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Abstract

Literature shows that there is still a lack of objective, quantitative information about cycling
traffic for urban researchers and planners. At the moment, gravity models are the most
standard models for traffic prediction. However, these models have some difficulties fitting to
local measurements. Machine learning algorithms can fit to local measurements very well
and have become viable in recent years due to the increase in computing power of modern
hardware. Induction loops and manual counting by hand have traditionally been often used
methods for (cycling) traffic counting and traffic data collection. Due to the increase in
smartphone usage, GPS data has become a viable alternative to these traditional methods in
recent years. Therefore, there lies a lot of potential in combining new and upcoming data
sources for traffic information such as GPS with more conventional data sources such as
traffic counts using machine learning. This research aims to investigate if and how cyclist
traffic intensity can be estimated using machine learning algorithms to combine GPS tracks
and local traffic counts. The municipality of Tilburg in the Netherlands is selected as the
scope for this research, because of the availability of data for this area.

Possible input features for the machine learning algorithms were based on literature. GPS
cyclist intensities, spatial distance, road surface type, the width of roads and attractivity
were found to be suitable input features. The Fietsersbond network was chosen over the
OpenStreetMap network, since the former contained most of the possible input features. GPS
tracks from the B-Riders and Fietstelweek were mapmatched to the network to provide traffic
intensities to combine with the traffic counts, which are based on the ’Fietstelprogramma
Gemeente Tilburg’. Seven different machine learning regression algorithms are tested, and
their outcomes were assessed using K-fold and Leave-one-out cross-validation.

There was found to be very little correlation between the GPS cyclist intensities and the traffic
counts. The outcomes of every single machine learning algorithm show that the B-Riders
and Fietstelweek GPS data are unsuitable for estimating the traffic intensity of cyclists using
flow interpolation since all of them have r2 scores that are zero or negative. Future research,
using more extensive and less biased GPS data samples, could provide further insight into
the possibilities of combining GPS tracks and local traffic counts to estimate cyclists traffic
intensity on a network.
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1Introduction

1.1 Context
The Netherlands is known for being one of the leading countries in the world regarding
cycling. Currently, the number of bicycle trips that are taken each year in The Netherlands
exceeds four billion. This amount accounts for approximately 27 percent of all trips made in
a given year in the Netherlands. This percentage has remained relatively stable over the years
(Klinkenberg and Bertolini, 2012).

Many organizations in the Netherlands realize the importance of cycling. For example,
inspired by the Tour de France start in Utrecht in 2015, CROW-Fietsberaad (2017) began a
collaboration with nearly all organizations in the Netherlands responsible for cycling policies.
These organizations include authorities such as municipalities and provinces, civil society
organizations such as the ANWB and the organizations such as Nederlandse Spoorwegen(NS).
The collaboration is titled ’Tour de Force 2020’, and recently a Bicycle Agenda 2017-2020
was released. This agenda had eight main goals, which they hope should lead to a 20 percent
increase in the number of kilometers cycled between 2017 and 2020.

In addition to all the parties involved in such projects, even the new coalition agreement of
the Dutch government mentions the importance of cycling for the Netherlands and suggests
that extra budget will be made available to improve the cycling infrastructure during the next
four years (Rijksoverheid, 2017).

To be able to support policies regarding bicycles, policymakers need to have information about
the (cycling) traffic intensity in a particular area. According to Zhu and Levinson (2015), any
new infrastructural initiatives or policies need to be built on reliable and precise traffic flow
and travel time predictions.

Originally, the most common way for policymakers to get accurate traffic numbers is induction
loops(in Dutch: tellus) which are installed on or beneath the roads on road intersections. In
short, when traffic drives or cycles over these induction loops, the magnetic field is altered,
which is then detected by the induction loop. Another method that is used to gain insight
into traffic intensity is by performing manual counting at a specific road intersection. Those
methods, however, are limited, and often do not give a complete and accurate representation
of the traffic situation. While traffic counts are complete regarding flow measurement, their
weak point is that they are not complete in terms of spatial distance. This is because when
doing traffic counts like this, the traffic is counted for a specific location only and the route
each counted cyclist has taken is not measured or taken into account.

As an upcoming alternative to counting traffic via induction loops, GPS data has recently
become a viable data source for traffic research. In the last ten years, the volume of GPS data
has risen significantly. The cause of this rise is the so-called ’smartphone revolution’. While in
2009 smartphones accounted for approximately 15 percent of the total number of phones, in
2014 the share of smartphones amongst all phones was over 35 percent (Romanillos et al.,
2016). Compared to traffic counts, GPS tracks are spatially extended, but also incomplete and
biased. This is because GPS tracks are almost never accurate representations of the behavior
of all cyclists. Therefore combining traffics counts and GPS tracks is a solution that can lead
to data of higher quality.

1



1.2 Problem statement and relevance
At the moment, the sustainability and livability of vulnerable neighborhoods in cities are
increasingly getting under pressure, according to Uyterlinde and van der Velden (2017). Since
the 1970’s, there has been an increasing focus and investments in the bicycle, to improve
both the sustainability and livability in cities (CROW-Fietsberaad, 2015).

Currently, urban researchers and planners still experience a lack of objective, quantitative
information about bicycle traffic. Klinkenberg and Bertolini (2012) noted that, at the time
of writing their paper in 2012, fundamental and scientific bicycle research was still in an
early stage in the Netherlands, and that a disconnect might exist between research and
current bicycle policies. They also note that there will be a payoff for effective bicycle
policies, for instance in accessibility, the economy, but also in national identity. Because of
this, there is a need for high-quality quantitative cycling information to help support bicycle
policies. For example, better information about traffic flow can assist in aligning traffic lights.
Since substantial structural investments are needed to increase and improve the cycling
infrastructure in the Netherlands (Fietsersbond, 2017a), the importance of this kind of data
has grown over the years. Without sufficient information about cycling traffic intensity and
flows, bicycle policies may not be based on a detailed picture of the current state of traffic.

As mentioned in the previous section, GPS tracking has become a viable alternative for
determining traffic flows, not just in the Netherlands, but also in other parts of the world. A
relevant example of this is the B-Riders project in Noord-Brabant. This is a project aimed
at stimulating bicycle usage instead of car usage. While traveling by bicycle, the users track
their route via the special B-riders app on their smartphone (B-Riders, 2017). The resulting
GPS tracks are then used for research on cyclists traffic flow and behavior. Another example
of how the rise and popularity of GPS data can help cycling policies is the national Dutch
’Fietstelweek’. Each year during this week, cyclists are asked to register their cycling trips via
a special app. The resulting tracks help in mapping and understanding the cycling network of
the Netherlands and how it can be improved (Fietstelweek, 2017).

This was also noticed by TNO(Netherlands Organisation for Applied Scientific Research).
In one of their research projects called the ’Fietsmonitor Zuid’, they aimed at providing a
better insight into the traffic flow of cyclists by combining several data sources, including
GPS (Netherlands Organisation for Applied Scientific Research, 2014). Figure 1.1 shows how
combining data and GPS tracks can help create new and better data about traffic intensity.

Fig. 1.1.: Schematic overview of the added value of combining traditional traffic counts and GPS
tracks

The leftmost figure shows two existing traffic counts located on two different roads, while
the middle figure shows a GPS track along with several different roads, including those with
traffic counts. Finally, the third figure shows that traffic intensity of roads that do not have
traffic counts can be obtained by combining the known traffic counts with the GPS tracks.
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Currently, most standard traffic prediction approaches use gravity models. The basic idea
of gravity models is that when the importance of two locations increases, the number of
movement (or trips) between them also increases. The larger the distance between the two
locations, however, the lower the amount of movements. A downside of these gravity models
is that they are difficult to fit to local measurements (Anderson, 2010). An alternative to these
traditional gravity-based models is machine learning, which can fit to local measurements
very well. Partly due to the continuing increase in computing power of everyday hardware,
this has become a viable alternative.

To conclude, there lies a lot of potential in combining new and upcoming data sources for
traffic information such as GPS with more traditional data sources such as traffic counts. By
using machine learning instead of traditional gravity models to combine this data, high-quality
quantitative cycling information may be provided to help support bicycle policies. Therefore,
this thesis aims at investigating how machine learning can be of use in combining GPS and
traffic count data to gain high-quality cycling information in the form of traffic intensity.

1.3 Research questions
As mentioned in the previous section, this thesis aims to find, test and compare methods that
can estimate the traffic intensity of cyclists across a network. To do this, the following main
research question needs to be answered:

How can the traffic intensity of cyclists on a network be estimated by means of flow interpolation
from local traffic counts and GPS tracks?

To support the answering of the main research objectives, several sub-questions have been
defined, each focusing on a specific aspect of the research. The sub-questions that will be
answered are:

– Which machine learning methods are suitable for estimating the traffic intensity of cyclists
across a network based on local traffic counts and GPS tracks?

– Which road characteristics should be taken into account as explanatory features for a
cyclist traffic model?

– To what extent are biased GPS tracks useful as a variable in a cyclist traffic model?

– How can such a cyclist traffic model best be validated on local flow traffic count measure-
ments?

Chapter 3 explains the methodology that will be used to answer these research questions.

Chapter 1 Introduction 3



1.4 Research scope
In addition to clearly defining the Research Questions, it is also important to mention what
this research is not about. Doing this early on in the research prevents potential scope creep
and helps to make sure the research fulfills its objectives within the specified timeframe. The
scope and several research limitations for this research are:

– This research will focus on the area of the municipality of Tilburg in Noord-Brabant,
The Netherlands. One reason for this is the availability of cycling data for this area.
Another reason is that limiting the research area also helps in keeping the research
manageable regarding computing time. Finally, keeping the research area relatively
small makes it easier to check the data for any errors or inconsistencies, something
which is almost impossible with larger datasets.

– This research will not provide a whole functioning traffic model that can instantly be
used by policymakers. Rather, it should be regarded as an exploration of methods which
one can build upon to provide suitable solutions for different scenarios.

1.5 Reading guide
This section gives a brief explanation of the structure of this thesis. The following chapter
2 shortly examines the existing literature regarding cycling in the Netherlands, traffic data
collection and machine learning and gives a theoretical framework. Chapter 3 then explains
the used methodology based on the theoretical framework and conceptual model established
in chapter 2. Afterward, chapter 4 details how the data is prepared for analysis. Next, chapter
5 contains the analysis and results. Finally, in chapter 6 a conclusion will be drawn and
the research questions will be answered based on the results. This chapter also includes a
discussion and suggestions for future research.
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2Theoretical Background

In this chapter, existing literature regarding cycling in the Netherlands, traditional and
upcoming traffic data collection methods and machine learning that is relevant for this thesis
is examined. This literature will then be used to create a conceptual model at the end of this
chapter, which will be a starting point for setting up the methodology in chapter 3.

2.1 Cycling policies and traffic data collection
2.1.1 The popularity of cycling in the Netherlands
As already shortly mentioned in chapter 1.1, cycling is very popular in the Netherlands as
compared to other countries, with approximately 27 percent of all trips being taken by bike
(Pucher and Buehler, 2008). Figure 2.1 shows the large difference between the number of
trips taken by bicycle in the Netherlands and various other countries around the world.

Fig. 2.1.: Bicycle share of trips in Europe, North America and Australia(percentage of total trips by
bicycle). Source: (Pucher and Buehler, 2008)

In addition to the percentage of trips taken by bicycle, the distance traveled by bicycle per
capita per day also differs significantly. They range from around 0.1 kilometers in Portugal
and Spain up to 2.5km in the Netherlands.
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To understand why cycling is such a frequently used method of transport in the Netherlands,
it is essential to look at the role the Dutch government has played in the past and present
regarding cycling policies. According to Pucher and Buehler (2008), one of the most important
reasons for the high levels of cycling in the Netherlands and several other European countries
is that it is much safer to cycle in those countries when compared to, for example, the United
Kingdom or the United States. The government of the Netherlands has spent large amounts
of funding and planning on cycling facilities. An average amount of 60 million euro’s per
year was spent to finance various bicycle projects in the last few years (Pucher and Buehler,
2008).

