
Bachelor’s thesis
7.5 ECTS

Balanced asymmetry in general game playing

November 11, 2020

Thomas Dingemanse
t.dingemanse@students.uu.nl

3985628

Supervisor
Jan Broersen

Second reader
Michael De

Kunstmatige Intelligentie
Utrecht University

mailto:t.dingemanse@students.uu.nl

Contents

1 Introduction 3
1.1 Symmetry and balance . 3
1.2 Current research . 4

2 General game playing 5
2.1 Game descriptions . 6
2.2 General game players . 7
2.3 Comparable approaches to problem solving 7

3 Hnefatafl 9
3.1 Rules . 10

4 Methods 12
4.1 Software . 12
4.2 Design . 13
4.3 Procedure . 13

5 Results 13

6 Discussion 14
6.1 Turn duration . 15

6.1.1 Game description analysis . 15
6.1.2 Limitations in general game playing 19

7 Conclusion 19

8 References 20

Appendix A Implementation 22
A.1 Variant problems . 22
A.2 Game descriptions . 24

2

1 Introduction

Since the early days of artificial intelligence, strategy games like chess have been used
as a benchmark for the evaluation of intelligent systems (Genesereth et al., 2005; Silver
et al., 2018), functioning as a proxy for more complex real-world environments. In
1992b, Barney Pell laid the groundwork for general game playing (ggp), a field focused
on systems that can play a variety of previously unseen games well, based only on a
formal description of the rules that is provided at the start of the game. These systems,
called general game players, cannot utilize the training or self-play that are essential for
the performance of machine learning algorithms for game playing such as AlphaZero,1

because they only have a few minutes at most between receiving the rules and starting
the game. There are many different types of general game players, see section 2.2.

1.1 Symmetry and balance

Before we delve deeper into the subject of general game playing, it is necessary to clearly
define and differentiate between two related concepts: symmetry and balance. Symmetry
means the game is played in the same way for each player,2 while balance means all
players have the same probability of winning. Symmetric games are always balanced,
but balanced games are not necessarily symmetric. Creating balanced asymmetric games
can be very difficult, but much effort is put into it nonetheless, think of multiplayer video
games where different player characters have their own unique strengths and weaknesses.

Pell initially described the goal of general game playing as seeing “programs which can
analyse and play any games that humans could play” (1992a, p. 2). He also decided it
was more productive to focus on a smaller subclass first: “symmetric, chess-like games”.
Since the introduction of Game Description Language II which supported incomplete
information games, some work has been done on information asymmetry (Schiffel &
Thielscher, 2014), but not on other kinds of asymmetry or on balance.

If general game players are to be relevant to the field of artificial intelligence, they
should be able to play the kinds of strategic games that humans find interesting and

1Section 2.3 provides additional information about AlphaZero and MuZero and compares them to
general game playing.

2Note that the meaning of symmetry in this thesis is different from its meaning in a number of other
general game playing papers, where it is used as a noun to refer to a structural aspect of a game
representation as a finite state machine that can be exploited to reduce the search space for general
game players (Schiffel, 2010).

3

challenging. This includes asymmetric games. To evaluate whether general game players
are truly general, they should play asymmetric games equally well in any of the player
roles, provided that the game is balanced. Therefore, finding whether balanced games
cause differences in performance between asymmetric player roles could provide a new
and valuable insight into the differences and similarities between human game playing
and current computational approaches like ggp. Additionally, these findings could help
to improve general game players that specifically perform badly at asymmetric games.

1.2 Current research

One of the four definitions of AI described by Russell and Norvig is thinking rationally.
Rational agents should be “acting so as to achieve one’s goals, given one’s beliefs” (Russell
& Norvig, 2009, p. 7). This involves domain-independent problem solving, a problem
that ggp in general and the current research in particular contribute to, as stronger
general game players are also better general problem solvers in other contexts.

The question I want to answer in the current research is “How does asymmetry in
balanced games affect general game players?” The Viking board game hnefatafl is well
suited to answer this question: it is asymmetric in terms of starting positions, number
of game pieces, and goals, but its rules have evolved in such a way that the probability
of winning is roughly equal for both players, so the game is fun to play for both the
defender and the attacker. This differentiates the game from other asymmetric games
that have been formalised for ggp, which are asymmetric, but also unbalanced.

To answer the research question, I will take an approach based on the one proposed
by Pell (1992b): a tournament between general game players. The performance of the
players will be evaluated in two ways. First, their performance against an opponent
playing random moves: intelligence. Second, the difference in performance between
player roles in games against themselves: generality. An intelligent and truly general
game player should not manifest a bias towards either player role in balanced games,
but it should win most games against an opponent playing random moves. The null
hypothesis is that all players perform equally well for both roles, and they are evenly
matched against the random player: the players are roughly as intelligent and as general
as the random player. The alternative hypothesis is that some players are better at one
role than the other, or that some players can consistently win the majority of matches
against the random player, or both. Since there is no prior research into this topic, it is

4

not possible to say in advance which players will be good at playing which role.
To investigate the research question, this thesis will adhere to the following structure.

First, section 2 (General game playing) contains a more detailed overview of the field
and the various general game players, and compares general game playing to autonomous
planning, AlphaZero, and MuZero. Next, in section 3 (Hnefatafl), I will describe the
history, rules and complexity of hnefatafl, along with some practical considerations for its
ggp implementation. The methods are outlined in section 4: formalization of the game
rules, development of the agents, configuration of the tournament and how the agents
will be evaluated. Then section 5 (Results) will report the outcome of the tournament.
Furthermore, section 6 (Discussion) will evaluate the hypothesis based on the results
from the previous section and discuss if the methods were appropriate and sufficient for
the research aims. Finally, I will discuss how these results are relevant to the broader
field of AI and provide some pointers for further research in section 7 (Conclusion).

