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Abstract

In this paper we look at some approaches to improve the computational performance of

BBES (van Ommen, 2018) algorithm, which aims to learn Bayesian network structure

from data. We discuss about how to choose AIC (Akaike information criterion) and BIC

(Bayesian information criterion) score in different situations. We give a new branching

heuristic based on Graph Attention Network and evaluate it on both simulated continuous

data and real-life data.
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1 Introduction

1.1 Correlation and causation

Imagine you are learning to play a shooting game, and your goal is to kill all your enemies.

The first thing one learns is that right-click at some point can make your character move

there. You can choose to attack an enemy, but in the meantime, you leave yourself

dangerously exposed, which increases the probability that you get shot by his hiding

allies. Every choice you made matters because each of them has consequences. These are

examples of what we call cause-effect relationships.

Is correlation causation? Two or more things can be positively correlated, negatively

correlated, or not correlated at all. If as one set of values increases, the other set tends

to increase, then it is called a positive correlation. If as one set of values increases, the

other set tends to decrease, then it is called a negative correlation. If the change in values

of one set doesn’t affect the values of the other, then the variables are said to have "no

correlation". Causation between two or more things exists if the occurrence of the first

causes the other. The first thing is called the cause and the second is called the effect. A

correlation between two variables does not imply causation. On the other hand, if there is

a causal relationship between two variables, they must be correlated. So correlation is not

causation. But we often use correlation to infer causation.

1.2 Why Bayesian networks

Bayesian networks (BNs) are a type of probabilistic graphical model that represents a set

of variables and their conditional dependencies by a directed acyclic graph. BNs are great

models for casual relationship study. The reasons are various. First, BNs are graphical

models, so that they can show the relationships clearly and intuitively. Second, BNs

are directed graphs, thus being capable of representing cause-effect relationships. Third,

Bayesian networks are good at dealing with uncertainty problems. They use conditional

probability to express the probabilistic relation between various information elements and

can learn under limited, incomplete, and uncertain information conditions. Finally, our

goal is to find causal relationships from data. Even though there are a lot of types of
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models that can be used to represent uncertainty, for example, Markov networks, neural

networks, decision trees etc.–Bayesian networks are the only models that can learn direct

causal relationships. Additionally, they can also represent indirect causation.

In Bayesian network structure learning (BNSL), the goal is to find such causation from

observations in the dataset D, and compile those causal relationships into a Bayesian

network G. This G is called a causal model and can be used to describe how things work

in dataset D. We only care about the structure of the model, that is, the focus is to

find the set of edges, so the distribution of values of variables in the model will not be

discussed.

1.3 The research question

van Ommen (2018) designed a branch-and-bound equivalence search (BBES) algorithm to

learn the structure of Bayesian networks. The algorithm starts with a state that is the set

of all equivalence classes on n variables, and then using branching heuristics to branch

states and BIC score to bound them (more details in section 2). Our research question is

how to improve the computational efficiency of the BBES algorithm by exploring better

score metrics and trying different branching heuristics?

1.4 The relevance of the research

Developing a Bayesian network structure is very useful for a variety of applications in

general. For example, where there are masses of data available, and we want to understand

what underlies the knowledge or which features can cause the others. In addition to

providing a network that will allow us to predict behavior under conditions that we have

not seen, the structure can also incorporate domain expert knowledge to provide more

reliable suggestions.

BNSL has been a successful data analysis tool in many other areas of biology, such as

cell signaling pathways, systems biology, genetic data analysis, and prediction-based

classification of disease (Needham et al., 2007; Ramoni et al., 2009; Woolf et al., 2005).

Schlosberg et al. (2011) applied BNSL to identify potential causal SNP (single-nucleotide

polymorphism) associated with the affected phenotype. Ramsey et al. (2017) applied
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their BNSL algorithm–fGES to a brain activity research project, trying to find out causal

relationships among cortical voxels in a resting-state fMRI scan.
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2 Background

There has been a long debate about if causation can be discovered given observational

data. Over the last few decades, many people have tried to design algorithms to solve the

problem. As a result, more and more evidence has shown that there is a possibility that

the cause-effect relationships can be found in observational data. The algorithms below

either provided the theoretical support for BBES or offered some improvement directions.