2.1.2 Traditional and new traffic data collection methods
In order execute and securing funding for bicycle projects and policies, they need to be well-
founded and supported by traffic data. In general, there are two main traffic data collection
technologies. The first and more traditional technologies are called "in-situ" and refer to the
collection of data by placing detectors on or alongside the road. Along with the induction
loops as described in chapter 1.1, the most common "in-situ" methods according to Leduc
(2008) are:

– Magnetic induction loops: As mentioned in chapter 1.1, magnetic induction loops have
long been the most common way of measuring traffic. The loops are installed on the
road and create a magnetic field that gets disrupted each time a vehicle passes.

– Pneumatic tubes: Pneumatic tubes are made of rubber and installed completely across a
road. Whenever a vehicle drives over the tubes, the air pressure changes and a pulse of
air is created and send towards the detector on the side of the road.

– Piezoelectric sensors: This are sensors that contain piezoelectric material(materials that
produce a certain electrical discharge when under pressure). The piezoelectric material
is deformed when a vehicle or bicycle rides over it, which causes a change in the electric
charge that can be detected.

The methods mentioned above are all intrusive, which means that they consist of a sensor on
the road and a detector that detects and records the signals sent by the sensor. In contrast
to intrusive "in-situ" methods, non-intrusive methods rely on remote observations instead
of sensors (Leduc, 2008). There are several common non-intrusive traffic data collection
methods:

– Manual counting: Traditionally, manual counting was done by hand, and the counts
were written down on paper. Nowadays, observers generally perform manual counts
with specific applications on electronic devices such as phones and tablets.

– Infra-red: Every vehicle and person radiates a certain amount of infra-red energy. This
energy can be detected by remote sensors to determine the type and amount of vehicles
that have passed.

– Video detection: Video cameras can be aimed at a road to record vehicle license plates,
type and speed. Systems like this can also be used to detect the total amount of vehicles
that pass.
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The second, new and upcoming, traffic data collection technique is through the use of GPS
localization. Due to the ’smartphone revolution’ as defined by Romanillos et al. (2016) and
described in chapter 1.2, this has become a viable alternative or supplementary traffic data
collection method for the more traditional methods listed above. Harvey and Krizek (2007)
were the first to research cycling mobility using GPS in 2006 and 2007. They tracked 51
participants to study and analyze their cycling behavior. In the end, they noted that cleaning
up the GPS data proved to be challenging due to positional errors that occurred during
recording, and that matching the GPS tracks to existing road network could vastly improve
the ability to analyze cycling behavior. In 2010, Reddy et al. (2010) were one of the first
researchers to carry out research where smartphones were used to gather the GPS tracks of
cyclists. This project aimed at improving the process of sharing routes with other people, as
well as being able to view your own route.

2.2 State-of-the-art of gravity models
In section 1.2, it was already shortly noted that most standard traffic predictions approaches
use gravity models. The use of a gravity model for researching trip distribution was originally
proposed in the 1950s, such as by Casey (1955). Since then, not much as changed when it
comes to gravity models. Sen and Smith (1995) state that gravity models can be described as
a representation of mean interaction behavior. They report that every different independent
spatial interaction process, also known as P, can be characterized by the mean interaction
frequencies that it is associated with. Currently, the gravity model is still the most used
method for spatial interaction. According to Rodrigue (2017), the basic formula for gravity
models as they are used today is as follows:

Tij = k ∗ Pi ∗ Pj

dij

Where Pi and Pj represents the weight or importance of the origin and destination locations,
Dij represents the spatial distance between the origin and destination, and k represents a
constant. Calibration parameters can be used to extend the gravity model. These parameters
include beta for the friction between the origin and destination location, lambda for the
potential of movement, which is often related to welfare, and alpha for the attractiveness.

2.3 Machine learning
2.3.1 Brief history of machine learning
While the main developments in machine learning have been going on since the 1950’s, the
groundwork for machine learning as it is used today was already being done in the 18th
century. In 1763, Thomas Bayes published his work "Essay towards solving a Problem in
the Doctrine of Chance", which contains the Bayes Theorem, a mathematical theorem that
describes how probabilities can be calculated. This theorem remains an important part of
machine learning to this day.

One of the first well known modern examples of machine learning and artificial intelligence
is the was developed in 1952 by Arthur Samuel. He created a learning machine that was able
to play checkers. It learned how to play by playing against itself and remembering which
moves where good and which moves where bad. During the same decade, Frank Rosenblatt
invented an algorithm called the perceptron, one of the earliest examples of a neural network.
The perceptron could take an image and then process and recognize it to produce an output.
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However, despite the hype that was generated by the perceptron at first, people soon realized
that it was impossible to train it and make it learn new patterns. The lack of discoveries and
progress in the field of AI and machine learning, coupled with the disappointment about
existing technologies such as the perceptron, lead to a phenomenon called the "AI winter" in
the 1970’s. During this period, the number of resources and funding spent on AI and machine
learning research was greatly lowered.

Since the late 1990’s, machine learning and AI have grown increasingly popular and returned
to the forefront, strengthened by several highly publicized events. In 1997, a computer
called Deep Blue machine defeated famous chess champion Gary Kasparov in a match. Other
famous examples of machine learning AI defeating humans are IBM’s Watson, who defeated
two champions in a show called Jeopardy, and AlphaGo, a system developed by Google that
defeated the top Go player of the world in 2016 (The Royal Society, 2017).

2.3.2 Basics of machine learning
Nowadays, two main kinds of machine learning exist: unsupervised learning and supervised
learning. The main difference is that unsupervised learning deals with unlabeled data, while
supervised learning deals with trying to predict a label based on other variables and features
(The Royal Society, 2017).

When using (supervised) machine learning, there are two types of variables: the predictor
(or feature) variables and the target (or goal) variable. In this case, the target variable is the
counted traffic intensity of cyclists. The predictor(or feature) variables are GPS tracks and
network features. When the target variable is a continuous number (the traffic intensity of
cyclists at a certain road segment in this case), the machine learning task is called a regression
task (Hastie et al., 2001).

A vital part of machine learning is finding out how accurate the created model is. If the
model is not accurate with respect to measurements, the results are less useful. The accuracy
of a model with respect to measurements can be captured as the fraction of the correct
predictions in classification tasks. For regression tasks, the accuracy of the model with respect
to measurements can be captured by, among others, the coefficient of regression. When a
model fits very well to a certain dataset, but very bad for a new and unseen dataset, overfitting
may be taking place. The opposite of overfitting is underfitting, which is when the model does
not fit to the training data and neither to new and unseen data (The Royal Society, 2017). To
prevent the overfitting of a machine learning model and check the accuracy, the data needs
can be split into two sets:

– Train set: The training dataset is used to make the model ’learn’ and fit the weights of
all predictor variables. In other words, the training set is used to build the model.

– Test set: This part of the dataset is used after the model has been trained on the Training
dataset. By measuring the fitting of the model on the test dataset, an overestimation
of the model accuracy, which comes from overfitting (to a particular dataset), can be
prevented.

In the end, the accuracy and performance of the model are greatly dependent on how the
split between training and test data is done. To combat this problem and make the split less
arbitrary, cross-validation can be used. In cross -validation, random splits(folds) are done
between training and test data, and for each split the accuracy is calculated. The downside of
increasing the number of folds is that it takes more computing power and thus takes a longer
time.
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2.4 Input features
Using machine learning as described in the previous section, the model needs predictor
features to accurately predict the traffic intensity as a goal variable. This section will focus on
which input features, according to literature, may be of influence and can thus be used for a
machine learning model focusing on traffic intensity.

GPS tracks
The main interesting input feature to predict cyclist traffic intensities are the intensities gained
from GPS tracks. Currently, very little research has been done on the possibility of using GPS
tracks. Some researches have attempted to predict traffic flows based on GPS data, such as
Necula (2014). However, it still is a very new area of research, which means many aspects
have not yet been thoroughly researched.

Spatial Distance
When trying to make predictions between different traffic counts for different road segments,
spatial features are important. May et al. (2008) say that the spatial distance between the
road segments may be useful to take the spatial dependence of traffic flows into account. For
example, when trying to find out the traffic intensity for a certain road segment, it seems
logical that the intensities measured by induction loops close to the road segment have a
higher influence than the ones measured by traffic loops that are relatively far away. Thus,
a distance matrix, which calculates the distance on the network between induction loops
and/or road segments, could be used as an input feature.

Road surface type
In addition to spatial features such as distance, network features also can be used for
interpolation. One such relevant network feature is the type of the road surface. Noland and
Kunreuther (1995) say that the condition of the road surface may have a significant influence
on whether or not cyclists decide to ride on it. When a road surface is bad and unsuitable
for cycling, cyclists are forced to choose other routes due to their perceived lack of security.
Similar results were also found by Stinson and Bhat (2004). They concluded that paved and
smooth road surfaces are preferred by cyclists over unpaved roads.

Width of the road
Another network feature that may be of interest is the width of the roads on which people
cycle, because of speed and security considerations. Petritsch et al. (2006) found that roads
with two lanes are preferred by cyclists over wider roads with more than two lanes. They
argue that this has to do with the fact that, on wide roads, drivers are focused more on other
drivers than on cyclists, which leads to cyclists being more prone to have accidents on those
wider roads.

Attractivity
Finally, the attractiveness factor of the roads is found to be usable as a predictor variable.
According to Cerná et al. (2014), people are more likely to cycle along routes that they deem
’attractive’. They argue that the attractiveness of a certain road can depend on the number
of points of interest along this road, such as service facilities, parks and nature, utilities or
scenic landscapes.
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2.5 Conceptual model
All theoretical concepts and principles described in this chapter can be combined into a
conceptual model, that shows how they relate to each other and how they need to be
combined to reach the desired results and answer the research questions. Figure 2.2 shows
this conceptual model.

Fig. 2.2.: Conceptual model of the research based on existing literature.

The following chapter will elaborate and build upon this conceptual model and explain the
methodologies that are used.
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3Research Methodology

In this chapter, the methodology that is used to carry out the research is detailed. First,
all used data sources will be described, along with the used software packages. Next, an
overview will be given about the quality of the data sources, followed by the specific machine
learning methods that are used. The chapter ends with a list of steps that will be taken to
produce results and a schematic overview of the entire research process.

3.1 Used data and software
3.1.1 GPS data
B-Riders
As already mentioned in chapter 1.2, the B-Riders project is based on the idea to get more
people to use their bicycles instead of their cars. The original project was started back in
September 2013 and ended in December 2014, and contains GPS tracks of over 700 people
for this period of time. To motivate people to participate and as an incentive to track their
trips, a financial compensation of around 10 to 15 cents could be claimed for each registered
kilometer that was cycled while using the GPS application of B-Riders (B-Riders, 2017). Due
to the voluntary nature and incentive of participating in the B-Riders project, it is extremely
likely that the data is not representative for the whole of Noord-Brabant(or The Netherlands).
This does not mean the data is unusable, but it is important to keep in mind to prevent
drawing the wrong conclusions from the outcome of the analysis. It is important to note that
while the original B-Riders dataset contains privacy details about the involved participants,
the used data is anonymized before being used. This data anonymization ensures that the
privacy of the participants is respected, while still keeping all the necessary information that
is needed to help answer the research questions.

Fietstelweek
Another source of GPS data is the ’Nationale Fietstelweek’ (in English: National Cycling Count
week). This event is organized for a week each year by the Dutch Ministry of Environment(In
2017 the name of this ministry was changed to Ministry of Infrastructure, Public Works and
Water Management), together with a majority of the provinces in the Netherlands including
Noord-Brabant. During this week, participants can track their cycling activity via an app, in
a very similar fashion to the B-Riders project (Fietstelweek, 2017). The first edition of the
Fietstelweek took place in 2015, and since this is closest to the collection date of the B-Riders
project, the 2015 data is used.