2 General game playing

For simple games with relatively few states, classical search is useful, but it quickly
becomes impossible as the state space increases. For more complex games like chess,
partial search on the state space such as planning ahead a limited number of turns and
choosing the best outcome, is generally a good strategy, but requires accurate heuristics
to evaluate outcomes. However, hand-crafting evaluation functions of states for every
game in advance requires human supervision, which is not always an option. One solution
is to generate an evaluation function automatically based on the rules of the game.
Another is to exploit the structure of the state space using constraint satisfaction, logical
reasoning, or a tree search algorithm. All of these solutions fall into the domain of ggp,
a general problem-solving approach to game playing. Today, much of the work in ggp
revolves around the annual International General Game Playing Competition (iggpc)
at aaai, and other ggp competitions. ggp has two main aspects:

1. Logically formalizing the rules of different kinds of games. Game Description
Language (gdl) is used to specify a logical formalization for any finite turn-based
game in terms of its basic elements (such as cells on a board), legal actions, state
transitions, players, goals, and terminal states (Thielscher, 2011). See section 2.1
below.

5

2. Developing programs that can perform well across a wide range of games, based
on such formalizations. These programs are called general game players, discussed
in section 2.2.

In contrast to machine learning solutions, the aim of ggp is not just to get the most
accurate results for a certain kind of problem, but to pinpoint the general knowledge or
insight that allows humans to solve many different kinds of previously unseen puzzles,
games and problems.3 As a result, ggp may offer more insight into the inner workings of
successful problem-solving strategies than the usually opaque nature of trained machine
learning models.

2.1 Game descriptions

In ggp, it is common to model games as finite state automata (Schiffel, 2010). The
structure of such a model depends on the rules of the game, which are described in gdl.
gdl has two functionally equivalent variants: prefix gdl and infix gdl. Prefix gdl has
a syntax comparable to Datalog,4 whereas infix gdl is syntactically similar to Prolog.5

Both variants are strictly declarative, like Datalog but unlike Prolog. gdl is based on
first-order logic (fol) with the closed-world assumption, also called full information,
applying negation as failure. This means that logical reasoners can be employed for
inference on game descriptions (Björnsson & Schiffel, 2013).

Currently, gdl has three versions: gdl-i, gdl-ii, and gdl-iii. gdl-i can describe
any turn-based, finite, deterministic, perfect information game (Genesereth et al., 2005).
gdl-ii also supports non-deterministic games and imperfect information games (Thielscher,
2011). The most recent extension of the language, gdl-iii, added support for epistemic
games (Thielscher, 2017). In this thesis all three variants are simply called gdl, since
the additional functionality added in gdl-ii and gdl-iii is not relevant for our purpose.

3Humans display the capacity to solve many different kinds of novel problems, but there are different
views on what it is that underpins this ability. This question is best addressed from the perspective
of cognitive science and philosophy of mind.

4Datalog is a strictly declarative logic programming language mostly used to query databases and
designed to be read by computers rather than humans.

5Prolog is a logic programming language. Infix gdl is not based on Prolog itself, but on Epilog, a
language for epistemic logical reasoning that is in turn based on Prolog.

6

2.2 General game players

General game players are defined by Genesereth and Björnsson (2013, p. 107) as “systems
able to play strategy games based solely on formal game descriptions supplied at run
time. In other words, they don’t know the rules until the game starts.” The somewhat
vague term strategy games merits some additional explanation. According to Genesereth
and Thielscher (2014, p. 1), “general game players should be able to play simple games
(like Tic Tac Toe) and complex games (like Chess), games in static or dynamic worlds,
games with complete and partial information, games with varying numbers of players,
with simultaneous or alternating play, with or without communication among the players,
and so forth.”

There is an inherent uncertainty in ggp: general game players have no knowledge of
the future actions of other players, and only rarely a guaranteed path to a goal state can
be found. This means that general game players need to account for different possible
outcomes of their actions. Additionally, time limits and state space size make finding a
guaranteed path to a goal state impossible from most states.

A variety of general game players has been developed implementing different ap-
proaches, including logic programming (Schiffel & Thielscher, 2007), generating heuristic
evaluation functions (Clune, 2007), constraint satisfaction (Gent et al., 2008; Koriche
et al., 2016), and Monte Carlo tree search (mcts) (Björnsson & Finnsson, 2009; Méhat
& Cazenave, 2010; Möller et al., 2011). The latter, introduced in 2008 by Finnsson and
Björnsson, and its variant Upper Confidence bound applied to Trees (uct), have become
ubiquitous in ggp because of their unparalleled performance (Genesereth & Björnsson,
2013). However, this may change again as last February a deep learning-based approach
outperformed uct (Goldwaser & Thielscher, 2020).

2.3 Comparable approaches to problem solving

ggp is not the only approach to intelligent problem solving and game playing. Two
other approaches will be discussed below.

