the first is written to disk and when
a pop is done when both buffers are empty the previous buffer is loaded from
disk. Two buffers are necessary otherwise a worse case scenario of pushes and
pops could trigger a read/write on every operation. This gives an amortised
performance of O(+) I/Os for inserting and removing. Note that a resize of
an underlying array should never be necessary since the disk is of conceptually
unlimited size, enough dish space should be allocated when initialising the stack.

A deque (double-ended queue) is essentially a stack that can be accessed
from both sides, the top and bottom, or in queue terminology the front and
back. In internal memory this can be implemented using two stacks that have
one underlying array. One stack represents the front of the queue and the other
the back. The underlying array is filled starting in the middle and moving
towards both ends. When one of the stacks reaches the end of the array a resize
will be performed. The performance for each operation is identical to that of
the stack. A push and pop can be done in amortised O(1) time, this includes
the occasional resizing. Making a deque I/O-efficient is also similar to that of
the stack. Four buffers will be kept in main memory, two for front access and
two for back access of the deque. An I/O happens when an push is done on
a full buffer, then it is written to disk, or a pop is done on an empty buffer,



a previous buffer is read from disk. Again, no resizing of the underlying array

has to be done due to the conceptually unlimited size of the disk. Performance
iha 1 . ‘hes -

remains O() I/Os for pushes and pops.

3.2 I/O-efficient tree traversal

There are many variants of trees used in computer science, to keep this sub-
section relevant, only the techniques necessary for the I/O-efficient shortest
path algorithm will be discussed. First we will discuss why the triangulation
of a polygon should be in post order. Then we will discuss I/O-efficient DFS
(depth-first search) and I/O-efficient node to root traversal. The DFS is used
as a pre-processing step and therefore it may take up to O(Sort(N)) I/Os. The
node to root traversal is used to output the answer to a query and should only
take O(Scan(k)) I/Os, where k is the length of the path. For this to be possible,
the traversed tree needs to be formatted which can be done as a pre-processing
step which costs O(Sort(N)) I/Os.

The underlying data structure of a tree is generally an array and when using
the hard disk a file is very similar to an array. There are a few different methods
of ordering the nodes of the tree in this array which greatly impacts the amount
of I/O operations necessary to traverse a tree. Post order traversal is done
by visiting the left child first, then the right child and lastly the node itself.
Applying this recursively means the left most leaf will be outputted first and
after that the leaf to the immediate right. The very last node outputted will
be the root of the tree. The reason we want our triangulation 7" of the polygon
to be in post order is because when we scan T it will visit the triangles in a
certain order, without any jumps costing additional I/O’s. This order ensures
that when we are scanning 7 from a certain triangle towards the root we will
visit every triangle on the path between that triangle and the root in the correct
order to form a shortest path.

DFS is a tree traversal algorithm that traverses the tree in a specific order,
often used for greedily searching. From the root it will traverse toward the leafs
by always choosing the leftmost child. When it reaches a leaf and has not yet
terminated it will backtrack to a previous node that has unvisited children and
traverse the leftmost child it has not yet visited. In this manner the entirety of
the tree will be traversed. An I/O-efficient DFS is described by Chiang et al
[12]. The described method is designed for a directed graph but also works for
trees. Let G be a graph with V vertices (nodes in a tree) and E edges (edges
are directed away from the root) represented by three arrays. An array A of size
E containing all the edges, sorted by source. Two arrays, Start[i] and Stopli]
giving the starting index and ending index of all vertices (nodes) in A that are
children of 7. So vertex ¢ has the following children A[j] | Start[i] < j < Stopli].
The method uses a stack of vertices to maintain the path from the root to the
current vertex. As expected for DFS, it starts at the root and retrieves the
list of children, the leftmost unvisited child is the next active vertex. When
all children of a vertex have been visited it is removed from the stack and the
previous vertex on the stack is the active vertex. Using this method the entirety



of G will be traversed using O((1 + 1;)Scan(E) + V) 1/Os.

An T/O-efficient node to root traversal method that fits the allowed I/0O
restraints is given by Zeh [13]. A tree T of height h is split up in layers of
height b’ = logy B resulting in layers Lo, ..., Lp/n1—1- Each layer is a forest
of subtrees of T, see figure 6. Each subtree fits in a single memory block B
and allows traversal of an entire layer. This allows node to root traversal in the
desired Scan(k) I/Os, where k is the depth of the starting node. The decision
to store each subtree in a single memory block might result in very sparsely
populated memory blocks. To limit the necessary storage space to a constant
factor sparsely populated memory blocks are merged together. Pairs of memory
blocks with less than B/2 vertices are merged together, at most one such block
can remain unmerged. In a worse case scenario the size of T roughly doubles.