GPS track aggregation
Since the GPS data described above is measured as single points along a certain path for each
track, the tracks that are described via these points need to be aggregated to be able to extract
traffic intensity and flow information from them. One way in which this can be done is by
’map matching’, in which the GPS points are matched to the road segments. Newson and
Krumm (2009) describe a map matching method based on a Hidden Markov Model approach,
which is a model that can be used for pattern recognition and is therefore very useful for
matching GPS points to a network. They use a GPS track represented by points, just like the
B-Riders dataset. From each node(GPS point in this case), the most likely route is calculated
through the Hidden Markelov method. Ultimately, this method can lead to a path between
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the GPS points that are matched to the underlying network. By doing this, for each road
segment, the amount of generated paths that are matched to it can then simply be counted to
get the traffic intensity of that specific road segment.

3.1.2 Traffic data
As mentioned earlier in chapter 1.4, the area of focus is Tilburg, partly due to the availability
of suitable data. For counted traffic data, one of these data sources is the ’Fietstelprogramma
Gemeente Tilburg’. For this program, the traffic count of cyclists (as well as mopeds) per hour
was counted for various road segments across Tilburg, for both travel directions. Furthermore,
next to traffic count data from a municipal level, provincial traffic count data from and around
the region of Tilburg was also considered. However, it was decided to not use the provincial
traffic count data since the amount of data collections points was very low, and the data was
collected at a completely different time period, which made combining it with municipal
traffic counts not preferable.

3.1.3 Network data
OpenStreetMap
When it comes to determining a suitable network, there are several options. Perhaps one of
the most frequently used networks is that of OpenStreetMap(OSM). This free and open-source
platform aims to create an extensive map of the entire world. Users can freely edit the map
to change or add geographic information, which makes it a prime example of a volunteered
geographic information (OpenStreetMap contributors, 2017). A potential downside of using
OSM is that since it makes use of crowdsourcing, there is no official quality control, and the
accuracy of the data can not always be guaranteed. However, the quality of the OSM network
in the Netherlands is generally considered sufficient to perform the analysis.

Fietsersbond
In addition to OSM, the bicycle network maintained by the Dutch Fietsersbond(Cyclists Union)
needs to be considered. This union defends the interests of all cyclists in the Netherlands.
For over ten years, the Fietsersbond has had its own cycling route planner. The underlying
network of this route planner can serve as a basis for machine learning. An advantage of
this network is that it contains Points of Interests(POI’s) for cyclists such as recreational sites,
public transport and potential barriers such as traffic lights (Fietsersbond, 2017b).

3.1.4 Used software
The machine learning algorithms that are used to estimate traffic intensity (as described
further along in chapter 3.3) are executed using the Python programming language. Sev-
eral additional libraries are needed to perform the analysis. Firstly, to be able to properly
manipulate and pre-process the datasets, the pandas library is used. The machine learning
aspect is handled by the Python plugin scikit-learn. This is an open-source library containing
the most common machine learning algorithms (Pedregosa et al., 2011). Additionally, the
NumPy and SciPy Python libraries are used to enable numerical and scientific computing
respectively. Both packages are fully integrated and compatible with scikit-learn. To visualize
and plot results, both Matplotlib, a Python library designed for plotting data, and ArcGIS will
be used.
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3.2 Data quality
When working with many different kinds of data from various sources, it is important to look
at the quality of the used data. There are many different ways of measuring data quality,
Pipino et al. (2002) name 16 different dimensions along which the quality of data can be
assessed. In table 3.1, all data sources that will be used, as described earlier in this chapter, are
evaluated for the dimensions that are deemed relevant and might cause potential problems.
The data quality assessment in the table is done using color coding. If a cell is green, it means
that the quality of a data source is deemed sufficient for that specific dimensions, while an
orange cell means that the quality of the data for that dimension might potentially not be
sufficient.

For layout and readability purposes, the data sources have been labeled as follows:
1: B-Riders GPS tracks
2: Fietstelweek GPS tracks
3: Tilburg traffic counts
4: OpenStreetMap network
5: Fietsersbond network

Dimension 1 2 3 4 5
Accessibility
Appropriate amount of Data
Believability
Completeness
Free-of-Error
Objectivity
Representativeness
Timeliness

Tab. 3.1.: Assessment of data quality based on dimensions as described by Pipino et al. (2002).

Below, a more detailed explanation is given for each dimension in which the data quality for
one or more sources might not be sufficient:

Accessibility
Both the Fietstelweek GPS tracks and the OpenStreetMap network are open data and freely
accessible. The B-Riders tracks, Tilburg traffic data and the Fietserbond network are not open
data however, and will be provided by the NHTV Breda.

Appropriate amount of data
The OpenStreetMap and the Fietsersbond network can both be considered of containing
appropriate amount of data, which in their case are the cyclist roads of Tilburg. The main
data source that could provide problems in terms of appropriate amounts of data are the
Tilburg traffic counts. Since there are only 24 locations for which cyclist intensities were
collected, this sample size could turn out to be to small to estimate cyclist intensities.

Believability
The GPS tracks and the traffic data are collected from well-functioning devices (smartphones
and traffic counts respectively) and can therefore be regarded as credible. Both the Open-
StreetMap and Fietserbond networks are maintained by volunteers, however, with no official
quality control taking place. For the Netherlands, the data can be regarded as credible for
most locations, but it is import to remain cautious for any potential errors.
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Completeness
Regarding completeness, the same can be said about the OSM and Fietsersbond network as
with its believability. The voluntary nature of the dataset can cause problems when it comes
to completeness, such as missing information for certain roads. This can happen because it is
not required to fill in all fields when editing the network. However, as said above, for The
Netherlands the network can generally be regarded as complete and suitable for analysis.

Free-of-Error
All data sources always have a change of containing errors, but it can be said that the traffic
counts of Tilburg have the lowest change of containing error, with the only possible errors
occurring because of human error. The GPS tracks can contain numerous errors caused by an
unstable GPS connection, which might lead to tracks having the wrong location or not being
complete. Both networks may once again contain errors caused by the voluntary nature of
the projects.

Objectivity
The used GPS data is biased, and not a completely accurate representation of the average
cyclist. This has several reasons, such as requiring a smartphone and, in the case of the
B-Riders tracks, being paid to participate. The network datasets may again not be complete
objective due to them being voluntary.

Representativeness
Due to the nature of the B-Riders and Fietstelweek projects, it can already be said beforehand
that these data sources are most likely not representative. The participants of those projects
are not an average representation of the cyclists in Tilburg, which is also cause by the fact
that the sample size is relatively small.

Timeliness
The GPS tracks and traffic data are recorded at a certain date in the past. Therefore, it is
important to make sure that all data used is from roughly the same time period if possible,
otherwise combining those data sources might lead to wrong results and conclusions. Since
the road layout does not change frequently, the network data can be regarded as up-to-date
and sufficient for the analysis.
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3.3 Machine learning regression
Regarding machine learning, there are many different methods that can be used to predict
and estimate values. Since it was established that, based on the literature, the research
question can be regarded as a supervised machine learning problem, this section will shortly
describe the supervised machine learning methods that will be used to predict the traffic
intensity for road segments. It is important to note that, in addition to the seven methods
listed below, there are many more methods that could be used to predict traffic intensity. Due
to time constraints and to keep the scope manageable, only the methods listed below will be
used in this research as they are deemed the most suitable.

3.3.1 k-Nearest Neighbor Regression
The k-Nearest Neighbor method was found to be a good candidate method for flow prediction
by May et al. (2008). In k-Nearest Neighbor, the value of the point that is to be calculated
is determined by looking at the mean values of its nearest neighbors in a multidimensional
space by machine learning features. In deciding the neighboring points that should be taken
into account, one can either determine a total number of neighbors or create a buffer with
a certain radius around the target point and take all neighbors in that radius into account
during the learning. The weights that each neighboring point gets can be uniform, based on
distance so that nearby points weigh more heavily than point further away for example, or
based on any other definition of distance (such as time) (Scikit-learn, 2017c).

3.3.2 Decision Trees Regression
Another supervised machine learning method that can be used for regression tasks is Decision
Trees. A decision tree model predicts the target variable based on so-called decision rules.
These decision rules are based on the input features, such as the ones described in chapter
2.4. Decision trees come with numerous advantages, such as being able to be visualized for
easier interpreting, as well as the possibility to perform statistical tests to validate the model
(Scikit-learn, 2017a).

3.3.3 Gaussian Processes Regression
The third machine learning method that will be used is called Gaussian Processes. These
processes make use of interpolation and look at, among others, the kernel function(similarity)
between points to estimate the target variable based on the predictor variables. Advantages
of this kind of machine learning methods are that they are considered highly flexible, and can
be optimized precisely for the tasks that are required (Scikit-learn, 2017b).

3.3.4 Kernel Ridge Regression
Kernel Ridge Regression is a form of regression where, as is implied by the name, normal
Ridge Regression is kernelized. Kernel Ridge is very similar to support Vector Regression(see
below), with the main difference being the use of other loss functions (Scikit-learn, 2018b).

3.3.5 Support Vector Regression
While Support Vector machines are often used for classification analysis, they can also be
used for regression problems. Drucker et al. (1997) were one of the first to describe Support
Vector Regression, based on earlier concepts of Vladimir Vapnik. The idea behind Support
Vector Regression is that it always tries to minimize the errors and maximizes the margins.
Since it works based on nonparametric techniques, it can be described as a kernel function.
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3.3.6 Partial Least Squares Regression
Tobias (1999) mentions Partial Least Squares Regression as a suitable method for making
predictions when the factors are relatively collinear. It differs from a lot of other regression
methods in that it projects both the observed as well as the predicted variable to a new space.
Because of this, it is an example of a cross decomposition method. PLS is especially useful if
there are fewer observations than variables in the feature variables matrix.

3.3.7 Linear Regression
Linear regression is one of the most standard forms of regression. Freedman (2009) state that
normal linear regression deals with only one feature variable. When using more than one
feature variable, multiple linear regression is used. During linear regression, the predictive
model is fitted to the observed data.

3.4 Cross validation
To assess results of the machine learning classifiers mentioned above, cross-validation is
used. This technique is used to validate the accuracy of the predictions of the models and
see how the analysis will perform on other datasets. In general, two main types that can
be distinguished in cross-validation: Exhaustive cross-validation and non-exhaustive cross-
validation. Exhaustive cross-validation methods, as implied by the name, look and test every
single possible combination of training and test data set for the given sample. On the other
hand, non-exhaustive cross-validation does not look and test every single possible combination
but uses approximations. An example of exhaustive cross-validation is leave-one-out cross-
validation, while an example for non-exhaustive cross-validation is k-fold cross-validation.
Both of these methods and their use for this case are discussed below.

3.4.1 K-fold
When performing k-fold cross-validations, a k amount of subsamples are created from the
original sample, with all of these subsamples having an equal size. One of the subsamples is
randomly chosen as the validation data, while the other subsamples are used as training data.
This can be repeated k times(each of those times being known as a fold), hence the name
k-fold cross-validation.

3.4.2 Leave-one-out
Leave-one-out cross-validation(LOOCV) is a variant of leave-p-out cross-validation(LpOCV.
During LpOCV, a specified number of p samples from the original sample are used for
validation, while the other samples are used as training data. This process is repeated for
every single possible combination of validation and training data. LOOCV consists of a p = 1,
which means that only 1 sample is used for validation while all others are used for training.
An interesting and important thing to note is that when k equals the total number of samples
in K-fold cross-validation, it is essentially the same as LOOCV.
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3.5 Model scores
By performing K-fold and leave-one-out cross-validation, several functions are used to measure
the performance of the regression analysis. The two metrics that are used to measure the
model score are R2 and the Mean Squared Error. Both of these functions are available within
the sk-learn package.