First, autonomous planning. In a short 2013 iggpc review paper, Genesereth and
Björnsson compare ggp to autonomous planning. They note similarities, such as domain-
independence and the goal description of reaching one of the specified terminal states,
but also some differences (table 1). In ggp there are opponents, which complicates
decision-making, and there is an execution environment, allowing agents to switch be-

7

Autonomous planning GGP

Domain domain-independent domain-independent

Goal specified state(s) specified state(s)

Language pddl, strips, and others gdl

Opponents no yes

Execution environment no yes

Time constraints no yes

Table 1: Similarities and differences between autonomous planning and general game playing.
Similarities are shaded, differences are unshaded.

tween planning ahead and acting in the current situation. Another difference is that
autonomous planning is usually not subject to strict time constraints, whereas in ggp,
agents tend to have only a few seconds or sometimes minutes to decide what their next
move will be. Note that this is still a very long time compared to the few milliseconds
commonly used in reactive planning: in ggp, agents have more time to analyse possible
moves and plan multiple moves ahead, focusing more on deliberation than immediate
action.

Second, the current state of the art machine learning algorithm for game playing
MuZero and its predecessor AlphaZero, both developed by DeepMind, are in some ways
comparable to ggp as well (table 2). For instance, all three methods apply algorithms
like mcts to play various complex strategy games. AlphaZero and MuZero both use
mcts to choose actions during self-play, applying respectively model-free and model-

AlphaZero MuZero GGP

Knowledge of rules yes no yes

Game playing mcts mcts typically mcts

Training time days days minutes

Reinforcement Learning model-free model-based no

Table 2: Similarities and differences between AlphaZero, MuZero, and general game playing.
Similarities are shaded, differences are unshaded.

8

based reinforcement learning. The self-play data is then used to train a neural network.
While most current ggp approaches also use mcts, they don’t use reinforcement learning
or neural networks, as their aim is to acquire an understanding of the rules through
inference, as opposed to learning the best moves from experience, i.e. self-play. Moreover,
AlphaZero and MuZero require days of training, while ggp agents have to act in a matter
of seconds after being provided the rules of a game, due to the limited time available
before the game starts and between turns. AlphaZero and general game players have
access to the rules of a game in advance. In contrast, MuZero must learn the rules based
on gameplay data from its self-play phase. In this regard, MuZero (but not AlphaZero)
is similar to Inductive General Game Playing (iggp), a ggp variant where players must
infer the rules from gameplay data (Cropper et al., 2019).

In conclusion, all three approaches have their own aims, strengths and weaknesses,
and therefore their own place in the field of artificial intelligence. The place of ggp is
real-time game playing without prior knowledge of the rules or training, with opponents
and strict time constraints. While this is much more difficult than other approaches, this
makes ggp uniquely suitable to investigate intelligent domain-independent deliberation
as opposed to applying complex learned patterns or static planning.

3 Hnefatafl

Strategic board games have been a popular pastime for millennia (Sebbane, 2001, p. 213).
One such game is hnefatafl,6 a game in the tafl family that was played by Vikings in
Europe before chess took over in popularity (Ashton, 2010, p. 1). The exact way hnefatafl
was historically played is an ongoing debate. The best available resources on this topic
are a number of translations of famous taxonomer Carl Linnaeus’ travel journal from
1732, written in Latin and Swedish. It describes a similar tafl game: (Saami) tablut.
Due to the terminology used in this manuscript, the defending pieces are sometimes
called the Swedes, and the attacking pieces Muscovites or Russians.

Hnefatafl, like other tafl games, is a deterministic, asymmetric, 2-player complete
information game played on a square grid. The defending player tries to move the king
to an edge or corner of the board while protecting it with their other pieces, while the
attacking player closes in from all sides, trying to prevent the king from escaping. It’s
important to note that even though the game is asymmetric, many variants turn out to

6The word hnef means fist and refers to the king piece. Tafl means table or board.

9

be relatively balanced.
This thesis focuses on 13 × 13 historical hnefatafl using the Parlett (1999) board

layout without restricted corner squares (from now on simply called 13 × 13 hnefatafl),
the most balanced hnefatafl variant.7 It has no measurable bias towards either player
if we focus only on strong players playing full matches, meaning that each player plays
as both the attacker and the defender. When partial matches and weaker players are
also included, it has a 3% bias in favor of the attacker. By comparison, the more
popular 11× 11 Copenhagen hnefatafl has a 42% bias towards the defender. A general
observation about tafl games is that more experienced human players appear to be better
at defending, while inexperienced players tend to be better attackers. This may be due
in part to the relative ease and lack of planning required to move the king towards the
edges compared to capturing the king.

An upper bound on the size of the state space of tablut was estimated to be 1.4×1027

by Galassi (2019), comparable to Othello but much smaller than chess. However, the
state space of 13 × 13 hnefatafl is likely to be much higher, as it is played with similar
rules, but on a much larger board. In summary, 13 × 13 hnefatafl is asymmetric but
balanced, and sufficiently complex to pose a challenge to general game players.

3.1 Rules

13× 13 hnefatafl has a game board with 13 rows and 13 columns (figure 1). The center
square is the throne. The defender has 17 game pieces: 16 regular pieces and one king.
The attacker has 32 regular game pieces, twice as many as the defender.8 First, I will
discuss the rules of the game. Then, I will address some practical considerations that
become relevant when the game is formalised as a gdl game description.

The attacker begins and the players then take turns, moving one of their pieces each
turn. Each piece can move any distance in a straight line as long as all squares on its
path are empty, like the rook in chess. The king moves in the same way as regular pieces,
with one exception. The throne is restricted: regular pieces can pass through the throne
when it is empty, but only the king can end his turn on the throne.

All pieces, including the king, can participate in capturing opponents. A piece is
captured if it is closed in on both sides (either vertically or horizontally) by opposing

7Based on statistics from http://aagenielsen.dk/tafl_balances.php.
8This ratio between attacking and defending pieces (excluding the king) is typical for tafl games.

