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ABSTRACT 
A Pickering emulsion is a dispersion of immiscible fluids stabilized by colloidal particles. Pickering 
stabilizers are typically considered to be perfectly smooth and chemically homogeneous. The use 
of rough and heterogeneous colloids is expected to fundamentally alter the properties of the 
formed emulsions. In particular, we investigate the role of surface structuring on emulsification 
and the catastrophic phase inversion of Pickering emulsions. To gain deeper fundamental insights 
into this topic, we fabricate in large amounts patchy rough particles comprising a polystyrene 
core with organosilicate asperities. Their roughness is characterized with AFM and an estimate of 
their composition can be obtained from their oxidative mass losses upon combustion. The 
chemical heterogeneity of the particle surfaces is estimated by measurements of the surface 
patchiness. The degree of surface heterogeneity is used to calculate the particles’ contact angles 
at a water-decane interface, which are empirically measured by gel trapping technique. 
Systematic variations in emulsification shear rate, o/w ratio and particle type reveal the influence 
of particle heterogeneity on processing and formulation of emulsions. This work paves the way 
for a deeper understanding of the behavior of Pickering emulsions, where non-ideal, 
heterogeneous particles are present. 

  



3 
 

TABLE OF CONTENTS 
1 Introduction .......................................................................................................................... 4 
2 Theoretical background .......................................................................................................... 5 

2.1 Pickering emulsions .......................................................................................................... 5 
2.2 Wetting of rough and heterogeneous (particle) surfaces ......................................................... 7 
2.3 Emulsion phase inversion .................................................................................................. 9 

3 Materials and methods ......................................................................................................... 11 
3.1 Materials ....................................................................................................................... 11 
3.2 Polystyrene core particle fabrication .................................................................................. 11 
3.3 Fabrication of patchy rough colloids .................................................................................. 12 
3.4 Scanning Electron Microscopy .......................................................................................... 12 
3.5 Zeta potential ................................................................................................................ 12 
3.6 AFM roughness characterization ....................................................................................... 12 
3.7 Thermogravimetric analysis (TGA) .................................................................................... 13 
3.8 Surface patchiness estimation .......................................................................................... 13 
3.9 Contact angle measurements ........................................................................................... 13 
3.10 Emulsion preparation ...................................................................................................... 14 
3.11 Emulsion characterization ................................................................................................ 15 

4 Results and Discussion ......................................................................................................... 16 
4.1 Fabrication of PS/TPM patchy rough colloids ....................................................................... 16 

4.1.1 Polystyrene core particles .......................................................................................... 16 
4.1.2 Patchy rough colloids ................................................................................................ 16 

4.2 Roughness and chemical composition ................................................................................ 18 
4.3 Surface patchiness and contact angles .............................................................................. 19 
4.4 Emulsification and phase inversion .................................................................................... 21 

5 Conclusions ........................................................................................................................ 24 
6 Outlook .............................................................................................................................. 25 
Acknowledgements ..................................................................................................................... 26 
Lay summary (Nederlands) .......................................................................................................... 27 
Bibliography .............................................................................................................................. 28 
Appendices ................................................................................................................................ 32 

Appendix A. Homogeneous nucleation of TPM .............................................................................. 32 
Appendix B. TGA calculation ..................................................................................................... 33 
Appendix C. SEM images for surface patchiness ........................................................................... 34 
Appendix D. GTT contact angle calculation .................................................................................. 36 
Appendix E. Zeta potential distributions PS cores ......................................................................... 38 
Appendix F. Effect of BODIPY on interfacial tensions and emulsification ........................................... 39 
Appendix G. Emulsification challenges using RB-20 ...................................................................... 40 
Appendix H. Emulsion phase inversion per particle type ................................................................ 42 
Appendix I. Images of emulsions ............................................................................................... 43 

  



4 
 

1 INTRODUCTION 
Emulsions are widely spread in many different fields of our daily life, such as in food,1 cosmetics,2 
paints,3 pharmaceutical products4,5 and petroleum industries.6 Conventionally, an emulsion is a 
mixture of two immiscible liquids, where one phase is present as droplets (the dispersed phase) 
in the other phase (continuous phase).7 Surface active species stabilize the droplets and prevent 
emulsions from phase separation. Traditionally, surfactant molecules are used as emulsion 
stabilizers.8 Since the pioneering work of Ramsden9 and Pickering,10 the potential of solid particles 
to stabilize emulsions has been recognized and exploited. Pickering emulsions can offer 
advantages over surfactant-stabilized emulsions, namely increasing the emulsion stability, 
providing more environmentally friendly processes and reducing the use of potentially toxic or 
skin-irritant chemical admixtures.11  

In a Pickering emulsion, layers of solid particles on droplets create a steric barrier against 
coalescence.12 Pickering stabilizers are typically considered as smooth and chemically 
homogeneous spheres.5,13 However, the particles present in real systems often do not fulfil this 
premises. For instance, clay,14,15 protein11,16 and starch17,18 particles have been extensively used 
as emulsion stabilizers especially in the food industry18 despite the fact that they bear a wide 
variety of morphologies and have chemically heterogeneous compositions. Moreover, designing 
particles with a broad diversity of morphologies as Pickering stabilizers has gained interest in 
recent years. Such particles include Janus particles,19 (Janus) sheets,20,21 ellipsoids,22 dumbbells23 
and rough particles.24 Particle morphologies deviating from homogeneous spheres affect 
emulsification and give opportunities for different ways of efficient Pickering stabilization.5,25  

In general, (Pickering) emulsions are a flexible material platform, where either oil-in-water (o/w) 
or water-in-oil (w/o) emulsion types can be accessed depending on emulsification conditions and 
processing.26,27 In this work, the use of well-characterized patchy rough particles as Pickering 
stabilizers is investigated to better understand the effect of particle heterogeneity on 
emulsification. In particular, we focused on the role of surface structuring in phase inversion of 
emulsions. Phase inversion concerns the switch from an o/w to a w/o emulsion or vice versa.26 It 
is relevant to many industrial processes, including the fabrication of cosmetic, food and 
pharmaceutical products, as well as crude oil recovery.6,28 The obtained emulsion type is a crucial 
aspect for the final products. In fact, some applications such as oil-based skin creams29 require 
w/o emulsions, while others such as mayonnaise require o/w emulsions.30 Interestingly, in these 
applications, phase inversion is undesired since it would completely alter the product properties. 
Even more interestingly, in some cases e.g. in crude oil processing, phase inversion is deployed 
to recover the oil from emulsions.31 

Herein, the o/w ratio and energy input during emulsification are systematically varied to gain 
more insight in the effect of surface heterogeneity on the emulsification and phase inversion of 
Pickering emulsions. In this regard, patchy rough particles comprising a polystyrene core with 
organosilicate asperities are fabricated. The roughness of these particles is characterized with 
atomic force microscopy (AFM) and the composition is obtained by thermogravimetric analysis 
(TGA). The equilibrium positions of the particles at a water-decane interface are estimated from 
their surface patchiness and compared to the contact angles measured with gel trapping 
technique (GTT) to underline the peculiar adsorption pathway of the non-ideal particles at the 
interface. In all our experiments, the colloids are initially dispersed in the aqueous phase, where 
they are charge stabilized. The considerations and conclusions reported here base on single-
particle mechanisms. 
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2 THEORETICAL BACKGROUND 

2.1 PICKERING EMULSIONS 
When a liquid droplet enters in contact with a solid substrate, it can fully spread or partially wet 
the surface. In the latter case, a finite contact angle θ can be defined and it depends on the 
balance between the solid-vapor (γSV), solid-liquid (γSL) and liquid-vapor (γLV) surface tensions. 
These surface tensions find their origin in the molecular interactions and ultimately determine the 
wetting of a substrate. The concept of wetting in relation to surface tensions was formulated in 
1805 by Thomas Young,32 and is described by Young’s law (see Figure 1a): 

cos𝜃𝜃 =  
𝛾𝛾𝑆𝑆𝑆𝑆 − 𝛾𝛾𝑆𝑆𝑆𝑆

𝛾𝛾𝑆𝑆𝑆𝑆
(1) 

This follows from the equilibrium of the forces (surface tensions) parallel to the solid surface.33 

Analogously, the wetting of a particle adsorbed at an oil-water interface is described by (see Figure 
1b): 

cos𝜃𝜃 =  
𝛾𝛾𝑆𝑆𝑆𝑆 − 𝛾𝛾𝑆𝑆𝑆𝑆

𝛾𝛾𝑆𝑆𝑆𝑆
(2) 

where γSO, γSW and γWO are the particle-oil, particle-water and water-oil interfacial tensions, and 
θ the contact angle of the particle measured through the water phase.34 

 

When an oil and water are mixed in the presence of solid particles, the adsorption of these 
particles on the oil-water interface may result in the formation of an emulsion, where droplets of 
one phase remain dispersed in the other, continuous, phase.35 The potential of particles to 
stabilize emulsions has been known since the work of Ramsden9 and Pickering10 in the early 
1900s, hence the name Pickering emulsions for particle-stabilized emulsions (see Figure 2a). The 
particles used as emulsifiers are usually in the colloidal size range (nm-μm).29  

By convention, the contact angle of particles at an oil-water interface is measured through the 
water phase. Then, hydrophilic particles have a contact angle θ < 90°, as they are immersed for 
the largest part in the water phase (Figure 2b). As a result, they impose a curvature of the interface 
such that they preferentially stabilize emulsions with oil droplets dispersed in the water continuous 
phase (o/w). Conversely, hydrophobic particles have contact angles θ > 90° and conventionally 
stabilize w/o emulsions (Figure 2c). 

 

Figure 1. Surface tension forces at the three-phase contact line of (a) a liquid drop on a solid surface 
and (b) a solid particle at an oil-water interface. 