3.5.1 R2-score
R2, also known as R-squared measures the coefficient of determination. It measures the how
much of the variability of the fitted model is explained. If the R2-score is zero, that means
that the model is constant and always predicts the expected value of y without taking into
account the input feature variables. This is an example of a (very) poorly fitted model. On the
other hand, if the model fits perfectly to the data, the R2-score will be 1.0. Thus, the closer
the R2-score is to 1, the better the fit of the model (Walpole et al., 2013). It is also important
to note that the R2-score used in scikit-learn can get negative, which signals that the model is
performing worse than the naive model. Walpole et al. (2013) also mention several dangers
of (only) using R2-score to measure the performance of the model. Firstly, they mention it is
difficult to decide what value of R2 is acceptable, as there is no decisive standard. Secondly,
when comparing models by their R2-score, overfitting can cause R2 to be (artificially) high,
while this may not directly imply that that model is better in prediction the target variables.
Therefore, in addition to the R2-score, the Mean Squared Error(MSE) is also measured for
each model during cross-validation.

3.5.2 Mean Squared Error
Another metric that, according to Walpole et al. (2013) is often used to compare different
estimators is the Mean Squared Error(MSE). As the name implies, the MSE calculates the
mean of the squared errors of the estimator. Since the error is squared, the MSE of an
estimator is always positive. The larger the error of an estimator, the larger the MSE of that
estimator. Thus, the closer to zero the MSE gets, the better the model.

3.6 Feature selection
After acquiring the data sources mentioned above in chapter 3.1, the data needs to be explored
and the possible input features need to be selected based on their availability and suitability
for analysis. For each of the possible input features as found by literature in chapter 2.4, the
available data sources are examined to see if the features are available and suitable. Only
features whose variance is above a certain threshold, in this case 0, are selected. This is one
of the simplest approaches to feature selection (Scikit-learn, 2018a).

The variance of each possible feature is determined by first calculating the standard deviation
of each possible input feature that is available in one of the used data sources for the
municipality of Tilburg. This is done by using the statistics function in ArcGIS on each
relevant column. Then, by taking the square of the standard deviation, the variance of the
possible input features is calculated. As mentioned above, only features that have a variance
above 0 are deemed suitable for analysis, which means that all zero-variance features are not
selected.
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GPS cycling intensities
For the GPS cycling intensities, the ’intensitei’ column of both the B-Riders and the Fietstelweek
are considered as possible input features. For the B-Riders network, the standard deviation
for the GPS cycling intensities is 385,12, which means the variance is 148317,19. This means
the feature is suitable for analysis and therefore selected. Regarding the Fietstelweek network,
the standard deviation for the GPS cycling intensities is 20,98, which means the variance
is 440,28. This means that, in addition to the GPS cycling intensities, the Fietstelweek GPS
cycling intensities are also selected.

Attractivity
The ’schoonheid’ column from the Fietsersbond network is considered as a possible input
feature for attractivity. The OSM network does contain a separate point file with Points of
Interests, but this deemed unsuitable due to the difficulties of converting Points of Interests to
attractivity values for each road segment. The standard deviation for the attractivity feature
for all roads in the municipality of Tilburg is approximately 1,46, which means the variance is
approximately 2,12. This means the feature is suitable for analysis and therefore selected.
The exact breakdown of the amount of features per class can be found in table 4.2 in chapter
4.3.2.

Road surface type
The ’wegdeksrt’ column from the Fietsersbond network is considered as a possible input
feature for road surface type. The OSM network does not contain any information about road
surface type. The standard deviation for the road surface type feature for all roads in the
municipality of Tilburg is 1,20, which means the variance is 1,44. This means the feature is
suitable for analysis and therefore selected. The exact breakdown of the amount of features
per class can be found in table 4.3 in chapter 4.3.3.

Width of the road
The ’breedtekls’ column from the Fietsersbond network is considered as a possible input
feature for the width of the road. The OSM network does not contain any information about
the width of the road. The standard deviation for the road surface type feature for all roads
in the municipality of Tilburg is 0, which means the variance is also 0. Therefore, the width
of the road feature is not selected as in input feature.

Spatial distance
When it comes to spatial distance, it becomes clear by projecting both the OSM and Fietsers-
bond network against a background map that the road segments have a spatial component.
This also becomes clear due to the geometry field that each seperate road segment has. Chap-
ter 4.3.4 further explains how the spatial feature variable is prepared and pre-processed.

Traffic counts
For the goal variable traffic counts, the measured intensities from the ’Fietstelprogramma
Gemeente Tilburg’ are checked to be sure that they can be used for analysis. The standard
deviation for the ’r1_intens’ column is 1089,78, which means that the variance is 1187626,69.
Regarding the ’r2_intens’, the standard deviation is 1044,56, which means the variance
1091113,80. The traffic counts from the ’Fietstelprogramma Gemeente Tilburg’ are therefore
suitable and selected as goal variables.

Chapter 4 describes the file structure of each of the selected features mentioned above in
more detail and will describe how they are prepared and pre-processed to be suitable for
analysis.
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3.7 Research steps
Below, a more detailed overview is given of all the steps that need to be taken to conduct the
research, based on the conceptual model and methodology. The research steps are divided
into two sections. First, the necessary steps that are needed to prepare the data are listed,
followed by the steps that have to be done to perform the analysis.

Data preparation

– Firstly, all the data sources mentioned earlier in chapter 3.1 need to be obtained. When
possible this is done via open data sources. The data that is not available via open data
sources, such as the Tilburg traffic data, will be provided by the NHTV Breda.

– Afterward, a decision was made on whether to use the OSM network, the Fietsersbond
network or a combination of both. This will be done based on the availability of
potential feature variables that are identified during the literature study and the feature
selection.

– The B-Riders and Fietstelweek GPS tracks then need to be aggregated, and the resulting
traffic intensity value needs to be matched to the correct road segment on the selected
network. This is done via map-matching as described further along in chapter 4.2.

– The input features from the road network need be checked and any potential errors,
such as missing values or different types of notation need to be corrected or deleted.
They then need to be numerical values to be suitable for analysis.

– Next, the traffic count data from the region of Tilburg needs to be added to the network.
This is done by projecting each traffic count point based on its spatial location, and then
manually matching them to the corresponding road segment.

– Finally, the mapmatched GPS tracks containing the GPS intensities need to be joined
to the original network containing all the other variables. If possible, this needs to be
done by using common identifiers, otherwise

Analysis

– To examine the ratio between the traffic intensity aggregated from GPS and the traffic
intensity measured by traffic counts, the ratio will be calculated for each road segment
where both are available.

– Next, before performing the analysis using machine learning regressors, the correlation
between the goal variable and all feature variables needs to be shown using scatterplots.

– Afterward, the machine learning algorithms are run for several different combinations
of goal and feature variables.

– The performances of each of the machine learning algorithms for each combination of
variables are described and compared by calculating the R2-score and MSE using 5-fold
cross-validation and LOOCV.
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3.8 Schematic overview of research process
To summarize and gain a clear overview of all the steps that need to be taken to realize the
objectives and research questions as described in this thesis, figure 3.1 shows a schematic
overview of the entire research process, based on the research steps mentioned in the previous
section.

Fig. 3.1.: Schematic overview of all steps of the research process.
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4Data preparation and pre-processing

This chapter details the pre-processing steps that are taken to make the data suitable for
analysis. All scripts used during the analysis can be found on Github by clicking HERE, or by
using the following link: https://github.com/JJochemsen/GIMA-M7-Thesis. Whenever a
script was used, its name in the repository will be mentioned in the concerned text.

4.1 Network selection
The first step of data preparation and pre-processing is that a selection of the network to
be used needs to be made. Both the Fietsersbond and the OSM network were obtained and
compared to find the one most suitable for the analysis. Combining both networks, to take
advantage of each others variables is also an option that was considered. However, it quickly
became clear that this is not feasible for multiple reasons. First, since both networks are
created and maintained via the principle of VRI, they differ slightly on a spatial level. This
means joining the networks based on spatial location is nearly impossible. Secondly, the
networks do not contain a common identifier which could be used to combine them. Thus,
after reviewing both networks, the Fietersbond network is chosen since it contains most of
the feature variables listed in Chapter 2.4, and as explained in more detail in chapter 3.6.

As mentioned in Chapter 1.4, this research will focus on the Municipality of Tilburg. Since
the Fietsersbond network covers the entire Netherlands, a selection is made to only select
the road segments that lie within the municipal borders of Tilburg. Since the data contains a
field with the municipality of each road segment, this selection is easily made by selecting
all features where the "Gemeente" (municipality) attribute equals Tilburg. By doing this, the
original Fietsersbond network containing 1.554.923 road segments is reduced to only 14.308
road segments for the municipality of Tilburg. An overview of the resulting network, along
with its location within the Netherlands can be seen in figure 4.1 on the following page.
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Fig. 4.1.: Overview map of Fietsersbond cycling network of Tilburg
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4.2 Mapmatching the GPS tracks
The mapmatching of both the B-Riders data and the Fietstelweek tracks onto the networks
was done by the NHTV. The script uses the raw GPS data collected by the B-Riders and
Fietstelweek and the unmodified cycling networks of the Fietsersbond and OSM as input.

For the start and end of each route, mapmatching looks for three nodes("knopen") in the
network which are located close to the start and end point of the route and are not connected
with each other. Every link(road segment) in the network gets a resistance factor which
increases the further away the link is from the perceived GPS points.

Next, for all possible combinations of selected nodes(3x3, so nine nodes in this case) the route
with the lowest resistance is decided. Per definition, this calculated route lies close to the
original GPS line, but on a logical route on which cycling is possible and allowed. For example,
whenever a GPS-line(straight lines between all GPS points of a route) enters or leaves a
parallel road the mapmatching script makes sure to not assign the route to (inaccessible) the
main road, even though the GPS points, through inaccuracy, may lie closer to the main road
than to the parallel road.

For every link, the start- and endpoint are then projected onto the GPS-line and the exact
time, with the accuracy down to seconds, is interpolated since in most cases the link is located
between two GPS points. Based on those two calculated times as well as the length of the
link, the absolute speed is calculated, including the possible waiting time spend on nodes
caused by, for example, traffic lights.

Sometimes links are missing in the network. When this happens, either no route is calculated,
or a route with a noticeable detour is calculated. In the first case, there is nothing that the
mapmatching can do to fix it, so the route is ’rejected’ and not used. This rarely happens, but
when it does, it is mostly in areas outside of the target area, such as countries abroad. The
second case, routes with detours, are a more common occurrence. This is detected by the
mapmatching script if there is an illogically large difference between the calculated route and
the GPS-line. The links that contain the detour are removed from the mapmatching process
in this case, since it is clear that the person in question did not cycle on those links.

Additionally, the newer versions of the mapmatching script also look at the type of links.
Several types of links are excluded by default, such as railroads for cyclists. Others are
included, but with varying resistance. For example, bicycle paths have a lower resistance
than pedestrian paths. Concretely, this means that when a GPS-line follows a certain type of
link for its entire length, it is mapmatched on those links whether they are bicycle paths or
normal roads. But in situations where bicycle, car, and pedestrian roads are located right next
to each other, within the standard GPS-inaccuracy distance, the script will prefer the bicycle
roads since those roads have the lowest resistance. (Bussche and van de Coevering, 2015)
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4.3 Preparation of variables
4.3.1 Feature variable: GPS cycling intensities
As mentioned in the previous section, the mapmatching process gives two output files. The
first is a table which contains all individual routes that were used to calculate the intensity on
the road segments, which will later be used to calculate the intensity per weekday. The second
output file is a shapefile of the Fietsersbond network, containing the intensity of cyclists for
each road segment based on the B-Riders or Fietstelweek GPS data. Figure 4.2 and 4.3 show
the file structure of the mapmatched B-Riders GPS data onto the Fietsersbond network.

