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Abstract

In Haskell, both thunks and values are generally represented as a heap-allocated closure [18].
This introduces overhead, as the heap generally is much slower than the stack. To combat this
inefficiency, programmers can use unboxed types [19]. These types are represented directly on
the stack, and therefore do not carry such overhead.

So far, only data values such as Int and Char can be unboxed. In this thesis we explore the
possibility of extending this notion, allowing for function values to be unboxed as well.

As functions can close over variables, they must be represented as a closure. Therefore, unboxing
function values requires representing closures on the stack. This introduces a significant challenge,
as variations in the set of closed over variables now affect the stack representation.

We propose an extension to function types, where the types of the closed over variables are
annotated on the function arrow. These annotations make it possible to reason about the exact
runtime representation of a closure at compile time. We do so by presenting two languages,
L and M, and a compilation function L → M. Furthermore, we identify the key correctness
criteria of L →M, and proof that they hold.
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Chapter 1

Introduction

Parametric polymorphism is a powerful tool that allows for the declaration of generic functions
and data types that abstract over concrete types. To illustrate this notion, consider the following
functions appInt and appFloat:

appInt :: (Int → Bool) → Int → Bool

appInt f x = f x

appFloat :: (Float → Char) → Float → Char

appFloat f x = f x

While the concrete types for each function are different, a clear pattern exists. Both take a
function of some type (Int or Float) to another (Bool or Char), and an argument of the first
type. Both functions consist of applying the passed function to the passed argument, resulting
in a return type equal to that of the passed function.

With parametric polymorphism, we can define a single function that generalizes both above
definitions by abstracting over the concrete types through the usage of type variables, as shown
below. We can reconstruct our original appInt function by instantiating a to Int, and b to Bool.
We can recover appFloat in a similar fashion.

app :: ∀ a b. (a → b) → a → b

app f x = f x

By defining functions in this manner, we change our demands from the compiler. Instead of
outputting code that can handle arguments of specific types, we now require this code to be
able to handle any (valid) instantiation of its type variables. This is a significant change, as the
concrete types offer crucial information about how to compile a function, which we do not have
access to in the polymorphic case.

Consider the behaviour of functions appInt and appFloat in the situation where they are each
passed their argument x via a register. As the registers for integers and floats are often split,
the code for appFloat should fetch its argument from a floating-point register. In the case of
appInt, x will be stored in a non-floating-point register, which means the code should fetch x

elsewhere. Therefore, the type of an argument can change the interaction with that argument:
the type of an argument influences its calling convention.
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This discrepancy becomes an issue when both behaviours must to be captured by the same
generic function, which is the case for app. On top of this, bit patterns may be represented on
the stack, or even may not directly represent a value, as they could also encode a pointer to a
heap-allocated object instead. Clearly, some kind of structure needs to be in place that deals
with this issue.

One might wonder why a compiler does not simply expand polymorphic functions such as app

into multiple versions, each instantiated to the needed concrete type. This process is called
monomorphization, and is used in some form in several languages. However, this is not a solution
for every language, including Haskell [6]. In such cases, a common solution for these problems
is to implement a system where the calling convention is the same for all types. Such systems
represent all types uniformly as a pointer to a heap-allocated object. While this solves the
problem, it has drawbacks such as a significant speed penalty, as discussed in section 2.3.1.

To combat this speed penalty, some languages add the notion of unboxed types, which includes
Haskell [19]. Unboxed types reintroduce the representation of variables as literal bit patterns on
the stack and registers. At first glance, uniform representation and unboxed types seem mutually
exclusive notions. However, given some constraints, the two can coexist in the same language,
as discussed in section 2.3.3.

Currently there is a limitation on what kind of types can be unboxed. For example, Haskell
allows for the unboxing of primitives such as integers and floats, but not of functions. Would
it be possible to lift this restriction, allowing for function values to be unboxed? This thesis
addresses this very issue.

Specifically, this thesis attempts to answer the question ”Can we add unboxed function closures to
Haskell?”. Following the aforementioned preliminaries, we will make the following contributions:

� We elaborate further on what unboxed function closures are, what their intended behaviour
is, and how they can be more efficient than boxed function closures. Furthermore, we
discuss how unboxed function closures necessitate a change to conventional function types,
and describe our approach for solving this issue (chapter 3).

� We present two languages, L (chapter 4) and M (chapter 5), each implementing unboxed
function closures. As L is based on System F [9, 21, 22], it illustrates how unboxed
function closures can be added to System F. Furthermore, as M is sufficiently close to a
real machine, it illustrates the changes needed in the lower levels of Haskell’s compilation
stack, particularly cmm1.

� We will present a compilation function L →M (chapter 6), and prove it correct (chapter 7).

1Cmm [24] is a language closely related to C-- [20].
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Chapter 2

Background

2.1 Strictness

A language’s evaluation strategy refers to the way a language evaluates expressions that are
bound to variables, either as an explicit binding or when passed as a function argument. Lan-
guages with a strict evaluation strategy evaluate expressions as soon as they are bound. This
means that further usages of the variable can work with the already-evaluated result of the ex-
pression. Languages with a non-strict evaluation strategy defer this evaluation: expressions are
not evaluated as soon as they are bound to variables, but only upon the usage of that variable.
Haskell implements the latter. More specifically, its evaluation strategy is lazy, which means it
implements non-strict evaluation combined with sharing.

While discussing all ramifications of such semantics is out of scope for this thesis, we would like to
examine what the effects of implementing non-strict semantics have in context of non-termination
and the number of members of a type.

A problem arises when the expression being bound does not terminate. If we bind such a value,
Haskell will happily bind the expression to the variable and continue on, given that it is well-
typed. Only when the evaluation is forced upon usage, non-termination occurs.

To account for this, we must include a bottom⊥ in each type that represents this non-termination,
which in Haskell is denoted as undefined. The levity of a type indicates the presence of a bot-
tom: if it is lifted, it is lazy and its type contains ⊥, if it is unlifted, it is strict, and its type does
not contain ⊥. We further discuss levity in section 2.4.

2.2 Closures

The term closure can be used to refer to various concepts, depending on the context. In this
section, we define what we consider to be a closure.

In section 2.1 we described that, as Haskell is a language with a non-strict (lazy) evaluation
strategy, expressions are not evaluated until the variable they bind to is used. This construct
requires an additional way of storing variables: not only do we need to store values, but we also
need to store suspensions, or thunks.

3



An important factor for storing closures is that the deferred expression can close over variables.
That is, an expression can refer to variables it does not declare itself, but are in scope at the
declaration of the expression. These closed over variables must be in scope when the expression is
eventually evaluated. Therefore, we must store - along with the code representing the expression
- an environment that stores these variables.

Consider const’ below. It returns a (function) closure that mentions x, which is brought into
scope by its surrounding function. As f does not declare x itself, it must be brought back into
scope once f is eventually applied an argument.

const’ :: a → (b → a)

const’ x =
let f = λy → x

in f

2.2.1 Values as closures

The above description motivates the need for closures in the case of as-yet unevaluated thunks.
In Haskell, values are closures1 as well. To understand this, we first observe that there are two
kinds of values: data values and function values. Data values represent an atomic element of
data (such as integers or booleans), whereas function values represent functions.

For data values, consider what happens when a thunk evaluates into a value. As Haskell is a
lazy language, we need to share the result so that subsequent usages of this variable do not
re-evaluate the thunk, but can reuse the previously found value.

Keeping track of which variable has already been evaluated gets complex quick, especially when
considering parallelism. Therefore, Haskell implements a self-updating model [31].

In such a model, whenever a variable is encountered, it is always forced, regardless of its evaluation
status. That is, evaluation is always switched to the variable, even if it already is a value. For
thunks this works as expected, as the thunk is evaluated and the result is returned. For values a
different approach must be taken. Instead of storing the raw value, a ‘box’ is stored, which is a
function that upon evaluation simply returns the previously found value. This box is a closure
that closes over a single variable: the value that the box stores.

In addition to the rules above, for functional values, an additional reason for representing it as a
closure applies, as the contents of a function can close over. This means that functions that have
been evaluated to a value (but not yet applied an argument) potentially have to store additional
bindings, as otherwise these will be out of scope when the function body is evaluated.

2.2.2 Closure definition

We can now define a closure, which we consider to be a combination of the following two things:

� A pointer to the (static) closure code, representing the expression. This code may contain
free variables. That is, in addition to variables bound locally trough function arguments
or let-bindings, it can also refer to variables it does not define itself.

� An environment storing the bindings of exactly the free variables of the stored expression.

Note that while the closure code may contain free variables, the closure itself may not. That is,
the closure code may be open, closures must be closed.

1Except for unlifted types, which we cover in section section 2.4.
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2.2.3 Uniform representation

In the introduction, we described uniform representation as the notion where all types are rep-
resented uniformly as a pointer to a ‘heap-allocated object’. Now that we have defined closures
and have shown that any type can be a closure, we can refine this heap-allocated object to be a
heap-allocated closure instead.

2.3 Uniform representation & unboxed types

In this section we will show the implementation concerns regarding uniform representation.
Specifically, we will first show how, in a naive implementation, performance can be severely
affected. We then present unboxed types and show how they can be used to remedy this situation,
with examples based on the tutorial by Peyton Jones and Launchbury [19]. Finally, we show
how the two systems - that at first glance seem mutually exclusive - can coexist in the same
language.

2.3.1 Naive uniform representation

Consider the function add3 below:

add3 :: Int → Int → Int → Int

add3 x y z = x + (y + z)

When evaluating add3, a naive compiler for Haskell might output code performing the following
steps:

1. First, the inner expression (y + z) needs to be evaluated. For this, the bit patterns of y

and z are needed. These patterns are obtained by forcing y and z.

2. Now that the bit patterns for y and z are fetched, the inner addition can be performed.
As all values are represented uniformly, a box must be allocated on the heap, which stores
the resulting bit pattern of the addition.

3. Now the outer expression can be evaluated. In a similar fashion to the inner expression,
the bit patterns of the arguments - x and the result of the inner expression (y + z) - are
fetched by forcing their corresponding closures. Note that for the inner expression, the
closure that is forced is the box that was just created.

4. Now that the bit patterns for both sides of the outer addition are fetched, the addition can
be performed. As we implement sharing, the resulting bit pattern must be stored. Just
like the result of the intermediate addition, a new closure (of the box form) is allocated,
which stores the result.

5. The result is returned.

As is evident from the above description, adding three integers this way is quite involved, and
requires many operations involving the heap. Fetching our simple, integer arguments requires
heap access. Even worse, the intermediate result is stored on the heap, only to be retrieved in
the very next step! This is horribly inefficient, especially when comparing to a language like C,
which needs just a handful of instructions2 to perform the additions, and does not access the
heap once.

2Code included in appendix D.1.

5



2.3.2 Unboxed types

In the previous section, we have shown how a naive implementation of uniform representation
can result in rather inefficient code. The reason that languages like C can implement add3 much
more efficiently is that they can work with literal bit patterns. The arguments for x, y, and z

are not pointers to heap-allocated closures, but rather directly encode values, as does the return
value. The only operations needed are the ones dealing with fetching the bit patterns, calculating
the result, and returning the resulting pattern.

In this section, we show how unboxed types expose enough information such that the creation
and subsequent forcing of the box for the intermediate result can be removed by correctness-
preserving transformations. While we will not end up at code as efficient as languages like C
will produce, we do show how, with further optimizations, further steps towards such an efficient
solution can be taken.

Int and Int#

Unboxed types reintroduce the notion of literal bit patterns. Consider the following definition
for Int.

data Int = Int Int#

As shown, Haskell’s data types that would initially seem primitive are actually plain ADTs that
wrap around their corresponding unboxed primitive. Int is just a normal ADT, that conforms
with uniform representation. That is, it is always represented as a pointer to a heap-allocated
closure that stores its contents, in this case Int#.

Here the identifier Int# represents the literal bit pattern for integers. We call these types
unboxed. By convention, unboxed types are suffixed with #. Effectively, the constructor Int is
one that promotes the unboxed type Int# to a type in uniform representation, which means we
can pass to functions that expect variables to all be in this representation.

If we now rewrite the add3 example from earlier to use this definition, and unfold the + operators,
we get the following:

add3 :: Int → Int → Int → Int

add3 x y z = case x of

Int x# → case ( case y of

Int y# → case z of

Int z# → case (y# +# z#) of

t1# → Int t1#

) of

Int yz# → case (x# +# yz#) of

t2# → Int t2#

Case-of-case transformation

In the above example, case expressions are used to express the evaluation and unpacking of
variables. Observe that we have a case statement that examines another case statement. That
is, it has another case statement as scrutinee. Wherever such case-of-case expressions occur, we
can apply the aptly named case-of-case transformation [19]. Applying this transformation moves
the outer case expression into each of the alternatives of the inner statement. While this can
cause duplication if the inner case expression has multiple alternatives, in the case of add3, it
nicely merges into the following:

6



case x of

Int x# → case y of

Int y# → case z of

Int z# → case (y# +# z#) of

yz1# → case (Int yz1#) of

Int yz2# → case (x# +# yz2#) of

xyz# → Int xyz#

Factoring out the intermediate closure

Now that the case statements have been merged, we can clearly see the boxing and subsequent
unboxing of the intermediate result. The result of y# +# z# is boxed inside an Int, only to be
unboxed on the very next line! It is valid to remove this part, giving us a version that skips the
(un)boxing of the intermediate result y + z.

case x of

Int x# → case y of

Int y# → case z of

Int z# → case (y# +# z#) of

yz# → case (x# +# yz#) of

xyz# → Int xyz#

Further optimizations

While we have gotten rid of the intermediate closure, we have not yet gotten the same efficient
set of instructions that languages like C would emit. The reason for being able to remove the
intermediate closure is that we are aware of its entire context: we know where it is created, and
where it is used. If we want to further optimize add3, we thus need to know where it is called.
In such case, we can inline the definition of add3 (similar to how we have inlined the definition
for +) and apply a similar set of transformations.

2.3.3 Combining the systems

In the introduction we presented the app function, which we rename app1 and repeat below:

app1 :: ∀ a b. (a → b) → a → b

app1 f x = f x

Furthermore, in the introduction, we described a problem with compiling such a function. As
this definition has to be able to handle any data type, it somehow has to be able to handle
many representations (and thus many calling conventions) at the same time, which it cannot.
We solved this problem by introducing uniform representation, where every type is represented
uniformly as a pointer to a heap-allocated closure. But directly after this, we reintroduced
alternative representations in the form of unboxed types. Would this addition not reintroduce
the problem?

No, it does not. The problem arises from the assumption that app1 is polymorphic over all
types, which is not exactly true. Recall that the reason why uniform representation worked is
that we always know the representation, even if we do not know the exact type. We achieved
this by eliminating all other representations. We can get back the same guarantees in a system
with multiple representations by restricting polymorphic functions to range over all types, given

7



a representation. If unspecified, this representation defaults to boxed types. Therefore, app1 as
specified ranges over all boxed types.

To specify representations other than boxed types, we need a notion of representation in the
source language. For this, in Haskell, kinds are used, which classify types. For example, all
monotypes (that is, nullary type constructors, or types that do not take any further type argu-
ments) have the kind TYPE r, for some r :: Rep [6]. The data type Rep is an ordinary ADT
(lifted to a kind [31]) which contains a constructor for every representation.

Int :: TYPE LiftedRep
Float :: TYPE LiftedRep
Int# :: TYPE IntRep
Float# :: TYPE FloatRep

...

Note that the representation for boxed closures is LiftedRep instead of something like BoxedRep.
We further discuss levity in section 2.4. For now, it suffices to know that a type being lifted
implies that it is boxed as well, which is why it is named as such.

If we want an alternative app2 that ranges over types with a representation other than boxed
closures, we can use the Rep type to restrict the kind of accepted types by including a kind
constraint. For example, we can imagine a function app2 that takes any type with an unboxed
integer representation, and a function that turns this argument into some type with an unboxed
floating-point representation. We can define it as follows:

app2 :: ∀ (a :: TYPE IntRep) (b :: TYPE FloatRep). (a → b) → a → b

Note that app1 and app2 are both passed two bit patterns that encode their arguments. They
differ exactly in how they interpret these patterns.

Now, given that Haskell has kind polymorphism [30, 31], one might expect to be able to formulate
an alternative app3 that is polymorphic in its representation. Such definitions are called levity
polymorphic3, and can be defined as follows:

app3 :: ∀ (r :: Rep) (p :: Rep) (a :: TYPE r) (b :: TYPE p).

a → (a → b) → b

While the specification for app3 correctly describes a levity-polymorphic function, it should be
rejected, as it cannot be compiled4. If we do not know what the representation of a will be, we
have no way of outputting the correct machine code. Therefore, there is the following principle
concerning levity polymorphism: Never move or store a levity-polymorphic value. [6]. Based on
this principle we can reject app3.

