
An Introduction to Geometric
Quantization

Author:
Artim BASSANT
6183530

Supervisor:
Dr. Thomas GRIMM

Dr. Gil CAVALCANTI

A thesis submitted in fulfillment of the requirements
for the degree Bachelor Physics and Mathematics

June 15, 2020

http://www.johnsmith.com
http://www.johnsmith.com
http://www.jamessmith.com
http://www.jamessmith.com


ii

“What I am going to tell you about is what we teach our physics students in the third or
fourth year of graduate school... It is my task to convince you not to turn away because you
don’t understand it. You see my physics students don’t understand it... That is because I
don’t understand it. Nobody does.”

Richard Feynman
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Abstract
An Introduction to Geometric Quantization

by Artim BASSANT

6183530

In this thesis, we will be attempting to derive the quantum operators from their
classical analogue. It begins by clearly defining what an observable should be in a
classical system with the help of symplectic geometry. This turns out to be a contin-
uous function on the space of the system. The observable will, therefore, generate a
vector field and a flow.

Now we search for the mapping procedure of classical observables to quantum op-
erators. Dirac defined some properties for quantum operator and this will lead us
to the mapping procedure of prequantization. The mapping procedure closely re-
sembles a connection working on a section of a Hermitian line bundle. Therefore
we will need to prove the existence of such a structure and this will lead us to the
Weil’s integration condition. We have constructed prequantization on a symplectic
manifold with sections that represent the wavefunctions of a quantum system. But
we find that prequantization fails a lot of the cases we introduce it to.

The problem is that the sections are dependant on all coordinates and this is just not
the case in quantum mechanics. Thus a restriction is needed and therefore polariza-
tion was introduced. This brings us to polarized sections where the operators work
on. The polarizations induce their own problems. They need to be preserved when
applying the operator. Or else the sections become "depolarized" and are projected
in a new space of different polarized sections. Observables that do preserve the po-
larization are correctly mapped to their corresponding operators. An example of an
observable that doesn’t preserve the polarization would be the Hamiltonian of a free
particle.

The BKS construction gives us some hope in recovering the Hamiltonian of the free
particle.

We conclude that there are many weaknesses, nonetheless a very insightful and
mostly mathematical rigorous procedure to find correct operators.

HTTPS://WWW.UU.NL/
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Chapter 1

Introduction

When someone has done a course on quantum mechanics they derive the quantum
observables by using symmetries of the space to predict the correct operators. But
we are constrained by the symmetries of space. So it may be interesting to provide
a way of finding observables where we are (almost) free to choose our observables
from the classical systems and give a more mathematical approach to quantum me-
chanics.

Quantization is the attempt at producing these operators from their classical ob-
servables. It may be counterintuitive since quantum mechanics is a refinement of
classical systems and this will have its consequences.

This idea started in 1927 when Hermann Weyl proposed the first quantization called
the Weyl quantization. The attempt was to produce a mapping to simple operators
for phase space, but it did give some nonphysical answers. H.J. Groenewold added
more insight into this idea in 1946. He showed why the quantization procedure
is so restricted. Modern quantization is developed by Bertram Kostant and Jean-
Marie Souriau in the 1970s. There are many more who contributed to Geometric
quantization besides these big names.

Geometric quantization will not only be a mathematical backbone to some quantum
mechanics. It also fulfils the desire to make some sense of how the operators are
produced. We use advanced mathematics, but sometimes it is too sophisticated for
a bachelor thesis. Then we will use physical consequences to argue our way to ge-
ometric quantization. Firstly it is important to identify observables of the classical
system and a way to do this is by using symplectic geometry. When we establish
the mathematical objects in classical systems we can begin with the prequantization.
The prequantization is the very first attempt at mapping the observables to their cor-
responding operators. The mapping is developed by finding a mapping that satisfies
all of Dirac’s conditions.

A quick analysis of the mapping shows that it is dependant on the symplectic poten-
tial and therefore the mapping is not unique and not global. This can be corrected
by introducing a gauge transformation and a Hermitian line bundle such that the
mapping gives us an operator that works on sections rather then functions on the
manifold. When we have fixed the superficial problems we find that prequantiza-
tion fails simple examples. It is clear that prequantization is doomed to fail and the
correction we then apply will result in geometric quantization.

The correction will be to introduce polarizations. This will not be the end of the
procedure because when we make this correction new problems arise such as depo-
larization and inner products that do not converge. Depolarization will result in a
restriction of observables and the BKS construction. The inner product problem will
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be fixed by using half-forms.

Along the way, we will also show that the Fourier transform between position space
and momentum space is just a result of mapping polarizations onto each other.

I will heavily rely on the book from N.M.J. Woodhouse called Geometric Quantization
[1]. It is a very inspiring book and shows how much mathematics is involved in
physics. The book treats this subject in way more detail then I do, so if the reader is
interested in this subject I would highly recommend to read it.
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Chapter 2

Symplectic geometry

2.1 A brief introduction to symplectic geometry

I will assume that the reader does have some knowledge of differential geometry.
But a brief introduction to symplectic geometry may ease the reader a bit. (Some
key definitions of differential geometry will be added in appendix A)

Definition 1 A symplectic vector space is a finite dimensional vector space V with a
closed non-degenerate 2-form ω ∈ Ω2(V) defined on it. The tangent space at a point in V is
equal to the vector space. The symplectic 2-form acts on the elements of the vector space as,

• ω(X, Y) = −ω(Y, X) for every X, Y ∈ V,

• X ⌟ω = 0 only if X = 0,

• ω is bilinear.

A symplectic vector space is often denoted as the pair (V, ω) and has even dimen-
sions.

An example of a symplectic vector space would be the cotangent space. Let V =
T∗Rn and {pa, qa} for a = 1 . . . n is a coordinate system where {qa} are the coordinates
of Rn and {pa} are the coordinates of T∗

x R for x ∈ R. The canonical symplectic 2-
form is ω = dpa ∧ dqa. This space is very useful. It holds all the variables that we
need for an object moving through flat euclidean space.

Definition 2 A symplectic manifold is a smooth manifold M and has a closed non-
degenerate 2-form ω ∈ Ω2(M) defined on it. In other words,

dω = 0, (2.1)

and the map,
Tm M → T∗

m M ∶ X → X ⌟ω (2.2)

is a linear isomorphism at each point in M.

A symplectic manifold is often denoted as the pair (M, ω).
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Proposition 1 (Symplectic frame) Let (V, ω) be a 2n-dimensional symplectic vector space.
Then V has a basis {pa, qa} for all a = 1, . . . , n such that,

ω(qa, qb) = 0, (2.3) ω(pa, pb) = 0, (2.4)

2ω(qa, pb) = δa
b . (2.5)

Definition 3 Let (V, ω) be a symplectic vector space with a symplectic 2-form. For any
X ∈ V then Y ∈ V is symplectic orthogonal to X if ω(X, Y) = 0.

Definition 4 Let (V, ω) be a symplectic vector space with a symplectic 2-form. A subspace
F⊥ of V is called the symplectic complement of F ⊂ V if F⊥ = {X ∈ V∣ω(X, Y) = 0 ∀Y ∈
F}.

Definition 5 Let (V, ω) be a symplectic vector space with a symplectic 2-form. A subspace
L ⊂ V is a Lagrangian subspace if L = L⊥.

Proposition 2 Let (V, ω) be a symplectic vector space and L ⊂ V be a subspace of V. L is
a Lagrangian subspace if and only if ω∣L = 0 and dim L = 1/2 dim V.

We can generalise the Definition of the Lagrangian subspace to a symplectic mani-
fold.

Definition 6 Let (M, ω) be a symplectic manifold and L ⊂ M a submanifold. Then if
TmL ⊂ Tm M has corresponding properties to Definition 5. Then we can identify L as a
Lagrangian submanifold on M.

Notice that a Lagrangian subspace has the property that ω(X, Y) = 0 for all X, Y ∈ L
and has exactly half the dimensions of the symplectic vector space.

Definition 7 Let (V, ω) be a symplectic vector space with a symplectic 2-form. A canon-
ical transformation of a symplectic vector space (V, ω) is a linear map ρ ∶ V → V such
that,

ω(ρX, ρY) = ω(X, Y). (2.6)

For every X, Y ∈ V.

Definition 8 Given two symplectic manifolds (M, ωM), (N, ωN) a diffeomorphism ρ ∶
M → N is a symplectomorphism if ρ∗(ωN) = ωM.

These results can also be applied when a vector space is complex finite-dimensional.
This will make it easier to introduce complex manifolds in section 5.2.3. In the next
chapter, we will show how symplectic manifolds describe a classic system. A very
important theorem will be needed.
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Theorem 1 (Darboux’s theorem) Let (M, ω) be a 2n-dimensional symplectic manifold
and let m ∈ M. Then there exists a neighbourhood U of m and a coordinate system {pa, qa}
with a, b = 1, 2 . . . n such that ω = dpa ∧ dqa in U.

The proof will be added in the appendix. The take away message of this theorem
is that any symplectic manifold holds some local similarities with cotangent spaces
just like in the example. A classical system can be well described when considering
its cotangent space because it can hold position space and momentum space. That’s
why we often choose the symplectic frame to be {pa, qa}. Those are the degrees of
freedom of space and their conjugate momentum.

Definition 9 Let M be a smooth manifold. A (real) distribution is a subbundle of the
tangent bundle. Let D be a distribution of M, then the fibre Dm varies smoothly over m ∈ M.

Definition 10 Let M be a smooth manifold. An integrable distribution is a distribution
that is involutive. Let D be an integrable distribution of M. Then [X, Y] ∈ Dm for all
X, Y ∈ Dm for every point m ∈ M.

Definition 11 Let M be an n-dimensional smooth manifold. A decomposition of M are
disjoint, connected, nonempty, immersed k-dimensional submanifolds Λα of M and they are
called leaves.

M = ∪αΛα (2.7)

Definition 12 Let M be a n-dimensional smooth manifold and there is a coordinate system
{qa} for a = 1, . . . , n. A set of leaves are called a foliation if there is for every neighbourhood
of a point in M a smooth chart (U, ϕ) on M which ϕ(U) is a cube in Rn. Such that for each
leaf Λα intersects U in either the empty set or a countable union of k-dimensional surfaces of
constant qk+1, qk+2, . . . qn.

The next theorem tells us that when we have an integrable distribution, then we
have a foliation.

Theorem 2 (Global Frobenius theorem) Let D be an involutive distribution on a smooth
manifold M. The collection of all maximal connected integral manifolds of D forms a foliation
of M.

An example would be: Consider a smooth manifold C and a 2-form σ. Then we can
define,

Km = {X∣X ⌟ σ = 0} ⊂ TmC (2.8)

If σ is defined such that Km is dimensionally constant as m varies over C. Then K is
is a distribution on C and called the characteristic distribution of σ.

Let X, Y ∈ VK(C) and for all W ∈ V(C),

dσ(X, Y, W) = −σ([X, Y], W)1

Thus whenever σ is closed then the distribution has for every X, Y ∈ Kc that [X, Y]⌟
σ ∈ Kc for every point c ∈ C. We conclude that the characteristic distribution of σ is

1This follows from the identity dα(Xi, Xk, Xl) = 1
3! ∑ sgn(σ)Xσ(i)α(Xσ(k), Xσ(l)) −

3
2

1
3! ∑ sgn(σ)α([Xσ(i), Xσ(k)], Xσ(l))
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integrable. Thus by the Global Frobenius theorem also a foliation. Then we call it
the characteristic foliation.

Definition 13 Let C be a smooth manifold and K is a foliation on C. A foliation is called
reducible if the space C/K of leaves is a Hausdorff manifold.

Definition 14 Let the pair (C, σ) be a smooth manifold and a 2-form that is closed and of
constant rank. (C, σ) is a presymplectic manifold whenever the characteristic foliation is
reducible.

Definition 15 Let C be a smooth manifold and K is a distribution on C. The set of vector
fields that are symplectic orthogonal to every element of distribution K is denoted as VK(C).
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Chapter 3

Classical systems

3.1 Lagrangian and Hamiltonian mechanics

In this section, we will reveal what an observable should be in a classical system.
Such that we can develop the mapping from classical observables to quantum oper-
ators. We will also prove that there always exists a local symplectic potential. This
will bring us to the local generating function which can describe a Lagrangian sub-
manifold. After that, a quick introduction on how to calculate a symplectic 2-form
for a system with a Lagrangian.