Fig. 4.2.: File structure of the shapefile with intensities of the mapmatched Fietsersbond + B-Riders
file

Fig. 4.3.: File structure of the route table of the mapmatched Fietsersbond + B-Riders file

The file structure of the mapmatch of the Fietstelweek GPS data and the Fietsersbond network
looks roughly the same, with the most noticeable difference that it does not contain a source
and target field.

The mapmatched dataset contains the intensity of cyclists on road segments for the total
period the B-riders and Fietstelweek project was active. However, since the traditional traffic
counts were done on a single day, the intensity of cyclists per day could also provide new
insights during the analysis. The route files for each of the mapmatches contains information
about the day on which each specific cycling trip is taken, as seen above. This ’weekdag’
column contains a value between 0 and 6, with each number corresponding to a specific day
of the week. Table 4.1 below shows which number corresponds to which weekday.

Code Weekday
0 Sunday
1 Monday
2 Tuesday
3 Wednesday
4 Thursday
5 Friday
6 Saturday

Tab. 4.1.: Codes and corresponding weekday of mapmatched tracks

Each specific road segment in the spatial network file has a unique ’linknummer’ attribute.
Additionally, the routes that travel over a road segment have the corresponding ’linknummer’
in the routes file. This means that by counting the amount of ’linknummers’ for each day in
the route file, the intensity of cyclists for that specific day of the week on each specific road
segment is acquired. The query intensity_per_day.sql on Github is used to calculate the daily
intensities. The query counts the intensity on Sundays for the B-riders dataset, as it only
selects rows where the ’weekdag’ value is 0. By running this query seven different, once for
each weekday, for both the B-riders and the Fietstelweek data, tables are created containing
the intensity of cyclists per day per dataset. The resulting tables containing the intensity for
each specific day were then joined back to the main mapmatched network, which contains
the total intensity, using the query join_intensity.sql which can be found on GitHub.
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4.3.2 Feature variable: Attractivity
One of the used feature variables is attractivity. The Fietersbond network contains a column
called "Schoonheid" that is used as a measure for attractivity. It contains six unique text
values that describe the level of attractivity for each road segment. To use these values in
machine learning, they will be weighted, ranging from a weight of 1 being assigned to the
least attractive road segments and a value of 5 to the most attractive road segments. The
original values and their assigned weights are found in table 4.2.

Original text value Translation Weight Amount
Zeer lelijk Very ugly 1 20
Lelijk/saai Ugly/boring 2 138
Neutraal Neutral 3 8712
Mooi Pretty 4 913
Schilderachtig Picturesque 5 7
Onbekend/geen waarde Unknown/missing value - 4518

Tab. 4.2.: Attractivity values and weights

The replace_values query first creates two new columns in the Fietserbond network copying
both the Attractivity column and the road surface type column. Then, it replaces the original
text values with the weights that have been specified in table 4.2 and 4.3.

4.3.3 Feature variable: Road surface type
Another variable from the Fietsersbond network that is used for analysis is the "Wegdeksrt",
or road surface type. Six different values of road surfaces are categorized. Just like the
attractivity features, the road surface type values are weighted based on how suitable the
road surface type is for cycling, with 1 being the least suitable and 3 being the most suitable.
Table 4.3 contains the six different values, along with their weights.

Original text value Translation Weight Amount
Onverhard Dirt/gravel 1 75
Halfverhard Semi-dirt 2 29
Klinkers Clinker bricks 2 5490
Overig(hout/kinderkopjes) Other(wood/setts) 2 32
Tegels Tiles 3 1140
Asfalt/beton Asphalt/concrete 3 3018
Onbekend/geen waarde Unknown/missing value - 4524

Tab. 4.3.: Road surface type values and weights

Both table 4.2 and 4.3 show that there is a significant amount of road segments for which the
attractivity and/or the road surface type is unknown or not submitted. When visualizing the
spatial distribution of the road segments with unknown variables, an interesting pattern is
shown as seen in figure 4.4

One part of the road segments with missing values consist of highway and motorways, which
makes sense since cycling is not possible and allowed on those roads. The second part of road
segments with missing values is almost entirely located in the town of Berkel-Enschot, as seen
in the mid-right of the map. An explanation for this might be that, since the Fietsersbond
network is maintained by volunteers and no official guidelines exist, the person(s) that
mapped this area simply did not submit values for the attractivity and road surface type,
among others.
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Fig. 4.4.: Location of the road segments with missing values for attractivity and/or road surface type

4.3.4 Feature variable: Spatial distance/location
To use spatial distance as a feature, the spatial location of each row(road segment) needs
to be calculated. Since these consist of lines, they contain the LineString geometry for each
feature. The X and Y coordinates of the centroid of each LineString are calculated and added
as 2 separate columns(X and Y) to the dataframe containing the features. However, this
means that the feature is not exactly about spatial distance anymore, since the distances
between the individual coordinates are not taken into account. General spatial location was
chosen over network distance, since after pre-processing the final analysis file leaves only 27
road segments, none of which are connected to each other anymore. This makes it impossible
to calculate the distance over the network. Therefore, the feature variable changes slightly
from spatial distance to spatial location, which is an important distinction to make.

4.3.5 Goal variable: Traffic count data
Next to the mapmatched traffic intensities based on GPS tracks, the ’official’ traffic counts
from the municipality of Tilburg are needed. For this, the bicycle traffic counts from the
so-called "Fietstelprogramma Gemeente Tilburg" are used, as mentioned earlier in chapter
3. These traffic counts are conducted every year by company Groenlicht Verkeersadviezen
for the municipality of Tilburg. This datasource consists of 24 different traffic count points
for cyclists, for which the intensity of bicycles is counted between 7am and 7pm on a single
day. Figure 4.5 shows the location of these traffic count points within the municipality of
Tilburg. Appendix A shows a more precise map with the two directions which the intensities
are measured.
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Fig. 4.5.: Overview of bicycle traffic count points from "Fietstelprogramma Gemeente Tilburg"

Since the file structure of the original Excel file is unsuitable for analysis purposes, the
necessary data(in this case bicycle traffic intensity) needs to be extracted. The full script used
for the extraction of the traffic count data can be found on Github and is titled extract_count.py.
Table 4.4 below gives an overview of all the traffic count locations, along with the measured
intensity, names, dates and weather obtained by performing the extract_count.py query.

Nr. Location Latitude Longitude Direction 1 D1 int Direction 2 D2 int Date Weather
3 Piusstraat 51.551959 5.089297 Piusplein 2023 Broekhovenseweg 2196 September 15 2015 Cloudy, rain
5 B. Zwijssenstraat 51,553775 5,086699 Stadhuisplein 1640 Stadstraat 1606 September 15 2015 Cloudy, rain
9 Trouwlaan 51,55231 5,078729 Jan van de Leestraat 1832 Nieuwstraat 1754 September 15 2015 Cloudy, rain
14 Reitsehoevenstraat 51,572121 5,062 Dr. Ahausstraat 1716 Lage Witsiebaan 1523 October 8 2015 Cloudy
26 Koestraat 51,564414 5,093942 NS-Plein 1550 Leonard van Veghelstraat 1470 September 17 2015 Cloudy, rain
30 Goirkestraat 51,573582 5,081019 Wilhelminapark 1220 Julianapark 1177 October 15 2015 Cloudy, rain
40 Spoorlaan 51,560757 5,086592 Willem II straat 2642 Stationsstraat 2609 October 8 2015 Cloudy
51 Oude Lind 51,57984 5,084997 Ringbaan Noord 1336 Von Weberpad 1233 September 17 2015 Cloudy, rain
56 Spoordijk 51,563076 5,109582 Ringbaan Oost 1329 Oisterwijk 1365 October 8 2015 Cloudy
61 Zwartvenseweg 51,569399 5,029756 Bredaseweg 375 Reeshofdijk 242 October 8 2015 Cloudy
62 Statenlaan 51,565922 5,051758 Prof. Verbernelaan 1674 Wandelboslaan 1459 October 6 2015 Cloudy
63 Ringbaan West 51,566836 5,066575 Hart van Brabantlaan 641 Wandelboslaan 721 October 6 2015 Cloudy
64 St Cecliliastraat 51,562918 5,07505 Hart van Brabantlaan 2634 Jan Heijnstraat 2420 October 6 2015 Cloudy
65 Gasthuisring 51,56192 5,077813 Hart van Brabantlaan 4906 Burg. Brockxlaan 4804 October 6 2015 Cloudy
66 NS-Plein 51,561629 5,092566 Spoorlaan 4940 Enschotsestraat 4608 October 6 2015 Cloudy
67 Ringbaan Oost 51,562105 5,104033 Spoorlaan 989 Bosscheweg 820 October 6 2015 Cloudy
77 Riddershofpad 51,588119 5,116916 Hazennest 340 De Kraan/Udenhout 351 September 15 2015 Cloudy, rain
78 Rauwbrakenweg 51,58592 5,132042 Rauwbrakenweg 166 Berkel-Enschot 82 October 8 2015 Cloudy
82 Stappegoorweg 51,539023 5,083367 Oeralweg 726 Goirle 887 September 17 2015 Cloudy, rain
83 Goirleseweg 51,539298 5,063628 Ringbaan Zuid 1884 Goirle 1805 September 17 2015 Cloudy, rain
104 Pieter Vreedeplein 51,558404 5,087601 Pieter Vreedeplein 2615 Willem II straat 2225 October 8 2015 Cloudy
113 Fietsbrug Voldijk 51,598459 4,989908 Tilburg (Reeshof) 83 Industrieterrein/ Dongen 94 September 15 2015 Cloudy
118 Reeshofdijk 51,574025 5,019838 Burg Baron v V tot Vweg 1999 Heyhoef 1951 October 13 2015 Cloudy, rain
121 Academielaan 51,565079 5,05741 Academielaan 2876 Wandelboslaan 2919 October 6 2015 Cloudy

Tab. 4.4.: Overview of traffic counts
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4.4 Combining the data-sources and variables
Once all the different data sources have been properly pre-processed, they need to be
combined into a single file to be suitable for analysis.

4.4.1 B-riders intensities
To prevent any errors that might occur during a Spatial Join caused by small differences in
spatial location between the original and mapmatched networks. The join was made by using
the Source and Target values of each road segment. Both the original and the mapmatched
Fietsersbond network contain these values, and they always correspond to the exact same
road segment. A new column was created for both networks, containing a textual sum of
the Source and Target values for each field. The reason for using this method of joining the
network is that the source and target fields are not unique. For example, a source value can
exist multiple times, but each time with a different target node. However, each combination
of a source and target node is unique, which makes it ideal for using it as a join field. The
two networks were then joined using this column as the join field, which resulted in a single
Fietsersbond network containing both the original feature variables as well as the B-riders
GPS intensity.

4.4.2 Traffic counts
Next, the traffic counts have to be joined to the network. They are first projected as points
using the latitude and longitude columns values of each point. Several obstacles are encoun-
tered when joining the points containing the traffic counts to the network with the intensities.
Firstly, as expected since they are two different data sources, the point locations do not
exactly intersect the road segment. Spatially joining them to the closest road segment on the
network was considered. However, this is not viable because the official traffic intensities,
as mentioned earlier and shown in Appendix A, are measured separately for both directions.
However, the spatial network does not always contain two separate road segments for both
directions. This means that when the network only contains a single road segment for both
directions, the sum of both directions(r1 and r2) needs to be added. Also, in some cases, it
even occurs that no road segments exists on the network for a point location. This is simply
an error that is caused due to the voluntary nature of the Fietsersbond network. Therefore,
the presence of road segments was checked at the location of each road segment using the
maps created for each traffic point that can be found in Appendix A. Table 4.5 shows, for each
traffic point, whether the corresponding road segments exists, and in what way.
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Telpunt nr. Road segments availability
3 Separate road segment for each direction
5 1 road segment for both directions
9 1 road segment for both directions
14 1 road segment for both directions
26 1 road segment for both directions
30 Separate road segment for each direction
40 Separate road segment for each direction
51 1 road segment for both directions
56 1 road segment for both directions
61 1 road segment for both directions
62 Separate road segment for each direction
63 Separate road segment for each direction
64 Road segment does not exist
65 Only road segment for direction 2 exists
66 Only road segment for direction 2 exists
67 Separate road segment for each direction
77 1 road segment for both directions
78 Road segment does not exist
82 Separate road segment for each direction
83 Separate road segment for each direction
104 1 road segment for both directions
113 Road segment does not exist
118 1 road segment for both directions
121 Road segment does not exist

Tab. 4.5.: Availability of road segments for traffic counts

Afterward, the points containing the traffic counts are manually snapped to the corresponding
road segments. When two separate road segments exist for both directions, the traffic count
point is duplicated and snapped to both road segments. They were then joined to the network
via a one-to-one intersecting spatial join. If, as mentioned earlier, no corresponding road
segment exists for a certain traffic count point, that traffic count point is not used and removed
from the data.