Figure 6: A tree divided in layers and highlighted subtrees, taken from [13]

3.3 1I/O-efficient sorting

I/O-efficient sorting is not explicitly used in the I/O-efficient shortest path al-
gorithm, but the resulting term Sort(N) that is used often deserves some ex-
planation. Ignoring a rare exception all the I/O-efficient sorting algorithms are
either based on merge sort or distribution sort. Merge sort is a bottom up ap-
proach where small subsets are sorted and later all the subsets are recursively
merged together. Distribution sort is a top down approach where median points
are computed and the data is then put in buckets based on the median values.
These buckets are then recursively sorted, the results are added back together,
they can simply be appended, there is no need for merging. A simulation done
by Vengroff et al. [14] shows that merge sort is overall the faster algorithm and
the focus of this subsection will be on an I/O-efficient merge sort algorithm.
An optimal I/O-efficient merge sort is given by Aggarwal et al [4]. The
approach closely resembles the internal memory variant of the merge sort al-
gorithm. Start by sorting subsets of the data and later merge these together.
Logically the size of these initially sorted subsets is M which means after this
initial phase there are & sorted subsets on the disk having used % I/Os. The

M
merging phase merges % — 1 subsets together by loading the first B values of

10



each subset in main memory. A buffer of size B is initialised to keep track of the
output. The buffer is filled with the lowest B values of all the subsets in main
memory, in a sorted manner, and then written back to disk. If the B values of
a subset in main memory are all processed it loads the next batch of that sub-
set until all the values are processed and all the loaded subsets are completely
merged. The result of this merging phase is a new, much larger, subset. This
merging phase is done recursively until the result is a single fully sorted set.
This approach results in an optimal sorting algorithm that uses O(%)

I/0Os often written as Sort(N).

4 1I/0O-efficient shortest path algorithm

In this section an I/O-efficient algorithm proposed by Agarwal et al. [2] will
be discussed. The well known funnel concept is converted to use I/O efficient
data structures in order to find a shortest path. A key problem for creating
a shortest path tree is the inability to efficiently split a funnel at a degree-3
triangle. Guibas et al. [7] use a finger tree which no I/O-efficient variant is
known for. The approach of Hershberger and Snoeyink [1] uses data structures
that have I/O-efficient equivalents except that their approach requires a deque
that allows reading of a specific index in constant time, which is not supported by
the I/O-efficient deque. The approach of Guibas and Hershberger. [8] requires
efficient splitting and concatenation which also has no I/O efficient variant. The
algorithm proposed by Agarwal et al. [2] is a divide and conquer algorithm that
recursively partitions P into smaller subpolygons, these smaller subpolygons
can be solved in main memory and the results combined. The key component
to efficiently combine the results is a sparse shortest path tree, that is a tree

that stores the shortest path from a source point s to k = O(4/ %) points, note

that we will improve this to O(4F) in the next section. First a O(Scan(N)) I/O
algorithm to compute such a sparse shortest path tree will be given and then
the divide and conquer algorithm will be discussed in more detail. Then we will
discuss how to process the smaller subpolygons in main memory and combine
them into a shortest path tree. Finally the shortest path tree can be used to
compute a shortest path map M that supports shortest path length queries in
O(logg N) I/0s and the shortest path itself in an additional O(Scan(k)) I/Os.

4.1 1I/O-efficient sparse shortest path tree

Given a polygon P and the triangulation stored as a post order dual tree T a
shortest path can be found using funnels in much the same way as in section
3. T is used to find the triangles the shortest path must traverse and a fun-
nel is maintained throughout that path using a stack and deques. With this
approach, using I/O-efficient stacks and deques, a shortest path can be found
in O(Scan(N)) I/Os. As we have seen in section 2.2 the approach of Guibas
et al. [7] extends this algorithm to compute the shortest path tree. However,

11



as already mentioned, this requires an efficient way to split funnels at degree-3
triangles and there is no known way to do this. Instead of the full shortest path
tree the goal of this step of the algorithm is to create a sparse shortest path

tree that stores the shortest paths from a source point s to k = O(4/ %) target

points, this can be done in O(Scan(N)) I/Os. The triangles traversed on the
paths from s to every k; can, again, be found using 7', this takes O(Scan(N))
I/Os. During this scan all the degree-3 triangles where the funnel has to be
split are marked. For each of these degree-3 triangles a vertex where the funnel
has to be split is stored as a finger ordered along the funnel in main memory
where it can be accessed without any 1/Os. The vertices between two fingers
will be stored in a I/O-efficient deque. Traversing a degree-2 triangle is straight-
forward, both ends of the funnel are modified as usual and added to the correct
deque between the fingers, if necessary the apex is changed. In order to traverse
a degree-3 triangle the corresponding finger is located without any I/Os. The
funnel is split by creating new fingers and new empty deques in between them.
This requires at most k& new deques and since there are at most k degree-3 tri-
angles this requires at most O(k?) I/Os and O(M) memory in total. During
this process the resulting sparse shortest path tree T} is created. T only stores
degree-3 nodes and stores the path between these nodes as arrays. To build
T, while extending the funnel an in memory tree T, is maintained that stores
the same degree-3 nodes as Ty and has I/O-efficient stacks to represent paths
between them. Since 7, only has k nodes this requires k - 1 buffers of the