10

http://aagenielsen.dk/tafl_balances.php

Figure 1: Initial positions of 13 × 13 historical hnefatafl using the Parlett board layout without
restricted corner squares. Red pieces are defenders, black pieces are attackers. The king occupies
the throne (center square, red background).

pieces, but only if this is the result of the opponent’s move. Moving one of your own
pieces in between two opponents does not result in its capture. A piece is also captured
if it is closed in between an opposing piece and the empty throne. Captured pieces are
removed from the board. The king cannot be captured if he is on the throne or next
to it. Instead, he can be killed: if the king is surrounded on all four sides by opposing
pieces, or by three opposing pieces and the throne, he is removed from the game.9

If the king ends its turn on one of the edge squares, the defending player wins the game.
The attacking player wins if the king is captured or killed, or if all defending pieces are
surrounded by attacking pieces, so that they cannot escape unless an attacking piece
moves away. If a player has no legal moves available on their turn, they lose the game.
If either player forces the same board position to be repeated for the third time, they
also lose the game.

For the gdl implementation of this game, a 500 turn limit was added, because ggp
games must be finite. However, games should rarely (if ever) take that long in practice,

9This difference between killing and capturing the king has only become apparent after a recent (yet
unpublished) translation of the tablut rules that fixes a previous mistake. See http://aagenielsen.dk/
tablut_translations.html and http://www.tsalo.fi/tablut.html.

11

http://aagenielsen.dk/tablut_translations.html
http://aagenielsen.dk/tablut_translations.html
http://www.tsalo.fi/tablut.html

as human matches of 13 × 13 hnefatafl take about 57 turns on average.10 Additionally,
the rule where the attacker wins by surrounding all defenders was left out in the game
description, because it would lead to intractable computational costs. This is not an
issue, because this situation is uncommon and unlikely to lead to a win for the defender.
In the perpetual repetitions rule, where a board position cannot occur three times during
the same game, the player who has more choice in preventing the repetitions is normally
marked as the aggressive player, and he or she is the one who loses the game. This is
not precise enough for a game description, so the rule was implemented by letting the
player who directly causes a board position to be repeated for the third time by taking a
move on their own turn lose the game. These changes address practical concerns of the
implementation while preserving the essence of the game, because the strategy remains
almost entirely unaffected.

4 Methods

4.1 Software

A link to the source code for 13 × 13 hnefatafl is included in the appendix, section
A.2. The rules were formalized in infix gdl, saved as a .hrf file, converted to a prefix
gdl (.kif) file using the Stanford gdl converter11 and validated using Eclipse with the
Griddle plugin.12

A selection of four players to take part in the tournament was created with the cri-
terion of including different approaches to ggp: MCTS is a simulation-based approach,
Minimax uses the minimax algorithm with α-β pruning, Heuristic uses heuristic eval-
uation function generation, and Random selects a random legal move. All players were
generated by the Configurable Game Player software13 and represent the game as a
state machine using a logical prover based on the fol resolution procedure (Russell &
Norvig, 2009, p. 345). The open-source ggp-base project14 was used to implement a
locally hosted tournament between the general game players.

10Based on statistics from http://aagenielsen.dk/tafl_spillaengder.php.
11http://ggp.stanford.edu/public/gameconverter.php
12https://github.com/AlexLandau/griddle
13http://www.ggp.org/cs227b/player.html
14https://github.com/ggp-org/ggp-base

12

http://aagenielsen.dk/tafl_spillaengder.php
http://ggp.stanford.edu/public/gameconverter.php
https://github.com/AlexLandau/griddle
http://www.ggp.org/cs227b/player.html
https://github.com/ggp-org/ggp-base

4.2 Design

The experiments were designed to explore the two properties mentioned in the intro-
duction, section 1.2: intelligence and generality. In all experiments, the independent
variables are player type and player role assignment (attacker vs. defender), and the
dependent variable is victory ratio (% of matches won). First, to test the intelligence of
general game players, the Random player was used as the baseline performance measure.
Every other player type played 10 matches against the Random player, 5 as the defender,
5 as the attacker. Then, to test the generality of general game players, each one played
10 matches against another player of the same type, again equally distributed between
the two player roles. Another possible design is a counterbalanced tournament, but this
would require a large number of matches for each player combination, making it much
less practical within the scope of this thesis.

Note that the Random player is not expected to perform equally well in both player
roles, even though the game is balanced for humans. The likelihood of the king randomly
ending up at one of the 44 edge squares is higher than that of two attacking pieces being
placed on either side of the king before it moves again. For more intelligent players
(up to human-level intelligence), the victory ratio should shift towards 0.5, indicating a
balanced game.

4.3 Procedure

All matches used a start clock of 30 seconds and a play clock of 15 seconds. Matches
were never run in parallel to make sure enough computational resources were available for
both players in every match. Finally, the number of won and lost games was recorded for
each player in both player roles. Four matches, each of which lasted for over three hours
and more than 500 turns, were terminated and omitted from the results. Continuing
these matches was not practically feasible and unlikely to lead to a victory for either
player, because the turn duration kept increasing with every turn.