3Something like representation polymorphic would be a more fitting description, as it is polymorphic in the
representation of a type. However, for reasons similar to why the representation of boxed closures is called
LiftedRep instead of BoxedRep, it is called levity polymorphism instead. See section 2.4.

4Note that there are levity polymorphic functions that can be compiled. Consider ($), which has type
∀ r a (b :: TYPE r). (a -> b) -> a -> b. Eisenberg and Peyton Jones [6] refine the levity polymorphic
principle, discussing what can be compiled, and what cannot.
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2.4 Boxity & Levity

In section 2.3.2 we introduced the notion of boxity and described how types can be either boxed
or unboxed. Then, in section 2.3.3, we mentioned the term levity, and how it implies boxity.
This section explores these two definitions and describes how they relate.

Levity and boxity are different, but related terms that describe the representation of a type.
Table 2.1 shows the four categories that arise.

Boxed Unboxed
Lifted Int, Bool
Unlifted ByteArray# Int#, Char#

Table 2.1: Boxity& Levity

The levity of a type refers to the strictness of the type. A lifted type is evaluated non-strictly.
This means ⊥ is an element of the type, and the type must be represented as closures to support
thunks. Lifted types - at least for now - are always boxed, because closures cannot be represented
on the stack, and therefore always are represented on the heap. Regular ADTs such as Int and
Bool are examples of this category.

Unlifted types are evaluated strictly. This means that non-terminating terms are no longer a
part of the type. As such non-terminating expressions will be evaluated eagerly, they will never
evaluate into a value that can be bound. This means that unlifted types do not have to be
represented as thunks. As unlifted types can be represented both on the stack on the heap, both
categories have occupants.

The previously encountered unboxed types Int# and Char# are evaluated eagerly, and thus
occupants of the unboxed, unlifted category. As of yet, we have not encountered the third
category, which is boxed, unlifted types. One example of this is the ByteArray# type, which is
a raw array of data values that lives on the heap.

The final category, which is unboxed, lifted types, is uninhabited, partially because of the afore-
mentioned technical limitation (no support for closures on the stack). However, as established
in section 2.2.1, unboxed closures will have to be represented as closures, which means that if
we want to introduce unboxed closures, we have to introduce the ability to represent closures on
the stack, removing the technical limitation.

Therefore, we ask the question: should unboxed closures be lifted, or unlifted?

9



Chapter 3

Problem statement

With the background covered, we can now formulate the problem we aim to solve.

3.1 Unboxing closures

Our main objective is to present a system that implements unboxed function closures. That is,
we present a system that can represent function closures (as defined in section 2.2) on the stack.

In this section, we quantify what we mean with representing function closures on the stack, and
discuss the biggest challenge of such functionality, which follows from the following observation:

Observation 3.1. With conventional function types, two unboxed closures with a different
runtime representation can share the same type.

We focus on the biggest problem arising from this observation, which is that a closure’s type
does not indicate its runtime size. That is, closures of different runtime length can share the
same type.

This can be a problem, as the stack - in contrast to the heap - is ill-equipped to deal with entities
of unknown size. To understand this, consider the following examples. First, app4 is a version
of the previously encountered app function, simplified to only range over Int#s. The examples
appID and appPlus each apply app4 to a closure and the argument 1#.

app4 :: (Int# → Int#) → Int# → Int#

app4 f x = f x

appID :: Int#

appID =
let g y = y

in app4 g 1#

appPlus :: Int#

appPlus =
let one = 1#

h z = z +# one

in app4 h 1#

In the case of appID, the passed closure is the identity function, here named g. It does not
close over any variables, so it can be represented as a pointer to g’s logic, in combination with
an empty environment. In the case of appPlus however, the closure h closes over one variable,
namely one. Therefore, along with a pointer to h’s logic, a binding for one needs to be stored as
well. Note that closures store a pointer to their logic instead of the logic itself because it allows
for the sharing of the static expression code across all dynamic instances of that closure [18].
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f : p1

x : 1

0

1

stack

closure logic
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λy.yfp1
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(a) Layout stack and heap for boxed appID.

f : p1

x : 1

0

1

stack

closure logic
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heap
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λz.z + onefp1

one : 1p1 + 2

static heap

(b) Layout stack and heap for boxed appPlus.

f : fp1

x : 1

0

1

stack heap

λy.yfp1

static heap

(c) Layout stack and heap for unboxed appID.

f : fp1

one : 1

0

1

stack heap

λz.z + onefp1

static heap

x : 12

(d) Layout stack and heap for unboxed appPlus.

Figure 3.1: Memory layouts of appID and appPlus, in boxed and unboxed case.

Along fig. 3.1 we will now examine the memory layout for the two applications to app4 in both
the boxed and unboxed case.

3.1.1 The boxed case

Figures 3.1a and 3.1b display the memory layout once app4 has been applied to its arguments,
in the case of the boxed alternatives of appID and appPlus respectively. On the left, we can see
the stack, which in both cases stores a pointer to the closure at position 0, and the value for x

(its second argument) on position 1.

On the right, we can see a representation of the heap. It is here where the two examples differ.
As discussed, the heap representation in the case of appID consists of just some closure logic and
the pointer fp1. However, in the case of appPlus, a binding for one is stored as well.

Now we will examine what the logic for app4 must be, such that it can complete its operations
in both cases. It is here where the functionality of the heap shines. The logic for app4 does not
need to know the exact contents of the heap. It can simply force the pointer to the closure logic
f with argument x. The closure logic takes care of calling the function logic by dereferencing
fp1, providing the bindings (if any) in the stored environment, and passing on the argument.

Note that here the distinction between functions and function closures becomes clear. While both
are represented on the heap (in the boxed case), closures wrap function pointers, not function
logic. It is the construct starting at p1 that we want to unbox.

3.1.2 Unboxed case

In the unboxed case, one layer of indirection is removed. The pointer p1 has been replaced by
what in the boxed case was stored on the heap, with exception of the closure logic. We can see
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the effects of this in figs. 3.1c and 3.1d.

From these figures we can observe the following two issues:

1. The total length for the closure created by appID is 1, consisting of just the pointer to
the expression logic fp1. However, in the case of appPlus, the total length is 2, as it is
increased by 1 due to the binding for one.

2. The logic stored in the heap-allocated closure - responsible for dereferencing fp1 and passing
any closed over variables and the argument - has disappeared from the closure representa-
tion.

Clearly, in the unboxed case, we must be able to differentiate between appID and appPlus. In
section 4.2 we present our solution, which is an extension to the conventional types for functions
such that function closures of varying representation have a varying type.

3.2 Motivation

This section discusses the motivation behind exploring the possibility of adding unboxed closures
to Haskell.

3.2.1 Benefits

The motivation behind unboxed closures is twofold: they seem like a natural extension to the
current system of unboxed types, and unboxed closures offer a speed benefit in certain situations.

Haskell is a language where functions (and therefore closures) are first-class citizens. However,
the current unboxed types conflict with this idea, only allowing data values to be unboxed.

Furthermore, as the main bottleneck for most programs nowadays is memory access [5], the more
efficient memory behaviour of unboxed closures (when compared to their boxed counterparts)
can yield a performance gain. Consider again the examples in fig. 3.1.

In the unboxed case, the code for app4 is more efficient, because it can skip a dereference. This
saves instructions, and perhaps more importantly, reduces the interaction with the heap, which
generally is much slower than the stack.

3.2.2 Drawbacks

Unfortunately, the solution we propose is not a free lunch. Firstly, in our solution, situations
exist where unboxed closures require not only more stack space, but more memory in general.
This is because of the way stacks operate when compared to heaps: stacks copy their values.

When allocating a new stack frame, all needed variables are copied into the new frame. This
means that, if we pass a closure from frame to frame, each stack frame contains a copy of the stack
representation of the closure. While this problem also exists in the boxed case, it is exacerbated
in the unboxed case. In the boxed case, the copies are mere pointers. The actual closure lives
on the heap, where there is only one copy. In the unboxed case, the entire closure is stored on
the stack, which means that several copies of the entire closure can exist.

Furthermore, in some situations, we need some runtime metadata describing the contents of an
unboxed closure, which carries a cost both in memory and instructions. We further describe this
in section 8.1.
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3.2.3 Trade-off

To conclude the motivation, we observe that in the solution we propose, unboxed closures -
while worthwhile in some situations - are not strictly better than their boxed counterparts.
Deciding in what situations unboxed closures are worthwhile depends on multiple factors, such
as a willingness to sacrifice memory usage for a performance gain. That begin said, discovering
where exactly this threshold lies is out of scope for this thesis and considered future work. We
revisit the issue in section 9.3.

3.3 Approach

As described in the introduction, this thesis tries to answer the question “Can we add unboxed
closures to Haskell”. However, presenting this functionality as a direct extension to the Haskell
source language is infeasible. Therefore, following convention, we explore unboxed closures in a
simpler lambda calculus.

A widely used approach is to use the reduced language that the full Haskell source is compiled1

to: System F [9, 21, 22]. When presenting new language functionality, it is common to present
this as a direct extension to (some variant of) System F [6, 26, 29, 30, 31], where later extensions
often are based on previous extensions.

However, our situation differs from the above examples. Our main contribution is not the addition
of unboxed closures to some high-level language, but rather a compilation stack below it that
handle unboxed closures. Therefore, our high-level language can be fairly simple.

We follow the approach taken by Eisenberg and Peyton Jones [6], where we present two languages:
L and M.

L is a high-level language that contains the notion of unboxed closures. It is a mix between
System F [26] and the STG machine [18]. The core of L is based on typed lambda calculus of
System F. This alternative version of System F has been extended with some elements from the
STG machine. Specifically, it adopts the STG representation of lambdas, where all lambdas are
annotated with the set of closed over variables. L - just like System F - is typed, so the borrowed,
untyped elements from the STG machine have been extended to their typed counterparts.

M is our lower-level language. The main goal of M is to show that our proposed system is
implementable in a realistic compiler, by making it sufficiently close to a real machine. To do
so we must be careful with the level of abstraction in M. Setting the level of abstraction too
low can be problematic, as this generally introduces noise in its presentation. However, if M is
too high-level, it is no longer sufficiently close to a real machine, rendering our argument that
unboxed closures as presented are implementable invalid.

Along with these languages, we present a compilation function L →M, and prove it correct. By
doing so we show that unboxed closures as presented in L can be expressed in terms of M.

Scaling our solution to a realistic compiler like GHC2 is beyond the scope of this thesis. However,
as both L andM are approximations of existing components in the Haskell compilation process,
an implementation strategy is implied.

1Or, more accurately, which Haskell is desugared in to.
2Glasgow Haskell Compiler [10].
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Chapter 4

L

As introduced in section 3.3, L is our higher-level language. It is a relatively simple lambda
calculus, based on System F, that has been extended to include unboxed function closures. In
this section we present L, by describing its grammar, typing rules, and operational semantics.
We close with a section describing the type safety proof.

4.1 Grammar and typing

Figures 4.1 and 4.2 display the grammar and typing rules for L.

γ Variables α Type variables n Integer literals

ν ::= P A | U A Concrete reps.
κ, ι ::= TYPE ν Kinds
A ::= Γ | ? Annotations
B ::= Int Base types

τ, σ ::= B | τ1
A→ τ2 | τ1

A
 τ2 Types

| α | ∀α:κ. τ
e ::= γ | e γ | e τ | λγ:τ.e Expressions
| λ#γ:τ.e | n | Λα:κ.e
| let γ = e1 in e2

| let# γ = e1 in e2

v ::= λγ:τ.e | Λα:κ.v | n Values
Γ ::= ∅ | Γ • γ:τ | Γ • α:κ Contexts

Figure 4.1: L grammar

As stated, L is based on System F, the introduction of which we leave to existing literature [9,
21]. Instead, we focus on the particular language features added to support unboxed function
closures.
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Γ ` e : τ Term validity

E Var
γ:τ ∈ Γ

Γ ` γ : τ
E IntLit

Γ ` n : Int

E App
Γ ` e : τ1

A→ τ2 Γ ` γ : τ1

Γ ` e γ : τ2
E App#

Γ ` e : τ1
A
 τ2 Γ ` γ : τ1

Γ ` e γ : τ2

E Lam
Γ • γ:τ1 ` e : τ2

Γ ` λγ:τ1.e : τ1
Γ→ τ2

E Lam#

Γ • γ:τ1 ` e : τ2

Γ ` λ#γ:τ1.e : τ1
Γ
 τ2

E Forget
Γ ` γ : τ1

A→ τ2

Γ ` γ : τ1
?→ τ2

E Forget#

Γ ` γ : τ1
A
 τ2

Γ ` γ : τ1
?
 τ2

E TLam
Γ • α:κ ` e : τ Γ `κ κ kind

Γ ` Λα:κ.e : ∀α:κ. τ
E TApp

Γ ` e : ∀α:κ. τ1 Γ ` τ2 : κ

Γ ` e τ2 : τ1[τ2/α]

E Let

Γ ` e1 : τ1

Γ ` τ1 : TYPE P A

Γ • γ:τ1 ` e2 : τ2

Γ ` let γ = e1 in e2 : τ2
E Let#

Γ ` e1 : τ1

Γ ` τ1 : TYPE U A

Γ • γ:τ1 ` e2 : τ2

Γ ` let# γ = e1 in e2 : τ2

Γ ` τ : κ Type validity

T Int
Γ ` Int : TYPE P ∅

T Var
α:κ ∈ Γ

Γ ` α : κ

T Arr

Γ ` τ1 : κ1

Γ ` τ2 : κ2

Γ ` τ1
A→ τ2 : TYPE U A

T Arr#

Γ ` τ1 : κ1

Γ ` τ2 : κ2

Γ ` τ1
A
 τ2 : TYPE U A

T Allty
Γ • α:κ1 ` τ : κ2 Γ `κ κ1 kind

Γ ` ∀α:κ1. τ : κ2

Γ `κ κ kind Kind validity

K Boxed
Γ `κ TYPE P A kind

K Unboxed
Γ `κ TYPE U A kind

Γ ` E Environment validity

EV Empty
∅ ` E

EV Type
Γ ` E

Γ • α:κ ` E
EV Term

Γ ` E
Γ ` e : τ

Γ • γ:τ ` E, γ 7→ e

Figure 4.2: L typing
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4.1.1 A-normal form

A language is in A-normal form (ANF) if all arguments to a function are trivial [7]. That is,
intermediate results must be bound to a name before they can be used in any other context
[1]. For L this means that arguments to functions are always variables γ instead of arbitrary
expressions e.

The main reason L is in ANF is to match M, which is in ANF because it allows for simpler
evaluation. Because of this, we postpone discussing the motivation and consequences of ANF
until section 5.2.6. Instead, here we only highlight the changes in the grammar of L that are
necessitated by only allowing trivial function arguments.

We observe the restriction imposed by ANF in the grammar for expressions, listed in fig. 4.1.
Here, application is of pattern e γ instead of the more conventional pattern e1 e2.

Setting just this restriction is not enough however, as it leaves us with a situation in which we
can no longer bind expressions to variables. In a conventional lambda calculus, the only method
of introducing such bindings is by applying functions to expressions, which is exactly what ANF
prohibits. Therefore, L contains let expressions. As can be seen in fig. 4.1, we have two variants,
namely let and let#. This duplication is a consequence of the addition of unboxed closures,
which is discussed next.

4.1.2 Unboxed function closures

To add support for unboxed closures, we have added the unboxed alternatives for function
expressions, denoted by λ#, function types, denoted by , and let expressions, denoted by let#.

As described in section 3.1, our main challenge for implementing unboxed closures is that, with
conventional function types, two closures with different runtime representation can have an equal
type. Our solution to this problem is the annotation A on function arrows. We first discuss
the grammar and typing, after which we discuss how this annotation allows us to statically
differentiate between unboxed closures of varying representation.

As can be seen in fig. 4.1, both the boxed function arrow → and the unboxed function arrow  
feature an annotation A. Generally, this annotation is occupied by a typing environment Γ. As
can be seen in rules E Lam and E Lam# of fig. 4.2, this annotation is set during the typing of
lambda expressions, and set to the Γ they are typed under. This annotation is then carried from
the type level to the kind level, as shown by rules T Arr and T Arr#.

A consequence of annotating function arrows in such fashion is that functions have become
less general. In conventional systems, a function with a closure as argument can accept any
closure, as long as the argument and return type match. In our system, it requires that the
closure’s annotation matches the expected annotation. Therefore, all closures with a mismatched
annotation are rejected.

To remedy this, annotations do not always have to be specified. Instead, they can be forgotten1

to the annotation ‘?’, as shown by rules E Forget and E Forget# of fig. 4.2. The exact
ramifications of this are discussed in section 8.1.3.