Spirtes et al. (2000) introduced the PC algorithm, which is a classic constraint-based

BNSL method. The algorithm starts with a complete undirected graph G, then repeatedly

removes edges from G by doing independence tests (Figure 1 shows how the procedure

goes). For example, for a pair A (A ∈ V ) and A’s neighbor B (B ⊆ Adj(A)). If A and

B are independent given S ⊆ Adj(A) \B, then the edge between them can be removed.

After that, undirected edges are replaced by directed ones using the previous results to

form required v-structures. Finally, the algorithm orients any edges in G that we know

the direction but are not a part of a v-structure. However, there are several limitations

of the PC algorithm. First, the algorithm could be very inefficient when dealing with

high dimensional data, since the runtime of the algorithm is exponential in the number of

nodes. Second, if the order of variables changes, the results may change too (Le et al.,

2016).

Meek (1997) designed the Greedy Equivalence Search (GES) algorithm, and it was further

improved and studied by Chickering (2002a,b). Equivalence refers to Markov equivalence

here. Two directed acyclic graphs (DAGs) are Markov equivalent if and only if they

have the same d-separations. GES is a score-based algorithm for BNSL. It searches over

equivalence classes of DAGs to find out the best class identified by a Bayesian scoring

criterion (BIC score in Meek’s and BDeu score in Chickering’s). The algorithm has two

phases. It starts with an equivalence class without any dependencies, and greedily adds

a single edge that can be made to all DAGs in the current equivalence class until no

more single-edge addition can improve the score (local maximum). The second phase is a

backward process to the first one. It performs, at each step, all possible edge deletions

that can be added to all DAGs in the current equivalence class until it reaches to a

local maximum. As a result, the current equivalence class is returned. However, from
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Figure 2.1: PC algorithm: initialization & skeleton search (Spirtes et al., 2000)

the practical view, the algorithm still suffers an expensive computation when applied to

complex domains. That is, it is still inefficient when dealing with large variable sets.

Ramsey et al. (2017) introduced an algorithm named Fast Greedy Equivalence Search

(fGES), which can be applied to learn a high dimensional Bayesian network structure

efficiently. The algorithm uses a similar strategy to traditional GES with some different

highlights. First, the updating of the score for a potential edge addition is done by caching

scores of potential edge additions from previous steps, and where a new edge addition will

not (for graphical reasons) alter the score of a fragment of the graph. In this way, the

algorithm no longer needs to compute scores for the entire graph at every step, saving

quite an amount of time. The trade-off is more memory will be required for caching scores.

Second, each step of the fGES can be done in parallel. Third, they increased the penalty

part of BIC score if it is used so that the sparser graph can be produced and the search

will take less time. As a consequence, the risk of false negative results gets higher. Fourth,

a limited version of the faithfulness assumption is used. That is, for high-dimensional

problems, it is assumed that the edge between x and y does not exist, if x and y are

uncorrelated. Then the edge x → y will never be accepted by any chance during the

edge addition procedural. The faithfulness assumption is indeed a risky move, it may

lead to incorrect graphs in some situations. For those high-dimensional problems, the
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trade-off between speed and accuracy is worth trying. For those simple domains, since

the speed is not a problem, so there is no need to take such a risk. This paper offered

some approaches for improving the efficiency of a score-based BNSL algorithm. We may

apply similar strategies in our research as well.

van Ommen (2018) introduced the score-based BBES algorithm to learn the structure of

Bayesian networks (Figure 2 is the pseudo code of BBES). It uses conditional independence

constraints as a way to represent the search space–equivalence classes. The algorithm

starts with a single state containing all candidate solutions, then it chooses a state and

split it into two new disjoint states, whose union is equal to the original one. Next,

compute an upper bound for each state, and if there is only one element in the state, then

the upper bound is its actual score. Finally, choose the item with the highest score, which

will be returned by the algorithm. Some details need to be stressed here. Firstly, the

algorithm uses an upper bound to score states, and this upper bound is represented by

BIC score: an upper bound on the likelihood g and a lower bound on the penalty term h,

in terms of f([G]) = g([G])− h([G]). For each state, assume there is a greatest element

[G] (for any other elements in the state g([H]) < g([G]) and h([H]) < h([G])), then
g[G] is the upper bound on g. As for the penalty part in BIC score, it is determined by

the number of edges (in linear case). To get a lower bound on h, we want to know the

smallest penalty among all classes in the state. Secondly, since the algorithm only focuses

on the upper bound f([g]), it may take some time until the actual score shows. Thirdly,

PDAG or completed PDAG (Chickering, 2002b) is applied to represent Markov equivalent

classes.