5 Results

Initially, ten matches of historical 13 × 13 hnefatafl were recorded with the Random
player as both the attacker () and the defender (). The results are displayed in table
3. In all matches, the turn duration increased steadily over the course of the match,

13

Match 1 2 3 4 5 6 7 8 9 10

Turns 258 404 90 412 489 242 278 270 342 267

Winner

Table 3: Results of 10 matches of historical 13 × 13 hnefatafl, Random vs. Random.

starting at multiple turns per second and approaching the play clock of 15 seconds around
turn 300 on average. Subsequent turns did not result in timeout errors, even though
the turn duration (sometimes greatly) exceeded the play clock. For all other player
types, all matches resulted in timeout errors on every turn, to the extent that they were
functionally equivalent to the Random player.15 As a result, only the generality of the
Random player was measured. The generality of other players could not be determined
as none of the corresponding matches produced meaningful results. Player intelligence
is measured relative to the Random player, and since this was the only player without
timeout errors, the intelligence of the players remains unknown.

6 Discussion

To summarize the results, 8 of the 10 Random vs. Random matches were won by the
defender. This trend, while not significant, could indicate that 13 × 13 hnefatafl is not
balanced when moves are selected randomly. If future results confirm this effect, it is
likely that the observed balance in human games is not an emergent property of the
game’s structure or rules themselves, but arises from intelligent decision making by the
players. Whether the degree to which a game such as hnefatafl is balanced is directly
linked to the level of intelligence of the agent remains an open question. Different problem
solving approaches (such as different general game players) are directly comparable in
the sense that their win ratio in a tournament can be compared, but this does not
imply that matches between more intelligent players will always be more balanced. It
is entirely possible that a certain agent is particularly good at attacking, but merely
average at defending, or the other way around. The human approach to problem solving
apparently leads to balance in this specific game, and while this does require a certain
level of intelligence, it does not mean that more intelligent players will play more balanced

15On a timeout error, the server picks a random move for the player, see section 6.1.

14

games in general. However, we cannot compare the human approach to other approaches
since humans are much more intelligent than any other agent, and because much is still
unknown about how human intelligence actually works.

6.1 Turn duration

If the server does not receive a legal move from a player before the turn timer runs out,
the server picks a random legal move for that player. If this happens often enough, the
match ceases to be representative of the player’s skill. Since the Monte Carlo tree search
players frequently timed out in these experiments, the experiments do not provide any
meaningful information about how balanced the game is for two MCTS players. This
holds for any player attempting to look ahead in the game tree. Since planning is a
fundamental aspect of intelligence and essential for complex games like hnefatafl, none
of the experiments contribute to answering the research question, with the exception of
the Random vs. Random matches.

In these matches, the play clock was not being used by the players to submit their
moves, because the submitted moves were already displayed at the very start of each turn
while the turn timer was still running, sometimes long after exceeding the play clock of
15 seconds. Also, the Random player simply picks an arbitrary move from the list without
calculating any future states, so it only requires minimal computation. Therefore, the
increasing turn duration is likely due to the computational cost of calculating the next
state based on the current state and the most recent move, which becomes increasingly
more complicated as the game progresses, and the state history increases in size.

The obvious question is: why does the turn duration increase so rapidly? The first
hypothesis, discussed in section 6.1.1, is that the game description contains an error.
The second hypothesis is discussed in section 6.1.2: either gdl or ggp-base has some
limitation that makes it unsuitable to formalize certain kinds of games.

6.1.1 Game description analysis

First, I attempt to determine whether the game description contains an error by system-
atically checking all of its components. A number of variant problems were generated
to determine which, if any, of the components of the game description was causing the
issue using a process of elimination. This section will occasionally refer to these vari-
ant problems, which are detailed in the appendix, section A.1. I will discuss all game

15

description components separately below.

1. Roles. The player roles (one attacker and one defender) are trivial and explicitly
defined in a way that is functionally and syntactically equivalent to numerous other
game descriptions that are not subject to this issue. Therefore, the player roles
cannot be the cause of the problem.

2. Base propositions. The base propositions provide constraints for other predi-
cates by defining a set of valid variable assignments, reducing the time needed to
check variable assignments by limiting the options in advance. An important rule
for these base propositions is that they must include all valid variable assignments
for a given predicate that could theoretically occur during a game. Additionally,
good base propositions include little else, so that they efficiently prevent the re-
peated checking of invalid combinations. The only way to know if the base propo-
sitions could be any more efficient than they are is to actually make them more
efficient, but they were already carefully designed with the goal of being as efficient
as possible. While inefficient base propositions could be slowing down the game
considerably, simply removing them would likely make the game even slower. This
makes the base propositions difficult to analyse. Nonetheless, some base propo-
sitions were removed in various variant problems. None of them resulted in a
measurable decrease in turn duration, except variant problem 11, which removed
the state history.

3. Inputs. The inputs are similar to base propositions, but for the legal moves of the
game. An input defines what kinds of actions are valid, without taking into account
the state of the game. For instance, in 13 × 13 hnefatafl, moving a piece from an
existing position on the board to another position should correspond to one of the
input predicates, while moving it to (55, 108) should not be included in any input
predicate. Whether a move with a valid input is actually legal in a certain specific
game state is determined by the legal moves section below, but the legal moves
in any given state must be a subset of the input predicates. The available moves
could be calculated very quickly, because Random vs. Random matches had a very
short turn duration, even though Random players also need a list of possible moves
in a given game state.

4. Initial state. The initial state includes the initial board positions. All cells with

16

their initial values are explicitly defined by grounded statements and inspection
shows these statements to be trivially correct. Furthermore, grounded statements
like these cannot be the cause of the problem, since they require no variable match-
ing. Finally, the problem occurs in most states, not just the initial state. Therefore,
no changes to the initial state were made in any of the variant problems, unless
required to accommodate other changes, such as a 9× 9 board.