1Note that while we call this forgetting, no information is actually discarded, as the original type annotation
is still part of the typing derivation.
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4.2 Annotating arrows

The problem described in section section 3.1 is similar to the problem that adding existing
unboxed types introduced: without further information, the same piece of logic is responsible for
handling data of which the representation is not constant.

For the existing unboxed types (such as Int# and Char#), this problem is solved by restricting
how functions can be polymorphic trough a kind constraint, as described in section 2.3. For
unboxed closures, we propose a similar solution. However, as discussed, this solution cannot be
applied to conventional function types, because closures of varying environments can have an
equal type, and therefore equal kind. If we therefore want to encode representation information
in the kind, we need to extend function types so that two closures with varying sets of closed
over variable have different types. This then allows for setting kind constraints.

An important factor in this design is the granularity of the classification. While the conventional
kind of function types is too coarse, we must be careful not to make the classification to fine. If
we distinguish two closures of equal runtime representation we output the same code twice, thus
causing unnecessary code duplication.

The principles we aim to satisfy are as follows:

1. Two items with varying representation must have a varying kind.

2. Two items with equal representation must have an equal kind.

It is clear that the current implementation of unboxed types adheres to these principles. Int#

and Char# potentially2 have a different representation. While both are represented as a non-
floating-point word, Int# is signed, whereas Char# is unsigned, which means they are an instance
of principle one. Correspondingly, they have a varying kind: Int# has kind TYPE IntRep,
whereas Char# has kind TYPE WordRep3.

For an example of principle two, consider Word#. While its type varies from Char#, its represen-
tation does not, as both are represented as an unsigned word-sized value. Correspondingly, the
types share the same kind TYPE WordRep.

By annotating the set of closed over variables on the function type, we get a granularity that
conforms with the two specified principles. To explain this, we imagine a version of L that has
been extended with the (unboxed) base types Int#, Word#, and Char#.

For principle one, consider again the unboxed types Int# and Char#, but now occurring as the
single closed over variable of two unboxed closures of unannotated type τ1  τ2. Annotating

the type of the closed over variable yields τ1
Int#
 τ2 and τ1

Char#
 τ2. The kinds corresponding to

each type are TYPE U IntRep and TYPE U WordRep. These varying kinds allow us to correctly
distinguish the two cases.

For principle two, consider an alternative to the above example with two closures where Char#

and Word# occur as the single closed over variable instead. While their types will differ, their
kinds will not, allowing us to catch both situations in the same constraint.

2Here we make no assumptions about a specific architecture. However, many architectures do not make this
distinction. See section 8.1.

3IntRep and WordRep are constructors of RuntimeRep, see section 2.3.3.
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4.2.1 Implementation in L
One might observe that the solution as presented in this section does not fully match what is
implemented in L. This is true, as we have taken some following two liberties to simplify the
design of L.

Type list vs. Γ

As can be seen in fig. 4.1, types are not annotated with a list of types, but rather a full typing
environment Γ. We have taken these liberties to simplify the compilation of L. Therefore, we
motivate this decision in section 6.3.

Closed over variables vs. entire Γ

Closures only need to store the variables closed over by the closure expression. Storing additional,
unused bindings is inefficient, as they will never be used. Therefore, we can optimize for size,
and include only the closed over variables in both the runtime closure and the annotation.

For L, we make no such optimization, as our goal is to present the possibility of adding unboxed
function closures, instead of an efficient implementation of them. Instead, as can be seen in rules
E Lam and E Lam#, the entire Γ is annotated.

4.3 Operational semantics

The operational semantics of L are displayed in fig. 4.3. The major differentiating factor between
the semantics presented here and those of (variations of) System F is the way L deals with
the binding and retrieving of variables. Whereas those languages usually implement a high-
level approach for variable bindings (such as substitution semantics), L maintains an explicit
environment E.

Such high-level approaches can work in systems where the semantics involving bindings are
not the main subject of analysis. As substitution can be incredibly inefficient, any realistic
implementation will opt to implement different semantics. This introduces a mismatch between
the high-level language and the layers below, which may lead to problems. In our case, choosing
substitution semantics for L means making mean some assumptions about the correctness of
compilation. As these problems have already been studied in detail [4, 15, 23], systems that do
not alter these semantics in any significant way can take this liberty, to simplify their design.

As we are introducing significant changes to the semantics resolving bindings, the last argument
in our case does not apply. Therefore, we must be more explicit about the semantics involving
bindings, even at our high-level language L. Specifically, we maintain a set of bindings E that
maps variables to expressions. Let bindings and applications introduce variables to this E, as
shown in rules S Let, S Let#b, S Lam, and S Lam#. As we are not substituting away our
variables, we need a rule that deals with them, as shown by rule S Var. Variables are looked
up in the environment E, such that the corresponding expression can be evaluated further.

We do maintain substitution semantics for typing abstractions, as shown by rule S TBeta. As
these abstractions are implemented as they are in conventional systems4, we can abstract over
their specifics following the same argument motivated above. Furthermore, as L → M is a
type-erasing [21] compilation, typing abstractions and applications do not affect the operational
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S Var
γ 7→ e ∈ E

〈Γ, E, γ〉 −→ 〈Γ, E, e〉
S App

〈Γ, E, e1〉 −→ 〈Γ′, E′, e′1〉
〈Γ, E, e1 γ〉 −→ 〈Γ′, E′, e′1 γ〉

S Lam

γ2 7→ e2 ∈ E
Γ ` e2 : τ

Γ′ = Γ • γ1:τ

E′ = E, γ1 7→ e2

〈Γ, E, (λγ1:τ.e1) γ2〉 −→ 〈Γ′, E′, e1〉
S Lam#

γ2 7→ e2 ∈ E
Γ ` e2 : τ

Γ′ = Γ • γ1:τ

E′ = E, γ1 7→ e2

〈Γ, E, (λ#γ1:τ.e1) γ2〉 −→ 〈Γ′, E′, e1〉

S Let

Γ ` e1 : τ

Γ′ = Γ • γ:τ

E′ = E, γ 7→ e1

〈Γ, E, let γ = e1 in e2〉 −→ 〈Γ′, E′, e2〉
S Let#a

〈Γ, E, e1〉 −→ 〈Γ′, E′, e′1〉
〈Γ, E, let# γ = e1 in e2〉

−→ 〈Γ′, E′, let# γ = e′1 in e2〉

S Let#b

Γ ` v : τ

Γ′ = Γ • γ:τ

E′ = E, γ 7→ v

〈Γ, E, let# γ = v in e2〉 −→ 〈Γ′, E′, e2〉
S TLam

〈Γ, E, e〉 −→ 〈Γ′, E′, e′〉
〈Γ, E,Λα:κ.e〉 −→ 〈Γ′, E′,Λα:κ.e′〉

S Tapp
〈Γ, E, e〉 −→ 〈Γ′, E′, e′〉

〈Γ, E, e τ〉 −→ 〈Γ′, E′, e′ τ〉
S TBeta

Γ1 = Γ • α:κ • Γ′

Γ2 = Γ • Γ′

〈Γ1, E, (Λα:κ.v) τ〉
−→ 〈Γ2[τ/α], E[τ/α], v[τ/α]〉

Figure 4.3: L operational semantics

semantics of M, which means no assumptions of the correctness have to be made.

4.3.1 Let binding evaluation strategy

As we will further motivate in section 8.2, we have chosen to evaluate unboxed closures eagerly. As
boxed closures remain lifted and therefore are evaluated non-strictly, L contains two alternatives
for processing let bindings. Rule S Let handles boxed closures, and stores the potentially non-
value term e1 in E, bound to γ. L allows for the unboxed let binding of arbitrary terms.
Therefore, as can be seen in rules S Let#a and S Let#b, non-value terms are stepped in-place.
Only once a value has been found the let binding is fully processed.

4.4 Safety

We proof type safety by a combination of the following two properties, taken from Pierce and
Benjamin [21]:

� Progress: A well-typed term is not stuck (either it is a value or it can take a step according
to the evaluation rules).

4One could argue for the omission of typing abstractions from L, as they do not influence unboxed function
closures. However, they have been included to keep the presentation as close as possible to other works such as
Eisenberg and Peyton Jones’s presentation of levity polymorphism [6].
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� Preservation: If a well-typed term takes a step of evaluation, then the resulting term is also
well-typed.

These properties are defined on well-typed terms. For L, this condition is not strong enough,
as the environment E influences how a term can step. For example, imagine trying to step a
well-typed variable under an empty environment E. Such a state will fail, as S Var relies on
the binding being present in E. We therefore extend our type safety theorems to hold on states
〈Γ; E; e〉 where Γ ` e : τ and Γ ` E. This way we eliminate the cases where E is malformed.

Theorem 4.1 (Progress). For any 〈Γ; E; e〉, if Γ ` e : τ and Γ ` E, then either e is a value,
or there exists an 〈Γ′; E′; e′〉 such that 〈Γ; E; e〉 −→ 〈Γ; E′; e′〉.

Theorem 4.2 (Preservation). If 〈Γ; E; e〉 −→ 〈Γ′; E′; e′〉, Γ ` e : τ , and Γ ` E, then
Γ′ ` e′ : τ , and Γ′ ` E′.

The proof for these theorems can be found in appendix A.
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Chapter 5

M

As described in section 3.3, M is our lower-level language. The main goal of M is to show that
our proposed system for unboxed closures is implementable in a realistic compiler, by making it
sufficiently close to a real machine.

5.1 Grammar

Figure 5.1 displays the grammar for M. For variables, y represents terms of boxed represen-
tation, and z represents terms of unboxed representation. Furthermore, x ranges over both
representations.

For the most part, the expressions t of M correspond to the expressions e of L, with two
exceptions. First, as M is untyped, the L terms involving types do not have a counterpart in
M (type abstractions Λα:κ.e and type application e τ), or have their type annotation removed
(term abstractions λx.t).

Second, where L makes a distinction between boxed term abstraction λγ:τ.e and unboxed term
abstraction λ#γ:τ.e, M does not. Instead, it contains a singular grammatical construct for all

x Variables y Pointer variables z Unboxed variables

b ::= p | (w,∆) Bit patterns
x ::= y | z Variables
t ::= x | t x | λx.t | n Expressions
| let y = t1 in t2 | let# z = t1 in t2

w ::= λx.t | n Values
S ::= ∅ | App(b) • S | Let(z, t,∆) • S Continuation Stack
∆ ::= ∅ | y 7→ p •∆ | z 7→ (t,∆) •∆ Environment
H ::= ∅ | p 7→ (t,∆) •H Heap
i ::= t | b Work items
µ ::= 〈i; ∆; S; H〉 Machine states

Figure 5.1: M grammar
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abstractions, λx.t, and instead represents them either as boxed or unboxed closures depending
on what let binding has been used to introduce the closure: let introduces boxed closures, and
let# introduces unboxed closures.

It is at the point of binding storage where L and M differ significantly. Whereas L maintains a
single environment E (containing bindings of patterns γ 7→ e), M contains a split design. Here,
the environment ∆ maps variables to bit patterns, and the heap H maps pointers (which are bit
patterns) to closures.

A key detail in this is that bit patterns b are not exclusively pointers, but instead can also
represent closures directly. Therefore, if we want to extend some environment ∆ and heap H
with a binding of some variable x to some closure (t,∆′), we can proceed in two ways, depending
on the boxity of the variable. In the boxed case, x = y, and we create a new pointer p, map y
to p on the environment ∆, and map p to the closure on the heap H, which yields y 7→ p • ∆
and p 7→ (t,∆′) •H). In the unboxed case, x = z, and we map z directly to the closure on the
environment ∆, which yields y 7→ (t,∆′) •∆ and H.

Finally, we have our machine states µ, which is a quad consisting of a work item i (which is
either a term t or a bit pattern b), an environment ∆, a (continuation) stack S, and a heap H.

5.2 Operational semantics

For the operational semantics, displayed in fig. 5.2, we first observe that where L exclusively
deals with terms, M mostly deals with closures. In fact, the only times where a term occurs
outside of a closure is when it is currently under evaluation, such that it can be converted1 into
a closure. We first examine the rule that does this conversion: rule LIFT.

5.2.1 Lifting values to closures

Whenever our current work item has been evaluated to a value w under environment ∆1, LIFT
converts the work item to a closure (w,∆2) such that ∆2 contains the closed over variables of
w. This rule makes two assumptions. First, it assumes knowledge of the closed over variables of
w. Furthermore, we assume that all closed over variables of w are present in ∆1, i.e. ∆2 ⊆ ∆1.

These assumptions do not hold for all valid M programs. However, as we are using M as a
compilation target, we only need to consider the subset of programs that can be the output of
compilation. In other words, we only need to consider the image of the compilation function
presented in chapter 6.

The static knowledge of the closed over variables of w follows from the fact that in L, its set
of closed over variables is annotated. The subset constraint is proven to hold in the correctness
proof of the compilation function, which is discussed in chapter 7.

Note that even though this set is labelled as ‘free variables’, the type annotations in L feature the
entire environment at the time of encountering a lambda, as discussed in section 4.2.1. Therefore,
this set may contain bindings not used by the closure.

1Note that while we use the term ‘converted’, we do not apply closure conversion [13]. That is, we assume
a binding to exist in our current environment upon encountering a variable, instead of being passed an explicit
environment (as does L).
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〈 (w,∆1); ∆2; ∅; H〉 −→ return w RET
〈 (w,∆1); ∆2; Let(z, t,∆3) • S; H〉 −→ 〈t; z 7→ (w,∆1) •∆3; S; H〉 POP-L
〈(λy.t,∆1); ∆2; App(p) • S; H〉 −→ 〈t; y 7→ p •∆1; S; H〉 POP-A
〈(λz.t,∆1); ∆2; App(t,∆3) • S; H〉 −→ 〈t; z 7→ (t,∆3) •∆1; S; H〉 POP-A#

〈t x; ∆[x] = b; S; H〉 −→ 〈t; ∆; App(b) • S; H〉 APP

〈w; ∆1; S; H〉 −→ 〈(w,∆2); ∆; S; H〉 LIFT
where ∆2 = fv(w), ∆2 ⊆ ∆1

〈let y = t1 in t2; ∆; S; H〉 −→ 〈t2; y 7→ p •∆;
S; p 7→ (t1,∆) •H〉 LET

〈let# z = t1 in t2; ∆; S; H〉 −→ 〈t1; ∆; Let(z, t2,∆) • S; H〉 LET#

〈y; ∆1[y] = p ; S; H〉 −→ 〈p; ∆1; S; H〉 VAR-E
〈z; ∆1[z] = (w,∆2); S; H〉 −→ 〈(w,∆2); ∆1; S; H〉 VAR-E#

〈p; ∆1; S; H[p] = (w,∆2)〉 −→ 〈(w,∆2); ∆1; S; H〉 VAR-Hv
〈p; ∆1; S; H[p] = (t,∆2)〉 −→ 〈t; ∆2; S; H〉 VAR-Ht

Figure 5.2: M operational semantics

5.2.2 Variable lookup

For lookup, the goal is to find the closure the variable is mapped to, and evaluate its inner term
to a value - if it is not already. The sequence of steps to achieve this differ on the representation
of the closure the variable represents. If that closure is in boxed representation, x = y, and when
looked up in the environment, a pointer p is found, as shown by rule VAR-E. This pointer is
made the work item, after which it can be looked up on the heap, as shown by rules VAR-Hv
and VAR-Ht. Here, the steps once again differ on whether the term stored by the closure is
a value or not. If it is a value w, the entire closure is set as work item. If it is a non-value t,
the stored term t is made the work item, and the environment stored in the closure is made the
working environment. Evaluation of t can now proceed under its stored environment. After the
term has been evaluated to a value, it is lifted back to a closure.

In the unboxed case, x = z. As unboxed closures are evaluated eagerly, the closure found in ∆
is always already a value. Therefore, we proceed like the value case of boxed closures, by setting
the entire closure as work item, as shown by rule VAR-E#.

Note that this is one of the places the efficiency of unboxed closures is visible. In the boxed case,
we must first find a pointer p, and then resolve it to a closure. In the unboxed case we can skip
this step, and find the closure on the stack immediately.

5.2.3 Introducing bindings

As described in section 5.1, M does not differentiate between boxed and unboxed term abstrac-
tions via the term itself: both are denoted as λx.t. Instead, M represents term abstractions
differently depending on what let construct is used: let and let# denote bindings to be stored in
boxed and unboxed representation respectively. Rules LET and LET# process these expressions.

Rule LET processes boxed bindings. As boxed closures are not strictly evaluated, the bound
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term t1 is combined with the working environment ∆, and stored on the environment and heap
via the pointer p. As unboxed closures are evaluated strictly, the bound term t1 is made the
work item, such that it is evaluated into a closure.