4.4.3 Fietstelweek intensities
Lastly, the Fietstelweek intensities need to be joined to the network. As mentioned earlier, this
data source does not contain a Source and Target field, so it cannot be joined to the network
the same way as the B-riders intensities. Since the ’linknummers’ from this data source do
not match the ’linknummers’ from the B-riders dataset, joining them using those variables
is also not an option. The spatial location of the network also differs very slightly from the
network containing the other data, which makes a spatial join unsuitable. Therefore, the only
option is to manually add the correct Fietstelweek ’linknummers’ to the original network, and
then join the network containing the Fietstwelweek intensities to it. This method is not ideal
for larger datasets, but for the purpose of this thesis, it is still feasible since there are only 27
relevant ’linknummers’ that are added.
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4.5 Complete analysis file
The result of the data-preparation and preprocessing is a shapefile containing all the goal
and feature variables that will be used for machine learning. Figure 4.6 on the next two
pages shows all values in the analysis file. Because the intensity per day is incredibly low, and
for some days even zero, it is decided to only use the total intensities of the B-Riders and
Fietstelweek. Below is a list that explains what each of the headers stands for:

telpuntnr: Traffic count point number.
wegdek_num: Road surface type weight.
schoon_num: Attractivity weight.
r1_intens: Traffic count point intensity for direction 1.
r2_intens: Traffic count point intensity for direction 2.
intens_cor: Corrected traffic counts, taking into account the directions.
brid_int: Total B-riders cyclist intensity.
brid_INT0: B-riders cyclist intensity for Sundays.
brid_INT1: B-riders cyclist intensity for Mondays.
brid_INT2: B-riders cyclist intensity for Tuesdays.
brid_INT3: B-riders cyclist intensity for Wednesdays.
brid_INT4: B-riders cyclist intensity for Thursdays.
brid_INT5: B-riders cyclist intensity for Fridays.
brid_INT6: B-riders cyclist intensity for Saturdays.
ftw_int: Total Fietstelweek cyclist intensity.
FTW_INT0: Fietstelweek cyclist intensity for Sunday.
FTW_INT1: Fietstelweek cyclist intensity for Monday.
FTW_INT2: Fietstelweek cyclist intensity for Tuesday.
FTW_INT3: Fietstelweek cyclist intensity for Wednesday.
FTW_INT4: Fietstelweek cyclist intensity for Thursday.
FTW_INT5: Fietstelweek cyclist intensity for Friday.
FTW_INT6: Fietstelweek cyclist intensity for Saturday.

Chapter 4 Data preparation and pre-processing 30



Chapter 4 Data preparation and pre-processing 31



Fig. 4.6.: File resulting from pre-processing that is used for analysis
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5Analysis and results

In this chapter, the results of the analysis described in the Methodology chapter are detailed.
First, the ratio between the GPS intensities(For both B-riders and Fietstelweek) is calculated
and discussed to see whether it is plausible given the spatial background. Next, the correlation
between the goal variable(traffic counts) and the feature variables is shown using scatterplots
and correlation coefficients. Finally, for each machine learning classifier specified in chapter
3.3, the outcomes of the cross-validation are given, along with the regressor quality(r2 score)
and the MSE.

5.1 Plausibility and ratio of GPS intensities
When looking at the pre-processed file containing all values(figure 4.6), at first glance, it looks
like there is very little correlation between the GPS intensities of the B-riders and Fietstelweek
and the traffic counts. To see whether or not the intensities make sense given the spatial
background, both the B-riders and Fietstelweek are visualized, based on four quantiles, in
figures 5.1 and 5.2 against a background map of the municipality of Tilburg. Note that all
road segments have been visualized to get a better understanding of the plausibility, and not
just the 27 that also contain traffic count data and being used in the analysis.

Both figures show relatively believable and plausible intensities given the spatial background.
The main roads contain the highest intensities, while the smaller roads within each neigh-
borhood have lower intensities. It is logical that the GPS intensities are (significantly) lower
than the actual measured traffic counts, since obviously only a minimal amount of the people
cycling on a certain road will be participating in either the B-riders of Fietstelweek project,
even though the B-riders project collects data over a period of several months. In an attempt
to (partly) solve this problem, the ratio is calculated between the traffic counts and the GPS
intensities. Table 5.1 shows the ratio between the traffic counts and the B-riders intensities.
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Fig. 5.1.: B-riders intensities against Tilburg background map
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Fig. 5.2.: Fietstelweek intensities against Tilburg background map
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Telpunt nr. Traffic count B-Riders int. Ratio Corrected B-riders int.
3 2023 280 7,225 1381
3 2196 225 9,76 1109
5 3246 1382 2,34877 6814
9 3586 248 14,4597 1223
14 3239 538 6,02045 2653
26 3020 1281 2,35753 6316
30 1177 250 4,708 1233
30 1220 307 3,97394 1514
40 2642 341 7,7478 1681
40 2609 230 11,3435 1134
51 2569 838 3,06563 4132
56 2694 2407 1,11924 11867
61 617 359 1,71866 1770
62 1459 148 9,85811 730
62 1674 585 2,86154 2884
63 641 276 2,32246 1361
65 4804 1275 3,76784 6286
66 4608 1266 3,63981 6242
67 989 317 3,11987 1563
67 820 545 1,50459 325
77 691 1123 0,615316 274
82 726 265 2,73962 288
82 887 310 2,86129 352
83 1884 792 2,37879 747
83 1805 869 2,0771 716
104 4840 259 18,6873 1919
118 3950 4711 0,838463 1566
Mean ratio: 4,930382

Tab. 5.1.: Ratio between traffic counts and B-riders intensities, along with corrected intensities

The minimum ratio between the traffic counts and the B-riders intensities is 0,615316, while
the maximum ratio is 18,6873. One thing that becomes clear, is that there are two occurrences
where the B-riders intensity is higher than the traffic count intensity. The mean of all ratios is
4,930382, and the ’corrected’ B-riders intensities are calculated by multiplying the original
B-riders intensities with this average ratio. To better understand the ratio’s between the
B-riders intensities and traffic counts, figure 5.3 shows the spatial distribution of the ratio.
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Fig. 5.3.: Map of ratio between traffic counts and B-riders intensities

The spatial distribution shows that, in general, the largest ratio’s between the traffic count
and the B-riders intensities occur near the city center, while the lower ratio’s mostly are
further away from the city centre. This makes sense since there more people cycling near the
city center. Therefore, the effect of the relatively small sample size of B-riders participants
becomes more clear there.

Table 5.2 on the next page shows the ratio between the traffic counts and Fietstelweek
intensities.
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Telpunt nr. Traffic count Fietstelweek int. Ratio Corrected Fietstelweek int.
3 2023 15 134,867 1232
3 2196 25 87,84 2053
5 3246 54 60,1111 4434
9 3586 69 51,971 5666
14 3239 26 124,577 2135
26 3020 36 83,8889 2956
30 1177 32 36,7813 2628
30 1220 32 38,125 2628
40 2642 6 440,333 493
40 2609 12 217,417 985
51 2569 49 52,4286 4024
56 2694 93 28,9677 7637
61 617 24 25,7083 1971
62 1459 159 9,1761 13057
62 1674 32 52,3125 2628
63 641 5 128,2 411
65 4804 76 63,2105 6241
66 4608 52 88,6154 4270
67 989 19 52,0526 1560
67 820 9 91,1111 739
77 691 32 21,5938 2628
82 726 22 33 1807
82 887 12 73,9167 985
83 1884 37 50,9189 3038
83 1805 44 41,0227 3613
104 4840 48 100,833 3942
118 3950 140 28,2143 11497
Mean ratio: 82,118279

Tab. 5.2.: Ratio between traffic counts and Fietstelweek intensities, along with corrected intensities

The minimum ratio between the traffic counts and the Fietstelweek intensities is 9,1761,
while the maximum ratio is 440,333. The ratios between the Fietstelweek intensities and the
traffic counts are much higher than the ratios between the B-riders intensities and the traffic
counts. This is because the Fietstelweek, as implied by the name, only ran for a week while
the B-riders program ran for several months. Therefore, the intensities for the B-riders, and
also the ratios, are much higher than for the Fietstelweek. Once again, to better understand
the ratio’s between the Fietstelweek intensities and traffic counts, figure 5.4 shows the spatial
distribution of the ratios.
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Fig. 5.4.: Map of ratio between traffic counts and Fietstelweek intensities

The pattern shown in the spatial distribution of the ratios is pretty similar to that of the
B-riders intensities. The largest ratio’s occur near the city centre, while further away from the
city centre the ratio’s are significantly lower. The same explanation can be given here, in that
there are simply more people cycling near the city centre, and thus the effect of the relatively
small sample size of Fietstelweek participants becomes more clear.
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5.2 Correlation between variables
To show the correlation between the goal variable and all feature variables for which it is
relevant, scatterplots are made, along with the correlation coefficient. The script used to
generate the scatterplots and calculate the correlation coefficient is named scatterplot.py and
can be found on Github.

5.2.1 Correlation between traffic counts and B-riders GPS
intensities

Fig. 5.5.: Scatterplot of traffic counts and B-riders GPS intensities

The correlation coefficient between the traffic counts and the B-riders GPS intensities is
0.40716848131988526, which means the two variables have a low positive correlation, as
shown by the line of best fit.

5.2.2 Correlation between traffic counts and corrected B-riders GPS
intensities

Fig. 5.6.: Scatterplot of traffic counts and corrected B-riders GPS intensities

The correlation coefficient between the traffic counts and the corrected B-riders GPS intensities
is 0.4071658116735912, which means the two variables have a low positive correlation, as
shown by the line of best fit. The scatterplot, and thus the correlation coefficient are almost
identical to the non-corrected B-riders GPS intensities which means that the correction sorted
very little effect.
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5.2.3 Correlation between traffic counts and Fietstelweek GPS
intensities

Fig. 5.7.: Scatterplot of traffic counts and Fietstelweek GPS intensities

The correlation coefficient between the traffic counts and the Fietstelweek GPS intensities
is 0.39785878228848215, which means the two variables have low a positive correlation,
as shown by the line of best fit. The correlation coefficient is only slightly lower than the
correlation coefficient between the traffic counts and the B-riders GPS intensities.

5.2.4 Correlation between traffic counts and corrected Fietstelweek
GPS intensities

Fig. 5.8.: Scatterplot of traffic counts and corrected Fietstelweek GPS intensities

The correlation coefficient between the traffic counts and the corrected Fietstelweek GPS
intensities is 0.39784335386865616, which means the two variables have a low positive
correlation, as shown by the line of best fit. Just like with the corrected B-riders intensities,
the scatterplot and correlation coefficient from the corrected Fietstelweek barely differ from
the normal Fietstelweek intensities.
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5.2.5 Correlation between traffic counts and Attractivity

Fig. 5.9.: Scatterplot of traffic counts and Attractivity

The correlation coefficient between the traffic counts and the corrected Fietstelweek GPS
intensities is 0.25710286957749356, which means the two variables have a low positive
correlation, as shown by the line of best fit. However, all but one of the attractivity values are
the same.