In the last section, we showed the basics of symplectic geometry. We have chosen
to use this mathematics because it is a very natural way of describing how classical
systems behave. A classical observable is some parameter of the classical system
that can be measured and it should generate a set of canonical transformations. For
example, the Hamiltonian of a classical system generates time evolution. Given a
symplectic manifold (M, ω) that describes a given classical system. Then these clas-
sical observables are smooth functions on the phase space f ∈ C∞(M).

When searching for the canonical transformation of a classical observable then we
have to introduce a vector field X f generated by f .

Definition 16 Let (M, ω) be a symplectic manifold with a symplectic 2-form. Given a
classical observable f ∈ C∞(M). Then the Hamiltonian vector field is defined by,

X f ⌟ω − d f = 0. (3.1)

An argument for this definition can be made when the observable is the Hamiltonian
h ∈ C∞(M). Let us consider a region in M small enough such that Darboux’s theorem
can be applied with the coordinate system {pa, qa} with a, b = 1, 2 . . . n, therefore the
symplectic 2-form has the form ω = dpa ∧ dqa. Let the Hamiltonian vector field be
of the form Xh = g ∂

∂pa
+ f ∂

∂qa with g, f ∈ C∞(M). Then the equation (3.1) gives the
equality,

− gdqa + f dpa − dh = −gdqa + f dpa −
∂h
∂pa

dpa −
∂h
∂qa dqa = 0. (3.2)

This equation implies that Xh = − ∂h
∂qa

∂
∂pa

+ ∂h
∂pa

∂
∂qa . When calculating the flow we find,

∂h
∂qa = −ṗa, (3.3)

∂h
∂pa

= q̇a. (3.4)
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The dot represents the time derivative. These equations are exactly Hamilton’s equa-
tions. The space of Hamiltonian vector fields is denoted by VH(M).

Consider γ(t) an integral curve of Xh, where h is the Hamiltonian. For an observable
f to be conserved in time, it has to satisfy d

dt( f ○ γ) = 0. This can also be seen as the
Poisson brackets { f , h} ∶= ω(X f , Xh) = d f (Xh) = 0.

Lemma 1 (Local Exactness of Closed forms) Let M be a smooth manifold with or with-
out a boundary. Each point of M has a neighbourhood on which every closed form is exact.

This is corollary 17.15 from source [3].

I will give a quick proof of how a closed 1-form φ ∈ Ω1(M) is exact in a neighbour-
hood of a point m ∈ M.

Lemma 2 Let there be a closed covector field φ ∈ Ω1(M) on a smooth manifold M. Then
every point of M has a neighbourhood on which φ is exact.

Proof Let m ∈ M be arbitrairy and φ = φidui for i = 1, . . . , n is closed. Then choose
a ball U ⊂ M that is in the neighbourhood of m and containing m. A ball is convex,
thus also simply connected. Choose a c ∈ U. Apply a translation to U such that
c = 0. A translation is a diffeomorphism, therefore closed forms stay closed forms
and exact ones stay exact. Since U is simply connected we can define a path for any
point u ∈ U such that γu ∶ [0, 1] → U with the expression γu(t) = tu. The image of
the path for every u is fully contained in U. Now we can use this line segment γu to
define an integral. Define a function f ∶ U → R by,

f (u) = ∫
γu

φ. (3.5)

The integral exists because the line segment is smooth and φ is bounded.

We need to show that f is a potential of φ. This implies that ∂ f
∂uj = φj for j = 1, . . . , n.

Let’s compute f and use the summation convention,

f (u) = ∫
1

0
φγu(t)(γ′u(t))dt = ∫

1

0
φi(tu)uidt. (3.6)

Now let’s compute the partial derivatives.

∂ f
∂uj = ∫

1

0
t

∂φ

∂uj ui + φj(tu)dt (3.7)

Note that the integral and the partial derivative can be changed places because the
integral is smooth over all of its variables. Remark that d

dt(tφj(tu)) = t ∂φ

∂uj ui + φj(tu).

∂ f
∂uj = ∫

1

0

d
dt

(tφj(tu))dt = [tφj(tu)]
1

0
= φj(u) (3.8)

Hereby we have shown that there exists a locally exact form of a 1-form on a smooth
manifold. ∎
If we consider (M, ω) a symplectic manifold then lemma 1 tells us that every sym-
plectic 2-form is exact in a neighbourhood of every point in M.
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Definition 17 Let (M, ω) be a 2n-dimensional symplectic manifold and a symplectic 2-
form. Then a symplectic potential is a 1-form θ ∈ Ω1(M) such that dθ = ω in a neigh-
bourhood of a point in M.

When Darboux’s theorem is applicable then the symplectic potential θ ∈ Ω1(M) can
be of the form θ = padqa in the coordinate system {pa, qa}. Note that we can add du
with u ∈ Ω0(M) to the symplectic potential without changing the symplectic 2-form
ω. This will be a concern when dealing with prequantization.

With this new insight we can again look at a Lagrangian submanifold L ⊂ M where
ω∣L = 0 and dimL = (dimM)/2. The 2-form vanishes on the Lagrangian submanifold
with the consequence that 0 = ω∣L = dθ∣L the symplectic potential is closed on the
Lagrangian submanifold. Thus lemma 1 implies that there exists an S ∈ C∞(M)
such that θ∣L = dS∣L on a neighbourhood for every point in L.

Definition 18 Given (M, ω) a symplectic manifold with a symplectic potential θ ∈ Ω1(M)
and let L be a Lagrangian submanifold on M. Then a generating function is a function
S ∈ C∞(M) such that dS∣L = θ∣L in a neighbourhood of every point in L.

Let L be the Lagrangian submanifold of a symplectic manifold M. When the region
on L is small enough, then we have that the symplectic potential is θ = padqa and
θ∣L = ∂S

∂qa dqa∣L. There exists such a generating function S for a neighbourhood of every

point in L, thus we can define the Lagrangian submanifold also as L = {pa = ∂S
∂qa }.

Notice that this is the formula for the Hamilton-Jacobi theory. Once S is identified
with canonical transformation produced by the Hamiltonian, one can identify S as
the action integral.

3.1.1 Application and limits of the symplectic 2-form

One might ask after reading this how it can be applied to any classical system. Well,
when dealing with a space of motion we can make it into an even dimensionally
space by also considering the tangent spaces or the space of velocities. We establish
the coordinate system {q1, . . . , qn, v1, . . . , vn} and let va = q̇a. In any classical system
we have an action integral that governs the motion of the objects.

I = ∫
t2

t1

L(q, v)dt (3.9)

Where L ∈ C∞(R2n) is the Lagrangian defined as the kinetic energy minus the po-
tential energy. Any object in the system tries to minimise its action. We can find the
differential equation that minimises the action via the Euler-Lagrange equation.

d
dt

( ∂L
∂va )−

∂L
∂qa = 0 (3.10)

This implies that there are trajectories that objects follow. These trajectories usually
fill the space. Thus every point has one trajectory with a derivative in tangent space.
These vectors combined create a vector field X. This vector field has to satisfy,

X ⌟ωL + dh = 0. (3.11)
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Where we define the closed 2-form as,

ωL =
∂2L

∂qa∂vb dqa ∧ dqb + ∂2L
∂va∂vb dva ∧ dqb. (3.12)

And define the Hamiltonian as the Legendre transformation of the Lagrangian.

h = va ∂L
∂va − L (3.13)

ω defines a symplectic structure in the space of the classical system C. But this
definitely doesn’t have to be the case!

Definition 19 Let C be a smooth vector space and ωL a closed 2-form on C. C is a classical
system where there is a Lagrangian L ∈ C∞(C) defined. The Lagrangian is regular whenever
ωL is everywhere non-degenerate or equivalently,

det[ ∂2L
∂va∂vb ] ≠ 0. (3.14)

When L is regular then (3.11) is equivalent to (3.10).

When L is irregular (or does not satisfy Definition 19). Then equation (3.11) doesn’t
have to be satisfied and ωL is degenerate! This can be solved in some cases by a
special choice of vector field. But when the space resembles a presymplectic space
(C, ωL) you could try to reduce it to a symplectic space. Where ωL projects on some
symplectic structure ω′ on M′ = C/K. We call (M′, ω′) the reduction of (C, ωL) or the
reduced phase space. I consider this one of the first weaknesses of using this method.
When it is not possible to reduce the space to a symplectic space, then it can’t be
quantized.
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Chapter 4

Prequantization

4.1 Dirac’s quantization conditions

Quantization has been developed to show that quantum mechanical observables can
(in some cases) be derived from there classical counterparts. Let us take a step back
and look at what there has to be done. We already established that any observable
in classical mechanics is a smooth function on a symplectic manifold. Somehow we
have to find a way to link the classical observables to their quantum operators such
that we have a map of Q ∶ C∞(M)Ð→ O. WhereO is the set of all operators that can
act on wavefunctions in the Hilbert spaceH of the quantum system.

Dirac suggested some conditions for the map that are crucial ([1]). Q ∶ C∞(M) Ð→
O ∶ f Ð→ f̂ and let f̂ denote the quantum operator associated with the classical
observable f .

• (Q1) If f is constant, then f̂ corresponds to multiplication with f .

• (Q2) The map f Ð→ f̂ is linear ( (λ f + νg)
⋀

= λ f̂ + νĝ with f , g ∈ C∞(M) and
λ, ν ∈ C).

• (Q3) If { f , g} = h, then [ f̂ , ĝ] = f̂ ĝ − ĝ f̂ = −ih̄ĥ

Q1 andQ2 are quite simple conditions and they are very natural when working with
quantum mechanics. ButQ3 implies that Poisson brackets are the classical analogue
of the commutators. There are just three conditions and one could probably imagine
more of them.

We will see that these conditions alone will lead to reducible representations of quan-
tum operators. Thus we will inevitably have to impose more conditions. Quoting A.
Carosso [2]: "We note by the deep Groenewold-van Hove (GvH) theorem, no such
"Dirac" map is sufficient for the construction of irreducible representation; extra con-
ditions must be imposed, and this will be the central failure of our first attempt at
quantization." Woodhouse [1] explained it as if H is way too large and that restric-
tions are needed. Before we impose extra conditions or restrictions to H we will
make do with the standard conditions given by Dirac. This is called prequantization
and keep in mind that it will fail at some point.
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4.2 Mapping observables

Let f be a classic observable on the symplectic manifold (M, ω) and f̂ is the observ-
able in quantum systems. Observables in quantum systems are operators that act on
the Hilbert space of that quantum system. We call elements of the Hilbert space that
are square integrable wavefunctions ψ. We will be guessing and tweaking our way
to the mapping procedure.

A good guess would be f̂ ψ = −ih̄X f ⌟ dψ with ψ ∈H. The map would satisfyQ2 and
Q3. But when f would be constant then it’s vector field is 0 and doesn’t produce the
multiplication. Thus another guess would be f̂ ψ = (−ih̄X f ⌟ d + f )ψ. It fixes Q1, but
now it fails Q3.

When checking Q3 we find, [ f̂1, f̂2]ψ = −ih̄(−ih̄X f3 ⌟ d + f3)ψ − ih̄ f3ψ ≠ −ih̄ f̂3ψ. We
have to get rid of the term −ih̄ f3. We can fix this by adding another term,

f̂ ψ = −ih̄[X f ⌟ dψ − i
h̄
(X f ⌟ θ)ψ]+ f ψ. (4.1)

Where θ is the symplectic potential. This is called the Kostant-Souriau prequantum
operator. This mapping procedure satisfies all of Dirac’s conditions. But notice that
the quantization is now dependant on the symplectic potential. Some ambiguities
arise here.

When we introduced the symplectic potential, we said that it is not unique and there
could always be some du with u ∈ C∞(M) added without affecting the symplectic
2-form. This will be a problem because now the operator can be dependant on du.
Therefore f̂ is not unique and then there is no reason to choose which "variant" is
physically correct. But there is still some hope. If we allow gauge invariance we
could make it work. Gauge invariance was introduced to the English language by
Hermann Weyl and came from the german word Eichinvarianz. the goal for this
invariance is that we can change a parameter of the equation and if we accordingly
change the rest, we would still have the same physics.

Let θ′ = θ + du and f is a classical observable. Then we can compute f̂ ′ by θ′ and f̂
by θ. Then there follows f̂ ′ = f̂ − (X f ⌟ du). When we make a phase change eiu/h̄ to
the wavefunction then,

f̂ ′(eiu/h̄ψ) = eiu/h̄( f̂ ′(ψ)+ (X f ⌟ du)ψ) = eiu/h̄ f̂ (ψ). (4.2)

We can see that the gauge transformation is paired with some kind of phase change.
If we combine the gauge change θ′ Ð→ θ with the phase change ψ′ Ð→ eiu/h̄ψ. Then
f̂ becomes unique, but at the cost that the phase of a wavefunction is ambiguous.