5. Legal moves. The legal moves are a subset of the inputs. They describe which
moves a player is allowed to do in a specific state. The legal moves were changed in
a number of variant problems that either restricted them (7, 8) or allowed for more
freedom instead (10). However, none of them resulted in a noticeable turn duration
decrease. This is surprising, as a significant increase or decrease in possible actions
should radically change the state space size and thus slow down the game, but no
such effect was observed. It is possible that some other factor has such a great
effect on the turn duration that even a significant expansion or reduction of the
state space has little effect in comparison.

6. Update rules. The update rules determine what the game state will look like
after a state transition; together, they fully describe the resulting state (a specific
set of predicates) based on the moves of the players and the current game state.
The update rules are not only used after an actual player move, but may also
be used by players to plan ahead by inspecting states that would result from
hypothetical player moves. That makes this component of the game description a
likely candidate for the cause of the problem. Almost every update rule is tested
in some variant problem (4, 5, 6, and 10) as a side effect of testing other aspects
of the game description. Crucially, one particular predicate could not be tested:
cells where nothing happens on a given turn (no pieces moves into it or away
from it, and no piece is captured or killed there) should remain unchanged and
keep their old value. This rule includes a negation, which uses negation as failure
(naf) in gdl. However, removing this rule is not possible as it would result in an
incomplete game state where almost all of the cells are removed from the game
entirely after the first turn. Even though the relevant part of the game state is
limited to 132 = 169 cells, the application of naf to explicitly represent the lack
of change to all but a few of the cells each turn can be seen as an instance of the
frame problem. Interestingly, game descriptions for other games seem to employ

17

similar rules based on naf for this purpose, and they do not run into issues with
the turn duration. Therefore, this rule is unlikely to be the culprit.

7. Terminal states. The terminal states specify the conditions that cause the game
to end. Every terminal state should have a corresponding goal (see below), so that
the players can be rewarded utility depending on how the game was terminated.
The terminal states worked correctly in all observed matches, and only become
relevant at the end of the game. Still, these predicates must be checked for every
state to see if it is terminal, so this could well be responsible for a slower transition
between states. The perpetual repetitions rule was removed in variant problem 11,
since the entire state history was removed. Other variant problems removed the
terminal states corresponding to capturing (5) or killing (6) the king, or moving
the king to the edge of the board (7), as well as the terminal state where the player
whose turn it is has no legal moves left (3).

8. Goals. The goals define rewards for certain specified conditions, most commonly
terminal states. The goals for hnefatafl are similar to those of many other games
described in gdl: the winner gets 100 points, the loser gets none. These statements
are trivial and similar to many other game descriptions, so they were not changed
in any of the variant problems.

9. Supporting concepts. Supporting concepts include rules for capturing oppo-
nents, killing the king, movement, etc. All of these rules are referred to by other
predicates in at least one of the other sections of the game description. A number
of variant problems were created to test specific supporting concepts by removing
them, such as capturing regular pieces (4), capturing the king (5), killing the king
(6), and capturing pieces by simply moving into their space (10). None of these
variant problems resulted in faster state transitions.

10. State history. The state history is used to keep track of the number of repetitions
of any given state since the start of the game. This is required to prevent endless
loops of game states, thereby keeping the game finite; a strict requirement for ggp
game descriptions. A rule preventing perpetual repetitions is also included in the
rules of this particular variant of hnefatafl. In variant problem 11, the state history
was removed, which resulted in a somewhat reduced increase in turn duration, but
still caused timeout errors on every turn for MCTS players.

18

In summary, the increased turn duration could be partially explained by the state
history, possibly compounded by other predicates in the base propositions, update rules,
or supporting concepts. The other components (roles, inputs, initial state, legal moves,
terminal states, and goals) are unlikely to be the cause of the problem.

6.1.2 Limitations in general game playing

Second, I investigate the possibility that the increased turn duration is due to shortcom-
ings in the gdl language specification, the ggp specification, or its implementation in
the ggp-base software. As the preceding section shows, a few possible explanations for
the increasing turn duration still remain in the game description, so it would be frugal
to assume the problem lies with gdl or ggp itself. Moreover, a great number of game
descriptions in gdl are hosted online and appear to function quite well with ggp-base.
However, it would be equally remiss to ignore the possibility entirely that the problem
lies with ggp or gdl. gdl as a language must be sufficiently expressive to represent
any kind of game, which is why it is based on (epistemic) logic, but this comes at a
cost of increased complexity when parsing, checking and applying its rules. As a result,
troubleshooting these issues can be incredibly time-consuming because the gdl code is
not actually executed in a runtime environment, but interpreted by the general game
players. Understandably, ggp-base is not developed with the intent of making it easy to
see how much time certain rules take to compute and, more importantly, why.

Computational complexity is another possible cause for the increased turn duration
and timeout errors. Perhaps using a 13 × 13 board for a game as deep and complex
as hnefatafl is simply too demanding for use in ggp on current hardware. Two variant
problems were generated to test this hypothesis: hnefatafl on a 5 × 5 board (1) and
hnefatafl on a 9× 9 board (2). The former is too trivial to offer meaningful results and
the latter did not result in faster state transitions and caused timeout errors for MCTS
players just as in 13×13 hnefatafl. Thus, it seems that the issue is not one of complexity
of the state space.