Figure 2.2: BBES algorithm (van Ommen, 2018)
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3 BIC vs AIC in BBES

Score metrics are used to evaluate how good a model fits with the dataset. AIC is an

estimate of a constant plus the relative distance between the unknown true likelihood

function of the data and the fitted likelihood function of the model (Akaike, 1974), so that

a lower AIC means a model is considered to be closer to the truth. BIC is an estimate of

a function of the posterior probability of a model being true (Schwarz et al., 1978), under

a certain Bayesian setup, so that a lower BIC means that a model is considered to be

more likely to be the true model. BBES uses BIC score to evaluate each model, but BIC

may not always be the best option. Here are the formulas of BIC and AIC score:

BIC = −2 ln(L) + p ln(n) (3.1)

AIC = −2 ln(L) + 2p (3.2)

where L is the likelihood function, p is the number of parameters in the model and n is the

number of data points. Both criteria are based on various assumptions and asymptotic

approximations. Despite various subtle theoretical differences, their only difference in

practice is the size of the penalty; BIC penalizes model complexity more heavily (Bishop,

2006). Thus, AIC always has a chance of choosing a complex model, regardless of n. BIC

has very little chance of choosing a big model if n is sufficient, but it has a larger chance

than AIC, for any given n, of choosing a small model (Murphy, 2012). The only way they

should disagree is when AIC chooses a smaller model than BIC.

In section 4, we will try to find a better branching heuristic and we used linear Gaussian

Bayesian networks to generate the artificial data, so the true model is in the set of

candidate models, thus it is better to use BIC in that case because BIC is strongly

consistent (Nishii et al., 1988), which means that the true model tends to almost surely

be selected. However, if we want to expand our method and use BBES to find the model

behind some real-world data, it might be better to use AIC in that case.
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4 Convolution on Graphs

BBES is an example of the branch-and-bound technique. It starts with a single state

that is just the entire set of candidate equivalence classes. The branch operation takes

a state and splits it into two new, disjoint states whose union is equal to the original

state. Further, the algorithm computes an upper bound for the scores in any state. If a

state consists of just one element, it will use its actual score as the upper bound. These

operations are applied until we find an element whose score is larger than the upper

bound of each other state. Then this element is the target. While the goal in branching

process is to minimize the total time used before finding the target equivalence class.

Obviously, branching heuristics have a significant influence on the speed of the algorithm

(van Ommen, 2018).

Figure 4.1: How the branch operation works to split a state in BBES (van Ommen,
2018)

Figure 4.1 shows how the branch operation works to split a state in BBES. The state we

start with will be called original state, the resulting state where each equivalence class

imposes the constraint will be called constrained state and the other state will be called

remaining state. The algorithm will carefully choose branch operations to make sure that

all states we encounter have a greatest element. So, given the greatest element and the

constraints imposed by each equivalence classes, we can get the representation of a state.

In this part, we are going to use a neural network as the branching heuristic. More
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specifically, taken a state and a branch operation as an input, the neural network will

output a score by which BBES can choose the best branch operation to split the state.

Figure 4.2: 2D convolution. Analogous to a graph, each pixel in an image is taken as
a node where neighbors are determined by the filter size. The 2D convolution takes a
weighted average of pixel values of the red node along with its neighbors. The neighbors
of a node are ordered and have a fixed size (Wu et al., 2020)

Figure 4.3: Graph Convolution. To get a hidden representation of the red node, one
simple solution of a graph convolution operation takes the average value of node features
of red node along with its neighbors. Different from image data, the neighbors of a node
are un-ordered and variable in size (Wu et al., 2020)

In neural networks, convolutional neural network (CNN) is one of the main categories

to solve images recognition and images classification problems (Yamashita et al., 2018).

CNN uses a kernel to preserve the relationship between pixels by learning image features

using small squares of input data. It is a mathematical operation that takes two inputs

such as image matrix and a kernel. The kernel works fine on images since they can always

be represented by Euclidean structures–matrices. However, it is hard to do so in graph

structures because they are non-Euclidean structures. For example, in a graph G, there

may be only one node B which is connected to node A (we call node B a neighbor of

node A) while node C has multiple neighbors. Different graphs may have different node

relationships, or in other words, different spatial structures. So we need a different neural

network model to deal with graphical data.
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4.1 Graph convolutional networks

Before we introduce Graph convolutional networks (GCN), we first present a brief

introduction to spectral graph theory (Levie et al., 2018). Assume we have an undirected

graph G = (V,E), where V is the set of vertices with ∣V ∣ = n, and E is the set of edges.