6 
 

The reason why particles can stabilize emulsions is their strong attachment to fluid interfaces. 
This can be understood considering the energies involved in adsorption (desorption) of a particle 
to (from) an oil-water interface. For regimes of Bond number B0 ≪ 1 (negligible gravity compared 
to interfacial tension)35 and considering Figure 1b, the energy gain upon adsorption of a hydrophilic 
particle at the oil-water interface from the water reads: 

 

Δ𝐺𝐺 =  −𝛾𝛾𝑆𝑆𝑆𝑆4𝜋𝜋𝑅𝑅2 +  𝛾𝛾𝑆𝑆𝑆𝑆2𝜋𝜋𝑅𝑅(𝑅𝑅 + 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝜃𝜃) +  𝛾𝛾𝑆𝑆𝑆𝑆2𝜋𝜋𝑅𝑅(𝑅𝑅 − 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝜃𝜃) −  𝛾𝛾𝑆𝑆𝑆𝑆𝜋𝜋𝑅𝑅2𝑅𝑅𝑠𝑠𝑠𝑠2𝜃𝜃 (3) 
 

where R is the particle radius and θ the contact angle of the particle measured through the water 
phase. The first term corresponds to the lost surface energy of the particle completely dispersed 
in water, the second and third term to the creation of particle-water and particle-oil interfaces 
respectively, and the last term to the oil-water interface suppressed due to the presence of the 
particle at the interface. Thus, high values of γWO make it favorable for a particle to adsorb at the 
interface.8 Rearranging Eq. (3) using Young’s law gives the energy for the attachment of a particle 
to an oil-water interface: 

 

Δ𝐺𝐺 = −𝜋𝜋𝑅𝑅2𝛾𝛾𝑆𝑆𝑆𝑆(1 − |cosθ|) (4) 
 

Evaluating this equation using γWO = 51 mN/m for a water-decane interface36 and a particle radius 
R of 400 nm gives a maximal adsorption energy (θ=90°) of -6·106 kT at 20°C. This value applies 
for the emulsifiers used in this work. The attachment energy is significantly greater than the 
thermal energy also for particles down to ∼10 nm and for contact angles between 30° and 
150°.29,35 Because of this incredibly strong attachment, particles are considered as irreversibly 
trapped at the interface.35 Therefore, particle films on emulsion droplets form a steric barrier 
against coalescence and are responsible for emulsion stabilization.12 It is important to realize that 
Pickering systems are inherently metastable; they are stable only due to the large (∼infinite)  
kinetic barrier for particle desorption.37 Emulsions will eventually completely phase separate 
towards thermodynamic equilibrium.6 Additional stabilization of Pickering emulsions may arise 
from the formation of a three-dimensional particle network in the continuous phase (bulk 
stabilization).12,38  

Figure 2. Particles adsorbed at an oil-water interface can stabilize Pickering emulsions. (a) 
Schematic representation of an oil droplet in water stabilized by solid particles. (b) represents a 
hydrophilic particle with a contact angle θ < 90° that conventionally stabilizes o/w emulsions. (c) 
represents a hydrophobic particle with a contact angle θ > 90° that conventionally stabilizes w/o 
emulsions. 
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2.2 WETTING OF ROUGH AND HETEROGENEOUS (PARTICLE) SURFACES 
In the previous section, only the simplest case of wetting of ideal homogeneous surfaces is 
discussed. However, in real systems, most surfaces are inhomogeneous, namely contaminated, 
rough, and/or chemically heterogeneous.32 For such surfaces, some extensions to the general 
Young’s law are formulated. 

For the wetting of heterogeneous surfaces, where distinct areas of the composite have different 
wettability, Cassie’s law39 is applied. The free energy change per unit area caused by a liquid 
spreading over a solid surface consisting of two components with fractional areas σ1 and σ2 is 
given by: 

𝐸𝐸 = 𝜎𝜎1 ∗ �𝛾𝛾𝑆𝑆1𝑆𝑆 −  𝛾𝛾𝑆𝑆1𝑆𝑆� +  𝜎𝜎2 ∗ �𝛾𝛾𝑆𝑆2𝑆𝑆 −  𝛾𝛾𝑆𝑆2𝑆𝑆� (5) 

with surface tensions as defined in Figure 1a but with the subscripts 1 and 2 referring to the 
different solid components. The contact angle θ for the composite surface is: 

cos𝜃𝜃 =  
𝐸𝐸
𝛾𝛾𝑆𝑆𝑆𝑆

 (6) 

Filling in the energy E in Eq. (6) and substituting Young’s law for the contact angles θ1 and θ2 of 
the separate solid components gives for the wetting of a heterogeneous solid: 

cos 𝜃𝜃 =  𝜎𝜎1 cos 𝜃𝜃1 +  𝜎𝜎2 cos𝜃𝜃2  (7) 
Equation (7) is known as Cassie’s law. In Figure 3a, the heterogeneous wetting according to 
Cassie’s law is depicted. The orange and the grey area are the two chemical components of the 
surface. 

Cassie’s law also applies to the special case of a rough surface. Then, the orange cavities in Figure 
3a are treated as air pockets instead of solid. Assuming complete dewetting between liquid and 
vapor (θ2 = 180° and σ2 = σLV), Cassie’s law transforms into the Cassie-Baxter equation33 for 
heterogeneous wetting of a rough surface: 

cos𝜃𝜃∗ = (1 − 𝜎𝜎𝑆𝑆𝑆𝑆) cos 𝜃𝜃0 −  𝜎𝜎𝑆𝑆𝑆𝑆  (8) 
with θ* the apparent contact angle and θ0 the equilibrium contact angle on the solid surface. As 
opposed to heterogeneous wetting, a rough surface can also be wetted homogeneously. This 
behavior is described by the Wenzel state (Figure 3b). Here, the liquid penetrates into the cavities 
between the asperities on the rough surface. In this case, the apparent contact angle on the 
rough surface is given by the Wenzel equation: 

cos𝜃𝜃∗ = 𝑟𝑟 cos𝜃𝜃0  (9) 
where θ0 is again the equilibrium contact angle on the smooth solid surface, and r is the roughness 
factor equal to the ratio of the complete surface area to its flat projection. 

 
Figure 3. Schematic drawing of wetting of rough and heterogeneous surfaces. (a) Cassie state for 
the wetting of a solid composed of two chemical components (grey and orange) or Cassie-Baxter state when 
the orange cavities are filled with air. (b) Wenzel state for homogeneous wetting of a rough surface by a 
liquid. (c) Contact angle hysteresis (CAH) can be measured from a liquid drop on a tilted substrate. Adapted 
from ref. 33 



8 
 

In Eq. (5)–(9), it is assumed that the liquid drop reaches its equilibrium contact angle independent 
of the way the droplet is deposited on the substrate.32 On real surfaces however, pinning of the 
contact line on surface heterogeneities or contaminations often leads to a range of attainable 
contact angles, depending on how the fluid approaches the substrate. For example, when aqueous 
solution is added to an existing water droplet on a solid substrate, the droplet edges initially pin 
on the surface, resulting in an effectively larger contact angle, called the advancing contact angle 
θadv. Likewise, the receding contact angle θrec is observed when the volume of an existing droplet 
is decreased. Advancing and receding contact angles can be measured on a tilted solid substrate 
(Figure 3c). The difference in the advancing and receding contact angle, θadv – θrec, is known as 
the contact angle hysteresis.33    

The here described wetting effects also apply to wetting of colloids at oil-water interfaces. In the 
case of rough colloids, it was suggested that their efficiency as Pickering stabilizers is optimal 
when their wetting is still in the Wenzel regime.40 It was found that both the stability40 of Pickering 
emulsions and particle adsorption efficiency41 initially increase with the roughness, and 
immediately drop beyond a given roughness level. This non-monotonic trend was explained as a 
transition from the Wenzel to the Cassie-Baxter wetting regime. In the latter scenario, the surface 
exposed to the apolar phase is not homogeneously wet by oil, yet has imbibed water in the 
cavities between the particle’s asperities. 

In addition, contact line pinning on rough particle surfaces has been proved to have pronounced 
effects on the behavior of rough particles at interfaces and on emulsification. As mentioned above 
for macroscopic surfaces, the pinning of droplet edges (or, more general, contact lines) on the 
solid gives rise to contact angle hysteresis. Similarly, the asperities of a rough particle 
approaching the interface from e.g. the water phase can strongly pin the contact line and 
effectively arrest adsorption in metastable positions. This means that the particle cannot reach 
its equilibrium position at the interface and appears more hydrophilic than it would be anticipated 
from its mere surface chemistry. When the same particle approaches the interface from the oil, 
the mirrored situation can happen, where the particle is trapped in a position in which it remains 
more immersed in the oil. The difference between the effective contact angles of these two 
configurations is the contact angle hysteresis. This phenomenon has deep consequences in the 
preparation of emulsions, since the same particles can stabilize both o/w and w/o depending on 
the phase in which they are initially dispersed.24 

In addition to the modification of the adsorption-kinetic pathway, contact line pinning on rough 
or heterogeneous particle surfaces distorts the liquid interface surrounding the colloid (see Figure 
4a).42 Interfacial deformations originate to satisfy Young’s law all along the perimeter of the 
particle.43 In order to rationalize the interfacial deformations around colloidal particles trapped at 
liquid interfaces, the height of the contact line h can be decomposed into multipoles using a 
common multipole expansion:42 

ℎ(𝑟𝑟,𝜑𝜑) =  �𝐻𝐻𝑚𝑚 cos �𝑚𝑚�𝜑𝜑 − 𝜑𝜑𝑚𝑚,0��
∞

𝑚𝑚

(10) 

where r and φ are cylindrical coordinates, φm,0 are constants that follow from boundary conditions, 
Hm are expansion coefficients in which r is included and m is the expansion order. The general 
idea of a multipole expansion is the description of features with progressively finer angular 
dependence for each higher multipole order. For instance, electric potential is commonly 
described in terms of multipoles, with a single charge being a monopole and two opposite charges 
separated at a small distance being a dipole.44 For rough or heterogeneous colloidal particles, the 
first non-zero term in the multipole expansion is the quadrupole.42 Figure 4b clearly shows the 
quadrupolar symmetry of the interfacial deformations around a rough particle. Distortions of the 
meniscus give rise to capillary interactions,45 i.e. interactions between particles mediated by fluid 
interfaces.46 Particles attract each other only when their overlapping menisci are of like sign (e.g. 
both concave or convex). Conversely, they repel. 