Another ambiguity is that the symplectic potential doesn’t have to be globally de-
fined.

There is some way to clear things up by recognising that X f ⌟ d − i
h̄(X f ⌟ θ) closely

resembles a directional connection X f ⌟∇ = ∇X f on a Hermitian line bundle.

This implies that f̂ must not act on just wavefunctions but rather on sections of
Hermitian line bundles over the manifold.

The structure we need is a Hermitian line bundle with a connection that mimics
the operator mapping we just found. We give a quick introduction to Hermitian
line bundles in appendix B. The sections on the Hermitian line bundle will serve as



4.2. Mapping observables 13

wavefunctions and the connection of the Hermitian line bundle is chosen such that it
represents the term between the square brackets in the Kostant-Souriau prequantum
operator.

Definition 20 (Prequantization) (M, ω) is a symplectic manifold and when there exists
a projection π ∶ B Ð→ M that is a Hermitian line bundle with a connection ∇ = d − i

h̄ θ and
Hermitian metric (⋅, ⋅). Then the manifold can be quantized. Let f ∈ C∞(M) be a classical
observable with the Hamiltonian vector field X f . s ∈ Γ(B)1 is the section of B. Then the
quantization map is,

Q ∶ f Ð→ f̂ ∶ Q( f )(s) = f̂ (s) = −ih̄∇X f s + f s. (4.3)

We call this Definition the prequantization, because this is the mapping procedure
defined from only Dirac’s conditions. We can construct any section by multiplying a
wavefunction and a unit section u. Such that s ∶= ψu ∶ M Ð→ B with (u,u) = 1. This is
a natural way of thinking about these sections because ψ is a wavefunction. There-
fore we consider the sections to be the elements of the Hilbert space. The Hilbert
space is an infinite-dimensional vector space with an inner product. Let’s define this
for sections as,

⟨s, s′⟩ ∶= ∫
M
(s, s′)ε. (4.4)

With ε as the Liouville measure of the symplectic manifold and (⋅, ⋅) the Hermitian
metric.

ε = ( 1
2π h̄

)
n

ω ∧ ⋅ ⋅ ⋅ ∧ω = ( 1
2π h̄

)
n n
⋀
i=1

ω (4.5)

The factor ( 1
2πh̄)

n can be explained because ω has physical units that have to be
cancelled out such that the wavefunction does not have any relation with physical
units. This choice does resemble the typical quantum mechanics inner product when
s = ψu and s′ = ψ′u.

⟨s, s′⟩ = ⟨ψ, ψ′⟩ = ∫
M

ψ̄ψ′ε (4.6)

And because of this only square-integrable wavefunction (and thus also sections)
are the only viable wavefunctions.

1Γ(B) is the space of sections s ∶ M Ð→ B.
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4.2.1 Weil’s integration condition

In our definition of prequantization we said that when there exists such a Hermitian
line bundle then we can use prequantization. This alludes to some condition that
has to be satisfied. Because there doesn’t have to exist a Hermitian line bundle with
the desired connection.

The condition we will be introducing is the Weil’s integration condition.

Theorem 3 (The existence of an Hermitian line bundle) Let (M, ω) be a symplectic
manifold. The class of (2π h̄)−1ω ∈ Ȟ2(M, R) lies in the image of Ȟ2(M, Z) if and only if
there exists an Hermitian line bundle and a connection ∇ with curvature h̄−1ω.

Proof

Let’s begin with the assumption that the class of (2π h̄)−1ω is an element of Ȟ2(M, Z).
There exists a good cover U = {Ui∣i ∈ I} in M. On every Ui there exists a symplectic
potential θi ∈ Ω1(Ui). The set {θi∣i ∈ I} is an element of Č0(M, Ω1(M)).

When Uij = Ui ∩Uj ≠ ∅ (this convention will be used throughout the proof) then on
this intersection we can define θi − θj. This expression is exact because dθi − dθj =
ω −ω = 0. Thus there exists another primitive d fij = θi − θj. The set { fij∣i, j ∈ I} is an
element of Č1(M, Ω0(M)).

Now consider when three patches overlap Uijk ≠ ∅, then define cijk = (2π h̄)−1( fij +
f jk + fki) restricted to the intersections of their patches.

When we take the exterior derivative we find (2π h̄)−1d( fij + f jk + fki) = (2π h̄)−1(θi −
θj + θj − θk + θk − θi) = 0.

Thus we find that cijk = (2π h̄)−1( fij + f jk + fki) has to be constant on Uijk. The set
{cijk∣i, j, k ∈ I} is then an element of Č2(M, R) and an element of the class of (2π h̄)−1ω

and because of the assumption also an element of Č2(M, Z). Then (2π h̄)−1( fij + f jk +
fki) has to be an integer!

Now we can focus on proving the existence of a Hermitian line bundle.

Construct a transition function gij = exp[i fij/h̄] on Uij. Also let (2π h̄)−1( fij + f jk +
fki) = n. The transition function is skew symmetric gii = e0 = 1 and is cocyclic
gijgjkgki = exp[i/h̄( fij + f jk + fki)] = exp[2π h̄in/h̄] = exp[2πin] = 1 because n is an
integer.

Proposition 2.1 (Notes on the masterclass differential geometry from Gil Cavalcanti [4])
shows us that there exists a line bundle B Ð→ M whenever a transition function is
constructed and satisfies the skew-symmetric and cocyclic condition.

Because the transition functions are all complex and of unit length, it suffices to use
the norm of C on each patch Ui to define a Hermitian structure on B. Such that B
becomes a Hermitian line bundle.

The rule (Appendix B.3) on how the connection changes depending on the transition
function is,

d log gij =
i
h̄

d fij = i(θi/h̄ − θj/h̄). (4.7)

Then θi/h̄ is the connection which leads us to a curvature ω/h̄. ∎
Conversely, suppose we have a Hermitian line bundle B Ð→ M with a connection
with curvature ω/h̄. We have a local trivialisation on B relative to some open cover



4.2. Mapping observables 15

{Ui}. Let those transition functions be {gij} on Ui ∩Uj ≠ ∅. Then define on Uijk ≠ ∅,

zijk =
1

2πi
(log gij + log gjk + log gki). (4.8)

The transition functions satisfy the cocycle condition, thus zijk ∈ Z. And when we
look at the exterior derivative of z then,

dzijk =
1

2πi
i
h̄
(d log gij + d log gjk + d log gki) =

1
2π h̄

(θi − θj + θj − θk + θk − θi) = 0. (4.9)

We used the rule how transition function change the connection (d log gij = i(θi/h̄ −
θj/h̄)). It is logical we would find 0 because zijk is constant, but 2π h̄z does this by
representing a cocycle of the class (2π h̄)−1ω in Ȟ2(M, R). And this shows that it is
needed that (2π h̄)−1ω lies in Ȟ2(M, Z) such that these zijk can exist. ∎
When M is simply connected, then we can refer to a simpler condition that follows
from the theorem above.

Theorem 4 (Weil’s integration condition) For a 2n-dimensional symplectic manifold (M, ω)
with M simply connected. If,

∫
Σ

ω = 2π h̄n. (4.10)

For an orientable closed 2-surface Σ ⊂ M and n ∈ Z. Then there exists a Hermitian line
bundle with the appropriate connection (∇ = d − i

h̄ θ) and Hermitian structure that allows
for quantization.

4.2.2 not simply connected manifolds

Let us consider when (M, ω) is a symplectic manifold and M is not simply con-
nected. Then we cannot use Weil’s integration condition. Not simply connected
manifolds can still satisfy theorem 3. In these cases, we will see that the connection
and Hermitian line bundles are not unique up to equivalence and an example that
we are going to look at is M = T∗S1 ≅ R× S1 (from source [6]).

M is clearly a smooth manifold. Let {p} be the basis in R and {φ} be the basis in S1

such that we can define a symplectic 2-form ω = dp ∧ dφ.

This 2-form is exact and has a globally defined symplectic potential θ = pdφ. When
we consider a line bundle B Ð→ M with connection ∇ = d − i

h̄ θ. We can add λdφ
with λ a real constant to the symplectic potential without changing the symplectic
2-form.

θλ = θ − h̄λdφ, (4.11) ∇(λ) = d − i
h̄

θ + iλdφ. (4.12)

Which implies that there exists a family of line bundles Bλ. Let’s apply the quanti-
zation mapping of definition 20 to p with the new connection ∇(λ) = d − i

h̄ θ + iλdφ.

p̂(λ) = −ih̄
∂

∂φ
+ h̄λ (4.13)

These operators have spectrums which are sets of eigenvalues. We will now look
for the set of eigenvalues of p̂(λ). We know that a function on M should be periodic
in the φ basis, thus an eigenfunction would be of the form ψ ∝ einφ. This function
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gives us the eigenvalues {h̄(n + λ)∣n ∈ Z}. Where λ only takes values between [0, 1)
or else there will be multiple equivalent eigenvalues. This set shows us that the set
Bλ gives for all λ ∈ [0, 1) inequivalent p̂(λ).

There are some physical consequences from this such as the Aharanov-Bohm effect.

4.3 Quantization for flows of complete Hamiltonian vector
fields

We already established that working with a Hermitian line bundle π ∶ B Ð→ M on
the symplectic manifold (M, ω) is the right choice. We call B the prequantum bundle.
So for this chapter we will assume that the symplectic manifold (M, ω) has a class
of (2π h̄)−1ω ∈ Ȟ2(M, R) that lies in the image of Ȟ2(M, Z). Such that theorem 3
reassures us that a Hermitian line bundle with the desired connection exists.

Let z be an element on a fibre of B. Then lift the Hamiltonian vector field generated
by f ∈ C∞(M) to,

Vf = X f + ih̄−1L f z∂z Vf ∈ TB. (4.14)

Where X f is the Hamiltonian vector field of f and L f = X f ⌟ θ − f . Assume that X f is
complete, then Vf is also complete. Notice that it doesn’t change the vector field in
M. Thus π∗Vf = X f .

We will argue that this vector field in the tangent space of the prequantum bundle is
well chosen because it preserves some important structures. A very important one
is that it is gauge invariant. This will result in uniqueness for every observable. Vf
has the flow ξt that preserves the fibres of B and projects on the canonical flow.

For a generic vector field in the tangent space of the prequantum bundle that projects
on the Hamiltonian vector field would have the explicit form V = X f + ż∂z

We can solve for ż(t) = i
h̄ L f (t)z(t). This will result in z(t) = z(0)exp[ i

h̄ ∫
t

0 L f (t)dτ],
where the integral is over a path in X f . B can typically be trivialised by M ×C. Then
we could write the flow as a coordinate in M and one in C,

ξt(m, z) = (ρtm, z0exp[ i
h̄ ∫

t

0
L f (t)dτ]). (4.15)

Thus when the action of ξt is applied to sections s ∈ Γ(B) we get,

ξt[s(m)] = s(m)exp[ i
h̄ ∫

t

0
L f (t)dτ]. (4.16)

The flow of the quantization will then be defined as,

ξt[ρ̂ts(m)] ∶= s(ρtm). (4.17)

We can now use 4.16 to find a more explicit form of 4.17,

ρ̂ts(m) = s(ρtm)exp[− i
h̄ ∫

t

0
L f (t)dτ]. (4.18)
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The integral is over the path produced by ρt(m). Notice that when the observable
is the Hamiltonian of a system then Lh is the proper Lagrangian. We just found that
the flow of a quantized Hamiltonian produces the action integral. The flow of the
Hamiltonian should produce time evolution, but remember that the standard time
evolution in quantum mechanics is given by exp[−itĥ/h̄]. This is one of the first
discrepancies we will see.

4.4 Failure of the prequantization

4.4.1 Prequantization on replicating canonical quantization

After all this mathematical machinery and arguments we have not checked if it is
consistent with the known theory.