The unnormalized graph Laplacian of G is defined as L = D−A, where A is the adjacency

matrix and D is the degree matrix of the graph with diagonal entries Dii = ∑j Aij . Then,

the normalized Laplacian matrix of the graph is given as:

L
sys

= D
−1/2

LD
−1/2

= I −D
−1/2

AD
−1/2 (4.1)

where I is the identity matrix. The eigendecomposition of the Lsys yields Lsys
= UΛU

−1,

where U = (u1, u2, ..., un) are orthonormal eigenvectors of Lsys, and Λ is a diagonal matrix

made of n corresponding eigenvalues, so we know UU
T
= E. Given the definition of

traditional Fourier transform:

F (ω) = F[f(t)] = ∫ f(t)e−iωtdt (4.2)

where ω is the frequency, its graphical version will be:

F (λl) = f̂(λl) =
N

∑
i=1

f(i)ul(i) (4.3)

where λl is the eigenvalue of the lth eigenvector. f is an n-dimensional vector on the

graph, each node of the graph has its own f(i), and ul(i) is the ith value of the lth

eigenvector. If we apply matrix multiplication into the formula we can get: f̂ = U
T
f ,

where U has the same definition as before. Similarly, the inverse Fourier transform of f on

graphs in matrix form is f = Uf̂ . Further, we can conduct convolution on graphs in the

spectral domain also by analogy with convolution on discrete Euclidean spaces facilitated

by Fourier transform. That is, spectral convolution of two signals f and g is defined as:

(f ∗ h)G = U((UT
f)⊙ (UT

h)) (4.4)
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where ⊙ indicates element-wise product between two vectors. Now we can introduce GCN.

Suppose we have a graph G = (V,E), where V is the set of vertices with ∣V ∣ = n, and E
is the set of edges. What each GCN layer does is the function below:

H
(j+1)

= σ(H(j)
, A) (4.5)

where H0
= X is the input of the first layer, X ∈ RN×F , N is the number of nodes of the

graph, F is the dimension of nodes’ eigenvectors, and A is the adjacency matrix. σ is the

activation function. Specifically, the (j + 1)th feature map of a graph convolution layer is

calculated as

H
(j+1)

= relu(D−1/2
ÂD

−1/2
H

(j)
W

(j)) (4.6)

where H(j) is the jth input feature map, Â is the normalized adjacent matrix of the graph,

D is the degree matrix, and W (j) is the trainable parameters matrix of the jth GCN layer.

4.2 Introducing attention to GCN

From the section above, we know that GCN uses spectral graph theory to process the

convolution on graphs. It requires spectral decomposition of Laplacian matrix to process

graph convolution operation, which can hurt its generalizability. For example, GCN assigns

the same weight to different nodes in a neighborhood. In order to solve this problem,

Graph Attention Network (GAT) introduced attention mechanism as a substitute for the

statically normalized convolution operation. By stacking layers where nodes are able to

attend over their neighborhoods’ features, it assigns different weights to different nodes in

a neighborhood, without requiring any kind of costly matrix operation (such as inversion)

or depending on knowing the graph structure upfront (Veličković et al., 2017)

Generally, they let attention αij be computed as a byproduct of an attentional mechanism,

a ∶ RF × RF
→ R, where F is the number of features in each node. It computes

unnormalised coefficients eij across pairs of nodes i, j, based on their features:

eij = a(h⃗i, h⃗j) (4.7)
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The graph structure is injected by only allowing node i to attend over nodes in its

neighbourhood–only compute eij for nodes j ∈ Ni, where Ni is some neighborhood of

node i in the graph. Here is how self-attention is computed at each graph attention layer,

αij =
exp(eij)

∑k∈Ni
exp(eik)

(4.8)

In addition, multi-head attention (Veličković et al., 2017) is used to stabilise the learning

process of GAT. Namely, the operations of the layer are independently replicated K times,

and outputs are featurewise aggregated.