 



9 
 

 
Figure 4. Interfacial deformations around rough particles. (a) Schematic description of an undulated 
contact line on a rough or heterogeneous particle. Pinning of the contact line on surface heterogeneities 
causes distortion of the surrounding interface. (b) Height contour plot of the interface around a rough 
particle showing the quadrupolar interface deformation. Reprinted from (a) ref.42 and (b) ref.24  

 

Interestingly, the quadrupolar capillary interactions affect the rheology of interfaces laden with 
rough or heterogeneous particles. Particles form percolating networks under influence of their 
capillary interactions, which can enhance the elastic response of the interface, as well as lead to 
higher effective interfacial viscosity compared to interfaces with smooth and homogeneous 
particles.47 It was proposed that the increased elasticity of interfaces laden with rough carbon 
black particles promotes Pickering emulsion stability by preventing droplet deformation and 
coalescence.48 The link between interfacial rheology and stability of Pickering systems has been 
additionally expended to foams.49 

2.3 EMULSION PHASE INVERSION 
In this work, emulsification and in particular the (catastrophic) phase inversion of Pickering 
emulsions with patchy rough particles is investigated. Traditionally, two types of phase inversion 
are distinguished, i.e. the transitional and catastrophic phase inversion. The former occurs via a 
change in particle wettability,31 which can be induced by changing temperature, oil type, pH or 
salinity.12,50 Catastrophic phase inversion is induced by a change in the volume fraction of the 
dispersed phase (see Figure 5). 

 

 
Figure 5. Catastrophic phase inversion. By increasing the volume fraction of oil (φoil), an o/w emulsion 
can be inverted to a w/o emulsion (and vice versa). Hydrophilic colloids preferentially stabilize an o/w 
emulsion, which is of Bancroft type (i.e. the phase in which the emulsifier is stably dispersed constitutes the 
continuous phase).51 The inverted emulsion (w/o) is of anti-Bancroft type. 
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At sufficiently large volume fractions of dispersed phase the rate of drop coalescence is higher 
than the rate of drop breakup, eventually leading to phase inversion.26 Nearby the inversion point, 
multiple emulsions are often observed.52 These form by inclusion of continuous phase into drops 
of the dispersed phase as they coalesce together.53  

The onset of catastrophic phase inversion can depend on the particle wettability53 and on the 
added volume of dispersed phase.26 Early theories base on the exceeding of a critical packing 
fraction of droplets of dispersed phase (0.64–0.74 for random to closed packing of monodisperse 
spheres) to explain the phase inversion.54 Further analysis based on a pure thermodynamic model 
showed that phase inversion should occur at any slight deviation from φwater = 0.5.55 For instance, 
an o/w emulsion should invert to w/o as soon as φwater becomes smaller than 0.5. This is a result 
of the more favorable energy of formation of new oil-water interface when the phase with the 
largest volume fraction constitutes the continuous phase. Curvature energies are only relevant at 
φwater = 0.5; i.e. at equal volume fraction of the phases. For this peculiar case, the particle 
wettability determines whether o/w or w/o is the preferred emulsion type. Interestingly, 
experimental investigations show that catastrophic phase inversion often happens at volume 
fractions of dispersed phase of 0.6–0.7.56,57 Deviations from the thermodynamic model can 
originate from the assumptions made in the model, which include: (1) very fast particle 
adsorption, (2) no particle desorption, (3) no contact angle hysteresis for the particle wetting, (4) 
treatment of particles as monodisperse spheres and (5) the lack of kinetic barriers preventing the 
emulsion to reach its minimal free energy without being phase separated. Thus, kinetic factors 
are not taken into account. The latter could explain why the phase inversion occurs at volume 
fractions higher than the thermodynamic estimations. Examples of such kinetic effects are the 
faster hydrodynamic transport of particles in the continuous phase than inside droplets (making 
the adsorption of particles from the continuous phase easier) and the presence of barriers against 
particle adsorption and contact angle equilibration. 

Remarkably, for particles having a large contact angle hysteresis, phase inversion can be 
triggered upon mechanical input.58 This refers to the inversion of an emulsion upon increasing 
energy input during emulsification. In this peculiar system, at low energy input, a mildly 
hydrophobic particle (initially dispersed in the water phase) adsorbs in a metastable position at 
the oil-water interface remaining more immersed in the water phase (see Figure 6). In this 
configuration, contact line pinning arrests the particle motion through the interface imposing an 
effective contact angle and therefore imparting a preferential curvature of the liquid interface. In 
this case, o/w emulsions are formed. At sufficiently high emulsification energies, the contact line 
can relax and jump over the particle pinning points. The kinetic energy barrier that prevented the 
particle from reaching its equilibrium position is overcome and the o/w emulsion inverts to a w/o 
emulsion. The mirrored situation is also possible and it has been validated.58 

 

 
Figure 6. Mechanical phase inversion from an o/w to a w/o Pickering emulsion. Reprinted from ref.58 
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3 MATERIALS AND METHODS 

3.1 MATERIALS 
 

Chemical Abbreviation Supplier 
Silica gel, high-purity grade: Davisil Grade 633  Sigma-Aldrich 
Aluminum oxide, Puriss., ≥98% Al2O3 basis  Honeywell 

Fluka 
Styrene, ≥99%, contains 4-tert-butylcatechol as 
stabilizer 

 Sigma-Aldrich 

4-Styrenesulfonic acid sodium salt hydrate NaSS Sigma-Aldrich 
2,2’-Azobis(2-methylpropionitrile), 98% AIBN Sigma-Aldrich 
Methanol absolute HPLC MeOH Biosolve Chimie 
Divinylbenzene, technical grade 80% DVB Sigma-Aldrich 
Methacryloxyethyl thiocarbamoyl rhodamine B PolyFluor®570 Polysciences 
Ammonium hydroxide, for analysis, 28-30 wt% in 
water 

NH3 Acros Organics 

3-(Trimethoxysilyl)propyl methacrylate, ≥97% TPM Sigma-Aldrich 
Gellan Gum, powder Gellan Alfa Aesar 
Ethanol absolute EtOH VWR Chemicals 
Norland optical adhesive 81 UV glue Norland 

Products 
Pyrromethene, BODIPYTM 493/503 BODIPY InvitrogenTM 

Potassium chloride, ≥99% KCl Acros Organics 
n-Decane, ≥99%  Carl Roth 

GmbH 
Hydrochloric acid, for analysis, fuming, 37% in water HCl Acros Organics 

 

Styrene was purified through a column packed with silica gel (1/2 column height) and aluminum 
oxide powder (1/2 column height). The other chemicals were used as received. Water used in all 
experiments was purified by filtration through Millipore filters (18.2 MΩ·cm at 25 °C).  

 

3.2 POLYSTYRENE CORE PARTICLE FABRICATION 
Cross-linked sulfonated polystyrene (PS) particles were fabricated via dispersion polymerization.59 
Since the reaction medium is a good solvent for the monomer, the mixture is initially 
homogeneous.60 The formation and precipitation of polymer particles creates a dispersion.  

For the synthesis, 5 mL styrene, 90 mg NaSS and 90 mg AIBN were dissolved in 10 mL water 
and 40 mL MeOH in a 100 mL round-bottomed flask. The size of the polymer particles can be 
tuned by varying the MeOH/water ratio. With a lower MeOH/water ratio, the growing chains phase 
separate at earlier stages, thus shorter styrene condensates can be stabilized, yielding smaller 
sphere sizes. The flask was sealed with a rubber septum and flushed with N2 (g) for 30 minutes 
under magnetic stirring at 200 rpm. Next, the flask was immersed in a pre-heated oil bath (65°C) 
and the mixture was stirred magnetically at 200 rpm. After 5 hours, a pre-heated (50°C) mixture 
of 0.5 mL styrene, 165 μL DVB, 90 mg AIBN and 1 mg PolyFluor®570 in 5 mL MeOH was added 
to cross-link the polymer particles and equip them with a fluorescent label. The polymerization 
was carried out for 24 hours.  

The resulting polystyrene particles were washed three times in MeOH/water by centrifugation at 
3270 × g (Beckman Coulter Allegra® X-12R). Washing in a MeOH/water mixture rather than in 
only water facilitated sedimentation and redispersion of the particles. If necessary, redispersion 
was promoted by mechanical agitation and sonication. Rotary evaporation was used to remove 
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MeOH and the PS particles were further processed in water. The final particle concentration of the 
PS core dispersions was 3.5–4.0 wt%. 

 

3.3 FABRICATION OF PATCHY ROUGH COLLOIDS 
In order to obtain sufficient amounts of particles to extensively study their emulsification 
behavior, the synthesis was scaled to yield nearly a gram of patchy rough (or raspberry-like) 
particles. Taking inspiration from Stefano Sacanna’s work,61 it was chosen to heteronucleate and 
polymerize the organosilicate TPM on PS cores. To do so, a volume of 20-30 mL PS core dispersion 
was added to a 2L Teflon bottle containing 974 mL water and 52 mL NH3 (pH 11.5) such that the 
PS particle concentration in the final reaction volume was circa 3·1012 particles/mL. TPM was 
added in the range of 0.17–0.32 vol% with respect to the total reaction volume to obtain different 
degrees of particle roughness and composition. The bottle was agitated on a tumbling table (IKA® 
KS 260 basic) for 90 minutes at 150 rpm. This allowed the TPM to undergo a sol-gel process62 
and to heteronucleate on PS spheres. Thereafter, the reaction mixture was transferred to a 2L 
round-bottomed flask and 240 mg of AIBN (initiator)63 was added. During this step, 280 μL of 1 
mg/mL BODIPY in DMSO can be added to label the asperities with a green fluorescent marker. 
The flask was flushed with N2 (g) for 15 minutes and sealed before being immersed in an oil bath 
(80°C). The TPM was polymerized on the PS cores under magnetic stirring at 200 rpm for 2 hours. 
The fabricated patchy rough particles were washed three times by centrifugation at 10,000 × g 
(Beckman Coulter Avanti J-26 XP, rotor JLA-16.250) and redispersion in water. 