5.2.6 Correlation between traffic counts and Road surface type
The correlation coefficient between the traffic counts and the corrected Fietstelweek GPS
intensities is 0, since all cases of road surface type in the dataset have the same value(3). This
means it is not possible to calculate a line of best fit, and therefore it is also not relevant to
create a scatterplot.
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5.3 Machine learning results
In this section, the results for each of the machine learning classifiers are listed. Firstly, for
each classifier, 5-fold cross validation is performed for the following four variations of goal
and target variables

• Goal variable: Traffic counts. Feature variable: Attractivity, Road surface type, Spatial
location and B-riders intensities

• Goal variable: Traffic counts. Feature variable: Attractivity, Road surface type, Spatial
location and corrected B-riders intensities

• Goal variable: Traffic counts. Feature variable: Attractivity, Road surface type, Spatial
location and Fietstelweek intensities

• Goal variable: Traffic counts. Feature variable: Attractivity, Road surface type, Spatial
location and corrected Fietstelweek intensities

Due to the intensities per day being very low(sometimes even being zero) as shown in the
previous chapter, it has been decided to only use the total GPS intensities and the corrected
GPS intensities when it comes to GPS intensities.

Next to 5-fold cross-validation, LOOCV is performed for each classifier, again using the four
variations of goal and target variables mentioned above. The python script used to perform
the machine learning, which contains all the parameter settings for each of the classifiers, is
named MP.py and can be found on Github.

5.3.1 k-Nearest Neighbor
Table 5.3 shows the results of 5-fold cross validation for the k-Nearest Neighbor regressor
with k=5. The traffic counts are used as goal variables, while the attractivity, road surface
type, spatial distance and the B-riders intensities are used as feature variables. Meanwhile,
table 5.4 shows the results with the ratio-corrected B-riders intensities instead of the original
B-riders intensities.

Fold R2 MSE
1 -0.25940 1371820
2 -4.72266 1461839
3 -1.70481 1585510
4 -7.22015 1877289
5 -4.77737 5980563
R2 mean: -3.73688
MSE mean: 2455404

Tab. 5.3.: KNN with B-riders intensities

Fold R2 MSE
1 -0.84682 2420899
2 -1.83817 1429990
3 -4.79975 2510248
4 -25.91648 1869795
5 -20.56347 3740681
R2 mean: -10.79294
MSE mean: 2394323

Tab. 5.4.: KNN with corrected B-riders intensities

The tables below show the results when using the Fietstelweek intensities instead of the
B-riders intensities. Table 5.5 shows the results using the normal intensities, while table 5.6
shows the results using the ratio-corrected intensities.
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Fold R2 MSE
1 -0.19152 1332838
2 -4.47796 1931572
3 -3.41385 3560650
4 -12.11435 1846075
5 -5.63278 4812176
R2 mean: -5.16609
MSE mean: 2696662

Tab. 5.5.: KNN with Fietstelweek intensities

Fold R2 MSE
1 0.33837 1160411
2 -0.68242 2167534
3 -7.65212 2038180
4 0.17835 1304644
5 -18.14355 1916950
R2 mean: -5.19227
MSE mean: 1717544

Tab. 5.6.: KNN with corrected Fietstelweek
intensities

Since for all four variations of feature variables the R2 mean is negative and the MSE is very
high, it can be concluded that this regressor is unsuitable for predicting traffic intensities
based on the given feature variables. When performing LOOCV, each of the four variations of
feature variables results in an R2 score of 0, which leads to the conclusion that the model
predicts as good as a naive model that has a constant value.
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5.3.2 Gaussian Process
Table 5.7 shows the results of 5-fold cross validation for the Gaussian Process regressor. The
traffic counts are used as goal variables, while the attractivity, road surface type, spatial
distance and the B-riders intensities are used as feature variables. Meanwhile, table 5.8
shows the results with the ratio-corrected B-riders intensities instead of the original B-riders
intensities.

Fold R2 MSE
1 0 7001083
2 0 7099107
3 0 3132607
4 0 12584308
5 0 3713373
R2 mean: 0
MSE mean: 6706095.746666667

Tab. 5.7.: GP with B-riders intensities

Fold R2 MSE
1 0 7001083
2 0 7099107
3 0 3132607
4 0 12584308
5 0 3713373
R2 mean: 0
MSE mean: 6706095.746666667

Tab. 5.8.: GP with corrected B-riders intensities

The tables below show the results when using the Fietstelweek intensities instead of the
B-riders intensities. Table 5.9 shows the results using the normal intensities, while table 5.10
shows the results using the ratio-corrected intensities.

Fold R2 MSE
1 -2.62080e+60 7001083
2 0 7099107
3 -7.25514e+172 3132607
4 -4.81858e+60 12584308
5 0 3713373
R2 mean: -1.45103e+172
MSE mean: 6706096

Tab. 5.9.: GP with Fietstelweek intensities

Fold R2 MSE
1 0 7001083
2 0 7099107
3 0 3132607
4 0 12584308
5 0 3713373
R2 mean: 0
MSE mean: 6706096

Tab. 5.10.: GP with corrected Fietstelweek
intensities

Since for all four variations of feature variables the R2 mean is negative or zero, and the
MSE is very high, it can be concluded that this regressor is unsuitable for predicting traffic
intensities based on the given feature variables. When performing LOOCV, each of the four
variations of feature variables results in an R2 score of 0, which leads to the conclusion that
the model predicts as good as a naive model that has a constant value.
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5.3.3 Decision Tree
Table 5.11 shows the results of 5-fold cross validation for the Decision Tree regressor. The
traffic counts are used as goal variables, while the attractivity, road surface type, spatial
distance and the B-riders intensities are used as feature variables. Meanwhile, table 5.12
shows the results with the ratio-corrected B-riders intensities instead of the original B-riders
intensities.

Fold R2 MSE
1 -0.79775 3611403
2 -3.85664 4041753
3 -0.40795 3821205
4 -1.16930 2458753
5 -2.88759 7468864
R2 mean: -1.82384
MSE mean: 4280396

Tab. 5.11.: DT with B-riders intensities

Fold R2 MSE
1 -0.78870 3676881
2 -3.85664 4041753
3 -0.18176 2166165
4 -0.84791 4275047
5 -2.11561 8429499
R2 mean: -1.55812
MSE mean: 4517869

Tab. 5.12.: DT with corrected B-riders intensities

The tables below show the results when using the Fietstelweek intensities instead of the
B-riders intensities. Table 5.13 shows the results using the normal intensities, while table
5.14 shows the results using the ratio-corrected intensities.

Fold R2 MSE
1 0.38965 1836020
2 -6.28379 5413014
3 -7.27120 2912464
4 -2.46860 3299555
5 -17.01741 3180876
R2 mean: -6.53027
MSE mean: 3328386

Tab. 5.13.: DT with Fietstelweek intensities

Fold R2 MSE
1 0.36565 1833215
2 -9.35961 3900655
3 -8.80182 2693368
4 -2.52781 3209739
5 -12.70382 2896827
R2 mean: -6.60548
MSE mean: 2906761

Tab. 5.14.: DT with corrected Fietstelweek
intensities

Since for all four variations of feature variables the R2 mean is negative and the MSE is very
high, it can be concluded that this regressor is unsuitable for predicting traffic intensities
based on the given feature variables. When performing LOOCV, each of the four variations of
feature variables results in an R2 score of 0, which leads to the conclusion that the model
predicts as good as a naive model that has a constant value.
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5.3.4 Kernel Ridge
Table 5.15 shows the results of 5-fold cross validation for the Kernel Ridge regressor. The
traffic counts are used as goal variables, while the attractivity, road surface type, spatial
distance and the B-riders intensities are used as feature variables. Meanwhile, table 5.16
shows the results with the ratio-corrected B-riders intensities instead of the original B-riders
intensities.

Fold R2 MSE
1 -7.68317 1699586
2 -10.52080 2156969
3 -15.26225 846566
4 -40.40558 2825879
5 -268.82810 3043283
R2 mean: -68.53998
MSE mean: 2114457

Tab. 5.15.: KR with B-riders intensities

Fold R2 MSE
1 -7.68525 1699321
2 -10.52443 2156999
3 -15.25248 846347
4 -40.39021 2825989
5 -268.65707 3043290
R2 mean: -68.50189
MSE mean: 2114389

Tab. 5.16.: KR with corrected B-riders intensities

The tables below show the results when using the Fietstelweek intensities instead of the
B-riders intensities. Table 5.17 shows the results using the normal intensities, while table 5.6
shows the results using the ratio-corrected intensities.

Fold R2 MSE
1 -6.95878 1237147
2 -1.11477 5225868
3 -17.71480 785940
4 -23.66280 2892578
5 -22.72679 3675570
R2 mean: -14.43559
MSE mean: 2763421

Tab. 5.17.: KR with Fietstelweek intensities

Fold R2 MSE
1 -6.95707 1237252
2 -1.11464 5226649
3 -17.70188 785678
4 -23.67010 2892727
5 -22.72938 3675326
R2 mean: -14.43462
MSE mean: 2763527

Tab. 5.18.: KR with corrected Fietstelweek
intensities

Since for all four variations of feature variables the R2 mean is negative and the MSE is very
high, it can be concluded that this regressor is unsuitable for predicting traffic intensities
based on the given feature variables. When performing LOOCV, each of the four variations of
feature variables results in an R2 score of 0, which leads to the conclusion that the model
predicts as good as a naive model that has a constant value.
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5.3.5 Support Vector
Table 5.19 shows the results of 5-fold cross validation for the Support Vector regressor. The
traffic counts are used as goal variables, while the attractivity, road surface type, spatial
distance and the B-riders intensities are used as feature variables. Meanwhile, table 5.20
shows the results with the ratio-corrected B-riders intensities instead of the original B-riders
intensities.

Fold R2 MSE
1 0 1433260
2 0 1850096
3 0 1315474
4 0 3879676
5 0 2364163
R2 mean: 0
MSE mean: 2168534

Tab. 5.19.: SV with B-riders intensities

Fold R2 MSE
1 0 1433260
2 0 1850096
3 0 1315474
4 0 3879676
5 0 2364163
R2 mean: 0
MSE mean: 2168534

Tab. 5.20.: SV with corrected B-riders intensities

The tables below show the results when using the Fietstelweek intensities instead of the
B-riders intensities. Table 5.21 shows the results using the normal intensities, while table
5.22 shows the results using the ratio-corrected intensities.

Fold R2 MSE
1 -5.54466e+30 1433259
2 -3.57861e+31 1850096
3 0 1315474
4 -1.17256e+31 3879676
5 0 2364163
R2 mean: -1.06112e+31
MSE mean: 2168534

Tab. 5.21.: SV with Fietstelweek intensities

Fold R2 MSE
1 0 1433259
2 0 1850096
3 0 1315474
4 0 3879676
5 0 2364163
R2 mean: 0
MSE mean: 2168534

Tab. 5.22.: SV with corrected Fietstelweek
intensities

Since for all four variations of feature variables the R2 mean is negative or zero, and the
MSE is very high, it can be concluded that this regressor is unsuitable for predicting traffic
intensities based on the given feature variables. When performing LOOCV, each of the four
variations of feature variables results in an R2 score of 0, which leads to the conclusion that
the model predicts as good as a naive model that has a constant value.
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5.3.6 Partial Least Squares
Table 5.23 shows the results of 5-fold cross validation for the Partial Least Squares regressor.
The traffic counts are used as goal variables, while the attractivity, road surface type, spatial
distance and the B-riders intensities are used as feature variables. Meanwhile, table 5.24
shows the results with the ratio-corrected B-riders intensities instead of the original B-riders
intensities.