I/O-efficient stacks, using O(\/%) memory. Whenever the apex of a funnel is
changed another part of the shortest path between two degree-3 nodes is known,
these vertices are pushed to the correct stack in T , when that stacks buffer is
full it is saved to T on disk.

4.2 Divide and conquer

The divide and conquer algorithm splits P into O(\/g ) subpolygons of roughly
equal size. This can be done efficiently by computing the centroid decomposi-
tion [12] and transforming that into a balanced hierarchical decomposition as
described by Chazelle [15]. This is done recursively until a subpolygon fits into
main memory, then all the local shortest path info can be computed without
any I/Os. An example of this can be seen in figure 7a.

All the subpolygons defined by the green diagonals have to cross door di-
agonal 6(P) to reach s. All the orange vertices have a parent on their shortest
path towards 6(P) that lies within its own subpolygon and can therefore already
be calculated without any I/Os. All the brown vertices can see some part of
the diagonal (green) that is closest to 6(P). For these vertices an hourglass
H(d;,(P)) is constructed. Hourglasses are first described by Guibas and Her-
shberger [8]. Hourglasses are simply two funnels concatenated together. It can
either be open or closed, if it is open neither funnel has an apex and if it is closed
the funnels have an apex and possibly vertices between both apexes, see figure
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closed

(a) An example of how a polygon can

be split into subpolygons, taken from (b) An open and a closed hourglass,
2] taken from [8]
Figure 7

7b. If the hourglass is closed it is clear that the vertex cannot see §(P) and a
parent is assigned, if the hourglass is open there is a possibility the vertex can
see part of 6(P). The part of delta(P) the vertex can see is restrained by two
vertices, the left and right restrainer. If the vertex cannot see delta(P) a parent
is assigned otherwise a left and right restrainer. Agarwal et al. argue that it
is possible to compute these values with a constant amount of information at
every vertex. The hourglasses necessary for these computations consist of a
left and right chain. This is where the sparse shortest path tree defined above
comes into play. See figure 7a, the blue solid and dashed lines are the left chains
from every d; to 6(P). These blue lines will be part of the sparse shortest path
tree and can be easily retrieved at this point. Right chains can be constructed
in the same manner. In order to write the following concisely lets define some
notations. 9@ denotes a line segment from x to y. L and R are the left and right
chain from a d; to §(P). I and r are the left and right endpoint of 6(P). p; and
p, are the left and right successor of vertex v on L and R. w;(v) and w,(v) are

the left and right restrainer of v to d;. C%(v) is the cone restricted by vw;(v

and vw, (v ) B is the subpolygon in which v lies and A is the other subpolygon.
Now, these rules apply to assign w;(v), w,(v) and p(v) appropriately.

wi(v) = p; and w,.(v) = p, if p; lies left of pr, and p(v) =
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D ifp =p- €A

D if p; lies right of vp,, p € B, and p, € A
D if p; lies right of vp;, pr € B, and p; € A
j2 if p; lies right of vp;., p.p, € A, pr € A(v,pr,7), and p; € C(v

r), )
r), and p; ¢ C4(v)
v,p1,7), and p,. € C4(v)
v,p1,7), and p, ¢ CY(v)

’UJT(U) if b lies I‘lght of m» pL,pr € Aa JUNS A(”?ZJT’