As the operational semantics of L (fig. 4.3) uses inference rules, we can state that if 〈Γ; E; e1〉 −→
〈Γ′; E′; e′1〉, then 〈Γ; E; let# γ = e1 in e2〉 −→ 〈Γ′; E′; let# γ = e′1 in e2〉. In M, we do
not have this option: we can only modify the machine state, and do not have an assumption or
conclusion by which we can “remember” that we are evaluating a subterm of a let expression.
Therefore, M uses a continuation stack for cases where we need to evaluate a subterm while
remembering the bigger context.

For unboxed let bindings the Let continuation is used, as shown by rule LET#. This continu-
ation stores the variable bound to z, the inner term t2, and the environment ∆ at the time of
encountering the let binding. As the let-bound term t1 is made the work item, it will eventually
be evaluated into a closure. By rule POP-L we can process the binding with the contextual
information in the continuation, which involves extending the stored environment with a binding
of the saved variable to the found closure, which is then set as working environment. The saved
inner term t2 can now be set as work item and evaluated under an environment containing the
let bound term.

5.2.4 Processing applications

Rules APP, POP-A, and POP-A# process applications. By the grammar of section 5.1, ap-
plications are always is of pattern t x, where t is a term. Rules POP-A and POP-A# expect a
closure rather than a term. Therefore, upon encountering an application t x, evaluation always
switches to the subterm t, even in the case where it is of form λx.t.

Like with let bindings, the subterm needs to be evaluated while saving the bigger context, which
is done by the App continuation. As only the bit pattern corresponding to the variable applied
to is needed, it is looked up in the environment and stored in the continuation. It would be
possible for APP to skip the lookup and store the variable instead. However, in this case the
environment would have to be stored as well, and rules POP-A and POP-A# would have to
switch to the saved context to fetch the bit pattern, only to immediately switch to the context
stored by the closure. As looking up the bit pattern does not evaluate it in any way, the order
does not matter, which is why we chose the simpler version.

When term t has been evaluated to a closure with an App continuation on the head of the con-
tinuation stack, rules POP-A and POP-A# switch to the function’s inner term, while extending
the closure’s environment with the saved bit pattern to the function’s argument.

5.2.5 Terminal states

States of pattern 〈(w,∆1); ∆2; ∅; H〉 are terminal, which means evaluation stops and the value
w can be returned, as shown by rule RET. This rule could have been omitted, but has been
included to make this process explicit.

5.2.6 A-normal form

Now that we have introduced the operational semantics, we can revisit the motivation for having
M in ANF, as introduced in section 4.1.1. In short, disallowing non-trivial arguments allows
for a simpler design, where let bindings introduce bindings, and applications apply functions to
arguments.
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Because arguments in M are trivial, rule APP can simply look up the bit pattern b on the
environment, and proceed with the application. Allowing non-trivial arguments (that is, appli-
cations of patterns e1 e2) burdens APP with the task of first converting the argument e2 to a
bit pattern b, before proceeding with processing the application.

As is shown by rules LET and LET#, processing the introduction of a new binding is a fairly
complex affair. IfM were to allow for non-trivial applications, it would either have to duplicate
the logic of LET and LET#, or the rules would have to be merged, depending on whether let
bindings are a part of this imaginary version of M.

Furthermore, two let constructs are used, to indicate the intended representation of the bound
term. Allowing non-trivial arguments would therefore necessitate two application operators, as
the pattern e1 e2 does not indicate the intended representation of e2.
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Chapter 6

Compilation

The compilation rules of L toM are displayed in fig. 6.1. Compilation is of pattern JeKΓ, where
e is a L expression, and Γ the environment e is typed under.

6.1 Translating variables based on Γ

A crucial detail of our design is that the subscripted Γ is always representative of the runtime
environment of M. We can see this at work in rule C Var. The typing environment Γ is
converted to a list of kinds κ via the unspecified (but trivial) operation kindsOf .

This list, along with the variable that is being translated (γ), is passed to an abstract operation
called lookup. Because κ is representative of the runtime, the variable x that lookup outputs can
be some static identifier, such as a De Bruijn level1[3] or a stack offset.

We would have liked to express this property of lookup as a theorem, while continuing to ab-
stract over the exact binding resolution strategy. However, we have not been able to find any
literature that establishes these kinds of properties. Furthermore, our efforts to develop our own
methodology for describing these properties have come up short, as any attempt at describing
such theorem required us to assume a specific binding resolution strategy. We revisit this issue
in our discussion of future work, section 9.2.

What we can do is give an overview of the high-level implementation of lookup. Its task is to
output a variable inside the chosen binding resolution strategy based on the L variable γ and
the list of kinds κ. Because this list is representative of the runtime situation, lookup can use
this information while calculating the variable.

For example, if the chosen binding resolution strategy is a stack with stack pointer, and variables
are represented as offsets to this pointer, lookup can determine the length of all variables stored
before the variable in consideration to determine the offset. If γ is represented by a kind at
position n in κ, then lookup can add the length of all kinds in positions 0 to n − 1 to find the
offset γ is stored at.

1Sometimes called reversed De Buijn’s indexing [2], not to be confused with a (regular) De Bruijn index. With
levels, n represents the nth item from the top of the stack, instead of the bottom.
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C Var
κ = kindsOf(Γ) x = lookup(κ, γ)

JγKΓ = x
C IntLit

JnKΓ = n
C App

JeKΓ = t JγKΓ = x

Je γKΓ = t x

C TLam
JeKΓ = t

JΛα:κ.eKΓ = t
C TApp

JeKΓ = t

Je τKΓ = t

C Let

κ = kindsOf(Γ) Je1KΓ = t1
x = fresh(κ) Je2KΓ•γ:τ = t2

Jlet γ = e1 in e2KΓ

= let x = t1 in t2

C Let#

κ = kindsOf(Γ) Je1KΓ = t1
x = fresh(κ) Je2KΓ•γ:τ = t2

Jlet# γ = e1 in e2KΓ

= let# x = t1 in t2

C Lam

κ = kindsOf(Γ2)
Γ1 ` λγ:τ1.e : τ2 x = fresh(κ)
Γ1 ` τ2 : TYPE P Γ2 JeKΓ2•γ:τ = t

Jλγ:τ1.eKΓ1 = λx.t
C Lam#

κ = kindsOf(Γ2)
Γ1 ` λ#γ:τ1.e : τ2 x = fresh(κ)
Γ1 ` τ2 : TYPE U Γ2 JeKΓ2•γ:τ = t

Jλ#γ:τ1.eKΓ1 = λx.t

Figure 6.1: Compilation of L to M

6.2 Maintaining a representative Γ

Rules C IntLit, C App, C TLam, and C TApp do not introduce any new bindings. The
compilation of these rules therefore is relatively straightforward and therefore is not discussed
further. Instead, we only discuss the rules that do deal with a change in environments, which
are the rules for compiling let bindings and lambdas.

6.2.1 Introducing variables

Rules C Let and C Let# compile boxed and unboxed let bindings. They use another abstract
operation, fresh, that examines the list of kinds κ to generate an x representing the new closed
over variable. The operation fresh enjoys the same guarantees about κ as lookup: based on κ,
the runtime situation is known statically, which means x again can be some static identifier.

The let bound expression e1 is compiled under the given Γ. However, expression e2 is com-
piled under just Γ extended with a binding for e1. In the unboxed case this differs with L’s
semantics, as all bindings introduced during the evaluation of e1 are maintained (rule S Let#a)
and not removed once the binding is finally processed (rule S Let#b). In contrast, M saves
the environment upon encountering the binding in a Let continuation (rule LET), and restores
this environment once the continuation is popped (rule POP-L). As the subscripted Γ needs to
represent the runtime environment, we follow this behaviour by compiling e2 under just Γ•γ : τ .

6.2.2 Entering lambdas

Finally, we discuss rules C Lam and C Lam#. The crucial detail of both these rules is that they
compile their body under the environment stored in its type (Γ2) instead of the environment
that is passed (Γ1).

The M operational semantics rules POP-A and POP-A# switch to the environment stored
in the closure. Therefore, compiling the body under Γ1 will not work, as then it no longer
is representative of the runtime. However, the environment annotated on the lambda’s type
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(labelled as Γ2) is representative, as it matches with the closures that M creates. In M, this
happens in rules LIFT and LET.

The closure rule LIFT creates is based on Γ2, as discussed in section 5.2.1. Therefore, the closure
is trivially represented by Γ2.

Second is rule LET, which creates a closure (t,∆). Here, Γ2 and ∆ each consist of the full
environment of the time of encountering the term: rule E Lam annotates the full environment
at the time of encountering, as does LET. Therefore, Γ2 represents ∆.

6.3 Type list vs. Γ

As motivated by section 4.2.1, only a list of types representing the closed over variables is needed
as annotation on the function arrows. Instead, we have annotated an entire typing environment
Γ.

This simplifies the design, as it allows us to retrieve the Γ from the kind of a lambda expression.
If this was just a list of types or kinds, we would have to have additional functionality that relates
lambda expressions to the environment they were defined in.

In the end, this change does not matter. As kindsOf filters out everything except variable
bindings, lookup is passed a list equal to the list it would be passed if we were annotating type
lists instead of typing environments.
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Chapter 7

Semantics preserving compilation

Now that we have presented L,M, and a compilation function L →M, which we will denote as
c, we want to proof the correctness of this function. In this section we discuss our approach to
this proof, and elaborate on why the properties that we prove implies the compilation is correct.

In general, a compiler’s goal is to take a program written in one language and to output a
program in another language that “does the same thing”. While compilers may implement
various optimizations and other transformations, these changes (should) only affect how the
end result is computed, and not the end result itself. Even changes in the computation must
be carefully analysed, as they can influence the end result, particularly when termination is
considered. If the input program does not terminate, then the output program should also not
terminate (and vice versa).

Proving that, for any l ∈ L, l “does the same thing” as its compiled result c(l), will require us
to further define what this relation is. What does it mean for a program in L and a program in
M to do the same thing?

A naive approach could be to require that a program l and its compilation c(l), when evaluated
to completion, should both find values that on a bit level are equal. There is a major problem
with such a definition: it assumes that the same bit patterns encode the same information, which
may not be true. For example, the decimal 1 encoded in binary using little-endian is 00000001.
The same pattern in big-endian represents the decimal 128!

Clearly, we need to include the semantics of both languages into our definition of “doing the same
thing”. In an ideal world, such semantics preservation theorem [14, 17] would look something like
fig. 7.1. Here, e, e′ are terms in the source language, and t, t′ are terms in the target language.
The theorem states that if e steps to e′, the compilation of e (which is t), steps to t′ such that
the decoding of t′ (indicated by c−1) yields e′.

In practice however, such theorem is hard to prove. The rest of this chapter explains why this is
the case, and what alternate theorems we proof to yield a similar property.

7.1 Eventual correctness

As L is type-safe andM is in the image of L, everyM program that is the output of compiling
an L program is expected to evaluate into a value.
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Figure 7.1: Semantics preservation

We can utilize this fact by proving something that we dub eventual correctness. In general, we
want to prove that, for any L program that evaluates to an observable value [9] (which in L
are only integers i), we can compile the program, evaluate it to an observable value in M (also
exclusively integers i), such that the value obtained is observationally equivalent to the value L
finds.

Such theorem can easily be obtained from the semantics preservation theorem, as displayed in
fig. 7.2 below.

e

e′

t

t′

iL iM

1 1

c

c−1

∗ ∗

c

c−1

Figure 7.2: Full evaluation semantics preservation

Note that here
∗−→ is used, which is the reflexive transitive closure on −→. For L and M this

relation has been defined in appendix B.2, definitions B.1 and B.2

7.1.1 Translating states over terms

The description as given ranges over terms e and t. However, as already discussed during the
type safety proofs of L (section 4.4), the semantics of a term is coupled to the environment it is
defined in. Therefore, we need to extend the compilation rules as presented in order to translate
L states to M states, instead of L terms to M terms.

For closed terms this environment is empty. However, proving eventual correctness requires us
to be able to translate open terms as well. Therefore, we formulate two new operations, namely
the translation of environments E, and the compilation of L states 〈Γ; E; e〉.
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Environment translating

The rules for translating environments E are given below. Since E does not store typing deriva-
tions, Γ is passed during translation as well, such that the type of e can be determined.

Tr Empty
J∅KΓ = (∅, ∅)

Tr Boxed

Γ ` e : τ

Γ ` τ : TYPE P A

(∆, H) = JEKΓ

p = fresh(H)

JγKΓ = y

JeKΓ = t

∆′ = y 7→ p •∆

H ′ = p 7→ (t,∆) •H
JE, γ 7→ eKΓ = (∆′, H ′)

Tr Unboxed

Γ ` e : τ

Γ ` τ : TYPE U A

(∆, H) = JEKΓ

JγKΓ = z

JvKΓ = w

∆′ = z 7→ (w,∆) •∆

H ′ = H

JE, γ 7→ vKΓ = (∆′, H ′)

State translating

The translation of states is defined as follows. J〈Γ; E; e〉KS = 〈JeKΓ; ∆; S; H〉 where JEKΓ =
(∆, H). Note that the compilation takes an M stack S, which is needed for translating open
terms.

7.1.2 Decoding value states

Defining a decode operation on arbitrary M terms is non-trivial. However, for eventual cor-
rectness, we are only interested in proving that the fully evaluated M value is observationally
equivalent to the value L finds.

We do not need a full definition of observational equivalence [9] for our proof. Instead, we leave
its definition abstract, and assume the following (in our opinion reasonable) property:

Assumption 7.1 (Compiled integers are observationally equivalent). For any L state 〈Γ; E; iL〉,
if Γ ` v : τ and Γ ` E, then J〈Γ; E; v〉K∅ = 〈iM; ∆; ∅; H〉, and iL ∼= iM.

Note that here the integers i are subscripted with either L orM, to indicate what language they
are in.

7.1.3 Definition

We now have enough information to define our eventual correctness theorem:

Theorem 7.2 (Eventual correctness). If 〈∅; ∅; e〉 ∗−→ 〈Γ; E; iL〉 and J〈∅; ∅; e〉K∅ = 〈t; ∅; ∅; ∅〉,
then there exists a 〈iM; ∆; ∅; H〉 such that 〈t; ∅; ∅; ∅〉 ∗−→ 〈iM; ∆; S; H〉 and iL ∼= iM.

Note that here we see that eventual correctness has been defined for closed terms only: the typing
environment Γ, environment E, and stack S are all empty.
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Here we only discuss the proof on a high level, as the full proof can be found in appendix C.3.
Our proof relies heavily on the simulation theorem, which we discuss next. After this we present
how we use simulation to prove eventual correctness.

7.2 Simulation

Our simulation theorem uses two new notions, which we discuss first, after which the simulation
theorem is introduced.

7.2.1 Extension

First, we introduce the notion of extension, which is defined on states and its components. Its
exact definition can be found in appendix B.2, definitions B.7 to B.9.

Let Q1 = 〈t1; ∆1; S1; H1〉 and Q2 = 〈t2; ∆2; S2; H2〉. On a high level, Q1 is extended by
Q2, written Q1 v Q2, if Q2 contains at least the bindings Q1 does. This can be thought of as a
subset relation, although the specifics are slightly more involved due to the split nature of M’s
binding environment ∆ and heap H.

7.2.2 M well-formedness

We define a well-formedness judgment on M states, written 〈i; ∆; S; H〉 WF, such we can
exclude malformed states. Its exact definition can be found in appendix B.2, definitions B.3
to B.6. On a high level, it can be compared to the L environment judgment Γ ` E, as it makes
sure that a binding exists for every reachable variable in a state.

Its main usage is not for proving simulation, but for proving eventual correctness based on
simulation, which we discuss in section 7.3.

7.2.3 Definition

We are now ready to introduce the simulation theorem, which has been given below.

Theorem 7.3 (Simulation). For all 〈Γ; E; e〉 −→ 〈Γ′; E′; e′〉 and stacks S1 and S′1, let
Q1 = J〈Γ; E; e〉KS1 = 〈t1; ∆1; S1; H1〉 and Q′1 = J〈Γ′; E′; e′〉KS′

1 = 〈t′1; ∆′1; S′1; H ′1〉.

If Γ ` e : τ , Γ ` E, S1 v S′1, H1 ` S1 WF, and H ′1 ` S′1 WF, there exists a Q2 and a Q′2 such

that Q1
∗−→ Q2, Q

′
1
∗−→ Q′2, Q2 v Q′2, Q2 WF, and Q′2 WF.

We dissect the definition along the graphical representation in fig. 7.3.