 

3.4 SCANNING ELECTRON MICROSCOPY 
PS particle size distributions were determined from SEM images (Scanning Electron Microscopy, 
Phenom ProX). The surface topography of the fabricated patchy rough particles was visualized 
with SEM (XL30S FEG, FEI). SEM samples were prepared by drying a suspension droplet on a 
hydrophilized Si wafer (Sil’Tronics 1–20 Ωcm, P-doped; glow-discharged with a Cressington 
Carbon Coater 208C and Power unit 208APU). The samples were sputter coated with a few nm of 
Pt to prevent charging (Cressington Sputtercoater 208HR). All SEM samples reported in this work 
were prepared in the same manner.  

 

3.5 ZETA POTENTIAL 
Zeta potential measurements of ∼0.03 wt% PS particle suspensions in 10 mM KCl were conducted 
with a Malvern Zetasizer Nano ZS in a disposable cuvette (polystyrene, 4 mL, SARSTEDT AG & 
Co. KG). The Smoluchowski model was applied to extract the zeta potential. 

 

3.6 AFM ROUGHNESS CHARACTERIZATION 
The surface roughness of the produced particles was measured by scanning a particle monolayer 
with Atomic Force Microscopy (AFM, JPK Nanowizard II). AFM samples were prepared by 
convective assembly64 of particles on a hydrophilized glass slide (VWR cover glass 22x22 nm 1.5 
nm thickness, glow-discharged with a Cressington Carbon Coater 208C and Power unit 208APU). 
The particle surface was probed with an Olympus AC160TS-R3 silicon cantilever with a resistivity 
of 0.01–0.02 Ωcm, a spring constant of 26 N/m and a resonance frequency of 300 kHz at room 
temperature and ambient relative humidity.  

The resulting AFM height profiles were analyzed to characterize the particle roughness. In the 
field of surface sciences, a common parameter to describe the amplitude of the roughness is the 
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RMS (root-mean-square) roughness.65 For particles with similar size and surface topography, the 
RMS roughness is a suitable roughness descriptor.66 Since the fabricated patchy rough particles 
satisfy these criteria, RMS roughness was selected as the appropriate parameter to describe the 
particle roughness. 

From the resulting AFM height profiles, the RMS roughness can be extracted. This was done using 
a least-square based algorithm66 that decouples the signal of interest from the underlying 
curvature. The RMS roughness can then be calculated using the following standard definition for 
root-mean-squared deviations: 

𝑅𝑅𝑅𝑅𝑅𝑅 𝑟𝑟𝑅𝑅𝑟𝑟𝑟𝑟ℎ𝑠𝑠𝑛𝑛𝑅𝑅𝑅𝑅 =  �
1
𝑠𝑠
�𝑦𝑦𝑖𝑖2
𝑛𝑛

𝑖𝑖=1

 (11) 

This means that the surface is sampled over n points with each a corresponding height y normal 
to the fitted sphere. The calculated RMS was considered reliable and was accepted when the fitted 
particle radius was within 10% of average core particle radius independently determined by SEM. 
In this way, the preserved diameters capture most of the diameters in the histograms presented 
in Figure 8 in section 4.1.1. 

 

3.7 THERMOGRAVIMETRIC ANALYSIS (TGA) 
To estimate the composition of the patchy rough particles, a thermogravimetric analysis was 
performed. For each measurement, 0.5–1.5 mL of particle dispersion at 2–4 wt% was dried in a 
porcelain dish (Incinerating dishes porcelain 33d/3, IDL GmbH) in an oven. Thermogravimetric 
analysis was conducted using a Nabertherm P330 furnace. The samples were heated to 650 °C 
at a heating rate of 7 °C/min and kept 30 min at 650°C before cooling down to room temperature.   

The mass of different patchy rough particles before and after calcination was determined on an 
analytical balance. From these values, the composition of the particles expressed as mass% of 
TPM could be calculated taking into account the difference in oxidative mass losses upon 
combustion of PS and TPM. In Appendix B, the calculation is explained in detail. 

 

3.8 SURFACE PATCHINESS ESTIMATION 
Since the patchy rough particles are composed of PS cores with TPM asperities grown on it, the 
surface of the particles is chemically heterogeneous. As a quantification of the partition between 
PS and TPM surface area, the surface patchiness was estimated. In this work, the surface 
patchiness is defined as the fraction of TPM patches on the total surface.  

SEM images (SEM XL30S FEG, FEI) were used for surface patchiness analysis. From the SEM 
images, the average asperity size and the average number of asperities per particle were 
measured (representative images can be found in Appendix C). For a 2D surface patchiness 
estimate, the area of the TPM asperities was approximated as their projected area. Alternatively, 
for a 3D estimate the TPM asperities were approximated as spherical caps with an average base 
radius calculated from the SEM asperity size and an average height extracted from AFM height 
maps.  

3.9 CONTACT ANGLE MEASUREMENTS 
To study the adsorption and wetting of the fabricated particles, the particle contact angles at a 
water-decane interface were measured using Gel Trapping Technique (GTT).67 

The workflow for GTT is schematically represented in Figure 7. First a 2 wt% Gellan solution in 
water was prepared by stirring the mixture for 2 hours at 80°C. The Gellan solution was poured 
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in a 35 mm Petri dish containing n-decane inside an oven (Memmert Model 100-800) at 70 °C. 
Particle dispersions of 0.1–2 wt% in water/EtOH 50/50 v/v were spread on the interface by 
pipetting two times 5 μL at the Gellan/water-decane interface. The addition of EtOH to the 
particles dispersions favors the spreading of particles at the interface driven by a Marangoni 
flow.68 

To reliably determine contact angles with this technique, it is important that Gellan addition to 
water does not significantly alter the adsorption of the particles at the interface. As indication, 
the contact angle of a water drop under decane on hydrophobized glass is invariant to the Gellan 
concentration in the aqueous phase.69 

After spreading the particles, the samples were slowly cooled down to room temperature, whereby 
the aqueous phase jellified such that the particles were immobilized at the interface. Interface 
replicas were obtained by replacing the n-decane with UV glue and curing the glue by UV 
illumination. In this manner, the particles are partially embedded in the UV glue, preserving their 
positions at the interface. The replicas were imaged with SEM (Phenom ProX). Details on the 
calculation of the contact angles from SEM images can be found in Appendix D. 

 
Figure 7. Workflow for Gel Trapping Technique. Adapted from ref. 67 

 

3.10  EMULSION PREPARATION 
To investigate the effect of the use heterogeneous particles compared to homogeneous particles 
on emulsification and phase inversion, emulsions were prepared with different o/w ratios at 
different shear rates. 

Emulsions with the patchy rough particles were produced according to the formulations given in 
Table 1. As a reference, bear PS cores and all-TPM particles were used as emulsifiers. The synthesis 
and characterization of all-TPM particles is described in Appendix A. The water phase of the 
emulsions was prepared by adding 0.1 M KCl to 2–3 wt% particle dispersions in water to yield 
water phases at the weight percentages given in Table 1. 10-3 mg/mL BODIPY was added in the 
n-decane oil phase to obtain sufficient optical contrast between the oil and water phase and 
directly visualize the formed emulsion type via fluorescence microscopy. 
 
Table 1. Emulsion formulations. In the oil phase, BODIPY is added. The aqueous phase contains 0.1M KCl 
and the particles. 

Water fraction 
(φwater vol-ratio)  

Oil phase (mL) Water phase (mL) Wt% particles 
in water phase 

0.3 4.2 1.8 1 
0.5 3 3 1 
0.7 1.8 4.2 0.43 
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The concentration of particles in the aqueous phase was 0.43 wt% for φwater = 0.7 to ensure that 
the particle concentration in the total emulsion volume was the same for φwater =0.3 and 0.7. The 
pH of the emulsions was adjusted to 5.5-6.5 (monitored by a HANNA Instruments pH 210 pH 
meter with a Mettler Toledo InLab® Micro electrode) by adding a maximum of 120 μL 0.2 M HCl 
and a proportional amount of oil phase. Similar ionic strength and pH of the emulsions are of 
importance because variation in these quantities may induce transitional phase inversion linked 
to (de)ionization of PS sulfate and TPM silanol surface groups.70 

The emulsification was performed with an IKA® T25 digital Ultra-Turrax homogenizer at 8,000 
rpm, 14,000 rpm or 20,000 rpm for 1 minute. 

 

3.11  EMULSION CHARACTERIZATION 
The emulsions were imaged and characterized by bright field and fluorescence microscopy within 
a day after their preparation. Microscopy samples were prepared by carefully pipetting emulsion 
droplets in a custom-made cell consisting of two glass slides (Thermo scientific Menzel Gläzer 
microscope slide 76x26mm) glued on top of each other, where a hole of 1.5 cm in diameter had 
been cut out. The cell was sealed with a cover glass (VWR cover slip 22x22 mm, 1.5 nm thick). 

The obtained emulsion type (o/w or w/o) was observed with a Nikon Eclipse TE2000-U equipped 
with a Nikon D-Eclipse C1 Laser scanning confocal microscope system. A 488 nm Ar laser was 
used for excitation of the BODIPY dye in the oil phase. 