7 Conclusion

Despite its name, ggp is not only applicable to game playing. Advances in ggp can
be applied to other domains, since ggp aims to develop domain-independent problem
solving methods for novel problems. In this way, ggp is one of many approaches to more

19

general artificial intelligence. However, there is a long way to go for ggp as it is much
worse at learning how to play games than state of the art machine learning approaches
such as MuZero. On the other hand, its niche of understanding the rules logically and
reasoning to their implications is still valuable, since it is a fundamentally different task
than efficient pattern recognition based on data. Like many fields in AI have done in the
past, ggp raises the bar for what we can and should expect from artificial intelligence,
and shows that symbolic AI still has an important place in science today.

In attempting to put the generality of various general game players to the test, this
thesis ended up testing the generality of gdl and ggp instead: “can 13 × 13 hnefatafl
be represented using gdl and played as a ggp game?” This remains an open question,
and the answer so far is “no”. The main research question of this thesis was “How does
asymmetry in balanced games affect general game players?” To answer it, ggp must be
able to handle 13 × 13 hnefatafl correctly, or possibly another asymmetrical balanced
game, but these are few and far between.16 These insights are a small step in the right
direction, even though the main research question has not been answered.

Further research might look into other ways to answer the research question. One
possible approach would be a combination of measures that mitigate the effect of ex-
ponentially increasing turn duration. For instance, hnefatafl on a 7 × 7 or 9 × 9 board
without a state history, perhaps simplifying or removing other rules as well. Another
possibility is to find a way to modify the game description such that it still represents
13 × 13 hnefatafl, but can be used to compute state transitions much more efficiently.
Yet another option is to look into other balanced asymmetrical games, or to observe un-
der what conditions asymmetrical games result in balanced matches for certain general
game players.

8 References

Ashton, J. C. (2010). Linnaeus’s game of Tablut and its relationship to the ancient Viking
game Hnefatafl. The Heroic Age: A Journal of Early Medieval Northwestern
Europe, 13, 1526–1867. https://www.heroicage.org/issues/13/ashton.php

16There are no statistics to support this, but Root is a popular modern board game claiming to be
asymmetrical, yet balanced. If empirical research into the alleged balance of the game is an option,
this could be an interesting avenue for further research.

20

https://www.heroicage.org/issues/13/ashton.php
https://ledergames.com/products/root-a-game-of-woodland-might-and-right

Björnsson, Y., & Finnsson, H. (2009). Cadiaplayer: A simulation-based general game
player. IEEE Transactions on Computational Intelligence and AI in Games, 1(1),
4–15.

Björnsson, Y., & Schiffel, S. (2013). Comparison of GDL reasoners, In Proceedings of the
IJCAI-13 workshop on general game playing (GIGA’13).

Clune, J. (2007). Heuristic evaluation functions for general game playing, In AAAI.
Cropper, A., Evans, R., & Law, M. (2019). Inductive general game playing. Machine

Learning, 1–42.
Finnsson, H., & Björnsson, Y. (2008). Simulation-based approach to general game play-

ing., In AAAI.
Galassi, A. (2019). An upper bound on the complexity of tablut [Unpublished manuscript].

Unpublished manuscript. http://ai.unibo.it/sites/ai.unibo.it/files/Complexity_
of_Tablut_0.pdf

Genesereth, M., & Björnsson, Y. (2013). The international general game playing compe-
tition. AI Magazine, 34(2), 107–107.

Genesereth, M., Love, N., & Pell, B. (2005). General game playing: Overview of the
AAAI competition. AI magazine, 26(2), 62–62.

Genesereth, M., & Thielscher, M. (2014). General game playing. Synthesis Lectures on
Artificial Intelligence and Machine Learning, 8(2), 1–229.

Gent, I. P., Nightingale, P., Rowley, A., & Stergiou, K. (2008). Solving quantified con-
straint satisfaction problems. Artificial Intelligence, 172(6-7), 738–771.

Goldwaser, A., & Thielscher, M. (2020). Deep reinforcement learning for general game
playing, In Proceedings of the AAAI conference on artificial intelligence, New
York, AAAI Press.

Koriche, F., Lagrue, S., Piette, É., & Tabary, S. (2016). General game playing with
stochastic CSP. Constraints, 21(1), 95–114.

Méhat, J., & Cazenave, T. (2010). Ary, a general game playing program, In Board games
studies colloquium.

Möller, M., Schneider, M., Wegner, M., & Schaub, T. (2011). Centurio, a general game
player: Parallel, Java- and ASP-based. KI-Künstliche Intelligenz, 25(1), 17–24.

Parlett, D. S. (1999). The Oxford history of board games. Oxford University Press, USA.
Pell, B. (1992a). Metagame in symmetric, chess-like games. In J. van den Herik & V.

Allis (Eds.), Programming in artificial intelligence: The third computer olympiad.
USA, Ellis Horwood.

21

http://ai.unibo.it/sites/ai.unibo.it/files/Complexity_of_Tablut_0.pdf
http://ai.unibo.it/sites/ai.unibo.it/files/Complexity_of_Tablut_0.pdf

Pell, B. (1992b). Metagame: A new challenge for games and learning. In J. van den Herik
& V. Allis (Eds.), Programming in artificial intelligence: The third computer
olympiad. USA, Ellis Horwood.

Russell, S., & Norvig, P. (2009). Artificial intelligence: A modern approach (3rd). USA,
Prentice Hall Press.

Schiffel, S. (2010). Symmetry detection in general game playing, In Twenty-fourth AAAI
conference on artificial intelligence.

Schiffel, S., & Thielscher, M. (2007). Fluxplayer: A successful general game player, In
AAAI.