〈Γ; ∅; e〉

〈Γ′; E; e′〉

Q1

Q′1 Q′2 Q2

1

c

c
∗

∗

w

Figure 7.3: Simulation
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Our simulation theorem takes a derivation for 〈Γ; E; e〉 −→ 〈Γ′; E′; e′〉 along with two stacks
S1 and S′1. We let Q1 be the compilation of the unstepped state with stack S1, and Q′1 the
compilation of the stepped state with stack S′1.

Our precondition combines our well-formed L state condition (as we saw in the type safety proof,
section 4.4) with the requirement that S1 is extended by S′1, and that both stacks are well-formed
w.r.t. their corresponding heaps.

Given these conditions, we claim that there exist two states Q2 and Q′2, such that they are both

well-formed, Q1
∗−→ Q2, and Q′1

∗−→ Q′2.

As the full proof can be found in appendix B.4, we do not discuss it here. In the rest of this
section we describe the approach taken to arrive at our definition, by transforming the correctness
theorem of fig. 7.1 into our definition in fig. 7.3.

Lockstep simulation

The first transformation reverses the bottom arrow, which yields us the situation as displayed in
7.4. Instead of going from the target to the source language trough the decompilation operation
c−1, we move from the source language to the target language by means of the same compilation
operation c.

〈Γ; ∅; e〉

〈Γ′; E; e′〉

Q1

Q2

1 1

c

c

Figure 7.4: Lockstep simulation

Note that this transformation introduces the possibility for the target language (here M) to
be trivial, which is true for the next step (converging evaluation) and our final simulation as
well. Because all of these have become “one-sided” (omitting a decode step), one can imagine a
target language with just unit and a transition rule unit → unit that satisfies these simulation
theorems. However, as simulation is used to proof eventual correctness, which reintroduces the
decode step, this is not a problem.

Converging evaluation

Our second step is adjusting the constraint on the evaluation paths of Q1 and Q2. Instead of
requiring Q1 to directly step to Q2, we instead require that their evaluation paths eventually
converge. We do so by defining some third state Q3 that both Q1 and Q2 step to in zero or more
steps. This yields us the situation as displayed in fig. 7.5.

The benefit of this is that Q2 is still allowed to step. We utilize this in the proof for variable
lookup. As M stores closures, a variable resolves to a closure. In L, variables resolve to terms,
as L stores terms over closures. Compiling this L term yields a M term as work item of Q2.
Because now Q2 is allowed to step, we can promote it to a closure trough rule LIFT to match
the closure representation that Q1 evaluates to.
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Note that lockstep simulation is an instance of converging simulation, where Q1
1−→ Q3, and

Q2 = Q3.

〈Γ; ∅; e〉

〈Γ′; E; e′〉

Q1

Q2 Q3

1

∗

c

c

∗

Figure 7.5: Converging simulation

State extension

Our final adjustment involves the state which Q1 and Q2 converge, labeled Q3 in fig. 7.5. In
our previous version, we required this to be the same state. However, in our final simulation,
we have relaxed this constraint such that the state Q1 steps to does not have to be equal to the
state Q2 steps to, but only has to be extended by it. This yields us our final simulation diagram,
as displayed in fig. 7.3.

This change is necessitated by the discrepancy in how L andM handle their contexts. For L, its
environment E never shrinks. While this is true forM’s heap H as well, it is not for its binding
environment ∆.

Consider the case where an application is being processed. Rule POP-A switches to the closure’s
stored environment, which may contain less bindings than the current environment. This leaves
us with a problem when compiling the processed application. As L does not contain closures, it
does not have a way of retrieving the specific environment in the closure. It only has access to
E, which stores everything.

Our solution to this problem is to include all bindings in E during the compilation of Q2. This
may yield additional, unused bindings. As these bindings can leak into closures trough rules
LET and LET#, the closures that are stored during the evaluation of Q2 may be bigger than
those stored during the evaluation of Q1, which is precisely what our definition of state extension
accounts for.

7.3 Proving eventual correctness

The proof for eventual correctness heavily relies on the simulation theorem. The full proof can
be found in appendix C. Here we describe the approach of the inductive case on a high level,
along the visual representation in fig. 7.6.

The solid lines represent the information we gain by induction. The dotted lines represent
information we gain by applying the simulation theorem. Crucial for the proof are the two bold
lines.

The first line, Q′2
∗−→ Q′i follows from the observation that Q′1 −→ Q′2 and Q′1 −→ Q′i. As Q′i is

a state that does not step and
∗−→ for M is deterministic, it follows that Q′2

∗−→ Q′i.

The second line, Q2
∗−→ Q′′i , is where our well-formedness comes in. A consequence of relaxing

our simulation theorem to converge on extending states instead of equal states is that we lose
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〈Γ; ∅; e〉

〈Γ′; E; e′〉

Q1

Q′1

〈Γ′′; E′; iL〉 Qi

Q′2 Q2

Q′i Q′′i

1 1

c

∗

c

c−1

c

∗

∗

∗

∗ ∗

w

w w

Figure 7.6: Proving eventual correctness

transitivity. That is, the fact that Q′2
∗−→ Q′i does not imply that Q2

∗−→ Q′′i . We can get back
such implication trough the lemma below, which completes our proof.

Lemma 7.4 (Equivalent states step to equivalent states). Let Q1 = 〈t1; ∆1; S1; H1〉, Q′1 =
〈t′1; ∆′1; S′1; H ′1〉, Q2 = 〈t2; ∆2; S2; H2〉, and Q′2 = 〈t′2; ∆′2; S′2; H ′2〉.

If Q1 v Q′1, Q1 WF, Q′1 WF, and Q′1
∗−→ Q′2, then there exists some Q2 such that Q1

∗−→ Q2

and Q2 v Q′2.
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Chapter 8

Unboxed closures & Memory

Now that we have presented our solution, we can elaborate on its design, and justify why we have
made certain choices. Specifically, in this chapter we will motivate the following two aspects:

� The need for the possibility of annotations to be forgotten

� Why we have opted to let unboxed closures be unlifted

Both these discussions require us to discuss the low-level interaction with memory, which is why
this discussion has been postponed until now.

8.1 Generalizing the unboxed function closure type

As described in section 4.1.2, a logical consequence of differentiating unboxed closures by their
representation is that functions accepting closures are now less general. While there are “only”
18 constructors for RuntimeRep1 [28], in theory there can be an infinite number of closed over
variables. Therefore, in theory, an infinite number of alternatives is needed, each set up to handle
a closure with a specific set of closed over variables.

As at most one alternative per call site is needed, the number of alternatives needed in practice
will be far less than infinite. Nevertheless, if we can reduce the number of alternatives needed,
we can avoid unnecessary code duplication.

One solution would be to wrap unboxed closures as boxed closures [11], but that would defeat
the entire purpose of having closures begin unboxed. Instead, we can generalize the unboxed
function closure type in two ways:

1. By classifying types by their concrete representation instead of their abstract representa-
tion.

2. By opting out of passing the set of closed over variables via registers, thus only passing
them over the stack.

All generalizations discussed in this chapter have been displayed in fig. 8.1. The layers ‘Types’
and ‘Kinds’ have been discussed in section 4.2. Layer ‘Registers’ is the subject of optimization
1. Layers ‘Stack known’ and ‘Stack unknown’ are the subject of optimization 2.

1For an introduction to RuntimeRep, see section 2.3.
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Stack known

Registers2

Kinds
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Figure 8.1: Generalizations of closed over variables classification

8.1.1 Classification by concrete representation

So far, we have been using the RuntimeRep data type as classifier. This classification makes no
assumptions about the underlying architecture. This means that if one type potentially could be
represented differently than another, then they must have a varying RuntimeRep constructor.
For example, a distinction between IntRep and WordRep exists because architectures may not
represent them equally.

However, in practice, not all architectures do this for every constructor of RuntimeRep. This
allows for platform-specific optimizations. For example, an architecture may not distinguish
between IntRep, WordRep, and LiftedRep, and instead represent them all as non-floating-point
words. In such case, code set up to handle a closure with a closed over variable description
of TYPE U IntRep can also accept closures that close over a single variable in WordRep or
LiftedRep, and vice versa. Therefore, those specifications could be merged.

8.1.2 Opting out of registers

The second generalization we can apply is opting out of registers. We can do so in two ways: on
a variable-by-variable basis, and by representing all closed over variables as a single block.

Variable-by-variable

The reason that the code set up to accept a closure with a closed over variable in IntRep cannot
accept a closure with its closed over variable in FloatRep is that they may live in a different kind
of register. However, if both are passed via the stack, both are represented equally, namely as a
single word on the stack.3 Figure 8.1 captures this idea by the ‘Stack-1’ construct on the ‘Stack
known’ layer. Similarly, variables of length 2 can be represented by ‘Stack-2’, and variables of
length n by ‘Stack-n’.

Single stack-allocated block

For the last possible optimization, the ‘Stack unknown’ layer of fig. 8.1, we need to take a step
back and review our previous solutions. Here, each classification still ranges over a single variable:
classifications describe where a single variable is located at runtime.

2Archtecture specific.
3Assuming the architecture in question represents both as a single word.
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None of the above solutions apply for cases where the number of variables differs, or where the

variables are of unequal length. Examples of these situations are τ1
[Int#]
 τ2 vs. τ1

[Int#,Int#]
 τ2

and τ1
[Int#]
 τ2 vs. τ1

[Double#]
 τ2, respectively.

For a solution to these situations, we observe that code handling an unboxed closure never has
to individually address the variables. Instead, it merely has to copy all the variables into a new
stack frame, such that the next function can access them. If the variables are scattered across
(different kinds) of registers and the stack, the closure needs to be pieced together variable by
variable. However, if all closed over variables are stored as a single block on the stack, only the
beginning and end indices of this block are needed, as the block can be copied whole.

Essentially, we are proposing a solution similar to ad hoc polymorphism [25]. However, instead
of outputting multiple functions and deciding what alternative to pick, we can output code that
examines the passed closure, as displayed in the following snippet of pseudocode:

app5 :: (a
?
 b) → a → b

app5 f x =
let start = startOf f

end = widthOf f + start

in -- copy words between start and end to new frame

-- call f with x

This is what our ‘Stack unknown’ layer indicates with the ‘Stack-?’ construct. This construct is
not meant to be used as the indicator of a single variable, but rather of the entire set of closed
over variables, yielding ‘TYPE U ?’.

While such runtime casing might seem infeasible at first, these solutions are not uncommon, and
are actually used in realistic compilers. For example, GHC uses pointer tagging, such that type
information can be encoded into pointers, and cased upon during runtime [12].

Furthermore, such runtime switched can be optimized away in cases where the information
is known statically4. This applies to our situation as well: if the length of the set of closed
over variables of all considered closures is equal, the inspections startOf and widthOf can be
optimized away, and substituted for the statically known locations.

8.1.3 Implementation in L
To simplify L, most of these optimizations have been omitted. Instead, L contains the two
extremes.

As discussed in section 4.2, by default the annotation A on function arrows consists of a typing
environment Γ, which per rule C Var (fig. 6.1) is converted to a list of kinds κ. This implements
the ‘Kinds’ layer of fig. 8.1.

Furthermore, annotations can be ‘forgotten’ to ‘?’ via rules E Forget and E Forget# (fig. 4.2),
which needs the runtime metadata as described in section 8.1.2. Therefore, this implements the
‘Stack unknown’ layer of fig. 8.1.

4Tarditi et al. [27] apply this technique to a similar construct they call intensional polymorphism. Vytiniotis,
Peyton Jones, and Magalhães [29] apply a similar approach in in their approach to support deferred type errors
(runtime type errors).
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Effects on compilation

One might wonder if ‘forgetting’ the type annotation does not interfere with the compilation as
presented in fig. 6.1 (page 27). In rules C Lam and C Lam# we require the annotation Γ2 to
be present, as we compile e under Γ2. Would annotating ‘?’ not introduce problems?

No, it does not. Per rules E Lam and E Lam# of fig. 4.2 (page 15), the annotation of a singular
lambda expression is always known. Rules E Forget and E Forget# allow for the forgetting of
this annotation, but cannot introduce annotated types. That is, only rules E Lam and E Lam#

can introduce function types, which means the actual annotation is always available further down
the typing derivation.

It is only when functions that handle closures that the exact derivation might not be known, as
they can be passed closures from multiple locations. However, when wen compiling lambdas, we
always know what exact lambda is being compiled, and therefore have access to its annotation
Γ.

8.2 Unboxed closures must be unlifted

In section 2.4 we observed that all current unboxed types are unlifted. One of the reasons for
this is that currently it is not possible for unboxed types to be lifted, because that would require
the ability to store closures on the stack, which before was not possible. As one of the major
contributions of this thesis is the presentation of this exact functionality, we potentially could let
unboxed closures be lifted, given that it makes sense to do so and no other technical limitations
apply. However, as we will describe in this section, certain limitations do apply, which makes
lifting unboxed closures unfeasible. Specifically, the rest of this section motivates the following
to observations:

Observation 8.1. In order to efficiently implement lifted closures, we need to be able to update
thunks with their values.

Observation 8.2. Because of limitations of the stack, we cannot update unboxed closures.

8.2.1 Updating boxed closures

Non-strict semantics can sometimes cause a significant performance penalty, as the term bound
to some variable is re-evaluated upon every usage of said variable. For Haskell, the majority of
this performance penalty is avoided by implementing sharing, such that subsequent usages do
not require re-evaluation (as discussed in section 2.1). This necessitates the ability to update a
closure.

Updating boxed closures is possible because the heap allows for the updating of thunks with
values bigger than the thunk through indirections. To further understand this, consider the
following example.

biggerValue = let y = 0

in λz → x + y + z

biggerValue is a thunk that upon evaluation yields a value bigger than its thunk. We observe
that the thunk of biggerValue closes over one variable, namely x. Therefore, along with the
closure logic and a pointer to the static function logic, the thunk needs to store a (pointer to) x,
as shown in fig. 8.2a.
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(b) Example biggerValue evaluated to a value

Figure 8.2: Example biggerValue in thunk and value representation

During evaluation, a binding for y is created, which means that the closure containing the value
must store (pointers to) x as well as y. This does not fit inside the original space. While in
some situations the space right after the end of the thunk (p1 + 3 in this case) might be free,
this is not true in the general case. Therefore, a new closure is created at location p2, as shown
in fig. 8.2b. The closure at p1 is updated with an indirection. That is, upon forcing the updated
closure starting at p1, the evaluation process is redirected to the closure starting at p2.

8.2.2 Updating unboxed closures

Updating unboxed closures is a challenge, because the stack does not support indirections. To
illustrate this, we consider the manyBiggerValue example below.

manyBiggerValue = let c = biggerValue

in map (g c) [1..10]

Here, g is some function that takes some closure (biggerValue in this case) and an integer,
evaluates the closure, and returns some result. Figure 8.3 shows the stack layouts that occur
during the evaluation of manyBiggerValue. This overview has been simplified to only show
the elements of biggerValue. Furthermore, fp1 and fp2 refer to the static heap as defined in
figs. 8.2a and 8.2b.

In fig. 8.3a we can see the stack frame for f , with the thunk of biggerValue of fig. 8.2a, but in
unboxed representation. The call to g proceeds by creating a new stack frame and copying the
closure into it, as shown in fig. 8.3b. Now, when g evaluates biggerValue, we get the unboxed
version of the closure as shown in fig. 8.2b, which needs one more word than the thunk to store
the binding for y. In this case, as index 4 is free, we can update the closure in g’s frame, as
shown in fig. 8.3c. Note that this is not possible in the general case, as index 4 will not always
be free.
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Figure 8.3: Stack layouts unboxed biggerValue

A bigger problem is formed by all copies in frames above g, as here we never have this free word
to expand in, as that memory is always occupied by further frames. In this case, g’s frame blocks
us from storing the expanded value in f ’s frame. Therefore, when g returns, the situation will
once again be that of fig. 8.3a, which means biggerValue needs to be re-evaluated.

One might try to implement some stack-based indirection, as shown in fig. 8.3d. Here, we update
g as before, and let the closure in f point to the one in g. Ignoring the fact that such an approach
requires significant bookkeeping, it would not be a valid approach. As soon as g returns, its frame
is popped. This means that f now contains a (stack)pointer to a location that is considered to
be free, as shown by fig. 8.3e.

8.2.3 Conclusion

As demonstrated, it is not possible to implement sharing. Therefore, we must choose between
‘pure’ call-by-name or strict evaluation semantics. As the potential performance benefit of un-
boxing closures is the main motivational factor behind exploring them, we have opted to strictly
evaluate unboxed closures. Therefore, they fall into the same unboxed, unlifted category as
existing unboxed types such as Int# and Char#.
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Chapter 9

Conclusion and future work

9.1 Conclusion

In this thesis, we have explored the possibility of adding unboxed function closures to Haskell.
We first motivated the usefulness of this extension, describing how they are a natural fit to
a language where functions are first-class citizens. Furthermore, we described how unboxed
function closures can be more efficient, by reducing the (expensive) interaction with the heap.