Figure 4.4: Left: The attention mechanism a(h⃗i, h⃗j) employed by GAT model, applying
a LeakyReLU activation. Right: An illustration of multihead attention (with K = 3
heads) by node 1 on its neighborhood. Different arrow styles and colors denote independent
attention computations. The aggregated features from each head are concatenated or
averaged to obtain h⃗′1 (Veličković et al., 2017)
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4.3 GAT approach for states analyses

Figure 4.5: The structure of the GAT model

The GAT model applied in our thesis work is illustrated in Figure 4.5. The input X is

passed through α graph attention layers. The output of the last GAT will be embedded

into one value, which will be used as the output of the model.

In order to apply GAT to our problem, we reconstruct the input graph by adding an extra

node between each pair of connected nodes in the original graph. We call them "middle

nodes". The reason to do so is that we want to set features on edges instead of nodes.

Because features in this problem are constraints, or dependent relationships. The "edge

features" can perfectly represent this kind of relationship. For a full discussion of the

encoder, we refer to Appendix A1.
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5 The branching heuristic with GAT

van Ommen (2018) studied the behaviour of many different branching heuristics in a

version of BBES with the pre-computed search space (oracle). They found that among the

branching heuristics that look only at the maximum log-likelihood of the constrained state,

the best performance is obtained by taking the branch for which this quantity is smallest.

Besides the likelihood, the main consideration that should affect the choice of branching

operator is the bound on the penalty. They observed that the heuristics that only look

at the likelihood may often spend a long time on a single state, repeatedly branching off

using a constraint that has a large effect on the likelihood. But as long as the bound on

the penalty does not change, the remaining state will again be at the top of the queue for

the next iteration. Heuristics that look at the parameter b are trying to choose branches

that will lead to a refinement of the remaining state’s bound on the penalty term, where b

is the fraction of classes with the minimum number of parameters in the original state that

are still in the remaining state. Specifically, b = (bot_old − bot_rem)/bot_old, where
bot_old is the number of classes with the minimum number of parameters in the original

state and bot_rem is that in the remaining state.

Since b is proved to be promising in their experiments, we decided to use our GAT model

to predict b given a state and a branch operator. Thus we can create a heuristic that does

not have access to an oracle (explained in Section 6) while still can use the information

of changes in the lower bound on the penalty term. Eventually, based on van Ommen

(2018)’s work, we introduce our branching heuristic:

min(s, t) + α ∗ p ∗ b (5.1)

where s is the upper bound of the new constrained state taking into account its likelihood

but not any changes in the number of parameters, t is the threshold score (van Ommen,

2018), α is a constant, p = 0.5 log(N) where N is the amount of data points which are

used to generate equivalence classes, and b is the output of the GAT model.
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6 Data

In order to generate the training and test datasets for the GAT model, we ran BBES for

a couple of times under pre-computation case, where the algorithm will precompute the

entire search space with all equivalence classes and child classes of each equivalence class.

This is feasible up to n = 6, where the number of equivalence classes is 1,067,825 (Gillispie

and Perlman, 2013). The representation effectively provides an oracle for queries such as

for the exact minimum penalty among all classes contained in a state, or for the number of

classes in the state having that number of parameters. So by querying this search space, we

can easily get the fraction of classes with the minimum number of parameters in an original

state that are still in the remaining state. We used maxdep_maxed_fracbot_nojump2

as the branching heuristic, the data were collected when the algorithm took a state

and chose among branches. Specifically, we set num_repeats = 5 to genarate 5 linear

Gaussian Bayesian networks, with each of them N = 10000 data points were randomly

chosen as follows. First, independently for each pair of nodes with v < w, an arrow is

added from v to w with probability p = 0.5. Then the nodes are shuffled using a uniformly

chosen permutation. The edge coefficients are sampled independently from the standard

Gaussian distribution, and the variances of the noise terms from Γ(1/2, 1/5). Finally,

10000 data points are sampled from the distribution defined by this linear Gaussian model

(van Ommen, 2018). We got 102224 data points as the training data to feed our GAT

model.
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7 Results and Discussion

In this section we present results using both simulated and real-world datasets. The

experiments demonstrate that our modified method can improve the computational

efficiency of BBES algorithm in some cases.1

7.1 Implementation Details

The hyper-parameters of the GAT model implemented in this thesis are determined

using the training set with 102224 data points and the validation set with 25557 data

points. Specifically, the model has 2 graph attention layers (with 20 filters and 1 filter

respectively). Both GAT layers have 0.1 features dropout and 0.3 attentions dropout

probabilities, which will randomly invalidate 10% features and 30% attentions. The Adam

optimizer (Kingma and Ba, 2014) with an initial learning rate of 0.005 is used to train

the model for 50 epochs. After that the learning rate is set to 0.0005 until the training

loss converges. Early stopping is applied during the training process, that is, training

process will stop if the loss on the validation dataset increases during 5 epochs in a row.