Schiffel, S., & Thielscher, M. (2014). Representing and reasoning about the rules of gen-
eral games with imperfect information. Journal of Artificial Intelligence Research,
49, 171–206.

Sebbane, M. (2001). Board games from Canaan in the early and intermediate bronze
ages and the origin of the Egyptian senet game. Tel Aviv, 28(2), 213–230.

Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A., Lanctot,
M., Sifre, L., Kumaran, D., Graepel, T., Et al. (2018). A general reinforcement
learning algorithm that masters chess, shogi, and go through self-play. Science,
362(6419), 1140–1144.

Thielscher, M. (2011). GDL-II. KI-Künstliche Intelligenz, 25(1), 63–66.
Thielscher, M. (2017). GDL-III: A description language for epistemic general game play-

ing, In The IJCAI-16 workshop on general game playing.

Graphical assets

Sword by IconMark from the Noun Project.
Shield by Kimmi Studio from the Noun Project.

Appendix A Implementation

A.1 Variant problems

For each of the variant problems indicated in this section, one or more matches between
two Random players were observed, as well as between two MCTS players. All variant
problems are identical to 13× 13 hnefatafl in every regard except for the modifications
outlined below. The issue was prevalent in all of the variant problems.

22

1. Hnefatafl on a 5 × 5 board. The king is in the center, at (3,3), with attackers at
(1,3), (3,1), (3,5), and (5,3), and defenders at (2,3) and (4,3). The computational
complexity of this variant problem is more similar to tic-tac-toe than to 13 × 13

hnefatafl. Random vs. Random matches take 3-20 turns each and MCTS vs. MCTS
matches take 2-8 turns each. More importantly, MCTS does not cause timeout errors
in 5×5 hnefatafl, presumably because the game is trivial enough that a few moves
is usually sufficient to reach a terminal state for both Random players and MCTS
players. Therefore, looking ahead in the game tree does not incur computational
penalties to the point where it becomes practically infeasible.

2. Hnefatafl on a 9 × 9 board. This variant problem caused timeout errors for MCTS
players. While turn durations did increase over time for Random players just as in
13 × 13 hnefatafl, matches of 9 × 9 hnefatafl tend to terminate in fewer than 300
turns. Thus, the increased turn duration does not impede empirical experiments
for Random players playing 9× 9 hnefatafl, however these would be less interesting
since 9× 9 hnefatafl is not balanced for humans.

3. Hnefatafl where the win condition that the other player has no legal moves left
is removed. In this variant problem, MCTS players caused timeouts on every turn.
The increase in turn durations for the Random player was similar to matches of
13× 13 hnefatafl.

4. Hnefatafl where none of the pieces can be captured. In this variant problem, MCTS
players caused timeouts on every turn. The increase in turn durations for the
Random player was similar to matches of 13× 13 hnefatafl.

5. Hnefatafl where the king cannot be captured, only killed. In this variant problem,
MCTS players caused timeouts on every turn. The increase in turn durations for
the Random player was similar to matches of 13× 13 hnefatafl.

6. Hnefatafl where the king cannot be killed, only captured. In this variant problem,
MCTS players caused timeouts on every turn. The increase in turn durations for
the Random player was similar to matches of 13× 13 hnefatafl.

7. Hnefatafl where the king is not allowed to move. In this variant problem, MCTS
players caused timeouts on every turn. The increase in turn durations for the
Random player was similar to matches of 13× 13 hnefatafl.

23

8. Hnefatafl where none of the game pieces is allowed to move. In this variant, the
third turn always ends the game, because is is the third repetition of the same
board configuration, causing the first player to lose the game.

9. Hnefatafl where none of the game pieces is allowed to move and the no perpetual
repetitions rule is removed as well. Now the game continues indefinitely, and every
new turn is identical to the first, offering very little information on what is causing
the issue.

10. Hnefatafl where movement of the game pieces is not limited to a straight line that is
not blocked by other pieces. Instead, the pieces can move to any square, removing
any piece already present in that square.

11. Hnefatafl without a state history. In this variant problem, the number of previous
occurrences of every unique board configuration is removed. Therefore, there is no
way to check for repeated board posititions, an important rule similar to remise
in chess. Additionally, this variant problem is no longer guaranteed to be finite
unless an arbitrary turn limit is added, which is a strict requirement for gdl game
descriptions. Timeout errors were present for MCTS players on every turn, just as
in 13 × 13 hnefatafl. While the turn duration did increase with every turn for
Random players in this variant problem, the effect was much less pronounced than
in 13×13 hnefatafl, reaching 2 seconds around turn 700 and 3 seconds around turn
800. This seems to indicate that the turn timer still increases exponentially, even
after the removal of the state history which turned out to slow down the game
significantly. It is possible that the state history is just one of the issues leading
to timeout errors in the MCTS vs. MCTS matches.

A.2 Game descriptions

All game descriptions used in this thesis, as well as a number of supplementary files, are
made publicly available as a git repository hosted on GitLab.17

17https://gitlab.com/thomas.dingemanse/ggp-balanced-asymmetry

24

https://gitlab.com/thomas.dingemanse/ggp-balanced-asymmetry

	Introduction
	Symmetry and balance
	Current research

	General game playing
	Game descriptions
	General game players
	Comparable approaches to problem solving

	Hnefatafl
	Rules

	Methods
	Software
	Design
	Procedure

	Results
	Discussion
	Turn duration
	Game description analysis
	Limitations in general game playing

	Conclusion
	References
	Appendix Implementation
	Variant problems
	Game descriptions