We then established how, in conventional type systems, closures of equal type can have a varying
runtime representation. We then presented our solution, which involves annotating the function
type with the list of the types of the closed over variables. We presented this type system in L,
which is our high-level language.

We then presented M and a compilation function L → M. During compilation we maintain a
typing environment Γ such that it is representative of the runtime environment. Therefore, the
abstract functions lookup and fresh can output static identifiers such as stack offsets, based on
this Γ. The annotation on the function arrows are critical for this process.

By making M sufficiently close to a real machine, we have achieved our main goal, which was
to demonstrate the possibility of adding unboxed closures to Haskell. However, more work is
needed before adding unboxed closures to Haskell can be seriously considered.

Specifically, we recognize two categories of future work: improvements to our presentation in the
form of a formalism for the properties of lookup, and work based on this presentation in the form
of a proof of concept.

9.2 Properties of lookup

As described in section 6.1, we came up short when trying to formally define the properties of the
lookup function. Specifically, we had problems defining properties without assuming a specific
binding resolution strategy. The proposition we would have liked to proof can, on a high level,
be described as follows.

Proposition 9.1. The list of kinds passed to lookup during the compilation of L is representative
of the runtime environment of M.
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The problem with such a proposition is the notion of ‘representative of’. We want to formulate
that, for any variable resolution strategy, its runtime behaviour can be emulated at compile time
by examining the list of kinds. We feel this notion should be expressible whilst abstracting over
the concrete strategy, but have not found a way.

Luckily, when a specific variable resolution strategy is used, this notion can be formulated and
proven. Therefore, work towards this area will mostly benefit “pure” works such as this one, as
more concrete proposals (such as GHC proposals [8]), can or even have to consider a concrete
strategy.

9.3 Proof of concept

While we have taken care to make M sufficiently close to a real machine, this thesis is not a
proof of concept. Therefore, the next step for assessing the potential of unboxed closures is to
create an implementation of the system proposed.

The main purpose of this proof of concept is not to show that the system as presented is imple-
mentable, but to determine in what situations it is worthwhile to use unboxed function closures
over their boxed counterparts. As show, situations exist where unboxed closures are strictly
better than boxed closures, as they allow for a reduction in interaction with the heap while
consuming the same amount of memory and requiring no runtime metadata.

However, not all situations are this ideal, as depending on the amount of copies, unboxed closures
require more memory. Furthermore, depending on what generalization of the closure shape has
been applied (section 8.1), registers cannot be used, or even some runtime metadata is required.

As speed is concerned, a realistic implementation must be made.

The system as proposed in this thesis optimizes for unboxed closures, but makes no attempt at
efficiently evaluating boxed closures. Therefore, the proof of concept needs to go beyond what
we did here, and apply optimizations for both the boxed and unboxed case.

Once the proof of concept has been made, a benchmark suite like nofib [16] can be translated
into the (equivalent of) L, to get a good idea of the situations in which unboxing closures makes
sense, and in which situations they do not.
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Appendix A

L type safety

A.1 Lemmas

Lemma A.1 (Term substitution). If Γ • α:κ • Γ′ ` e : τ and Γ ` τ ′ : κ, then Γ • Γ′[τ ′/α] `
e[τ ′/α] : τ .

Proof. Straightforward induction on the typing derivation.

Lemma A.2 (Environment substitution). If Γ • α:κ • Γ′ ` e : τ , Γ ` τ ′ : κ, and Γ ` E, then
Γ • Γ′[τ ′/α] ` E[τ ′/α].

Proof. Straightforward induction on the well-formedness derivation for environments.

Lemma A.3 (Stepping does not shrink environments). If 〈Γ; E; e〉 −→ 〈Γ′; E′; e′〉, then
Γ ⊆ Γ′ and E ⊆ E′.

Proof. Straightforward induction on the derivation of 〈Γ; E; e〉 −→ 〈Γ′; E′; e′〉.

A.2 Progress

Theorem 4.1 (Progress). For any 〈Γ; E; e〉, if Γ ` e : τ and Γ ` E, then either e is a value,
or there exists an 〈Γ′; E′; e′〉 such that 〈Γ; E; e〉 −→ 〈Γ; E′; e′〉.

Proof. By induction over the typing derivation of e.

E Var

E Var
γ:τ ∈ Γ

Γ ` γ : τ
S Var

γ 7→ e ∈ E
〈Γ, E, γ〉 −→ 〈Γ, E, e〉

As γ : τ ∈ Γ and Γ ` E, by rule EV Term there exists an e1 such that Γ ` e1 : τ and
γ 7→ e1 ∈ E. Therefore we can step e by rule S Var.
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E App

E App
Γ ` e : τ1

A→ τ2 Γ ` γ : τ1

Γ ` e γ : τ2
S App

〈Γ, E, e1〉 −→ 〈Γ′, E′, e′1〉
〈Γ, E, e1 γ〉 −→ 〈Γ′, E′, e′1 γ〉

S Lam

γ2 7→ e2 ∈ E
Γ ` e2 : τ

Γ′ = Γ • γ1:τ

E′ = E, γ1 7→ e2

〈Γ, E, (λγ1:τ.e1) γ2〉 −→ 〈Γ′, E′, e1〉

By induction we know that e1 is either a value, or it can take a step.

By rule E App Γ ` e1 : τ1
A→ τ2. Therefore, in the case where e1 is a value, e1 must be of form

λγ1:τ.e2, as that is the only value of type τ1
A→ τ2. We observe that Γ ` E, and by rule E App

Γ ` γ2 : τ1. Therefore, by rules E Var and EV Term it follows that there exists an e3 such
that Γ ` e3 : τ1, and γ2 7→ e3 ∈ E. Therefore, we can step e by S Lam.

If e1 is not a value, then we know it can step. Therefore, we can step e by S App.

E App#

E App#

Γ ` e : τ1
A
 τ2 Γ ` γ : τ1

Γ ` e γ : τ2
S App

〈Γ, E, e1〉 −→ 〈Γ′, E′, e′1〉
〈Γ, E, e1 γ〉 −→ 〈Γ′, E′, e′1 γ〉

S Lam#

γ2 7→ e2 ∈ E
Γ ` e2 : τ

Γ′ = Γ • γ1:τ

E′ = E, γ1 7→ e2

〈Γ, E, (λ#γ1:τ.e1) γ2〉 −→ 〈Γ′, E′, e1〉

Identical to the case for E App, but with the unboxed version of the lambda rule S Lam#.

E TApp

E TApp
Γ ` e : ∀α:κ. τ1 Γ ` τ2 : κ

Γ ` e τ2 : τ1[τ2/α]

S Tapp
〈Γ, E, e〉 −→ 〈Γ′, E′, e′〉

〈Γ, E, e τ〉 −→ 〈Γ′, E′, e′ τ〉
S TBeta

Γ1 = Γ • α:κ • Γ′

Γ2 = Γ • Γ′

〈Γ1, E, (Λα:κ.v) τ〉
−→ 〈Γ2[τ/α], E[τ/α], v[τ/α]〉

By induction, we know that e1 either is a value, or can take a step. If it is a value, we can step
e with S TBeta. If e1 can step, we can step e with S TApp.
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E Let

E Let

Γ ` e1 : τ1

Γ ` τ1 : TYPE P A

Γ • γ:τ1 ` e2 : τ2

Γ ` let γ = e1 in e2 : τ2
S Let

Γ ` e1 : τ

Γ′ = Γ • γ:τ

E′ = E, γ 7→ e1

〈Γ, E, let γ = e1 in e2〉 −→ 〈Γ′, E′, e2〉

By rule E Let we know Γ ` e1 : τ1, which means we can step e with rule S Let.

E Let#

E Let#

Γ ` e1 : τ1

Γ ` τ1 : TYPE U A

Γ • γ:τ1 ` e2 : τ2

Γ ` let# γ = e1 in e2 : τ2

S Let#a

〈Γ, E, e1〉 −→ 〈Γ′, E′, e′1〉
〈Γ, E, let# γ = e1 in e2〉
−→ 〈Γ′, E′, let# γ = e′1 in e2〉

S Let#b

Γ ` v : τ

Γ′ = Γ • γ:τ

E′ = E, γ 7→ v

〈Γ, E, let# γ = v in e2〉 −→ 〈Γ′, E′, e2〉

By induction we know that e1 is either a value, or it can take a step. If e1 can take a step, we
can step e with rule S Let#a. If it is a value, we can step e with rule S Let#b.

E Lam, E Lam#, E Forget, E Forget#, E TLam, E IntLit

In all these cases, e is a value.

A.3 Preservation

Theorem 4.2 (Preservation). If 〈Γ; E; e〉 −→ 〈Γ′; E′; e′〉, Γ ` e : τ , and Γ ` E, then
Γ′ ` e′ : τ , and Γ′ ` E′.

Proof. by induction on the typing derivation of e.

E Var

E Var
γ:τ ∈ Γ

Γ ` γ : τ
S Var

γ 7→ e ∈ E
〈Γ, E, γ〉 −→ 〈Γ, E, e〉

As by rule E Var γ : τ ∈ Γ and Γ ` E, by rule EV Term and the fact that all γ are fresh, we
get that Γ ` e1 : τ . Furthermore, as E is unchanged, it is trivially well-formed.
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E App

E App
Γ ` e : τ1

A→ τ2 Γ ` γ : τ1

Γ ` e γ : τ2
E Lam

Γ • γ:τ1 ` e : τ2

Γ ` λγ:τ1.e : τ1
Γ→ τ2

S Lam

γ2 7→ e2 ∈ E
Γ ` e2 : τ

Γ′ = Γ • γ1:τ

E′ = E, γ1 7→ e2

〈Γ, E, (λγ1:τ.e1) γ2〉 −→ 〈Γ′, E′, e1〉
S App

〈Γ, E, e1〉 −→ 〈Γ′, E′, e′1〉
〈Γ, E, e1 γ〉 −→ 〈Γ′, E′, e′1 γ〉

S Lam By rule E App we know that Γ ` λγ1:τ.e1 : τ1
A→ τ2, which by rule E Lam means that

Γ, γ1:τ1 ` e1 : τ2.

As Γ ` E, Γ ` γ2 : τ1, and γ2 7→ e2 ∈ E, by rule EV Term Γ ` e2 : τ1. As every γ is fresh, we
know that the binding of γ1 in E, γ1 7→ e2 is unique, so by rule EV Term Γ, γ1:τ1 ` E, γ1 7→ e2.

S App By rule E App, Γ ` e1 : τ1
A→ τ2 and Γ ` γ : τ1. From lemma A.3 and the fact that

every γ is fresh we gather that Γ′ ` γ : τ1. By induction, Γ′ ` e′1 : τ1
A→ τ2, which by E App

means that Γ′ ` e′1 γ : τ2. Furthermore, by induction we know that Γ′ ` E′, so we have proven
this case.

E App#

E App#

Γ ` e : τ1
A
 τ2 Γ ` γ : τ1

Γ ` e γ : τ2

S Lam#

γ2 7→ e2 ∈ E
Γ ` e2 : τ

Γ′ = Γ • γ1:τ

E′ = E, γ1 7→ e2

〈Γ, E, (λ#γ1:τ.e1) γ2〉 −→ 〈Γ′, E′, e1〉
S App

〈Γ, E, e1〉 −→ 〈Γ′, E′, e′1〉
〈Γ, E, e1 γ〉 −→ 〈Γ′, E′, e′1 γ〉

Identical to the case for E App, but with the unboxed version of the lambda rule S Lam#.

E TApp

E TApp
Γ ` e : ∀α:κ. τ1 Γ ` τ2 : κ

Γ ` e τ2 : τ1[τ2/α]

S Tapp
〈Γ, E, e〉 −→ 〈Γ′, E′, e′〉

〈Γ, E, e τ〉 −→ 〈Γ′, E′, e′ τ〉
S TBeta

Γ1 = Γ • α:κ • Γ′

Γ2 = Γ • Γ′

〈Γ1, E, (Λα:κ.v) τ〉
−→ 〈Γ2[τ/α], E[τ/α], v[τ/α]〉

Case follows from lemmas A.1 and A.2.
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E Let

E Let

Γ ` e1 : τ1

Γ ` τ1 : TYPE P A

Γ • γ:τ1 ` e2 : τ2

Γ ` let γ = e1 in e2 : τ2
S Let

Γ ` e1 : τ

Γ′ = Γ • γ:τ

E′ = E, γ 7→ e1

〈Γ, E, let γ = e1 in e2〉 −→ 〈Γ′, E′, e2〉

From E Let we immediately get that Γ, γ:τ1 ` e2 : τ2. Furthermore, as Γ ` e1 : τ1, by rule
EV Term, we get that Γ, γ:τ1 ` E, γ 7→ e1, so we have proven this case.

E Let#

E Let#

Γ ` e1 : τ1

Γ ` τ1 : TYPE U A

Γ • γ:τ1 ` e2 : τ2

Γ ` let# γ = e1 in e2 : τ2

S Let#a

〈Γ, E, e1〉 −→ 〈Γ′, E′, e′1〉
〈Γ, E, let# γ = e1 in e2〉
−→ 〈Γ′, E′, let# γ = e′1 in e2〉

S Let#b

Γ ` v : τ

Γ′ = Γ • γ:τ

E′ = E, γ 7→ v

〈Γ, E, let# γ = v in e2〉 −→ 〈Γ′, E′, e2〉

S Let#a

By rule E Let# we know that Γ ` e1 : τ1 and Γ, γ:τ1 ` e2 : τ2. From lemma A.3 and the
fact that every γ is fresh we gather that Γ′, τ1 ` e2 : τ2. By induction we know that stepping e1

maintains its type, which means Γ′ ` e1 : τ1. From this we gather that Γ′ ` let# γ = e′1 in e2 : τ2.
Furthermore, by induction we get that Γ′ ` E′, so we have proven this case.

S Let#b

From E Let# we immediately get that Γ, γ:τ1 ` e2 : τ2. Furthermore, as Γ ` v : τ1, by rule
EV Term, we get that Γ, γ:τ1 ` E, γ 7→ v, so we have proven this case.

E Lam, E Lam#, E Forget, E Forget#, E TLam, E IntLit

In all these cases, e is a value, which do not step.
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Appendix B

Simulation

B.1 Notation

� JeKΓ = t : translation function for terms

� JEKΓ = (∆, H) : translation function for envs

� J〈Γ; E; e〉KS = 〈JeKΓ; ∆; S; H〉 where JEKΓ = (∆, H)

B.2 Definitions

Definition B.1. In L,
∗−→ is the reflexive transitive closure on −→ as defined in fig. 4.3 (page

19). That is, a L state steps to another in zero or more steps, written 〈Γ1; E1; e1〉
∗−→

〈Γ2; E2; e2〉, if 〈Γ1; E1; e1〉 = 〈Γ2; E2; e2〉, or if there exists some 〈Γ′1; E′1; e′〉 such that

〈Γ1; E1; e1〉 −→ 〈Γ′1; E′1; e′1〉 and 〈Γ′1; E′1; e′1〉
∗−→ 〈Γ2; E2; e2〉.

Definition B.2. InM,
∗−→ is the reflexive transitive closure on −→ as defined in fig. 5.2 (page

23). That is, a M state steps to another in zero or more steps, written 〈t1; ∆1; S1; H1〉
∗−→

〈t2; ∆2; S2; H2〉, if 〈t1; ∆1; S1; H1〉 = 〈t2; ∆2; S2; H2〉, or if there exists some 〈t′1; ∆′1; S′1; H ′1〉
such that 〈t1; ∆1; S1; H1〉 −→ 〈t′1; ∆′1; S′1; H ′1〉 and 〈t′1; ∆′1; S′1; H ′1〉

∗−→ 〈t2; ∆2; S2; H2〉.

Definition B.3 (M closure well-formedness). A M closure (t,∆) is well-formed, written
∆ ` t WF, if ∆ contains a binding for all closed over variables of t. That is, ∀x. x ∈ fv(t) =⇒
∃b. x 7→ b ∈ ∆.