A useful baseline is canonical quantization. It produces experimentally correct an-
swers and thus is definitely true (as far as we know). Canonical quantization pre-
dicts that momentum (pa) and position (qa) are the quantum operators,

p̂a = −ih̄
∂

∂qa , (4.19) q̂a = qa. (4.20)

Now we established what we should find. We can look at what prequantization
predicts by using definition 20. First we define our space to be M = T∗Q with Q
as the configuration space (Throughout this thesis, Q = Rn). Where {qa} are coor-
dinates of Q and {pa} coordinates of the cotangent space of Q. Together they make
a symplectic frame {pa, qa}. Define the symplectic 2-form to be ω = dpa ∧ dqa and
the symplectic potential is θ = padqa. The existence of a prequantum bundle with
the correct connection is trivially shown by the Weil’s integration condition. The
connection will be defined as ∇ ∶= d − ih̄−1θ. First we have to find the vector field
generated by pa and qa. Let such a vector field have the form X f = x f ∂/∂qa + y f ∂/∂pa.
Then we can compute the vector field for pa,

Xpa ⌟ω − dpa = xpdpa − ypdqa − dpa = 0. (4.21)

There follows that xp = 1 and yp = 0. Thus the vector field is Xpa = ∂/∂qa.

p̂a = −ih̄[ ∂

∂qa −
i
h̄
( ∂

∂qa ⌟ padqa)]+ pa = −ih̄
∂

∂qa − pa + pa = −ih̄
∂

∂qa . (4.22)

This is exactly what we would expect from the quantization of pa.

For qa we will do the same computation,

Xqa ⌟ω − dqa = xqdpa − yqdqa − dqa = 0. (4.23)

There follows that xq = 0 and yq = −1. Thus the vector field is Xqa = −∂/∂pa.

q̂a = −ih̄[− ∂

∂pa
− i

h̄
(− ∂

∂pa
⌟ padqa)]+ qa = ih̄

∂

∂pa
+ qa ≠ qa (4.24)

This is a discrepancy with the canonical quantization. We have an extra dependence
on pa what causes this problem. The solution is to restrict the sections such that in
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this case it isn’t dependant on pa and qa at the same time. This will be further treated
in the next chapter.

4.4.2 prequantization on replicating a Hamiltonian operator

When we consider the same space as before and we define the Hamiltonian to be
h = 1

2m p2. The standard physics textbook on quantum mechanics will tell you that
this will give the operator,

ĥ = − h̄2

2m
∇2. (4.25)

Let’s again use definition 20 to compute the operator produced by prequantization.
The Hamiltonian vector field will be,

Xh ⌟ω − dh = xhdpa − yhdqa − 1
m

padpa = 0. (4.26)

This implies that xh = 1
m pa and yh = 0. Now we can compute the operator,

ĥ = −ih̄[ 1
m

pa
∂

∂qa −
i
h̄
( 1

m
p2)]+ 1

2m
p2 = −ih̄

m
pa

∂

∂qa −
1

2m
p2. (4.27)

Again we have found that prequantisation fails at this point. It is maybe not directly
obvious, but what went wrong is that prequantisation struggles with operators of
degrees higher than one. In the next chapter we will use BKS construction to deal
with Hamiltonian’s that are dependant on a momentum term of degree 2.
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Chapter 5

Geometric Quantization

5.1 Introduction

After the semi-success of prequantization. It still fails to predict one of the simplest
operators. But in section 4.4 we concluded what went wrong and in this chapter,
we will make an effort to correct these problems and make sure it reproduces what
first failed. The first problem was that the sections are dependant on all the coor-
dinates and this is not the case when dealing with quantum systems. So we have a
natural way to restrict these section by introducing polarizations. When we intro-
duce polarizations we immediately want to introduce complex structures, because
some manifolds behave exceptionally well when they are complex with a positive
complex structure.

The polarizations will bring their own problem and we will attempt to fix it. The
problem is that when the vector field of a classical observable doesn’t preserve the
polarization then the section who are restricted may not have the same restrictions
after applying the operator of that observable and this is nonphysical. It will result
in a restriction of possible observables and the BKS construction. Another problem is
that when defining the inner product of sections on a manifold with a polarizations
with real directions then there is the possibility that the inner product will never
converge for non-vanishing polarized sections. This is discussed in section 5.5. We
solve this by modifying the prequantum bundle.

5.2 Polarization

5.2.1 Real polarizations

Definition 21 Consider a symplectic manifold (M, ω), then a real polarization P ⊂ TM
is an integrable distribution where the fibres are Lagrangian subspaces of Tm M for all m ∈ M.
Thus a polarization is a distribution that satisfies,

• Fibre wise Lagrangian,

• Integrable.

An example for when M = T∗Rn is the cotangent space and we have the coordinate
system {pa, qa} for a = 1 . . . n. M is a symplectic manifold when we define the sym-
plectic 2-form to be ω = dpa ∧ dqa. A possible distribution is the subbundle D ⊂ TM
that is spanned by {∂/∂pa} for a = 1 . . . n. This subbundle is involutive and therefore
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also integrable. By the global Frobenius theorem this distribution implies a foliation
on M. This is the vertical foliation and it is the union of surfaces of constant q.

For every two elements of the distribution X, Y ∈ Dm at a point m ∈ M. We can show
that ω(X, Y) = 0 and dim Dm = 1/2 dim Tm M for all m ∈ M, thus Lagrangian. The
vertical foliation is, therefore, a polarization.

When a function f is constant on every leaf of the polarization we can show that it’s
vector field has to be symplectic orthogonal to the leaves. When f is constant on
a leaf Λ, then d f ∣Λ = 0. Thus the formula for the vector field becomes 0 = d f ∣Λ =
X f ⌟ω∣Λ. This implies that X f is symplectic orthogonal to the polarization.

5.2.2 Complex Manifolds

Life does sometimes have to be a bit more "complex" then only real dimensions.
Introducing complex manifolds will give us insight into the Kähler manifold. The
Kähler manifold is particularly interesting for geometric quantization because it is
extraordinarily well-behaved.

Definition 22 A n-(complex)dimensional complex manifold M is a manifold with a com-
plete complex atlas,

A = {(Uα,Vα, ϕ)∣α ∈ I}. (5.1)

Where I is the index set, M = ⋃α Uα, Vα are open subsets of Cn, and the maps ϕα ∶ Uα Ð→ Vα.
These maps have the property that ψαβ = ϕβ ○ ϕ−1

α is biholomorphic. Which is that ψαβ is a
bijection where both the map and the inverse of the map are holomorphic.

Definition 23 Let M be a smooth manifold. A complex structure on M is a linear trans-
formation on the tangent space.

m Ð→ Jm ∶ Tm M Ð→ Tm M (5.2)

And J2
m = −Id.

When multiplying complex scalars (x + iy) ∈ C with X ∈ TM then we compute it as,

(x + iy)X = xX + yJX. (5.3)

Vectors spaces can be complexified. Let C be a vector space with a complex structure
J. Then the complexified vector space can be constructed from X + JY ∈ CC for all
X, Y ∈ C.

Definition 24 Let (M, ω) be a symplectic manifold and a symplectic 2-form with a complex
structure J. The complex structure is compatible with the symplectic 2-form when we can
define a positive nondegenerate symmetric bilinear form on M,

m Ð→ gm ∶ Tm M × Tm M Ð→ R ∶ gm(X, Y) = ωm(X, JY). (5.4)

For every point m in M.

Definition 25 Let (M, ω) be a symplectic manifold with a complex structure J. J is positive
if the nondegenerate symmetric bilinear form g is positive definite.
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Suppose that M is a complex manifold and a complex structure J. Let U be a neigh-
bourhood of a point m in M with real coordinates {pa, qa} for a = 1 . . . n and complex
coordinates za = pa + iqa.

Tm M = R− span{ ∂

∂qa ∣
m

,
∂

∂pa
∣
m
} (5.5)

Tm M⊗C = C− span{ ∂

∂qa ∣
m

,
∂

∂pa
∣
m
} (5.6)

= C− span{1
2
( ∂

∂pa
− i

∂

∂qa )∣
m
}⊕C− span{1

2
( ∂

∂pa
+ i

∂

∂qa )∣
m
} (5.7)

The first term of (5.7) denotes the vectors with eigenvalues i of J and are called the
(1,0)-vectors and the eigenspace is denoted by T(1,0).

J
1
2
( ∂

∂pa
− i

∂

∂qa ) = i
2
( ∂

∂pa
− i

∂

∂qa ) (5.8)

The second term of (5.7) denotes the vectors with eigenvalues −i of J and are called
the (0,1)-vectors and the eigenspace is denoted by T(0,1).

J
1
2
( ∂

∂pa
+ i

∂

∂qa ) = −i
2
( ∂

∂pa
+ i

∂

∂qa ) (5.9)

Definition 26 M is a complex manifold and a complex structure J. Let U be a neighbour-
hood of a point m in M with real coordinates {pa, qa} for a = 1 . . . n. Define,

∂

∂za = 1
2
( ∂

∂pa
− i

∂

∂qa ), (5.10)
∂

∂z̄a = 1
2
( ∂

∂pa
+ i

∂

∂qa ). (5.11)

We can define something very similar for the dual of the tangent space.

Definition 27 M is a complex manifold and a complex structure J. Let U be a neighbour-
hood of a point m in M with real coordinates {pa, qa} for a = 1 . . . n. Define,

dza = dpa + idqa, (5.12) dz̄a = dpa − idqa. (5.13)

There are different possible forms on U. For 1 forms,

Ω(1,0)(U; C) = {∑
a

badza∣ba ∈ C∞(U, C)},

Ω(0,1)(U; C) = {∑
a

badz̄a∣ba ∈ C∞(U, C)}.

For 2 forms,
Ω(2,0)(U;C) = {∑

a<k
ba,kdza ∧ dzk∣ba,k ∈ C∞(U, C)},

Ω(1,1)(U; C) = {∑
a,k

ba,kdza ∧ dz̄k∣ba,k ∈ C∞(U, C)}.

Ω(0,2)(U; C) = {∑
a<k

ba,kdz̄a ∧ dz̄k∣ba,k ∈ C∞(U, C)}.
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Then the 2-forms on U are Ω2(U; C) = ⊕k+l=2 Ω(k,l)(U; C). Ω2(U; C) can act like a
vector bundle on one of it’s decompositions. Let π(k,l) ∶ Ω2(U; C) Ð→ Ω(k,l)(U; C)
for k + l = 2.

We can easily generalise this for all n-forms Ωn(U; C) = ⊕k+l=n Ω(k,l)(U; C) and
π(k,l) ∶ Ωn(U; C)Ð→ Ω(k,l)(U; C) for k + l = n.

Dolbeault operators

When we apply the exterior derivative to Ω(k,l) then we know dΩ(k,l) ⊂ Ωn+1 if k+ l =
n.

Definition 28 M is an almost complex manifold and a complex structure J. Let U be a
neighbourhood of a point m in M. The Dolbeault operators that act on Ω(k,l)(U; C) are
defined as,

∂ = π(k+1,l) ○ d ∶ Ω(k,l)(U; C)Ð→ Ω(k+1,l)(U; C), (5.14)

∂̄ = π(k,l+1) ○ d ∶ Ω(k,l)(U; C)Ð→ Ω(k,l+1)(U; C). (5.15)

These operators are in local coordinates for α = ∑(k,l) bk,ldzk ∧ dz̄l ∈ Ω(k,l)(U; C).

∂̄α = ∑
∣M∣,∣N∣

∑
a

∂bM,N

∂za dza ∧ dzM ∧ dz̄N (5.16)

∂α = ∑
∣M∣,∣N∣

∑
a

∂bM,N

∂z̄a dz̄a ∧ dzM ∧ dz̄N (5.17)

Where M = (m1, . . . , mk) such that m1 < ⋅ ⋅ ⋅ < mk, dzM = dzm1 ∧ ⋅ ⋅ ⋅ ∧ dzmk and N =
(n1, . . . , nl) such that n1 < ⋅ ⋅ ⋅ < nl , dz̄N = dz̄n1 ∧ ⋅ ⋅ ⋅ ∧ dz̄nl .

Proposition 3 When M is a complex manifold, then the Dolbeault operators have the prop-
erties that,

d = ∂ + ∂̄, (5.18) ∂2 = ∂̄2 = ∂∂̄ + ∂̄∂ = 0. (5.19)

5.2.3 Complex polarizations

A good argument to include complex structures is that real polarizations produce
nowhere vanishing vector fields on a two-dimensional surface. When we consider
M to be S2, then a real polarization should give a non-vanishing vector field and this
is a contradiction with the hairy ball theorem. Thus we cannot find real polarizations
for S2, but we can find complex polarizations.

Definition 29 Let M be an n-dimensional smooth manifold on which a complex structure is
defined. We can complexify the tangent space of M. This is TCM. A complex distribution
D is a subbundle of the complexified tangent bundle TCM. The fibre Dm varies smoothly
over m ∈ M.



5.2. Polarization 23

The definition is very similar to the definition of the real distribution.

Now we have all the ingrediënts to define a complex polarization,

Definition 30 Let (M, ω) be a symplectic manifold, then a complex polarization P is an
integrable lagrangian distribution of TCM.