We use Pytorch in Python to implement the GAT model. When trained with a 2.3 GHz

Dual-Core Intel Core i5 CPU, the GAT model takes around 12 hours to train.

7.2 Results on simulated data

We used the same way described in Section 6 to generate the simulated data to run BBES

on for this section.

We compared the performance of our branching heuristic to the original one in

BBES. Another branching heuristic, which randomly chooses branch operations, is also

implemented as a baseline. The results are shown in the tables below. Different repeats

and random seeds indicate different Linear Gaussian Models which generate different

artificial data points. Where branch shows that number of branching operations that

were performed, visit indicates the number of states that were visited, and totaltime is

the total time that BBES spent to find out the target equivalence class.

1The code for reproducing these results is available online at https://github.com/darrrrrk/bbes
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branch visit total time
Original BBES 501 136 22.28
GAT model 184 20 5.46
Random 12706 2005 245.64

Table 7.1: Random seed= 30 is chosen to generate the artificial data. Results are given
by 1 time running of the BBES algorithm

branch visit total time
Original BBES 432 92 32.40
GAT model. 421 82 33.60
Random 2613 316 62.59

Table 7.2: Random seed= 100 is chosen to generate the artificial data. Results are given
by 1 time running of the BBES algorithm

branch visit total time
Original BBES 3368.8 1433.3 4895.51
GAT model 2910.4 1154.2 4270.32
Random 14304.9 3165.3 6060.81

Table 7.3: Results are given by 10 times running of the BBES algorithm. Each running
is under different artificial data generated by different Linear Gaussian Models. Branch
and visit values are averaged by 10.

As the tables show, picking a branch at random gives much worse performance of the

algorithm than other choices. This supports the claim that a good heuristic is a deciding

factor for the algorithm’s performance. Our branching heuristic yielded the best result in

the cases shown in Table 7.1 and Table 7.3. We can tell from Table 7.2 that even though

both the number of branching operations that were performed and the number of states

that were visited are smaller with our methods, the original BBES still gave the shortest

total time spent. There could be multiple reasons behind it. For example, it might take

some time for the algorithm to load the GAT model and process the inputs.

We only picked some positive results here to support our method. Actually, we also

witnessed many situations where our branching heuristic gave worse results than those

given by the original branching heuristic. It is not surprising to see so since our training

dataset is way smaller compared to the set with all possible situations, there is always

some new inputs that our model is not familiar with.
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7.3 Results on Real-world Datasets

We used the following real-world datasets from the UC Irvine Machine Learning Repository

(Dua and Graff, 2017). "model complexity" in tables below shows the number of edges of

the found equivalence class.

1. The ADULT dataset. This contains demographic information about individuals

gathered from the Census Bureau database. The original dataset contained a mixture

of discrete and continuous attributes, 16 in total. We used only the continuous

attributes listed below:

(a) age

(b) fnlwgt

(c) education_num

(d) capital-gain

(e) capital-loss

(f) hours-per-week

Score Method branch visit total time model complexity
BIC Original BBES 5502.0 1794.0 283.4 11
BIC GAT model 5339.0 1812.0 321.9 11
AIC Original BBES 292.0 31.0 16.6 12
AIC GAT model 358.0 62.0 25.0 12

Table 7.4: Results on Adult Dataset

2. The Bike Sharing dataset. Bike sharing systems are new generation of traditional bike

rentals where whole process from membership, rental and return back has become

automatic. There exists great interest in these systems due to their important role in

traffic, environmental and health issues (Fanaee-T and Gama, 2013). The attributes

used are:

(a) temp

(b) atemp

(c) hum
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(d) windspeed

(e) casual

(f) registered

Score Method branch visit total time model complexity
BIC Original BBES 1172.0 355.0 98.3 11
BIC GAT model 1218.0 360.0 109.5 11
AIC Original BBES 321.0 37.0 18.8 12
AIC GAT model 323.0 41.0 21.1 12

Table 7.5: Results on Bike Sharing Dataset.