Definition B.4 (M binding storage well-formedness). A M environment ∆ and heap H are
well-formed, written H ` ∆ WF, if any stored closure (t,∆′) they store is well-formed, and the
stored environment with the given heap is well-formed as well.

p 7→ (t,∆′) ∈ H
∆′ ` t WF

H ` ∆′ WF

H ` y 7→ p •∆ WF

∆′ ` t WF

H ` ∆′ WF

H ` z 7→ (t,∆′) •∆ WF

51



Definition B.5 (M stack well-formedness). A M stack S is well-formed w.r.t. a heap H,
written H ` S WF, in the following cases:

H ` ∅ WF

H ` S WF

H ` App(b) • S WF

∆ ` t WF

H ` ∆ WF

H ` S WF

H ` Let(z, t,∆) • S WF

Definition B.6 (M state well-formedness ). A M state 〈i; ∆; S; H〉 is well-formed, written
〈i; ∆; S; H〉 WF, in the following cases:

p 7→ (t,∆′) ∈ H
∆′ ` t WF

H ` ∆′ WF

H ` S WF

H ` ∆ WF

〈p; ∆; S; H〉 WF

∆′ ` t WF

H ` ∆′ WF

H ` S WF

H ` ∆ WF

〈(t,∆′); ∆; S; H〉 WF

∆ ` t WF

H ` S WF

H ` ∆ WF

〈t; ∆; S; H〉 WF

Definition B.7 (Environment extension). An environment (∆1, H1) is extended by another
environment (∆2, H2), written (∆1, H1) v (∆2, H2) or (∆2, H2) w (∆1, H1) in the following
cases:

H1[p] = (t1,∆3)

∆2[y] = p′

H2[p′] = (t2,∆4)

∆3 ⊆ ∆4

(∆1, H1) v (∆2, H2)

(y 7→ p •∆1, H1) v (∆2, H2)

∆2[z] = (t2,∆4)

∆3 ⊆ ∆4

(∆1, H1) v (∆2, H2)

(z 7→ (t1,∆3) •∆1, H1) v (∆2, H2)

Definition B.8 (Stack extension). A stack S1 is extended by another stack S2, written S1 v S2

or S2 w S1, if they are equal, modulo let continuations. For these continuations, the stored
variable and term are required to be equal. For the stored environment, S2 may store a superset
of the environment stored by S1.

∅ v ∅
S1 v S2

App(b) • S1 v App(b) • S2

∆1 ⊆ ∆2

S1 v S2

Let(z, t,∆1) • S1 v Let(z, t,∆2) • S2

Definition B.9 (State extension). One state 〈t1; Γ1; S1; H1〉 is extended by another state
〈t2; Γ2; S2; H2〉, written 〈t1; Γ1; S1; H1〉 v 〈t2; Γ2; S2; H2〉 or 〈t2; Γ2; S2; H2〉 w
〈t1; Γ1; S1; H1〉, if t1 = t2, S1 v S2, and (Γ1, H1) v (Γ2, H2).

B.3 Lemmas

Lemma B.10. For all Γ, E, if JEKΓ = (∆1, H), then for all patterns p 7→ (t,∆2) ∈ H, ∆2 ⊆ ∆1.
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Proof. Straightforward induction on the rules of translating environments. For rules TR Empty
and TR Unboxed, the condition holds trivially, as H is either ∅ or unchanged. For TR Boxed,
H is extended with ∆, which is a subset of ∆′.

Lemma B.11 (∆ & H uniqueness). For all Γ and E, if Γ ` E and JEKΓ = (∆, H), then all
mappings bound in ∆ and H are unique. That is, the following holds:

� For all x, b, and b′, if x 7→ b ∈ ∆ and x 7→ b′ ∈ ∆, then b = b′.

� For all p, (t,∆), and (t′,∆′), if p 7→ (t,∆) and p 7→ (t′,∆′), then (t,∆) = (t′,∆′).

Proof. Following the Barendregt’s convention, we assume that all γ ∈ Γ are fresh. As Γ ` E,
translation JγKΓ is uniquely determined by γ, and that each p is fresh, the property holds.

Lemma B.12 (Scope of E flows left). For all Γ, E, and γ 7→ e, if Γ ` E and E = E1, γ 7→ e, E2,
then E1 contains bindings for all of the closed over variables of e.

Proof. By induction on the operational semantic rules.

Rules S Var and S TBeta do not alter E, so the binding cannot have been introduced using
these rules. Rules S App, S Let#a, S TLam, and S TApp do not alter E themselves, but
instead take E′ from their assumptions. Remaining are cases S Let, S Let#b, S Lam, and
S Lam#, which each extend E by a binding.

For S Let and S Let#b, each rule extends E with a binding of γ to the right-hand side of the
let binding. Therefore, if we match the situation with the proposition, we get E1, γ 7→ e, ∅, where
E = E1. As Γ ` E1 for some Γ, and the right-hand sides are well-typed w.r.t. that same Γ, it
follows that all closed over variables must be in E1 as well.

Likewise, rules S Lam and S Lam# each extend E to the right with a binding of the lambda’s
argument γ1 to the expression bound to the variable applied to. Therefore, if we match the
situation with the proposition, we get E1, γ 7→ e, ∅, where E = E1 and γ = γ1. Similarly, in both
cases Γ ` E1 for some Γ, and the new binding is required to be well-typed w.r.t. this same Γ.
Therefore, it follows that all closed over variables must be in E1 as well.

Lemma B.13 (Environment translating binding consistency). If Γ ` E, γ 7→ e ∈ E, and
JEKΓ = (∆, H), then, for some b, JγKΓ 7→ b ∈ ∆.

Proof. Straightforward induction on the translation rules for environments.

Lemma B.14 (Variable lookup). For all Γ, E, and γ 7→ e, if Γ ` E and γ 7→ e ∈ E, then for
JEKΓ = (∆, H), JγKΓ = x, and JeKΓ = t, one of the following holds:

� Either e is of boxed kind, x = y, and there exits a p such that ∆[y] = p and H[p] = (t,∆′),
where ∆′ ` t WF.

� Or e is of unboxed kind, x = z, and ∆[z] = (t,∆′), where ∆′ ` t WF.

Proof. If γ 7→ e ∈ E, E is of form E1, γ 7→ e, E2. As TR Boxed and TR Unboxed only extend
the intermediate result, JE1, γ 7→ eKΓ ⊆ JE1, γ 7→ e, E2KΓ. If we show that our desired output is
part of JE1, γ 7→ eKΓ, by lemma B.11 we know that looking up the binders in JE1, γ 7→ e, E2KΓ

gives the desired result.
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If e is of boxed kind, x = y, and TR Boxed was used for JE1, γ 7→ eKΓ. We add JγKΓ 7→ p
and p 7→ (JeK,∆′) to the intermediate environment and heap respectively. If e is of unboxed
kind, x = z, and TR Unboxed was used for JE1, γ 7→ eKΓ. We add JγKΓ 7→ (JeK,∆′) to the
intermediate environment.

In both cases, ∆′ is the result of translating all to the left of γ 7→ e, i.e. E1, which by lemma B.12
contains bindings for all closed over variables of t.

Lemma B.15 (E translation is well formed). For all Γ, E, if Γ ` E and JEKΓ = (∆, H), then
H ` ∆ WF.

Proof. By induction on the translation rules for environments. For TR Empty, the proposition
trivially holds. For rule TR Boxed, E, γ 7→ e is translated, where JγKΓ = y and JeKΓ = t.
∆ is extended with a binding y 7→ p, and H is extended with a binding p 7→ (t,∆). As by
lemmas B.12 and B.13 all closed over variables of t are in ∆, we have that ∆ ` t WF. As by
induction we have that H ` ∆ WF, the extended environment and heap are well-formed as well.
Rule TR Unboxed is similar. Here, E, γ 7→ v is translated, where JγKΓ = z and JvKΓ = w. As
by lemmas B.12 and B.13 all closed over variables of w are in ∆, we have that ∆ ` t WF. As
by induction we have that H ` ∆ WF, the extended environment and heap are well-formed as
well.

Lemma B.16 (Full translation is well formed). If J〈Γ; E; e〉KS = 〈t; ∆; S; H〉 and H ` S WF,
then 〈t; ∆; S; H〉 WF.

Proof. As our work item is t, we do not need to consider the cases of definition B.6 where i = p
and i = (t′,∆′). As our stack is assumed to be well-formed, we only need to show that the
closure (t,∆) and binding storage (∆, H) are well-formed. For the well-formedness of the closure
we observe that Γ ` E, which means that E contains mappings for all closed over variables of e.
By lemma B.13 it follows that ∆ ` t WF. H ` ∆ WF follows from lemma B.15, which means we
have proven the proposition.

Lemma B.17. For all E, if γ 7→ e ∈ E and e is of unboxed kind, then e must be a value.

Proof. By induction on the operational semantic rules.

Rules S Var and S TBeta do not extend E, so the binding cannot have been introduced using
these rules. Rules S App, S Let#a, S TLam, and S TApp do not alter E themselves, but
instead take E′ from their assumptions. Remaining are the rules that extend E themselves.

S Let extends E′ with a binding of boxed kind, which means e is boxed. S Let#b extends E′

with a binding of unboxed kind, which is a value. Finally, rules S Lam and S Lam# extend E′

with a pattern γ 7→ e, where e ∈ E. As by induction we know it to hold for all elements of E, e
must be a value, if it is of unboxed kind.

Lemma B.18 (Compilation ignores type substitution). If JeKΓ = t, then Je[τ/α]KΓ = t.

Proof. Straightforward induction on the rules for compiling terms. Here, only the rules C TLam
and C TApp are relevant, as these are the only places where α can occur. As both rules erase
the type variable in compilation, substitution does not affect the compilation.
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B.4 Simulation

Theorem 7.3 (Simulation). For all 〈Γ; E; e〉 −→ 〈Γ′; E′; e′〉 and stacks S1 and S′1, let
Q1 = J〈Γ; E; e〉KS1 = 〈t1; ∆1; S1; H1〉 and Q′1 = J〈Γ′; E′; e′〉KS′

1 = 〈t′1; ∆′1; S′1; H ′1〉.

If Γ ` e : τ , Γ ` E, S1 v S′1, H1 ` S1 WF, and H ′1 ` S′1 WF, there exists a Q2 and a Q′2 such

that Q1
∗−→ Q2, Q

′
1
∗−→ Q′2, Q2 v Q′2, Q2 WF, and Q′2 WF.

Proof. By induction on the typing derivation of e.

E Var

E Var
γ:τ ∈ Γ

Γ ` γ : τ
C Var

κ = kindsOf(Γ) x = lookup(κ, γ)

JγKΓ = x
S Var

γ 7→ e ∈ E
〈Γ, E, γ〉 −→ 〈Γ, E, e〉

Here we case further on e being a value or not.

e is a value

J〈Γ; E; γ〉KS : Lookup in M differs on whether a boxed or unboxed closure is looked up.
However, as can be seen below, both cases result into the same state:

〈y; ∆1; S; H〉 −→ 〈y; ∆1[y] = p; S; H〉
−→ 〈p; ∆1; S; H〉
−→ 〈p; ∆1; S; H[p] = (w,∆2)〉
−→ 〈(w,∆2); ∆1; S; H〉

For the boxed case, by lemma B.14 we know that the lookup ∆1[y] is guaranteed to result in
some p, that when looked up on the heap, i.e. H[p], resolves into (w,∆2), where JeKΓ = w.

〈z; ∆1; S; H〉 −→ 〈z; ∆1[z] = (w,∆2); S; H〉
−→ 〈(w,∆2); ∆1; S; H〉

For the unboxed case, by lemma B.14 we know that the lookup ∆1[x] is guaranteed to result in
(w,∆2), where JeKΓ = w.

For the well-formedness of both the boxed and unboxed case, we observe that our final ∆1, S,
and H are equal to the output of J〈Γ; E; γ〉KS , which by lemma B.16 are known to be well-
formed. Our work item has changed to (w,∆2), which in each case has been extracted from a
well-formed structure. Therefore, ∆2 ` w WF, and thus 〈(w,∆2); ∆1; S; H〉 WF.

J〈Γ; E; e〉KS :
〈w; ∆1; S; H〉 −→ 〈(w,∆2); ∆1; S; H〉

For this case, we first observe that by lemma B.16, 〈w; ∆1; S; H〉 WF.

Since JeKΓ = w, w becomes our work item. As Γ, E, and S are all unchanged, we know w is
placed in an context equal to the one of γ, i.e. J〈Γ; E; e〉KS = 〈w; ∆1; S; H〉.
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As ∆1 ` t WF, we know that ∆2 ⊆ ∆1. As ∆1 is our working environment, the lifting of w
to (w,∆2) will always succeed. Therefore, we have arrived at a state that extends our previous
state.

For the well-formedness of this case, we observe that our final ∆1, S, and H are unchanged. As
the lift operation takes exactly the closed over variables from ∆1, it follows that ∆2 ` w WF,
which means 〈(w,∆2); ∆1; S; H〉 WF.

e is a non-value

By S Var, γ 7→ e ∈ E. By lemma B.17, patterns where e is both a non-value and of unboxed
kind cannot occur. Therefore, e can only represent a term of boxed kind.

J〈Γ; E; γ〉KS :
〈y; ∆1; S; H〉 −→ 〈y; ∆1[y] = p; S; H〉

−→ 〈p; ∆1; S; H〉
−→ 〈p; ∆1; S; H[p] = (t,∆2)〉
−→ 〈t; ∆2; S; H〉

Per lemma B.14 we know that the lookup ∆1[y] is guaranteed to result in p, and the lookup H[p]
is guaranteed to resolve into (t,∆2), where JeKΓ = w, and ∆2 ` t WF. Finally, we step into t
under ∆2.

For the well-formedness of this case, we observe that our final S and H are equal to the output
of J〈Γ; E; γ〉KS , which by lemma B.16 are known to be well-formed. As the closure (t,∆2) is
extracted from the well-formed heap, it must be well-formed itself. Switching to this closure
retains well-formedness, so our final state is well-formed.

J〈Γ; E; e〉KS : As JeKΓ = t, and E is unchanged, J〈Γ; E; e〉KS = 〈t; ∆′2; S; H〉, which by
lemma B.16 is well-formed. By lemma B.10, ∆2 ⊆ ∆′2, which means this state extends the
previous state.

E App

E App
Γ ` e : τ1

A→ τ2 Γ ` γ : τ1

Γ ` e γ : τ2
C App

JeKΓ = t JγKΓ = x

Je γKΓ = t x

We have two cases, depending on how e γ has stepped.

S App

J〈Γ; E; e1 γ〉KS :

〈t1 x; ∆1; S; H1〉 −→ 〈t1 x; ∆1[z] = b; S; H1〉
−→ 〈t1; ∆1; App(b) • S; H1〉
−→∗ 〈t2; ∆2; App(b) • S; H2〉
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J〈Γ′; E′; e′1 γ〉KS :

〈t′1 x; ∆′1; S; H ′1〉 −→ 〈t′1 x; ∆′1[z] = b; S; H ′1〉
−→ 〈t′1; ∆′1; App(b) • S; H1〉
−→∗ 〈t′2; ∆′2; App(b) • S; H ′2〉

By lemmas A.3 and B.14, ∆1[x] = ∆′1[x] = b. For the application e1 γ, the resulting b is stored
in the App continuation, and the left hand side t1 is made the work item. For the application
e′1 γ the process is similar: the (same) result of the lookup b is stored in the App continuation,
and the left hand side is made the work item, in this case t′1.

As Γ ` e1 : τ1, Γ ` E, 〈Γ, E, e1〉 −→ 〈Γ′, E′, e′1〉, J〈Γ; E; e1〉KApp(b)•S = 〈t1; ∆1; App(b) •
S; H1〉, and J〈Γ′; E′; e′1〉KApp(b)•S = 〈t′1; ∆′1; App(b) • S; H ′1〉, we can apply the induction
hypothesis to both states to arrive in states satisfying the proposition.

S Lam

We case further on the kinds of γ1 and γ2. As γ1 and γ2 must be of the same type (and thus
kind) for an application to be well-typed, we only need to consider the case where both are of
boxed kind, and the case where both are of unboxed kind.

γ1 and γ2 of boxed kind From the information that γ2 is boxed and lemma B.14 we get that
Jγ2KΓ = y2, and ∆1[y2] = p. From this, we get the following reduction steps:

J〈Γ; E; (λγ1:τ.e1) γ2〉KS :

〈(λy1.t1) y2; ∆1; S; H〉 −→ 〈(λy1.t1) y2; ∆1[y2] = p; S; H〉
−→ 〈λy1.t1; ∆1; App(p) • S; H〉
−→ 〈(λy1.t1,∆2); ∆1; App(p) • S; H〉
−→ 〈t1; y1 7→ p •∆2; S; H〉

where ∆2 = fv(t1), ∆2 ⊆ ∆1

For the well-formedness of this case, we observe that our final S and H are equal to the output
of J〈Γ; E; (λγ1:τ.e1) γ2〉KS , which by lemma B.16 are known to be well-formed. As lifting λy1.t1
to (λy1.t1,∆2) stores all closed over variables of the term in ∆2, we have that ∆2 ` λy1.t1 WF.
The inner term of this lambda, t1, contains one additional closed over variable, namely a binding
for y1. As we extend ∆2 by exactly this binding, y1 7→ p •∆2 ` t1 WF. Therefore, the final state
is well-formed as well.