(
(

Pr if p; lies right of Up;, pi.p, € A, pr € A

wy(v)  if p; lies right of vp;, pi.pr € A, pr € A

These rules apply for open hourglasses, closed hourglasses can be seen as open
hourglasses when [ and r are both at the apex of the closed hourglass. These
rules use a constant amount of information to calculate its parent on the short-
est path towards s, this means it is done in O(N) I/Os. Now the full shortest
path tree can be constructed that contains the shortest path from every vertex
in P to s. This is done by locating the triangle that contains s and using the
divide and conquer algorithm as described above starting from every edge of
that triangle. If a vertex v does not have a parent assigned but instead has wj;
and w, then the parent is assigned by checking whether s lies on the left, on
the right or inside the cone constructed by w;, w, and v. Now the length of all
the shortest paths can be computed by using DFS as described in section 3.2
using O(Sort(N)) I/Os. The results are stored with the vertices so they can be
reported in O(1) I/Os. In order to efficiently report the full shortest path from a
vertex to the source the shortest path tree is stored in the efficient node-to-root
path data structure also discussed in section 3.2. In order to support queries
that ask the shortest path from s to any point within P the shortest path tree
is converted to a shortest path map M. All the chains stored in the shortest
path tree are extended until they hit the boundary of P dividing P into smaller
triangles, for all the points in such a triangle their parent on the shortest path
towards s is known. Now M can be stored in an I/O-efficient point location
data structure. One such point location data structure that allows querying a
triangle in Ology N 1/Os is presented by Arge et al [16]. This triangle has a
reference to its parents vertex, the length of the path can be reported in O(1)
I/Os and the full path in an additional O(Scan(k)) I/Os using the node-to-root
data structure.

5 Implementation

In the previous sections we have discussed the shortest path algorithms that
will be tested in the experiment. However, not everything will be implemented
and some parts of the algorithms might be implemented slightly different than
originally proposed. In this section we will discuss what is implemented and
all the changes made to the algorithms while implementing them. For the I/O-
efficient shortest path algorithm we had to skip a lot of features due to very
high implementation complexity and the amount of steps and other algorithms
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it depends upon. We have decided to focus on the key concept of the algorithm,
the sparse shortest path tree. This means that the divide and conquer part
of the polygon is not implemented, neither are the I/O-efficient point location
algorithm and the I/O-efficient tree traversals.

5.1 Internal funnel

For the internal algorithm the entire triangulation of the simple polygon is read
from file at the start of execution. Then the triangulation is scanned to find the
triangle containing the target point. The root of the triangulation is the source
triangle. The path through the triangulation can easily be computed by starting
at the target triangle and visiting the parent, do this recursively until the root
is found. The funnel starts at the source so the calculated path is reversed. The
funnel is implemented exactly as described in section 2 with a stack, a deque
and an apex. Every time a diagonal is added one of the vertices of the diagonal
is already a vertex at the end of either the left or right chain of the funnel. The
other vertex of the diagonal should be added to the opposite side of the funnel.
Lets say a new vertex v is added at the left side of the funnel, it is symmetrical
for the other case. Now we need to calculate the point of tangency of v with
the funnel. This is done by checking whether v and the two last vertices of the
left chain make a left or right turn. In this case the point of tangency is found
if a left turn is found. If this is not the case the last vertex of the left chain is
removed and the process is repeated. As soon as we pass the apex the check
needs to be inverted. A point of tangency is found when a right turn is found.
When the apex has been passed and vertices are removed from the funnel they
are saved onto the stack representing the shortest path found so far.

5.2 1I/O-efficient funnel

There are only two differences between the I/O-efficient funnel and the internal
funnel. The stack and deque data structures are replaced by their I/O-efficient
variants and the process of finding the shortest path within the triangulation
is different. Instead of loading the entire triangulation it is only scanned one
block at a time to find the triangle containing the target. Then the path is
constructed in the same manner by recursively visiting the parent until the root
is found. In order to do this I/O-efficiently the triangulation 7" has to be saved
in post order. The rest of the process is exactly identical.

5.3 Internal shortest path tree

As mentioned before, for the internal memory variant of creating a shortest
path tree we have implemented the algorithm proposed by Hershberger and
Snoeyink [1]. This choice has been made because the algorithm has competitive
algorithmic complexity with other state of the art algorithms, a lower imple-
mentation complexity and the capabilities of the algorithm are similar to that
of the I/O-efficient variant. Furthermore Hershberger and Snoeyink provide a
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detailed description of how to implement their algorithm with small pieces of
pseudo code shown in figure 5. The pseudo code really shows the core of how
the algorithm works and we have used this code in our implementation with
one exception. Their code for splitting a funnel when a vertex is added to the
front of the deque seems to be mirrored for our implementation. To keep ev-
erything consistent throughout our implementation we have used their pseudo
code for splitting the front of a funnel for splitting the back of a funnel. The
same change has been made for undoing a split. The rest of the algorithm has
been implemented exactly as described by Hershberger and Snoeyink.

5.4 Sparse shortest path tree

The sparse shortest path tree has not been described in great detail by Agarwal
et al [2]. In order to implement it a lot of details still had to be figured out.
The final implementation is described below and is a slightly improved version
of what is described by Agarwal et al. As mentioned before we have improved
the amount of target points the sparse shortest path tree can contain from

k= 0(,/4) to O().