Bright field images were collected with either a Nikon Eclipse Ti-E microscope with a Hamamatsu 
Digital Camera C11440 ORCA-flash 4.0 (2048x2044 px images) or a Nikon Eclipse Ti-U 
microscope with a Imaging Source DFK 33UX249 (1920x1200 px images). 
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4 RESULTS AND DISCUSSION 

4.1 FABRICATION OF PS/TPM PATCHY ROUGH COLLOIDS 

4.1.1 Polystyrene core particles 
Dispersion polymerization of styrene and 4-styrene sulfonic acid in a water/MeOH reaction 
medium yielded the PS particles shown in Figure 8. The synthesis leads to monodisperse colloids 
and to reproducible particle size. Slight deviations in the reaction conditions might cause some 
variation in particle size between different batches. Three batches of PS particles (PS-0, PS-I and 
PS-II) were produced. These particles serve as cores for the fabrication of patchy rough particles. 
The sulfate groups on PS originate from 4-styrene sulfonic acid and render the surface sufficiently 
negatively charged to maintain colloidal stability during the patchy rough particle synthesis.71 
Average zeta potentials are in the range of -45 to -65 mV (see zeta potential distributions in 
Appendix E). 

 

 

4.1.2 Patchy rough colloids 
Particles of various morphologies can be produced by heteronucleation and polymerization of TPM 
on pre-fabricated sulfonated PS particles. The formation of bumpy asperities of TPM on PS relies 
on the finite wetting between the two materials. The size and number of asperities formed on the 
PS particles depends on both the concentration of TPM monomer and the pH set during the 
synthesis. Increasing the concentration of TPM monomer results in larger lobes, while increasing 
the pH produces smaller and more numerous asperities (Figure 9a).  

To obtain patchy rough particles, the synthesis conditions were finely adjusted such that ‘berry-
covered’ surfaces were formed. In literature, particles with such a morphology are also commonly 
referred to as raspberry-like particles.66,72 Figure 9b schematically shows the path followed for the 
fabrication of patchy rough particles. In the first stage, TPM hydrolyses and condensates via its 
silanol group62 heteronucleating on the surface of the PS cores. Radical polymerization of the 
methacrylate moiety creates solid raspberry-like particles. The procedure presented in this work 
yielded up to a gram of patchy rough colloids per synthesis, which is an adequate amount to 
extensively study the emulsification of the particles. 

 

 

 

Figure 8. SEM images of polystyrene (PS) particles and size distributions determined from the images. Scalebars: 
4 μm.  
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Particles with different degrees of roughness and composition were fabricated by varying the 
volume fraction of TPM at constant pH (pH = 11.5). The increased size of TPM condensates by 
increasing TPM volume fraction at constant pH was verified for homogeneous nucleation of TPM 
(see Appendix A). Table 2 lists the fabricated particles in order of increasing roughness with the 
corresponding PS core particle and vol% TPM in the reaction mixture. The particle names refer to 
‘Raspberry’ (RB) and their average RMS roughness in nm (as reported in section 4.2). 

 

 

 
Table 2. Fabricated patchy rough particles in this work. pH = 11.5. 

Patchy rough particle PS core Vol% TPM 

RB-4.1 PS-0 0.17 
RB-4.6 PS-I 0.20 
RB-7.5 PS-II 0.22 
RB-16 PS-I 0.25 
RB-20 PS-0 0.32 

 

  

Figure 9. PS/TPM particle fabrication. (a) Dependence of the surface morphology on volume fraction 
(ϕ) TPM and pH. (b) Schematic of the patchy rough colloid synthesis.   
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4.2 ROUGHNESS AND CHEMICAL COMPOSITION 
The surface topography of the fabricated patchy rough particles is imaged and characterized by 
both SEM and AFM, as shown in Figure 10.  

Figure 10. Topographical particle surface characterization by SEM (a,b) and AFM 
(c). Scalebars: 200 nm (a) and 500 nm (b,c).  
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The particle-by-particle root-mean-square (RMS) roughness could be extracted from the AFM 
height maps. The RMS roughness is a suitable parameter to compare the particle roughness since 
the colloids have similar sizes and the surface morphologies are analogous. For spherical 
asperities, the height of the asperities determines to the largest extent the RMS, while the asperity 
density hardly influences RMS.66 RMS roughnesses of 4.1–20 nm could be achieved by varying 
the concentration of TPM monomer in the reaction mixture from 0.17 to 0.32 vol%. 

The RMS roughness solely describes the surface topography. Thus, a complementary 
characterization of the patchy rough particles focusing on their chemical composition was carried 
out. In this regard, thermogravimetric analysis (TGA) was used. In Figure 11a, it can be observed 
that PS almost completely degrades upon heating the sample to 650°C for 30 min, while 30% of 
the TPM mass remains. This allowed to calculate the PS/TPM weight ratio in the patchy rough 
particles.  

 

Figure 11b presents the roughness and composition of the particles as function of the TPM volume 
percentage in the reaction mixture. Both the RMS roughness and mass% TPM exhibit a sigmoidal 
dependence on the vol% TPM in the reaction mixture. This denotes a strong dependence of 
particle roughness and composition in a small TPM concentration range. For concentrations lower 
or higher than this range, the TPM concentration has a milder impact on the particle roughness. 

 

4.3 SURFACE PATCHINESS AND CONTACT ANGLES 
To further characterize the chemical heterogeneous nature of the particles, their surface 
patchiness was estimated using SEM images. 2D and 3D surface patchiness are defined as 
depicted in Figure 12a. The 2D and the 3D estimation approximate the asperities as their projected 
area and as spherical caps, respectively. The results of the estimates are presented in Figure 12b. 
The values for 3D surface patchiness exceed those of the 2D patchiness because the area of the 
spherical caps is larger than their projected area. Since in practice the asperities have a curvature, 
the 3D estimation matches the real situation the closest. The 2D estimation captures the chemical 
partition of the particle surface irrespective of the roughness. 

Similar to Figure 11b, the trend of surface patchiness with vol% TPM has a sigmoidal shape. 
Effectively, the roughness, the composition and the surface patchiness all depend in the same 
manner on the vol% TPM initially added in the reaction mixture. 

Figure 11. Particle characterization by composition and roughness. (a) Residual particle masses 
after degradation upon calcination. There is no standard deviation reported since the thermogravimetric 
analysis was only carried out once for each particle. (b) Particle characterization by their RMS roughness 
as determined with AFM and mass% TPM calculated with thermogravimetric analysis as a function of vol% 
TPM in the reaction mixture. 
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From the surface patchiness estimations, it is possible to calculate the theoretical contact angles 
(θtheory) for the rough patchy particles. For this, the contact angles of bear TPM and PS spheres 
were measured by GTT. The contact angle of the sulfate PS spheres was determined to be 
108±7°, which is in good agreement with θs between 101° and 116° reported in literature.67,73 
This means that PS particles are hydrophobic in nature and therefore greatly protruding in the oil 
phase. Conversely, the contact angle of TPM was 68±7°, which means that it is hydrophilic. Using 
Cassie’s law (see section 2.2) for wetting of heterogeneous surfaces, contact angles for the 
PS/TPM patchy rough particles were estimated (Figure 12c, yellow triangles and purple circles). 
Additionally, contact angles of the patchy rough colloids were measured by GTT (Figure 12c, 
green squares). Remarkably, the measured contact angles are much lower than the estimated 
wettability values. Effectively, the particles are more hydrophilic than expected purely from their 
chemical composition. This further corroborates previous observations indicating that the contact 
line pinning on the roughness features arrests the adsorption (as explained in section 2.2).24 
Contact line pinning can also be occasioned by a sufficiently strong wetting contrast on a single 
particle surface.74 These peculiar properties may generate peculiar phenomena when the patchy 
rough particles are used as Pickering stabilizers.  

 

  

Figure 12. Particle characterization by surface patchiness and contact angles. (a) Schematic 
representation of the definition of 2D and 3D surface patchiness. (b) 2D and 3D estimates for the surface 
patchiness of particles of different compositions. (c) Estimated (from surface patchiness) and measured (by 
GTT) contact angles of patchy rough particles. 
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4.4 EMULSIFICATION AND PHASE INVERSION 
To investigate the effect of the particle heterogeneity on the emulsification and formulation of 
Pickering emulsions, emulsification experiments with particles having different degrees of 
patchiness were carried out. In particular, the influence of the shear rate, o/w ratio and patchiness 
on the obtained emulsion type was studied (Figure 13a-I). The emulsions were characterized by 
macroscopic appearance, bright field optical microscopy and confocal fluorescence microscopy 
(respectively Figure 13a-II, -III and -IV). The presence of the green fluorescent dye BODIPY in n-
decane enabled straight identification of the emulsion type (o/w or w/o, Figure 13a-IV). It should 
be noted that fluorescent dyes can be surface active and affect emulsions.75 Therefore, the 
influence of BODIPY on the water-decane interfacial tensions and on the emulsification was 
evaluated (see Appendix F). Even though from these experiments it was concluded that in the 
selected range of concentrations BODIPY does not affect the emulsification, the emulsions were 
prepared with the lowest possible concentration of BODIPY to avoid any unexpected interference 
with the emulsification.  

According to the Bancroft rule, the phase wherein particles can be stably dispersed constitutes 
the continuous phase of the emulsion. Interestingly, in this work all particles form stable 
dispersion in aqueous solutions due to their charge stabilization, despite some cases being 
inherently hydrophobic (PS, RB-4.1, RB-7.5). Therefore, the inverted emulsions are anti-Bancroft 
type. 