J〈Γ, γ1:τ ; E, γ1 7→ e2; e1〉KS : As JEKΓ = (∆1, H) and γ1 represents a term of boxed kind,
we know that JE, γ1 7→ e2KΓ,γ1:τ = (y1 7→ p′ • ∆1, p

′ 7→ (t1,∆1) • H). This gives us that
J〈Γ, γ1:τ ; E, γ1 7→ e2; e1〉KS = 〈t1; y1 7→ p′ •∆1; S; p′ 7→ (t1,∆1) •H〉.

As ∆2 ⊆ ∆1, (∆2, H) v (∆1, H). Furthermore, note that (y1 7→ p•∆2)[y1] = p, H[p] = (t1,∆3),
for some ∆3, (y1 7→ p′ • ∆1)[y1] = p′, and (p′ 7→ (t1,∆1) • H)[p′] = (t1,∆1). By lemma B.10,
∆3 ⊆ ∆1. Therefore, (y1 7→ p •∆2, H) v (y1 7→ p′ •∆1, H). Furthermore, by lemma B.16, the
state is well-formed.

γ1 and γ2 of unboxed kind
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J〈Γ; E; (λγ1:τ.e1) γ2〉KS : From the information that γ2 is unboxed and lemma B.14 we get
that Jγ2KΓ = z2, ∆1[z2] = (t2,∆3). From this, we get the following reduction steps:

〈(λz1.t1) z2; ∆1; S; H〉 −→ 〈(λz1.t1) z2; ∆1[z2] = (t2,∆3); S; H〉
−→ 〈λz1.t1; ∆1; App(t2,∆3) • S; H〉
−→ 〈(λz1.t1,∆2); ∆1; App(t2,∆3) • S; H〉
−→ 〈t1; z1 7→ (t2,∆3) •∆2; S; H〉

where ∆2 = fv(t1), ∆2 ⊆ ∆1

For the well-formedness of this case, we observe that our final S and H are equal to the output
of J〈Γ; E; (λγ1:τ.e1) γ2〉KS , which by lemma B.16 are known to be well-formed. As lifting λy1.t1
to (λy1.t1,∆2) stores all closed over variables of the term in ∆2, we have ∆2 ` λy1.t1 WF. The
inner term of this lambda, t1, contains one additional closed over variable, namely a binding
for y1. As we extend ∆2 by exactly this binding, z1 7→ (t2,∆3) • ∆2 ` t1 WF. Therefore,
〈t1; z1 7→ (t2,∆3) •∆2; S; H〉 WF.

J〈Γ, γ1:τ ; E, γ1 7→ e2; e1〉KS : As JEKΓ = (∆1, H) and γ1 represents a term of unboxed
kind, we know that JE, γ1 7→ e2KΓ,γ1:τ = (z1 7→ (t2,∆1) • ∆1, H). Therefore, it follows that
J〈Γ, γ1:τ ; (E, γ1 7→ e2); e1〉KS = 〈t1; y1 7→ (t2,∆1) •∆1; S; H〉.

As ∆2 ⊆ ∆1, (∆2, H) v (∆1, H), and thus (∆2, H) v (y1 7→ (t2,∆1) • ∆1, H), which means
the state extends the previous state. Furthermore, by lemma B.16, the state is well-formed.

E App#

Similar to the case of E App.

E TLam

E TLam
Γ • α:κ ` e : τ Γ `κ κ kind

Γ ` Λα:κ.e : ∀α:κ. τ
C TLam

JeKΓ = t

JΛα:κ.eKΓ = t

S TLam
〈Γ, E, e〉 −→ 〈Γ′, E′, e′〉

〈Γ, E,Λα:κ.e〉 −→ 〈Γ′, E′,Λα:κ.e′〉

In this case, the proposition holds trivially, as by C TLam JΛα:κ.eKΓ = JeKΓ = t, and JΛα:κ.e′KΓ′
=

Je′KΓ′
= t′. Therefore, J〈Γ; E; Λα:κ.e〉KS = J〈Γ; E; e〉KS and J〈Γ′; E′; Λα:κ.e′〉KS = J〈Γ′; E′; e′〉KS ,

which means we can use the induction hypothesis directly.

E TApp

E TApp
Γ ` e : ∀α:κ. τ1 Γ ` τ2 : κ

Γ ` e τ2 : τ1[τ2/α]
C TApp

JeKΓ = t

Je τKΓ = t

We have two cases, depending on how e τ has stepped.
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S TApp

S Tapp
〈Γ, E, e〉 −→ 〈Γ′, E′, e′〉

〈Γ, E, e τ〉 −→ 〈Γ′, E′, e′ τ〉

In this case, the proposition holds trivially. By C TApp, Je τKΓ = JeKΓ = t, and Je′ τKΓ′
=

Je′KΓ′
= t′. Therefore, J〈Γ; E; e τ〉KS = J〈Γ; E; e〉KS and J〈Γ; E′; e′ τ〉KS = J〈Γ′; E′; e′〉KS ,

which means we can use the induction hypothesis directly.

S TBeta

S TBeta

Γ1 = Γ • α:κ • Γ′

Γ2 = Γ • Γ′

〈Γ1, E, (Λα:κ.v) τ〉
−→ 〈Γ2[τ/α], E[τ/α], v[τ/α]〉

In this case, the proposition holds trivially. By C TApp, C TLam, and lemma B.18, we have
that J(Λα:κ.v) τKΓ = JΛα:κ.vKΓ = JvKΓ = Jv[τ/α]KΓ. Therefore, J〈Γ; E; (Λα:κ.v) τ〉KS =
J〈Γ; E; Λα:κ.v〉KS . As by lemma B.15 our singular state is well-formed, the property holds.

E Let

E Let

Γ ` e1 : τ1

Γ ` τ1 : TYPE P A

Γ • γ:τ1 ` e2 : τ2

Γ ` let γ = e1 in e2 : τ2
C Let

κ = kindsOf(Γ) Je1KΓ = t1
x = fresh(κ) Je2KΓ•γ:τ = t2

Jlet γ = e1 in e2KΓ

= let x = t1 in t2

S Let

Γ ` e1 : τ

Γ′ = Γ • γ:τ

E′ = E, γ 7→ e1

〈Γ, E, let γ = e1 in e2〉 −→ 〈Γ′, E′, e2〉

J〈Γ; E; (let γ = e1 in e2)〉KS :

〈let y = t1 in t2; ∆; S; H〉 −→ 〈t2; y 7→ p •∆; S; p 7→ (t1,∆) •H〉

By lemma B.16, 〈let y = t1 in t2; ∆; S; H〉 WF. Therefore, ∆ ` let y = t1 in t2 WF,
which means that fv(let y = t1 in t2) ⊆ ∆. As Jlet γ = e1 in e2KΓ = let y = t1 in t2 and
Γ ` let γ = e1 in e2 : τ , by rule E Let, Γ • γ:τ1 ` e2 : τ2. Therefore, t2 ranges over exactly one
additional closed over variable, namely the binding y = t1. As this exact binding is supplied by
extending ∆ and H, we have that y 7→ p •∆ ` t2 WF and p 7→ (t1,∆) •H ` y 7→ p •∆ WF, and
thus 〈t2; y 7→ p •∆; S; p 7→ (t1,∆) •H〉 WF.

J〈Γ, γ:τ ; (E, γ 7→ e1); e2〉KS : As JEKΓ = (∆, H) and γ represents a term of boxed kind,
we know that JE, γ 7→ e2KΓ,γ:τ = (y 7→ p′ • ∆, p′ 7→ (t1,∆) • H). Therefore, we get that
J〈Γ, γ:τ ; (E, γ 7→ e1); e2〉KS = 〈t2; y 7→ p′ • ∆; S; p′ 7→ (t1,∆) • H〉, which means this state
extends the previous state. Furthermore, by lemma B.16, the state is well-formed.
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E Let#

E Let#

Γ ` e1 : τ1

Γ ` τ1 : TYPE U A

Γ • γ:τ1 ` e2 : τ2

Γ ` let# γ = e1 in e2 : τ2
C Let#

κ = kindsOf(Γ) Je1KΓ = t1
x = fresh(κ) Je2KΓ•γ:τ = t2

Jlet# γ = e1 in e2KΓ

= let# x = t1 in t2

We have two cases, depending on how let# γ = e1 in e2 has stepped.

S Let#a

S Let#a

〈Γ, E, e1〉 −→ 〈Γ′, E′, e′1〉
〈Γ, E, let# γ = e1 in e2〉

−→ 〈Γ′, E′, let# γ = e′1 in e2〉

J〈Γ; E; (let# γ = e1 in e2)〉KS :

〈let# z = t1 in t2; ∆1; S; H1〉 −→ 〈t1; ∆1; Let(z, t2,∆1) • S; H1〉
−→∗ 〈t3; ∆2; Let(z, t2,∆1) • S; H2〉

J〈Γ′; E′; (let# γ = e′1 in e2)〉KS :

〈let# z = t′1 in t2; ∆′1; S; H ′1〉 −→ 〈t′1; ∆′1; Let(z, t2,∆
′
1) • S; H ′1〉

−→∗ 〈t3; ∆′2; Let(z, t2,∆
′
1) • S; H ′3〉

In both J〈Γ; E; (let# γ = e1 in e2)〉KS and J〈Γ′; E′; (let# γ = e′1 in e2)〉KS , the first step
saves the let continuation on the stack. This continuation differs slightly: while the variable and
term stored are equal, the environments differ (∆1 versus ∆′1). However, by lemma A.3, E ⊆ E′,
which means ∆1 ⊆ ∆′1. Therefore, Let(z, t2,∆1) • S v Let(z, t2,∆

′
1) • S, which means we can

apply the induction hypothesis and arrive at states satisfying the proposition.

S Let#b

S Let#b

Γ ` v : τ

Γ′ = Γ • γ:τ

E′ = E, γ 7→ v

〈Γ, E, let# γ = v in e2〉 −→ 〈Γ′, E′, e2〉

J〈Γ; E; (let# γ = v in e2)〉KS :

〈let# z = w in t2; ∆1; S; H〉 −→ 〈w; ∆1; Let(z, t2,∆1) • S; H〉
−→ 〈(w,∆2); ∆1; Let(z, t2,∆1) • S; H〉
−→ 〈t2; z 7→ (w,∆2) •∆1; S; H〉

where ∆2 = fv(w), ∆2 ⊆ ∆1

For the well-formedness of this case, we observe that our final S and H are equal to the output
of J〈Γ; E; (let# γ = v in e2)〉KS , which by lemma B.16 are known to be well-formed. ∆2 is a
subset of the well-formed ∆1, and contains all closed over variables of t2. Therefore, ∆2 ` t2 WF
and H ` ∆2 WF, which means the state is well-formed.
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J〈Γ, γ:τ ; (E, γ 7→ v); e2〉KS : As JEKΓ = (∆, H) and γ represents a term of unboxed kind,
we know that JE, γ 7→ vKΓ,γ:τ = (z 7→ (w,∆1) • ∆1, H). This gives us that J〈Γ, γ:τ ; (E, γ 7→
v); e2〉KS = 〈t2; z 7→ (w,∆1) •∆1; S; H〉. As ∆2 ⊆ ∆1, the state extends the previous state.
Furthermore, by lemma B.16, the state is well-formed.

E Lam, E Lam#, E IntLit, E Forget, E Forget#

Cases impossible, as these do not step.
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Appendix C

Eventual correctness

C.1 Observational equivalence

For our eventual correctness we do not use a decode step, but instead define an observational
equivalence relation ∼= that relates observationally equivalent L and M values. For both L and
M, the only values that can be observed are integers i.

We do not need a full definition of observational equivalence [9] for our proof. Instead, we leave
its definition abstract, and assume the following (in our opinion reasonable) property:

Assumption 7.1 (Compiled integers are observationally equivalent). For any L state 〈Γ; E; iL〉,
if Γ ` v : τ and Γ ` E, then J〈Γ; E; v〉K∅ = 〈iM; ∆; ∅; H〉, and iL ∼= iM.

C.2 Lemmas

Lemma 7.4 (Equivalent states step to equivalent states). Let Q1 = 〈t1; ∆1; S1; H1〉, Q′1 =
〈t′1; ∆′1; S′1; H ′1〉, Q2 = 〈t2; ∆2; S2; H2〉, and Q′2 = 〈t′2; ∆′2; S′2; H ′2〉.

If Q1 v Q′1, Q1 WF, Q′1 WF, and Q′1
∗−→ Q′2, then there exists some Q2 such that Q1

∗−→ Q2

and Q2 v Q′2.

Proof. Straightforward induction from the definition of state well-formedness (definition B.6)
and state extension (definition B.9).

C.3 Eventual correctness

Theorem C.1 (Open eventual correctness). For all 〈Γ; E; e〉, 〈Γ′; E′; iL〉, and S, if 〈Γ; E; e〉 ∗−→
〈Γ′; E′; v〉, J〈Γ; E; iL〉KS = 〈t; ∆; S; H〉, and H ` S WF, then there exists a 〈iM; ∆′; ∅; H ′〉
such that 〈t; ∆; S; H〉 ∗−→ 〈iM; ∆′; S′; H ′〉 and iL ∼= iM.

Proof. By induction on the length of the derivation 〈Γ; E; e〉 ∗−→ 〈Γ′; E′; iL〉.
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Case 〈Γ; E; e〉 = 〈Γ′; E ′; iL〉
As 〈Γ; E; e〉 = 〈Γ′; E′; iL〉, J〈Γ; E; e〉K∅ = J〈Γ′; E′; iL〉K∅ = 〈iM; ∆; S; H〉. By assump-
tion 7.1, iL ∼= iM.

Case 〈Γ1, E1, e1〉 −→ (〈Γ′1; E ′1; e′1〉
∗−→ 〈Γ2; E2; iL〉)

Let Q1 = J〈Γ1; E; e1〉KS = 〈t1; ∆1; S; H1〉 and Q′1 = J〈Γ′1; E′; e′1〉KS = 〈t′1; ∆′1; S; H ′1〉.

By theorem 7.3, there exist an Q2 = 〈t2; ∆2; S2; H2〉 and Q′2 = 〈t′2; ∆′2; S′2; H ′2〉 such that
Q1 −→∗ Q2, Q′1 −→∗ Q′2, Q2 v Q′2, Q2 WF, and Q′2 WF.

Furthermore, by induction we know that there exists a state Q′i = 〈iM; ∆′3; ∅; H ′3〉 such that

Q′1
∗−→ Q′i and iL ∼= iM.

As Q′1 −→∗ Q′2, Q′1
∗−→ Q′i and

∗−→ for M is deterministic, it follows that either Q′1
∗−→ (Q′2

∗→
Q′i) or Q′1

∗−→ (Q′i
∗→ Q′2). We case on these possibilities.

Case Q′1
∗−→ (Q′2

∗→ Q′i)

As Q1 v Q′1 and Q′1
∗−→ Q′i by lemma 7.4 there exists some Qi = 〈iM; ∆3; ∅; H3〉 such that

Q1
∗−→ Qi, which means we are done.

Case Q′1
∗−→ (Qw

∗→ Q′2)

Q′i cannot step further, as its work item is iM, and its stack is empty. Therefore, Q′i = Q′2. As

Q1
∗−→ Q2 and Q2 v Q′2, we have that Q2 is of form 〈iM; ∆2; S2; H2〉, which means we are

done.

Theorem 7.2 (Eventual correctness). If 〈∅; ∅; e〉 ∗−→ 〈Γ; E; iL〉 and J〈∅; ∅; e〉K∅ = 〈t; ∅; ∅; ∅〉,
then there exists a 〈iM; ∆; ∅; H〉 such that 〈t; ∅; ∅; ∅〉 ∗−→ 〈iM; ∆; S; H〉 and iL ∼= iM.

Proof. Corollary from theorem C.1 and the fact that the empty stack ∅ is well-formed w.r.t. any
heap. That is, for any H, H ` ∅ WF.
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Appendix D

Further attachments

D.1 C code

int add3(int a, int b, int c) {

int x = a + (b + c);

return(x);

}

add3(int, int, int):

push rbp

mov rbp, rsp

mov DWORD PTR [rbp-20], edi

mov DWORD PTR [rbp-24], esi

mov DWORD PTR [rbp-28], edx

mov edx, DWORD PTR [rbp-24]

mov eax, DWORD PTR [rbp-28]

add edx, eax

mov eax, DWORD PTR [rbp-20]

add eax, edx

mov DWORD PTR [rbp-4], eax

mov eax, DWORD PTR [rbp-4]

pop rbp

ret
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