Given, are a binary tree T representing the triangulation of the polygon P
with IV vertices in post order where the root contains the source point s and
a set of target points ¢ that are inside P or a vertex of P. The first step is to
extract the smallest subtree of T that contains all the points of ¢ and source
point s. Source point s is located at the root and all the points in ¢ are found
by scanning through 7. If a target point is a vertex of P it can be part of
multiple triangles, to ensure the one closest to s is found T is scanned from
front to back. Given the fact that T is in post order this ensures the triangle
containing a target point that is closest to s is visited last and will overwrite any
previously found triangles. The triangles containing target points are kept in
memory, again using the fact that 7" is in post order we can scan through 7" from
front to back and visit every triangle in the correct order from bottom to top
to create paths from the targets to s. At some triangles two paths merge, these
are called degree-3 triangles. These are kept in memory and the split vertex
is defined, the vertex where an incoming funnel will be split. These degree-3
triangles form a binary tree, so it is known at each split which degree-3 triangles
are down the left and right path.

In order to trace the funnel through the polygon two data structures are
used. The funnel data structure that is represented by k + 1 deques, where k is
the amount of degree-3 triangles, at worst, equal to the amount of targets. The
parent of a split vertex P(v) is placed between each deque, initially these are
empty. A P(v) is a vertex that is part of the funnel that is point of tangency
of the split vertex and the funnel. Figure 8 illustrates an example funnel on
the left and the described data structure on the right, where dots are the P(v)
and the lines are deques, both with assigned vertices. In practice the funnel
is represented by two arrays, one of all the deques and the other with all the
P(v). The second data structure is a binary tree of degree-3 triangles with a
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constant amount of extra data in each node to help tracking which deques and
parents of split vertices are part of the current funnel. When a degree-3 triangle
is encountered the funnel will be split into a left and right funnel. Both these
funnels will only operate on a subset of the deques and parents of split vertices.
This subset will always be consecutive entries in the two arrays of the funnel
data structure and can thus be represented as a min and max index value in
the binary tree. The binary tree is pre-processed so every time a split is made
it is known on which deques and P(v) to operate. It is a matter of assigning
which P(v) belongs to a degree-3 triangle and the left and right most deque
it is allowed to use, all of these values are indices in the arrays of the funnel
data structure. See figure 8c to see what this binary tree looks like. Using the
example illustrated in figure 8, the first degree-3 triangle encountered will be
sv(1) and using the min and max deque saved in the binary tree the funnel will
use all of the deques and parents of split vertices. After the first split the next
degree-3 triangle in the left funnel will be sv(0), using the binary tree the funnel
will only operate on the deques in the array indices 0 and 1 containing v(0) and
v(2) and on the P(v) containing v(1). Note that there is always one less parent
of a split vertex in a funnel than there are deques, this discrepancy can easily
be handled which will be shown in a code example later. After the first split the
P(v) containing v(3) is not part of either of the funnels, but v(3) should be part
of both outgoing left and right funnels, thus it is added to both funnels on the
appropriate side. Splitting a funnel represented this way costs two deque adds
and the funnel uses O(k * B) memory, where B is the size of a disk block. This
is an improvement on the reported O((k * B)?) by Agarwal et al [2]. When a
degree-3 triangle is reached that is a leaf in the binary tree the split is done as
before except that there is no new node in the binary tree to retrieve information
from on which deques to operate. After this split no more degree-3 triangles
will be encountered which means the funnel can be represented with a single
deque. Therefore the left funnel at such a split can operate on the minDeque
of the previous degree-3 triangle and the right funnel on the maxDeque, these
values are consecutive.

Extending a funnel represented by this data structure is fairly easy. Normally
a funnel is represented by a single deque. Since ours is represented by multiple
deques and k parents of split vertices the peek, pop and push operations to
the front and back should be modified to reflect these changes. See Algorithm
1 for an example of how a front pop on this funnel would work. min and
max deque values are taken from the binary tree data structure for the current
degree-3 triangle we are traversing towards. Deques and splitVertex are the
arrays mentioned in the funnel data structure. The rest of the operations can
be modified in similar ways.

The sparse shortest path tree is created I/O-efficiently by tracing the above
described funnel through the subset of T' that contains all the targets. This
can be done in Scan(N) I/Os by starting at the back of the file and scanning
towards the front since the it is stored in post order. This means the funnel
starts at the source vertex s and extends towards the targets, every split the
right path is visited first according to the post-order layout of T. When a leaf in
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Figure 8: Example funnel and internal representation of funnel

T has been reached it is trivial to return to the last split and continue extending
the left outgoing funnel. All that has to be done is set the correct min and max
deque that represent that funnel.