Definition 31 Let (M, ω) be a symplectic manifold with a polarization P. A local symplec-
tic potential θ is adapted to polarization P whenever X ⌟ θ = 0 for all X ∈ VP(M).

Definition 32 Let (M, ω) be a symplectic manifold with a polarization P. P is admissible
if there exists for every neighbourhood of a point in P an adapted symplectic potential.

5.2.4 Kähler Forms

Definition 33 A Kähler manifold is a symplectic manifold (M, ω) equipped with a posi-
tive compatible complex structure J. The symplectic 2-form is in this case a Kähler form.

A Kähler manifold is a complex manifold and therefore are the Dolbeault operators
as in Proposition 3.

Let M be a Kähler manifold with Kähler form ω and dimC M = n. A Kähler form ω
should be a form that has the following properties.

• The Kähler form is a 2-form.

ω ∈ Ω2(M; C) = Ω(2,0)⊕Ω(1,1)⊕Ω(0,2). Therefore on a local complex chart (U, z1, . . . , zn)
it has the form ω = ∑l<k al,kdzl ∧dzk +∑l,k bl,kdzl ∧dz̄k +∑l<k cl,kdz̄l ∧dz̄k with al,k, bl,k, cl,k ∈
C∞(M).

• The Kähler form is compatible with the complex structure.

ω is compatible with the complex structure and this implies that J is a symplecto-
morphism. This is only true when al,k = 0 = cl,k for all l, k.

• The Kähler form is closed.

M has the property that 0 = dω = ∂ω + ∂̄ω. ∂ω is a (2,1)-form and ∂̄ω is a (1,2)-form.
They can’t annihilate each other, thus we conclude that ∂ω = 0 and ∂̄ω = 0.

• The Kähler form is real-valued.

If ω is real valued then we know that ω = ω̄. Let bl,k = irl,k,

ω̄ = −i∑
l,k

r̄l,kdz̄l ∧ dzk = i∑
l,k

r̄l,kdzl ∧ dz̄k = i∑
l,k

rl,kdzl ∧ dz̄k = ω. (5.20)

Thus r̄l,k = rl,k and therefore has to be real for all l, k.

• The Kähler form is non-degenerate.

If ω is non-degenerate then detC(rl,k)l,k∈I ≠ 0 with I the index set.
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• ωm(X, JX) > 0 ∀X ∈ Tm M for every point m.

ωm(X, JX) > 0 implies that the matrix (rl,k)l,k∈I is positive definite.

We conclude that the Kähler form ω on U should have the form,

ω = i∑
l,k

r̄l,kdzl ∧ dz̄k. (5.21)

Where (rl,k)l,k∈I is positive definite for every point in U.

Proposition 4 Let M be a complex manifold with dimC M = n. A Kähler potential/scalar
is a real valued function K ∈ C∞(M) such that,

det( ∂2K
∂za∂z̄a ) > 0. (5.22)

For all a ∈ [1, n]∩N and on each local chart (U, z1, . . . , zn). Then,

ω = i∂∂̄K. (5.23)

Is a Kähler form.

Theorem 5 Let M be a complex manifold with a closed real-valued (1,1)-form ω defined on
it. Then there exists for every neighbourhood of a point in M a Kähler potential such that,

ω = i∂∂̄K. (5.24)

Let (M, ω) be a Kähler manifold. Then by theorem 5, the Kähler form has a local
Kähler potential ω = i∂∂̄K.

Let’s take a look at the case that M = Cn. We have a global coordinate system {za, z̄a}
where we can define a global Kähler potential.

ω = i∂∂̄K = i
∂2K

∂za∂z̄a dza ∧ dz̄a with K = 1
2

za z̄a (5.25)

Notice that M has two polarizations. A holomorphic polarization spanned by ∂/∂za

by all a = 1, . . . n and a antiholomorphic polarization spanned by ∂/∂z̄a by all a =
1, . . . n. We can find two global adapted symplectic potentials. θ = −i∂K is adapted
to the antiholomorphic polarization and θ = i∂̄K is adapted to the holomorphic po-
larization.

M satisfies Weil’s integration condition. Thus there exists a prequantum bundle B
with a connection. The connection 1-form is in our case ih̄−1θ and this has to be
only imaginary. Thus we need to choose a symplectic potential that assures the
connection 1-form to be only imaginary. Our preference for symplectic potential is
one that is adapted to our chosen polarization.1 In this case, it will be θ = −i∂K and
the antiholomorphic polarization. The symplectic potential θ could be imaginary
and therefore would the connection 1-form have a real part and this is a problem.
We can solve this by only using the real part of the symplectic potential.

θ0 =
1
2
(θ + θ̄) (5.26)

1This is for calculation purposes and in examples we will see that also the adapted polarization will
give us the familiar operators.
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This is still a symplectic potential dθ0 = 1
2(dθ + dθ̄) = 1

2(ω + ω̄) = ω. We used that the
Kähler form is real-valued thus ω = ω̄. The new symplectic potential is explicitly,

θ0 =
1
2
(−i∂K + i∂̄K) = −i∂K + 1

2
(i∂K + i∂̄K) = θ + i

2
dK. (5.27)

Therefore the real symplectic potential has the convenient form of the desired sym-
plectic potential plus the derivative of the Kähler potential. We can now use the same
trick as in section 4.2 where we used a gauge transformation such that the transfor-
mation between symplectic potentials is paired with a transformation of sections.

Thus we are interested in sections s in the θ gauge, but only sections s′ in the θ0
gauge will work. Because then we have a purely imaginary connection 1-form. We
can relate these sections by s′ = s exp [−K/2h̄]. Let ∇ = d − ih̄−1θ0 which is the proper
connection and define ∇∗ = d − ih̄−1θ as a dummy connection.

∇s′ = (d − ih̄−1θ0)s′ = (d − ih̄−1θ0)se−K/2h̄ = e−K/2h̄(d − ih̄−1θ)s = e−K/2h̄∇∗s (5.28)

Thus in the rest of this thesis, we will use the dummy connection for calculation with
in mind that we actually should calculate exp [K/2h̄]∇(exp [−K/2h̄]s).

A consequence of this gauge is that we have a modified inner product. Define the
sections of the θ gauge as s1 = φ1u and s2 = φ2u where u is the unit section and
φ ∈ C∞(M). Because we have to use θ0 for the connection then we should also use
the θ0 sections for our Hermitian metric. Let s′1 and s′2 be in the θ0 gauge, which are
equal to s1 exp [−K/2h̄] and s2 exp [−K/2h̄].
Then the natural inner product takes the form,

⟨s′1, s′2⟩ = ∫
M
(s′1, s′2)ε = ∫

M
(φ1u, φ2u)e−K/h̄ε = ∫

M
φ̄1φ2e−K/h̄ε =∶ ⟨s1, s2⟩. (5.29)

This makes the Kähler manifold easy to handle because the inner product naturally
makes the integral converge (as long as the functions φ and φ′ behave).

A quick note. The Kähler potential is not unique. We can solve this as in a similar
way as the trick in section 4.2. I won’t include this, because it is very analogues to the
trick in section 4.2 and does not add to the understanding of geometric quantization.
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5.3 Polarized sections

Now we have the mathematical tools to force our sections to be polarized. One
could see this as a restriction on sections such that the sections depend on half the
coordinates of the symplectic manifold. Like in quantum mechanics we have to deal
with positions ψ(q) and momentum ψ(p), but never a wavefunction of both����XXXXψ(q, p) .

Definition 34 Let (M, ω) be a symplectic manifold that satisfies Weil’s integration condi-
tion and has a polarization P. M has a Hermitian line bundle B Ð→ M with a connection
∇. A polarized section is a smooth section s ∶ M Ð→ B with the property that,

∇Xs = 02. (5.30)

For all X ∈ VP(M).

The set of sections that satisfy this condition is the restricted Hilbert space HP. Our
second concern is that now we have all the sections we need, but when applying an
operator then there is no guarantee that the new sections are still polarized!

∇Xs = 0 ��HH=> ∇X f̂ s = 0 (5.31)

Given a symplectic manifold (M, ω) that satisfies Weil’s integration condition and
has a polarization P. Let f ∈ C∞(M) be a classical observable then f̂ = Q( f ) is an
operator on sections of the prequantum bundles where the mapping Q ∶ f Ð→ f̂ is
defined in Definition 20. Then let’s compute what conditions f should have to keep
the polarized sections polarized.

∇X f̂ s = −ih̄∇X∇X f s + f∇Xs = f̂ (∇Xs)− ih̄∇[X,X f ]s = −ih̄∇[X,X f ]s (5.32)

Thus whenever the commutator [X, X f ] ∈ P for every X ∈ VP(M), then f̂ keeps
polarized sections polarized with the right polarization.

In the cotangent space, we can find some indication what form an observable should
have such that it preserves the polarization. Let M = T∗R ≅ R2n with coordinates
{pa, qa} for a ∈ [1, n]∩N and the symplectic 2-form ω = dpa ∧ dqa. We use the vertical
foliation as polarization P. Let f ∈ C∞(T∗Q) be an observable which generates the
vector field X f = −

∂ f
∂qa

∂
∂pa

+ ∂ f
∂pa

∂
∂qa . Then straight forward calculation of the commu-

tator of the vector field X f and the elements of P.

[X f , ∂/∂pk] =
∂2 f

∂pk∂qa
∂

∂pa
−

∂2 f
∂pk∂pa

∂

∂qa ∈ P ∀k ∈ [1, n]∩N (5.33)

The elements of the polarization are spanned by ∂/∂pk, so therefore the ∂/∂qa term

has to vanish. We have that ∂2 f
∂pk∂pa

= 0 and this is only true when f (q, p) = f0(q) +
f k(q)pk. Where f k ∶ Rn Ð→ Rn and f0 ∶ Rn Ð→ R. We can see that when an observ-
able is dependant on squared momentum, then it does not preserve the polarization.
An example of such an observable would be the Hamiltonian of the free particle.

2Remember that ∇Xs = X ⌟∇s
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If the manifold is Kähler then the vector field X f that is generated by an observable
f should be a Killing vector field. We will keep our computations as general as
possible, so therefore we will keep computing the commutator.

When (M, ω) is a symplectic manifold with a polarization P. The set of classical
observables that preserve the given polarization is C∞

P (M) ⊂ C∞(M). The preserva-
tion of polarization is a heavy condition and it limits our possible observables. The
Hamiltonian from section 4.4.2 does not satisfy the preservation of any polarization
because it’s not linear in p. Luckily there is a solution to this. the BKS-construction
gives us some hope of recovering the right quantization.

Definition 35 For a symplectic manifold (M, ω) that satisfies the prequantization condi-
tions (Definition 20) and has a polarization P ⊂ TM on it. Then the set of square-integrable,
polarized sections of B denoted byHP are the wavefunctions.

There may be a problem that there may not exist non vanishing square-integrable
polarized sections on a symplectic manifold. This is mostly a concern for real polar-
izations because there already exists some natural measure on the Kähler manifold
that converges. But for now, we assume that non-vanishing square-integrable polar-
ized sections exist.

Let us work out some examples of geometric quantization.

5.4 Holomorphic quantization

A very nice application of geometric quantization is to apply it to a Kähler mani-
fold. This example will also argue that the Hermitian structure is a good measure of
probability.

5.4.1 Kähler manifold

Let (M, ω) be a symplectic n-(complex)dimensional flat Kähler manifold with canon-
ical coordinates {pa, qa} for a = 1, . . . n. Also does (M, ω) satisfy Weil’s integration
condition. We can construct holomorphic coordinates za = pa + iqa and z̄a = pa − iqa

such that {za, z̄a} becomes the coordinate system. Let the Kähler potential be K =
1
2 z̄aza such that,

ω = dpa ∧ dqa = i
2

dza ∧ dz̄a = −i∂∂̄K. (5.34)

The symplectic potential is θ = i
2 z̄adza = −i∂K. There exists an Hermitian line bundle

B Ð→ M with a Hermitian metric (⋅, ⋅) and a connection ∇ = d − ih̄−1θ0 as defined in
section 5.2.4. We are going to use the dummy connection ∇∗ = d − ih̄−1θ for calcula-
tions such that we get the desired sections. Like in the remark of definition 20, any
two non-vanishing polarized sections s, s′ ∈ Γ(B) can be related as s′ = φs with φ a
holomorphic function. Thus let u be the unit section ((u,u) = 1 and because it is con-
stant, it is polarized), then any section can be written as s = ψu with ψ a holomorphic
function.