In general, it was observed that rougher particles form with higher success rate emulsion droplets 
with morphologies that can deviate from circularity compared with smooth particles. This is clearly 
depicted confronting Figure 13a-IIIA obtained with RB-7.5 particles with Figure 13a-IIIB generated 
with PS. This is ascribed to the capillary forces between rough particles trapped at the interface 
arising from the undulated contact line around the particles that generate a 2D network and 
impart deviatoric rheological properties to the interface.76,77 Moreover, for the roughest particles 
(RB-20 and also to some extent RB-16), the amount of emulsion layer was limited. This might be 
explained by limited adsorption due to a transition from Wenzel wetting for the less rough particles 
to Cassie-Baxter wetting for the roughest particles. It is posed in literature that in the latter 
regime, rough particles are less efficient Pickering stabilizers (see section 2.2). Additionally, 
emulsions created with particles having an extreme degree of patchiness had a discontinuous 
structure characterized by clusters of droplets. This suggests that very heterogeneous particles 
have a higher probability of particle bridging, possibly connected to the fact that their contact 
angle approaches ∼60°. More details and investigation of the emulsification challenges 
encountered with the roughest particles are reported in Appendix G. Because of its limited 
emulsification, RB-20 was excluded from the phase inversion experiments. 

For PS, RB-4.1, RB-7.5 and RB-16, the volume fraction of the water phase φwater and shear rate 
during emulsification were systematically varied (see Figure 13b). The optical characterization that 
proves the emulsion types for all the produced emulsions is found in Appendix I. When coexisting 
w/o and o/w emulsions were observed, the ratio between these emulsion types was assessed 
from image analysis. 

Several interesting trends are reported in Figure 13b. In vertical direction, the effect of shear rate 
on the emulsion type is shown. The reasoning below is focused on φwater = 0.5, but can be 
extended to φwater = 0.3 and φwater = 0.7. It can be noticed that the probability of emulsion 
inversion, in our case from o/w to w/o, enhances with increasing shear rates, i.e. increasing 
energy input during emulsification. This phenomenon was already described for rough but 
chemically homogeneous silica and PS particles in emulsions with φwater = 0.5.58 Such mechanical 
phase inversion is ascribed to arrested adsorption of particles at the interface due to contact line 
pinning on asperities. When a rough, slightly hydrophobic particle is initially dispersed in water, 
it can form o/w emulsions at low energy input, because the energy barrier that has to be overcome 
to reach its equilibrium position is not matched. Conversely, higher shear rates can provide 
enough energy for relaxation of the contact line over the particle, and a w/o emulsion is formed. 
The same line of thinking is observed for RB-4.1 at φwater = 0.5 (emulsified from the water). The 
fact that these particles primarily form o/w emulsions correlates with the contact angle of 71° 
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found by GTT (section 4.3). The preferred emulsion type would however be w/o as dictated by 
their surface chemistry according to the contact angle estimated from the surface patchiness 
calculation. As expected, the emulsion inverts to w/o at higher energy input. 

 

Interestingly, RB-7.5 and RB-16 do only form w/o emulsions irrespective of the shear rate for 
emulsions with φwater = 0.5. For RB-7.5, the contact angle estimated from their surface chemistry 
is > 90°. In this case it might be that the energy barrier due to contact line pinning on the 
asperities is too high to be overcome with the emulsification input. Analogous reasoning could 
apply to RB-16 particles, despite the fact that the estimated contact angle of RB-16 is very close 
to neutral wettability (88.9°). Therefore, mechanical phase inversion may even be impossible in 
this. Remarkably, mechanical phase inversion is also observed for PS, despite they are smooth 
particles and allegedly homogeneous. A kinetic barrier to particle adsorption for PS was already 
observed.78 It has been found that the relaxation time for the adsorption was markedly slower 
than it would be expected from a mere viscous dissipation process. Wang et al.79 suggested that 

Figure 13. Emulsification of patchy rough particles. (a-I) Formulation of emulsions and processing 
parameters varied to obtain either o/w or w/o emulsion types. a-II to -IV are representative images of o/w (top 
row) and w/o (bottom row) emulsions.  (a-II) Macroscopic photos. (a-III) Bright field microscopy images. (a-
IV) Confocal fluorescence microscopy images directly reveal the emulsion type, by addition of BODIPY493/503 
in the oil phase. Scalebars: 400μm. (b) Results of emulsion phase inversion experiments for varying shear rate, 
φwater and particle type. 
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this non-ideal behavior can be connected to grafted polymer ‘hairs’ inducing contact line pinning. 
The latter can explain the observed mechanical phase inversion of PS-stabilized emulsions.  

For the sake of scientific completeness, TPM-stabilized emulsions have been produced and they 
are shown in Appendix H. TPM forms preferentially o/w emulsions in accordance with its 
hydrophilicity expressed in the measured contact angle of 68°. Incredibly, for all conditions 
probed here phase inversion cannot be reached. This suggests that the anchoring of TPM particles 
at water-oil interfaces is particularly strong.  

In reading Figure 13b horizontally per particle type, a second trend is observed that links phase 
inversion to an increase of φwater. This is known in literature as catastrophic phase inversion.56 At 
a shear rate of 20,000 rpm, emulsions with RB-4.1 switch from largely w/o to mainly o/w upon 
the increase of φwater from 0.5 to 0.7. Emulsions with RB-7.5 and RB-16 undergo such a phase 
inversion for the increase of φwater  = 0.3 to φwater  = 0.5, while PS forms w/o emulsions at all 
volume ratios probed. Dynamic effects in the particle adsorption are supposed to cause the 
deviation of the inversion point from the thermodynamic critical value of φwater = 0.5 (see section 
2.3).55 Effects of particle roughness might manifest via the difference in particle adsorption 
dynamics between rough particles and smooth particles. Interestingly, multiple emulsions are 
observed close to the inversion points as already pointed out in literature.52,53 The catastrophic 
phase inversion of emulsions expressed as function of the particle type is even clearer visible in 
Appendix H.  

Most notably, the particle type shifts both the mechanical and catastrophic phase inversion. The 
onset of mechanically induced phase inversion is highly dependent on the height of the kinetic 
barrier to equilibrium adsorption. As a consequence, the variation in surface heterogeneity-
induced pinning sites among the colloids results in different input energies required to phase 
invert the emulsions. o/w emulsions become more favored for higher degree of patchiness 
(decreasing PS/TPM ratio in the particles). Since PS is hydrophobic and TPM is hydrophilic, this 
behavior is expected. Binks et al. previously found that the volume fraction of water at which 
catastrophic phase inversion occurs, depends on the particle wettability80 for particles with a 
chemically homogeneous surface.13 Moreover, phase inversion (transitional) from o/w to w/o of 
emulsions with φwater =0.5 can be induced by addition of hydrophobic silica particles to an 
emulsion with initially only hydrophilic silica particles and vice versa.81 Therefrom can be inferred 
that the emulsion type is determined by the average wettability of all particles present. 
Accordingly, in the case of composite particles having mixed wettability on the same surface, it 
is reasonable to conclude that the average wettability of the single particles determines the 
preferred emulsion type. 

Thus, we can conclude that the onsets of mechanical and catastrophic phase inversion depend on 
the level of heterogeneity of the particle surface. Systematic variations of the shear rate, o/w 
ratio and particle type in emulsification experiments reveal the effect of particle heterogeneity on 
the processing and formulation of emulsions. 
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5 CONCLUSIONS 
Heterogeneous patchy rough colloids composed of PS cores decorated with organosilicate 
asperities can be fabricated with tunable surface roughness and composition. The proposed wet 
chemical process is reliable and ensures the production of large amounts of monodisperse rough 
colloidal composites with controlled patchiness degree. The latter is achieved by tuning the sole 
amount of reactive organosilicate (TPM) in the reaction mixture at selected pH and nuclei 
concentration. In this fashion, patchy rough particles with root-mean-square surface roughness 
ranging between 4.1 and 20 nm and compositions of 3.1 to 36 mass% of TPM were obtained. The 
roughness of the particles was characterized scanning individual colloidal particles with AFM. An 
estimate of their composition expressed in mass% of TPM could be obtained from 
thermogravimetric analysis. SEM image analysis allowed for an estimation of the surface 
patchiness of the particles. The comparison of contact angles estimated from surface patchiness 
with contact angles measured by GTT indicates that the adsorption of patchy rough colloids at 
liquid interfaces can be arrested by contact line pinning at heterogeneity sites. In this system, 
surface roughness and the chemical nature of the surface are coupled. Interestingly, the 
fabricated patchy rough particles can be used as Pickering emulsifiers of water/n-decane systems. 
Systematic variations in the emulsification shear rate, o/w ratio and particle type corroborate the 
influence of the particle heterogeneity on the processing and formulation of emulsions. It has 
been confirmed that mechanically induced phase inversion of the emulsions can be achieved by 
colloidal particles presenting a kinetically arrested adsorption pathway. Additionally, light has 
been shed on the role that kinetic effects at a single particle level have on the phase inversion of 
Pickering emulsions. The output of the work expands the previous state-of-the-art research and 
opens a future and fruitful scenario for the use of non-ideal colloidal systems for smart 
formulations, on-demand switchable emulsions and uncharted recovery strategies. 
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6 OUTLOOK 
The fabrication of the PS/TPM patchy rough particles can be even more appealing by considering 
the flexible surface chemistry of TPM. TPM silanol surface groups can namely easily be 
functionalized by chemisorption of many different silicates.82 This creates the opportunity to 
specifically modify surface patches giving access to a more versatile particle surface chemistry. 

With respect to emulsification, it was observed that selected formulations of patchy rough 
particles form emulsions with coexisting emulsion types (both o/w and w/o). It would be 
worthwhile to study the emulsion evolution over time. This is one important step to draw 
conclusions regarding the long-term stability of the Pickering emulsions stabilized by patchy rough 
colloids. 

A natural extension of the study on the catastrophic phase inversion of emulsions with patchy 
rough particles is going towards higher and lower φwater to cover the whole volume ratio range. 