6 Experiment

The experiment is split into two parts. The first part is comparing how fast both
algorithms can compute a single shortest path given a triangulated polygon in
post order without any further pre-processing. In the second part we compare
the pre-processing steps of the algorithms. For the internal algorithm of Her-
shberger and Snoeyink [1] we compute a complete shortest path tree. For the
I/O-efficient algorithm we only compute the sparse shortest path tree, a shortest
path tree that contains only paths to a predefined set of targets, this is due to
time constraints and very high implementation complexity of the algorithm. A
consequence of this choice is that the comparison between the algorithms in the
second part is not totally fair. It will however still give us answers to at least re-
search questions one and two, whether the theoretical algorithmic complexities
of the algorithms hold up in practice when applied to large polygons.

The experiment described above has two requirements. One, it requires
a limitation on the size of the main memory, this is necessary to reduce the
total time it takes to perform the experiment. Generating polygons of sizes
greater than 16gb would take days. Two, it requires very large polygons such
that they do not fit in limited main memory. The first requirement is met by
using the cgroups (control groups) [17] feature of linux. It limits the resource
usage of CPU, memory, disk I/O, etc for processes. Using this feature main
memory is limited to 128mb and swap memory (on disk) is limited to 10gb,
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for i < minDeque to maxDeque do
if deques[i] has elements then
| return deques|i].pop()
end
// Skip the last P(v), necessary because there is always
one more deque than P(v) in the funnel.
if ¢ not is maxDeque then
if splitVertex[i] is not empty then
| return splitVertex|i]
end

end
end
Algorithm 1: Deque pop front

which is practically unlimited for the polygons used. Since writing data to disk
is such an expensive operation it would be a very stalling operation to do this
when main memory is full. Note that most operating systems including linux
have something called a swappiness constant. Therefore when the swappiness
constant is reached (linux default is 60%) it starts writing data from main
memory to swap memory on disk. For this experiment the swappiness constant
is left at the default 60%.

For the second requirement, the large polygons, a framework called CGAL
(Computational Geometry Algorithms Library) is used [18]. It has a function-
ality to generate simple polygons within a unit square with a variable amount of
vertices. However the algorithmic complexity for generating a simple polygon
with CGAL is O(N*logy(N)) where N is the amount of vertices, this is not
suitable for generating large polygons. In order to speed up this process to an
O(N) time algorithm a large grid where each cell contains a small polygon of
200 vertices is generated. Generating many small polygons is much faster than
generating one very large polygon. All the cells are connected to each other
using infinitely small corridors creating one large simple polygon P, see fig 9,
this is done in one scan of the entire polygon. Then CGAL is used to create
a triangulation of the final polygon in post order which is used as input for all
the shortest path algorithms. The size of the generated polygons is easily ad-
justed by increasing the size of the grid and thus the amount of small polygons
generated.

Finally, the experiment has been executed on a system with the following
specs:

e CPU, Intel(R) Core(TM) i5-4590 CPU @ 3.30GHz (4CPUs)
e Motherboard, G1.Sniper B5

e RAM, 16384MB

e OS, Windows 10 Home 64-bit
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Figure 9: An example of a simple polygon generated using a 3x3 grid where
each cell contains a 20 vertices polygon

On this windows 10 PC Ubuntu-18.04 is ran on a virtual machine using
Oracle VM VirtualBox with the following settings:

e CPUs, 4
e CPU execution cap, 100%
e RAM, 8192MB

7 Results

In this section we present the results obtained from running the experiment de-
scribed in the previous section. Remember that for all the experiments the main
memory is limited to 128 mb using cgroups. Our hypothesis is that the algo-
rithms designed without I/O-efficiency in mind will be faster on small polygons
but fall off as soon as too much main memory is consumed.

7.1 Single shortest path experiment

The first part of the experiment is finding single shortest paths through simple
polygons without any pre-processing. The input is a triangulation of the simple
polygon in post order, a source point and a target point. The output is a list of
vertices denoting the full path from source to target. The targets are uniformly
randomly selected vertices of the polygon. In a single run on one polygon a
total of 10 shortest paths will be computed. In order to prevent outliers where,
by chance, the shortest path to the randomly selected targets is very short a
total of 10 runs will be executed per polygon size. This means that a total of
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100 shortest paths are computed for every polygon size. The plotted results are
the average time in seconds it takes for a single shortest path to be computed.
The results for this part of the experiment are split into four graphs in order
to clearly show the relevant results to answer the research questions, see figure
10. In figure 10a all the data is shown. The I/O-efficient funnel results are hard
to read, figure 10b zooms in on the results of the I/O-efficient funnel. Then
figure 10c shows a subset of the results where the polygon sizes are relatively
small and the performance of the I/O-efficient funnel and the internal funnel are
comparable. Figure 10d displays the average amount of vertices in a shortest
path for all the polygon sizes. This has been done to check whether our approach
of using randomly selected vertices of the polygon is suitable.