Fold R2 MSE
1 -4.92793 2197322
2 -5.22090 2567818
3 -9.86570 781707
4 -94.65645 2933716
5 -65.30736 3609364
R2 mean: -35.99567
MSE mean: 2417985

Tab. 5.23.: PLS with B-riders intensities

Fold R2 MSE
1 -4.92797 2197294
2 -5.22250 2567711
3 -9.86515 781730
4 -94.64255 2933751
5 -65.31294 3609389
R2 mean: -35.99422
MSE mean: 2417975

Tab. 5.24.: PLS with corrected B-riders intensities

The tables below show the results when using the Fietstelweek intensities instead of the
B-riders intensities. Table 5.25 shows the results using the normal intensities, while table
5.26 shows the results using the ratio-corrected intensities.

Fold R2 MSE
1 -4.58224 1867226
2 -0.92840 7425289
3 -13.72738 732240
4 -30.78669 2941629
5 -11.14462 4888783
R2 mean: -12.23387
MSE mean: 3571033

Tab. 5.25.: PLS with Fietstelweek intensities

Fold R2 MSE
1 -4.58206 1867344
2 -0.92845 7425447
3 -13.73291 732291
4 -30.79012 2941671
5 -11.14404 4888880
R2 mean: -12.23551
MSE mean: 3571126

Tab. 5.26.: PLS with corrected Fietstelweek
intensities

Since for all four variations of feature variables the R2 mean is negative and the MSE is very
high, it can be concluded that this regressor is unsuitable for predicting traffic intensities
based on the given feature variables. When performing LOOCV, each of the four variations of
feature variables results in an R2 score of 0, which leads to the conclusion that the model
predicts as good as a naive model that has a constant value.
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5.3.7 Linear Regression
Table 5.27 shows the results of 5-fold cross validation for the Linear regressor. The traffic
counts are used as goal variables, while the attractivity, road surface type, spatial distance and
the B-riders intensities are used as feature variables. Meanwhile, table 5.28 shows the results
with the ratio-corrected B-riders intensities instead of the original B-riders intensities.

Fold R2 MSE
1 -4.76149 2030331
2 -3.41002 3958771
3 -3.85971 777847
4 -32.30871 2767496
5 -74.19664 3948768.87045
R2 mean: -23.70732
MSE mean: 2696643
Tab. 5.27.: LR with B-riders intensities

Fold R2 MSE
1 -4.761605 2030284
2 -3.41052 3958306
3 -3.85939 777900
4 -32.30006 2767536
5 -74.18711 3948829
R2 mean: -23.70373
MSE mean: 2696571

Tab. 5.28.: LR with corrected B-riders intensities

The tables below show the results when using the Fietstelweek intensities instead of the
B-riders intensities. Table 5.29 shows the results using the normal intensities, while table
5.30 shows the results using the ratio-corrected intensities.

Fold R2 MSE
1 -4.67512 1908814
2 -1.38704 9249897
3 -13.56084 725759
4 -34.43537 2947422
5 -11.00408 4912970
R2 mean: -13.01249
MSE mean 3948973

Tab. 5.29.: LR with Fietstelweek intensities

Fold R2 MSE
1 -4.67504 1908892
2 -1.38706 9249988
3 -13.56626 725811
4 -34.43856 2947460
5 -11.00360 4913050
R2 mean: -13.01410
MSE mean: 3949040

Tab. 5.30.: LR with corrected Fietstelweek
intensities

Since for all four variations of feature variables the R2 mean is negative and the MSE is very
high, it can be concluded that this regressor is unsuitable for predicting traffic intensities
based on the given feature variables. When performing LOOCV, each of the four variations of
feature variables results in an R2 score of 0, which leads to the conclusion that the model
predicts as good as a naive model that has a constant value.
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6Conclusion

In this chapter, the main conclusions and new insights that can be gathered from the results are
described by answering the main research question and sub-questions that were established
at the beginning of this research. It also contains a discussion that gives suggestions for
potential future research.

6.1 Results in the context of research questions
The research goal of this thesis has been to find ways to estimate traffic intensities of cyclists
on a network using interpolation between local traffic counts and intensities from GPS tracks.
This thesis attempts to answer the research question as described in chapter 1.3, which is as
follows:

"How can the traffic intensity of cyclists on a network be estimated by means of flow interpolation
from local traffic counts and GPS tracks?"

Four sub-questions have been formulated to help answer the main research question, with
each sub-question focusing on a specific area of the main research question. Therefore, each
sub-question is answered below using the results and insights gained from the research.
Together, all these answers can be used to answer the main research question.

Results on suitable methods for estimating traffic intensity
The first sub-question encompassed finding out which methods are suitable for estimating
traffic intensity of cyclists based on local traffic counts and GPS tracks. According to literature,
gravity models are still the most used models but are unsuitable for this type of estimating
since they do not fit well to local measurements, which the traffic counts are. Therefore,
machine learning methods are used since they do fit well to local measurements. Since
flow interpolation is a regression problem, regression classifiers are suitable for estimating
the traffic intensity. All seven used regression classifiers perform equal or worse than the
naive model, which makes them all unsuitable estimating traffic intensity in the context of
this thesis. This can be explained given the lack of correlation that was shown between the
data. This means that either the used data sample is too small, or that the GPS data is too
unrepresentative.

Results on road characteristics as feature variables
Next, the second sub-question deals with which road characteristics should be taken into
account as feature variables. According to literature, road surface type, the width of a road
and the attractivity all influence people behavior and route change when cycling and are
therefore suitable variables. All of these road characteristics are available in the existing road
network and used as features variables in the machine learning models, with the exception
the road width, which turned out to not be available on an acceptable level in both of the
used networks. The pre-processing and analysis shows that both the road width and the
attractiveness consist of the same value for (almost) all of the road segments and that there is
little to no correlation. Therefore, within the scope of this research, they do not provide much
added value as feature variables. However, when executing the machine learning models on
a much larger scale with many roads having varying attractiveness and road surfaces, they
might turn out to be useful as feature variables.
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Results on the usefulness of biased GPS tracks as a variable
Regarding the third sub-question, which focuses on the usefulness of biased GPS tracks as a
variable in the machine learning model, several things can be concluded. First, the results
of the machine learning regression show that for the scope of this research, the GPS tracks
of both the B-riders as well as those of the Fietstelweek are not suitable as variables. For all
seven machine learning classifiers, the model performed equal or worse than the naive model
which predicts with a constant value. This is also the case even when taking into account the
different measurement periods by looking at the ratios.

Results on the validation of machine learning algorithms
The last sub-question deals with the validation of the machine learning algorithms. Literature
shows that, when using regression methods to estimate, the regression score(r2) and the
mean square error(MSE) are suitable. The r2 scores and the MSE for all of the machine
learning classifiers can be used to compare them. However, as said before, the r2 score for
each of the machine learning classifiers is zero or negative, which means that they are all
almost equally unsuitable. Meanwhile, the MSE scores are very high for all classifiers, which
means that the predicted traffic intensity differs significantly from the actual value.

To conclude, regarding the main research question, one can say that, when using the B-riders
and Fietstelweek GPS data, it is not possible to accurately predict the traffic intensity of
cyclists on a network scale. Machine learning regression might still be a suitable method for
predicting traffic intensities, but to achieve more desirable results, a significantly larger and
less biased sample of traffic count points than the amount used in this research is needed.
Also the GPS tracks need to be representative and have a significantly larger sample size than
the ones used during this research in order to achieve more desirable results.

6.2 Discussion
When a research project is finished, it is important to look back and reflect on the results
and process of the research itself and discuss the new insights that became clear. By doing
this, any encountered shortcomings or limitations can be discussed, which can offer help and
possibilities for potential feature research on this topic. In this section, several limitations that
were encountered during the research are discussed. Based on these encountered limitations,
several suggestions for future research are made.

The results and conclusion of this thesis show that the used GPS tracks are not suitable for
making traffic flow estimations. However, as mentioned in the introduction, there still lies a
lot of potential in combining new data sources such as GPS with traditional traffic counts.
The major limitation turned out be that the GPS tracks of the B-Riders and Fietstelweek are
not representative for the average behavior of cyclists. A potential solution to this could be
to de-bias or re-sample the GPS tracks to obtain more representative data. Another possible
solution is to greatly increase the sample size of GPS tracks, which could lead to a reducing
of the bias.

It also became clear that there is a danger in using non-representative GPS samples, which has
to be kept in mind during this kind of research. In the context of this thesis, it became very
obvious that the GPS samples were non-representative and biased because of the negative
R2-scores and very large MSE. However, it is unlikely that the non-representativeness of GPS
sample is always shown as clearly as it is in this thesis. Using non-representative GPS samples
could therefore lead to drawing the wrong conclusion if the researcher is not fully aware that
the GPS samples are non-representative.
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Another limitation that arose during the the research is that, while according to existing
literature, the spatial distance may have an influence, this research ended up using spatial
location instead of spatial distance. Due to only using the centroids of the road segments as
input features and not the distance between them, the spatial location input feature may not
correctly line up with literature.

6.2.1 Suggestions for future research
As shown in the previous section, several limitations and points for improvement were
encountered during this research. The suggestions below might be useful to take into account
for future research about estimating traffic intensity of cyclists on a network using GPS data
and local traffic counts, to prevent the same limitations and shortcomings that happened
during this research. Taking these suggestions into account might result in models that can
estimate the intensity of cyclists.

Larger sample size for traffic count data
An important point for potential improvement concerns the ’official’ traffic count data. For
this research, only 24 locations were able to be used, from the ’Fietstelprogramma Gemeente
Tilburg’, of which several had to be removed due to empty values or non-existent data. While
it turned out to still be possible to perform analysis and interpolation using so few data points,
it is far from ideal. Attempts were made to add additional traffic count data points from
other data sources as the province of North-Brabant or TNO, but since these were measured
over different time periods and during different years and dates, the data did not correlate.
Therefore the first suggestion is to, if feasible, significantly increase the sample size of bicycle
traffic count locations. In addition to increasing the sample size, to get a representative view
of the cycling intensities of a certain city or region, the spatial distribution of traffic count
points is important. The 24 points used were not ideally distributed, with most of them being
located near the busy city center, which can lead to bias. Having a better spatial distribution
of traffic counts, with them being evenly distributed, would increase the believability of the
analysis and lead to it being less biased.

Additional spatial input features
Furthermore, an interesting aspect that future research could look in to is a more comprehen-
sive use of spatial input features. In the end, for this thesis, the spatial location of each traffic
count point was used by looking at each traffic count points X and Y coordinates. This is
different from using the spatial distance or network distance, and using these values as input
features might provide different results that provide new insights into the use of GPS tracks
for traffic flow measurement. An interesting possibility might be to calculate the distance to
the city center(which could be the market, central station or town hall for example) for each
traffic count point, and use it as an additional input feature during the machine learning.

Increased amount of feature variables
The machine learning algorithms used four variables for estimating the cyclist traffic intensity,
mostly due to the availability of these variables. However, by adding additional variables, the
performance of the model might be improved. Some other features that could be added to the
model and that might improve the model are socioeconomic features or safety features such
as the number of traffic lights. It could also be interesting to use more than one variable for
certain input features. For example, the input feature attractivity could be represented by two
different variables, one from the Fietsersbond network and one from the OSM network.

Different parameters for machine learning algorithms
The machine learning algorithms that were used during this research were used using mostly
their default parameters. By looking at the effect that changing these parameters has, the
ability of the machine learning classifiers to estimate cyclists could be improved.

Chapter 6 Conclusion 53



Bibliography

Anderson, J. E. (2010). The gravity model. Working Paper 16576, National Bureau of
Economic Research.

B-Riders (2017). Zo werkt b-riders company. http://www.briders.nl/
zo-werkt-b-riders-company. [Date accessed: 17-10-2017].

Bussche, D. and van de Coevering, P. (2015). Bikeprint: in depth analysis of cyclist behaviour
and cycle network/ performance using extensive gps track data.

Casey, H. J. (1955). Applications to traffic engineering of the law of retail gravitation. Traffic
Quarterly, 9(1):23–35.
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AAppendix: Telpunt maps

Below, the official maps for each of the 24 count locations are shown, along with both
directions for which intensities were measured.
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