In addition, the research on phase inversion would be more exhaustive when also emulsification 
with particles initially dispersed in the oil would be considered. It is anticipated that because of 
arrested adsorption, the phase inversion diagram would be rigorously different, and more 
knowledge could be gathered about the chemical preferred wettability of the particles. However, 
lack of charge stabilization and swelling of PS in the oil phase might hinder the formation of stable 
dispersions of the particles in oil. 

As a reference, it could be useful to examine the emulsification behavior of particles with smooth 
surfaces with a range of contact angles in between PS and TPM. Such particles would then possibly 
resemble the chemical nature of the patchy rough particles, without displaying the roughness 
effects.  

The other way around, it would be interesting to investigate the effect of purely roughness on 
catastrophic phase inversion. The locus of catastrophic phase inversion is related to several kinetic 
factors regarding particle adsorption.55 Since particle adsorption dynamics is probably different 
for rough particles than for smooth particles,77 it might be interesting to identify possible 
differences. It should for example be possible to synthesize all-TPM rough particles,61 which could 
be suitable to study the catastrophic phase inversion as a function of the sole surface roughness. 

To study the adsorption kinetics of the patchy rough particles on droplets more in depth, binodal 
decomposition of a mixture in the presence of the particles could be observed and analyzed with 
real-time microscopy. Evolution of the droplet size during this process could be monitored, 
thereby providing an estimate of the efficiency of the particles as Pickering stabilizers. 

Generally, the investigation of particles at interfaces covers three aspects: motion, interactions, 
and adsorption. The latter aspect is connected with wetting, and is studied predominantly in this 
work. The study of particle dynamics on a droplet could be enabled by the possibility to make the 
particles fluorescent during their fabrication. Interactions of particles at the interface become 
apparent for example in altered viscosity of the interface.47 Interfacial rheology studies on 
interfaces laden with the patchy rough particles might shed a light on this. 

In connection with the interfacial rheology of particle-laden interfaces, it might be interesting to 
investigate the role of particle concentration on the stability of emulsions. It was found that the 
yield stress of an interface is more directive for emulsion stability than the surface coverage.49 
Moreover, particle dynamics supposedly plays a role in the stabilization of weakly-covered 
emulsion droplets.77,83 Study might focus on how this works for heterogeneous particles of for 
example the type used in this work. 

In the end, more fundamental insights and knowledge about heterogeneous particles as Pickering 
stabilizers such as the rough patchy particles from this work may be of use in chemical, biomedical 
and industrial applications. 
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LAY SUMMARY (NEDERLANDS) 
Een emulsie is een mengsel van twee eigenlijk niet mengbare vloeistoffen, meestal olie en water. 
Wanneer je olie en water bij elkaar doet, zullen zich normaalgesproken twee fasen vormen: een 
waterlaag met daarop een olielaag. Als je hard schudt, mengen de olie en water fasen even 
doordat de ene fase druppeltjes vormt in de andere, maar al snel ontstaan er weer gescheiden 
lagen. In een emulsie is iets toegevoegd wat ervoor zorgt dat de druppeltjes van de ene fase niet 
meer kunnen samensmelten en scheiden tot een continue fase. Mayonaise is bijvoorbeeld een 
olie-in-water emulsie waar eiwitten de zogenaamde emulgatoren zijn die oliedruppeltjes 
stabiliseren in water. Ook veel andere producten die je tegenkomt in het dagelijks leven worden 
gemaakt op basis van emulsies, zoals verschillende voedingsproducten en cosmetica.  

Bij het maken van emulsies is er een groot aanbod aan mogelijke emulgatoren. Heel gebruikelijk 
zijn surfactanten: kleine stoffen die op het grensvlak tussen twee vloeistoffen gaan zitten. Deze 
surfactant moleculen zijn grofweg 100.000x kleiner dan de dikte van een mensenhaar. Ook vaste 
deeltjes kunnen op vloeistofgrensvlakken gaan zitten. Zulke deeltjes zijn zo’n 100-1000x kleiner 
dan de dikte van een mensenhaar en worden in het algemeen aangeduid als colloïden. Rigide 
lagen van colloïden op bijvoorbeeld oliedruppels in water zorgen ervoor dat de oliedruppels 
gescheiden blijven, en stabiliseren zo de emulsie. Zo’n emulsie gestabiliseerd door vaste deeltjes 
heet een Pickering emulsie, genoemd naar een pionier op het gebied van dit soort emulsies.  

Er wordt vaak onderzoek gedaan naar de aard en eigenschappen van Pickering emulsies met 
deeltjes die beschouwd worden als gladde bollen die uit één materiaal bestaan. Maar in 
realistische of natuurlijke systemen zijn de deeltjes niet noodzakelijk zo. Ook kunnen deeltjes 
met een andere vorm en samenstelling interessante eigenschappen geven aan de emulsies die 
ze produceren.  

Om meer inzicht te krijgen in de emulsificatie met zulke heterogene deeltjes, worden in dit werk 
ruwe colloïden bestaande uit twee materialen gefabriceerd als emulgatoren: zogenaamde 
‘framboos-achtige deeltjes’. Door deeltjes van verschillende ruwheid en samenstelling te 
gebruiken, wordt de invloed van deze eigenschappen op de vorming van emulsies duidelijk. 
Afhankelijk van de heterogeniteit van de deeltjes, worden olie-in-water of water-in-olie emulsies 
gevormd bij verschillende manieren van emulsies produceren. Dit onderzoek draagt bij aan een 
breder begrip van de invloed van heterogeniteit van deeltjes op emulsificatie. 
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APPENDICES 
APPENDIX A. HOMOGENEOUS NUCLEATION OF TPM 

To verify that TPM particle size increases with increasing volume fraction of TPM in the reaction 
mixture at constant pH, TPM particles were produced via homonucleation in the following 
manner: 25, 30, 35, 42 or 50 μL TPM was added to 16 mL water in a 50 mL polypropylene 
centrifuge tube brought at pH 10.4 by addition of NH3. After agitation on a tumbling table at 
150 rpm for 90 min, 8 mg AIBN was added. The tube was brought under N2 and tumbled in an 
oil bath (80°C) for 2 hours. After washing the resulting particles by centrifugation, SEM images 
(Phenom ProX) were taken from which the particle sizes were determined. Figure A 1 shows the 
observed nearly linear increase of TPM particle size with volume fraction of TPM in the reaction 
mixture. This principle was exploited for the synthesis of the patchy rough particles. 

 
Figure A 1. Homogeneous nucleation of TPM. The graph shows the increase in TPM particle size with 
increasing volume fraction (Φ) TPM in the reaction mixture. 

 

TPM particles for GTT and emulsification 
TPM particles of 797±109 nm in diameter were produced by 
homogeneous nucleation of TPM in a scaled-up synthesis 
yielding over half a gram of particles. For this, 2.7 mL TPM 
was added to 800 mL water and 200 μL NH3 in a Teflon 
bottle. After agitation of the mixture for 2 hours on a 
tumbling table (to accommodate the formation of TPM 
droplets) the mixture was transferred to a 2L round-bottomed 
flask. To this, 260 mg of the polymerization initiator AIBN 
was added and the flask was deoxygenated with N2. The 
polymerization of the TPM spheres was carried out under 
magnetic stirring in an oil bath (80°C) for 2 hours. The 
resulting particles were washed three times by centrifugation 
at 3270 × g. The particle size was determined from SEM 
(Phenom ProX), see Figure A 2. These particles were used for 
GTT contact angle measurements and for producing reference 
emulsions.  

 

  

Figure A 2. Size distribution of the TPM 
particles determined from the SEM 
image. Scale bar: 4 μm.  
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APPENDIX B. TGA CALCULATION 
For the estimation of the mass% TPM in the patchy rough particles, first the residual masses 
upon calcination of pure PS and TPM were determined. With these quantities and the dry and 
residual masses of the patchy rough particles, the composition of these particles in mass% TPM 
was calculated.  

 

Calculated quantities from reference measurements: 

-Pure PS residual mass fraction (PSrMf) 

-Pure TPM residual mass fraction (TPMrMf) 

 

Weighed quantities from patchy rough particle measurements:  

-Particle mass after drying (drym) 

-Residual mass after calcination (resm) 

 

Since the patchy rough particles are composed of both PS and TPM, the drym consists of the 
dried TPM mass (dTPMm) and dried PS mass (dPSm), and the resm consists of the residual TPM 
mass (rTPMm) and residual PS mass (rPSm). In equations:  

𝑑𝑑𝑑𝑑𝑅𝑅𝑚𝑚 + 𝑑𝑑𝑑𝑑𝑑𝑑𝑅𝑅𝑚𝑚 = 𝑑𝑑𝑟𝑟𝑦𝑦𝑚𝑚 
𝑟𝑟𝑑𝑑𝑅𝑅𝑚𝑚 + 𝑟𝑟𝑑𝑑𝑑𝑑𝑅𝑅𝑚𝑚 = 𝑟𝑟𝑛𝑛𝑅𝑅𝑚𝑚 

These equations are coupled by: 
𝑑𝑑𝑅𝑅𝑟𝑟𝑅𝑅𝑃𝑃 ∗ 𝑑𝑑𝑑𝑑𝑅𝑅𝑚𝑚 = 𝑟𝑟𝑑𝑑𝑅𝑅𝑚𝑚 

𝑑𝑑𝑑𝑑𝑅𝑅𝑟𝑟𝑅𝑅𝑃𝑃 ∗ 𝑑𝑑𝑑𝑑𝑑𝑑𝑅𝑅𝑚𝑚 = 𝑟𝑟𝑑𝑑𝑑𝑑𝑅𝑅𝑚𝑚 

 

Combining these equations gives the following system of equations, solvable for dTPMm: 
𝑑𝑑𝑅𝑅𝑟𝑟𝑅𝑅𝑃𝑃 ∗ (𝑑𝑑𝑟𝑟𝑦𝑦𝑚𝑚 − 𝑑𝑑𝑑𝑑𝑑𝑑𝑅𝑅𝑚𝑚) = 𝑟𝑟𝑛𝑛𝑅𝑅𝑚𝑚 − 𝑟𝑟𝑑𝑑𝑑𝑑𝑅𝑅𝑚𝑚 

𝑟𝑟𝑑𝑑𝑑𝑑𝑅𝑅𝑚𝑚 = 𝑑𝑑𝑑𝑑𝑅𝑅𝑟𝑟𝑅𝑅𝑃𝑃 ∗ 𝑑𝑑𝑑𝑑𝑑𝑑𝑅𝑅𝑚𝑚 

 

The mass% TPM in the patchy rough particles is then dTPMm/drym*100%. 
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APPENDIX C. SEM IMAGES FOR SURFACE PATCHINESS 
Figure A 3 and Figure A 4Figure A 1 show representative SEM images from which the surface 
patchiness of the patchy rough particles was estimated. Each left image shows the asperity size 
measurement and each right image the estimation of the number of asperities on a sphere. 