If we choose P to be the antiholomorphic polarization then θ is adapted to P. When
X ∈ VP(M) then ∇∗

X = X ⌟ (d− ih̄−1θ) = X ⌟ d. Then for any polarized section ∇∗
∂/∂z̄a s =

∂/∂z̄a ⌟ dψu = 0 and this is equivalent to ∂
∂z̄a ψ = 0. This implies we successfully
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restraint ψ(z, z̄) to ψ(z) because it has to be constant in the z̄ coordinate and is thus
independent of it.

Let s = ψu and s′ = ψ′u be sections of the prequantum bundle in the θ gauge. ψ and ψ′

are both holomorphic functions. We defined in section 5.2.4 that the inner product
between the sections in θ gauge is,

⟨s, s′⟩ = ∫
M

ψ̄ψ′ exp [− za z̄a

2h̄
]ε. (5.35)

Where ε = ωn/(2π h̄)n like in equation 4.4. From this, we can easily construct a space
of all wavefunctions of this system. HP is the space of polarized sections and the
sections should have a finite solution for 5.35 which is also the inner product.

Let’s now apply the mapping procedure on this space. Some useful observables are
za, z̄a and za z̄a.

We want to first find the vector fields of those observable, let X f have the form X f =
x f ∂/∂za + y f ∂/∂z̄a. Use equation 3.1 to find for Xza ,

dza = (xza
∂

∂za + yza
∂

∂z̄a )⌟
i
2

dza ∧ dz̄a = i
2
[−xza dz̄a + yza dza]. (5.36)

We conclude that the vector field is Xza = −2i∂/∂z̄a. The other vector fields are,

Xz̄a = 2i
∂

∂za , (5.37) Xza z̄a = 2i(za ∂

∂za − z̄a ∂

∂z̄a ). (5.38)

We have to check if these preserve the antiholomorphic polarization. Remember that
a vector field preserves the polarization when [X, X f ] ∈ P for every X ∈ VP(M).

[X, Xza] = −2i
∂

∂z̄a
∂

∂z̄a + 2i
∂

∂z̄a
∂

∂z̄a = 0. (5.39)

Partial derivatives commute, thus Xza preserves the polarization. The same argu-
ment can be applied to Xz̄a . For Xza z̄a we find,

[X, Xza z̄a] = 2i(za ∂

∂z̄a
∂

∂za −
∂

∂z̄a − z̄a ∂

∂z̄a
∂

∂z̄a )− 2i(za ∂

∂za
∂

∂z̄a − z̄a ∂

∂z̄a
∂

∂z̄a ) = −2i
∂

∂z̄a .

(5.40)

−2i ∂
∂z̄a is an element of the polarization, thus Xza z̄a also preserves the polarization.

We have shown that the observables preserve polarization such that their operator
variant can keep polarized sections polarized. Thus let us apply the quantization
mapping on these observables and use the dummy connection ∇∗ = d − iθ/h̄ for
calculation. Remember that the actual connection is defined as in 5.2.4. Let us also
remember that we have shown that sections are not dependant on the z̄a coordinate.

ẑas = −ih̄[− 2i
∂

∂z̄a −
i
h̄
(0)]s + zas = −2h̄

∂

∂z̄a s + zas = zas (5.41)

For section in HP. The same computation will show us ˆ̄zas = 2h̄ ∂
∂za s. These two

operators act like raising and lowering operators just as in the quantum harmonic
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oscillator.

For the last observable we show that,

ẑa z̄as = −ih̄[2i(za ∂

∂za − z̄a ∂

∂z̄a )−
i
h̄

za z̄a]s+ za z̄as = 2h̄(za ∂

∂za − z̄a ∂

∂z̄a )s− za z̄as+ za z̄as = 2h̄za ∂

∂za s.

(5.42)

Now we have a few operators and we want to test them. A very nice example of this
will be the harmonic oscillator. Like at the beginning of this section we will express it
first in {pa, qa} coordinates, and then in {za, z̄a} coordinates. The harmonic oscillator
has the Hamiltonian,

h = (p2 + q2)/2 = zz̄/2. (5.43)

The Hamiltonian of a harmonic oscillator in quantum mechanics has the form ĥ =
h̄za ∂

∂za + h̄ 1
2 , where za acts as a raising operator and 2h̄ ∂

∂za as a lowering operator.

We have already shown that zz̄ preserves the polarization, thus h also preserves it.
We find for h the operator,

ĥ = h̄za ∂

∂za . (5.44)

This is very close to the operator form we are used too. We just missed the term h̄ 1
2 .

This motivates another correction for this theory called the metaplectic correction.
We will not include this correction in this thesis so we have to be satisfied with our
solution. Nonetheless, it is a very good solution.
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5.5 Quantization for manifolds with real directions

I will first motivate why we need a different approach for polarizations with real
directions. Let Q be the configuration space of n-dimensions and M = T∗Q ≅ R2n.

On it we can choose the 2-form ω = dpa ∧ dqa such that (M, ω) is a symplectic vec-
tor space. R2n satisfies the Weil’s integration condition. There exists a prequantum
bundle with the appropriate connection and Hermitian metric. Then a natural polar-
ization is the vertical foliation. Let’s call the polarization P and the vectors in P are
spanned by {∂/∂pa} with a ∈ [1, n]∩N. Notice that this polarization has an adapted
symplectic potential θ = padqa. This polarization decomposes TM in surfaces of
constant q. This will mean that for a polarized section of the form s = ψu,

0 = ∇Xs = X ⌟ (dψ)u− i
h̄

X ⌟ θs =
∂ψ

∂pa
u. (5.45)

For every ∂/∂pa ∈ P. We conclude that ψ is constant on the leafs of P (constant in
the pa coordinates). Let s = ψu and s′ = ψ′u be polarized sections of the prequantum
bundle with ψ, ψ ∈ C∞(M) and u is the unit section. When we compute the standard
inner product integral, we see that it doesn’t converge when M is non-compact3.

⟨s, s′⟩ = ∫
M
(ψu, ψ′u)ε = ∫

M
ψ̄ψ′ε Ð→∞ (5.46)

Because on every leaf there is a constant function that will never converge for such
an integral. For the Kähler manifold we could construct some natural inner product,
but that won’t work for this. The idea will be to work with the quotient space M/P
with M a symplectic vector space and P the polarization such that we don’t have
to integrate over constant functions. For this, to work we need that V = M/P is an
orientable Hausdorff manifold.

Let us again work with the general 2n-dimensional symplectic vector space (M, ω)
that satisfies Weil’s integration condition and a polarization P that has real direc-
tions. Let V = M/P be an orientable Hausdorff manifold. V is n-dimensional be-
cause the dimensions of leaves of P are half the dimensions of M. Our goal will be
to add some kind of rooted volume form to the wavefunction such that when we are
calculating the inner product that it becomes a finite integral over V. The determi-
nant bundle det(V) = ⋀n T∗

CV has complex n-forms α. We can use the pullback of
the projection pr ∶ M Ð→ V to define these forms on M.

Let β = pr∗α ∈ Ωn
C(M).

Then β satisfies the properties,

X ⌟ β = 0, (5.47) X ⌟ dβ = 0. (5.48)

For every X ∈ VP(M).

Define the set KP = pr∗(det(V)).

We would like the "square root" of the sections of KP. This can be done by trivialising
KP and square rooting the positive transition functions. This will lead to the set δP
where the square rooted sections map to. Such a section is denoted by ν ∈ Γ(δP). If
ν, ν′ ∈ Γ(δP) then νν′ is a section of KP.

3A simple example would be the tangent space of the configuration space.
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We define the covariant derivative ∇X on the sections β ∈ KP as ∇X β = X ⌟ β for
every X ∈ VP(M). The Lie derivative on the sections of KP should map KP to KP by
the typical computation of the Lie-derivative. When Z ∈ P then the lie derivative is
automatic LZ = ∇Z.

The covariant derivative and Lie-derivative on ν ∈ Γ(δP) is defined as,

∇Xν2 = 2ν∇Xν, LXν2 = 2νLXν.

Now we will modify the prequantum bundle B to BP = B⊗ δP Ð→ M. This will lead
to new sections of the form s̃ = sν, where s̃ ∈ Γ(BP), s ∈ Γ(B) and ν ∈ Γ(δP).

Definition 36 Let (M, ω) be a 2n-dimensional symplectic vector space that satisfies Weil’s
integration condition and a polarization P that has real directions. Sections from the pre-
quantum bundle BP = B⊗ δP are called P-wavefunctions.

Definition 37 Polarizaed P-wavefunctions are P-wavefunctions that satisfy,

∇X s̃ = (∇Xs)ν + s(∇Xν) = 0 For every X ∈ VP(M). (5.49)

When s̃ = sν and s̃′ = s′ν′ are P-wavefunctions. Then let the Hermitian metric4 be,

(s̃, s̃′) ∶= (s, s′)νν′. (5.50)

Notice that∇X(s̃, s̃′) = (∇X s̃, s̃′)+ (s̃,∇X s̃′) = 0 ∀X ∈ VP(M). Therefore the connection
is compatible with the new Hermitian metric.

Recall that we said that νν′ is a section of KP and conclude that the Hermitian metric
defines an n-form on V. Exactly as we wanted. Thus now we want to define the
inner product as,

⟨s̃, s̃′⟩ ∶= ∫
V
(s, s′)νν′. (5.51)

We have constructed a new Hilbert space. Therefore we need an updated mapping
such that the new quantum observable can properly act on the P-wavefunctions and
satisfy all of Dirac’s conditions.

Definition 38 Let (M, ω) be a symplectic manifold that satisfies Weil’s integration condi-
tion and has a polarization P. M/P is an orientable Hausdorff manifold. Then there exists a
modified prequantum bundle BP = B⊗ δP with sections s̃ ∶ BP Ð→ M. Let f ∈ C∞

P (M) be
a polarization preserving classical observable and let s̃ = sν be a polarized P-wavefunction
with s ∈ Γ(B) and ν ∈ Γ(δP). Then the half form mapping Q ∶ C∞

P (M)Ð→ O is,

Q ∶ f Ð→ f̃ ∶Q( f )s̃ = f̃ s̃ = −ih̄(∇X f s + f s)ν − ih̄sLX f ν. (5.52)

We use from now on the convention to write our quantum observables that act on
P-wavefunctions with a tilde. The half-form mapping is equivalent to,

Q ∶ f Ð→ f̃ ∶ f̃ (s̃) = f̂ (s)ν − ih̄sLX f ν (5.53)

If the hamiltonian vector field X f is complete for a classical observable f . We can
also define the flow that is generated by f̃ .

4This might be a bit confusing, because BP is not a Hermitian line bundle. That’s why we define the
new "Hermitian metric" to only act on the B part of the P-wavefunctions.
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ρ̃s̃ = ρ̂t(s)ρ∗t (ν) (5.54)

Let us get back to the example in the beginning and derive the results of canoni-
cal quantization. Q = Rn is the configuration space and M = T∗Q ≅ R2n with a
symplectic 2-form ω = dpa ∧ dqa (the symplectic potential will be θ = padqa). The
polarization we will use is the vertical foliation P. Now consider the prequantum
bundle BP Ð→ M with polarized sections s̃ = sν. Let the section on B be s = ψu
where (u,u) = 1 and ψ ∈ C∞(M). Define the connection on B as ∇ = d − iθ/h̄. We
already saw that equation 5.45 implies that ψ(qa, pa) = ψ(qa). The sections of δP will
be defined as the square root of the standard volume form on V = M/P = Q, thus
ν2 = dnq.

The inner product becomes,

⟨s̃, s̃⟩ = ∫
V

ψ̄ψdnq. (5.55)

Let us compute the operators for the observables qa and pa. We can use the same
vector fields that we found in section 4.4. Thus Xqa = −∂/∂pa and Xpa = ∂/∂qa. They
have to satisfy [X, X f ] ∈ VP(M). They do because partial derivatives commute.

We can compute the operators,

q̃a s̃ = −ih̄(∇Xqa s + qas)ν − ih̄sLXqa ν = qa s̃. (5.56)

We used that Xqa ∈ VP(M), thus Xqa ⌟ θ = 0 and LXqa ν = 0.