I/0-efficient and internal funnel I/0-efficient funnel
== |/Q-efiicient == Internal 0.04
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E £
=
100
Polygon size (mb) Polygon size (mb)
(a) (b)
|/0-efficient and Internal funnel Average amount of vertices in a shortest path
== |/O-efficient == Internal 1500
0125
0.100
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Polygon size (mb) Polygon size (mb)
(c) (d)

Figure 10: Results of single shortest paths through simple polygons

7.2 (Sparse) shortest path tree experiment

The second part of the experiment uses the same polygons, but instead of com-
puting single shortest paths we now focus on pre-processing the polygons to
allow efficient shortest path querying. The I/O-efficient algorithm creates a
sparse shortest path tree containing the shortest paths to k targets, where k has
been chosen to be 10, similar to the amount of paths calculated in the previous
experiment. The internal memory algorithm calculates the full shortest path
tree containing the paths to all N vertices of P. Note that this is a significant
difference in the amount of work each algorithm has to perform and the results
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should not be compared in absolute values. We can however report the results
to get a general idea how the algorithms behave. Again the experiment is ran
multiple times to eliminate potential outliers caused by the randomly selected
targets. This should only affect the I/O-efficient algorithm since the internal
algorithm calculates a full shortest path tree it does not need random targets.
The reported result is the average value for a single run with a total of 10 runs
performed. The results are split into three graphs where figure 11a shows all the
data, figure 11b zooms in on the I/O-efficient algorithm and 11c only shows the
part where the performance is relatively close together for the smaller polygons.

I/0-efficient and Internal shortest path tree 1/0-¢efficient sparse shortest path tree

= |/Q-gfficient = Intema

Time (s)
Time (s)

Polygon size (mb) Polygon size (mb)

(a) (b)
1/0-efficient and Internal shortest path tree

— lfo-eficient = Intema
04

Time (s)

Polygon size (mb)

(c)
Figure 11: Results of creating (sparse) shortest path trees

Then finally something that caught our attention during implementation.
The size of the funnel remains very small throughout all the experiments. To
be able to discuss about this topic we have measured the absolute maximum
size of the funnels, so the maximum amount of vertices ever present in a funnel,
for every size of polygon. This can be seen in figure 12.
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Figure 12

8 Discussion

In this section we will first discuss two important points that limit how our
results can be interpreted. Then we will interpret our results and attempt to
answer our research questions.

8.1 Limitations

Firstly, as mentioned in the implementation section, the final I/O-efficient short-
est path tree has not been fully implemented. Only the core principle, the sparse
shortest path tree, has been implemented. This step in the algorithm has an
algorithmic complexity of O(Scan(N)) I/Os. The full implementation would
have an algorithmic complexity of O(Sort(N)) I/Os. Therefore it will not be
possible to give a conclusive answer on research question three, whether the
I/O-efficient algorithm performs better than the internal memory algorithm.
However it is still possible to give a conclusive answer on the first two research
questions and give our hypothesis for research question three.

The second point is about the final note in the results section. Conceptu-
ally, in the worse case scenario, a funnel can grow to contain every vertex of a
polygon. Since the internal memory algorithms assume memory is not an issue
they allocate enough memory for the worse case, so at least N vertices fit into
the funnel. Since a funnel is represented by a deque that starts in the middle
of the allocated memory and can extend into both directions, but in the worse
case scenario only extends into one direction, the allocated memory should be
extended to 2N. For the I/O-efficient variant of a funnel (deque) this is less of a
problem since it uses four buffers of size B and the size of the underlying file does
not really matter. As mentioned in the results section we noticed during imple-
mentation that the funnels used in our generated polygons never grew beyond
12 vertices. This is due to how the polygons are generated. Two factors play
a role. As mentioned in section 6, generating very large polygons takes much
too long to be feasible, therefore we sped up the process by generating many
small polygons in a grid and concatenating them together with infinitely small
corridors. A side effect of this is that the funnel will always collapse when going
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through such a corridor, resetting it to two vertices before extending through
the next small polygon. The second factor is how CGAL generates its polygons,
we do not know the full implementation but the resulting polygons have very
sharp corners which also causes the funnel to collapse frequently within a small
polygon. We are unsure what the effect of this observation is on the overall
performance of the implemented algorithms. The internal memory algorithms
are allocating a lot of unused memory and the I/O-efficient algorithms are never
actually filling their buffers so no I/O operations are performed for the funnel
itself. As mentioned, the effect of this on the performance is unclear. It also
hard to say whether this also happens in polygons that are used for practical
applications. These can take all forms and shapes, so some of them will have
similar size funnels and others might have very large funnels. It would be very
interesting to set up a separate experiment to test how the shape of the polygon
(determines the size of the funnel) influences the performance of extending a
funnel through the polygon. An easy to generate worse case example where the
funnel will never collapse is two quarter circles positioned to touch each other
that can be infinitely densely sampled, see figure 13.

source (s)

Figure 13

8.2 Evaluation of research questions

Finally, to answer our research questions:

1: Does the theoretical algorithmic complexity of creating the sparse
shortest path tree of the proposed I/O-efficient algorithm hold up in
practice.