 

 

 

 

 

 

  

Figure A 3. Representative SEM images for surface patchiness estimation of RB-4.1 and RB-4.6. Scalebars: 
500 nm. 
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Figure A 4. Representative SEM images for surface patchiness estimation of RB-7.5, RB-16 and RB-20. 
Scalebars: 500 nm. 
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APPENDIX D. GTT CONTACT ANGLE CALCULATION 
This section contains details on the contact angle calculations from SEM images of interface 
replicas produced by GTT. Figure A 5 shows representative images used for the contact angle 
calculations. At least 70 particles of each particle type were involved in the calculations.  

 

 
Figure A 5. Representative SEM images of interface replicas with PS, TPM and the raspberry-like particles. 
Scalebars: PS-0: 2 μm, other scalebars: 1 μm.  

 

Contact angles of PS-0 were determined from top views of the interface. A top view image looks 
through the water phase on the oil phase (which is replaced by UV glue). In this configuration, 
the largest portion of a hydrophobic particle is immersed in the UV glue. Then, by comparing 
the particle radius at the interface with the actual particle radius independently obtained, the 
contact angle of the particle at the interface can be extracted according to the following relation 
(which is visualized in Figure A 6): 

𝜃𝜃 = 𝜃𝜃𝑤𝑤 =  sin−1 �
𝑅𝑅
𝑅𝑅
�  (12) 

 

where S is the radius at the interface determined from the SEM image of the replica and R is 
the average particle radius as given in section 4.1.1. 
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Figure A 6. The contact angle of a hydrophobic particle on the interface can be calculated from a top view 
SEM image by measuring the radius on the interface S and using the illustrated geometry. 

 

Contact angles of the hydrophilic particles were determined from a cross-section of the 
interface. By measuring the height of the spherical cap H and the particle radius r on the SEM 
images of the interface replicas (see Figure A 7), the contact angle can be found using the 
following relation: 

𝜃𝜃 =  cos−1 �
|𝐻𝐻 − 𝑟𝑟|

𝑟𝑟
�  (13) 

 

 
Figure A 7. Cross-section of an interface replica. The contact angle can be calculated from the measured 
cap height H and particle radius r. 
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APPENDIX E. ZETA POTENTIAL DISTRIBUTIONS PS CORES 
 

 
Figure A 8. Zeta potential distributions of the PS cores used for the patchy rough colloid synthesis. 
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APPENDIX F. EFFECT OF BODIPY ON INTERFACIAL TENSIONS AND 
EMULSIFICATION 
Interfacial tensions of water and n-decane were measured at different concentration of BODIPY 
493/503 to evaluate the effect of the BODIPY addition. At the same conditions, emulsions of the 
two phases in the absence of particles were prepared. The reason for measuring the interfacial 
tensions is that BODIPY can act as a surfactant, and the creation of surfactant emulsions relies 
on the lowering of the interfacial tension upon adsorption of surface active molecules.54 Figure A 
9 shows the slight decrease in interfacial tension with increasing concentration of BOPIDY in n-
decane.  

 
Figure A 9. Water / n-decane interfacial tensions (γ) at different concentrations of BODIPY in n-decane. 
Interfacial tensions were measured with a dataphysics OCA15plus Contact angle system by creating a 
water pendant drop84 from a syringe with a dataphysics SNP-D 165/135 needle in a BODIPY/n-decane 
phase in an optical cuvette (Hellma 100-05). 

Although the lowering of the water-decane interfacial tensions shows that BODIPY adsorbs on 
the interface, the used BODIPY concentrations do not produce significant emulsions (only some 
tiny white flakes are observed after ‘emulsification’, see Figure A 10). Therefore, it is not 
expected that the addition of BODIPY to the emulsion formulations containing particles will 
affect the emulsification. Still, to avoid any unexpected interference with the emulsification, the 
emulsions were prepared with the lowest possible concentration of BODIPY. 

 

 

 

 

 

 

 

 

  

Figure A 10. ‘Emulsification’ of 10-3 (left) 
and 10-2 (right) mg/mL BODIPY in n-
decane with water. 
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APPENDIX G. EMULSIFICATION CHALLENGES USING RB-20 
It was noted that RB-20 particles usually do not form emulsions with droplets finely dispersed in 
the continuous phase, or even only form clumps of emulsion that stick to the tube walls and are 
easily destroyed by gentle handshaking. To a lesser extent, such limited emulsification was also 
sometimes observed for RB-16. Figure A 11 shows typical bright field microscopy images of 
emulsions with RB-20. The non-continuous structure of the emulsions is also visible in the 
macroscopic photograph in Figure A 11. Clusters of droplets, sometimes encapsulated by a film, 
cannot be separated without destroying the emulsion. A cause for this might be limited 
adsorption of the particles on the oil-water interface and extensive particle bridging. 

  
Figure A 11. Typical images of emulsions with RB-20 particles. Instead of finely dispersed droplets, clumps 
of droplets in various morphologies are present. 

The adsorption of particles on a droplet might be limited due to a too high surface charge of the 
particles or due to the presence of many surface active molecules in the particle suspensions. 
The adsorption of a highly charged particle might be hindered by electric-double layer repulsion 
between a particle and the oil-water interface, or by the repulsion between a particle in the 
water and its image charge (of the same sign) in the oil phase.85 The presence of surfactants 
might impede the particle adsorption as well. To check whether these effects could play a role in 
the emulsification of the patchy rough particles, zeta potential and interfacial tension 
measurements were conducted. Figure A 12a shows that the roughest particles have the smallest 
zeta potentials, thus are least charged. Increased repulsion between the particles and the 
interface or their image charge is therefore unlikely to be the cause for the scarce emulsification 
efficiency. Figure A 12b does not show any correlation between the suspensions of rough 
particles and the interfacial tensions of suspension/n-decane interfaces. Therefore, the presence 
of surface active species hindering the adsorption of the colloids can also be rejected as cause 
for limited emulsification with RB-20. Consequently, the roughness of the particles could cause 
the limited emulsification. Reduced Pickering emulsification stability for particles with a too high 
degree of roughness has been reported,40 and was justified by a wetting transition from the 
Wenzel regime for particles of lower roughness to the Cassie-Baxter regime for particles of 
higher roughness (see section 2.2). 
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a b 

Zeta potential measurements of ∼0.03 wt% particle suspensions in 10mM KCl were conducted 
with a Malvern Zetasizer Nano ZS. Interfacial tensions were measured with the same system as 
described in the caption of Figure A 9 in Appendix F. 
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Figure A 12. (a) Zeta potentials of patchy rough particles. (b) Interfacial tensions of particle suspensions / 
n-decane interfaces.  
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APPENDIX H. EMULSION PHASE INVERSION PER PARTICLE TYPE 
 

 

 
Figure A 13. Emulsion phase inversion diagrams per particle type. Increasing the water content (φwater) in 
emulsions can result in catastrophic phase inversion. Mechanical phase inversion can occur with increasing 
emulsification shear rate. No phase inversion is observed for TPM for the probed conditions. 
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APPENDIX I. IMAGES OF EMULSIONS 
In Figure A 14 - Figure A 18, images of all emulsions supporting the results in Figure A 13 are 
presented. Images are grouped per particle type.  

 
Figure A 14. Images of emulsions with PS. From the left to the right column: macroscopic, bright field 
optical microscopy and confocal fluorescence microscopy images. The confocal fluoresence microscopy 
images show whether the emulsions are o/w or w/o type by addition of BODIPY 493/503 to the n-decane 
oil phase. 
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Figure A 15. Images of emulsions with RB-4.1. From the left to the right column: macroscopic, bright field 
optical microscopy and confocal fluorescence microscopy images. The confocal fluoresence microscopy 
images show whether the emulsions are o/w or w/o type by addition of BODIPY 493/503 to the n-decane 
oil phase. 
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Figure A 16. Images of emulsions with RB-7.5. From the left to the right column: macroscopic, bright field 
optical microscopy and confocal fluorescence microscopy images. The confocal fluoresence microscopy 
images show whether the emulsions are o/w or w/o type by addition of BODIPY 493/503 to the n-decane 
oil phase. 
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Figure A 17. Images of emulsions with RB-16. From the left to the right column: macroscopic, bright field 
optical microscopy and confocal fluorescence microscopy images. The confocal fluoresence microscopy 
images show whether the emulsions are o/w or w/o type by addition of BODIPY 493/503 to the n-decane 
oil phase. 
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Figure A 18. Images of emulsions with TPM. From the left to the right column: macroscopic, bright field 
optical microscopy and confocal fluorescence microscopy images. The confocal fluoresence microscopy 
images show whether the emulsions are o/w or w/o type by addition of BODIPY 493/503 to the n-decane 
oil phase. 
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