For p̃a follows,

p̃a s̃ = −ih̄(∇Xpa
s + pas)ν − ih̄sLXpa

ν = −ih̄
∂

∂qa . (5.57)

We produced both canonical quantization operators correctly! 5

5.6 Pairing

Consider a symplectic manifold (M, ω) that satisfies Weil’s integration condition
and we are dealing with two polarizations. Then we can construct two Hilbert
spaces, HP and HP′ . There is a way to link these two by a pairing map ⟪⋅, ⋅⟫ ∶
HP ×HP′ Ð→ C. From the pairing map we will deduct a map Π ∶ HP′ Ð→ HP such
that,

⟨s̃, Πs̃′⟩ ∶= ⟪s̃, s̃′⟫. (5.58)

With ⟨⋅, ⋅⟩ as the inner product defined onHP. also s̃′ ∈HP′ and s̃, Πs̃′ ∈HP. This will
prove to be very useful in the BKS construction when observables don’t preserve the
polarization.

In this section, we will consider only the case of two real polarizations P and P′. We
assume that these are transverse such that TM = P × P′ with M a real symplectic
manifold with a symplectic 2-form ω. This implies that we can split the space into

5You might ask why we needed the LX f ν term in the operator map. It is not relevant for the canon-
ical quantization but when X f is linear in one of its coefficients, then LX f ν ≠ 0.
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two configuration spaces M = Q ×Q′. For example, in the typical phase space then
Q = Rn would be position space and Q′ = Rn momentum space. Let {qa} for a =
1 . . . n be the coordinate system of Q and {q′a} for a = 1 . . . n be the coordinate system
of Q′.

Let the local symplectic potential θ be adapted to P. Let S ∈ Ω0(M) be a local gen-
erating function (18) on the leafs Λ of P such that 0 = θ∣Λ = dS. Λ′ is a leaf of P′

and we know that ω vanishes on P′ thus dθ∣Λ′ = 0. This implies that there exists a
potential of the local symplectic potential. Modify S to also satisfy θ∣Λ′ = dS, such
that it varies smoothly over Λ′. We introduced the coordinates {qa} and {q′a} where
the polarzation P has leaves of constant q and P′ has leaves of constant q′. Then we
can deduce that,

θ = ∂S
∂qa dqa, ω = ∂2S

∂qa∂q′b
dq′b ∧ dqa. (5.59)

As result S satisfies a non-degeneracy condition.

det( ∂2S
∂qa∂q′b

) ≠ 0. (5.60)

From the last section, we know that we also have to work with the modified pre-
quantum bundle BP. Define a pairing between two bundles KP and KP′ by,

(β, β′)ε ∶= β ∧ β′. (5.61)

Where (β, β′) should represent an element of C∞(M). For the rooted sections ν and
ν′ we define (ν, ν′) ∶=

√
(ν2, ν′2) ∈ C∞(M).

The pairing map is of the form for polarized P-wavefunctions s̃ = sν ∈ Γ(BP) and
s̃′ = s′ν′ ∈ Γ(BP′),

⟪s̃, s̃′⟫ = ∫
M
(s, s′)(ν, ν′)ε. (5.62)

Before we substitute our definition of pairing between two bundles, we want to
look at some of the restrictions that are induced on s = ψu ∈ B and s′ = ψ′u ∈ B′ by
polarization.

We will assume that both ψ and ψ′ are dependent on qa and q′a at first.

These sections should be polarized with their respective polarizations and the con-
nection will be ∇ = d − iθ/h̄ = d − ih̄−1(∂S/∂qa)dqa. Thus for s′ and X′ = ∂/∂q′a ∈ P,

0 = ∇X′s′ =
∂

∂q′a
⌟ dψ′ =

∂ψ′

∂q′a
. (5.63)

This is a clear implication that ψ′(q, q′) = ψ′(q). For s and X = ∂/∂qa ∈ P,

0 = ∇Xs =
∂ψ

∂qa −
i
h̄

∂S
∂qa ψ. (5.64)

From this, it isn’t immediately clear what restriction there is. But we want that
ψ(q, q′) is restricted to ψ(q′). Because the symplectic potential doesn’t vanish on this
polarization we have to deal with an extra term. Let ψ(q, q′) = φ(q′) exp[R(q, q′)]
then the differential equation becomes.
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∂R
∂qa = i

h̄
∂S
∂qa (5.65)

This implies that ψ(q, q′) = φ(q′) exp[ i
h̄ S(q, q′)].

Now for the pairing between the bundles KP and KP′ . First remark that when D =
det ( ∂2S

∂qa∂q′b ), then ε has the form,

ε = 1
(2π h̄)n ωn = 1

(2π h̄)n Dndnq′ ∧ dnq. (5.66)

If we let ν =
√

dqa and ν =
√

dq′a then,

dnq′ ∧ dnq = (ν2, ν′2)ε = (ν2, ν′2) 1
(2π h̄)n Dndnq′ ∧ dnq. (5.67)

Concude that (ν2, ν′2) = (2π h̄)n/Dn, thus (ν, ν′)ε = 1
(2πh̄)n/2

√
D

n
dnq′ ∧ dnq. Now we

have everything to finish the pairing,

⟪s̃′, s̃⟫ = 1
(2π h̄)n/2 ∫M

ψ̄′(q)φ(q′)e
i
h̄ S

√
D

n
dnq′ ∧ dnq. (5.68)

When we consider the phase space M = T∗Q ≅ R2n such that q is the position (the
space Q) and q′ = p is the momentum (the space TxQ = Q′ for x ∈ Q). The polariza-
tions are described by S = p ⋅ q. Then the pairing becomes,

⟪s̃′, s̃⟫ = 1
(2π h̄)n/2 ∫Q

ψ̄′(q)[∫
Q′

φ(p)e
i
h̄ p⋅qdn p]dnq. (5.69)

Thus we conclude that in this case,

(Πs̃)(q) = 1
(2π h̄)n/2 ∫Q′

φ(p)e
i
h̄ p⋅qdn p. (5.70)

This is exactly the traditional way of computing wavefunctions from momentum
space to position space by the Fourier transform.

5.7 BKS construction

Now we have all the tools to reproduce the operator form of the simplest Hamilto-
nian, h = p2/(2m). What you immediately see is that the Hamiltonian is quadratic in
momenta and after a quick calculation we see that its vector field will never preserve
the polarization. We are going to fix it by introducing the idea to apply the flow of
the Hamiltonian to a wavefunction for a small time interval δt = t′ − t. Then sending
the new wavefunction in HP′ back to the old Hilbert space HP by the pairing map.
This will relate to the time evolution of the wavefunction.

This construction is introduced by Blatnerr, Kostant, and Sternberg (BKS).
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⟨ds̃t

dt
, s̃′⟩ = − d

dt′
⟪ρ̃δt s̃t, s̃′⟫∣t′=0 (5.71)

For every time independent s̃′ ∈ HP. Where the time dependant wavefunction is
s̃t ∈ HP. On the left, we have the inner product on HP. On the right we have pairing
between the polarization P and P′, but for the pairing to be well defined we have to
assume that they are transverse. ρ̃ is the flow generated by h̃.

So let us immediately apply this to the symplectic space M = T∗Q with Q the typical
configuration space. The symplectic frame is {pa, qa} and therefore ω = dpa ∧ dqa.
We will assume that the configuration space is a flat n-dimensional euclidean space
Q = Rn, thus M = TQ ≅ R2n. Euclidean space trivially satisfies the Weil’s integra-
tion condition, thus there exists a prequantum bundle with the desired connection.
The polarization that we will use is the vertical foliation. We know that M/P is an
orientable Hausdorff manifold. Thus we have a prequantum bundle BP = B ⊗ δP.
The polarization implies that the polarized sections s̃ = ψ(q, p)uν and s̃′ = φ(q, p)uν′

are only dependant on the coordinate system {qa}. φ, ψ ∈ C∞(M), u is the unitairy
section of the prequantum bundle B and ν ∈ Γ(δP). Choose ν = ν′ =

√
dnq and let

µ = ν2 = dnq. The Hamiltonian we will be working with is h = p2/(2m). This is the
Hamiltonian of the free particle and consequently produces flows that are straight
lines.

ρt(q, p) = (qa(t), pa(t)) = (qa +
pa

m
t, pa) (5.72)

So let’s compute the pairing before the time derivative and let t = 0,

⟪ρ̃t s̃, s̃′⟫ = ∫
M
(ρ∗t ψ)(q, p)φ(q) exp [ih̄−1∫

t

0
(L ○ γ)(t)dt′]

√
(ρ∗t µ, µ)ε. (5.73)

Where L is the Lagrangian and in this case L = h and γ is a path created by the flow
of the Hamiltonian. We said in section 18 that the generating function S is the action
integral when identified by the canonical transformations of the Hamiltonian. That’s
why we have the action integral in the exponent.

Let us calculate everything separately. First (ρ∗t ψ)(q, p) = ψ(ρt(q, p)) = ψ(q(t), p(t)) =
ψ(qa + pa

m t, pa). Now the integral,

∫
t

0
(L ○ γ)(t′)dt′ = ∫

t

0

p2

2m
dt′ =

p2

2m
t.. (5.74)

The last part is
√

(ρ∗t µ, µ)ε. First compute ρ∗t µ = ρ∗t dnq = dn(q + t
m p). Then,

(ρ∗t µ, µ)ε ∶= ρ∗t µ ∧ µ = dn(q + t
m

p)∧ dnq = ( t
m

)
n

dn p ∧ dnq. (5.75)

ε has the usual form ε = (2π h̄)−ndn p ∧ dnq, thus
√

(ρ∗t µ, µ) = (2π h̄t/m)n/2.

When substituting our results we get,

⟪ρ̃t s̃, s̃′⟫ = ( t
2mπ h̄

)
n/2

∫
R2n

ψ̄(q(t), p)φ(q) exp [ith̄−1 p2

2m
]dn p ∧ dnq. (5.76)
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First focus on the momentum integral. The only momentum dependant functions
are ψ̄(q(t), p) and exp [itp2/(2mh̄)].

∫
Rn

ψ̄(q(t), p) exp [ith̄−1 p2

2m
]dn p (5.77)

Let us first expand ψ(q(t), p) about q.

ψ(q(t), p) = ψ(q, p)+ t
m

pa
∂

∂qa ψ(q, p)+ t2

2m2 pa pb
∂2

∂qa∂qb ψ(q, p)+O(t3) (5.78)

The integral vanishes for linear terms of pa, because of symmetry reasoning. Thus
higher orders don’t vanish when a = b. Let us only consider the first 2 non-vanishing
expansion terms. Then the integral becomes,

ψ̄(q, p)∫
Rn

exp [it
p2

2mh̄
]dn p + t2

2m2∇
2ψ̄(q, p)∫

Rn
p2 exp [it

p2

2mh̄
]dn p. (5.79)

Where ∇2 = ∂2

∂qa∂qa . We can evaluate the latter integral further. We will use the result
of source [2].

∫
Rn

p2 exp [it
p2

2mh̄
]dn p = imh̄

t
(2πimh̄

t
)

n/2

(5.80)

Now substituting this back into the pairing integral.

⟪ρ̃t s̃, s̃′⟫ = ⟪ρ̃0s̃, s̃′⟫+ in/2 ih̄t
2m ∫

Rn
∇2ψ̄(q, p)φ(q)dnq (5.81)

Let us now apply the time derivative on ⟪ρ̃t s̃, s̃′⟫ and substitute this result in equa-
tion 5.71 and use that in/2 = eiπn/4.

∫
Rn

∂ψ̄

∂t
φdnq = ⟨ds̃

dt
, s̃′⟩ = − d

dt′
⟪ρ̃t s̃, s̃′⟫∣t′=0 = −eiπn/4 ih̄

2m ∫
Rn
∇2ψ̄φdnq (5.82)

This is true for every s̃′ ∈H, thus also for s̃′ = uν. We conclude that,

∂ψ̄

∂t
= −eiπn/4 ih̄

2m
∇2ψ̄ (5.83)

This would produce an extra constant. For now, we can let the constant be zero.
When we take the complex conjugate and rearrange constants, then we get the
known differential equation.

ih̄
∂ψ

∂t
= −e−iπn/4 h̄2

2m
∇2ψ (5.84)

We successfully predicted the operator form of the Hamiltonian of the free particle
correctly except for an extra phase change. This phase change will disappear when
applying the metaplectic correction. Then it will be absorbed in the new definition
of pairing.
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Conclusion

The whole quantization process went as followed. Starting with a classical system
of only position space Q. We can make this into a phase space by considering its
tangent space M = T∗Q. Assume that M is real. Now we have to define a symplectic
2-form and search for a polarization P. When this is successful, we have to check if
there exists a Hermitian line bundle B Ð→ M with the right connection and check if
M/P is an orientable Hausdorff manifold. We define our sections of BP to be polar-
ized and decide which classical observables preserve the polarization f ∈ C∞

P (M).
Then we can find the operator form of that observable by the half form map. The
operator Q( f ) = f̃ acts on polarized P-wavefunctions.