The algorithmic complexity of the implemented I/O-efficient algorithm is
Scan(N) which means there is a linear relation between the polygon size and
time it takes to compute the sparse shortest path tree. Figure 11b clearly shows
this linear relation. Therefore we conclude that the proposed algorithmic com-
plexity of creating the sparse shortest path tree does hold up in practise. As
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mentioned when introducing the research questions we have extended the algo-
rithm to also test the performance of computing single shortest paths without
any pre-processing. These results are shown in figure 10b and also show a clear
linear relation between polygon size and computation time.

2: Does the theoretical algorithmic complexity of creating the shortest
path tree of competing state of the art internal memory algorithms
hold up in practice.

The implemented internal memory algorithm is that of Hershberger and
Snoeyink [1]. They promise a linear relation between polygon size and com-
putation time for both a single shortest path and a shortest path tree. Figure
10 shows the results for a single shortest path. In figure 10c we can see that
for polygon sizes between 10 mb and 60 mb the relation is linear but for larger
polygons the computation time rises very fast. This is clearly the point where
the main memory, limited to 128 mb, becomes too small to contain both the
polygon and the data structures for the funnel. In figure 10a it becomes very
clear that the relation between polygon size and computation time is not linear
for polygon sizes greater than 70 mb. Where computing a shortest path in a 50
mb polygon takes 0.01 seconds, computing one in a 200 mb polygon takes 20
seconds. The exact same thing can be seen in the results of the shortest path
experiment, see figure 11a and 1lc. For polygons of sizes between 10 mb and
60 mb the relation is linear and for bigger polygons the computation time rises
very fast. Therefore we conclude that the proposed algorithmic complexity of
creating a shortest path tree with an internal memory algorithm does not hold
up in practice for larger polygons.

3: Does the I/O-efficient algorithm become faster than the internal
memory algorithms for larger problems.

As already mentioned multiple times, this research question can not be an-
swered conclusively but it is possible to speculate. There is a difference between
the I/O-efficient algorithm for computing a single shortest path and computing
the sparse shortest path tree. The algorithm for computing a single short-
est path has been fully implemented and has an algorithmic complexity of
O(Scan(N)) which is equal to that of its internal memory competitor. The
algorithm for computing the sparse shortest path tree has an algorithmic com-
plexity of O(Scan(N)) but in order to extend it to a shortest path tree it would
become O(Sort(N)) which is a factor O(log(IN)) worse than its internal memory
competitor. For a single shortest path the results are comparable and figure 10c
shows that they are very close together for small polygons smaller than 60 mb.
However figure 10a shows that for polygons greater than 70 mb the I/O-efficient
single shortest path algorithm is significantly faster. For the (sparse) shortest
path tree experiment the results are similar, for small polygons between 10 mb
and 60 mb the performance is very close together but for the larger polygons
the I/O-efficient approach is significantly faster. It is hard to predict what the
exact results of a fully implemented I/O-efficient shortest path tree would be
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but the reported results of the internal memory competitor seem to be worse
than a factor O(log(N)).

9 Conclusion

The goal of this thesis is to determine whether the proposed I/O-efficient short-
est path algorithm of Agarwal et al. [2] has practical applicability. In order
to determine this an experiment has been performed that compares the perfor-
mance of the proposed algorithm with that of a state of the art internal memory
shortest path algorithm proposed by Hershberger and Snoeyink [1]. Two com-
ponents have been compared, computing a single shortest path and computing
a (sparse) shortest path tree. The first component, computing a single shortest
path, has a conclusive answer. For larger polygons where the main memory can-
not contain both the polygon and the data structures necessary for the algorithm
the I/O-efficient approach of Agarwal et al. [2] becomes significantly faster and
thus has practical application. For the second component, the (sparse) short-
est path tree, it is more complicated. Due to the complex implementation and
many supporting algorithms that are necessary we were unable to fully imple-
ment the algorithm. Instead we have chosen to test the key concept used by the
algorithm, the sparse shortest path tree which contains k£ shortest paths, 10 in
this experiment, where the internal memory algorithm computes shortest paths
to all N vertices of P. Due to this difference in what is computed we cannot
give a conclusive answer which algorithm performed better. However as we have
discussed in section 8 it seems like the impact of I/O operations on the inter-
nal memory algorithm for large polygons is greater than the expected increase
in computation time for fully implementing the I/O-efficient approach. This
makes it likely the I/O-efficient approach will outperform the internal memory
algorithm in practice for large polygons and thus give it practical applicability.
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