As we can see from Table 7.4 and Table 7.5, our model performs worse than original BBES

algorithm. The reason could be that our model is not fed with enough training data, thus

having a bad generalization. Another reason might be about the way we selected the data,

since we just chose some of the features, there might a problem coming with that.

We also tested AIC and BIC on the real-world datasets. We can see from Table 7.4 and

Table 7.5 that by using AIC the algorithm can find a solution much faster than using BIC.

However the solution will be more complex. For example, in Table 7.4, AIC used original

BBES algorithm spent 16.6 seconds to find a 12-edges solution while it took 283.4 seconds

for BIC used original BBES algorithm to find a 11-edges solution. The result agrees our

mention in Section 3 that BIC has a larger chance than AIC of choosing a small model.
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8 Conclusion and Future Work

In this paper, we aimed to improve the computational efficiency of BBES algorithm. We

discussed the difference between BIC and AIC score and then designed a graph attention

model to find out a better branch heuristic. Test results showed the potential of our GAT

model in dealing with graph branching problems. But due to the computer limitation

during the lockdown time, we can not train/test our model on a bigger dataset. Thus,

an interesting future work could be training our model on a bigger dataset. In addition,

our model only works for graphs with 6 nodes. It would be better if it can be applied to

graphs with more than 6 nodes as well.
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Appendix

A1 Input encoder

Our GAT model takes an adjacency matrix and a features map as inputs. However,

in BBES algorithm, the data we can use is equivalence classes and constraints (states

representation). So we need some encoders to transfer the data into those forms.

A1.1 Adjacency matrix encoder

The encoder below can transfer a graph into its adjacency matrix applied with "middle

nodes" strategy. We assume the equivalence class we have is the graph in Figure A1.1. Our

encoder takes the graph as an input, then it will add an extra node between any connected

pair of nodes and reorient arrows. For example, it adds a node G between node A and

node B, then reorienting the arrow from A → B to A → G and G → B. Particularly, if

the orientation between nodes is unclear, then still keep it that way during reorientation

process. Figure A1.2 shows the reconstruction results. Finally, output the adjacency

matrix (Table A1.1) of the reconstructed graph, where (α, β) (α, β ∈ {A,B, . . . , U}) will
be assigned to 1 if there is an directed edge between α and β, otherwise the value will be

2.

Figure A1.1: Original graph
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Figure A1.2: Graph with "middle nodes"

A B C D E F G H I J K L M N O P Q R S T U
A 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
B 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0
C 0 0 0 0 0 0 0 0 0 1 2 0 0 0 0 0 0 0 0 0 0
D 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
E 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
F 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
G 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
H 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
I 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
J 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
K 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
L 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
M 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
N 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
P 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Q 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
S 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
T 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
U 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table A1.1: Matrix of encoded constraints

A1.2 Features encoder

Similarly, the features encoder can transfer (a set of) constraints to a matrix X ∈ RN×F ,

N is the number of nodes of the graph, F is the dimension of nodes’ eigenvectors. For

example, we have some d-connection constraints listed below:

1. B é C

2. B é D∣C
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3. C é E∣A,B,D, F

For a graph with 6 nodes, there are ∑4

i=0 (
6
i) = 57 situations for the conditional part, so

the feature map has 57 columns. For the first case, because B é C, and I is the middle

node between B and C, so (I, 0) will be set to 1. Analogically, (H, 3) and (J, 38) will be

also set to 1. The corresponding features map would be:

0 1 2 3 4 ... 56
A 0 0 0 0 0 ... 0
B 0 0 0 0 0 ... 0
C 0 0 0 0 0 ... 0
D 0 0 0 0 0 ... 0
E 0 0 0 0 0 ... 0
F 0 0 0 0 0 ... 0
G 0 0 0 0 0 ... 0
H 0 0 0 1 0 ... 0
I 1 0 0 0 0 ... 0
J 0 0 0 0 0 ... 0
K 0 0 0 0 0 ... 0
L 0 0 0 0 0 ... 0
M 0 0 0 0 0 ... 0
N 0 0 0 0 0 ... 0
O 0 0 0 0 0 ... 0
P 0 0 0 0 0 ... 0
Q 0 0 0 0 0 ... 0
R 0 0 0 0 0 ... 0
S 0 0 0 0 0 ... 0
T 0 0 0 0 0 ... 0
U 0 0 0 0 0 ... 0

Table A1.2: Features map