After all this, we predicted canonical quantization correctly and the operator form
of the free particle up to a phase with the help of the BKS-construction. It’s clear that
this theory is built upon correcting the last one and to finalize geometric quantization
there still is a metaplectic correction.

In the case of the Kähler manifold, the geometric quantization procedure was straight
forward and uses the quantization map. Although there is still a metaplectic cor-
rection to be made for the correct prediction of the Hamiltonian of the harmonic
oscillator.

Along the way, we found many weaknesses. These weaknesses lie mostly in the
amount of construction that went into geometric quantization. Beginning with a
classical system. It is not always possible to define a non-degenerate 2-form. Then
for prequantization is that Weil’s integration condition doesn’t have to be satisfied.
Therefore M does not guarantee that the desired prequantum bundle exist to define
our sections on. After that, we found that we needed restricted sections. Here we
dealt with polarizations, but some symplectic manifolds don’t have an appropriate
polarization or don’t have any. When we have a polarization we can define polarized
sections although we are not sure if there exists square-integrable non-vanishing
polarized sections on the given symplectic manifold. Finally, the observables that
can undergo geometric quantization are massively restricted, because they have to
preserve the polarization or else we may have to try the BKS construction. But when
the leading momentum term in a Hamiltonian is cubic then the BKS construction
won’t solve it. Luckily we are mostly interested in the trivial cases where everything
works.

We successfully predicted the harmonic oscillator in complex space up to a constant,
canonical quantization, and the Hamiltonian for a free particle. All are very impres-
sive feats of this theory. It doesn’t add any new concepts in the world of physics
or mathematics, but rather provides a link between the classical systems described
by symplectic geometry and the quantum systems described by quantizations. It
gives us some insight on how quantum mechanics works and hopefully understand
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nature a little bit better.
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Appendix A

Recap of some differential
geometry keypoints

A.1 n-dimensional smooth Manifolds

Manifolds are the generalisation of n-dimensional space with some topological as-
pects.

Definition 39 An n-dimensional manifold M is a space that satisfies,

• Hausdorff space,

• Second countable,

• Locally Euclidean of dimension n.

Some simple examples would be any open interval on the real line or a plane in
3-dimensional euclidean space.

Definition 40 Let M be a manifold. A chart is a pair (ϕ, U) where U is an open subset in
M and φ ∶ U Ð→ U′ ⊂ Rn is a homeomorphism. U′ is open in Rn.

Definition 41 Let M be a manifold. An atlas A is a collection of charts (ϕα, Uα) and Uα

for all α covers M. A smooth atlas is an atlas with every two charts smoothly compatible.

ϕα ○ ϕ−1
β is smooth whenever (ϕα, Uα) and (ϕβ, Uβ) are charts of atlas A (A.1)

Definition 42 M is a smooth manifold, whenever M is a manifold with a maximal smooth
atlas.

Definition 43 Let M be a manifold. A curve is a continuous map γ(t) ∶ I Ð→ M with
t ∈ I ⊂ R.

Let M be a smooth manifold. Consider a curve γ(t) ∶ I Ð→ M with I = [−1, 1]. When
γ(0) = m ∈ M, the curve induces a vector v = d

dt γ(t)∣t=0 at m and the space of these
vector is called the tangent space in m denoted as Tm M. Let {xa} be the coordinate
system, then any vector v ∈ Tm M can be written as the sum over a = 1, . . . n. (we will
use the summation convention)

v = va ∂

∂xa (A.2)
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We can unify all the tangent spaces at different m ∈ M as ⊔m∈M Tm M = TM, called
the tangent bundle.

Definition 44 Let M be a smooth manifold. A vector field is a smooth map X ∶ M Ð→
TM ∶ m Ð→ Xp. For every point m ∈ M, Xm ∈ TM that varies smoothly over M.

Definition 45 Let M be a smooth manifold with a vector field X. A flow is a map ρt(m) ∶
I × M Ð→ M with I ⊂ R. The flow should have the property that X(ρt(m)) = d

dt ρt(m) for
every t ∈ I. When the set of flows of a vector field covers the whole manifold, then the vector
field is called complete.

We want to define another object on the smooth manifold, a covector at m ∈ M. It
should behave as φ ∶ Tm M Ð→ R and the space of covectors is called the dual space
of Tm M or the cotangent space T∗

m M. Like in the tangent space case, we can define a
cotangent bundle T∗M = ⊔m∈M T∗

m M and from here we can define in the same way
a covector field.

An example for such an object would be the differential (gradient) of a smooth func-
tion on the manifold, d f (X)(m) ∈ R for f ∈ C∞(M) and X ∈ V(M). This implies that
the differential is some sort of operator. We can write a covector as φ = φadxa.

This operator will be referred to as the exterior derivative. We use the wedge prod-
uct1 ∧ to combine these covectors and it is antisymmetric, dx ∧ dy = −dy ∧ dx. Now
we have established that this operator can be applied multiple times on covectors
and this brings us the idea of n-forms. e.g. dx is a one form, dx ∧ dy is a two form . . .

A set of n-forms is denoted by Ωn(M). Some properties that the exterior derivative
should have is,

• d ○ d = 0,

• d is linear over R,

• d commutes with pullbacks,

• If ω ∈ Ωn(M) and η ∈ Ωk(M), then d(ω ∧ η) = dω ∧ η + (−1)nω ∧ dη.

Definition 46 Let M be a smooth manifold. If ω ∈ Ωn(M) and dω = 0, we call it closed.
If there exists a θ ∈ Ωn−1(M) and ω = dθ, then ω is exact and θ is the potential.

Definition 47 Let M be a smooth manifold with X a vector field and ω an n-form. An
interior derivative is the operation X ⌟ω = iXω = ω(X, . . . ).

Now we introduce the Lie-derivative LX for X ∈ V(M). This derivative works on
functions f ∈ C∞(M), vector fields Y ∈ V(M) and forms ω ∈ Ωn(M).

• LX f ∶= d f (X),

• LXY ∶= [X, Y],

• LXω ∶= d(iXω)+ iXdω.

The last one is often referred to as Cartan’s magic formula.

1For a more detailed explanation I would recommend to read Introduction to Smooth Manifold
by J. M. Lee.
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Integration

An important application of covector fields is to make coordinate independent inte-
grals. For example an integral over θ ∈ Ωn(M) through a path γ. Let v be the tangent
vectors of γ then,

∫
γ

θ ∶= ∫
t

0
v ⌟ θdt = ∫

t

0
θavadt. (A.3)
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Vector bundles and connections

Definition 48 A vector bundle of rank k over a manifold M is a manifold E together with
a map π ∶ E Ð→ M. It should satisfy,

• ∀m ∈ M then Em ∶= π−1(m) has the structure of k-dimensional vector space.

• Let U be a neighbourhood around m ∈ M then there should be a diffeomorphism Φ ∶
EU Ð→ M ×Rk with EU ∶= π−1(U).

Φ is called the transition function and the operation is called trivialisation. In this
thesis we will be mostly focusing on line bundles, where k = 1.

A section is a smooth map s ∶ M Ð→ E and has to pick for every m ∈ M an element
of s(m) ∈ Em. The space of sections of E is denoted as s ∈ Γ(E). We consider these
almost as smooth functions on the manifold, but some mathematical objects like the
exterior derivative don’t make sense. For this we introduce,

Definition 49 Let E Ð→ M be a vector bundle ad then define the connection as a linear
differential operator ∇ ∶ Γ(E)Ð→ Γ(T∗M⊗ E). ∇ has the properties,

• For constants a, b and s, s′ ∈ Γ(E), we have that ∇(as + bs′) = a∇s + b∇s′,

• Let f ∈ C∞(M) and s ∈ Γ(E) then ∇( f s) = d f ⊗ s + f∇s (Leibniz rule).

We will often use it as ∇X = X ⌟ ∇. Our goal of the connection was to mimic the
exterior derivative, but it fails when we compute ∇2 = F∇. ∇2 does not have to
equal zero. We call the squared ∇ the curvature and it is important for the Weil’s
integration condition because the curvature induces an integral class.

Vector bundle can be complex. Complex line bundles trivialise to M ×C.

We can define a metric on vector bundles and we are particularly interested in the
metric on a complex line bundle because this will play an important role in defining
an inner product on the Hilbert space. The metric on a complex vector bundle is
called the Hermitian structure or the Hermitian metric.

Definition 50 A Hermitian metric on a complex line bundle E Ð→ M is a map g ∶ E ×
E Ð→ R such that or every m ∈ M and X ∈ Em/{0},

• g(X, X) > 0,

• g(X, Y) = g(Y, X).
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g will often be denoted as (⋅, ⋅). A connection is compatible with a Hermitian metric
if,

∇X(s, s′) = (∇Xs, s′)+ (s,∇Xs′). (B.1)

We call u ∈ Γ(E) a unitary section if (u,u) = 1. The connection 1-form is determined
by its action on the unit section.

∇Xu ∶= −iΘ(X)u (B.2)

The connection 1-form in the text will always be the symplectic potential divided by
h̄.

Consider a Hermitian line bundle E Ð→ M and we have two intersecting neighbour-
hoods Ui ∩Uj ≠ ∅. We define a transition function gij(EUi∩Uj) = Ui ∩Uj ×C. Then we
can find the connection 1 form through,

d log(gij) = i(Θi −Θj). (B.3)
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Darboux’s theorem

Recall the theorem.

Theorem 6 (Darboux’s theorem) Let (M, ω) be a 2n-dimensional symplectic manifold
and let m ∈ M. Then there exists a neighbourhood U of m and a coordinate system {pa, qa}
with a, b = 1, 2 . . . n on U such that ω = dpa ∧ dqa in U.

We will first introduce time-dependant vector fields and time-dependent differen-
tial forms.

Let M be a smooth manifold with coordinates {xa} and let m ∈ M. A time-dependant
vector field is just a vector field with time-dependent components, X(m, t) = Xa(m, t) ∂

∂xa .

We should also consider the time derivative of such a time-dependant vector field.
∂tX = ( ∂

∂t Xa(m, t)) ∂
∂xa .

The associated vector field of a time-dependant vector field is X̃ ∈ V(M ×R).

X̃ = Xa(m, t) ∂

∂xa +
∂

∂t
(C.1)

The time-dependant k-forms are very similar defined as the vector fields. The com-
ponents of the k-form are time-dependant and when taking the time derivative, it is
the time derivative of every component.

The consequence for the Lie-derivative is,

LXα = X ⌟ dα + d(X ⌟ α)+ ∂tα (C.2)

Where X is a time dependant vector field and α a time dependent k-form.

First, we will sketch the proof of a lemma that we will use.

Lemma 3 Let ω and ω′ be symplectic structures on a smooth 2n-dimensional manifold
M and m ∈ M. If ω(m) = ω′(m), then there are neighbourhoods U and V of m and a
diffeomorphism ρ ∶ U Ð→ V such that ρ(m) = m and ρ∗(ω′) = ω.

This is not a waterproof proof, but rather an idea on how to prove it. We know
from the assumptions that ω(m) = ω′(m). Therefore there exists a neighbourhood
W around m such that d(ω −ω′) = 0. Thus we can find a local potential α such that
dα = ω −ω′ and let α(m) = 0.

Then define a time dependant 2-form Ω,

Ω = ω + t(ω′ −ω). (C.3)
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Note that Ω(m, t) = ω(m) for all t ∈ R. Thus Ω is non-degenerate in a neighbourhood
inside W, just like the symplectic structure ω. Then there is a well-defined time-
dependent vector field X such that,

X ⌟Ω + α = 0. (C.4)

For the Lie-derivative we find LXΩ = 0.

From this follows that if ρtt′ is the flow of X, then ρ∗tt′Ω(t′) = Ω(t). Thus ρ∗01ω′ = ω.
ρ(m) = m, because X(m) = 0. Let U ⊂ W, then if U is small enough, ρ01(U) = V ⊂ W.

Hereby we conclude the lemma to be proven.

Proof of Darboux’s theorem

Let (M, ω) be a symplectic manifold with a symplectic 2-form. Then because of
proposition 1 in chapter 2 we have a neighbourhood of m where we can choose a
symplectic frame {ya, xa} as coordinate system and let ω′ = dya ∧ dxa. Let ρ be as in
lemma 3. Define pa ∶= ya ○ ρ and qa ∶= xa ○ ρ. Then because of the earlier lemma. ω
has the form ω = ρ∗ω′ = dpa ∧ dqa. ∎
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